

COUNCIL SPECIAL SESSION

Wednesday, March 06, 2024 at 5:30 PM

COUNCIL MEMBERS:

Mayor Rick Scholl Council President Jessica Chilton Councilor Mark Gundersen Councilor Russell Hubbard Councilor Brandon Sundeen

LOCATION & CONTACT:

HYBRID: Council Chambers & Zoom (details below)

Website | www.sthelensoregon.gov

Email | kpayne@sthelensoregon.gov

Phone | 503-397-6272

Fax | 503-397-4016

AGENDA

CALL SPECIAL SESSION TO ORDER

DISCUSSION TOPICS

- 1. 5:30PM Introduction and Project Background John Walsh
- 2. 5:40PM Summary of 1B Findings Maul Foster & Alongi, Inc.
- 3. 6:00PM Next Steps Phase 1C Scope of Work Maul Foster & Alongi, Inc.
- 4. 6:15PM Council Questions and Discussion

OTHER BUSINESS

ADJOURN - 6:30PM

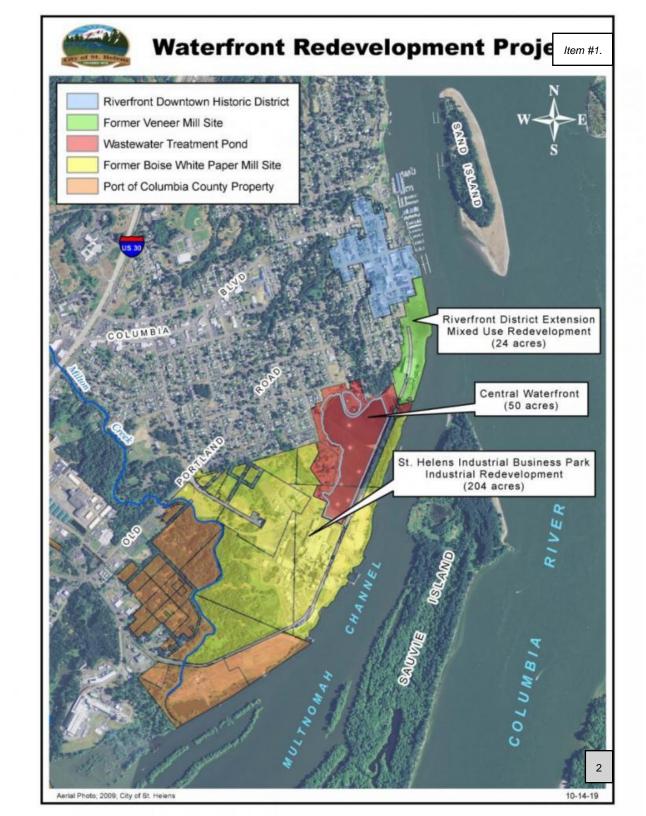
VIRTUAL MEETING DETAILS

Join: https://us02web.zoom.us/j/89960844009?pwd=dHAwbTRGR1JwWjBoajZhenhpanlHZz09

Passcode: 261732 Dial: 669-444-9171

The meeting location is accessible to persons with disabilities. A request for an interpreter for the hearing impaired or for other accommodations for persons with disabilities should be made at least 48 hours before the meeting to City Hall at 503-397-6272.

Be a part of the vision and get involved...volunteer for a City Board or Commission! For more information or for an application, go to www.sthelensoregon.gov or call 503-366-8217.


Why Central Matters:

Connectivity along 2 miles of riverfront

Health of the River with modern treatment

Economic opportunity

Keeps utility costs in check

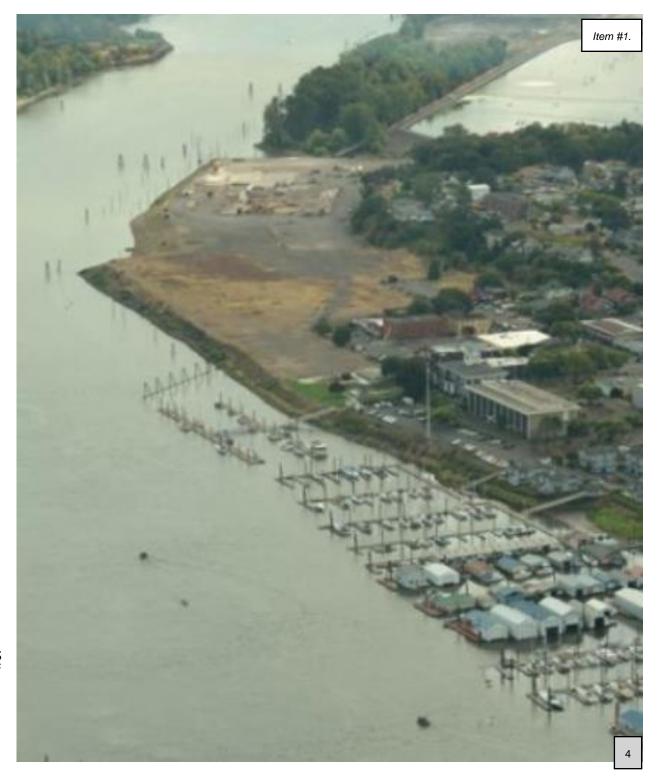
Waterfront Community Engagement

Core Values

Principals have been consistent over the decade of planning and engagement:

Public Access.

Redevelopment to connect to city neighborhoods, reconnect to the waterfront, and connect the city to the greater region.


Safe and secure access to the waterfront and other green space is imperative.

Natural and Cultural Heritage.

This project is an opportunity to return the highest public benefit to the greatest number of citizens over multiple generations.

Sustainable Economic Development.

Redevelopment should focus on a mix of housing, commercial, and recreational uses to create a "working waterfront." This mix of industry and amenities is optimal for creating a space to attract development and drive jobs back to the city.

Create a waterfront area that aligns with long-term development plan. The wastewater lagoon has been identified as a priority for redevelopment.

Investigation driven by mission and values:

To provide quality, effective and efficient service to our community

- Highest possible quality of life
- Safe and healthy environment
- Work for the benefit of all

Key questions:

Can repurposing be done safely? What are the benefits? Is there community support?

Concept rendering 2016 by MFA

Taking the time to ask questions:

2014 – 2016 Community desire to investigate repurposing surfaced throughout waterfront planning

2016 - 2017 Early evaluation, concept testing and market study

2018 - 2020 Phase 1A

Existing conditions – Geology and Hydrogeography Floodplains and Wetlands
Seismic Impact Zones and Unstable Areas
Sensitive Areas

2020 Phase 1 Site Characterization report released

2021-2023 Continued Geotechnical, Groundwater and Sludge sampling
Phase 1B report January 2024

PHASE IB ENVIRONMENTAL INVESTIGATION REPORT

ST. HELENS PHASE I LAGOON REPURPOSING

Prepared for

CITY OF ST. HELENS

ST. HELENS, OREGON November 8, 2023 Project No. M0830.03.006

Prepared by Maul Foster & Alongi, Inc. 3140 NE Broadway Street, Portland, OR 97232

PHASE IB ENVIRONMENTAL INVESTIGATION REPORT

ST. HELENS PHASE I LAGOON REPURPOSING

The material and data in this report were prepared under the supervision and direction of the undersigned.

MAUL FOSTER & ALONGI, INC.

QREGON

DAVID GLENN WEATHERBY

G1880

GEOLOGIST

EXPIRES: 6/1/2024
This digital seal certifies the signatory and document content.

David Weatherby, RG Principal Geologist

Cody Schweitzer Project Environmental Scientist

CONTENTS

TABLES	AND ILLUSTRATIONS	V
ACRONYMS AND ABBREVIATIONS		VI
1	INTRODUCTION 1.1 REGULATORY FRAMEWORK 1.2 INVESTIGATION OBJECTIVE	1 1 1
2	BACKGROUND 2.1 SITE DESCRIPTION 2.2 SITE HISTORY	2 2 2
3	PHASE IB SCOPE OF WORK 3.1 SITE INVESTIGATION OBJECTIVES 3.2 DEVIATIONS FROM THE PHASE IB SCOPE OF WORK 3.3 PHASE IB SCOPE OF WORK 3.4 SAMPLE HANDLING PROCEDURES 3.5 ANALYTICAL METHODS 3.6 DECONTAMINATION PROCEDURES 3.7 INVESTIGATION-DERIVED WASTES 3.8 FIELD QUALITY CONTROL SAMPLES 3.9 DATA QUALITY ASSURANCE AND QUALITY CONTROL REVIEW	3 3 4 8 8 9 10 10
4	RESULTS 4.1 SHALLOW AND DEEP LAGOON SLUDGE RESULTS 4.2 RECONNAISSANCE GROUNDWATER RESULTS 4.3 MONITORING WELL GROUNDWATER RESULTS 4.4 GEOLOGY AND HYDROGEOLOGIC CONCEPTUAL SITE MODEL	11 11 13 14 16
5	GEOTECHNICAL INVESTIGATION	19
LIMITA	TIONS	
REFERE	ENCES	
TABLES		
FIGURES		
APPEN	DIX A BORING LOGS	
APPEN	IDIX B FIELD SAMPLING DATA SHEET	
APPEN	DIX C LAB REPORTS	
APPEN	IDIX D DATA VALIDATION MEMORANDA	
APPEN	DIX E PHOTO LOG	

CONTENTS (CONTINUED)

APPENDIX F GRI REPORT

TABLES AND ILLUSTRATIONS

FOLLOWING REPORT:

TABLES

- 4-1 SUMMARY OF WASTEWATER LAGOON SLUDGE ANALYTICAL RESULTS
- 4-2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS
- 4-3 GROUNDWATER ELEVATION DATA

FIGURES

- 1-1 SITE LOCATION
- 3-1 BORING, MONITORING WELL, AND ISM SAMPLE LOCATIONS
- 4-1 SITE GEOLOGY
- 4-2 GENERALIZED GEOLOGIC CROSS SECTION A-A'
- 4-3 GENERALIZED GEOLOGIC CROSS SECTION B-B'
- 4-4 GENERALIZED GEOLOGIC CROSS SECTIONS C-C'
- 4-5 FEBRUARY 2023 GROUNDWATER ELEVATIONS

ACRONYMS AND ABBREVIATIONS

°C degrees Celsius

Apex Apex Laboratories LLC the City City of St. Helens COC chain of custody

CRBG Columbia River Basalt Group

DEQ Oregon Department of Environmental Quality

DO dissolved oxygen
DU decision unit

EPA U.S. Environmental Protection Agency

FSDS field sampling data sheet GPS global positioning satellite

HCSM hydrogeologic conceptual site model ISM incremental sampling methodology

m/s meters per second

MFA Maul Foster & Alongi, Inc.
OAR Oregon Administrative Rules
ORP oxidation-reduction potential
PCB polychlorinated biphenyl
PFAS polyfluorinated substances

PVC polyvinyl chloride
QA quality assurance
QC quality control

RBC risked-based concentrations

SB Sentinel Bluffs

the site 451 Plymouth Street, St. Helens, Oregon

Sonic rotosonic

SVOC semivolatile organic compound TEQ toxicity equivalence quotient

TOC top of casing

TPH total petroleum hydrocarbons VOC volatile organic compound

WW Winter Water

1 INTRODUCTION

Maul Foster & Alongi, Inc. (MFA) has prepared this report for the City of St. Helens (the City) documenting the results of an environmental investigation conducted at the wastewater treatment lagoon located at 451 Plymouth Street, St. Helens, Oregon (the site; see Figure 1-1). The investigation generated additional information about the site geology, hydrogeology, and chemistry necessary for the repurposing of the lagoon.

1.1 Regulatory Framework

The site currently serves as the St. Helens wastewater treatment lagoon. The City is exploring repurposing the lagoon into a nonmunicipal-waste facility for receiving sediment, soil, and wastewater treatment sludge. The first phase of the lagoon repurposing project, referred to as Phase I, includes initial site characterization, conceptual design, and permitting. These activities are necessary for progress toward conditional permit approval from the Oregon Department of Environmental Quality (DEQ) under Oregon Administrative Rules (OAR) 340-093 for the conversion of the St. Helens wastewater treatment lagoon. In addition, OAR 340-94-0080, OAR 340-0040, and 40 Code of Federal Regulations Part 258 address groundwater hydrology, quality, and groundwater monitoring.

The environmental investigation described in this report is a continuation of the Phase I activities initiated by the City in 2019. In July through September 2019, MFA completed various Phase I site investigation activities to understand baseline conditions at and in the vicinity of the lagoon, including the site geology and hydrogeology. That investigation included drilling six exploratory borings completed as monitoring wells (MW-1 through MW-6): two on the basalt bluff west of the lagoon and four on the lagoon dike; water level monitoring; groundwater sampling; and aquifer testing.

The results of the Phase I investigation were provided in the Phase I Site Characterization Report (MFA 2020). The DEQ responded to the Phase I report, identifying certain data gaps it believed had not been sufficiently addressed after the initial Phase I investigation (DEQ 2020a, 2020b). The environmental investigation documented in this report, referred to as Phase IB, was conducted to address data gaps identified by the DEQ. The scope of work for Phase IB, including field procedures, sample locations, analytical methods, and quality assurance and quality control (QA/QC) procedures, is described in the Phase IB environmental investigation work plan (MFA 2022).

The Phase IB work was conducted, and this report was prepared, under the Community Wastewater Treatment Resiliency grant 5327-11-R awarded to the City by the Federal Emergency Management Agency.

1.2 Investigation Objective

The objective of the Phase IB investigation was to collect data to further advance the initial understanding of the geologic and hydrogeologic characteristics of the site while addressing data gaps

identified by the DEQ after the completion of the previous Phase I, consistent with the requirements of OAR 340-093-0130(4)(a-d). Data to support this objective were collected to assess subsurface soil conditions in and beneath the lagoon and groundwater conditions beneath and adjacent to the lagoon.

In addition to the Phase IB investigation conducted by MFA, Geotechnical Resources, Inc. (GRI) conducted a second phase of geotechnical investigation to supplement the initial phase completed in 2019 and presented in the Phase I report. A brief summary of the 2023 geotechnical investigation findings is provided in Section 5.

2 BACKGROUND

2.1 Site Description

The site is located in Columbia County, in sections 3 and 10 of township 4 north, range 1 west of the Willamette Meridian, and along the west bank of the Multnomah Channel just south of its confluence with the Columbia River (Figure 1-1). The site is occupied by the City's sewage treatment plant and its associated wastewater treatment lagoon. The lagoon encompasses approximately 40 acres and is 21 feet deep. Wastewater treatment lagoon design drawings indicate that the bottom of the lagoon lies at an elevation of about 7 feet. The north and west margins of the lagoon perimeter are defined by a basalt bedrock bluff rising steeply to elevations of 40 to 80 feet. The northeast, east, and south margins of the lagoon consist of a constructed dike. The top of the dike lies at an elevation of 31 feet.

The lagoon is bordered on the east by the Multnomah Channel, a distributary channel of the Willamette River; on the west by a residential neighborhood; to the north by the former Boise Cascade Veneer site, the Nob Hill Nature Park, and a National Guard Armory; and to the south by the former Boise Cascade pulp and paper mill.

2.2 Site History

The sewage treatment plant and wastewater treatment lagoon were constructed in 1969, per an agreement between the City and Boise Cascade (the operator of the paper mill south of the site at that time). The site facilities were used for treatment of both municipal and paper mill effluent wastes. Historically, mill effluent comprised the majority of wastewater treated at the site. In 2009, wood pulping at the mill ceased, resulting in a reduction of mill effluent, which now comprises about 70 percent of wastewater treated at the site. The City's sewage treatment plant effluent comprises the remainder.

3 PHASE IB SCOPE OF WORK

This section provides a brief summary of the objectives, followed by a description of each field investigation activity completed. The objectives; scope of work; and field, laboratory, and QC methodologies are described in detail in the Phase IB work plan. As described below, field conditions, drilling rig access, and direction from the City necessitated deviations from the scope of work described in the Phase IB work plan.

3.1 Site Investigation Objectives

The Phase IB environmental investigation was completed to address the following objectives:

- 1. Assess baseline conditions for metals and anthropogenic organic chemicals potentially present in sludges currently present in the lagoon.
- 2. Develop a better understanding of the geology and hydrogeology beneath the lagoon and the hydraulic connectivity between interflow zones in basalt bedrock to the west of the lagoon and alluvium to the east of the lagoon.
- 3. Assess baseline conditions for metals and anthropogenic organic chemicals potentially present in groundwater.

3.2 Deviations from the Phase IB Scope of Work

The following is a summary of deviations from the Phase IB work plan.

3.2.1 Drilling Methods and Boring Locations

The Phase IB work plan scope of work included advancement of two borings in the lagoon, using a rotosonic (sonic) drill rig operated from a barge. Doing so would have required moving the City's water-quality baffles in the lagoon to allow the barge to access the proposed boring locations while also avoiding shallow areas in the lagoon. The City later determined that the baffles could not be moved due to their physical condition. Navigating the barge around the baffles in shallow water was not possible due to the deep draft of the barge required for the sonic drilling rig.

Instead, six borings were advanced using a direct-push drilling rig operated from a barge as described in Section 3.3.2 below. Owing to its small size and lighter weight compared to a sonic drilling rig, the depth requirement for the barge was less, and the barge could be navigated through shallow-water areas around the ends of the baffles.

Owing to this deviation, the following activities proposed in the Phase IB work plan were not completed:

- Because the direct-push drilling rig cannot drill into rock, the physical and hydrogeologic properties in the basalt underlying the lagoon were not observed or assessed.
- Standard penetration tests and collection of undisturbed Shelby tube samples were not completed in the soil under the lagoon.
- Specific capacity tests were not completed in the basalt.
- Aquifer testing (pneumatic slug tests) was not completed in the basalt.

3.2.2 Deep Sludge Sample Collection

The Phase IB work plan scope of work included collection of a lagoon sludge sample from the bottom of the sludge interval at each of the two proposed sonic borings for laboratory analysis. Instead, five sludge samples were collected from the bottom of the sludge interval at each of the five direct-push borings MFA B-1 through MFA B-5 (no sample was collected from boring MFA B-3A). Rather than analyzing each individual sample as proposed in the Phase IB work plan, the five samples were composited into a single sample for laboratory analysis, as described further in Section 3.3.2 below.

3.2.3 Reconnaissance Groundwater Sample Collection

The Phase IB work plan scope of work included collection of a reconnaissance groundwater sample from the basalt in each of the two proposed sonic borings for laboratory analysis. Because the direct-push drilling rig cannot drill in rock, reconnaissance groundwater samples were not collected in the basalt.

Instead, as described in Section 3.3.3 below, a reconnaissance groundwater sample was collected from a sandy water-bearing zone within the alluvium directly underlying the lagoon at boring MFA-B3A. At the other four direct-push boring locations, a reconnaissance groundwater sample was not collected because at two boring locations, basalt was present immediately under the lagoon, and at the other two locations, the alluvium under the lagoon consisted of soft, moist silt; no sandy water-bearing zones with sufficient groundwater for sample collection were encountered within the depth drilled.

3.2.4 Analysis for Per- and Polyfluorinated Substances

At the request of the City, analysis for per- and polyfluorinated substances (PFAS) was added to the analytical program for all samples collected, including the lagoon sludge samples, the reconnaissance groundwater sample, and the groundwater samples collected from monitoring wells. The analytical methods for the Phase IB investigation are described in Section 3.5 below.

3.3 Phase IB Scope of Work

3.3.1 Shallow Lagoon Sludge Sample Collection

To address the first investigation objective above, an incremental sampling methodology (ISM) approach (DEQ 2020c) was used to collect a representative sample of the lagoon sludge. ISM is a

structured composite sampling and processing protocol that reduces data variability, thereby increasing data representativeness. ISM is appropriate when attempting to establish average chemical concentrations in a single medium over a large area, as was the objective for the lagoon sludge sampling. ISM provides a single sample for analysis with a concentration representative of the mean concentration in a predefined area termed a decision unit (DU). For this project, the entire lagoon is defined as a single DU, referred to in this work plan as DU1.

The lagoon sludge ISM sampling was completed on August 10, 2022. Fifty incremental samples were collected at the approximate locations shown on Figure 3-1, using a clam shell sampling device, from the upper portion of the sludge column. The 50 locations were placed along ten east-west-oriented transects spanning the width and length of DU1. Global positioning satellite (GPS) coordinates were generated for each location and input into a GPS handheld device with a horizontal accuracy of less than 10 feet. The locations were accessed from a powered barge operated by the City. MFA directed the barge to each location, using the GPS device. A few locations were moved a few feet to avoid baffles and aerators in the lagoon, or because of poor sample recovery in the initial sample collected.

Upon retrieval, each sludge sample was inspected to ensure the sampling device was completely closed and retained all material. Fifty 4-ounce increments were collected from DU1. Each 4-ounce increment was collected from the sampling device, using a 1/2-cup stainless steel measuring cup, which resulted in approximately 4 ounces of sludge. Each 4-ounce increment was then placed into a total of two 1-gallon glass jars provided by the laboratory and stored in an iced cooler until sample collection was complete.

In addition, for volatile organic compound (VOC) analysis, a 5-gram sample was collected from the sampling device at each ISM location, using U.S. Environmental Protection Agency (EPA) Method 5035, and placed in a single 500-milliliter methanol-preserved glass jar provided by the laboratory and stored in an iced cooler until sample collection was complete.

An additional 50 1-ounce increments were collected and placed into a single 1-gallon glass jar for percent moisture determination. To best represent the field condition of the material, which was very wet, the percent moisture container was not decanted. The 4-ounce increment sample containers were decanted by pouring off the separated liquid from the top of the container.

At the completion of the ISM sample collection, the iced cooler containing the three 1-gallon glass jars and 500-milliliter glass jar were submitted under chain of custody (COC) to Apex Laboratories LLC (Apex) in Tigard, Oregon, for analysis. Apex subcontracted a portion of the sample to both Weck Laboratories, Inc., in California and Bureau Veritas in Ontario, Canada.

Apex air dried, sieved, ground, and homogenized the entire sample and collected a single aliquot for analysis, following industry-standard methods for ISM sample processing. The final ID for the ISM sludge sample analyzed is DU1-20220810-ISM-COMP. Sludge sample analytical methods are listed in Section 3.5.

3.3.2 Drilling and Deeper Lagoon Sludge Sample Collection

From January 30 through February 7, 2023, six borings identified as MFA B-1 through MFAB-5 and MFA B-3A, were advanced in the lagoon at the locations shown on Figure 3-1. MFA B-3A was drilled adjacent to MFA B-3 due to poor recovery in the initial boring in the alluvium directly under the lagoon. Once all other borings were completed and the core recovery method had become more effective, MFA B-3A was drilled to recover soil from the missing interval at MFA B-3 from a depth of 3 to 14.5 feet. All borings were advanced using a direct-push drilling rig operated by Cascade Drilling of Clackamas, Oregon, a well constructor licensed in Oregon. The drilling rig was a Geoprobe 7822DT direct-push drill rig equipped with 2.25-inch-diameter, 5-foot-long macrocore soil sampling device.

Changes in the lithology of the core were recorded on the boring logs provided in Appendix A. Lagoon sludge was encountered at all borings. At borings MFA B-1 and MFA B-2, the boring terminated on basalt directly under the lagoon sludge. At borings MFA B-3 through MFA B-5 and MFA B-3A, alluvium was present under the sludge and described in accordance with the Unified Soil Classification System. Borings MFA B-3 and MFA B-4 terminated in alluvium at 110 feet below the lagoon bottom (defined as the top of the sludge), MFA B-3A terminated in alluvium at 21.5 feet below the lagoon bottom, and MFA B-5 terminated on basalt at 30.25 feet below the lagoon bottom.

Lagoon sludge was observed at each boring with a distinct lower boundary under which either basalt or alluvium was encountered. MFA collected a sludge sample from the bottom of the sludge interval at each boring for laboratory analysis. The samples were collected in one unpreserved 1-gallon glass jar, two methanol-preserved 500-milliliter glass jars, and one 250-milliliter unpreserved high-density polyethylene container and submitted under COC to Apex for analysis.

Apex air dried, sieved, ground, and homogenized the entire sample and collected a single aliquot for analysis, following the same industry-standard methods used for the ISM sample processing described in Section 3.3.1 above. The final ID for the deeper sludge sample analyzed is MFA-B1-B5-COMP-SL. Sludge sample analytical methods are listed in Section 3.5.

3.3.3 Reconnaissance Groundwater Sample Collection

As described above, a reconnaissance groundwater sample was not collected from the basalt due to the change in drilling method. At borings MFA B-3 through MFA B-5, where alluvium was encountered under the lagoon, a soft silt was encountered below the lagoon at MFA B-3, MFA B-4, and MFA B-5. Since no obvious water-bearing zone was encountered below the lagoon at these three borings, MFA did not attempt to collect a reconnaissance groundwater sample.

At MFA B-3A, multiple sand layers were encountered between 3.3 and 9.0 feet under the lagoon bottom. The remainder of the boring to the final depth of 21.5 feet consisted of soft silt with no water-bearing zones. A reconnaissance groundwater sample was collected from a temporary polyvinyl chloride (PVC) well screen placed at a depth of 6 to 10 feet below the bottom of the lagoon, and across the sandy intervals. On the afternoon before the groundwater sample was collected, 2 to 3 gallons of water were purged from the well until it was dry. Then the water level in the borehole was

allowed to recover and stabilize overnight to a static level. The next morning, the depth to water was measured and recorded on the field sampling data sheet (FSDS) provided in Appendix B. Due to the water volume needed for the analytical methods, and the anticipation of poor groundwater recharge to the temporary well, no additional groundwater was purged from the well prior to sample collection. The groundwater sample was collected using a peristaltic pump, with new, PFAS-free disposable tubing. Prior to sampling and directly afterward, a single water quality parameter measurement was collected using a water quality meter to measure temperature, pH, specific conductance, dissolved oxygen (DO), oxidation-reduction potential (ORP), and turbidity. These parameters were recorded on the FSDS.

The reconnaissance groundwater sample was collected directly into laboratory-supplied containers, placed in iced coolers, and submitted under COC to Apex for analysis. The reconnaissance groundwater sample analytical methods are listed in Section 3.5.

3.3.4 Groundwater Sampling from Monitoring Wells

Groundwater samples were collected from the six existing monitoring wells MW-1 through MW-6. Prior to groundwater sample collection, the depth to groundwater was measured and recorded on the FSDS. The wells were purged with low-flow sampling methods (EPA 1996), using a peristaltic pump or submersible pump when required based on the depth to groundwater. The groundwater parameters temperature, pH, specific conductance, DO, ORP, and turbidity were measured periodically during purging and recorded on the FSDS. Groundwater samples were collected after three consecutive readings indicated that the groundwater parameters had stabilized in accordance with the stabilization criteria described in the Phase IB work plan. The samples were collected directly into laboratory-supplied containers, placed in iced coolers, and submitted under COC to Apex for analysis. Monitoring well groundwater sample analytical methods are listed in Section 3.5.

3.3.5 Groundwater Level Measurements

Water levels from boring MFA B-3A and monitoring wells MW-1 through MW-6 were measured using an electronic water level meter to the nearest 0.01 foot. The static water level was measured in the alluvium at lagoon boring MFA B-3A, where the reconnaissance groundwater sample was collected. The depth to groundwater in the boring was measured from the top of the temporary outer casing. At the same time, the outer casing height above the barge deck and the barge deck height above the surface water level of the lagoon were measured and the measurements recorded. The surface water elevation of the lagoon is measured continuously at an electronic gauge at the City's wastewater treatment plant; the elevation was 28 feet during the groundwater level measuring event. That surface water elevation measurement was added to the deck height above the lagoon water level plus the casing height above the deck to establish the top of casing (TOC) elevation. The depth to groundwater below the TOC elevation was subtracted from the TOC elevation to calculate a groundwater elevation of 15.3 feet in the boring. This calculation is explained in detail on the MFA B-3A boring log in Appendix A.

The depths to water in the monitoring wells were measured from the top of the PVC well casing at the surveyed elevation point, which was marked so that readings are consistently taken from the same reference point. Water levels were measured and recorded on the water FSDS (Appendix B) at each well location before purging or sample collection activities. The water level meter was decontaminated between wells.

3.4 Sample Handling Procedures

MFA staff collected, labeled, described, handled, and documented the samples collected in general accordance with the Phase IB work plan. Samples and sample documentation were maintained in the physical possession of MFA field personnel until custody of the samples was signed over to the analytical laboratory. All samples collected were documented on the COCs included with the laboratory reports in Appendix C.

3.5 Analytical Methods

The shallow and deep lagoon sludge samples were analyzed for the following:

- Priority pollutant metals antimony, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc, plus barium and manganese, by EPA Method 6020B.
- Hexavalent chromium by EPA Method 7196A.
- Gasoline-range hydrocarbons by Method NWTPH-Gx.
- VOCs by Method SW8260D.
- Low-level VOCs (analyzed together with the full list of EPA Method 8260D VOCs) by Method SW8260D-SIM.
- Diesel- and motor-oil-range hydrocarbons by Method NWTPH-Dx.
- Semivolatile organic compounds (SVOCs) by Method SW8270E.
- Polychlorinated biphenyl (PCB) congeners by EPA Method 1668C.
- Dioxins/furans by EPA Method 1613B, with confirmation by EPA Method 8290A.
- Chlorinated herbicides by Method SW8151A in the shallow sludge sample only. The
 deeper sludge sample had insufficient volume for all analytical methods. Since chlorinated
 herbicides were not detected in the shallow sludge sample, the deeper sludge sample was
 not analyzed for chlorinated herbicides.
- Organophosphorus pesticides by Method SW8270E.
- PFAS by ASTM D7968-17A.
- Low-level organochlorine pesticides by EPA Method SW8270E.

The reconnaissance groundwater sample and six monitoring well groundwater samples were analyzed for the following:

- Priority pollutant metals antimony, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc, plus barium and manganese, by EPA Method 6020B.
- Hexavalent chromium by EPA Method 218.6.
- Gasoline-range hydrocarbons by Method NWTPH-Gx.
- VOCs by EPA Method SW8260D.
- Low-level VOCs (analyzed together with the full list of Method 8260D VOCs) by Method SW8260D-SIM.
- Diesel- and motor-oil-range hydrocarbons by Method NWTPH-Dx.
- SVOCs by EPA Method 8270E.
- PCB congeners by EPA Method 1668C.
- Dioxins/furans by EPA Method 1613B, with confirmation by EPA Method 8290A.
- Chlorinated herbicides by EPA Method 8151A.
- Organophosphorus pesticides by EPA Method 8270E.
- PFAS by EPA 537.1 Modified.
- Low-level organochlorine pesticides by EPA Method 1699

3.6 Decontamination Procedures

Nondedicated sampling equipment (the submersible pump and water level meter) were decontaminated using the following procedures:

- Rinse with water.
- Wash with nonphosphate detergent.
- Rinse with distilled water.
- Air dry.

For ISM sampling, decontamination was not required for nondedicated sampling equipment used in the same DU, since all incremental samples were composited.

To mitigate PFAS cross-contamination, the following procedures were followed during sampling:

- Field staff wore synthetic or 100 percent cotton clothing that had been well-laundered without fabric softener.
- Waterproof clothing was made with polyurethane, PVC, wax-coated fabric, rubber, or neoprene.
- Boots were made of polyurethane.

- Powderless nitrile gloves were worn.
- High-density polyethylene and silicone tubing was used for sample collection.
- Powderless nitrile gloves were worn during and changed between sample locations or when handling sample equipment.
- Sample container(s) remained sealed at all times and opened only during sample collection.
- Sample container caps and lids were never placed directly on the ground or facing downward.
- Method-specific sample preservation, thermal storage, and holding time requirements were followed.

3.7 Investigation-Derived Wastes

Excess sludge from the shallow sludge sampling event and sludge and soil from the five lagoon borings were returned to the lagoon, adjacent to each sample location. Purge water generated during reconnaissance groundwater sampling and groundwater sampling at monitoring wells MW-3 through MW-6 was discharged to the wastewater treatment lagoon. Purge water generated during groundwater sampling at monitoring wells MW-1 and MW-2 was discharged to the ground adjacent to each well and allowed to infiltrate.

3.8 Field Quality Control Samples

Field quality control samples collected included the following:

- **Field Duplicate:** During groundwater sample collection from the monitoring wells, a duplicate sample with the ID MW3-20230214-GW-35-DUP was collected from MW-3.
- **Temperature Blank:** A temperature blank provided by the laboratory was included in each cooler. All samples were placed into coolers with ice after sample collection to maintain a sample temperature of 4°C or less until receipt at the laboratory.
- Trip Blank: Trip blanks were used with all groundwater VOC sample delivery groups.

3.9 Data Quality Assurance and Quality Control Review

MFA evaluated the laboratory data for precision, completeness, accuracy, and compliance with the analytical method. MFA performed a Stage 2A validation, consistent with EPA's Superfund risk assessment guide (EPA 1989), and assigned data qualifiers to sample results, following applicable sections of the EPA procedures for data review (EPA 1986, 2014, 2020a, 2020b, 2020c).

The results of the data evaluation review for each data package are summarized in the data validation memoranda in Appendix D. Based on the validation results, the data, with the appropriate data qualifiers assigned, are considered acceptable for their intended use.

4 RESULTS

This section presents the results of the Phase IB investigation, which include the following:

- A description of the lagoon sludge encountered and shallow and deep sludge sample analytical results
- The results of the reconnaissance groundwater sample analysis
- The results of the monitoring well groundwater sample analysis
- A revised hydrogeologic conceptual site model (HCSM) based on a geologic literature review, and the results of the Phase I and Phase IB subsurface investigations

The sludge sample analytical results are summarized on Table 4-1 and compared to the DEQ human health risk-based concentrations (RBCs) for (1) construction and excavation worker soil ingestion, dermal contact, and inhalation, and (2) soil leaching to groundwater for residential tap water exposure.

The reconnaissance groundwater and monitoring well groundwater results are summarized on Table 4-2 and compared to DEQ human health RBCs for residential ingestion and inhalation of tap water and the following ecological RBCs:

- Freshwater RBC for protection of aquatic life, chronic
- Freshwater RBC for protection of aquatic life, acute
- Surface water RBC for wildlife ingestion of surface water, birds
- Surface water RBC for wildlife ingestion of surface water, mammals

Representative photographs of shallow sludge encountered during sampling and deeper sludge and soils encountered at the borings are included in Appendix E.

4.1 Shallow and Deep Lagoon Sludge Results

The lagoon sludge consisted of dark gray to black, very fine-grained and wet decomposed organic material. It was very loose with trace sheen, organic-like odor, and trace woody debris. By weight, the solids content in the shallow sludge material was 6.71 percent and increased to 19.2 percent in the deeper sludge.

As shown on Table 4-1, chlorinated herbicides, organophosphorus pesticides, and VOCs were not detected in the shallow sludge sample (sample ID DU1-20220810-ISM-COMP on Table 4-1). The following analytical groups were detected in the shallow sludge sample:

- Dioxins/furans: all but one congener were detected, and the dioxin/furan toxicity equivalence quotient (TEQ) exceeded the RBC for leaching to groundwater.
- Metals: 14 of 16 metals were detected. No metals concentrations exceeded RBCs.

- Organochlorine pesticides: four of 28 pesticides were detected. No organochlorine pesticide concentrations exceeded RBCs.
- PCB congeners: 80 of 164 congeners were detected. The total PCB congener concentration did not exceed the RBCs.
- PFAS: 18 of 32 compounds were detected; there are no RBCs to which the data can be compared.
- SVOCs: five SVOCs were detected. No SVOC concentrations exceeded RBCs.
- Total petroleum hydrocarbons (TPH): Only diesel-range hydrocarbons were detected at a concentration that exceeded the leaching to groundwater and construction worker RBCs. Gasoline- and lube-oil-range petroleum hydrocarbons were not detected.

As shown on Table 4-1, organophosphorus pesticides were not detected in the deeper sludge sample (sample ID MFA-B1-B5-COMP-SL on Table 4-1). The following analytical groups were detected in the deeper sludge sample:

- Dioxins/furans: all but one congener were detected, and the dioxin/furan TEQ exceeded the leaching to groundwater and construction worker RBCs.
- Metals: 14 of 16 metals were detected. Only lead was detected at a concentration that
 exceeded the leaching to groundwater RBC, but both the concentration and the RBC were
 less than the natural background concentration.
- Organochlorine pesticides: one of 28 pesticides was detected. No organochlorine pesticide concentrations exceeded RBCs.
- PCB congeners: 49 of 164 congeners were detected, and the total PCB congener concentration exceeded the leaching to groundwater RBC.
- PFAS: 14 of 32 compounds were detected; there are no RBCs to which the data can be compared.
- SVOCs: three of 77 SVOCs were detected. No SVOC concentrations exceeded RBCs.
- TPH: Only diesel-range hydrocarbons were detected at a concentration that exceeded the leaching to groundwater and construction worker RBCs. Gasoline- and lube-oil-range petroleum hydrocarbons were not detected.
- VOCs: Only toluene was detected, and it did not exceed the RBC.

