Corrosion Control

Chemical overview

- Chlorine
 - Used for disinfection
- Hydrofluosilicic Acid (Fluoride)
 - Used to strengthen teeth in children
- Sodium Hydroxide (Caustic)
 - Used for pH control for lead & copper leaching

Disinfection Byproducts (DBP)

- Natural Organic Matter (NOM)
 - Found in natural occurring surface water
- When chlorine and NOM mix, the unintended consequence results in Disinfection Byproducts.
- Total Trihalomethanes (TTHM) & Haloacetic Acid (HAA5)
 - MCL TTHM 80 ppm
 - MCL HAA5 60 ppm

History of corrosion control

- 2010 WDNR mandate required a pH adjustment to 8.6 su.
- 2017 Lead action exceedance level
 - DNR required CCT Study
- March 2020 First study was reported to WDNR
- Sept. 2021 WDNR Mandate (to be completed by Sept. 2023)
 - 2.0 ppm orthophosphate addition and maintain pH control
 - All 2000 lead service laterals be replaced
- CCT Study continued with concerns over plumbing corrosion and DBP formation.

CCT Study results

Addition of orthophosphate

- 2010 pH adjustment data shows increase in DBP formation
 - pH adjustment counter reacts chlorine disinfection
- Increased corrosion potential for copper plumbing
- Increased DBP formation
 - Potential to exceed WDNR MCL
- Increase in biofilm

WQI Recommendations

- Immediate Action
 - Request 2-year extension from WDNR
 - Eliminate pH adjustment over 6-months
 - Dose orthophosphate at 0.20 ppm
 - Perform profile sampling at 4 locations
- Mid to Long-term Action
 - Eliminate pre-chlorine feed
 - Continue Unidirectional Flushing (UDF)
 - Continue CCT Study

Conclusion

- WDNR NR 809.04(59) defines optimal corrosion control treatment not to cause public water system to violate national drinking water regulations
- Data clearly indicates orthophosphate feed could cause a violation of DBP rule