In general, concentrations of dioxins/furans and PCBs were higher in the deeper sludge. Metals concentrations showed no consistent trend; seven metals had higher concentrations in the shallow sludge, and eight metals had higher concentrations in the deeper sludge. PFAS compounds were detected at somewhat higher concentrations in the shallow sludge. The remaining chemical groups had no detections or no obvious trend in concentration between the shallow and deeper sludge.

4.2 Reconnaissance Groundwater Results

The reconnaissance groundwater sample results from boring MFA B-3A are summarized on Table 4-2. Chlorinated herbicides, organophosphorus pesticides, and TPH were not detected in the sample. PCB congeners were also not detected, but the detection limits for the sample were elevated about an order of magnitude above the detection limits and the concentrations of PCB congeners detected in the groundwater samples from the monitoring wells. Therefore, PCB congeners may be present in the reconnaissance groundwater sample at concentrations less than the detection limits. The following analytical groups were detected:

- Total metals: all 16 metals were detected, of which 12 had concentrations that exceeded the residential tap water and/or the ecological RBCs.
- Dioxins/furans: 15 of 25 congeners were detected, of which the 2,3,7,8-TCDD concentration and the dioxin/furan TEQ exceeded the residential tap water and ecological RBCs. No RBCs are available for other dioxin/furan congeners.
- Organochlorine pesticides: 19 of 28 pesticides were detected, of which the 4,4'-DDT and total DDx concentrations exceeded the ecological RBCs.
- PFAS: seven of 32 compounds were detected; there are no RBCs to which the data can be compared.
- SVOCs: five of 77 SVOCs were detected at concentrations less than the RBCs.
- VOCs: four of 66 VOCs were detected at concentrations less than the RBCs.

Since the reconnaissance groundwater sample was collected at only 5 to 9 feet below the bottom of the lagoon sludge, MFA compared the sludge and reconnaissance groundwater results to assess whether chemicals detected in the reconnaissance groundwater are similar to those detected in the sludge. In general, chemical groups that had very few detections or no detections in the sludge (chlorinated herbicides, organophosphorus pesticides, SVOCs, and VOCs) were similarly not detected or had few detections in the reconnaissance groundwater sample.

Fewer dioxins/furans were detected in the reconnaissance groundwater sample compared to the sludge samples, consistent with the fact that dioxins/furans generally have a low solubility in water and tend to partition to organic carbon.

A greater number of organochlorine pesticides were detected in the reconnaissance groundwater sample compared to the sludge samples, but this may be due to detection limits for the water analysis, which were two to four orders of magnitude lower than the sludge samples analyses.

Fewer PFAS compounds were detected in the reconnaissance groundwater sample than the sludge samples. PFAS have a high solubility in water, but studies of the partitioning of PFAS to solid-phase materials such as organic carbon indicate that PFAS can partition to organic carbon, including in sewage solids. This may explain the fewer detections in the water analysis compared to the sludge samples.

As noted above, PCB congeners were detected in the sludge samples but not the reconnaissance groundwater sample, likely due to the elevated detection limits for the water analysis.

Diesel-range hydrocarbons were detected at a high concentration in the sludge but not detected in the reconnaissance groundwater sample. In general, diesel has a low solubility in water and may partition to organic carbon, which may explain its presence in the sludge but not the water.

Numerous metals were detected in both the sludge and the reconnaissance groundwater samples. Because metals occur naturally in soil, such as the silt and sand at the sample collection depth for the reconnaissance groundwater samples (see the MFA B-3A boring log in Appendix A), and because the reconnaissance groundwater sample was turbid (see the FSDS in Appendix B), the detection of metals in the groundwater sample may reflect the entrainment of soil particles into the sample, and may be unrelated to the metals content in the sludge.

4.3 Monitoring Well Groundwater Results

The monitoring well groundwater sample results are summarized on Table 4-2. Chlorinated herbicides, organophosphorus pesticides, and dioxins/furans were not detected in the sample. The following analytical groups were detected:

- Total metals: eight of 16 metals were detected, of which five had concentrations that exceeded the residential tap water and/or ecological RBCs.
- Organochlorine pesticides: 19 of 28 pesticides were detected at concentrations less than the RBC.
- PFAS: 11 of 32 compounds were detected; there are no RBCs to which the data can be compared.
- PCB congeners: ten of 164 congeners were detected, of which only the total PCB congener concentration at MW-1 exceeded an ecological RBC.
- SVOCs: 30 of 77 SVOCs were detected, three of them at concentrations that exceeded the residential tap water and ecological RBCs. Pentachlorophenol, a common wood-treating chemical, was detected at upgradient well MW-2. It was not detected in the lagoon sludge, the reconnaissance groundwater sample from MFA B-3A, or groundwater samples from the other monitoring wells. Its detection at MW-2 suggests a possible source of pentachlorophenol unrelated to the lagoon.
- TPH: Diesel- and lube-oil range hydrocarbons were detected at MW-4 through MW-6 at concentrations that exceeded the residential tap water RBCs.
- VOCs: three of 66 VOCs were detected. No VOC concentrations exceeded RBCs.

As described in the Phase I Site Characterization Report (MFA 2020), the groundwater flow direction at the site is east toward the Multnomah Channel based on groundwater elevations measured at MW-1 through MW-6. The Phase IB investigation confirmed the groundwater flow direction, as described further in Section 4.4.3 below. Since MW-1 and MW-2 are upgradient of the lagoon, MFA B-3A is

under the lagoon, and MW-3 through MW-6 are downgradient of the lagoon, MFA compared the groundwater sample data from these locations to assess whether the analytical results and distribution of chemicals in groundwater are consistent with groundwater flow to the east. The objective of this comparison is to assess whether chemicals possibly sourced from the lagoon are more frequently detected or detected at higher concentrations in downgradient wells versus upgradient wells. This comparison assumes that the aquifers in which the upgradient wells are screened are in direct hydraulic connection with the aquifers in which the downgradient wells are screened. As described further in Section 4.4.2, this may not be the case. The following is a summary of this comparison.

Metals

- Two metals, chromium and nickel, were detected at MFA B-3A and the downgradient wells, but not the upgradient wells.
- Arsenic, barium, manganese, and zinc were detected at MFA B-3A, and at higher concentrations at the downgradient wells compared to the upgradient wells.
- Only copper and lead were detected at slightly higher concentrations at upgradient well MW-2 compared to downgradient wells.
- In general, the metals data appear to confirm that the groundwater flow direction is to the east.

Organochlorine pesticides

- Three to seven pesticides were detected in the upgradient wells, 19 were detected at MFA B-3A, and four to 13 were detected at the downgradient wells.
- Some pesticide concentrations were slightly higher in the downgradient wells compared to the upgradient wells.
- The organochlorine pesticide data appear consistent with a groundwater flow direction to the east.

PFAS

- Seven PFAS were detected at MFA B-3A, and eight to 11 PFAS were detected at the downgradient wells, compared to no or two PFAS detections at the upgradient wells.
- Six of the seven PFAS detected at MFA B-3A were also detected at one or more downgradient wells.
- Only one of seven PFAS detected at MFA B-3A was also detected at one upgradient well.
- The PFAS data are consistent with a groundwater flow direction to the east.

PCB Congeners

- Due to the elevated detection limits in the reconnaissance groundwater sample from MFA B3A, PCB congeners were not detected.
- Eighty PCB congeners were detected in the lagoon sludge sample compared to only two to five congeners in the monitoring wells.

- Due to the lack of PCB congener detections in the reconnaissance groundwater sample, general low solubility of PCBs in water, and few detections in the monitoring wells, the PCB congener data are not useful for assessing the groundwater flow direction.
- The highest PCB congener concentrations were from upgradient well MW-1. The source of this is unknown.

SVOCs

- Five SVOCs were detected at MFA B-3A, one or two SVOCs were detected at the upgradient wells, and one to 21 SVOCs were detected at the downgradient wells.
- Except for MW-3 and MW-6, where 21 and 14 SVOCs were detected, respectively, the number of SVOC detections at downgradient wells MW-4 and MW-5 were few and similar in number to MFA B-3A and the upgradient wells MW-1 and MW-2.
- Only two of five SVOCs detected at MFA B-3A were detected in the downgradient wells.
 Conversely, many SVOCs detected at MW-3 and MW-6 were not detected at MFA B3-A or the upgradient wells.
- In general, the SVOC data are not useful for assessing the groundwater flow direction.

TPH

- Diesel and oil were detected only at the downgradient wells MW-4 through MW-6.
- Since TPH were not detected in the reconnaissance groundwater sample from MFA B-3A, it is unclear whether the diesel and oil detections are associated with the lagoon and present at MW-4 through MW-6 due to the groundwater flow direction.

VOCs

- The four VOCs detected at MFA B-3A were not detected at the downgradient wells.
- The two VOCs detected at the downgradient wells were not detected at MFA B-3A or the upgradient wells.
- The VOC data are not useful for assessing the groundwater flow direction.

In summary, the data for metals, organochlorine pesticides, and PFAS are consistent with a groundwater flow direction to the east. The data for the other chemical groups show no consistent spatial pattern and are not useful for assessing the groundwater flow direction.

4.4 Geology and Hydrogeologic Conceptual Site Model

A preliminary HCSM was presented in the Phase I report and Phase IB work plan. The preliminary HCSM was prepared based on the review of public documents providing information on the geology and hydrogeology of the site vicinity and on the results of the 2019 Phase I work. This section presents the updated HCSM, which now incorporates the results of the Phase IB site investigation.

4.4.1 Regional Geology

The geology of the site vicinity is shown in plan view on Figure 4-1, and in cross section on Figures 4-2, 4-3, and 4-4. A basalt bluff is west-adjacent to, and higher in elevation than, the lagoon. The basalt has been identified as the Sentinel Bluffs (SB) member of the Columbia River Basalt Group (CRBG) (Evarts 2004), which is a regionally significant water-bearing formation. In the area surrounding St. Helens, the SB member is the most widespread CRBG unit, and the unit with the highest average groundwater yield (Ahern 2017). Groundwater in the CRBG is largely confined to interflow zones associated with structures present at the tops and bottoms of individual basalt flows. These interflow structures include vesicular flow tops, flow-top and flow-bottom breccias, and pillow lava/hyaloclastite complexes, and typically have hydraulic conductivities on the order of 10⁻² to 10⁻¹⁵ meters per second (m/s), which is substantially higher than dense flow interiors, which typically have maximum hydraulic conductivity values on the order of 10⁻⁹ m/s. The highest values for hydraulic conductivity and porosity are typically observed in brecciated flow tops and bottoms (Tolan, Lindsey, and Porcello 2009). During the Phase I investigation in 2019, interflow zones were observed at the two borings advanced on the basalt bluff (MW-1 and MW-2). These were composed of highly weathered in situ basalt bedrock between nonvesicular unweathered bedrock above and highly vesicular unweathered bedrock below. The observed K-values at these interflow zones in the basalt dike borings had geometric means of 0.073 and 0.081 feet/day (2.58x10⁻⁷ to 2.86x10⁻⁷ m/s). These were calculated using pneumatic slug testing at intervals of 12, 24, and 36 inches of water pressure.

The SB member of the CRBG is underlain by the Winter Water (WW) member of the CRBG at the site. Both members dip slightly to the east toward the Multnomah Channel. The contact between the two members is mapped at the base of the basalt bluff on the west side of the lagoon (Evarts 2004). The WW member extends east beneath the lagoon and the Multnomah Channel. The presence of the contact between the two members, together with the eastward dip, suggests that an interflow zone may be present between the two units and across the top of the WW member where it extends east beneath the lagoon.

East of the lagoon, the WW is overlain by fill along the dike alignment and by Holocene Columbia River alluvium (Evarts 2004). The fill is localized and is not laterally extensive outside the site vicinity, but the alluvium extends east onto Sauvie Island and south along the floodplain. The alluvium, together with a potential interflow zone at the top of the WW member, may provide a pathway for groundwater flow beneath the wastewater treatment lagoon.

4.4.2 Lagoon Geology

Based on the combined results of the Phase I and Phase IB investigations, the prior geologic cross sections have been updated and a new geologic cross section created. The cross section locations are shown on Figure 4-1 and include the following:

 Cross Section A-A' (Figure 4-2): based on geologic data provided by private water well COLU55412, MFA monitoring wells and borings MW-2, MFA B-1, MFA B-2, MFA B-3, MW-4, and GRI boring B-3.

- Cross Section B-B' (Figure 4-3): based on geologic data provided by MFA monitoring wells and boring MW-1, MFA B-5, and MW-5.
- Cross Section C-C' (Figure 4-4): based on geologic data provided by MFA monitoring wells MW-3, MW-5, MW-4, MW-6, and GRI cone penetrometer test location CPT-21.

Boring logs for MFA borings and monitoring wells and the private water well COLU55412 are provided in Appendix A. The logs for GRI locations B-3 and CPT-1 are provided in Appendix F.

The lagoon is located at the interface between shallow basalt bedrock to the west and deep alluvium to the east. This is depicted on Figure 4-2 where the western portion of the lagoon near its north end is directly underlain by a thin layer of sediment then basalt bedrock at locations MFA B-1 and MFA B2. The eastern portion of the lagoon is underlain by sand and silty sand followed by silt. Bedrock was not encountered at locations MFA B-3, MW-4, and B-3. Farther east across the Multnomah Channel, basalt bedrock crops out at the north end of Sauvie Island. This deep structural feature in the basalt that is filled by more than 280 feet of alluvium is interpreted as a former channel of the Columbia River.

At the south end of the lagoon, the former channel feature is not present, or is shallower and more subdued, as shown on Figure 4-3. Here the lagoon is underlain by 30 to 80 feet of alluvium then basalt bedrock at locations MFA B-5 and MW-5.

Figure 4-4 depicts the subsurface geology in a line parallel to the lagoon dike. Consistent with Figures 4-2 and 4-3, the depth to basalt is shallower in the southern portion of the lagoon at locations MW-3 and MW-5. Basalt was not encountered farther north at locations MW4 and MW-6, where it occurs at a greater depth. Basalt was encountered at a shallow depth at location CPT-1 at the north end of the lagoon. Again, this structural feature in the basalt filled with alluvium is interpreted as a former channel of the Columbia River.

Interflow zones were encountered in the basalt at locations MW-1 and MW-2 and are interpreted to be present at COLU55412, as shown on Figures 4-2 and 4-3. The horizontal extent of these interflow zones is not known, and therefore Figures 4-2 and 4-3 do not show these zones as being laterally extensive. However, since these interflow zones are associated with the flow tops and flow bottoms of the CRBG, and the CRBG flows are known to be regionally extensive units, it is possible that the zones are laterally continuous, extend horizontally to the east, and are in contact with the alluvium underlying the lagoon.

The interpretation that the interflow zones are laterally extensive would indicate that groundwater in the interflow zones is in direct hydraulic connection with groundwater in the alluvium. However, significant water-bearing zones in the alluvium underlying the lagoon were limited to a shallow unit of sand at locations MFA B-3 and MW-3 through MW-6. This water-bearing zone does not appear to be in direct contact with the basalt, as shown on Figures 4-2 through 4-4. Rather, silt is in direct contact with the basalt at the locations on Figures 4-2 and 4-3 where the interflows would potentially be in contact with the alluvium if they were laterally extensive. The presence of the thick unit of silt between the basalt and the sand and silty sand water-bearing zone suggests that the hydraulic

connectivity between the basalt interflow zones and the water-bearing zone in the alluvium may be suppressed by the presence of the silt.

4.4.3 Groundwater Flow Direction

Based on the site topography, surface hydrology, and regional groundwater elevations (Ahern 2017), the expected direction of groundwater flow is toward the Multnomah Channel. Groundwater elevation data collected from the monitoring wells during the August 2019 Phase I investigation were used to prepare a water level elevation contour map (see Figure 8-1 of the 2020 Phase I Report). The elevation contours indicated that the groundwater flow is toward the Multnomah Channel.

Groundwater elevations were measured again at MW-1 through MW-6 and at MFA B-3A in February 2023, and are summarized on Table 4-3. The elevation data were used to prepare the updated water level elevation contour map (Figure 4-5). Consistent with the 2019 data, the 2023 groundwater elevation data indicate that the groundwater flow direction is east, toward the Multnomah Channel. As noted in Section 4.3 above, the groundwater data for metals, organochlorine pesticides, and PFAS are consistent with a groundwater flow direction to the east.

Figure 4-5 presents a single potentiometric surface generated using data from two aquifers—the interflow zones in basalt at MW-1 and MW-2, and the sand and silty sand water-bearing zones at MW-3 through MW-6 and MFA B-3. Presenting the single potentiometric surface in this way assumes that the basalt interflow zones and alluvial water-bearing zones are in direct contact and there is no hydraulic separation between the two. As noted in Section 4.4.2 above, it is unknown whether the interflow zones at COLU55412 and MW-1 and MW-2 extend east to the lagoon, and if they do, it appears they are separated from the alluvial water-bearing zones by a thick layer of silt.

Based on the groundwater elevation data from just the single alluvial water-bearing zone under the lagoon (at MFA B-3 and MW-3 through MW-6), it does appear that the groundwater flow direction in this single aquifer is east, toward the Multnomah Channel.

5 GEOTECHNICAL INVESTIGATION

GRI completed a preliminary Phase I Geotechnical Investigation for the proposed repurposing of the wastewater treatment plant lagoon as a nonmunicipal-waste facility. The project would include draining and partially to fully filling the lagoon with sediment, soil, and the City's wastewater sludge. A Geosynthetic Clay liner (GCL) and 60-mil High-Density Polyethylene (HDPE) liner would be installed near the base of the facility and filled with up to 56 feet of fill. The following is a brief overview of the geotechnical engineering evaluation for the project and is not intended to replace more detailed information contained within the report in Appendix F. A summary of GRI's findings, opinion, and recommendations is provided below.

- The borings and geotechnical data collected for this investigation and review of available existing subsurface information indicates the site is underlain by variable thickness of sand, underlain by a significant thickness of highly compressible alluvial silt. The silt is underlain by basalt. The depth to basalt varies significantly across the project site from at or near the ground surface to depths of over 350 feet over relatively short horizontal distances. This variability has significant static and seismic design implications as discussed further below.
- The sand and silt soils below the groundwater surface are susceptible to liquefaction and cyclic softening during a design level earthquake. Significant lateral soil movements are estimated, and ground improvement will likely be required to improve seismic slope stability.
- Preliminary geotechnical modeling of ground improvement was completed to increase seismic slope stability and limit slope movements to about 2 feet. The results indicated the largest ground improvement cross sections are typically required where the basalt depths are the greatest. Additional explorations, lab testing, and more robust modeling, such as finite difference or finite element numerical modeling will be required to better evaluate ground improvement assumptions as part of the Phase II geotechnical investigation.
- Up to 9 feet of total settlement are estimated following site filling. Due to significant variation in depth of basalt over relatively short distances across the site, we estimate total settlements may approach differential settlements.
- Differential settlement tolerances of GCL, HDPE liners, and geotube containment berms need to be further evaluated during the Phase II geotechnical investigation. Initial team review indicates the differential settlements estimated will be difficult to tolerate and will require additional measures to reduce.
- The GCL and HDPE liners are currently proposed below the 100-year flood elevation and the risks associated with floating the HDPE liner when river levels exceed fill levels within the lagoon will be a design consideration.
- Final uses for the site have not been finalized but may include new buildings. Due to settlement implications, the buildings will likely require special foundation considerations such as deep foundation systems.
- Due to the significant variability observed at the site, additional geotechnical explorations, laboratory testing, slope stability modeling and engineering analysis will be required as part of the Phase II geotechnical investigation.

LIMITATIONS

The services undertaken in completing this work plan were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This work plan is solely for the use and information of our client unless otherwise noted. Any reliance on this work plan by a third party is at such party's sole risk.

Opinions and recommendations contained in this work plan apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this work plan.

REFERENCES

Ahern, Eli Thomas. 2017. "Hydrostratigraphy of Warren Bench and Surrounding Area, Columbia County, Oregon." Honors theses, Portland State University. Paper 512. November 19.

DEQ. 2020a. Heather Kuoppamaki, Oregon Department of Environmental Quality, Portland, Oregon. *Phase I Site Characterization Report, St. Helens Intergovernmental Agreement Phase I Lagoon Repurposing.* Memorandum to file. February 19.

DEQ. 2020b. Scott Yankey, Oregon Department of Environmental Quality, Portland, Oregon. Phase I Site Characterization Report—Draft Comments, St. Helens Intergovernmental Agreement Phase I Lagoon Repurposing, Columbia County. Memorandum to file. February 26.

DEQ. 2020c. *Decision Unit Characterization*. Oregon Department of Environmental Quality. September 14.

EPA. 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA publication SW-846. 3rd ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase II (2019), VII phase I (2019), and VII phase II (2020).

EPA. 1989. Risk Assessment Guide for Superfund. Vol. I, Human Health Evaluation Manual (Part A). Interim final. EPA/540/1A89/002. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. December.

EPA. 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. U.S. Environmental Protection Agency. April.

EPA. 2014. R10 Data Validation and Review Guidelines for Polychlorinated Dibenzo-P-Dioxin and Polychlorinated Dibenzofuran Data (PCDD/PCDF) Using Method 1613B and SW846 Method 8290A. EPA-910-R-14-003. U.S. Environmental Protection Agency, Office of Environmental Assessment. May.

EPA. 2020a. EPA Contract Laboratory Program, National Functional Guidelines for High Resolution Superfund Methods Data Review. EPA 542-R-20-007. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. November.

EPA. 2020b. National Functional Guidelines for Inorganic Superfund Methods Data Review. EPA 542-R-20-006. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.

EPA. 2020c. National Functional Guidelines for Organic Superfund Methods Data Review. EPA 540-R-20-005. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.

Evarts, Russell C. 2004. Geologic map of the Saint Helens Quadrangle, Columbia County, Oregon, and Cowlitz and Clark Counties, Washington. U.S. Geological Survey Scientific Investigations Map 2834.

MFA. 2020. Phase I Site Characterization Report. Maul Foster & Alongi, Inc: Portland, OR. May 4.

MFA. 2022. Phase IB Environmental Investigation Work Plan. Maul Foster & Alongi, Inc: Portland, OR. August 3.

Tolan, Terry, Kevin Lindsey, and John Porcello. 2009. A Summary of Columbia River Basalt Group Geology and Its Influence on the Hydrogeology of the Columbia River Basalt Aquifer System: Columbia Basin Ground Water Management Area of Adams, Franklin, Grant, and Lincoln Counties. Prepared by the Columbia Basin Ground Water Management Area of Adams, Franklin, Grant, and Lincoln Counties, Othello, Washington. June.

TABLES

						MFA-B1-B5-	
Location:	RBC, Soil, Inge	estion, Dermal	RBC, Soil,	Background	DU1	COMP	
	_	d Inhalation ⁽¹⁾	Leaching to	Metals,	DU1-20220810-	MFA-B1-B5-	
Sample Name:			Groundwater ⁽¹⁾	Portland	ISM-COMP	COMP-SL	
Collection Date:	Construction	Excavation	5	Basin ⁽²⁾	08/10/2022	1/30/2023	
Collection Depth (ft bml):	Worker	Worker	Residential		Surface	0.5-2.0 ^(a)	
Chlorinated Herbicides (mg/kg)	L		I		I.		
2,4,5-T	NV	NV	NV	NV	0.15 UJ		
2,4-D	2,700	74,000	2.3	NV	0.33 UJ		
2,4-DB	NV	NV	NV	NV	0.58 UJ		
Dalapon	NV	NV	NV	NV	0.26 UJ		
Dicamba	NV	NV	NV	NV	0.24 UJ		
Dichlorprop	NV	NV	NV	NV	0.24 UJ		
Dinoseb	NV	NV	NV	NV	0.083 UJ		
MCPA	130	3,700	0.097	NV	54 UJ		
MCPP	NV	NV	NV	NV	140 UJ		
Pentachlorophenol	34	960	0.066	NV	0.23 UJ		
Picloram	NV	NV	NV	NV	0.22 UJ		
Silvex	NV	NV	NV	NV	0.18 UJ		
Conventional Parameters (%)	147	1117	1117	144	0.10 03		
Percent solids	NV	NV	NV	NV	6.71	19.2	
Dioxins/Furans (pg/g)	111	1117	1117	1117	0.71	17.2	
1,2,3,4,6,7,8-HpCDD	NV	NV	NV	NV	259	474	
1,2,3,4,6,7,8-HpCDF	NV	NV	NV	NV	56.5	50.9	
1,2,3,4,7,8,9-HpCDF	NV	NV	NV	NV	2.94 J	3.56 J	
1,2,3,4,7,8,7-npcbr 1,2,3,4,7,8-HxCDD	NV	NV	NV	NV	2.74 J	7.73	
1,2,3,4,7,6-FIXCDD 1,2,3,4,7,8-HXCDF	NV	NV	NV	NV	4.87 J	6.77	
	NV	NV	NV	NV	43.8	610	
1,2,3,6,7,8-HxCDD			<u> </u>		2.71 J	2.64 J	
1,2,3,6,7,8-HxCDF	NV NV	NV NV	NV	NV NV	30.2	312	
1,2,3,7,8,9-HxCDD			NV				
1,2,3,7,8,9-HxCDF	NV	NV	NV	NV	0.386 U	0.453 L	
1,2,3,7,8-PeCDD	NV	NV	NV	NV	5.59	37.8	
1,2,3,7,8-PeCDF	NV NV	NV	NV	NV	4.38 J	11	
2,3,4,6,7,8-HxCDF	NV	NV	NV	NV	1.86 J	2.96 J	
2,3,4,7,8-PeCDF	NV	NV	NV	NV	3.01 J	8.2	
2,3,7,8-TCDD	NV	NV	NV	NV	10.2	77.1	
2,3,7,8-TCDF	NV	NV	NV	NV	59.5	440	
OCDD	NV	NV	NV	NV	2,460	2,230	
OCDF	NV	NV	NV	NV	100	108	
Total HpCDDs	NV	NV	NV	NV	492	820	
Total HpCDFs	NV	NV	NV	NV	124	137	
Total HxCDDs	NV	NV	NV	NV	281	3,910	
Total HxCDFs	NV	NV	NV	NV	51.1	67.4	
Total PeCDDs	NV	NV	NV	NV	38.7	251	
Total PeCDFs	NV	NV	NV	NV	54.1	130	
Total TCDDs	NV	NV	NV	NV	135	144	
Total TCDFs	NV	NV	NV	NV	191	1,110	
Dioxin/Furan TEQ ^{(b)(3)}	170	4,800	6.8	NV	35.4 J	262 J	
Metals (mg/kg)							
Antimony	NV	NV	NV	0.56	2.62	0.944 J	
Arsenic	15	420	NV	8.8	4.21	3.48	
Barium	69,000	NV	NV	790	339	174	

Location:	RBC, Soil, Inge Contact, and		RBC, Soil, Leaching to	Background Metals,	DU1 DU1-20220810-	MFA-B1-B5- COMP MFA-B1-B5-	
Sample Name:	Corrider, and	a irii ididilori	Groundwater ⁽¹⁾	Portland	ISM-COMP	COMP-SL	
Collection Date:	Construction	Excavation	Desidential	Basin ⁽²⁾	08/10/2022	1/30/2023	
Collection Depth (ft bml):	Worker	Worker	Residential		Surface	0.5-2.0 ^(a)	
Beryllium	700	19,000	NV	2	0.327	0.316	
Cadmium	350	9,700	NV	0.63	2.97	3.24	
Chromium	NV	NV	NV	76	70.1	191	
Chromium, Hexavalent	49	1,400	NV	NV	10.7 UJ	11.4 U	
Copper	14,000	390,000	NV	34	259	142	
Lead	800	800	30	79	27.1	40.2	
Manganese	8,200	230,000	NV	1,800	711	763	
Mercury	110	2,900	NV	0.23	0.485	0.881	
Nickel	7,000	190,000	NV	47	37.8	46.8	
Selenium	NV	NV	NV	0.71	2.46	0.813	
Silver	1,800	49,000	NV	0.82	2.27	2.5	
Thallium	NV	NV	NV	5.2	0.286 U	0.265 U	
Zinc	NV	NV	NV	180	817	531	
Organochlorine Pesticides (mg/kg)	•		•		•		
2,4'-DDD	NV	NV	NV	NV	0.00106 U	0.00395 UJ	
2,4'-DDE	NV	NV	NV	NV	0.00053 U	0.00124 UJ	
2,4'-DDT	NV	NV	NV	NV	0.00053 U	0.00124 UJ	
4,4'-DDD	9.7	270	1.1	NV	0.00106 U	0.00124 UJ	
4,4'-DDE	66	1,800	1.6	NV	0.00548	0.00305 J	
4,4'-DDT	66	1,800	12	NV	0.00053 U	0.00124 UJ	
Aldrin	1.1	30	0.023	NV	0.00053 U	0.00124 UJ	
alpha-BHC	3	83	0.0063	NV	0.00053 U	0.00272 UJ	
alpha-Chlordane	NV	NV	NV	NV	0.00146	0.00124 UJ	
beta-BHC	NV	NV	NV	NV	0.00053 U	0.00321 UJ	
beta-Chlordane	NV	NV	NV	NV	0.00199	0.00124 UJ	
cis-Nonachlor	NV	NV	NV	NV	0.00053 U	0.00124 UJ	
delta-BHC	NV	NV	NV	NV	0.00053 U	0.00124 UJ	
Dieldrin	1.2	33	0.01	NV	0.00117 U	0.242 UJ	
Endosulfan I	1,600	45,000	NV	NV	0.0107 U	0.0124 UJ	
Endosulfan II	1,600	45,000	NV	NV	0.00371 U	0.0124 UJ	
Endosulfan sulfate	NV	NV	NV	NV	0.00053 U	0.00124 UJ	
Endrin	80	2,200	11	NV	0.00053 U	0.00124 UJ	
Endrin aldehyde	NV	NV	NV	NV	0.00053 U		
Endrin ketone	NV	NV	NV	NV	0.00053 U	0.00124 UJ	
Heptachlor	4	110	0.017	NV	0.00053 U	0.0042 UJ	
Heptachlor epoxide	2	56	0.0042	NV	0.00053 U	0.00124 UJ	
Hexachlorobutadiene	NV	NV	NV	NV	0.00053 U	0.00124 UJ	
Lindane	17	470	0.036	NV	0.00053 U	0.00124 UJ	
Methoxychlor	NV	NV	NV	NV	0.00053 U	0.00124 UJ	
Mirex	NV	NV	NV	NV	0.00053 U	0.00124 UJ	
Oxychlordane	NV	NV	NV	NV	0.00053 U	0.00124 UJ	
trans-Nonachlor	NV	NV	NV	NV	0.00108	0.00124 UJ	
Organophosphorus Pesticides (mg/kg)					•		
Coumaphos	NV	NV	NV	NV	4.23 U	2.94 UJ	
Demeton-O	NV	NV	NV	NV	2.11 U	1.01 UJ	
Demeton-S	NV	NV	NV	NV	2.11 U	1.01 UJ	

Location:	_	estion, Dermal	RBC, Soil, Leaching to	Background	DU1	MFA-B1-B5- COMP
Sample Name:	Contact, and	d Inhalation ⁽¹⁾	Groundwater ⁽¹⁾	Metals, Portland	DU1-20220810- ISM-COMP	MFA-B1-B5- COMP-SL
Collection Date:	Construction	Excavation		Basin ⁽²⁾	08/10/2022	1/30/2023
Collection Depth (ft bml):	Worker	Worker	Residential	2 0.0	Surface	0.5-2.0 ^(a)
Diazinon	NV	NV	NV	NV	2.11 U	1.01 UJ
Dichlorvos	NV	NV	NV	NV	2.11 U	1.01 UJ
Dimethoate	NV	NV	NV	NV	2.11 U	1.01 UJ
Disulfoton	NV	NV	NV	NV	2.11 U	1.01 UJ
Dursban (Chloropyrifos)	NV	NV	NV	NV	2.11 U	1.01 UJ
Ethoprop	NV	NV	NV	NV	2.11 U	1.01 UJ
Fensulfothion	NV	NV	NV	NV	2.11 U	1.01 UJ
Fenthion	NV	NV	NV	NV	2.11 U	1.01 UJ
Guthion (Azinphos-Methyl)	NV	NV	NV	NV	2.11 U	1.01 UJ
Merphos	NV	NV	NV	NV	18.2 U	30 UJ
Methyl parathion	NV	NV	NV	NV	4.23 U	2.01 UJ
Mevinphos	NV	NV	NV	NV	2.11 U	1.01 UJ
Monocrotophos	NV	NV	NV	NV	4.23 U	2.01 UJ
Naled	NV	NV	NV	NV	2.11 U	1.01 UJ
Parathion	NV	NV	NV	NV	6.17 U	9.5 UJ
Phorate	NV	NV	NV	NV	2.11 U	1.01 UJ
Pyridine	NV	NV	NV	NV	2.11 U	1.01 UJ
Santox (EPN)	NV	NV	NV	NV	2.11 U	1.01 UJ
Stirofos	NV	NV	NV	NV	9.64 U	11 UJ
Sulfotepp	NV	NV	NV	NV	2.11 U	1.01 UJ
Sulprofos (Bolstar)	NV	NV	NV	NV	2.11 U	2.01 UJ
Sumitox (Malathion)	NV	NV	NV	NV	2.11 U	2.01 UJ
Tetraethylpyrophosphate	NV	NV	NV	NV	8.46 U	4.03 UJ
Tokuthion	NV	NV	NV	NV	2.11 U	2.01 UJ
Trichloronate	NV	NV	NV	NV	6.09 U	13.2 UJ
PCB Congeners (pg/g)	L.					
2-MonoCB-(1)	NV	NV	NV	NV	163	
3-MonoCB-(2)	NV	NV	NV	NV	92 J	
4-MonoCB-(3)	NV	NV	NV	NV	179 J	
2,2'-DiCB-(4)	NV	NV	NV	NV	360	
2,3-DiCB-(5)	NV	NV	NV	NV	82 U	
2,3'-DiCB-(6)	NV	NV	NV	NV	267	
2,4-DiCB-(7)	NV	NV	NV	NV	83 U	
2,4'-DiCB-(8)	NV	NV	NV	NV	455	
2,5-DiCB-(9)	NV	NV	NV	NV	93 J	
2,6-DiCB-(10)	NV	NV	NV	NV	140 U	
3,3'-DiCB-(11)	NV	NV	NV	NV	7,100	
PCBs 12 + 13	NV	NV	NV	NV	221 J	
3,5-DiCB-(14)	NV	NV	NV	NV	85 U	
4,4'-DiCB-(15)	NV	NV	NV	NV	810	5,160 J-
2,2',3-TriCB-(16)	NV	NV	NV	NV	510	R
2,2',4-TriCB-(17)	NV	NV	NV	NV	690	R
PCBs 18 + 30	NV	NV	NV	NV	1,100	1,100 J-
2,2',6-TriCB-(19)	NV	NV	NV	NV	410	R
PCBs 20 + 28	NV	NV	NV	NV	2,300	3,240 J-
PCBs 21 + 33	NV	NV	NV	NV	610	693 J-

Location:	RBC, Soil, Inge	estion, Dermal	RBC, Soil, Leaching to	Background	DU1	MFA-B1-B5- COMP															
Sample Name:	Contact, and	d Inhalation ⁽¹⁾	Groundwater ⁽¹⁾	Metals, Portland	DU1-20220810- ISM-COMP	MFA-B1-B5- COMP-SL															
Collection Date:	Construction	Excavation		Basin ⁽²⁾	08/10/2022	1/30/2023															
Collection Depth (ft bml):	Worker	Worker	Residential	Basii i	Surface	0.5-2.0 ^(a)															
2,3,4'-TriCB-(22)	NV	NV	NV	NV	840	1,000 J-															
2,3,5-TriCB-(23)	NV	NV	NV	NV	120 U	R															
2,3,6-TriCB-(24)	NV	NV	NV	NV	140 U	R															
2,3',4-TriCB-(25)	NV	NV	NV	NV	530	R															
PCBs 26 + 29	NV	NV	NV	NV	580	480 J-															
2,3',6-TriCB-(27)	NV	NV	NV	NV	140 U	R															
2,4',5-TriCB-(31)	NV	NV	NV	NV	2,200	2,730 J-															
2,4',6-TriCB-(32)	NV	NV	NV	NV	440	R															
2,3',5'-TriCB-(34)	NV	NV	NV	NV	130 U	R															
3,3',4,-TriCB-(35)	NV	NV	NV	NV	260	562 J-															
3,3',5-TriCB-(36)	NV	NV	NV	NV	110 U	R															
3,4,4'-TriCB-(37)	NV	NV	NV	NV	790	374 J-															
3,4,5-TriCB-(38)	NV	NV	NV	NV	120 U	R															
3,4',5-TriCB-(39)	NV	NV	NV	NV	110 U	R															
PCBs 40 + 41 + 71	NV	NV	NV	NV	1,450	R															
2,2',3,4'-TetraCB-(42)	NV	NV	NV	NV	910	R															
2,2',3,5-TetraCB-(43)	NV	NV	NV	NV	380 U	R															
PCBs 44/47/65	NV	NV	NV	NV	3,770	7,840 J-															
PCBs 45 + 51	NV	NV	NV	NV	520	R															
2,2',3,6'-TetraCB-(46)	NV	NV	NV	NV	320 U	R															
2,2',4,5-TetraCB-(48)	NV	NV	NV	NV	600	R															
PCBs 49 + 69	NV	NV	NV	NV	2,560	6,530 J-															
PCBs 50 + 53	NV NV	NV NV	NV NV	NV NV	NV NV	NV	NV NV	NV NV	NV NV	NV	NV	NV	NV	NV	NV	NV	480 J	R			
2,2',5,5'-TetraCB-(52)																					NV
2,2',6,6'-TetraCB-(54)										NV	NV	NV	220 U	R							
2,3,3',4-TetraCB-(55)	NV	NV	NV	NV	270 U	R															
2,3,3',4'-Tetra CB-(56)	NV	NV	NV	NV	1,250	1,110 J-															
2,3,3',5-TetraCB-(57)	NV	NV	NV	NV	240 U	R															
2,3,3',5'-TetraCB-(58)	NV	NV	NV	NV	260 U	R															
PCBs 59/62/75	NV	NV	NV	NV	220 J	R															
2,3,4,4'-TetraCB-(60)	NV	NV	NV	NV	540	R															
PCBs 61/70/74/76	NV	NV	NV	NV	6,910	17,900 J-															
2,3,4',5-TetraCB-(63)	NV	NV	NV	NV	230 U	R															
2,3,4',6-TetraCB-(64)	NV	NV	NV	NV	1,400	3,110 J-															
2,3',4,4'-TetraCB-(66)	NV	NV	NV	NV	2,530	6,600 J-															
2,3',4,5-TetraCB-(67)	NV	NV	NV	NV	230 J	R															
2,3',4,5'-TetraCB-(68)	NV	NV	NV	NV	230 U	R															
2,3',5,5'-TetraCB-(72)	NV	NV	NV	NV	230 U	R															
2,3',5',6-TetraCB-(73)	NV	NV	NV	NV	200 U	R															
3,3',4,4'-TetraCB-(77)	NV	NV	NV	NV	570	R															
3,3',4,5-TetraCB-(78)	NV	NV	NV	NV	240 U	R															
3,3',4,5'-TetraCB-(79)	NV	NV	NV	NV	210 U	R															
3,3',5,5'-TetraCB-(80)	NV	NV	NV	NV	210 U	R															
3,4,4',5-TetraCB-(81)	NV	NV	NV	NV	260 U	R															
2,2',3,3',4-PentaCB-(82)	NV	NV	NV	NV	1,000	R															
PCBs 83 + 99	NV	NV	NV	NV	5,070	15,800 J-															

Location:	RBC, Soil, Inge		RBC, Soil, Leaching to	Background	DU1	MFA-B1-B5- COMP	
Sample Name:	Contact, and	d Inhalation ⁽¹⁾	Groundwater ⁽¹⁾	Metals, Portland	DU1-20220810- ISM-COMP	MFA-B1-B5- COMP-SL	
Collection Date:	Construction	Excavation		Basin ⁽²⁾	08/10/2022	1/30/2023	
Collection Depth (ft bml):	Worker	Worker	Residential	Basii i	Surface	0.5-2.0 ^(a)	
2,2',3,3',6-PentaCB-(84)	NV	NV	NV	NV	2,260	5,860 J-	
PCBs 85/116/117	NV	NV	NV	NV	1,230	4,020 J-	
PCBs 86/87/97/109/119/125	NV	NV	NV	NV	6,080	20,300 J-	
PCBs 88 + 91	NV	NV	NV	NV	1,210	1,840 J-	
2,2',3,4,6'-PentaCB-(89)	NV	NV	NV	NV	310 U	R	
PCBs 90 + 101 + 113	NV	NV	NV	NV	9,380	32,800 J-	
2,2',3,5,5'-PentaCB-(92)	NV	NV	NV	NV	1,760	3,270 J-	
PCBs 93 + 98 + 100 + 102	NV	NV	NV	NV	290 U	R	
2,2',3,5,6'-PentaCB-(94)	NV	NV	NV	NV	300 U	R	
2,2',3,5',6-PentaCB-(95)	NV	NV	NV	NV	6,310	23,200 J-	
2,2',3,6,6'-PentaCB-(96)	NV	NV	NV	NV	140 U	R	
2,2',4,5',6-PentaCB-(103)	NV	NV	NV	NV	270 U	R	
2,2',4,6,6'-PentaCB-(104)	NV	NV	NV	NV	160 U	R	
2,3,3',4,4'-PentaCB-(105)	NV	NV	NV	NV	3,880	6,490 J-	
2,3,3',4,5-PentaCB-(106)	NV	NV	NV	NV	210 U	R	
2,3,3',4',5-PentaCB-(107)	NV	NV	NV	NV	580	2,290 J-	
PCBs 108 + 124	NV	NV	NV	NV	370 J	1,280 J-	
PCBs 110 + 115	NV	NV	NV	NV	12,500	37,200 J-	
2,3,3',5,5'-PentaCB-(111)	NV	NV	NV	NV	210 U	R	
2,3,3',5,6-PentaCB-(112)	NV	NV	NV	NV	190 U	R	
2,3,4,4',5-PentaCB-(114)	NV	NV	NV	NV	380	R	
2,3',4,4',5-PentaCB-(118)	NV	NV	NV	NV	10,100	17,800 J-	
2,3',4,5,5'-PentaCB-(170)	NV	NV	NV	NV	200 U	R	
2,3',4,5',6-PentaCB-(121)	NV	NV	NV	NV	210 U	R	
2,3,3',4',5'-PentaCB-(122)	NV	NV	NV	NV	240 U	R	
2,3',4,4',5'-PentaCB-(123)	NV	NV	NV	NV	280	R	
3,3',4,4',5-PentaCB-(126)	NV	NV	NV	NV	230 U	R	
3,3',4,5,5'-PentaCB-(127)	NV	NV	NV	NV	240 U	R	
PCBs 128 + 166	NV	NV	NV	NV	1,840	3,640 J-	
PCBs 129/138/163	NV	NV	NV	NV	11,000	25,300 J-	
2,2',3,3',4,5'-HexaCB-(130)	NV	NV	NV	NV	680	1,520 J-	
2,2',3,3',4,6-HexaCB-(131)	NV	NV	NV	NV	470 U	R	
2,2',3,3',4,6'-HexaCB-(132)	NV	NV	NV	NV	3,150	7,640 J-	
2,2',3,3',5,5'-HexaCB-(133)	NV	NV	NV	NV	430 U	R	
PCBs 134 + 143	NV	NV	NV	NV	530	1,360 J-	
PCBs 135 + 151	NV	NV	NV	NV	1,980	6,220 J-	
2,2',3,3',6,6'-HexaCB-(136)	NV	NV	NV	NV	930	2,760 J-	
2,2',3,4,4',5-HexaCB-(137)	NV	NV	NV	NV	490 J	R	
PCBs 139 + 140	NV	NV	NV	NV	370 U	R	
2,2',3,4,5,5'-HexaCB-(141)	NV	NV	NV	NV	1,500	3,200 J-	
2,2',3,4,5,6-HexaCB-(141)	NV	NV	NV	NV	420 U	R	
2,2',3,4,5',6-HexaCB-(144)	NV	NV	NV	NV	210 U	R	
2,2',3,4,6,6'-HexaCB-(145)	NV	NV	NV	NV	150 U	R R	
2,2',3,4',5,5'-HexaCB-(146)	NV	NV	NV	NV	1,090	2,460 J-	
PCBs 147 + 149	NV	NV	NV	NV	5,830	2,480 J- 11,900 J-	
2,2',3,4',5,6'-HexaCB-(148)	NV	NV	NV	NV	190 U	R	

Location:	RBC, Soil, Inge	estion, Dermal	RBC, Soil, Leaching to	Background	DU1	MFA-B1-B5- COMP
Sample Name:	Contact, and	d Inhalation ⁽¹⁾	Groundwater ⁽¹⁾	Metals, Portland	DU1-20220810- ISM-COMP	MFA-B1-B5- COMP-SL
Collection Date:	Construction	Excavation		Basin ⁽²⁾	08/10/2022	1/30/2023
Collection Depth (ft bml):	Worker	Worker	Residential	DUSITI	Surface	0.5-2.0 ^(a)
2,2',3,4',6,6'-HexaCB-(150)	NV	NV	NV	NV	130 U	R
2,2',3,5,6,6'-HexaCB-(152)	NV	NV	NV	NV	150 U	R
PCBs 153 + 168	NV	NV	NV	NV	6,590	15,400 J-
2,2',4,4',5,6'-HexaCB-(154)	NV	NV	NV	NV	150 U	15,400 J- R
	NV	NV	NV	NV	220 J	R
2,2',4,4',6,6'-HexaCB-(155)	NV	NV	NV	NV NV	1,990	
PCBs 156 + 157		NV	NV		1,040	3,360 J-
2,3,3',4,4',6-HexaCB-(158)	NV	NV NV NV		NV	· · · · · · · · · · · · · · · · · · ·	2,470 J-
2,3,3',4,5,5'-HexaCB-(159)	NV		NV	NV	430 U	R
2,3,3',4,5,6-HexaCB-(160)	NV		NV	NV	350 U	R
2,3,3',4,5',6-HexaCB-(161)	NV		NV	NV	300 U	R
2,3,3',4',5,5'-HexaCB-(162)	NV	NV	NV	NV	390 U	R
2,3,3',4',5',6-HexaCB-(164)	NV	NV	NV	NV	860	R
2,3,3',5,5',6-HexaCB-(165)	NV	NV	NV	NV	340 U	R
2,3',4,4',5,5'-HexaCB-(167)	NV	NV	NV	NV	730	1,060 J-
3,3',4,4',5,5'-HexaCB-(169)	NV	NV	NV	NV	360 U	R
2,2',3,3',4,4',5-HeptaCB-(170)	NV	NV	NV	NV	1,850	2,230 J-
PCBs 171 + 173	NV	NV	NV	NV	570 U	R
2,2',3,3',4,5,5'-HeptaCB-(172)	NV	NV	NV	NV	600 U	R
2,2',3,3',4,5,6'-HeptaCB-(174)	NV	NV	NV	NV	1,470	3,000 J-
2,2',3,3',4,5',6-HeptaCB-(175)	NV	NV	NV	NV	310 U	R
2,2',3,3',4,6,6'-HeptaCB-(176)	NV	NV	NV	NV	190 U	R
2,2',3,3',4,5',6'-HeptaCB-(177)	NV	NV	NV	NV	920	1,570 J-
2,2',3,3',5,5',6-HeptaCB-(178)	NV	NV	NV	NV	300 U	R
2,2',3,3',5,6,6'-HeptaCB-(179)	NV	NV	NV	NV	480	R
PCBs 180 + 193	NV	NV	NV	NV	3,270	8,670 J-
2,2',3,4,4',5,6-HeptaCB-(181)	NV	NV	NV	NV	560 U	R
2,2',3,4,4',5,6'-HeptaCB-(182)	NV	NV	NV	NV	340 U	R
2,2',3,4,4',5',6-HeptaCB-(183)	NV	NV	NV	NV	1,000	1,840 J-
2,2',3,4,4',6,6'-HeptaCB-(184)	NV	NV	NV	NV	180 U	R
2,2',3,4,5,5',6-HeptaCB-(185)	NV	NV	NV	NV	600 U	R
2,2',3,4,5,6,6'-HeptaCB-(186)	NV	NV	NV	NV	200 U	R
2,2',3,4',5,5',6-HeptaCB-(187)	NV	NV	NV	NV	1,950	3,190 J-
2,2',3,4',5,6,6'-HeptaCB-(188)	NV	NV	NV	NV	300 U	R
2,3,3',4,4',5,5'-HeptaCB-(189)	NV	NV	NV	NV	620 U	R
2,3,3',4,4',5,6-HeptaCB-(190)	NV	NV	NV	NV	430 U	R
2,3,3',4,4',5',6-HeptaCB-(191)	NV	NV	NV	NV	420 U	R
2,3,3',4,5,5',6-HeptaCB-(192)	NV	NV	NV	NV	460 U	R
2,2',3,3',4,4',5,5'-OctaCB-(194)	NV	NV	NV	NV	660 U	R
2,2',3,3',4,4',5,6-OctaCB-(194) 2,2',3,3',4,4',5,6-OctaCB-(195)	NV	NV	NV	NV	750 U	R
					i - i	
2,2',3,3',4,4',5,6'-OctaCB-(196)	NV	NV	NV	NV	550 U	R
2,2',3,3',4,4',6,6'-OctaCB-(197)	NV	NV	NV	NV	430 U	R
PCBs 198 + 199	NV	NV	NV	NV	830	R
2,2',3,3',4,5,6,6'-OctaCB-(200)	NV	NV	NV	NV	370 U	R
2,2',3,3',4,5',6,6'-OctaCB-(201)	NV	NV	NV	NV	380 U	R
2,2',3,3',5,5',6,6'-OctaCB-(202)	NV	NV	NV	NV	470 U	R
2,2',3,4,4',5,5',6-OctaCB-(203)	NV	NV	NV	NV	500 U	R

Location: Sample Name:	RBC, Soil, Inge Contact, and	estion, Dermal d Inhalation ⁽¹⁾	RBC, Soil, Leaching to Groundwater ⁽¹⁾	Background Metals, Portland	DU1 DU1-20220810-ISM-COMP	MFA-B1-B5- COMP MFA-B1-B5- COMP-SL
Collection Date:	Construction	Excavation	Residential	Basin ⁽²⁾	08/10/2022	1/30/2023
Collection Depth (ft bml):	Worker	Worker	Residential		Surface	0.5-2.0 ^(a)
2,2',3,4,4',5,6,6'-OctaCB-(204)	NV	NV	NV	NV	410 U	R
2,3,3',4,4',5,5',6-OctaCB-(205)	NV	NV	NV	NV	530 U	R
2,2',3,3',4,4',5,5',6-NonaCB-(206)	NV	NV	NV	NV	710 U	R
2,2',3,3',4,4',5,6,6'-NonaCB-(207)	NV	NV	NV	NV	630 U	R
2,2',3,3',4,5,5',6,6'-NonaCB-(208)	NV	NV	NV	NV	730 U	R
DecaCB-(209)	NV	NV	NV	NV	720 U	R
Total PCBs ^(c)	4,900,000	140,000,000	240,000	NV	181,000 J	359,000 J- ^{(d}
PFAS (mg/kg)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,	7,000		·	
9CI-PF3ONS (F-53B Major)	NV	NV	NV	NV	0.00021 U	0.0001 U
11CI-PF3OUdS (F-53B Minor)	NV	NV	NV	NV	0.00021 U	0.00028 U
4:2 FTSA	NV	NV	NV	NV	0.00022 U	0.0001 U
6:2 FTSA	NV	NV	NV	NV	0.00023 U	0.0001 U
8:2 FTSA	NV	NV	NV	NV	0.0015	0.00024 U
ADONA	NV	NV	NV	NV	0.00028 U	0.00025 U
EtFOSA	NV	NV	NV	NV	0.00028 U 0.00031 UJ	0.00013 U
EtFOSAA	NV	NV	NV	NV	0.0088	0.00038 0
E†FOSE	NV	NV	NV	NV	0.0088 0.0017 J	0.00037 U
HFPO-DA (GenX)	NV	NV	NV	NV	0.0017 J	0.00037 U
MeFOSA	NV	NV	NV	NV	0.00019 UJ	0.00018 U
MeFOSAA	NV	NV	NV	NV	0.0037 03	0.0043 0
MeFOSE	NV	NV	NV	NV	0.0036 J	0.0043 0.00034 U
PFBA	NV	NV		NV		
PFBS PFBS	NV	NV	NV	NV NV	0.00024 U 0.00017 U	0.00014 U
	NV	NV	NV			0.00015 U
PFDA A			NV	NV	0.0039	0.0015 J
PFDoA	NV	NV	NV	NV	0.0055	0.0012
PFDS	NV	NV	NV	NV	0.0018	0.00092 J
PFHpA	NV	NV	NV	NV	0.0012	0.00051 J
PFHpS	NV	NV	NV	NV	0.00017 U	0.00021 U 0.00072 J
PFHxA	NV	NV	NV	NV	0.0023	
PFHxS	NV	NV	NV	NV	0.0035 J	0.0022 J
PFNA	NV	NV	NV	NV	0.0029	0.00076 J
PFNS	NV	NV	NV	NV	0.00024 U	0.00018 U
PFOA	NV	NV	NV	NV	0.0022	0.00095 J
PFOS	NV	NV	NV	NV	0.0024	0.00057 J
PFOSA	NV	NV	NV	NV	0.0002 UJ	0.0001 U
PFPeA	NV	NV	NV	NV	0.00023 U	0.00017 U
PFPeS	NV	NV	NV	NV	0.00026 U	0.00034 U
PFTeDA	NV	NV	NV	NV	0.0022 J	0.00046 J
PFTrDA	NV	NV	NV	NV	0.0039 J	0.00061 J
PFUnA	NV	NV	NV	NV	0.0068	0.0013
SVOCs (mg/kg)	· · · ·	, <i>.</i>	l		1 0 1	
1,2,4-Trichlorobenzene	NV	NV	NV	NV	0.353 U	0.494 UJ
1,2-Dichlorobenzene	20,000	560,000	36	NV	0.353 U	0.494 UJ
1,2-Dinitrobenzene	NV	NV	NV	NV	3.53 U	4.94 UJ
1,2-Diphenylhydrazine	NV	NV	NV	NV	0.353 U	0.494 UJ
1,3-Dichlorobenzene	NV	NV	NV	NV	0.353 U	0.494 UJ

Location:	RBC, Soil, Inge Contact, and	estion, Dermal	RBC, Soil, Leaching to	Background Metals,	DU1 DU1-20220810-	MFA-B1-B5- COMP MFA-B1-B5-
Sample Name:			Groundwater ⁽¹⁾	Portland	ISM-COMP	COMP-SL
Collection Date:	Construction	Excavation	Residential	Basin ⁽²⁾	08/10/2022	1/30/2023
Collection Depth (ft bml):	Worker	Worker	Kesiderilidi		Surface	0.5-2.0 ^(a)
1,3-Dinitrobenzene	NV	NV	NV	NV	3.53 U	4.94 UJ
1,4-Dichlorobenzene	1,300	36,000	0.057	NV	0.353 U	0.494 UJ
1,4-Dinitrobenzene	NV	NV	NV	NV	3.53 U	4.94 UJ
1-Methylnaphthalene	NV	NV	NV	NV	0.283 U	0.396 UJ
2,2'-oxybis(1-Chloropropane)	NV	NV	NV	NV	0.353 U	0.494 UJ
2,3,4,6-Tetrachlorophenol	NV	NV	NV	NV	0.707 U	0.99 UJ
2,3,5,6-Tetrachlorophenol	NV	NV	NV	NV	0.707 U	0.99 UJ
2,4,5-Trichlorophenol	NV	NV	NV	NV	0.707 U	0.99 UJ
2,4,6-Trichlorophenol	270	7,400	2.4	NV	0.707 U	0.99 UJ
2,4-Dichlorophenol	NV	NV	NV	NV	0.707 U	0.99 UJ
2,4-Dimethylphenol	NV	NV	NV	NV	0.707 U	0.99 UJ
2,4-Dinitrophenol	NV	NV	NV	NV	3.53 U	4.94 UJ
2,4-Dinitrotoluene	NV	NV	NV	NV	1.41 U	1.97 UJ
2,6-Dinitrotoluene	13	350	0.0089	NV	1.41 U	1.97 UJ
2-Chloronaphthalene	NV	NV	NV	NV	0.141 U	0.197 UJ
2-Chlorophenol	NV	NV	NV	NV	0.707 U	0.99 UJ
2-Methylnaphthalene	NV	NV	NV	NV	0.283 U	0.396 UJ
2-Methylphenol	NV	NV	NV	NV	0.353 U	0.494 UJ
2-Nitroaniline	NV	NV	NV	NV	2.83 U	3.96 UJ
2-Nitrophenol	NV	NV	NV	NV	1.41 U	1.97 UJ
3- & 4-Methylphenol (m,p-Cresol)	NV	NV	NV	NV	0.353 U	0.494 UJ
3,3-Dichlorobenzidine	42	1,200	0.17	NV	2.83 R	3.96 UJ
3-Nitroaniline	NV	NV	NV	NV	2.83 U	3.96 UJ
4,6-Dinitro-2-methylphenol	NV	NV	NV	NV	3.53 U	4.94 UJ
4-Bromophenylphenyl ether	NV	NV	NV	NV	0.353 U	0.494 UJ
4-Chloro-3-methylphenol	NV	NV	NV	NV	1.41 U	1.97 UJ
4-Chloroaniline	NV	NV	NV	NV	0.353 U	0.494 UJ
4-Chlorophenylphenyl ether	NV	NV	NV	NV	0.353 U	0.494 UJ
4-Nitroaniline	NV	NV	NV	NV	2.83 U	3.96 UJ
4-Nitrophenol	NV	NV	NV	NV	1.41 U	1.97 UJ
Acenaphthene	21,000	590,000	NV	NV	0.141 U	0.197 UJ
Acenaphthylene	NV	NV	NV	NV	0.141 U	0.197 UJ
Aniline	NV	NV	NV	NV	0.707 U	0.99 UJ
Anthracene	110,000	NV	NV	NV	0.211 J	0.197 UJ
Benzo(a)anthracene	170	4,800	1.6	NV	0.141 U	0.197 UJ
Benzo(a)pyrene	NV	NV	NV	NV	0.212 U	0.297 UJ
Benzo(b)fluoranthene	170	4,900	NV	NV	0.212 U	0.297 UJ
Benzo(ghi)perylene	NV	NV	NV	NV	0.141 U	0.197 UJ
Benzo(k)fluoranthene	1,700	49,000	NV	NV	0.212 U	0.297 UJ
Benzoic acid	NV	NV	NV	NV	17.7 U	49.4 UJ
Benzyl alcohol	NV	NV	NV	NV	0.707 U	0.99 UJ
Bis(2-chloroethoxy)methane	NV	NV	NV	NV	0.353 U	0.494 UJ
Bis(2-chloroethyl)ether	16	450	0.00019	NV	0.353 U	0.494 UJ
Bis(2-ethylhexyl)phthalate	1,300	37,000	NV	NV	11.8	4.08 J
Butylbenzylphthalate	NV	NV	NV	NV	0.707 U	1.97 UJ
Carbazole	NV	NV	NV	NV	0.212 U	0.297 UJ

Location:	RBC, Soil, Inge		RBC, Soil, Leaching to	Background	DU1	MFA-B1-B5- COMP
Sample Name:	Contact, and	d Inhalation ⁽¹⁾	Groundwater ⁽¹⁾	Metals, Portland	DU1-20220810- ISM-COMP	MFA-B1-B5- COMP-SL
Collection Date:	Construction	Excavation	Davidantial	Basin ⁽²⁾	08/10/2022	1/30/2023
Collection Depth (ft bml):	Worker	Worker	Residential		Surface	0.5-2.0 ^(a)
Chrysene	17,000	490,000	NV	NV	0.141 U	0.197 UJ
Di(2-ethylhexyl)adipate	NV	NV	NV	NV	3.53 U	4.94 UJ
Dibenzo(a,h)anthracene	17	490	NV	NV	0.141 U	0.197 UJ
Dibenzofuran	NV	NV	NV	NV	0.141 U	0.197 UJ
Diethyl phthalate	NV	NV	NV	NV	0.707 U	0.99 UJ
Dimethyl phthalate	NV	NV	NV	NV	0.707 U	0.99 UJ
Di-n-butyl phthalate	NV	NV	NV	NV	0.707 U	0.99 UJ
Di-n-octyl phthalate	NV	NV	NV	NV	1.13 U	1.72 UJ
Fluoranthene	10,000	280,000	NV	NV	0.179 J	0.197 UJ
Fluorene	14,000	390,000	NV	NV	0.141 U	0.197 UJ
Hexachlorobenzene	11	320	0.018	NV	0.141 U	0.197 UJ
Hexachlorobutadiene	NV	NV	NV	NV	0.353 U	0.494 UJ
Hexachlorocyclopentadiene	NV	NV	NV	NV	0.707 U	0.99 UJ
Hexachloroethane	180	5,100	0.022	NV	0.353 U	0.494 UJ
Indeno(1,2,3-cd)pyrene	170	4,900	NV	NV	0.141 U	0.197 UJ
Isophorone	NV	NV	NV	NV	0.353 U	0.494 UJ
Naphthalene	580	16,000	0.077	NV	0.283 U	0.396 UJ
Nitrobenzene	NV	NV	NV	NV	1.41 U	1.97 UJ
N-Nitrosodimethylamine	NV	NV	NV	NV	0.353 U	0.494 UJ
N-Nitrosodiphenylamine	3,800	110,000	10	NV	0.353 U	0.99 UJ
N-Nitrosodipropylamine	2.7	74	0.00094	NV	0.353 U	0.494 UJ
Pentachlorophenol	34	960	0.066	NV	1.41 U	1.97 UJ
Phenanthrene	NV	NV	NV	NV	0.366	0.582 J
Phenol	NV	NV	NV	NV	0.283 U	0.396 UJ
Pyrene	7,500	210,000	NV	NV	0.189 J	0.304 J
Pyridine	NV	NV	NV	NV	0.707 U	0.99 UJ
cPAH TEQ ^{(e)(4)}	17	490	4.4	NV	0.212 U	0.297 UJ
TPH (mg/kg)	•					
Gasoline-range hydrocarbons	9,700	NV	31	NV	182 U	26.7 U
Diesel-range hydrocarbons	4,600	NV	9,500	NV	20,500	26,100 J+
Lube-oil-range hydrocarbons	NV	NV	NV	NV	4,230 U	2,070 UJ
VOCs (mg/kg)						
1,1,1,2-Tetrachloroethane	NV	NV	NV	NV	0.456 U	0.133 U
1,1,1-Trichloroethane	470,000	NV	190	NV	0.456 U	0.133 U
1,1,2,2-Tetrachloroethane	NV	NV	NV	NV	0.911 U	0.0533 U
1,1,2-Trichloroethane	54	1,500	0.0063	NV	0.456 U	0.0267 U
1,1-Dichloroethane	3,200	89,000	0.044	NV	0.456 U	0.0107 U
1,1-Dichloroethene	13,000	370,000	6.7	NV	0.456 U	0.0107 U
1,1-Dichloropropene	NV	NV	NV	NV	0.911 U	0.267 U
1,2,3-Trichlorobenzene	NV	NV	NV	NV	4.56 U	1.33 U
1,2,3-Trichloropropane	NV	NV	NV	NV	0.911 U	0.0267 U
1,2,4-Trichlorobenzene	NV	NV	NV	NV	4.56 U	1.33 U
1,2,4-Trimethylbenzene	2,900	81,000	10	NV	0.911 U	0.0533 U
1,2-Dibromo-3-chloropropane	NV	NV	NV	NV	4.56 U	0.0267 U
1,2-Dibromoethane	9	250	0.00012	NV	0.911 U	0.0107 U
1,2-Dichlorobenzene	20,000	560,000	36	NV	0.456 U	0.133 U

Contact, and Inhalation** Contact, and Inhalation** Collection Date: Construction Excavation Residential SM-COMP* (SM-COMP* (SM-COMP	Location:	RBC, Soil, Inge		RBC, Soil, Leaching to	Background	DU1	MFA-B1-B5- COMP																		
Collection Date: Construction Excavation Residential Residenti	Sample Name:	Contact, and	d Inhalation(")	_	Metals,	DU1-20220810-	MFA-B1-B5-																		
Collection Depth (H bml):	Callaction Data	Construction	Type avertices																						
1.2-Dichloroethane		-		Residential	Basin ⁽²⁾																				
1.2-Dichloropropone				0.000																					
1.3.5-Dichlorobenzene																									
1.3-Dichlorobenzene	· · ·	_																							
1.3-Dichloropropone																									
1.4-Dichlorobenzene		_					0.133 U																		
2.2-Dichloropropage							0.267 U																		
2-Butanone							0.133 U																		
2-Chiorotoluene							0.267 U																		
2-Hexanone							2.67 U																		
4-Chlorotoluene NV NV NV NV 0.911 U 0.267 4-Isopropylfoluene NV NV NV NV NV 0.911 U 0.267 4-Methyl-2-pentanone NV NV NV NV NV NV 9.11 U 0.267 Acerdone NV NV NV NV NV NV NV 18.2 U 5.33 Acryonifrile 40 1,100 0.00036 NV 1.82 U 5.33 Acryonifrile 40 1,100 0.00036 NV 1.82 U 5.33 Acryonifrile 40 1,100 0.0023 NV 0.182 U 0.513 Benzene 380 11,000 0.002 NV 0.182 U 0.513 Bromodichloromethane 230 6,300 0.002 NV 0.911 U 0.267 Bromoform 2,700 74,000 0.046 NV 1.82 U 5.33 Bromoform 370 10,000 0.083 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.267 U</td>							0.267 U																		
4-Isopropyltoluene NV NV NV NV 0.911 U 0.267 4-Methyl-2-pentanone NV NV NV NV NV 9.11 U 2.67 Acetone NV NV NV NV NV NV 18.2 U 5.33 Acrylonitrile 40 1,100 0.00036 NV 1.82 U 0.533 Benzene 380 11,000 0.023 NV 0.182 U 0.0107 Bromodichloromethane 230 6.330 0.002 NV 0.911 U 0.267 Bromoform 2,700 74,000 0.046 NV 1.82 U 0.533 Bromofemene 370 10,000 0.083 NV 1.82 U 0.533 Corbon disulfide NV NV NV NV NV 9.11 U 2.67 Chloroberzene 4,700 130,000 5.8 NV 0.911 U 0.267 Chloroberzene 4,700 130,000 5.8 NV <							2.67 U																		
4-Methyl-2-pentanone NV 0.911 U 0.267 Bromoform 2.700 74.000 0.046 NV NV 1.82 U 0.533 Bromoform 2.700 74.000 0.046 NV 1.82 U 0.533 Bromoform 2.700 74.000 0.046 NV 1.82 U 0.533 Corbon disulfide NV NV NV NV NV 9.11 U 0.267 Chloromethane <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.267 U</td></t<>							0.267 U																		
Acetone							0.267 U																		
Acrylonitrile	4-Methyl-2-pentanone				NV		2.67 U																		
Benzene 380 11,000 0,023 NV 0,182 U 0,0107	Acetone	NV	NV	NV	NV	18.2 U	5.33 U																		
Bromobenzene NV NV NV NV 0.456 U 0.133 Bromodichloromethane 230 6,300 0.002 NV 0.911 U 0.267 Bromoform 2,700 74,000 0.044 NV 1.82 U 0.533 Bromomethane 370 10,000 0.083 NV 18.2 U 5.33 Carbon disulfide NV NV NV NV 9,11 U 2.67 Carbon tetrachloride 320 8,900 0.013 NV 0,911 U 0.267 Chlorobranee 4,700 130,000 5.8 NV 0.456 U 0.133 Chlorobramethane NV NV NV NV NV 0.911 U 0.267 Chloroethane NV NV NV NV NV 9,11 U 0.253 Chloroethane NV NV NV NV 9,11 U 0.533 Chloroethane NV NV NV 9,11 U 0.053 Ch	Acrylonitrile	40	1,100	0.00036	NV	1.82 U	0.533 U																		
Bromodichloromethane 230 6,300 0.002 NV 0,911 U 0.267 Bromoform 2,700 74,000 0,046 NV 1.82 U 0,533 Bromomethane 370 10,000 0.083 NV 18.2 U 0,533 Corbon disulfide NV NV NV NV NV 9,11 U 2,67 Carbon tetrachloride 320 8,900 0.013 NV 0,911 U 0,267 Chlorobenzene 4,700 130,000 5.8 NV 0,456 U 0,133 Chlorobromomethane NV NV NV NV NV 0,911 U 0,267 Chlorobromomethane NV NV NV NV NV 0,911 U 0,267 Chlorobromomethane NV NV NV NV NV 9,11 U 0,253 Chlorobromomethane 25,000 700,000 2,2 NV 4,56 U 1,33 Chlorobromethane 25,000 700,000 0,63	Benzene	380	11,000	0.023	NV	0.182 U	0.0107 U																		
Bromoform 2,700 74,000 0.046 NV 1.82 U 0.533 Bromomethane 370 10,000 0.083 NV 18.2 U 5.33 Carbon disulfide NV NV NV NV NV 9.11 U 2.67 Carbon tetrachloride 320 8,900 0.013 NV 0.911 U 0.267 Chlorobenzene 4,700 130,000 5.8 NV 0.456 U 0.133 Chlorobrommethane NV NV NV NV NV 0.911 U 0.267 Chloroform NV NV NV NV NV 9.911 U 0.267 Chloroform 410 11,000 0.0034 NV 0.911 U 0.053 Chloromethane 25,000 700,000 2.2 NV 4.56 U 1.33 Cis-1,2-Dichlorodethene 710 20,000 0.63 NV 0.456 U 0.0107 Cis-1,2-Dichlorodethane 710 5,800 0.0024 NV	Bromobenzene	NV	NV	NV	NV	0.456 U	0.133 U																		
Bromomethane 370 10,000 0.083 NV 18.2 U 5.33 Carbon disulfide NV NV NV NV 9.11 U 2.67 Carbon tetrachloride 320 8,900 0.013 NV 0.911 U 0.267 Chlorobenzene 4,700 130,000 5.8 NV 0.456 U 0.133 Chlorobromomethane NV NV NV NV NV 0.911 U 0.267 Chloroethane NV NV NV NV NV 9.11 U 0.267 Chloroethane NV NV NV 310 NV 9.11 U 0.267 Chloroethane NV NV NV 310 NV 9.11 U 0.053 Chloroethane 25,000 700,000 2.2 NV 4.56 U 1.33 cis-1,2-Dichloroethene 710 20,000 0.63 NV 0.456 U 0.0107 cis-1,3-Dichloropropene NV NV NV NV	Bromodichloromethane	230	6,300	0.002	NV	0.911 U	0.267 U																		
Carbon disulfide NV NV NV NV 9.11 U 2.67 Carbon tetrachloride 320 8,900 0.013 NV 0.911 U 0.267 Chlorobenzene 4,700 130,000 5.8 NV 0.456 U 0.133 Chlorobromomethane NV NV NV NV 0.911 U 0.267 Chloroferm NV NV NV 310 NV 9.11 U 5.33 Chloroferm 410 11,000 0.0034 NV 0.911 U 0.0533 Chloromethane 25,000 700,000 2.2 NV 4.56 U 1.33 Chloromethane 25,000 700,000 2.2 NV 4.56 U 1.33 Chloropethane 710 20,000 0.63 NV 0.456 U 0.0107 cis-1,2-Dichloropropene NV NV NV NV NV NV 0.911 U 0.0107 cis-1,3-Dichloropropene NV NV NV NV	Bromoform	2,700	74,000	0.046	NV	1.82 U	0.533 U																		
Carbon tetrachloride 320 8,900 0.013 NV 0.911 U 0.267 Chlorobenzene 4,700 130,000 5.8 NV 0.456 U 0.133 Chlorobromomethane NV NV NV NV NV 0.911 U 0.267 Chlorobromethane NV NV NV NV 0.911 U 0.263 Chloroform 410 11,000 0.0034 NV 0.911 U 0.053 Chloromethane 25,000 700,000 2.2 NV 4.56 U 1.33 cis-1,2-Dichloroethene 710 20,000 0.63 NV 0.456 U 0.0107 cis-1,3-Dichloropropene NV NV NV NV NV 0.911 U 0.0107 cis-1,2-Dichloroethene 210 5,880 0.0024 NV 0.911 U 0.0107 cis-1,2-Dichloroethene 710 20,000 0.63 NV 0.456 U 0.0107 Dibromorethane NV NV NV NV<	Bromomethane	370	10,000	0.083	NV	18.2 U	5.33 U																		
Chlorobenzene 4,700 130,000 5.8 NV 0.456 U 0.133 Chlorobromomethane NV NV NV NV NV 0.911 U 0.267 Chloroethane NV NV 310 NV 9.11 U 5.33 Chloroform 410 11,000 0.0034 NV 0.911 U 0.0533 Chloromethane 25,000 700,000 2.2 NV 4.56 U 1.33 cis-1,2-Dichloroethene 710 20,000 0.63 NV 0.456 U 0.0107 cis-1,3-Dichloropropene NV NV NV NV NV 0.911 U 0.0107 Dibromomethane 210 5,800 0.0024 NV 1.82 U 0.533 Ethylbenzene NV NV NV NV NV NV 0.911 U 0.267 Hexachlorobutadiene NV NV NV NV NV NV NV 0.911 U 0.267 m.p-Xylene NV	Carbon disulfide	NV	NV	NV	NV	9.11 U	2.67 U																		
Chlorobromomethane NV NV NV NV 0,911 U 0.267 Chloroethane NV NV 310 NV 9,11 U 5,33 Chloroform 410 11,000 0.0034 NV 0,911 U 0.0533 Chloromethane 25,000 700,000 2.2 NV 4,56 U 1,33 cis-1,2-Dichloroethene 710 20,000 0.63 NV 0.456 U 0,0107 cis-1,3-Dichloropropene NV NV NV NV NV 0,911 U 0,0107 Dibromochloromethane 210 5,800 0,0024 NV 1,82 U 0,533 Dibromomethane NV NV NV NV NV 0,911 U 0,0267 Ethylbenzene 1,700 49,000 0,22 NV 0,456 U 0,0267 Hexachlorobutadiene NV NV NV NV NV 1,82 U 0,533 Isopropylbenzene 27,000 750,000 96 NV </td <td>Carbon tetrachloride</td> <td>320</td> <td>8,900</td> <td>0.013</td> <td>NV</td> <td>0.911 U</td> <td>0.267 U</td>	Carbon tetrachloride	320	8,900	0.013	NV	0.911 U	0.267 U																		
Chlorobromomethane NV NV NV NV 0.911 U 0.267 Chloroethane NV NV 310 NV 9.11 U 5.33 Chloroform 410 11,000 0.0034 NV 0.911 U 0.0533 Chloromethane 25,000 700,000 2.2 NV 4.56 U 1.33 cis-1,2-Dichloroethene 710 20,000 0.63 NV 0.456 U 0.0107 cis-1,3-Dichloropropene NV NV NV NV NV 0.911 U 0.0107 Dibromochloromethane 210 5,800 0.0024 NV 1.82 U 0.533 Dibromomethane NV NV NV NV NV 0.911 U 0.0267 Ethylbenzene 1,700 49,000 0.22 NV 0.456 U 0.0267 Hexachlorobutadiene NV NV NV NV NV NV 1.82 U 0.533 Isopropylbenzene 27,000 750,000 96 </td <td>Chlorobenzene</td> <td>4,700</td> <td>130,000</td> <td>5.8</td> <td>NV</td> <td>0.456 U</td> <td>0.133 U</td>	Chlorobenzene	4,700	130,000	5.8	NV	0.456 U	0.133 U																		
Chloroethane NV NV 310 NV 9.11 U 5.33 Chloroform 410 11,000 0.0034 NV 0.911 U 0.0533 Chloromethane 25,000 700,000 2.2 NV 4.56 U 1.33 cis-1,2-Dichloroethene 710 20,000 0.63 NV 0.456 U 0.0107 cis-1,3-Dichloropropene NV NV NV NV NV 0.911 U 0.0107 Dibromochloromethane 210 5,800 0.0024 NV 1.82 U 0.533 Dibromomethane NV NV NV NV NV 1.82 U 0.533 Dichlorodifluoromethane (Freon 12) NV NV NV NV NV 1.82 U 0.533 Ethylbenzene 1,700 49,000 0.22 NV 0.456 U 0.0267 Hexachlorobutadiene NV NV NV NV NV NV NV NV 0.911 U 0.267 Isopropylbenz	Chlorobromomethane						NV	NV													NV	NV	NV		0.267 U
Chloroform 410 11,000 0.0034 NV 0.911 U 0.0533 Chloromethane 25,000 700,000 2.2 NV 4.56 U 1.33 cis-1,2-Dichloroethene 710 20,000 0.63 NV 0.456 U 0.0107 cis-1,3-Dichloropropene NV NV NV NV NV 0.911 U 0.0107 Dibromochloromethane 210 5,800 0.0024 NV 1.82 U 0.533 Dibromomethane NV NV NV NV NV 0.911 U 0.267 Dichlorodifluoromethane (Freon 12) NV NV NV NV NV NV 1.82 U 0.533 Ethylbenzene 1,700 49,000 0.22 NV 0.456 U 0.0267 Hexachlorobutadiene NV NV NV NV NV NV 1.82 U 0.533 Isopropylbenzene 27,000 750,000 96 NV 0.911 U 0.0267 Methyl tert-butyl	Chloroethane	NV	NV	310	NV	9.11 U	5.33 UJ																		
Chloromethane 25,000 700,000 2.2 NV 4.56 U 1.33 cis-1,2-Dichloroethene 710 20,000 0.63 NV 0.456 U 0.0107 cis-1,3-Dichloropropene NV NV NV NV NV 0.911 U 0.0107 Dibromochloromethane 210 5,800 0.0024 NV 1.82 U 0.533 Dibromomethane NV NV NV NV NV 0.911 U 0.267 Dichlorodifluoromethane (Freon 12) NV NV NV NV NV 0.911 U 0.267 Ethylbenzene 1,700 49,000 0.22 NV 0.456 U 0.0267 Hexachlorobutadiene NV NV NV NV NV 1.82 U 0.533 Isopropylbenzene 27,000 750,000 96 NV 0.911 U 0.053 Methyl tert-butyl ether 12,000 320,000 0.11 NV 0.911 U 0.0213 Methylene chloride 2,100 </td <td></td> <td></td> <td>11,000</td> <td></td> <td></td> <td></td> <td>0.0533 U</td>			11,000				0.0533 U																		
cis-1,2-Dichloroethene 710 20,000 0.63 NV 0.456 U 0.0107 cis-1,3-Dichloropropene NV NV NV NV 0.911 U 0.0107 Dibromochloromethane 210 5,800 0.0024 NV 1.82 U 0.533 Dibromomethane NV NV NV NV NV 0.911 U 0.267 Dichlorodifluoromethane (Freon 12) NV NV NV NV NV NV 0.911 U 0.267 Ethylbenzene 1,700 49,000 0.22 NV 0.456 U 0.0267 Hexachlorobutadiene NV NV NV NV NV 1.82 U 0.533 Isopropylbenzene 27,000 750,000 96 NV 0.911 U 0.267 m,e-Xylene NV NV NV NV NV NV 0.911 U 0.0533 Methyl tert-butyl ether 12,000 320,000 0.11 NV 0.911 U 0.0213 Methylene chl					NV	4.56 U	1.33 U																		
Cis-1,3-Dichloropropene NV NV NV NV 0.911 U 0.0107 Dibromochloromethane 210 5,800 0.0024 NV 1.82 U 0.533 Dibromomethane NV NV NV NV NV 0.911 U 0.267 Dichlorodifluoromethane (Freon 12) NV NV NV NV NV NV NV 1.82 U 0.533 Ethylbenzene 1,700 49,000 0.22 NV 0.456 U 0.0267 Hexachlorobutadiene NV NV NV NV NV NV 1.82 U 0.533 Isopropylbenzene 27,000 750,000 96 NV 0.911 U 0.267 mp-Xylene NV NV NV NV NV 0.911 U 0.0533 Methyl tert-butyl ether 12,000 320,000 0.11 NV 0.911 U 0.0213 Methylene chloride 2,100 58,000 0.14 NV 9.11 U 0.267 <td< td=""><td></td><td></td><td>·</td><td></td><td></td><td></td><td>0.0107 U</td></td<>			·				0.0107 U																		
Dibromochloromethane 210 5,800 0.0024 NV 1.82 U 0.533 Dibromomethane NV NV NV NV NV 0.911 U 0.267 Dichlorodifluoromethane (Freon 12) NV NV NV NV NV 1.82 U 0.533 Ethylbenzene 1,700 49,000 0.22 NV 0.456 U 0.0267 Hexachlorobutadiene NV NV NV NV NV NV 1.82 U 0.533 Isopropylbenzene 27,000 750,000 96 NV 0.911 U 0.267 m,p-Xylene NV NV NV NV NV 0.911 U 0.0533 Methyl tert-butyl ether 12,000 320,000 0.11 NV 0.911 U 0.0213 Methylene chloride 2,100 58,000 0.14 NV 9.11 U 2.67 Naphthalene 580 16,000 0.077 NV 3.65 UJ 0.533 n-Propylbenzene NV							0.0107 U																		
Dibromomethane NV NV NV NV NV 0.911 U 0.267 Dichlorodifluoromethane (Freon 12) NV NV NV NV NV 1.82 U 0.533 Ethylbenzene 1,700 49,000 0.22 NV 0.456 U 0.0267 Hexachlorobutadiene NV NV NV NV NV NV 1.82 U 0.533 Isopropylbenzene 27,000 750,000 96 NV 0.911 U 0.267 m,p-Xylene NV NV NV NV NV NV 0.911 U 0.0533 Methyl tert-butyl ether 12,000 320,000 0.11 NV 0.911 U 0.0213 Methylene chloride 2,100 58,000 0.14 NV 9.11 U 2.67 Naphthalene 580 16,000 0.077 NV 3.65 UJ 0.533 n-Propylbenzene NV NV NV NV NV NV 0.911 U 0.267		_					0.533 U																		
Dichlorodifluoromethane (Freon 12) NV NV NV NV 1.82 U 0.533 Ethylbenzene 1,700 49,000 0.22 NV 0.456 U 0.0267 Hexachlorobutadiene NV NV NV NV NV 1.82 U 0.533 Isopropylbenzene 27,000 750,000 96 NV 0.911 U 0.267 m,p-Xylene NV NV NV NV NV 0.911 U 0.0533 Methyl tert-butyl ether 12,000 320,000 0.11 NV 0.911 U 0.0213 Methylene chloride 2,100 58,000 0.14 NV 9.11 U 2.67 Naphthalene 580 16,000 0.077 NV 3.65 UJ 0.533 n-Butylbenzene NV NV NV NV NV 0.911 U 0.267 n-Propylbenzene NV NV NV NV NV 0.456 U 0.0267 sec-Butylbenzene NV NV N							0.267 U																		
Ethylbenzene 1,700 49,000 0.22 NV 0.456 U 0.0267 Hexachlorobutadiene NV NV NV NV NV 1.82 U 0.533 Isopropylbenzene 27,000 750,000 96 NV 0.911 U 0.267 m,p-Xylene NV NV NV NV NV 0.911 U 0.0533 Methyl tert-butyl ether 12,000 320,000 0.11 NV 0.911 U 0.0213 Methylene chloride 2,100 58,000 0.14 NV 9.11 U 2.67 Naphthalene 580 16,000 0.077 NV 3.65 UJ 0.533 n-Butylbenzene NV NV NV NV NV 0.911 U 0.267 n-Propylbenzene NV NV NV NV NV 0.456 U 0.133 o-Xylene NV NV NV NV NV 0.911 U 0.267 sec-Butylbenzene 56,000 NV 170							0.533 U																		
Hexachlorobutadiene NV NV NV NV 1.82 U 0.533 Isopropylbenzene 27,000 750,000 96 NV 0.911 U 0.267 m,p-Xylene NV NV NV NV NV 0.911 U 0.0533 Methyl tert-butyl ether 12,000 320,000 0.11 NV 0.911 U 0.0213 Methylene chloride 2,100 58,000 0.14 NV 9.11 U 2.67 Naphthalene 580 16,000 0.077 NV 3.65 UJ 0.533 n-Butylbenzene NV NV NV NV NV 0.911 U 0.267 n-Propylbenzene NV NV NV NV NV NV 0.456 U 0.133 o-Xylene NV NV NV NV NV 0.911 U 0.267 styrene 56,000 NV 170 NV 0.911 U 0.267							0.0267 U																		
Isopropylbenzene 27,000 750,000 96 NV 0.911 U 0.267 m.p-Xylene NV NV NV NV 0.911 U 0.0533 Methyl tert-butyl ether 12,000 320,000 0.11 NV 0.911 U 0.0213 Methylene chloride 2,100 58,000 0.14 NV 9.11 U 2.67 Naphthalene 580 16,000 0.077 NV 3.65 UJ 0.533 n-Butylbenzene NV NV NV NV NV 0.911 U 0.267 n-Propylbenzene NV NV NV NV NV 0.456 U 0.133 o-Xylene NV NV NV NV NV NV 0.911 U 0.267 sec-Butylbenzene NV NV NV NV 0.911 U 0.267 Styrene 56,000 NV 170 NV 0.911 U 0.267	,						0.533 U																		
m,p-Xylene NV NV NV NV 0.911 U 0.0533 Methyl tert-butyl ether 12,000 320,000 0.11 NV 0.911 U 0.0213 Methylene chloride 2,100 58,000 0.14 NV 9.11 U 2.67 Naphthalene 580 16,000 0.077 NV 3.65 UJ 0.533 n-Butylbenzene NV NV NV NV NV 0.911 U 0.267 n-Propylbenzene NV NV NV NV NV 0.456 U 0.133 o-Xylene NV NV NV NV NV 0.911 U 0.267 sec-Butylbenzene NV NV NV NV 0.911 U 0.267 Styrene 56,000 NV 170 NV 0.911 U 0.267							0.267 U																		
Methyl tert-butyl ether 12,000 320,000 0.11 NV 0.911 U 0.0213 Methylene chloride 2,100 58,000 0.14 NV 9.11 U 2.67 Naphthalene 580 16,000 0.077 NV 3.65 UJ 0.533 n-Butylbenzene NV NV NV NV NV 0.911 U 0.267 n-Propylbenzene NV NV NV NV NV 0.456 U 0.133 o-Xylene NV NV NV NV NV 0.911 U 0.267 sec-Butylbenzene NV NV NV NV 0.911 U 0.267 Styrene 56,000 NV 170 NV 0.911 U 0.267							0.0533 U																		
Methylene chloride 2,100 58,000 0.14 NV 9.11 U 2.67 Naphthalene 580 16,000 0.077 NV 3.65 UJ 0.533 n-Butylbenzene NV NV NV NV 0.911 U 0.267 n-Propylbenzene NV NV NV NV NV 0.456 U 0.133 o-Xylene NV NV NV NV NV 0.911 U 0.267 sec-Butylbenzene NV NV NV NV 0.911 U 0.267 Styrene 56,000 NV 170 NV 0.911 U 0.267	,						0.0213 U																		
Naphthalene 580 16,000 0.077 NV 3.65 UJ 0.533 n-Butylbenzene NV NV NV NV 0.911 U 0.267 n-Propylbenzene NV NV NV NV 0.456 U 0.133 o-Xylene NV NV NV NV 0.456 U 0.0267 sec-Butylbenzene NV NV NV NV 0.911 U 0.267 Styrene 56,000 NV 170 NV 0.911 U 0.267	,						2.67 U																		
n-Butylbenzene NV NV NV NV 0.911 U 0.267 n-Propylbenzene NV NV NV NV 0.456 U 0.133 o-Xylene NV NV NV NV NV 0.456 U 0.0267 sec-Butylbenzene NV NV NV NV 0.911 U 0.267 Styrene 56,000 NV 170 NV 0.911 U 0.267	,						0.533 U																		
n-Propylbenzene NV NV NV NV 0.456 U 0.133 o-Xylene NV NV NV NV 0.456 U 0.0267 sec-Butylbenzene NV NV NV NV 0.911 U 0.267 Styrene 56,000 NV 170 NV 0.911 U 0.267	•						0.267 U																		
o-Xylene NV NV NV NV 0.456 U 0.0267 sec-Butylbenzene NV NV NV NV 0.911 U 0.267 Styrene 56,000 NV 170 NV 0.911 U 0.267	,						0.133 U																		
sec-Butylbenzene NV NV NV NV 0.911 U 0.267 Styrene 56,000 NV 170 NV 0.911 U 0.267							0.0267 U																		
Styrene 56,000 NV 170 NV 0.911 U 0.267	,						0.267 U																		
	,						0.267 U																		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,						0.267 U																		
Tetrachloroethene 1,800 50,000 0.46 NV 0.456 U 0.0107	,						0.267 U																		

Location:	RBC, Soil, Inge	estion, Dermal	RBC, Soil, Leaching to	Background	DU1	MFA-B1-B5- COMP
Sample Name:	Contact, and	Contact, and Inhalation ⁽¹⁾		Metals, Portland	DU1-20220810- ISM-COMP	MFA-B1-B5- COMP-SL
Collection Date:	Construction	Excavation	Desidential	Basin ⁽²⁾	08/10/2022	1/30/2023
Collection Depth (ft bml):	Worker Worker		Residential		Surface	0.5-2.0 ^(a)
Toluene	28,000	770,000	84	NV	0.911 U	0.0297 J
trans-1,2-Dichloroethene	7,100			NV	0.456 U	0.0107 U
trans-1,3-Dichloropropene	NV	NV	NV	NV	0.911 U	0.0107 U
Trichloroethene	130	3,700	0.013	NV	0.456 U	0.0107 U
Trichlorofluoromethane (Freon 11)	69,000	NV	61	NV	1.82 U	0.533 U
Vinyl chloride	34			NV	0.456 U	0.0533 U
Xylenes, total ^(f)	20,000	560,000	23	NV	0.911 U	0.0533 U

Table 4-1

Summary of Wastewater Lagoon Sludge Analytical Results Phase 1B Lagoon Repurposing City of St. Helens

Notes

Detected results are shown in **bold** font.

Shading (color key below) indicates values that exceed screening criteria; non-detects (U and UJ) and rejected data (R) were not compared with screening criteria. When multiple screening criteria are exceeded, the result is shaded based on the highest criterion. When multiple screening criteria with the same value are exceeded, the result is shaded based on the criterion presented to the right.

DEQ RBC, soil, ingestion, dermal contact, and inhalation, construction worker

DEQ RBC, soil, soil leaching to groundwater, residential

-- = not analyzed or result qualified as rejected.

cPAH TEQ = carcinogenic polycyclic aromatic hydrocarbon.

DEQ = Oregon Department of Environmental Quality.

EPA = U.S. Environmental Protection Agency.

ft bml = feet below mudline.

J = result is estimated.

J+ = result is estimated but may be biased high.

J- = result is estimated but may be biased low.

mg/kg = milligrams per kilogram.

NV = no value.

PCB = polychlorinated biphenyl.

pg/g = picograms per gram.

R = result is rejected. The analyte may or may not be present in the sample.

RBC = risk-based concentration.

SVOC = semivolatile organic compound.

TEF = toxic equivalency factor.

TEQ = toxicity equivalence.

TPH = total petroleum hydrocarbon.

U = result is non-detect at the detection limit.

UJ = result is non-detect with an estimated detection limit.

UK = result is non-detect at the estimated maximum potential concentration.

VOC = volatile organic compound.

^(a)At time of collection, discrete sample IDs were assigned based on collection depth from barge deck.

(b) Dioxin/furan TEQs are calculated as the sum of each detected congener concentration multiplied by the corresponding TEF value. Non-detect congeners are multiplied by one-half as well as the corresponding TEF value.

^(c)Total PCBs is the sum of all detected PCB congeners. Non-detect PCB congeners are not included in the sum.

(d)PCB congener numbers 001 through 014, and PCB-077 could not be reported by the laboratory because the sample matrix interfered with analyte recovery. The total PCB congener result should be considered an estimated value with a low bias.

(e) cPAH TEQ calculated as the sum of each cPAH multiplied by the corresponding TEF with non-detect results also multiplied by one-half. When all cPAHs are non-detect, the highest detection limit is provided.

(f)Total xylenes is the sum of m,p-xylene and o-xylene. When both results are non-detect, the higher detection limit is used.

References

⁽¹⁾DEQ. 2023. Table: Risk-Based Concentrations for Individual Chemicals. Oregon Department of Environmental Quality. June.

⁽²⁾DEQ. 2013. Development of Oregon Background Metals Concentrations in Soil. Oregon Department of Environmental Quality, Land Quality Division Cleanup Program, Portland, Oregon. March.

(3) Van den Berg, M. et al. 1998. "Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife." Environmental Health Perspectives. 106 (12):775–792.

⁽⁴⁾EPA. 1993. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. 600/R-93/089. U.S. Environmental Protection Agency. July.

						1				1		I					1
Location:	RBC,					F		lifa la !!	- £ C£ -: -	MFA-B3A	MW-1	MW-2		W-3	MW-4	MW-5	MW-6
	Groundwater,	Ec	cological RBC.	Freshwater ^{(a)(b}	0)(2)	Ecologic	al RBC for Wild	-	or surface	MFA-B3A-	MW1-	MW2-	MW3-	MW3-	MW4-	MW5-	MW6-
Sample Name:	Ingestion and						Wat	er ⁽³⁾		20230207-	20230220-	20230220-GW-	20230214-	20230214-	20230214-	20230214-	20230214-
	Inhalation from			A ====================================	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-			GW-36.0	GW-70	60	GW-35	GW-35-DUP	GW-40	GW-40	GW-40.25
Collection Date:	Tapwater,	Aquat	tic Life		ependent dlife	Bi	rds	Man	nmals	2/7/2023	2/20/2023	2/20/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023
Collection Depth (ft) ^(c) :	Residential ⁽¹⁾	Chronic	Acute	Chronic	Acute	TE	Non-TE	TE	Non-TE	36	70	60	35	35	40	40	40.25
Total Metals (ug/L)																	
Antimony	NV	190	900	NV	NV	21,000	52,000	690	2,300	0.697 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Arsenic	0.052	150	340	NV	NV	380,000	760,000	560	5,600	29.1	0.519 J	4.59	0.773 J	0.722 J	25.8	11.2	27.7
Barium	4,000	220	2,000	NV	NV	220,000	770,000	6,100	8,800	1,080	64.9	19.6	70.1	70.9	856	760	617
Beryllium	40	11	93	NV	NV	5,900	82,000	2,900	29,000	6.44	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cadmium	20	0.094	0.49	NV	NV	7,100	71,000	4,800	17,000	1.5	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Chromium	NV	NV	NV	NV	NV	82	2000	160,000	630,000	339	1 U	1 U	1 U	1 U	2.26	1 U	1.2 J
Chromium, hexavalent	0.05	11	16	NV	NV	12,000	130,000	160,000	630,000	0.057	0.0079 U	0.0079 U	0.0079 U	0.0079 U	0.04 U	0.04 U	0.04 U
Copper	800	1.4	2.3	NV	NV	50,000	500,000	22,000	33,000	210	1 U	3.12	1 U	1 U	1.18 J	1 U	1 U
Lead	15	0.54	14	NV	NV	78	780	4,300	16,000	66.8	0.122 J	0.619	0.11 U	0.11 U	0.375	0.11 U	0.11 U
Manganese	480	93	1,700	NV	NV	110,000	160,000	6,300	63,000	2,350	55.1	19	826	826	4,080	6,640	2,860
Mercury	6	0.012	1.4	0.0013	0.012	1,000,000	10,000,000	140	710	0.328	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U
Nickel	400	16	140	NV	NV	1,400	14,000	890	1400	285	1 U	1 U	1.21 J	1 U	4.04	2.46	2.49
Selenium	NV	4.6	20	NV	NV	4,500	45,000	110,000	1,100,000	4.48	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Silver	100	0.1	0.3	NV	NV	490,000	4,900,000	31	310	0.776	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Thallium	NV	6	54	NV	NV	1,400	14,000	31	310	0.711	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Zinc	NV	36	36	NV	NV	490,000	4,900,000	560,000	4,400,000	802	2.21 J	2.5 J	2 U	2 U	3.58 J	2 U	5.18
Chlorinated Herbicides (ug/L)										_				_			
2,4,5-T	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.14 U	0.14 U	0.14 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U
2,4-D	170	79	130	NV	NV	NV	NV	NV	NV	0.34 U	0.34 U	0.34 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U
2,4-DB	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.99 U	0.99 U	0.99 U	5 U	5 U	5 U	5 U	5 U
3,5-Dichlorobenzoic acid	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.28 U	0.28 U	0.28 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
4-Nitrophenol	NV	58	530	NV	NV	NV	NV	NV	NV	0.5 U	0.5 U	0.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Acifluorfen	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.24 U	0.24 U	0.24 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Bentazon	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.55 U	0.55 U	0.55 U	2.8 U	2.8 U	2.8 U	2.8 U	2.8 U
Dacthal	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.2 U	0.2 U	0.2 U	1 U	1 U	1 U	1 U	1 U
Dalapon	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.16 U	0.16 U	0.16 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U
Dicamba	NV	15	61	NV	NV	NV	NV	NV	NV	0.19 U	0.19 U	0.19 U	0.95 U	0.95 U	0.95 U	0.95 U	0.95 U
Dichlorprop	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.24 U	0.24 U	0.24 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Dinoseb	NV	0.48	4.8	NV	NV	NV	NV	NV	NV	0.09 U	0.09 U	0.09 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U
МСРА	7.4	2.6	90	NV	NV	NV	NV	NV	NV	40 U	40 U	40 U	200 U	200 U	200 U	200 U	200 U
Mecoprop	NV	NV	NV	NV	NV	NV	NV	NV	NV	27 U	27 U	27 U	140 U	140 U	140 U	140 U	140 U
Pentachlorophenol	0.044	6.7	8.7	NV	NV	13,000	130,000	1,000	10,000	0.18 U	0.18 U	0.18 U	0.9 U	0.9 U	0.9 U	0.9 U	0.9 U
Picloram	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.13 U	0.13 U	0.13 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U
Silvex	NV	30	270	NV	NV	NV	NV	NV	NV	0.14 U	0.14 U	0.14 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U
Dioxins/Furans (pg/L)			1	1	1	1	<u> </u>					· · · · · · · · · · · · · · · · · · ·					1 -
1,2,3,4,6,7,8-HpCDD	NV	NV	NV	NV	NV	NV	NV	NV	NV	79	1.06 U	1.01 U	1 U	1.03 U	1.06 U	1.01 U	1.39 U
1,2,3,4,6,7,8-HpCDF	NV	NV	NV	NV	NV	NV	NV	NV	NV	7.9 U	0.87 U	0.844 U	0.815 U	0.893 U	0.88 U	0.893 U	0.975 U
1,2,3,4,7,8,9-HpCDF	NV	NV	NV	NV	NV	NV	NV	NV	NV	1.37 U	0.962 U	0.897 U	0.888 U	0.955 U	0.954 U	0.975 U	1.05 U
1,2,3,4,7,8-HxCDD	NV	NV	NV	NV	NV	NV	NV	NV	NV	1.55 U	1.1 U	1.02 U	0.979 U	1.04 U	1.05 U	1.05 U	1.25 U
1,2,3,4,7,8-HxCDF	NV	NV	NV	NV	NV	NV	NV	NV	NV	1.05 U	0.904 U	0.891 U	0.815 U	0.879 U	0.937 U	0.944 U	0.994 U
1,2,3,6,7,8-HxCDD	NV	NV	NV	NV	NV	NV	NV	NV	NV	69.9	1.08 U	1.07 U	1.01 U	1.03 U	1.01 U	1.04 U	1.21 U
1,2,3,6,7,8-HxCDF	NV	NV	NV	NV	NV	NV	NV	NV	NV	1.27 U	0.911 U	0.884 U	0.817 U	0.908 U	0.922 U	0.944 U	0.986 U
1,2,3,7,8,9-HxCDD	NV	NV	NV	NV	NV	NV	NV	NV	NV	40.4 J	1.02 U	0.971 U	0.924 U	0.964 U	0.959 U	0.972 U	1.14 U
1,2,3,7,8,9-HxCDF	NV	NV	NV	NV	NV	NV	NV	NV	NV	1.15 U	0.979 U	0.955 U	0.894 U	0.973 U	0.995 U	1.03 U	1.12 U
1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF	NV NV	N N N	NV NV	NV NV	NV NV	NV NV	NV NV	NV NV	NV NV	4.31 J 1.76 U	1.07 U 1.31 U	1.06 U 1.33 U	0.983 U 1.19 U	1.1 U 1.29 U	1.15 U 1.33 U	1.08 U 1.3 U	1.34 U 1.43 U

	1					T				1454 504	1				1		I
Location:	RBC,					Foologie	al DDC for Wild	llife Ingestion (of Curtago	MFA-B3A	MW-1 MW1-	MW-2 MW2-	MW3-	W-3 MW3-	MW-4	MW-5	MW-6 MW6-
Camarala Niamaa	Groundwater,	Ec	ological RBC,	Freshwater ^{(a)(b)})(2)	Ecologica			oi suriace	MFA-B3A-			_	_	MW4-	MW5-	
Sample Name:	Ingestion and		-				wai	ter ⁽³⁾		20230207- GW-36.0	20230220- GW-70	20230220-GW-	20230214- GW-35	20230214- GW-35-DUP	20230214- GW-40	20230214- GW-40	20230214- GW-40.25
	Inhalation from			Aquatic-D	enendent			1		GW-36.0	GVV-/U	60	GW-33	GVV-33-DUF	G VV-40	GW-40	GVV-40.23
Collection Date:	Tapwater,	Aquat	ic Life	Aqualic-D Wild		Bir	rds	Man	nmals	2/7/2023	2/20/2023	2/20/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023
Collection Depth (ft) ^(c) :	Residential ⁽¹⁾	Chronic	Acute	Chronic	Acute	TE	Non-TE	TE	Non-TE	36	70	60	35	35	40	40	40.25
2,3,4,6,7,8-HxCDF	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.948 U	0.811 U	0.8 U	0.738 U	0.805 U	0.827 U	0.83 U	0.898 U
2,3,4,7,8-PeCDF	NV	NV	NV	NV	NV	NV	NV	NV	NV	1.49 U	1.11 U	1.14 U	1.02 U	1.08 U	1.1 U	1.11 U	1.23 U
2,3,7,8-TCDD	NV	0.0031	10,000	0.0031	NV	NV	NV	NV	NV	7.79 J	1.45 U	1.53 U	1.37 U	1.42 U	1.5 U	1.47 U	1.54 U
2,3,7,8-TCDF	NV	NV	NV	NV	NV	NV	NV	NV	NV	51.5	1.07 U	1.12 U	0.994 U	1.02 U	1.07 U	1.02 U	1.03 U
OCDD	NV	NV	NV	NV	NV	NV	NV	NV	NV	545	1.07 U	3.63 UJ	2.11 UJ	3.24 UJ	4.17 UK	1.44 U	7.62 UJ
OCDF	NV	NV	NV	NV	NV	NV	NV	NV	NV	17.7 J	0.954 U	0.958 U	0.84 U	0.989 U	1.03 U	0.959 U	1.21 U
Total HpCDDs	NV	NV	NV	NV	NV	NV	NV	NV	NV	142	1.06 U	1.01 U	1 U	1.43 U	1.06 U	1.01 U	1.45 U
Total HpCDFs	NV	NV	NV	NV	NV	NV	NV	NV	NV	11.7 J	0.913 U	0.869 U	0.849 U	0.923 U	0.915 U	0.932 U	1.01 U
Total HxCDDs	NV	NV	NV	NV	NV	NV	NV	NV	NV	436	1.15 U	1.39 U	0.969 U	1.06 U	1.01 U	1.02 U	1.2 U
Total HxCDFs	NV	NV	NV	NV	NV	NV	NV	NV	NV	3.98 J	0.898 U	0.88 U	0.813 U	0.888 U	0.917 U	0.933 U	0.995 U
Total PeCDDs	NV	NV	NV	NV	NV	NV	NV	NV	NV	31 J	1.07 U	1.06 U	0.983 U	1.1 U	1.15 U	1.08 U	1.34 U
Total PeCDFs	NV	NV	NV	NV	NV	NV	NV	NV	NV	9.86 J	1.2 U	1.23 U	1.1 U	1.18 U	1.21 U	1.2 U	1.32 U
Total TCDDs	NV	NV	NV	NV	NV	NV	NV	NV	NV	11.9	1.45 U	1.53 U	1.37 U	1.42 U	1.5 U	1.47 U	1.54 U
Total TCDFs	NV	NV	NV	NV	NV	NV	NV	NV	NV	98.3	1.07 U	1.12 U	0.994 U	1.02 U	1.07 U	1.02 U	1.03 U
Dioxin/Furan TEQ ^{(d)(4)}	0.091	0.0031	10,000	0.0031	NV	NV	NV	4,400	44,000	29.8	1.45 U	3.63 U	2.11 U	3.24 U	4.17 U	1.47 U	7.62 U
Organochlorine Pesticides (ug/L)						•								•	_		
2,4'-DDD	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.00077	0.00002 U	0.00002 U	0.00002 U	0.00002 U	4.3E-05 J	0.00002 U	8.9E-05 J
2,4'-DDE	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.0002 J	0.000016 U	0.000016 U	0.000016 U	0.000016 U	0.000016 U	0.000016 U	0.000016 U
2,4'-DDT	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.00156	0.00004 U	0.000041 J	0.00004 U	0.00004 U	0.00012 J	0.00004 U	9.5E-05 J
4,4'-DDD	0.031	0.01	0.19	NV	NV	NV	NV	NV	NV	0.00196	0.000014 U	0.000015 J	0.00002 J	0.00006 J	6.4E-05 J	3.9E-05 J	7.1E-05 J
4,4'-DDE	0.046	0.3	1.3	NV	NV	NV	NV	NV	NV	0.00108	0.000012 U	0.000026 J	0.000012 U	0.000012 U	1.2E-05 UJ	0.000012 UJ	0.000019 UJ
4,4'-DDT	0.23	0.001	1.1	0.001	1.1	NV	NV	NV	NV	0.00571	0.00005 U	0.00005 U	0.00005 U	0.00005 U	0.0001 J	8.4E-05 J	0.00005 U
Aldrin	0.00092	0.04	3	NV	NV	NV	NV	NV	NV	0.00019 UK	0.000021 U	0.000052 J	0.000021 U	0.000021 U	0.000021 U	0.000021 U	3.4E-05 J
alpha-BHC	0.0075	0.01	NV	NV	NV	NV	NV	NV	NV	7.3E-05 J	0.000024 U	0.000024 U	0.000024 U	0.000024 U	3.8E-05 J	0.000024 U	3.9E-05 J
alpha-Chlordane	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.0001 J	0.000029 U	0.000029 U	0.000029 U	0.000029 U	0.000029 U	0.000029 U	0.000029 U
beta-BHC	NV	0.01	NV	NV	NV	NV	NV	NV	NV	0.00013 UK	2.4E-05 J	0.00002 UK	2.9E-05 J	2.1E-05 J	0.00012 J	9.5E-05 J	0.000014 U
beta-Chlordane	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.00012 J	0.000029 U	0.000029 U	0.000029 U	0.000029 U	0.000029 U	0.000029 U	7.9E-05 J
cis-Nonachlor	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.000037 U	0.000037 U	0.000037 U	0.000037 U	0.000037 U	0.000037 U	0.000037 U	0.000037 U
delta-BHC	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.00015 J	0.000029 U	0.000029 U	0.000029 U	0.000029 U	0.00011 J	0.00011 J	0.000029 U
Dieldrin	0.0017	0.056	0.24	0.06	0.24	310 41,000	3,100 410,000	89 670	890 6,700	0.00009 UK	0.00005 U	0.00005 U 0.000067 U	0.00005 U	0.00005 U	0.00005 U	6.1E-05 J 0.000067 U	0.00005 U 0.00012 J
Endosulfan I	98	0.056	0.22	NV	NV		-,		•	0.00244	0.000067 U		7.1E-05 J	0.00012 J	7.5E-05 J		
Endosulfan II Endosulfan sulfate	98 NV	0.056 0.06	0.22 1.9	NV	NV	41,000	410,000	670	6,700	0.0003 J 0.000091 UK	0.000074 U 0.00007 U	0.000089 J 0.00007 U	0.000074 U 0.00007 U	0.000074 U 0.00007 U	0.00017 J 0.00007 U	8.9E-05 J 0.00007 U	0.000074 U 0.00007 U
Endosulian sullate Endrin	1.9	0.036	0.086	NV NV	NV NV	NV 41	4,100	NV 410	4,100	0.000091 UK	0.00007 U	0.00007 U		0.00007 U	0.00007 U		0.00007 U
Endrin aldehyde	NV	0.036 NV	0.066 NV	NV	NV	NV	4,100 NV	NV	4,100 NV	0.00173 0.00016 J	0.000073 UJ	0.000043 U	0.000048 UJ	0.000043 U	0.0001 U		0.000133 UJ
1	NV	NV	NV	NV	NV	NV	NV	NV	NV	4.1E-05 J	0.000071 U	0.000071 U	0.000071 U	0.000071 U	0.000071 U	0.000071 U	0.000071 U
Endrin ketone Heptachlor	0.0014	0.0038	0.52	NV	NV	3,800	37,000	440	4,400	0.000029 U	0.000034 U	0.000034 U	0.000034 U	0.000034 U	3.6E-05 J	3.6E-05 J	4.1E-05 J
Heptachlor epoxide	0.0014	0.0038	0.52	NV	NV	3,600 NV	37,000 NV	NV	4,400 NV	1.9E-05 J	0.000029 U	0.000029 U	0.000029 U	0.000029 U	0.000015 U	0.000015 U	0.000015 U
Hexachlorobenzene	0.0014	0.0038	2.8	0.0003	NV	NV	NV	NV	NV	0.0001 U	0.00013 U	0.00072 J	0.00013 U	0.00013 U	0.00013 U	0.00013 U	0.00013 U
Lindane	0.0096	0.13	0.95	0.0003	0.95	NV	NV	NV	NV	0.0001 0	6.7E-05 J	0.000058 J	0.0001 U	0.0001 U	0.0001 U	0.0001 U	8.4E-05 J
Methoxychlor	0.043 NV	0.03	0.73	NV	0.73 NV	100,000	1,000,000	17,000	35,000	0.0002 0.0018 UK	0.00004 U	0.000038 J	8.5E-05 J+	6.5E-05 J+	0.00012 J	7.9E-05 J	7.5E-05 J
Mirex	NV	0.001	0.001	0.001	0.001	NV	NV	NV	NV	5.6E-05 J	0.00004 U	0.00004 U	0.000021 U	0.000021 U	0.00012 J	3.2E-05 J	0.000021 U
Oxychlordane	NV	NV	NV	0.001 NV	NV	NV	NV	NV	NV	0.000028 U	0.000021 U	0.000021 U	0.000021 U	0.000021 U	0.000021 U	0.000028 U	0.000021 U
trans-Nonachlor	NV	NV	NV	NV	NV	NV	NV	NV	NV	5.5E-05 J	0.000028 U	0.000028 U	0.000028 U	0.000028 U	0.000028 U	0.000028 U	0.000028 U
Total chlordane ^(e)	NV	0.0043	2.4	NV	NV	8,800	44,000	5,200	52,000	0.00029 J	0.000044 U	0.000044 U	0.000044 U	0.000044 U	8.7E-05 J	8.7E-05 J	0.00016 J
Total DDx ^(f)	NV	0.001	1.1	0.001	1.1	530	5,300	7,100	71,000	0.0113 J	0.00005 U	0.000125 J	0.00005 UJ	0.00013 J	0.00035 J	0.00017 J	0.00031 J

Location:										MFA-B3A	MW-1	MW-2	M	W-3	MW-4	MW-5	MW-6
Eccanori.	RBC,			(a)/la	N/O)	Ecologica	al RBC for Wild	llife Ingestion o	of Surface	MFA-B3A-	MW1-	MW2-	MW3-	MW3-	MW4-	MW5-	MW6-
Sample Name:	Groundwater,	Ec	ological RBC,	Freshwater ^{(a)(b}	0)(2)		Wat	-		20230207-	20230220-	20230220-GW-	20230214-	20230214-	20230214-	20230214-	20230214-
	Ingestion and						,,,	.01		GW-36.0	GW-70	60	GW-35	GW-35-DUP	GW-40	GW-40	GW-40.25
Collection Date:	Inhalation from Tapwater,	Aquat	ic Life	Aquatic-D Wild	•	Bii	rds	Man	nmals	2/7/2023	2/20/2023	2/20/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023
Collection Depth (ft) ^(c) :	Residential ⁽¹⁾	Chronic	Acute	Chronic	Acute	TE	Non-TE	TE	Non-TE	36	70	60	35	35	40	40	40.25
Total endosulfans ^(g)	NV	0.056	0.22	NV	NV	NV	NV	NV	NV	0.00278 J	0.000074 U	0.000158 J	0.00014 J	0.00019 J	0.00028 J	0.00016 J	0.0002 J
Total hexachlorocyclohexanes ^(h)	NV	0.08	0.95	0.11	0.95	2,300	9,200	62	620	0.00049 J	0.00012 J	9.45E-05 J	7.2E-05 J	6.4E-05 J	0.00028 J	0.00024 J	0.00014 J
Organophosphorus Pesticides (ug/L)	111	0.00	0.70	0.11	0.70	2,000	7,200	UZ.	020	0.00017	0.00012	7.102 00 0	7.22 00 0	0.12 00 0	0.00020	0.0002.0	0.000110
Coumaphos	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.532 U
Demeton-O	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.327 U	0.26 U	0.26 U	0.248 U	0.248 U	0.267 U	0.275 U	0.266 U
Demeton-S	NV	0.1	5.2	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Diazinon	NV	0.17	0.17	NV	NV	NV	NV	NV	NV	0.327 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Dichlorvos	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Dimethoate	NV	0.5	22	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Disulfoton	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Dursban (Chloropyrifos)	NV	0.041	0.083	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Ethoprop	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Fensulfothion	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Fenthion	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Guthion (Azinphos-Methyl)	NV	0.01	0.08	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Merphos	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.658 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Methyl parathion	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Mevinphos	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Monocrotophos	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Naled	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Parathion	NV	0.013	0.065	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Phorate	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Pyridine	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Santox (EPN)	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Stirofos	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Sulfotepp	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Sulprofos (Bolstar)	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Sumitox (Malathion)	NV	0.1	0.3	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Tetraethylpyrophosphate	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.538 U	0.549 U	0.532 U
Tokuthion	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
Trichloronate	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.329 U	0.26 U	0.26 U	0.248 U	0.248 U	0.269 U	0.275 U	0.266 U
PFAS (ug/L)	T 1		T			1	T	T		T	T	1	1	T	T	T	T
9CI-PF3ONS (F-53B Major)	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.02 U	0.02 U	0.02 U	0.0043 U	0.0043 U	0.0043 U	0.0043 U	0.0043 U
11CI-PF3OUdS (F-53B Minor)	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.02 U	0.02 U	0.02 U	0.0035 U	0.0035 U	0.0035 U	0.0035 U	0.0035 U
4:2 FTSA	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.02 U	0.02 U	0.02 U	0.0033 U	0.0033 U	0.0033 U	0.0033 U	0.0033 U
6:2 FTSA	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.02 U	0.02 U	0.02 U	0.0015 U	0.0015 U	0.0015 U	0.0015 U	0.0021 J
8:2 FTSA	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.02 U	0.02 U	0.02 U	0.0031 U	0.0031 U	0.0031 U	0.0031 U	0.0059 J
ADONA	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.02 U	0.02 U	0.02 U	0.0027 U	0.0027 U	0.0027 U	0.0027 U	0.0027 U
EtFOSA EtFOSAA	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U	0.0095 U	0.0095 U	0.0095 UJ	0.0095 UJ	0.0095 U
EtFOSE	NV	NV	NV	NV NV	NV	NV	NV	NV NV	NV	0.02 U		0.02 U 0.02 U	0.0046 U 0.007 U	0.0046 U	0.0046 U 0.007 U	0.0046 U 0.007 U	0.0046 U
HFPO-DA (GenX)	NV NV	NV NV	NV NV	NV NV	NV NV	NV NV	NV NV	NV	NV NV	0.02 U	0.02 U 0.02 U	0.02 U	0.007 U	0.007 U 0.0052 U	0.007 U	0.007 U	0.007 U 0.0052 U
MeFOSA	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.02 U	0.02 U	0.02 U	0.0032 U	0.0032 U	0.0032 U 0.0084 UJ	0.0032 U 0.0084 UJ	0.0032 U
MeFOSA	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.02 U	0.02 U	0.02 U	0.0064 U	0.0064 U	0.0064 UJ 0.0045 U	0.0064 UJ 0.0045 U	0.0064 U
MeFOSE	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.02 U	0.02 U	0.02 U	0.0043 U	0.0043 U	0.0043 U	0.0043 U	0.0043 U
PFBA	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.02 0	0.02 U	0.02 U	0.0073 0	0.0073 0	0.0073 U	0.0073 U	0.0073 U
PFBS	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.017 J	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.013 J	0.0028_1
1100	144	1 4 4	1 4 4	1 4 A	1 4 4	144	1 4 4	1 4 4	144	0.02 0	0.02 0	0.02 0	0.02 0	0.02 0	0.000/ J	0.02 0	<u> </u>

Scheeling Sche		1	T				T				T		1					
Service Heat Content	Location:	RBC,					Foologie	al DDC for Wile	llifa Ingastion	of Comforce	MFA-B3A	MW-1	MW-2		-	MW-4	MW-5	MW-6
Content Cont	Canada Nasa	Groundwater,	Ec	ological RBC,	Freshwater ^{(a)(b)}	0)(2)	Ecologic		-	or surface				_				_
Colored Description Colored Description	Sample Name:	Ingestion and		-				wa	rer ⁽³⁾									
Color-to-to-to-to-to-to-to-to-to-to-to-to-to-		Inhalation from			Aquatic D	lenendent			ı		GW-36.0	GW-70	60	GW-35	GW-33-DUP	G VV-40	G VV-40	GVV-40.25
Color Colo		' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	Aquat	ric Life	· ·	•	Bi	rds	Man	nmals							-	
Post		Residential	Chronic	Acute	Chronic	Acute	TE	Non-TE	TE	Non-TE								
FFS							-	NV		NV								
Prop. 197				NV						NV								
PPRISA							+			NV								
Fish	L ⁻										-							
PMS																		
First							-											
PRISA																		
FOSA							-											
FPGS																		
FOSA																		
FPRes											-							
FF65							+											
FFEDA							+				-							
FEIDA NV NV NV NV NV NV NV N					1 1 1													
FEIDA																		
PCB Congenes (pg/l)							-				-							
Monocle-1		NV	NV	NV	NV	NV	NV	NV	NV	NV	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
SMORCE-12 NV							1				100		20.11	10.1			10.1	40
Semonace-13 NV																		
2.27-0.Cb.[4]	. ,																	
23-DicB- 5							-											
2.4-DiCs-[7]																		
12.4-DICE- 8 NV							+											
Total catacts	· /																	
2.5-DicB-(9)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \																	
22-616CB-[10] NV NV NV NV NV NV NV N							-				-							
3.3-DicB-(11)							-											
PCBs 2+13	1 /						-											
3.5-DicB-(14) NV N																		
4.4-DiCB-(15)																		
2.2;4-TirCB-(16)	\ 7																	
2.2'.4-TriCB-(17)																		
PCBs 18 + 30	3 7						+				-							
2.2.6-TriCB-(19) NV NV NV NV NV NV NV NV NV N	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \											_					_	
PCBs 20 + 28																		
PCBs 21 + 33	, ,										-							
2,3,4-TriCB-[22] NV																		
2,3,5-TriCB-(23) NV											-							
2,3,6-TriCB-(24) NV																		
2,3',4-TriCB-(25) NV				NV					NV									
PCBs 26 + 29 NV				NV					NV									
2,3',6-TriCB-(27) NV	` '			NV		NV			NV	NV								
2,4',5-TriCB-(31) NV						NV			NV		-							
2,4',6-TriCB-(32) NV 140 U 7.4 U 6.6 U 8.4 U 7.4 U 5.9 U	, , , , , , , , , , , , , , , , , , ,	NV		NV	NV	NV				NV	98 U				12 UJ			
				NV		NV	NV		NV	NV							7.4 U	
	2,3',5'-TriCB-(34)			NV		NV			NV	NV	-	6.2 U	5.8 U			7.6 U		5.3 U

Sample N Collection Collection Depth	RBC, Groundw Ingestion										MFA-B3A	MW-1	MW-2	M۱	/V = 3	MW-4	MW-5	
Collection	lame.	(ator					Ecologia	al RBC for Wild	llifa Ingastias	of Surface								MW-6
Collection	Name: Ingestion	raiei,	Eco	ological RBC,	Freshwater ^{(a)(b)}	0)(2)	Ecologica		-	or surface	MFA-B3A-	MW1-	MW2-	MW3-	MW3-	MW4-	MW5-	MW6-
		and		J				Wa	ter ^(o)		20230207-	20230220-	20230220-GW-	20230214-	20230214-	20230214-	20230214-	20230214-
	Inhalation	n from			Aquatic D	anandant			I		GW-36.0	GW-70	60	GW-35	GW-35-DUP	GW-40	GW-40	GW-40.25
Collection Depth	Date: Tapwat	(1)	Aquati	ic Life	Aquatic-D Wild	•	Bii	rds	Man	nmals	2/7/2023	2/20/2023	2/20/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023
	n (ft) ^(c) :	idi.	Chronic	Acute	Chronic	Acute	TE	Non-TE	TE	Non-TE	36	70	60	35	35	40	40	40.25
3,3',4,-TriCB-(35)	NV		NV	NV	NV	NV	NV	NV	NV	NV	110 U	6.4 U	6 U	3.5 U	5.8 U	7.4 U	6.5 U	5.2 U
3,3',5-TriCB-(36)	NV		NV	NV	NV	NV	NV	NV	NV	NV	31 U	5.7 U	5.3 U	3.2 U	5.3 U	6.8 U	6 U	4.8 U
3,4,4'-TriCB-(37)	NV		NV	NV	NV	NV	NV	NV	NV	NV	42 U	6.6 U	7.7 UJ	3.2 U	5.1 U	6.7 U	5.8 U	10.1 UJ
3,4,5-TriCB-(38)	NV		NV	NV	NV	NV	NV	NV	NV	NV	35 U	5.9 U	5.5 U	3.4 U	5.6 U	7.1 U	6.3 U	5 U
3,4',5-TriCB-(39)	NV		NV	NV	NV	NV	NV	NV	NV	NV	73 U	6.3 U	5.9 U	3.6 U	5.9 U	7.5 U	6.7 U	5.3 U
PCBs 40 + 41 + 71	NV		NV	NV	NV	NV	NV	NV	NV	NV	330 U	19 U	16 U	11 U	14 U	19 U	19 U	14 U
2,2',3,4'-TetraCB-(42)	NV		NV	NV	NV	NV	NV	NV	NV	NV	660 U	26 U	22 U	15 U	19 U	26 U	26 U	20 U
2,2',3,5-TetraCB-(43)	NV		NV	NV	NV	NV	NV	NV	NV	NV	460 U	25 U	21 U	14 U	18 U	25 U	25 U	19 U
PCBs 44/47/65	NV		NV	NV	NV	NV	NV	NV	NV	NV	320 U	18 U	28 J	19 J	29 UJ	18 U	20 J	37 J
PCBs 45 + 51	NV		NV	NV	NV	NV	NV	NV	NV	NV	350 U	20 UK	17 U	11 U	15 U	20 U	20 U	15 U
2,2',3,6'-TetraCB-(46)	NV		NV	NV	NV	NV	NV	NV	NV	NV	590 U	22 U	19 U	12 U	16 U	22 U	22 U	17 U
2,2',4,5-TetraCB-(48)	NV		NV	NV	NV	N	NV	NV	NV	NV	510 U	19 U	16 U	11 U	14 U	19 U	19 U	15 U
PCBs 49 + 69	NV		NV	NV	NV	N	NV	NV	NV	NV	300 U	17 U	15 U	9.7 U	12 U	17 U	17 U	17 UJ
PCBs 50 + 53	NV		NV	NV	NV	N	NV	NV	NV	NV	520 U	19 U	17 U	11 U	14 U	20 U	20 U	15 U
2,2',5,5'-TetraCB-(52)	NV		NV	NV	NV	ZV	NV	NV	NV	NV	510 U	31 UJ	49 UJ	11 U	20 UJ	19 U	19 U	38 UJ
2,2',6,6'-TetraCB-(54)	NV		NV	NV	NV	NV	NV	NV	NV	NV	300 U	21 U	28 U	18 U	26 U	34 U	29 U	23 U
2,3,3',4-TetraCB-(55)	NV		NV	NV	NV	NV	NV	NV	NV	NV	120 U	15 U	12 U	7.7 U	9.9 U	14 U	14 U	10 U
2,3,3',4'-Tetra CB-(56)	NV		NV	NV	NV	NV	NV	NV	NV	NV	350 U	14 U	12 U	7.5 U	9.5 U	13 U	13 U	10 U
2,3,3',5-TetraCB-(57)	NV		NV	NV	NV	NV	NV	NV	NV	NV	110 U	14 U	12 U	7.4 U	9.4 U	13 U	13 U	10 U
2,3,3',5'-TetraCB-(58)	NV		NV	NV	NV	NV	NV	NV	NV	NV	110 U	13 U	11 U	7.3 U	9.3 U	13 U	13 U	9.9 U
PCBs 59/62/75	NV		NV	NV	NV	NV	NV	NV	NV	NV	370 U	14 U	12 U	7.7 U	9.8 U	14 U	14 U	10 U
2,3,4,4'-TetraCB-(60)	NV		NV	NV	NV	NV	NV	NV	NV	NV	340 U	14 U	12 U	7.2 U	9.3 U	13 U	13 U	9.8 U
PCBs 61/70/74/76	NV		NV	NV	NV	NV	NV	NV	NV	NV	350 U	32 UJ	58 UJ	7.4 UJ	26 UJ	13 U	13 U	47 UJ
2,3,4',5-TetraCB-(63)	NV		NV	NV	NV	NV	NV	NV	NV	NV	330 U	13 U	11 U	7.1 U	9.1 U	13 U	13 U	9.6 U
2,3,4',6-TetraCB-(64)	NV		NV	NV	NV	NV	NV	NV	NV	NV	290 U	16 U	14 U	9 U	11 U	16 U	16 U	12 U
2,3',4,4'-TetraCB-(66)	NV		NV	NV	NV	NV	NV	NV	NV	NV	330 U	13 U	11 UK	7 U	9.3 UJ	12 U	12 U	20.4 UJ
2,3',4,5-TetraCB-(67)	NV		NV	NV	NV	NV	NV	NV	NV	NV	190 U	11 U	9.5 U	6.1 U	7.8 U	11 U	11 U	8.3 U
2,3',4,5'-TetraCB-(68)	NV		NV	NV	NV	NV	NV	NV	NV	NV	110 U	12 U	11 U	6.6 U	8.5 U	12 U	12 U	9 U
2,3',5,5'-TetraCB-(72)	NV		NV	NV	NV	NV	NV	NV	NV	NV	110 U	13 U	11 U	7.1 U	9.1 U	13 U	13 U	9.7 U
2,3',5',6-TetraCB-(73)	NV		NV	NV	NV	NV	NV	NV	NV	NV	120 U	13 U	11 U	7.5 U	9.6 U	13 U	13 U	10 U
3,3',4,4'-TetraCB-(77)	NV		NV	NV	NV	NV	NV	NV	NV	NV	130 U	11 U	8.6 U	5.5 U	6.8 U	9.7 U	9.8 U	9 J
3,3',4,5-TetraCB-(78)	NV		NV	NV	NV	NV	NV	NV	NV	NV	120 U	15 U	12 U	7.7 U	9.8 U	14 U	14 U	10 U
3,3',4,5'-TetraCB-(79)	NV		NV	NV	NV	NV	NV	NV	NV	NV	200 U	11 U	9.5 U	6.1 U	7.8 U	11 U	11 U	8.3 U
3,3',5,5'-TetraCB-(80)	NV		NV	NV	NV	NV	NV	NV	NV	NV	190 U	11 U	9.7 U	6 U	7.7 U	11 U	11 U	8.1 U
3,4,4',5-TetraCB-(81)	NV		NV	NV	NV	NV	NV	NV	NV	NV	110 U	12 U	9.3 U	6 U	7.6 U	11 U	11 U	8.3 U
2,2',3,3',4-PentaCB-(82)	NV		NV	NV	NV	NV	NV	NV	NV	NV	310 U	25 U	18 U	11 U	13 U	18 U	18 U	14 U
PCBs 83 + 99	NV		NV	NV	NV	NV	NV	NV	NV	NV	380 U	20 U	15 U	8.7 U	11 U	15 U	15 U	12 U
2,2',3,3',6-PentaCB-(84)	NV		NV	NV	NV	NV	NV	NV	NV	NV	410 U	21 U	19 UJ	9.6 U	12 U	16 U	17 U	13 U
PCBs 85/116/117	NV		NV	NV	NV	NV	NV	NV	NV	NV	300 U	26 U	26 J	6.8 U	8.4 U	12 U	12 U	9.1 U
PCBs 86/87/97/109/119/125	NV		NV	NV	NV	NV	NV	NV	NV	NV	310 U	26 UJ	50 UJ	7.3 U	15.2 UJ	12 U	13 U	9.8 U
PCBs 88 + 91	NV		NV	NV	NV	NV	NV	NV	NV	NV	400 U	20 U	15 U	9.3 U	12 U	16 U	16 U	12 U
2,2',3,4,6'-PentaCB-(89)	NV		NV	NV	NV	NV	NV	NV	NV	NV	310 U	24 U	18 U	11 U	14 U	19 U	19 U	15 U
PCBs 90 + 101 + 113	NV		NV	NV	NV	NV	NV	NV	NV	NV	430 UJ	16 UK	120 UJ	7.4 UJ	36.1 UJ	18 UJ	13 UJ	69.2 UJ
2,2',3,5,5'-PentaCB-(92)	NV		NV	NV	NV	NV	NV	NV	NV	NV	430 U	22 U	16 U	10 U	12 U	17 U	17 U	13 U
PCBs 93 + 98 + 100 + 102	NV		NV	NV	NV	NV	NV	NV	NV	NV	380 U	19 U	14 U	9.1 U	11 U	16 U	16 U	12 U
2,2',3,5,6'-PentaCB-(94)	NV		NV	NV	NV	NV	NV	NV	NV	NV	280 U	20 U	15 U	9.5 U	12 U	16 U	16 U	13 U
2,2',3,5',6-PentaCB-(95)	NV		NV	NV	NV	NV	NV	NV	NV	NV	420 U	52 U	104 U	9.9 UJ	33 UJ	17 U	17 U	58 U

						1				1454 BOA	1 414/ 1	1,114,0			1 111/1	1414/5	
Location:	RBC,					Ecologia	al RBC for Wilc	llife Incortion	of Surface	MFA-B3A MFA-B3A-	MW-1 MW1-	MW-2 MW2-	MW3-	N-3 MW3-	MW-4 MW4-	MW-5 MW5-	MW-6 MW6-
Camarala Nama a	Groundwater,	Ec	cological RBC,	Freshwater ^{(a)(b}	0)(2)	Ecologic			or surface					_			_
Sample Name:	Ingestion and		•				Wa	ter ^(e)		20230207- GW-36.0	20230220- GW-70	20230220-GW- 60	20230214- GW-35	20230214- GW-35-DUP	20230214- GW-40	20230214- GW-40	20230214-
	Inhalation from			Aquatic-D	enendent			1		GW-36.0		60	GW-35	GW-33-DUP	GVV-40	G VV-40	GW-40.25
Collection Date:	Tapwater,	Aquat	tic Life	Wild	•	Bi	rds	Man	nmals	2/7/2023	2/20/2023	2/20/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023
Collection Depth (ft) ^(c) :	Residential ⁽¹⁾	Chronic	Acute	Chronic	Acute	TE	Non-TE	TE	Non-TE	36	70	60	35	35	40	40	40.25
2,2',3,6,6'-PentaCB-(96)	NV	NV	NV	NV	NV	NV	NV	NV	NV	220 U	16 U	12 U	8 U	10 U	14 U	14 U	11 U
2,2',4,5',6-PentaCB-(103)	NV	NV	NV	NV	NV	NV	NV	NV	NV	380 U	20 U	14 U	8.9 U	11 U	15 U	15 U	12 U
2,2',4,6,6'-PentaCB-(104)	NV	NV	NV	NV	NV	NV	NV	NV	NV	89 U	16 UK	13 U	8.7 U	11 U	16 U	15 U	11 U
2,3,3',4,4'-PentaCB-(105)	NV	NV	NV	NV	NV	NV	NV	NV	NV	93 U	10 UJ	19.6 UJ	4.5 U	5.6 U	7.7 U	7.6 U	17.8 UJ
2,3,3',4,5-PentaCB-(106)	NV	NV	NV	NV	NV	NV	NV	NV	NV	77 U	12 U	8.4 U	5.9 U	7.3 U	10 U	10 U	7.9 U
2,3,3',4',5-PentaCB-(107)	NV	NV	NV	NV	NV	NV	NV	NV	NV	190 U	9.1 U	6.6 U	4.5 U	5.6 U	7.7 U	7.7 U	6 U
PCBs 108 + 124	NV	NV	NV	NV	NV	NV	NV	NV	NV	150 U	11 U	8.3 U	5.6 U	6.9 U	9.5 U	9.6 U	7.5 U
PCBs 110 + 115	NV	NV	NV	NV	NV	NV	NV	NV	NV	490 UJ	46 UJ	102 U	6.7 UJ	24.1 UJ	15 UJ	12 U	52.1 UJ
2,3,3',5,5'-PentaCB-(111)	NV	NV	NV	NV	NV	NV	NV	NV	NV	85 U	13 U	9.5 U	6 U	7.4 U	10 U	10 U	8 U
2,3,3',5,6-PentaCB-(112)	NV	NV	NV	NV	NV	NV	NV	NV	NV	83 U	13 U	24.3 J	5.7 U	7.1 U	9.8 U	9.8 U	7.6 U
2,3,4,4',5-PentaCB-(114)	NV	NV	NV	NV	NV	NV	NV	NV	NV	100 U	11 U	7.5 U	5.2 U	6.3 U	8.5 U	8.9 U	7 U
2,3',4,4',5-PentaCB-(118)	NV	NV	NV	NV	NV	NV	NV	NV	NV	127 UJ	31 UJ	61.7 UJ	4.8 UJ	14.4 UJ	8.2 U	8.4 U	31.4 UJ
2,3',4,5,5'-PentaCB-(120)	NV	NV	NV	NV	NV	NV	NV	NV	NV	90 U	14 U	10 U	6.1 U	7.6 U	10 U	10 U	8.2 U
2,3',4,5',6-PentaCB-(121)	NV	NV	NV	NV	NV	NV	NV	NV	NV	88 U	14 U	10 U	6.3 U	7.8 U	11 U	11 U	8.4 U
2,3,3',4',5'-PentaCB-(122)	NV	NV	NV	NV	NV	NV	NV	NV	NV	290 U	15 U	11 U	7.3 U	9.1 U	12 U	13 U	9.8 U
2,3',4,4',5'-PentaCB-(123)	NV	NV	NV	NV	NV	NV	NV	NV	NV	110 U	11 U	8.2 U	5.4 U	6.7 U	9.1 U	9.3 U	7.3 U
3,3',4,4',5-PentaCB-(126)	NV	NV	NV	NV	NV	NV	NV	NV	NV	78 U	10 U	7.5 U 8.1 U	4.7 U	6 U	8.3 U	8.4 U	6.7 U
3,3',4,5,5'-PentaCB-(127)	NV NV	NV	NV NV	NV NV	NV	NV NV	NV NV	NV NV	NV	72 U 330 U	11 U	8.1 U 11 UK	5.5 U	6.8 U	9.4 U	9.4 U	7.3 U
PCBs 128 + 166 PCBs 129/138/163	NV	NV NV	NV	NV	NV NV	NV	NV	NV	NV NV	520 UJ	16 U 61 UJ	139 UJ	6.6 U 7.5 UJ	9 U 25 UJ	9.9 U 11 U	11 U 12 U	9.9 U 56 UJ
2,2',3,3',4,5'-HexaCB-(130)	NV	NV	NV	NV	NV	NV	NV	NV	NV	420 U	18 U	13 U	8.2 U	23 UJ	11 U	12 U	12 U
2,2',3,3',4,6-HexaCB-(131)	NV	NV	NV	NV	NV	NV	NV	NV	NV	530 U	23 U	13 U	10 U	14 U	15 U	17 U	15 U
2,2',3,3',4,6'-HexaCB-(132)	NV	NV	NV	NV	NV	NV	NV	NV	NV	440 U	20 U	44 UJ	8.9 U	12 U	13 U	15 U	19 UJ
2,2',3,3',5,5'-HexaCB-(133)	NV	NV	NV	NV	NV	NV	NV	NV	NV	440 U	20 U	14 U	8.8 U	12 U	13 U	15 U	13 U
PCBs 134 + 143	NV	NV	NV	NV	NV	NV	NV	NV	NV	330 U	22 U	16 U	9.4 U	13 U	14 U	16 U	14 U
PCBs 135 + 151	NV	NV	NV	NV	NV	NV	NV	NV	NV	510 U	37 UJ	76 UJ	10 U	14 U	15 U	17 U	38 UJ
2,2',3,3',6,6'-HexaCB-(136)	NV	NV	NV	NV	NV	NV	NV	NV	NV	370 U	16 U	23 UJ	7.4 U	10 U	11 U	12 U	11 U
2,2',3,4,4',5-HexaCB-(137)	NV	NV	NV	NV	NV	NV	NV	NV	NV	410 U	19 U	13 U	7.8 U	10 U	12 U	13 U	12 U
PCBs 139 + 140	NV	NV	NV	NV	NV	NV	NV	NV	NV	370 U	17 U	12 U	7.2 U	9.6 U	11 U	12 U	11 U
2,2',3,4,5,5'-HexaCB-(141)	NV	NV	NV	NV	NV	NV	NV	NV	NV	380 U	16 U	29 UJ	7.4 U	10 U	11 U	12 U	14 UJ
2,2',3,4,5,6-HexaCB-(142)	NV	NV	NV	NV	NV	NV	NV	NV	NV	160 U	21 U	15 U	9.2 U	12 U	14 U	15 U	14 U
2,2',3,4,5',6-HexaCB-(144)	NV	NV	NV	NV	NV	NV	NV	NV	NV	500 U	22 U	16 U	9.9 U	13 U	15 U	16 U	15 U
2,2',3,4,6,6'-HexaCB-(145)	NV	NV	NV	NV	NV	NV	NV	NV	NV	120 U	15 U	11 U	7.2 U	9.7 U	11 U	12 U	11 U
2,2',3,4',5,5'-HexaCB-(146)	NV	NV	NV	NV	NV	NV	NV	NV	NV	340 U	16 U	18 UJ	6.8 U	9.2 U	10 U	11 U	10 U
PCBs 147 + 149	NV	NV	NV	NV	NV	NV	NV	NV	NV	360 U	72 UJ	134 U	7.1 UJ	32.3 UJ	13 UJ	12 U	63 UJ
2,2',3,4',5,6'-HexaCB-(148)	NV	NV	NV	NV	NV	NV	NV	NV	NV	170 U	23 U	16 U	10 U	14 U	15 U	17 U	15 U
2,2',3,4',6,6'-HexaCB-(150)	NV	NV	NV	NV	NV	NV	NV	NV	NV	120 U	16 U	11 U	7.1 U	9.6 U	11 U	12 U	11 U
2,2',3,5,6,6'-HexaCB-(152)	NV	NV	NV	NV	NV	NV	NV	NV	NV	120 U	17 U	12 U	7.4 U	9.9 U	11 U	12 U	11 U
PCBs 153 + 168	NV	NV	NV	NV	NV	NV	NV	NV	NV	320 UJ	62 UJ	125 U	6 UJ	25.3 UJ	12.8 UJ	9.9 U	59.4 UJ
2,2',4,4',5,6'-HexaCB-(154)	NV	NV	NV	NV	NV	NV	NV	NV	NV	390 U	18 U	13 U	7.8 U	11 U	12 U	13 U	12 U
2,2',4,4',6,6'-HexaCB-(155)	NV	NV	NV	NV	NV	NV	NV	NV	NV	93 U	18 U	11 U	7.7 U	9.8 U	14 U	14 U	11 U
PCBs 156 + 157	NV	NV	NV	NV	NV	NV	NV	NV	NV	100 U	10 U	9.8 UJ	4.9 U	6.2 U	6.3 U	7.8 U	7.1 U
2,3,3',4,4',6-HexaCB-(158)	NV	NV	NV	NV	NV	NV	NV	NV	NV	250 U	11 U	11.3 UJ	4.9 U	6.6 U	7.3 U	8.1 U	7.3 U
2,3,3',4,5,5'-HexaCB-(159)	NV	NV	NV	NV	NV	NV	NV	NV	NV	140 U	9.6 U	6.8 U	4.7 U	6.3 U	7 U	7.7 U	6.9 U
2,3,3',4,5,6-HexaCB-(160)	NV	NV	NV	NV	NV	NV	NV	NV	NV	110 U	14 U	10 U	6.2 U	8.3 U	9.2 U	10 U	9.2 U
2,3,3',4,5',6-HexaCB-(161)	NV	NV	NV	NV	NV	NV	NV	NV	NV	100 U	14 U	9.6 U	5.7 U	7.7 U	8.6 U	9.5 U	8.5 U
2,3,3',4',5,5'-HexaCB-(162)	NV	NV	NV	NV	NV	NV	NV	NV	NV	140 U	9.5 U	6.8 U	4.6 U	6.2 U	6.8 U	7.5 U	6.8 U

Location:	I I									MFA-B3A	MW-1	MW-2	MV	W-3	MW-4	MW-5	MW-6
Ecodiion:	RBC,			1.10	1.(0)	Ecologic	al RBC for Wild	llife Ingestion	of Surface	MFA-B3A-	MW1-	MW2-	MW3-	MW3-	MW4-	MW5-	MW6-
Sample Name:	Groundwater,	Ec	cological RBC,	Freshwater ^{(a)(b})(2)	200.09.0		ter ⁽³⁾	3. 33	20230207-	20230220-	20230220-GW-	20230214-	20230214-	20230214-	20230214-	20230214-
Jampie Name.	Ingestion and						vva	161		GW-36.0	GW-70	60	GW-35	GW-35-DUP	GW-40	GW-40	GW-40.25
Calle aking Data.	Inhalation from	A ou cod	tio Life	Aquatic-D	ependent	D:	r d a	Man									
Collection Date:	Tapwater, Residential ⁽¹⁾	Aquai	tic Life	Wild	_		rds	_	nmals	2/7/2023	2/20/2023	2/20/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023
Collection Depth (ft) ^(c) :	Residential	Chronic	Acute	Chronic	Acute	TE	Non-TE	TE	Non-TE	36	70	60	35	35	40	40	40.25
2,3,3',4',5',6-HexaCB-(164)	NV	NV	NV	NV	NV	NV	NV	NV	NV	270 U	12 U	8.4 U	5.3 U	7.2 U	8 U	8.8 U	7.9 U
2,3,3',5,5',6-HexaCB-(165)	NV	NV	NV	NV	NV	NV	NV	NV	NV	110 U	15 U	10 U	6.3 U	8.4 U	9.4 U	10 U	9.3 U
2,3',4,4',5,5'-HexaCB-(167)	NV	NV	NV	NV	NV	NV	NV	NV	NV	95 U	10 U	7.4 U	4.9 U	6.4 U	7.1 U	8 U	7.2 U
3,3',4,4',5,5'-HexaCB-(169)	NV	NV	NV	NV	NV	NV	NV	NV	NV	70 U	11 U	8.1 U	5.1 U	8.2 U	9.8 U	8.3 U	8.3 U
2,2',3,3',4,4',5-HeptaCB-(170)	NV	NV	NV	NV	NV	NV	NV	NV	NV	95 U	12 U	16.3 UJ	5.1 U	6.8 U	9.2 U	8.9 U	7.8 U
PCBs 171 + 173	NV	NV	NV	NV	NV	NV	NV	NV	NV	200 U	15 U	10 U	6.3 U	8.3 U	11 U	11 U	9.5 U
2,2',3,3',4,5,5'-HeptaCB-(172)	NV	NV	NV	NV	NV	NV	NV	NV	NV	240 U	15 U	11 U	6.2 U	8.2 U	11 U	11 U	9.3 U
2,2',3,3',4,5,6'-HeptaCB-(174)	NV	NV	NV	NV	NV	NV	NV	NV	NV	220 U	14 U	29.8 UJ	5.9 U	7.7 U	10 U	10 U	10.1 UJ
2.2'.3.3'.4.5'.6-HeptaCB-(175)	NV	NV	NV	NV	NV	NV	NV	NV	NV	290 U	18 U	12 U	7.2 U	9.4 U	13 U	12 U	11 U
2,2',3,3',4,6,6'-HeptaCB-(176)	NV	NV	NV	NV	NV	NV	NV	NV	NV	210 U	13 U	8.7 U	5.2 U	6.8 U	9.3 U	9 U	7.8 U
2,2',3,3',4,5',6'-HeptaCB-(177)	NV	NV	NV	NV	NV	NV	NV	NV	NV	240 U	15 U	19 UJ	6.4 U	8.5 U	12 U	11 U	9.7 U
2,2',3,3',5,5',6-HeptaCB-(178)	NV	NV	NV	NV	NV	NV	NV	NV	NV	300 U	18 U	12 U	7.3 U	9.6 U	13 U	13 U	11 U
2,2',3,3',5,6,6'-HeptaCB-(179)	NV	NV	NV	NV	NV	NV	NV	NV	NV	210 U	13 UK	20.4 UJ	5.2 U	6.8 U	9.2 U	9 U	9 UJ
PCBs 180 + 193	NV	NV	NV	NV	NV	NV	NV	NV	NV	120 U	23 UJ	49.8 UJ	4.8 U	8.9 UJ	8.5 U	8.3 U	18 UJ
2,2',3,4,4',5,6-HeptaCB-(181)	NV	NV	NV	NV	NV	NV	NV	NV	NV	130 U	14 U	9.9 U	6.1 U	8 U	3.3 U	11 U	9.1 U
2,2',3,4,4',5,6'-HeptaCB-(182)	NV	NV	NV	NV	NV	NV	NV	NV	NV	88 U	14 U	7.7 U	6.5 U	8.5 U	12 U	11 U	9.7 U
2,2',3,4,4',5',6-HeptaCB-(183)								NV							9.9 U	_	9.7 U 9 UJ
	NV	NV	NV	NV	NV	NV	NV		NV	200 U	13 U	19.3 UJ	5.5 U	7.3 U		9.6 U	
2,2',3,4,4',6,6'-HeptaCB-(184)	NV	NV	NV	NV	NV	NV	NV	NV	NV	67 U	12 U	8.4 U	5 U	6.5 U	8.8 U	8.6 U	7.4 U
2,2',3,4,5,5',6-HeptaCB-(185)	NV	NV	NV	NV	NV	NV	NV	NV	NV	89 U	13 U	9.3 U	6.6 U	8.7 U	12 U	11 U	9.9 U
2,2',3,4,5,6,6'-HeptaCB-(186)	NV	NV	NV	NV	NV	NV	NV	NV	NV	73 U	13 U	8.9 U	5.4 U	7.1 U	9.6 U	9.4 U	8.1 U
2,2',3,4',5,5',6-HeptaCB-(187)	NV	NV	NV	NV	NV	NV	NV	NV	NV	270 U	22 UJ	38 UJ	6.5 U	8.5 U	12 U	11 U	19.1 UJ
2,2',3,4',5,6,6'-HeptaCB-(188)	NV	NV	NV	NV	NV	NV	NV	NV	NV	66 U	13 U	8.3 U	5.6 U	6.9 U	9.8 U	11 U	8 U
2,3,3',4,4',5,5'-HeptaCB-(189)	NV	NV	NV	NV	NV	NV	NV	NV	NV	79 U	9.3 U	6.6 U	4.2 U	5.8 U	7.6 U	6.7 U	6.3 U
2,3,3',4,4',5,6-HeptaCB-(190)	NV	NV	NV	NV	NV	NV	NV	NV	NV	170 U	10 U	7.1 U	4.4 U	5.7 U	7.8 U	7.6 U	6.5 U
2,3,3',4,4',5',6-HeptaCB-(191)	NV	NV	NV	NV	NV	NV	NV	NV	NV	110 U	10 U	7 U	4.4 U	5.7 U	7.8 U	7.6 U	6.5 U
2,3,3',4,5,5',6-HeptaCB-(192)	NV	NV	NV	NV	NV	NV	NV	NV	NV	63 U	12 U	8.2 U	4.8 U	6.3 U	8.6 U	8.4 U	7.2 U
2,2',3,3',4,4',5,5'-OctaCB-(194)	NV	NV	NV	NV	NV	NV	NV	NV	NV	210 U	9.5 U	9.2 U	11 U	15 U	19 U	6.3 U	11 U
2,2',3,3',4,4',5,6-OctaCB-(195)	NV	NV	NV	NV	NV	NV	NV	NV	NV	230 U	11 U	11 U	12 U	17 U	22 U	7.1 U	12 U
2,2',3,3',4,4',5,6'-OctaCB-(196)	NV	NV	NV	NV	NV	NV	NV	NV	NV	250 U	11 U	11 U	12 U	17 U	22 U	7.2 U	12 U
2,2',3,3',4,4',6,6'-OctaCB-(197)	NV	NV	NV	NV	NV	NV	NV	NV	NV	54 U	8 U	7.9 U	8.6 U	12 U	15 U	5 U	8.5 U
PCBs 198 + 199	NV	NV	NV	NV	NV	NV	NV	NV	NV	260 U	12 U	12 U	13 U	18 U	23 U	7.7 U	13 U
2,2',3,3',4,5,6,6'-OctaCB-(200)	NV	NV	NV	NV	NV	NV	NV	NV	NV	120 U	9.1 U	8.9 U	10 U	14 U	18 U	6 U	10 U
2,2',3,3',4,5',6,6'-OctaCB-(201)	NV	NV	NV	NV	NV	NV	NV	NV	NV	130 U	8.1 U	7.9 U	8.8 U	12 U	15 U	5.1 U	8.8 U
2,2',3,3',5,5',6,6'-OctaCB-(202)	NV	NV	NV	NV	NV	NV	NV	NV	NV	76 U	9 U	8.4 U	9.7 U	13 U	15 U	5.9 U	9.4 U
2,2',3,4,4',5,5',6-OctaCB-(203)	NV	NV	NV	NV	NV	NV	NV	NV	NV	240 U	11 U	11 U	12 U	17 U	22 U	7.2 U	12 U
2,2',3,4,4',5,6,6'-OctaCB-(204)	NV	NV	NV	NV	NV	NV	NV	NV	NV	45 U	5.6 U	5.5 U	7.6 U	10 U	13 U	4.4 U	7.6 U
2,3,3',4,4',5,5',6-OctaCB-(205)	NV	NV	NV	NV	NV	NV	NV	NV	NV	53 U	6.9 U	7 U	7.7 U	11 U	15 U	4.3 U	7.8 U
2,2',3,3',4,4',5,5',6-NonaCB-(206)	NV	NV	NV	NV	NV	NV	NV	NV	NV	75 U	14 U	14 U	14 U	20 U	29 U	7.8 U	26 U
2,2',3,3',4,4',5,6,6'-NonaCB-(207)	NV	NV	NV	NV	NV	NV	NV	NV	NV	44 U	12 U	12 U	13 U	18 U	25 U	7.1 U	23 U
2,2',3,3',4,5,5',6,6'-NonaCB-(208)	NV	NV	NV	NV	NV	NV	NV	NV	NV	42 U	11 U	11 U	12 U	16 U	23 U	6.8 U	21 U
DecaCB-(209)	NV	NV	NV	NV	NV	NV	NV	NV	NV	47 U	11 U	10 U	18 U	24 U	27 U	6.3 U	25 U
Total PCBs (i)	6,000	14,000	2,000,000	120	NV	99,000,000	990,000,000	44,000,000	440,000,000	780 UJ	554 J	78 J	42 J	118 UJ	24 J	38 J	105 J
SVOCs (ug/L)	<u> </u>					1									1		
1,2,4-Trichlorobenzene	NV	130	420	NV	NV	NV	NV	6,600	66,000	0.0641 UJ	R	R	R	R	R	R	R
1,2-Dichlorobenzene	300	23	130	NV	NV	NV	NV	NV	NV	0.0641 UJ	R	R	R	R	R	R	R
1,2-Dinitrobenzene	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.321 U	0.253 U	0.266 U	0.24 UJ	0.236 UJ	0.309 U	0.294 U	0.278 U
1,2-Diphenylhydrazine	NV	1.1	10	NV	NV	NV	NV	NV	NV	0.0641 U	0.253 U	0.266 U	0.24 UJ	0.236 UJ	0.0617 U	0.274 U	0.278 U
1,2 DIPHOHYIHYUIUZIHE	1 4 4	1.1	10	1 4 7	14.4	144	144	144	14.4	0.0041 0	0.0200 0	0.0200 0	0.024 UJ	0.0230 03	0.001/ 0	0.0000 0	0.02/00

						ı				1454 504							
Location:	RBC,					Foologie	al DDC for Wile	llife Ingestion (of Courtman	MFA-B3A	MW-1	MW-2		N-3	MW-4	MW-5	MW-6
	Groundwater,	Ec	cological RBC,	Freshwater ^{(a)(b)}	0)(2)	Ecologico		-	or surrace	MFA-B3A-	MW1-	MW2-	MW3-	MW3-	MW4-	MW5-	MW6-
Sample Name:	Ingestion and						Wa	ter ⁽³⁾		20230207-	20230220-	20230220-GW-	20230214-	20230214-	20230214-	20230214-	20230214-
	Inhalation from			A Li D				ı		GW-36.0	GW-70	60	GW-35	GW-35-DUP	GW-40	GW-40	GW-40.25
Collection Date:	Tapwater,	Aquat	ic Life	Aquatic-D Wild	•	Bii	rds	Man	nmals	2/7/2023	2/20/2023	2/20/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023
Collection Depth (ft) ^(c) :	Residential ⁽¹⁾	Chronic	Acute	Chronic	Acute	TE	Non-TE	TE	Non-TE	36	70	60	35	35	40	40	40.25
1,3-Dichlorobenzene	NV	22	79	NV	NV	NV	NV	NV	NV	0.0432 J-	R	R	0.095 J-	0.0939 J-	0.122 J-	0.108 J-	0.0919 J-
1,3-Dinitrobenzene	NV	22	100	NV	NV	NV	NV	NV	NV	0.321 U	0.253 U	0.266 U	0.24 U	0.236 U	0.309 U	0.294 U	0.278 U
1,4-Dichlorobenzene	0.48	9.4	57	NV	ZV	NV	NV	11,000	44,000	0.0641 UJ	R	R	R	R	R	R	R
1,4-Dinitrobenzene	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.321 U	0.253 U	0.266 U	0.24 U	0.236 U	0.309 U	0.294 U	0.278 U
1-Methylnaphthalene	NV	6.1	110	NV	NV	NV	NV	NV	NV	0.0513 UJ	0.0202 U	0.0213 U	0.0239 J-	R	R	R	R
2,2'-oxybis(1-Chloropropane)	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.0321 U	0.0253 U	0.0266 U	0.0264 J-	0.0236 UJ	0.0309 U	0.0294 U	0.0278 U
2,3,4,6-Tetrachlorophenol	NV	1	11	NV	NV	NV	NV	NV	NV	0.0641 U	0.0505 U	0.0532 U	0.0481 U	0.0472 U	0.0617 U	0.0588 U	0.0556 U
2,3,5,6-Tetrachlorophenol	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.0641 U	0.0505 U	0.0532 U	0.0481 U	0.0472 U	0.0617 U	0.0588 U	0.0556 U
2,4,5-Trichlorophenol	NV	1.9	17	NV	NV	NV	NV	NV	NV	0.0641 U	0.0505 U	0.0532 U	0.0481 U	0.0472 U	0.0617 U	0.0588 U	0.0556 U
2,4,6-Trichlorophenol	4.4	4.9	39	NV	NV	NV	NV	NV	NV	0.0665 J	0.0505 U	0.0532 U	0.0481 U	0.0472 U	0.0617 U	0.0588 U	0.0556 U
2,4-Dichlorophenol	NV	11	92	NV	NV	NV	NV	NV	NV	0.0641 U	0.0505 U	0.0532 U	0.0481 U	0.0472 U	0.0617 U	0.0588 U	0.0556 U
2.4-Dimethylphenol	NV	15	140	NV	NV	NV	NV	NV	NV	0.0641 U	0.0505 U	0.0532 U	0.0481 U	0.0472 U	0.0617 U	0.0588 U	0.0556 U
2,4-Dinitrophenol	NV	71	380	NV	NV	NV	NV	NV	NV	0.321 U	0.253 U	0.266 U	0.24 U	0.236 U	0.309 U	0.294 U	0.278 U
2.4-Dinitrotoluene	NV	44	390	NV	NV	NV	NV	NV	NV	0.128 U	0.101 U	0.106 U	0.0962 UJ	0.0943 UJ	0.123 U	0.118 U	0.111 U
2.6-Dinitrotoluene	0.049	81	730	NV	NV	NV	NV	NV	NV	0.256 U	0.101 U	0.106 U	0.0962 UJ	0.0943 UJ	0.123 U	0.118 U	0.111 U
2-Chloronaphthalene	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.0256 UJ	0.0101 U	0.0106 U	0.0513 J-	0.0206 J-	R	R	0.0255 J-
2-Chlorophenol	NV	18	160	NV	NV	4,600	46,000	2,200	22,000	0.0641 U	0.0505 U	0.0532 U	0.0481 U	0.0472 U	0.0617 U	0.0588 U	0.0556 U
2-Methylnaphthalene	NV	4.7	42	NV	NV	NV	NV	71,000	710,000	0.0513 UJ	0.0202 U	0.0213 U	R	R	R	R	R
2-Methylphenol	NV	67	600	NV	NV	NV	NV	NV	NV	0.0321 U	0.0253 U	0.0266 U	0.024 U	0.0236 U	0.0309 U	0.0294 U	0.0278 U
2-Nitroaniline	NV	17	490	NV	NV	NV	NV	NV	NV	0.256 U	0.202 U	0.213 U	0.192 UJ	0.189 UJ	0.247 U	0.235 U	0.222 U
2-Nitrophenol	NV	73	650	NV	NV	NV	NV	NV	NV	0.128 U	0.101 U	0.106 U	0.0962 U	0.0943 U	0.123 U	0.118 U	0.111 U
3- & 4-Methylphenol (m,p-Cresol)	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.0321 U	0.0253 U	0.0266 U	0.024 U	0.0236 U	0.0617 U	0.0294 U	0.0278 U
3,3-Dichlorobenzidine	0.17	4.5	41	NV	NV	NV	NV	NV	NV	0.641 UJ	0.505 UJ	0.532 UJ	0.481 UJ	0.472 UJ	0.617 UJ	0.588 UJ	0.556 UJ
3-Nitrogniline	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.256 U	0.202 U	0.213 U	0.192 UJ	0.189 UJ	0.247 U	0.235 U	0.222 U
4,6-Dinitro-2-methylphenol	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.321 U	0.253 U	0.266 U	0.24 U	0.236 U	0.309 U	0.294 U	0.278 U
4-Bromophenylphenyl ether	NV	1.5	12	NV	NV	NV	NV	NV	NV	0.0641 UJ	0.0253 U	0.0266 U	0.0493 J-	0.0236 UJ	0.0309 U	0.0294 U	0.0278 U
4-Chloro-3-methylphenol	NV	1	67	NV	NV	NV	NV	NV	NV	0.128 U	0.101 U	0.106 U	0.0962 U	0.0943 U	0.247 U	0.235 U	0.222 U
4-Chloroaniline	NV	0.8	24	NV	NV	NV	NV	NV	NV	0.0321 U	0.0253 U	0.0266 U	0.024 UJ	0.0236 UJ	0.0309 U	0.0294 U	0.0278 U
4-Chlorophenylphenyl ether	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.0641 UJ	0.0253 U	0.0266 U	0.0507 J-	0.0236 UJ	0.0309 U	0.0294 U	0.0278 U
4-Nitroaniline	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.256 U	0.202 U	0.213 U	0.192 UJ	0.189 UJ	0.247 U	0.235 U	0.222 U
4-Nitrophenol	NV	58	530	NV	NV	NV	NV	NV	NV	0.256 U	0.101 U	0.106 U	0.0962 U	0.0943 U	0.123 U	0.118 U	0.222 U
Acenaphthene	510	15	19	NV	NV	NV	NV	310,000	3,100,000	0.0256 UJ	0.0101 U	0.0106 U	0.0419 J-	0.0167 J-	0.0123 U	0.0296	0.0378
Acenaphthylene	NV	13	120	NV	NV	NV	NV	310,000	3,100,000	0.0128 U	0.0101 U	0.0106 U	0.034 J-	0.0129 J-	0.0123 U	0.0118 U	0.023
Aniline	NV	4.1	30	NV	NV	NV	NV	NV	NV	0.0641 U	0.0505 U	0.0532 U	0.0481 UJ	0.0472 UJ	0.0617 U	0.0588 U	0.0556 U
Anthracene	NV	0.02	0.18	NV	NV	NV	NV	440,000	4,400,000	0.0128 U	0.0101 U	0.0332 U	0.0165 J-	0.00943 UJ	0.0247 U	0.0235 U	0.0336 U
Benzo(a)anthracene	0.03	4.7	42	NV	NV	NV	NV	760	7,600	0.0128 U	0.0101 U	0.0106 U	0.00962 UJ	0.00743 UJ	0.0247 U	0.0233 U	0.0111 U
	0.025	0.06	0.54	NV	NV	NV	NV	4,400	44,000	0.0128 U	0.0152 U	0.016 U	0.00762 UJ	0.00743 UJ	0.0125 U	0.0176 U	0.0111
Benzo(a)pyrene Benzo(b)fluoranthene	0.025	2.6	23	NV	NV	NV	NV	17,000	170,000	0.0192 U	0.0152 U	0.016 U	0.0144 UJ	0.0142 UJ	0.0185 U	0.0176 U	0.0211
Benzo(ghi)perylene	0.25 NV	0.012	0.19	NV	NV	NV	NV	32,000	320,000	0.0192 U	0.0132 U	0.016 U	0.0144 UJ 0.00962 UJ	0.0142 UJ 0.00943 UJ	0.0183 U	0.0176 U	0.0182 0.0111 U
(6 7) 7	NV NV	0.012					NV	32,000	320,000	0.0128 U 0.0192 U	0.0101 U	0.0106 U			0.0123 U 0.0185 U		0.0111 0
Benzo(k)fluoranthene	NV NV		1.3 740	NV NV	NV	NV							0.0144 UJ	0.0142 UJ		0.0176 U	2.78 U
Benzoic acid		42		NV	NV	NV	NV	17,000	170,000	1.83 J	1.28 J	1.33 U	2.4 U	2.36 U	1.54 U	2.94 U	
Benzyl alcohol	NV	8.6	150	NV	NV	NV	NV	NV	NV	0.212 J	0.264	0.106 U	0.0962 U	0.0943 U	0.123 U	0.118 U	0.111 U
Bis(2-chloroethoxy)methane	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.0321 U	0.0253 U	0.0266 U	0.0623 J-	0.0257 J-	0.0309 U	0.0294 U	0.0519
Bis(2-chloroethyl)ether	0.014	NV	NV	NV	NV	NV	NV	NV	NV	0.0321 U	0.0253 U	0.0266 U	0.0407 J-	0.0236 UJ	0.0309 U	0.0294 U	0.0278 U
Bis(2-ethylhexyl)phthalate	5.6	8	1,100	NV	NV	4,500	45,000	82,000	820,000	0.256 U	0.202 U	0.213 U	0.192 UJ	0.189 UJ	0.247 U	0.235 U	0.222 U
Butylbenzylphthalate	NV	23	130	NV	NV	NV	NV	710,000	7,100,000	0.256 U	0.202 U	0.213 U	0.192 UJ	0.189 UJ	0.247 U	0.235 U	0.222 U
Carbazole	NV	4	36	NV	NV	NV	NV	NV	NV	0.0192 U	0.0152 U	0.016 U	0.0178 J-	0.0142 UJ	0.0185 U	0.0176 U	0.0333 U

Location:										MFA-B3A	MW-1	MW-2	M	V-3	MW-4	MW-5	MW-6
Eccanon.	RBC,				1/21	Ecologica	al RBC for Wild	llife Ingestion o	of Surface	MFA-B3A-	MW1-	MW2-	MW3-	MW3-	MW4-	MW5-	MW6-
Sample Name:	Groundwater,	Ec	cological RBC,	Freshwater ^{(a)(b}	0)(2)		Wat	-		20230207-	20230220-	20230220-GW-	20230214-	20230214-	20230214-	20230214-	20230214-
	Ingestion and						,,,	.0.		GW-36.0	GW-70	60	GW-35	GW-35-DUP	GW-40	GW-40	GW-40.25
Collection Date:	Inhalation from Tapwater,	Aquat	tic Life	Aquatic-D Wild	•	Biı	rds	Man	nmals	2/7/2023	2/20/2023	2/20/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023
Collection Depth (ft) ^(c) :	Residential ⁽¹⁾	Chronic	Acute	Chronic	Acute	TE	Non-TE	TE	Non-TE	36	70	60	35	35	40	40	40.25
Chrysene	NV	4.7	42	NV	NV	NV	NV	760	7,600	0.0128 U	0.0101 U	0.0106 U	0.00962 UJ	0.00943 UJ	0.0123 U	0.0118 U	0.0146
Di(2-ethylhexyl)adipate	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.321 U	0.253 U	0.266 U	0.24 UJ	0.236 UJ	0.309 U	0.294 U	0.278 U
Dibenzo(a,h)anthracene	0.025	0.012	0.28	NV	NV	NV	NV	5,900	59,000	0.0128 U	0.0101 U	0.0106 U	0.00962 UJ	0.00943 UJ	0.0123 U	0.0118 U	0.0111 U
Dibenzofuran	NV	4	36	NV	NV	NV	NV	NV	NV	0.0256 UJ	0.0101 U	0.0106 U	0.0174 J-	0.00943 UJ	0.0123 U	0.0118 U	0.0222 U
Diethyl phthalate	NV	220	980	NV	N	NV	NV	NV	NV	0.256 U	0.202 U	0.213 U	0.192 UJ	0.189 UJ	0.247 U	0.235 U	0.222 U
Dimethyl phthalate	NV	1,100	3,200	NV	NV	NV	NV	300,000	3,000,000	0.256 U	0.202 U	0.213 U	0.192 UJ	0.189 UJ	0.247 U	0.235 U	0.222 U
Di-n-butyl phthalate	NV	19	34	NV	NV	570	5,700	2,600,000	8,900,000	0.256 U	0.202 U	0.213 U	0.192 UJ	0.189 UJ	0.247 U	0.235 U	0.347
Di-n-octyl phthalate	NV	220	890	NV	NV	NV	NV	290,000	2,900,000	0.256 U	0.202 U	0.213 U	0.192 UJ	0.189 UJ	0.247 U	0.235 U	0.222 U
Fluoranthene	NV	0.8	3.7	NV	NV	NV	NV	56,000	560,000	0.0128 U	0.0101 U	0.0106 U	0.024 J-	0.0106 J-	0.0123 U	0.0118 U	0.0185
Fluorene	280	19	110	NV	N	NV	NV	560,000	1,100,000	0.0128 U	0.0101 U	0.0106 U	0.0586 J-	0.0201 J-	0.0123 U	0.0118 U	0.0301
Hexachlorobenzene	0.0098	0.15	2.8	0.0003	NV	NV	NV	NV	NV	0.0128 U	0.0101 U	0.0106 U	0.0179 J-	0.00943 UJ	0.0123 U	0.0118 U	0.0111 U
Hexachlorobutadiene	NV	1	10	1	10	NV	NV	NV	NV	0.0321 U	R	R	0.0358 J-	R	R	R	R
Hexachlorocyclopentadiene	NV	0.45	4.5	NV	NV	NV	NV	NV	NV	0.0641 U	0.0505 U	0.0532 U	R	R	R	R	R
Hexachloroethane	0.34	NV	NV	NV	NV	NV	NV	NV	NV	0.0321 U	R	R	0.0378 J-	R	R	R	R
Indeno(1,2,3-cd)pyrene	NV	0.012	0.27	NV	N	NV	NV	32,000	320,000	0.0128 U	0.0101 U	0.0106 U	0.00962 UJ	0.00943 UJ	0.0123 U	0.0118 U	0.0111 U
Isophorone	NV	920	7,500	NV	NV	NV	NV	NV	NV	0.0541 J	0.0253 U	0.0266 U	0.0272 J-	0.0236 UJ	0.0309 U	0.0294 U	0.0398
Naphthalene	0.17	21	170	NV	NV	57	570	2,200	22,000	0.0513 UJ	0.0202 U	0.0213 U	0.0722 J-	0.0362 J-	R	R	R
Nitrobenzene	NV	230	1,000	NV	N	NV	NV	26,000	260,000	0.128 U	0.101 U	0.106 U	0.0962 UJ	0.0943 UJ	0.123 U	0.118 U	0.111 U
N-Nitrosodimethylamine	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.0321 U	0.0253 U	0.0266 U	0.024 UJ	0.0236 UJ	0.0309 U	0.0588 U	0.0278 U
N-Nitrosodiphenylamine	13	25	220	NV	NV	NV	NV	NV	NV	0.0321 U	0.0253 U	0.0266 U	0.0257 J-	0.0236 UJ	0.0309 U	0.0294 U	0.0278 U
N-Nitrosodipropylamine	0.011	NV	NV	NV	NV	NV	NV	NV	NV	0.0641 U	0.0253 U	0.0266 U	0.024 UJ	0.0236 UJ	0.0617 U	0.0588 U	0.0278 U
Pentachlorophenol	0.044	6.7	8.7	NV	NV	13,000	130,000	1,000	10,000	0.128 U	0.101 U	0.107 J	0.0962 U	0.0943 U	0.123 U	0.118 U	0.111 U
Phenanthrene	NV	2.3	31	NV	NV	NV	NV	23,000	230,000	0.0128 U	0.0101 U	0.0106 U	0.00962 UJ	0.00943 UJ	0.0247 U	0.0235 U	0.0239
Phenol	NV	160	4,700	NV	NV	NV	NV	NV	NV	0.256 U	0.202 U	0.213 U	0.192 U	0.189 U	0.247 U	0.235 U	0.222 U
Pyrene	110	4.6	42	NV	NV	NV	NV	33,000	330,000	0.0128 U	0.0101 U	0.0106 U	0.00962 UJ	0.00943 UJ	0.0123 U	0.0118 U	0.0111 U
Pyridine	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.128 U	0.101 U	0.106 U	0.0962 UJ	0.0943 UJ	0.123 U	0.118 U	0.111 U
cPAH TEQ ^{(j)(5)}	0.025	NV	NV	NV	NV	NV	NV	NV	NV	0.0192 U	0.0152 U	0.016 U	0.0144 UJ	0.0142 UJ	0.0185 U	0.0176 U	0.0298
TPH (ug/L)			•				•	•									
Gasoline-range hydrocarbons	110	440	NV	NV	NV	NV	NV	NV	NV	50 UJ	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Diesel-range hydrocarbons	100	640	NV	NV	NV	NV	NV	NV	NV	112 U	98 U	111 U	103 U	108 U	148 J	139	180 J
Lube-oil-range hydrocarbons	100 ^(k)	NV	NV	NV	NV	NV	NV	NV	NV	225 U	196 U	222 U	206 U	215 U	213 U	206 U	316 J
VOCs (ug/L)			•			•	•			•		•					
1,1,1,2-Tetrachloroethane	NV	85	770	NV	NV	NV	NV	NV	NV	0.2 UJ	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1,1-Trichloroethane	8,000	76	690	NV	NV	NV	NV	4,400,000	44,000,000	0.2 UJ	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1,2,2-Tetrachloroethane	NV	200	910	NV	NV	NV	NV	NV	NV	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
1,1,2-Trichloroethane	0.28	730	3,200	NV	NV	NV	NV	NV	NV	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.02 UJ
1,1-Dichloroethane	2.8	410	3,700	NV	NV	NV	NV	1,700,000	17,000,000	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
1,1-Dichloroethene	280	130	1,200	NV	NV	NV	NV	130,000	1,300,000	0.02 UJ	0.01 U	0.02 U	0.01 U	0.01 U	0.02 U	0.01 U	0.01 U
1,1-Dichloropropene	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichlorobenzene	NV	8	130	NV	NV	NV	NV	NV	NV	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,3-Trichloropropane	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,2,4-Trichlorobenzene	NV	130	420	NV	NV	NV	NV	6,600	66,000	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trimethylbenzene	54	NV	NV	NV	NV	NV	NV	NV	NV	0.0578 J	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.1 UJ
1,2-Dibromo-3-chloropropane	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
1,2-Dibromoethane	0.0075	NV	NV	NV	NV	NV	NV	NV	NV	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.02 UJ
1,2-Dichlorobenzene	300	23	130	NV	NV	NV	NV	NV	NV	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichloroethane	0.17	2,000	8,200	NV	NV	19,000	37,000	220,000	2,200,000	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 11

	1					1						1 1					
Location:	RBC,					F	-1.000 (Maria de la composición dela composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición de la composición de la composición dela composición de la composición dela composición de		MFA-B3A	MW-1	MW-2	M	_	MW-4	MW-5	MW-6
	Groundwater,	Fo	cological RBC.	Freshwater ^{(a)(b)}	0)(2)	Ecologic	al RBC for Wild	-	of Surface	MFA-B3A-	MW1-	MW2-	MW3-	MW3-	MW4-	MW5-	MW6-
Sample Name:	Ingestion and		, o. o g. o a 112 o ,				Wat	ter ⁽³⁾		20230207-	20230220-	20230220-GW-	20230214-	20230214-	20230214-	20230214-	20230214-
	Inhalation from									GW-36.0	GW-70	60	GW-35	GW-35-DUP	GW-40	GW-40	GW-40.25
Collection Date:	Tapwater,	Aquat	ic Life	· ·	ependent dlife	Bii	rds	Man	nmals	2/7/2023	2/20/2023	2/20/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023
Collection Depth (ft) ^(c) :	Residential ⁽¹⁾	Chronic	Acute	Chronic	Acute	TE	Non-TE	TE	Non-TE	36	70	60	35	35	40	40	40.25
1,2-Dichloropropane	NV	520	3300	NV	NV	NV	NV	NV	NV	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
1,3,5-Trimethylbenzene	59	NV	NV	NV	NV	NV	NV	NV	NV	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.1 UJ
1,3-Dichlorobenzene	NV	22	79	NV	NV	NV	NV	NV	NV	0.25 UJ	0.25 U	0.25 U	0.35 J	0.44 J	0.33 J	0.26 J	0.25 J
1,3-Dichloropropane	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dichlorobenzene	0.48	9.4	57	NV	NV	NV	NV	11,000	44,000	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
2,2-Dichloropropane	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Butanone	NV	22,000	200,000	NV	NV	NV	NV	7,900,000	20,000,000	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U	5 U
2-Chlorotoluene	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Hexanone	NV	NV	NV	NV	NV	NV	NV	NV	NV	5 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
4-Chlorotoluene	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
4-Isopropyltoluene	NV	16	150	NV	NV	NV	NV	NV	NV	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
4-Methyl-2-pentanone	NV	NV	NV	NV	NV	NV	NV	NV	NV	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	NV	1,700	15,000	NV	NV	830,000	8,300,000	44,000	220,000	20 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Acrylonitrile	0.052	78	650	NV	NV	NV	NV	NV	NV	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Benzene	0.46	160	700	NV	NV	NV	NV	110,000	1,100,000	0.0754 J	0.05 U	0.176 J	0.05 U				
Bromobenzene	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Bromodichloromethane	0.13	340	3,100	NV	NV	NV	NV	NV	NV	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	3.3	230	1,100	NV	NV	NV	NV	NV	NV	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	7.5	16	38	NV	NV	NV	NV	NV	NV	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Carbon disulfide	NV	15	130	NV	NV	NV	NV	NV	NV	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Carbon tetrachloride	0.46	NV	NV	NV	NV	NV	NV	NV	NV	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	77	25	220	NV	NV	NV	NV	260,000	2,600,000	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chlorobromomethane	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	21,000	NV	NV	NV	NV	NV	NV	NV	NV	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Chloroform	0.22	140	1,300	NV	NV	NV	NV	67,000	180,000	0.122 J+	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Chloromethane	190	NV	NV	NV	NV	NV	NV	NV	NV	2.5 UJ	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
cis-1,2-Dichloroethene	36	620	5,500	NV	NV	NV	NV	200,000	2,000,000	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.02 U	0.0291	0.0212
cis-1,3-Dichloropropene	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Dibromochloromethane	0.17	320	2,900	NV	NV	NV	NV	NV	NV	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromomethane	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane (Freon 12)	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	1.5	61	550	NV	NV	NV	NV	NV	NV	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.1 UJ
Hexachlorobutadiene	NV	1	10	1	10	NV	NV	NV	NV	2.5 UJ	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Isopropylbenzene	440	NV	NV	NV	NV	NV	NV	NV	NV	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
m,p-Xylene	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.2 UJ
Methyl tert-butyl ether	14	NV	NV	NV	NV	NV	NV	NV	NV	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Methylene chloride	11	1,500	8,500	NV	NV	NV	NV	26,000	220,000	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Naphthalene	0.17	21	170	NV	NV	57	570	2,200	22,000	1 UJ	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ
n-Butylbenzene	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
n-Propylbenzene	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.25 UJ	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
o-Xylene	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.05 UJ	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.1 UJ
sec-Butylbenzene	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Styrene	1,200	NV	NV	NV	NV	NV	NV	NV	NV	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
<u>Tetrachloroethene</u>	12	NV	NV	NV	NV	NV	NV	8,900	44,000	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Toluene	1,100	NV	NV	NV	NV	NV	NV	110,000	1,100,000	0.0904 J	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
trans-1,2-Dichloroethene	360	560	10,000	NV	NV	NV	NV	200,000	2,000,000	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U

Location:	RBC,									MFA-B3A	MW-1	MW-2	M	W-3	MW-4	MW-5	MW-6
Sample Name:	Groundwater, Ingestion and	Eco	Ecological RBC, Freshwater ^{(a)(b)(2)} Aquatic Life Aquatic-Dependent Wildlife				al RBC for Wild Wat	_	of Surface	MFA-B3A- 20230207- GW-36.0	MW1- 20230220- GW-70	MW2- 20230220-GW- 60	MW3- 20230214- GW-35	MW3- 20230214- GW-35-DUP	MW4- 20230214- GW-40	MW5- 20230214- GW-40	MW6- 20230214- GW-40.25
Collection Date:	Inhalation from Tapwater,	Aquati	Aquatic Life Wildlife		Bi	rds	Man	nmals	2/7/2023	2/20/2023	2/20/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023	2/14/2023	
Collection Depth (ft) ^(c) :	Residential ⁽¹⁾	Chronic	Acute	Chronic	Acute	TE	Non-TE	TE	Non-TE	36	70	60	35	35	40	40	40.25
trans-1,3-Dichloropropene	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Trichloroethene	0.49	NV	NV	NV	NV	NV	NV	440,000	4,400,000	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Trichlorofluoromethane (Freon 11)	1,100	NV	NV	NV	NV	NV	NV	NV	NV	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	0.027	930	8,400	NV	NV	NV	NV	NV	NV	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Total xylenes ⁽¹⁾	190	27	240	NV	NV	440,000	4,400,000	9,400	1,100,000	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.2 UJ

Notes

Detected results are shown in **bold** font.

Shading (color key below) indicates values that exceed screening criteria; non-detects (U and UJ) and rejected data (R) were not compared with screening criteria are exceeded, the result is shaded based on the highest criterion. When multiple screening criteria with the same value are exceeded, the result is shaded based on the criterion presented to the right.

DEQ RBC, groundwater, ingestion, and inhalation from tapwater, residential

DEQ freshwater RBC for aquatic life, chronic exposure

DEQ freshwater RBC for aquatic life, acute exposure

DEQ freshwater RBC for aquatic-dependent wildlife, chronic exposure

DEQ freshwater RBC for aquatic-dependent wildlife, acute exposure

DEQ ecological surface water RBC for wildlife ingestion of surface water, birds, TE

DEQ ecological surface water RBC for wildlife Ingestion of surface water, mammals, TE

-- = result qualified as rejected.

cPAH TEQ = carcinogenic polycyclic aromatic hydrocarbon.

DEQ = Oregon Department of Environmental Quality.

EPA = U.S. Environmental Protection Agency.

ft bgs = feet below ground surface.

J = result is estimated.

J+ = result is estimated but may be biased high.

J- = result is estimated but may be biased low.

NV = no value.

PCB = polychlorinated biphenyl.

pg/L = picograms per liter.

R = result is rejected. The analyte may or may not be present in the sample

RBC = risk-based concentration.

SVOC = semivolatile organic compound.

TE = threatened and endangered.

TEF = toxic equivalency factor.
TEQ = toxicity equivalence.

TPH = total petroleum hydrocarbon.

U = result is non-detect at the detection limit.

u = result is non-aetect at the aetection ilm ug/L = micrograms per liter.

UJ = result is non-detect with an estimated detection limit.

UK = result is non-detect at the estimated maximum potential concentration.

VOC = volatile organic compound.

(b) Screening levels for arsenic, cadmium, hexavalent chromium, lead, nickel, selenium, silver, and zinc are expressed in terms of the dissolved concentration in the water column. Total metals concentrations are screened against criteria to evaluate the risk of the mobile colloidal transport of metals for particles 0.01 to 10 um in both the unsaturated and saturated zones of the subsurface.

(1.25 mg/L), and pH (7.0).

^(a)The reconnaissance groundwater sample (MFA-B3A-20230207-GW-36.0) collection depth is measured from the barge deck to the center point of the well screen, the remaining monitoring well sample collection depths are measured from top of well casing to center point of the well screen.

(d) Dioxin/furan TEQs are calculated as the sum of each detected congener concentration multiplied by the corresponding TEF value. Non-detect congeners are multiplied by one-half as well as the corresponding TEF value. When all of the congeners are non-detect in a given sample, the reported TEQ value is the highest congener detection limit.

 $^{
m (e)}$ Total chlordane is the sum of alpha-chlordane, gamma-chlordane, heptachlor, and trans-nonachlor.

(f) Total DDx is the sum of 2,4'-DDD, 2,4'-DDE, 2,4'-DDT, 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT. Non-detect results are summed at one-half the detection limit. When all results are non-detect the highest detection limit is used.

(9) Total endosulfans is the sum of endosulfan I, endosulfan II, and endosulfan sulfate. Non-detect results are summed at one-half the detection limit. When all results are non-detect the highest detection limit is used.

(lindane). Non-detect results are summed at one-half the detection limit. When all results are non-detect the highest detection limit is used.

[1]Total PCBs is the sum of all PCB congeners. Non-detect results are not included in the sum. When all results are non-detect the highest detection limit is used.

(I) cPAH TEQ calculated as the sum of each cPAH multiplied by the corresponding TEF with non-detect results also multiplied by one-half. When all cPAHs are non-detect, the highest detection limit is provided.

^(k)Value is for generic diesel/heating oil, since generic residual-range hydrocarbon values are not available.

(1)Total xylenes is the sum of m,p-xylene and o-xylene. When both results are non-detect, the higher detection limit is used.

References

⁽¹⁾DEQ. 2018. Table: Risk-Based Concentrations for Individual Chemicals. Oregon Department of Environmental Quality. May.

[2]DEQ. 2021. Conducting Ecological Risk Assessments. Table 2: Risk Based Concentrations for Water. Oregon Department of Environmental Quality, Land Quality Division. April.

(3) DEQ. 2020. Conducting Ecological Risk Assessments. Table 1b: Risk Based Concentrations for Wildlife Ingestion of Surface Water. Oregon Department of Environmental Quality, Land Quality Division. September.

(4) Van den Berg, M., Linda S. Birnbaum, Michael Denison, Mike De Vito, William Farland, Mark Feeley, Heidelore Fiedler, Helen Hakansson, Annika Hanberg, Laurie Haws, Martin Rose, Stephen Safe, Dieter Schrenk, Chiharu Tohyama, Angelika Tritscher, Jouko Tuomisto, Mats Tysklind, Nigel Walker, and Richard E. Peterson. 2006. "The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds." Toxicological Sciences, 93(2): 223–241. [doi:10.1093/toxsci/kfl055]

(5) EPA. 1993. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. 600/R-93/089. U.S. Environmental Protection Agency. July.

© 2023 Maul Foster Alongi, Inc.

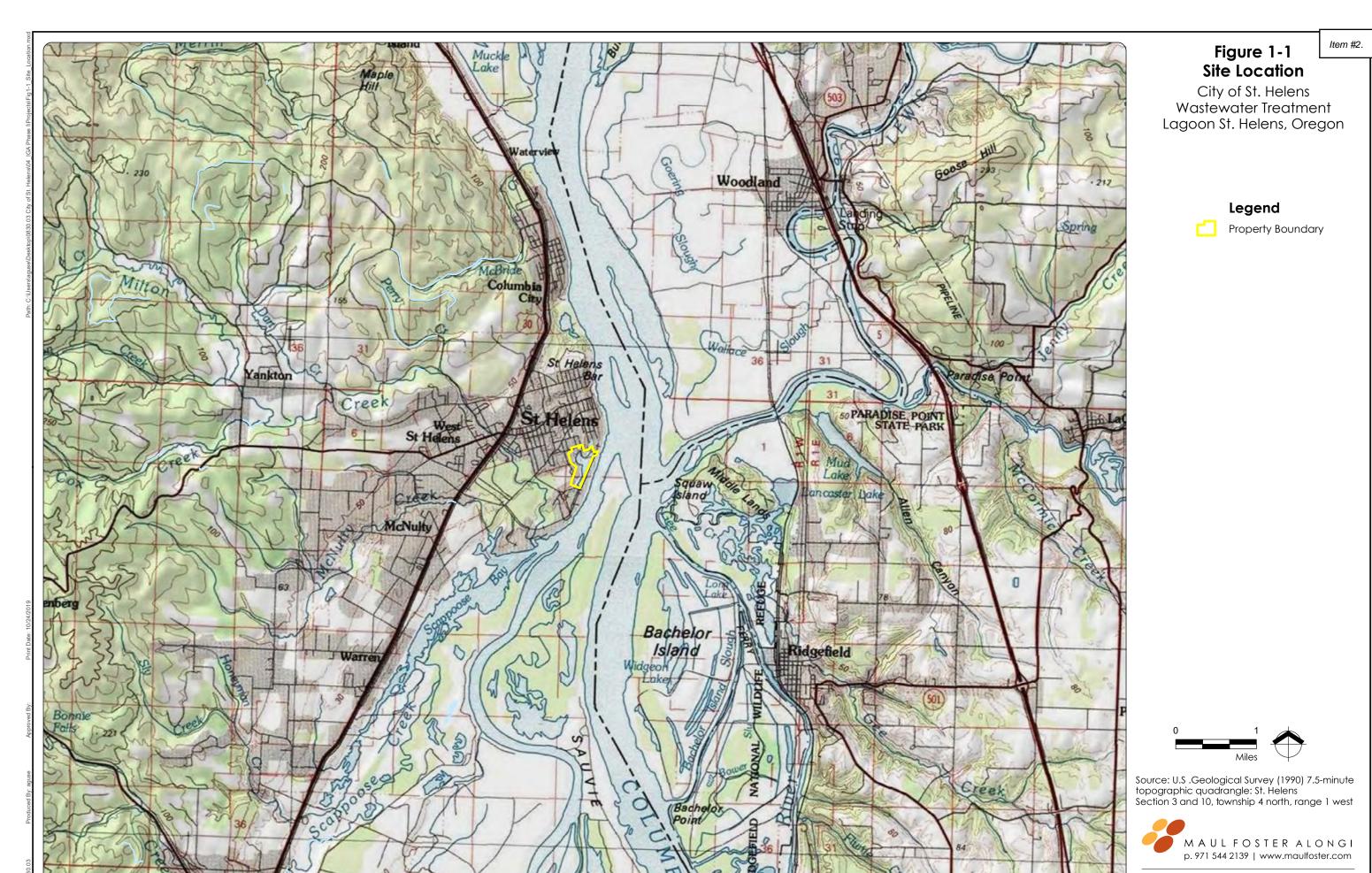
61

Table 4-3 Groundwater Elevation Data City of St. Helens Wastewater Treatment Lagoon

Location	Well Depth (feet bgs)	Casing Diameter (inches)	Screen Interval (feet bgs)	Measuring Point Elevation (feet NGVD)	Water Level Measurement Date	Depth to Water (feet below TOC)	Water Level Elevation (feet NGVD)
					08/06/2019	29.80	26.27
MW-1	80	2	60-80	56.07	03/11/2020	29.51	26.56
					02/20/2023	28.98	27.09
					08/07/2019	39.77	29.17
MW-2	70	2	50-70	68.94	03/11/2020	40.17	28.77
					02/20/2023	40.40	28.54
					08/06/2019	17.36	13.82
MW-3	45	2	25-45	31.18	03/11/2020	15.53	15.65
					02/14/2023	15.60	15.58
					08/07/2019	22.63	8.51
MW-4	50	2	30-50	31.14	03/11/2020	20.15	10.99
					02/14/2023	19.99	11.15
					08/06/2019	20.42	10.47
MW-5	50	2	30-50	30.89	03/11/2020	18.90	11.99
					02/14/2023	18.80	12.09
					08/07/2019	22.29	8.57
MW-6	50.5	2	30.5-50.5	30.86	03/11/2020	19.90	10.96
					02/14/2023	19.75	11.11
MFA B-3A	10	2	6-10		02/07/2023		15.30

NOTES:

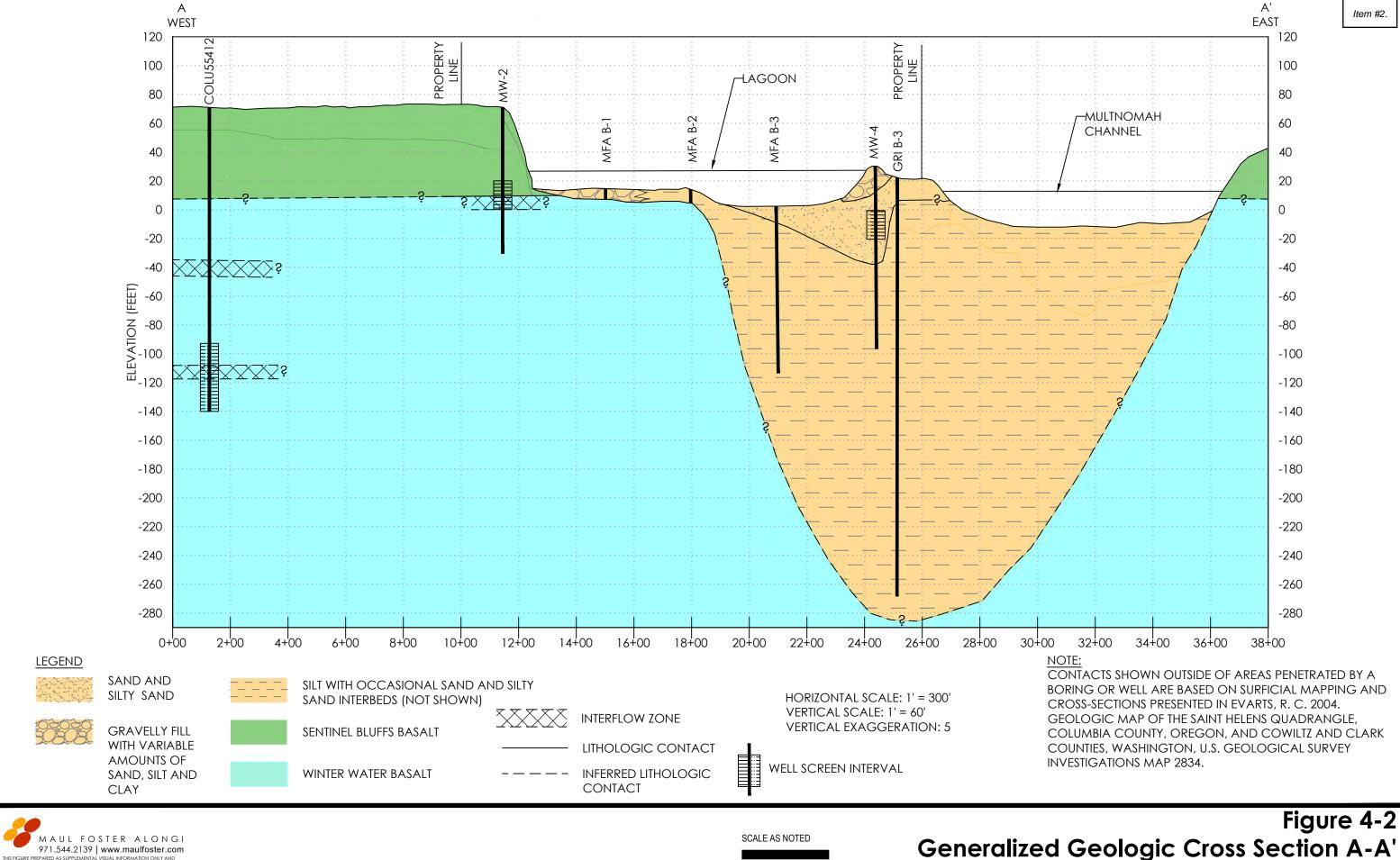
-- = See report Section 3.3.5 and the boring log for MFA B-3A in Appendix A for a description of how the groundwater elevation was calculated.


bgs = below ground surface.

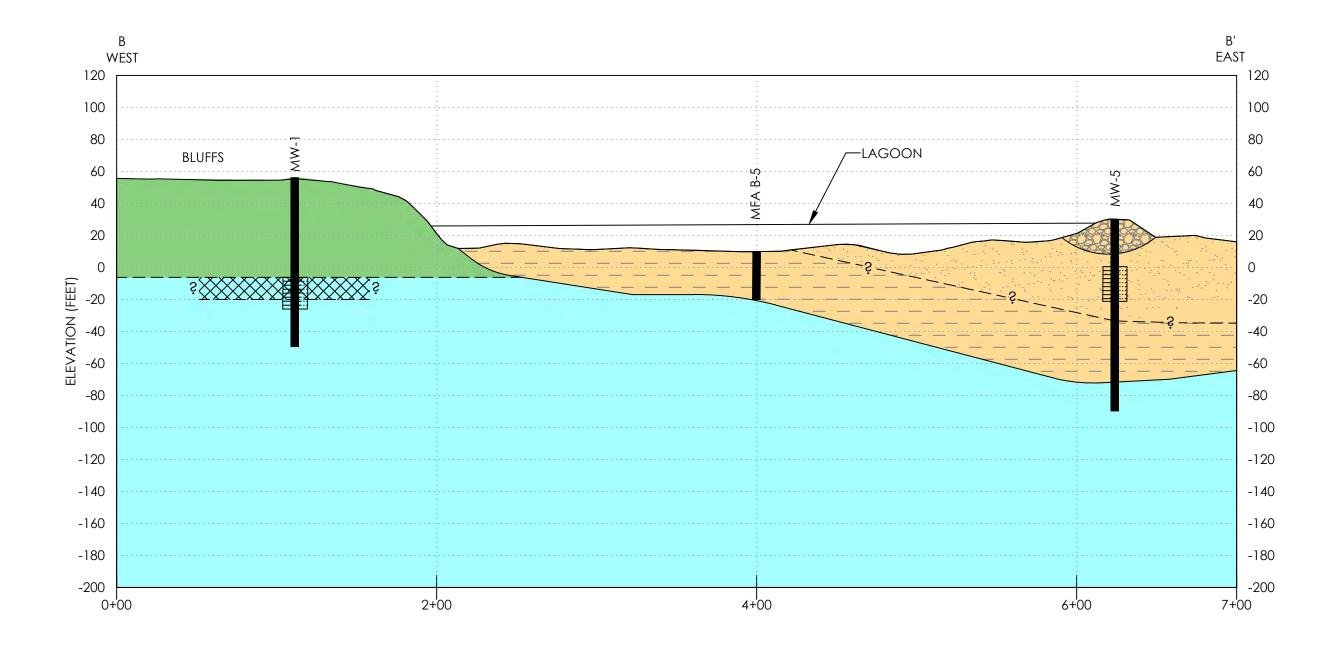
NAVD = North American vertical datum.

TOC = top of casing.

FIGURES



This product is for informational purposes and may not have been prepared for, or be suifor legal, engineering, or surveying purposes. Users of this information should review or
consult the primary data and information sources to ascertain the usability of the informa-



HIS FIGURE PREPARED AS SUPPLEMENTAL VISUAL INFORMATION ONLY AND HOULD NOT BE USED FOR CONSTRUCTION PURPOSES, ONLY PLAN SHEETS PPROVED, STAMPED AND SIGNODE BY A RECISIENCE PROFESSIONAL ENGINE ESTATE OF GOVERNING JURISDICTION SHALL BE USED FOR CONSTRUCTION SHALL BE USED FOR CONSTRUCTION OF THE PARK SHEET OF SOME SHALL BE USED FOR CONSTRUCTION OF THE PARK SHEET OF SOME SHEET OF SHEET OF

Generalized Geologic Cross Section A-A'

NOTE: BAR IS ONE INCH ON ORIGINAL DRAWING. IF NOT ONE INCH ON THIS SHEET, ADJUST SCALE

LEGEND

SAND AND SILTY SAND

GRAVELLY FILL WITH VARIABLE AMOUNTS OF SAND, SILT AND CLAY

SILT WITH OCCASIONAL SAND AND SILTY SAND INTERBEDS (NOT SHOWN)

WINTER WATER BASALT

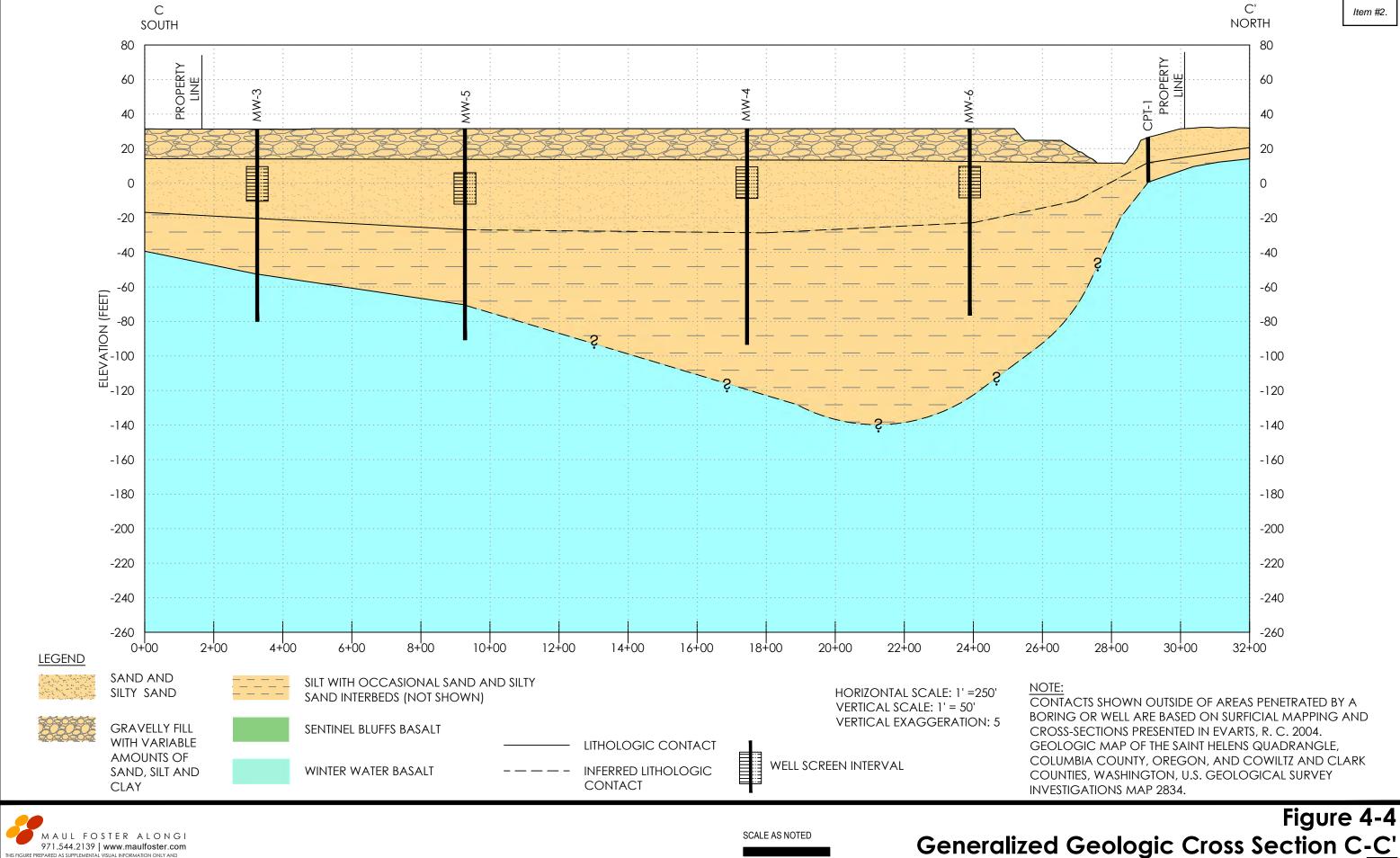
INTERFLOW ZONE

HORIZONTAL SCALE: 1' = 60'
VERTICAL SCALE: 1' = 60'
VERTICAL EXAGGERATION: 1

WELL SCREEN INTERVAL

NOTE

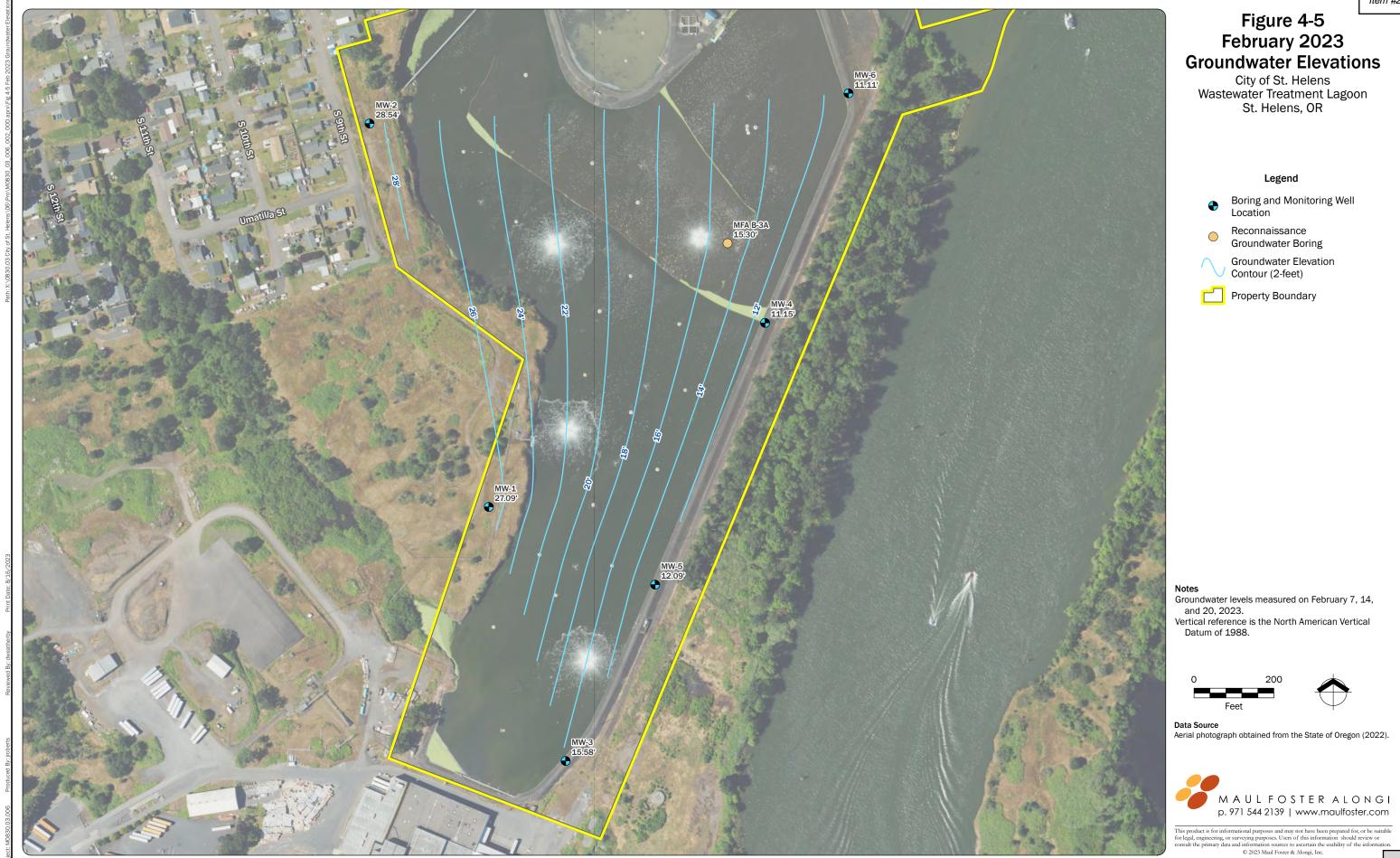
CONTACTS SHOWN OUTSIDE OF AREAS PENETRATED BY A BORING OR WELL ARE BASED ON SURFICIAL MAPPING AND CROSS-SECTIONS PRESENTED IN EVARTS, R. C. 2004. GEOLOGIC MAP OF THE SAINT HELENS QUADRANGLE, COLUMBIA COUNTY, OREGON, AND COWILTZ AND CLARK COUNTIES, WASHINGTON, U.S. GEOLOGICAL SURVEY INVESTIGATIONS MAP 2834.


MAUL FOSTER ALONGI
971.544.2139 | www.maulfoster.com
THIS FIGURE PREPARED AS UPPLIENTAL YISLAN LINFORMATION ONLY AND
SHOULD NOT BE USED FOR CONSTRUCTION PURPOSES. ONLY IN A WHEREINS
APPROVED STAMED AND SECRED BY A RESIDENCE PROPERSONAL BEAUTION
THE STATE OF COVERNING JURISDICTION SHALL BE USED FOR CONSTRUCTION.
ADDITIONALLY, ONLY PLANS APPROVED BY THE APPLICABLE GOVERNING.

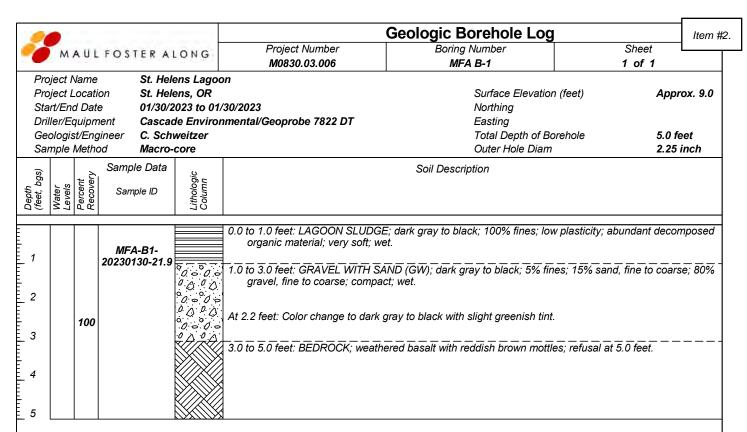
SCALE AS NOTED

Figure 4-3
Generalized Geologic Cross Section B<u>-B'</u>

NOTE: BAR IS ONE INCH ON ORIGINAL DRAWING. IF NOT ONE INCH ON THIS SHEET, ADJUST SCALE ACCORDINGLY.


Phase 1 Lagoon Repurpa 68 St. Helens, Oregon

HIS FIGURE PREPARED AS SUPPLEMENTAL VISUAL INFORMATION ONLY AND HOULD NOT BE USED FOR CONSTRUCTION PURPOSES, ONLY PLAN SHEETS PROVED FOR THE MEMBER OF A REGISTERED PROFESSIONAL ENGINEER HE STATE OF GOVERNING JURISDICTION SHALL BE USED FOR CONSTRUCTION. DODITIONALLY ONLY PLANS APPROVED BY THE APPLICABLE GOVERNING

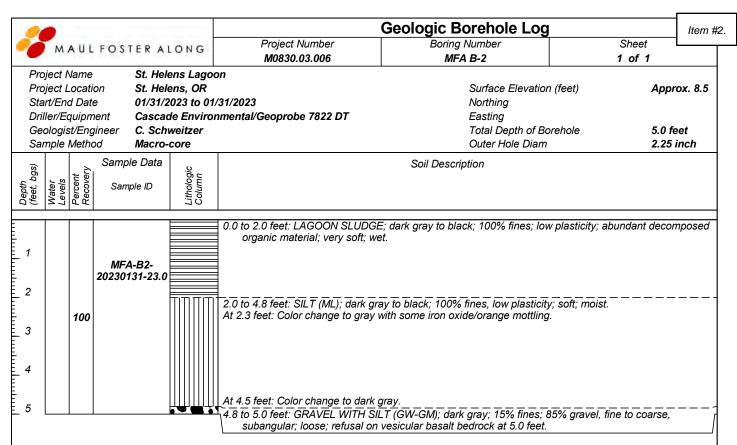

Phase 1 Lagoon Repurpa 69 St. Helens, Oregon

NOTE: BAR IS ONE INCH ON ORIGINAL DRAWING. IF NOT ONE INCH ON THIS SHEET, ADJUST SCALE

APPENDIX A BORING LOGS

Total Depth = 5.0 feet bgs

NOTES:


1. Depths are relative to feet below top of the sludge at the lagoon bottom. 2. Lagoon water level elevation at time of drilling: 28 feet 3. Barge deck height above the lagoon: 2.5 feet. 4. Depth below deck to top of sludge: 21.5 feet. 5. Top of sludge surface elevation of 9.0 feet calculated as lagoon water level elevation (28 feet) plus barge deck height above water (2.5 feet) minus depth to top of sludge (21.5 feet). 6. ID = identification. 7. bgs = below ground surface.

Borehole Completion Details

0.0 to 5.0 feet below lagoon bottom: 2.25-inch borehole.

Borehole Abandonment Details

0.0 to 5.0 feet below lagoon bottom: Bentonite chips hydrated with potable water.

Total Depth = 5.0 feet bgs

NOTES:

1. Depths are relative to feet below top of the sludge at the lagoon bottom. 2. Lagoon water level elevation at time of drilling: 28 feet 3. Barge deck height above the lagoon: 2.5 feet. 4. Depth below deck to top of sludge: 22.0 feet. 5. Top of sludge surface elevation of 8.5 feet calculated as lagoon water level elevation (28 feet) plus barge deck height above water (2.5 feet) minus depth to top of sludge (22.0 feet). 6. ID = identification. 7. bgs = below ground surface.

Borehole Completion Details

0.0 to 5.0 feet below lagoon bottom: 2.25-inch borehole.

Borehole Abandonment Details

0.0 to 5.0 feet below lagoon bottom: Bentonite chips hydrated with potable water.

Project Name Project Locati Start/End Date Driller/Equipm Geologist/Eng Sample Metho (sbq table) 1 100 2 3 4 0 5 6 7 0 8 9	tion St. He te 01/31/ ment Casca gineer C. Sci od Macro	elens Lagoo elens, OR /2023 to 02 ade Environ hweitzer o-core	nmental/Geoprobe 7822 DT 0.0 to 2.5 feet: LAGOON SLUDG organic material; very soft; w	Boring Number MFA B-3 Surface Elevation (feet) Northing Easting Total Depth of Borehole Outer Hole Diam Soil Description SE; dark gray to black; 100% fines; low plasticite. gray; 100% sand, fine to medium; loose; faint		feet nch
Project Locati Start/End Date Driller/Equipm Geologist/Eng Sample Metho (sbq 1;aa) 1 100 2 3 4 0 5 6 7 0 8	tion St. He te 01/31/ ment Casca gineer C. Sci nod Macro Sample Data Sample ID	elens, OR /2023 to 02 ade Environ hweitzer core	nmental/Geoprobe 7822 DT 0.0 to 2.5 feet: LAGOON SLUDG organic material; very soft; w	Northing Easting Total Depth of Borehole Outer Hole Diam Soil Description E; dark gray to black; 100% fines; low plasticitet.	110.0 f 2.25 in	feet nch
1 100 2 3 4 0 5 6 7 0 8 9	Sample ID MFA-B3-	Lithologic	organic material; very soft; w	E; dark gray to black; 100% fines; low plasticit		
1	MFA-B3-		organic material; very soft; w	vet.		
2	MFA-B3- 20230131-31.	0	organic material; very soft; w	vet.		
2	20230131-31.	0	.]	gray; 100% sand, fine to medium; loose; faint	sheen; wet.	
4 0 5 6 7 0 8 9			.]	gray; 100% sand, fine to medium; loose; faint	sheen; wet.	
5 6 7 0 8			3.0 to 14.5 feet: No recovery.			
6						
7 o 8 9						
8 9						
9						
10						
·	-					
11						
3 0						
14						
5			14.5 to 17.5 feet: SILT (ML); gray rootlets; moist.	r; 100% fines, low plasticity; soft; trace organic	s, plant matter, and	
16						
17 60						
18		ЩШШШ	17.5 to 19.5 feet: No recovery.			
10 11 12 0 13 14 15 16 17 60 18 19 80						
80			1			

			Geologic Borehole Log		Item
MAUL	FOSTER ALON	Project Numbe M0830.03.006		Sheet 2 of 6	
Teek, bgs) Water Levels Percent Recovery	Sample Data Sample ID	Column	Soil Description		
21 22 80 23		23.5 to 24.5 feet: No re	covery.		
25 60 60 69 60 60 60 60 60		24.5 to 27.5 feet: Same	e as above from 14.5 to 17.5 feet.		
30 31 32 100		29.5 to 39.0 feet: Same	e as above from 14.5 to 17.5 feet.		
33 34 35 36 37 90 38 39 40 41 100		39.0 to 39.5 feet: No re	ocovery. — — — — — — — — — — — — — — — — — — —		
40 100 41 100			e as above from 14.5 to 17.5 feet.		

						Geologic Borehole Log Boring Number		Item ‡
-	M	AUL	FOSTER A	LONG	Project Number M0830.03.006	Boring Number MFA B-3	Sheet 3 of 6	
Depth (feet, bgs)	Water Levels	Percent Recovery	Sample Data Sample ID	Lithologic Column		Soil Description		
_43 _44		100						
_45								
_46								
_47		100						
_48								
_49								
_50								
_51								
52		90						
_53								
_54					54.0 to 54.5 feet: No recovery.			
_55					54.5 to 68.5 feet: Same as above	ve from 14.5 to 17.5 feet.		
_56								
_57		100						
_58								
_59								
_60								
61								
62		100						
_55 _56 _57 _58 _59 _60 _61 _62 _63 _63								
64								Г

						Geologic Borehole Log		Item #2
9	M	AUL	FOSTER A	LONG	Project Number M0830.03.006	Boring Number MFA B-3	Sheet 4 of 6	
(S		_	Sample Data	0.	M0030.03.000	Soil Description	4 0/ 0	
Deptn (feet, bgs)	ater	Percent Recovery	Sample ID	Lithologic Column				
1 E	2 %	ام بر		3ŏ				
5								
6								
0								
67		100						
8								
9					68.5 to 68.7 feet: SAND (SP); da 68.7 to 74.0 feet: SILTY SAND (ark gray; 100% sand, fine to medium; lo SM); gray; 20% fines, low plasticity; 80 medium gravels; moist to wet.	oose; moist % sand, fine; loose; trace	/
0					organics and rootlets, trace	medium gravels; moist to wet.		
U								
1								
2								
2		90						
3								
4								
7					74.0 to 74.5 feet: No recovery.			
5					74.5 to 77.5 feet: Same as abov	e from 68.7 to 74.0 feet.		
6								
0								
7		100						
'8					77.5 to 79.5 feet: Same as abo	ve from 14.5 to 17.5 feet with trace sai	 nd.	
9								
80				ЩШШШ		Pushed drill point without collecting soil	in order to speed up drilling	
					process.			
31								
32								
		0						
3								
34								
35								
78 79 80 31 32 33 34 35 86		0						
-								-
				1	I .			-

90				Droin of Nivertina	Geologic Borehole Log	Oh = -4	Item
	MAULI	FOSTER A	LONG	Project Number M 0830.03.006	Boring Number MFA B-3	Sheet 5 of 6	
(sbc	nt ery	Sample Data	gic n		Soil Description		
Depth (feet, bgs)	Water Levels Percent Recovery	Sample ID	Lithologic Column				
87							
_							
_88	0						
89							
_90							
_91							
92							
	0						
_93							
94							
.			 	94.5 to 95.0 feet: Same as above	from 14.5 to 17.5 feet with trace sand.		
_95					SM); gray; 20% fines, low plasticity; 80% sa	nd, fine; loose; moist.	
_96							
97							
.	90			97.0 to 98.5 feet: Same as above	from 14.5 to 17.5 feet.		. — — —
_98							
99			 	98.5 to 108.5 feet: No recovery. I process.	Pushed drill point without collecting soil in c	rder to speed up drill	ing
<u>1</u> 01							
102							
103							
104							
105							
<u>1</u> 06							
100 100 101 102 103 104 105 106	0						
IUQ							

						Geologic Borehole Log		Item #2
	M	AUL	FOSTER AL	ONG	Project Number M0830.03.006	Boring Number MFA B-3	Sheet 6 of 6	1
Depth (feet, bgs)	Water Levels	Percent Recovery	Sample Data Sample ID	Lithologic Column		Soil Description		
110		100						

Total Depth = 110.0 feet bgs

NOTES:

1. Depths are relative to feet below top of the sludge at the lagoon bottom. 2. Lagoon water level elevation at time of drilling: 28 feet 3. Barge deck height above the lagoon: 2.5 feet. 4. Depth below deck to top of sludge: 30.0 feet. 5. Top of sludge surface elevation of 0.5 feet calculated as lagoon water level elevation (28 feet) plus barge deck height above water (2.5 feet) minus depth to top of sludge (30.0 feet). 6. ID = identification. 7. bgs = below ground surface.

Borehole Completion Details

0.0 to 110.0 feet below lagoon bottom: 2.25-inch borehole.

Borehole Abandonment Details
0.0 to 110.0 feet below lagoon bottom: Bentonite chips hydrated with potable water.

0							Geologic Borehole Log		Item
	M.	AUL	FO:	STER ALC	ONG	Project Number M0830.03.006	Boring Number MFA B-3A	Sheet 1 of 2	
Pro Sta Dri Ge	oject I oject L art/End iller/Ed ologis mple	ocati d Date quipm st/Eng	ion e nent gineer		s, OR 23 to 02/0 Environ eitzer		Surface Elevatior Northing Easting Total Depth of Bo Outer Hole Diam	prehole 21.5	
gs)		. 2	it. Sa	ample Data	jį.		Soil Description		
Depth (feet, bgs)	Water Levels	Percent Recovery	Screen	Sample ID	Lithologic Column				
1						0.0 to 1.0 feet: LAGOON SLUD decomposed organic mater	GE; dark gray to black; 100% fines; l rial; very soft; wet.	ow plasticity; abundant	
2		100				1.0 to 3.3 feet: SILT (ML); gray;	: 100% fines, low plasticity; soft; mois	st	
Ū							y; 100% sand, fine to medium; loose;		
4							,		
5		60							
6						5.5 to 6.5 feet: No recovery.			
7						6.5 to 6.8 feet: SILT (ML); gray; 6.8 to 9.0 feet: SAND (SP); gra	: 100% fines, low plasticity; trace orga y; 100% sand, fine to medium; loose;	anics and rootlets; soft; moi moist.	<u>st.</u>
8				//FA-B3A- 230207-GW-					
9 10		80	202	36.0			y; 100% fines, low plasticity; trace org	ganics and rootlets; soft; me	oist.
110 111 112 113 114 115 116 117						10.5 to 11.5 feet: No recovery.			
12						11.5 to 15.0 feet: Same as abo	ve from 9.0 to 10.5 feet.		
13									
14		70							
15						15.0 to 16.5 feet: No recovery.			
16									
17						16.5 to 20.5 feet: Same as abo	ve from 9.0 to 10.5 feet.	_	
18		80							
19									г
20									

					G	Seologic Borehole Log		Item #2
	M	AULF	OSTER ALC	ONG	Project Number M0830.03.006	Boring Number MFA B-3A	Sheet 2 of 2	
Depth (feet, bgs)	Water Levels	Percent Recovery Screen Int.	Sample Data Sample ID	Lithologic Column		Soil Description		
21		80			20.5 to 21.5 feet: No recovery.			

Total Depth = 21.5 feet bgs

NOTES:

- 1. Depths are relative to feet below top of the sludge at the lagoon bottom. 2. Lagoon water level elevation at time of drilling: 28 feet 3. Barge deck height above the lagoon: 2.5 feet. 4. Depth below deck to top of sludge: 28.0 feet. 5. Top of sludge surface elevation of 2.5 feet calculated as lagoon water level elevation (28 feet) plus barge deck height above water (2.5 feet) minus depth to top of sludge (28.0 feet). 6. ID = identification. 7. bgs = below ground surface.
- 8. Water level measured inside casing with an electric water level meter after sitting overnight to equilibrate. Lagoon water level elevation (28 feet); Casing height above lagoon water (4.9 feet); Depth of water level below casing (17.60 feet); Groundwater elevation = lagoon level (28 feet) plus PVC casing height above lagoon water level (4.9 feet) minus depth to water from top of casing (17.60 feet) = 15.3 feet

Borehole Completion Details

0.0 to 21.5 feet below lagoon bottom: 2.25-inch borehole.

Reconnaissance Well Completion Details

Temporary polyvinyl chloride well screen set from 6.0 to 10.0 feet below lagoon bottom.

Borehole Abandonment Details

0.0 to 21.5 feet below lagoon bottom: Bentonite chips hydrated with potable water.

						Geologic Borehole Log		Item #2.
	M	A U L	FOSTER A	LONG	Project Number M0830.03.006	Boring Number MFA B-4	Sheet 1 of 6	
Pro Sta Dri Ge	oject N oject L art/End ller/Ed ologis mple l	ocati d Date quipm t/Eng	on St. Hele e 02/02/2 nent Cascad gineer C. Sch	weitzer	on	Surface Elevation Northing Easting Total Depth of Bo Outer Hole Diam	n (feet) Appr	I .
gs)		*	Sample Data	yic		Soil Description		
Depth (feet, bgs)	Water Levels	Percent Recovery	Sample ID	Lithologic Column				
1					0.0 to 2.0 feet: LAGOON SLUDG organic material; very soft; w	E; dark gray to black; 100% fines; louet.	w plasticity; abundant decon	mposed
3		80	MFA-B4- 20230202-SL- 26.5		2.0 to 3.5 feet: SILT (ML); dark gr and rootlets; wet.	ray to black; 100% fines, low plasticit	y; soft; trace organics, plant	matter
4					3.5 to 4.5 feet: SAND (SP); dark (gray; 100% sand, fine to mediuml; lo	ose; wet.	
5					4.0 to 5.0 feet: No recovery.		· 	
6					5.0 to 6.5 feet: Same as above fr	om 3.5 to 4.5 feet.		
7		100			6.5 to 10.0 feet: SILT (ML); gray; rootlets; moist.	100% fines, low plasticity; soft; trace	organics, plant matter, and	
9								
15/8 [4]					10.0 to 11.0 feet: SILTY SAND (S	SM); gray; 20% fines, low plasticity; 8	0% sand, fine; loose; moist	to wet.
5 11					ː 11.0 to 18.5 feet: Same as above	from 6.5 to 10.0 feet.		
11 12 13 14 15 16 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19								
13 11111111111111111111111111111111111		100						
14								
15 15 15 15 15 15 15 15 15 15 15 15 15 1								
16 16								
#E 22 17								
25 18 25 18		70						
19				HITTI	18.5 to 20.0 feet: No recovery.		. — — — — — — — — — — — — — — — — — — —	
1 E 1 E 2 E 2 D								82

					Geologic Borehole Log		Iten
M.	AUL	FOSTER AL	LONG	Project Number M0830.03.006	Boring Number MFA B-4	Sheet 2 of 6	
8		Sample Data	· ·	100030.03.000	Soil Description	2 01 0	
(feet, bgs) Water Levels	Percent Recovery	Sample ID	Lithologic Column				
(fee Va	Re R		Co				
				20.0 to 23.5 feet: Same as above	e from 6.5 to 10.0 feet.		
1							
2							
,	70						
3							
4				23.5 to 25.0 feet: No recovery.			
5			 	25.0 to 29.0 feet: Same as above	from 6 E to 10 0 foot		
				25.0 to 25.0 leet. Sallie as above	, nom 0.0 to 10.0 leet.		
6							
7							
	80						
8	"						
9			ШШШЦ	29.0 to 30.0 feet: No recovery.			
,				,			
				30.0 to 34.5 feet: Same as above	e from 6.5 to 10.0 feet.		
1							
2							
3	90						
4							
			μшшЦ	34.5 to 35.0 feet: No recovery.			
5	$\vdash \vdash$			35.0 to 39.5 feet: Same as above	e from 6.5 to 10.0 feet.		
6							
7							
	90						
8							
0							
o				39.5 to 40.0 feet: No recovery.			· — — ·
				40.0 to 44.5 feet: Same as above	e from 6.5 to 10.0 feet.		
- 1	ı 1		11111111	11			
3 4 5 6 7 8 9 0	90						

					Geologic Borehole Log		Item #2.
	MA	UL FOSTER A	LONG	Project Number M0830.03.006	Boring Number MFA B-4	Sheet 3 of 6	1
- CO		Sample Data		1910030.03.000	Soil Description	3 0/ 0	
Depth (feet, bgs)	Water Levels Percent	Sample ID	Lithologic Column				
De)	Lev Per	Reg	ŠĘĘ.				
Ē.,							
<u>4</u> 3							
44	g	00					
			ЩШЦЦ				
45				44.5 to 45.0 feet: No recovery. 45.0 to 64.5 feet: Same as above	from 6.5 to 10.0 feet.		
46							
-40							
47							
	10	00					
48							
49							
50							
51							
52							
	10	00					
53							
<u>5</u> 4							
7							
55							
P P P							
<u> [56 </u>							
? <u> </u>							
7111	10	00					
58							
3E 5E 59							
60							
9E 44							
Z <u> </u>							
62							
SE SE	9	00					
<u>4</u> 63							
MFA BOREHOLE WIRECON SCREEN WIGHN INGIN IN							
∀ -							84

					Geologic Borehole Log		Item #2.
	MAI	JL FOSTER A	LONG	Project Number M0830.03.006	Boring Number MFA B-4	Sheet 4 of 6	
Depth (feet, bgs)	Water Levels Percent	Sample Data Sample ID	Lithologic Column		Soil Description		
65	9	0		64.5 to 65.0 feet: No recovery.			
66 67 68	9	0		65.0 to 69.5 feet: Same as above	e from 6.5 to 10.0 feet.		
_70			Ніппп	70.0 to 74.5 feet: Same as above	from 6.5 to 10.0 feet.		
71 72 73 74	10	00		At 73.5 to 74.5 feet: Multiple thin		% sand, fine to medium; lo	
<u>-</u> /3				moist. 75.0 to 76.5 feet: Same as above	e from 6.5 to 10.0 feet.		/
	10	00		76.5 to 76.8 feet: Same as above			
	7	0		83.5 to 100.0 feet: No recovery. F	Pushed drill point without collecting so	īl in order to speed up drilli	
				,			
85							
86		0					85
			1	I.			—— í

						Geologic Borehole Log Boring Number		Item #
	M.	AUL	FOSTER A	LONG	Project Number M 0830.03.006	Boring Number MFA B-4	Sheet 5 of 6	
(sbc		rt ery	Sample Data	gic		Soil Description		
Depth (feet, bgs)	Water Levels	Percent Recovery	Sample ID	Lithologic Column				
_87								
_88								
		o						
_89								
_90								
91								
- _ _92								
_92		o						
_93								
94								
05								
95								
_96								
97								
_98		0						
_99								
<u>1</u> 00				 	100.0 to 104.0 feet: Same as a	above from 76.8 to 83.5 feet.		
<u>1</u> 01								
102								
-		90						
<u>1</u> 03								
<u>1</u> 04								
<u>1</u> 05				HIII II III .	104.5 to 105.0 feet: No recove			
106					105.0 to 109.5 feet: Same as a	above trom 76.8 to 83.5 feet.		
_00								
_98 99 _100 _101 _102 _103 _105 _107		90						
<u>1</u> 08								

						Geologic Borehole Log		Item #.
9	M.	AUL	FOSTER AL	ONG	Project Number	Boring Number	Sheet	
Depth (feet, bgs)	Water Levels	Percent Recovery	Sample Data	Lithologic Column	M0830.03.006	MFA B-4 Soil Description	6 of 6	
110		90			109.5 to 110.0 feet: No recovery.			

Total Depth = 110.0 feet bgs

NOTES:

1. Depths are relative to feet below top of the sludge at the lagoon bottom. 2. Lagoon water level elevation at time of drilling: 28 feet 3. Barge deck height above the lagoon: 2.5 feet. 4. Depth below deck to top of sludge: 24.5 feet. 5. Top of sludge surface elevation of 6.0 feet calculated as lagoon water level elevation (28 feet) plus barge deck height above water (2.5 feet) minus depth to top of sludge (24.5 feet). 6. ID = identification. 7. bgs = below ground surface.

Borehole Completion Details

0.0 to 110.0 feet below lagoon bottom: 2.25-inch borehole.

Borehole Abandonment Details
0.0 to 110.0 feet below lagoon bottom: Bentonite chips hydrated with potable water.

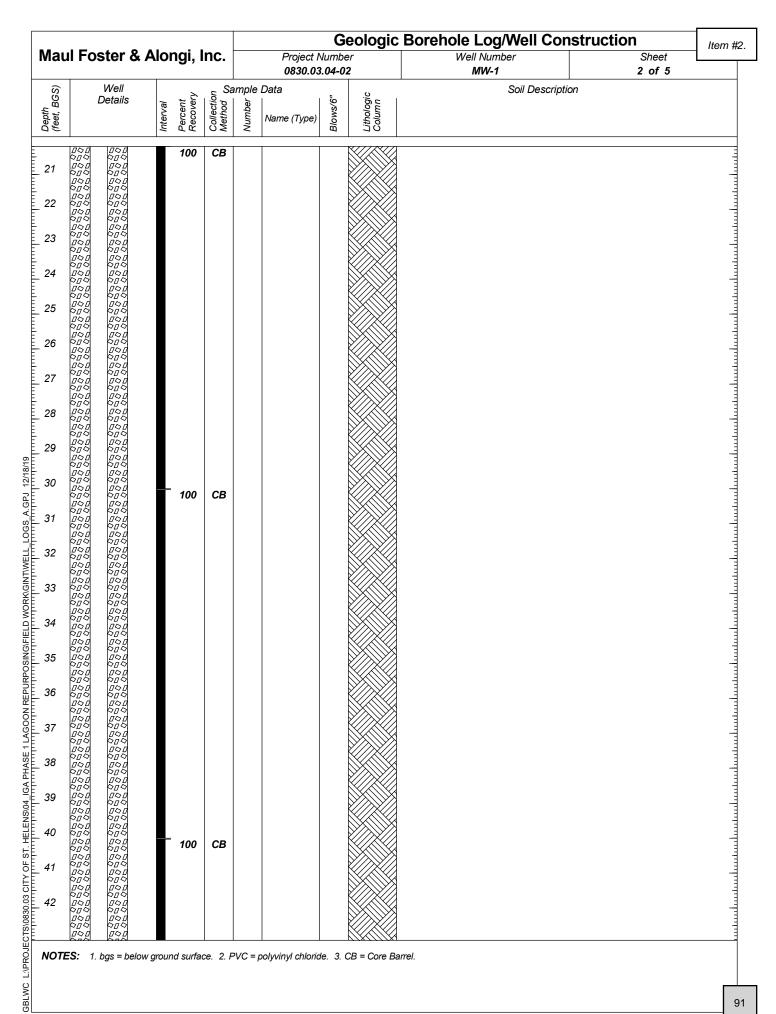
					Geologic Borehole Log		Iten
N	MAULFO	STER A	LONG	Project Number M0830.03.006	Boring Number MFA B-5	Sheet 1 of 2	
Project Start/E Driller/I Geolog	t Name t Location End Date (Equipment gist/Engineer le Method	St. Held 02/03/2 Cascad	de Enviro weitzer	on 2/06/2023 nmental/Geoprobe 7822 DT	Surface Elevation Northing Easting Total Depth of Bo Outer Hole Diam		ox. 5.0 5 feet inch
gs)	Sar	nple Data	jic 1		Soil Description		
Depth (feet, bgs) Water	Percent Recovery	ample ID	Lithologic Column				
1				0.0 to 1.5 feet: LAGOON SLUDGE organic material; very soft; we	; dark gray to black; 100% fines; low t.	v plasticity; abundant decon	npose
2		FA-B5- 30203-SL- 27.0		1.5 to 12.0 feet: SILT (ML); dark gi	ay to black; 100% fines, low plastici	ity; soft; moist.	
3		27.0		At 2.5 feet: Color change to gray.			
4							
5							
6							
7	100						
8							
9							
10							
11	60			At 11.0 feet: Color change to brow	nish gray.		
2			ШШЦ	12.0 to 14.0 feet: No recovery.			
13							
14				14.0 to 20.5 feet: SILT (ML); brown	nish gray; 100% fines, low plasticity;	soft; moist.	
5							
	1 1						
16	100						
17	100						
100 111 112 113 114 115 116 117	100						

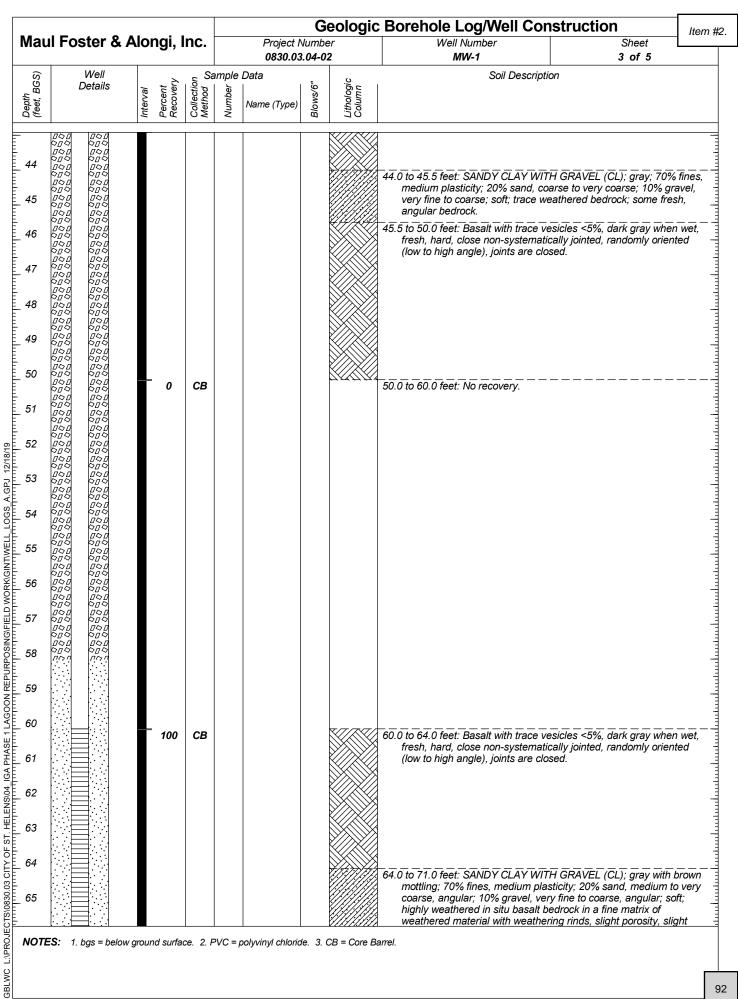
Total Depth = 30.25 feet bgs

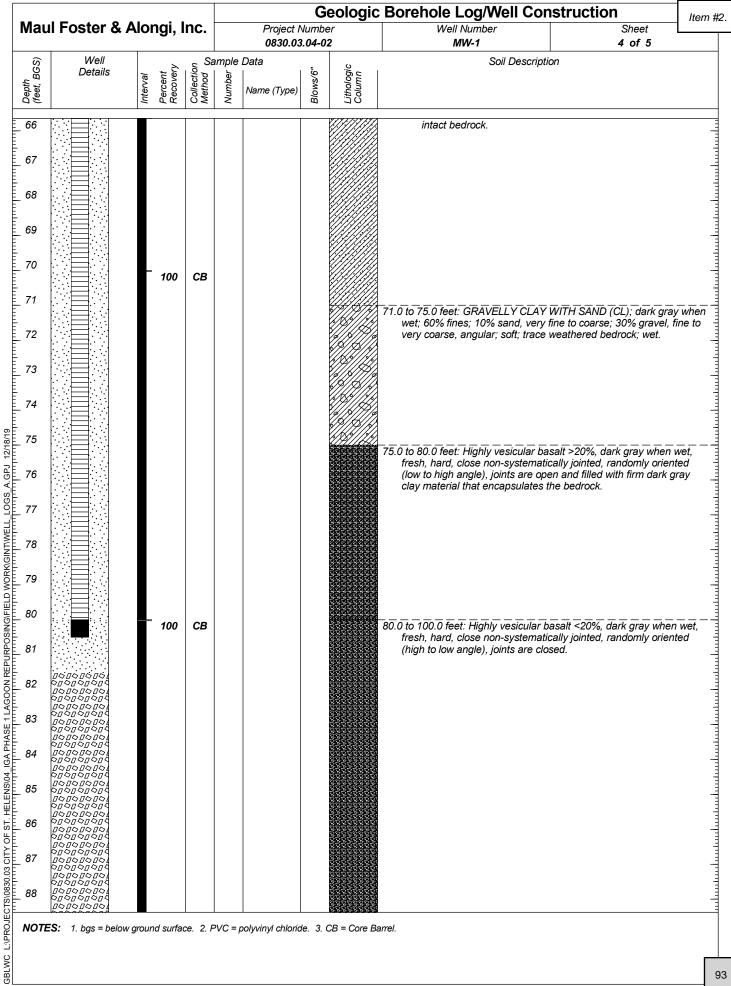
NOTES:

1. Depths are relative to feet below top of the sludge at the lagoon bottom. 2. Lagoon water level elevation at time of drilling: 28 feet 3. Barge deck height above the lagoon: 2.5 feet. 4. Depth below deck to top of sludge: 25.5 feet. 5. Top of sludge surface elevation of 5.0 feet calculated as lagoon water level elevation (28 feet) plus barge deck height above water (2.5 feet) minus depth to top of sludge (25.5 feet). 6. ID = identification. 7. bgs = below ground surface.

Borehole Completion Details
0.0 to 30.25 feet below lagoon bottom: 2.25-inch borehole.


<u>Borehole Abandonment Details</u> 0.0 to 30.25 feet below lagoon bottom: Bentonite chips hydrated with potable water.

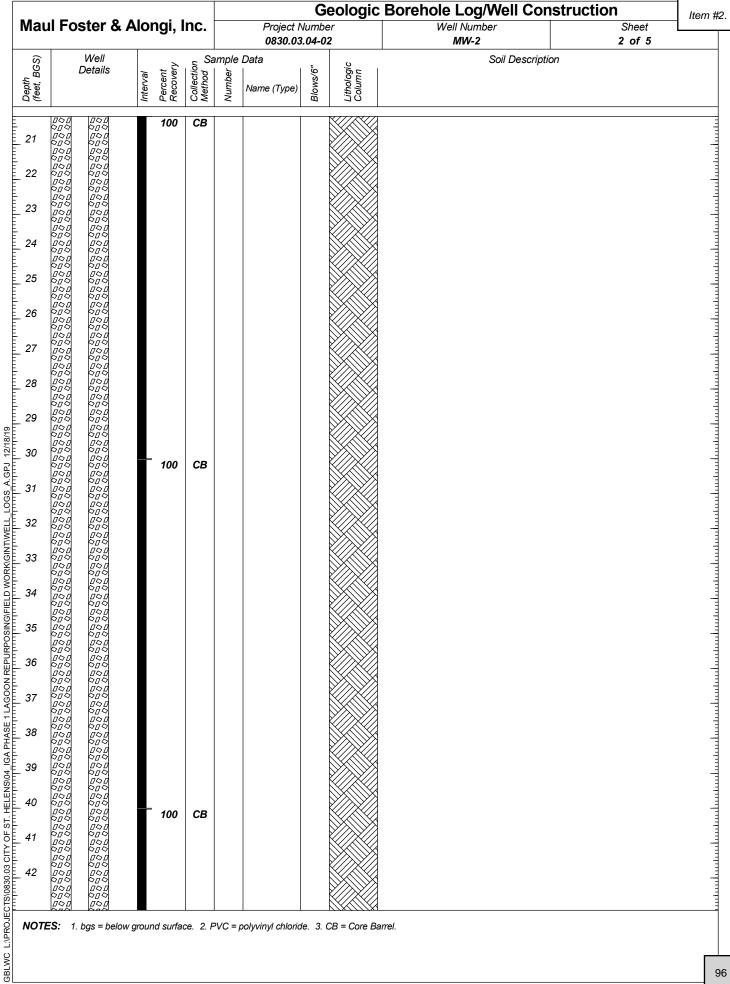

Geologic Borehole Log/Well Construction Item #2. Maul Foster & Alongi, Inc. Well Number Project Number Sheet 0830.03.04-02 MW-1 1 of 5 Project Name St. Helens Lagoon TOC Elevation (feet) Project Location Surface Elevation (feet) St. Helens Start/End Date 7/10/19 to 7/11/19 Northing Driller/Equipment Dan Rider/Terra Sonic Incorporated 150 CC Easting Geologist/Engineer C. Schweitzer Hole Depth 100.0-feet 6" to 4"-inch Sample Method Core Barrel: Ten-foot intervals. Outer Hole Diam Depth (feet, BGS) Well Soil Description Sample Data Collection Method C Lithologic Column Percent Recovery Details Blows/6' Interval Name (Type) 100 CB 0.0 to 44.0 feet: Basalt with trace vesicles <5%, dark gray when wet, fresh, hard, close non-systematically jointed, randomly oriented (low to high angle), joints are closed. 2 3 5 6 7 IGA PHASE 1 LAGOON REPURPOSING\FIELD WORK\GINT\WELL_LOGS_A.GPJ 8 9 10 100 CB 11 12 13 14 15 16 17 GBLWC L:\PROJECTS\0830.03 CITY OF ST. 18 20

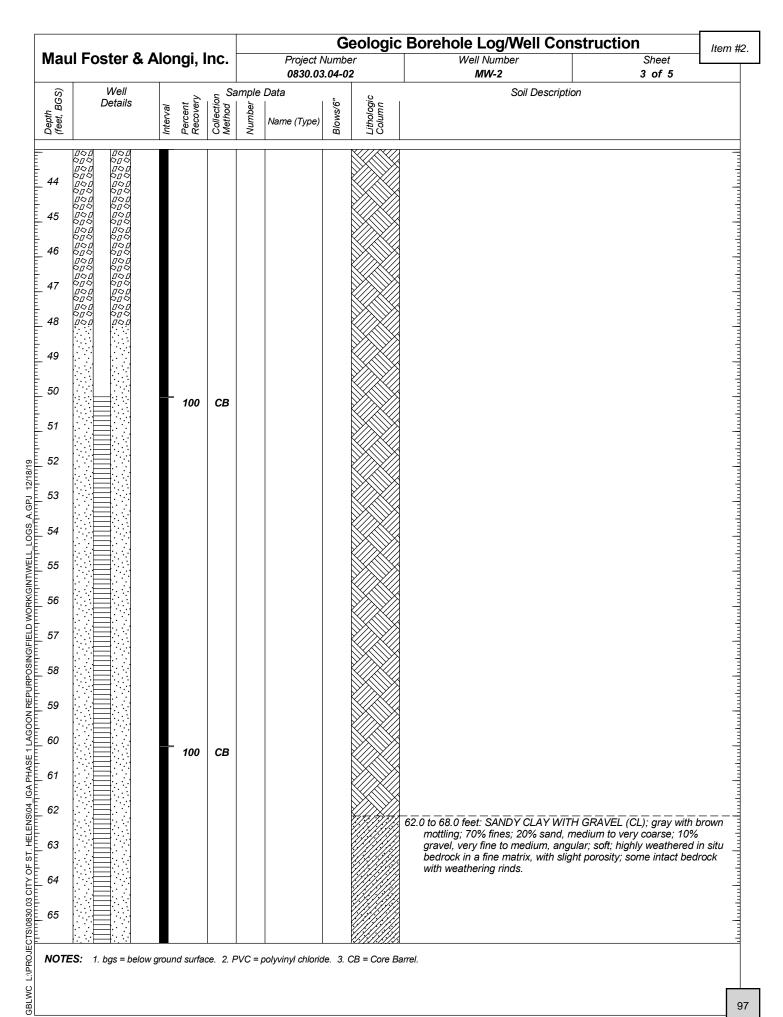

NOTES: 1. bgs = below ground surface. 2. PVC = polyvinyl chloride. 3. CB = Core Barrel.

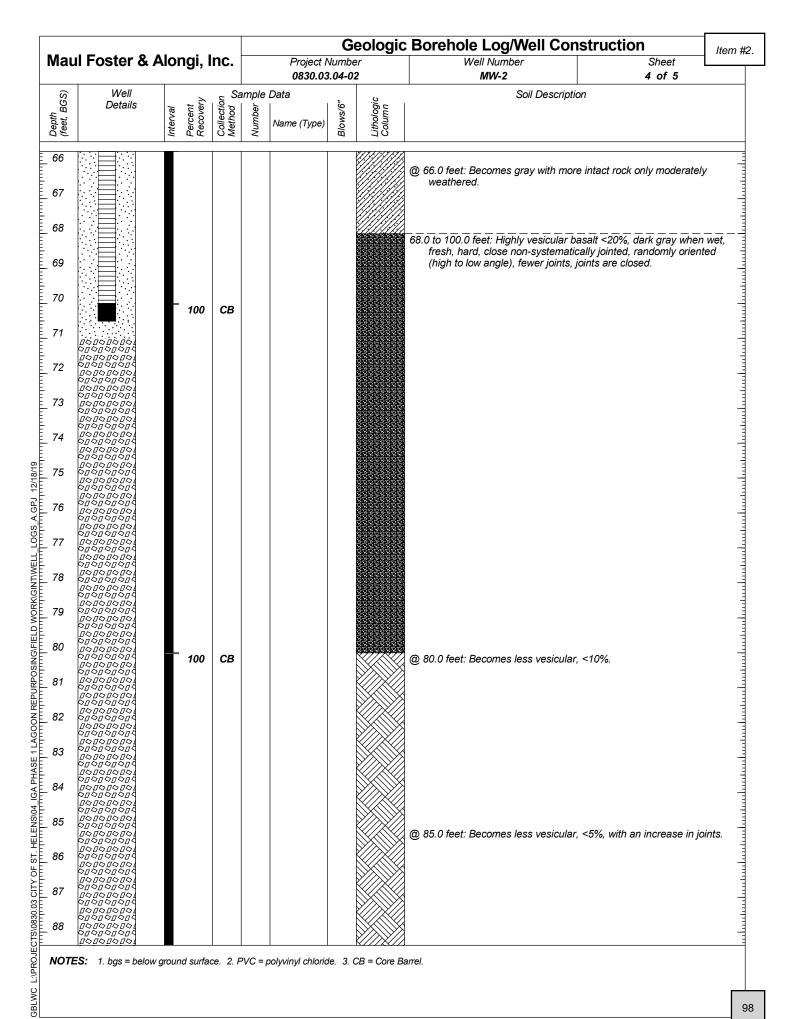
12/18/19

HELENS/04

Well Defells Support Summer Cryon By Summer Cr	VIαι	flaul Foster & Alongi, Inc.					Project N	lumb	er	Borehole Log/Well Construction Well Number	Sheet	Ite
### Details ##	-	-						.04-0	2	MW-1 5 of 5		
### Total Depth = 10.0 feet bgs. ### Total Depth = 10.0 feet bgs. ### Bornhole Details: ### Total Depth = 10.0 feet bgs. ### Bornhole Details: ### Depth = 10.0 feet bgs. ### Bornhole Details: ### Depth = 10.0 feet bgs. ### Bornhole Details: ### Depth = 1	(feet, BGS)		Interval	Percent Recovery	Collection Method C			Blows/6"	Lithologic Column	Soil Description		
Total Depth = 100.0 feet bgs. Borehole Details: 0.0 to 80.0 feet bgs: 6-inch borehole. 80.0 to 100.0 feet bgs: 4-inch borehole. Borehole Completion Details: 0.0 to 5.0 feet bgs: Concrete. 5.0 to 58.0 feet bgs: Bentonite chips hydrated with potable water. 58.0 to 81.5 feet bgs: 12/20 Silica Sand. 81.5 to 100.0 feet bgs: Bentonite chips hydrated with potable water. Monitoring Well Completion Well Tag Number: L133559 Flushmount monitoring well. 0.0 to 60.0 feet bgs: 2-inch-diameter, schedule 40, PVC blank riser pipe. 60.0 to 80.0 feet bgs: 2-inch-diameter, schedule 40, 0.010-inch machine slot, pre-pack well screen.	90 91 92 93 94 95 96 97			100	СВ						ease in jointing	g.
	00									Borehole Details: 0.0 to 80.0 feet bgs: 6-inch borehole. 80.0 to 100.0 feet bgs: 4-inch borehole. Borehole Completion Details: 0.0 to 5.0 feet bgs: Concrete. 5.0 to 58.0 feet bgs: Bentonite chips hydrated with p 58.0 to 81.5 feet bgs: 12/20 Silica Sand. 81.5 to 100.0 feet bgs: Bentonite chips hydrated with Monitoring Well Completion Well Tag Number: L133559 Flushmount monitoring well. 0.0 to 60.0 feet bgs: 2-inch-diameter, schedule 40, Fippe. 60.0 to 80.0 feet bgs: 2-inch-diameter, schedule 40, machine slot, pre-pack well screen.	n potable wate	er.

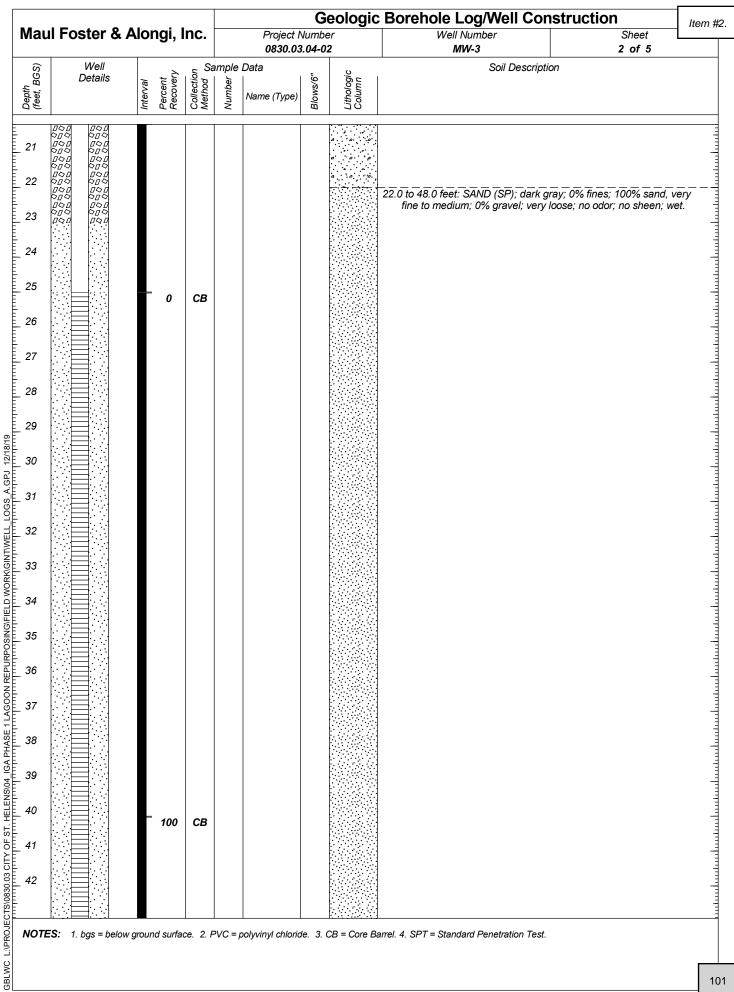

Borehole Details:

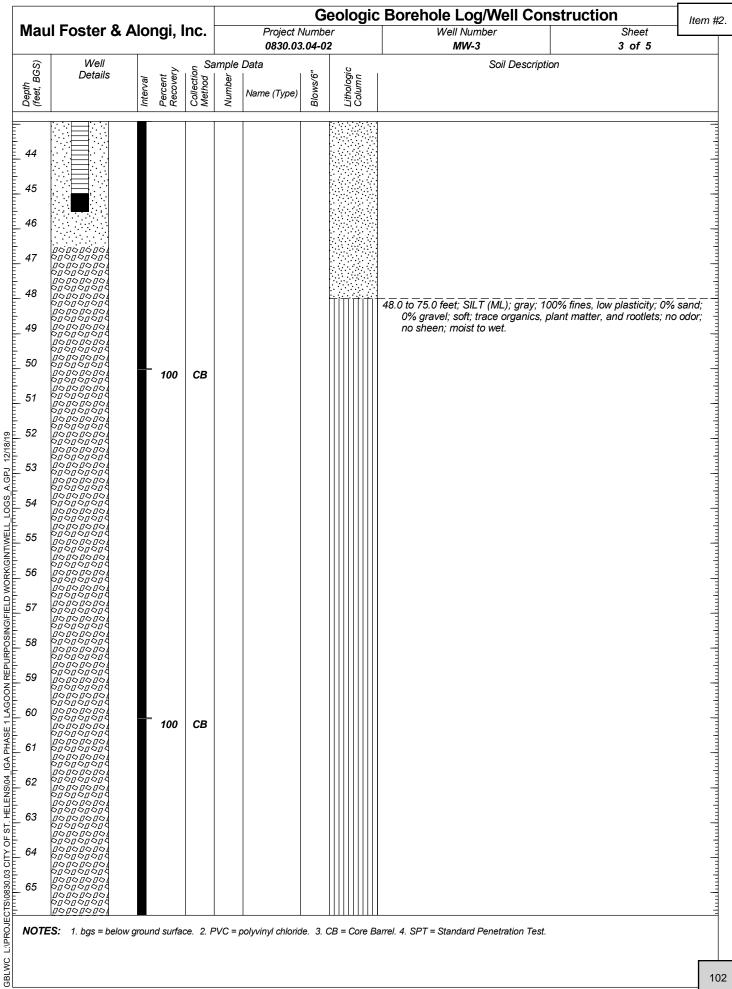

Borehole Completion Details:

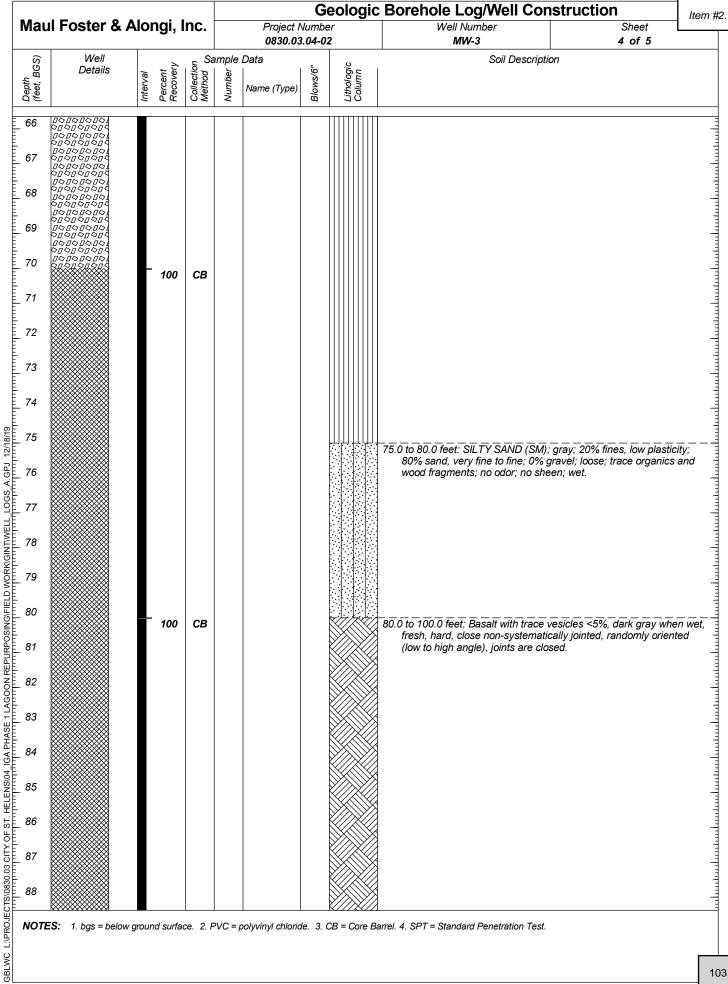

Geologic Borehole Log/Well Construction Item #2. Maul Foster & Alongi, Inc. Well Number Project Number Sheet 0830.03.04-02 MW-2 1 of 5 Project Name St. Helens Lagoon TOC Elevation (feet) Project Location Surface Elevation (feet) St. Helens Start/End Date 7/8/19 to 7/10/19 Northing Driller/Equipment Dan Rider/Terra Sonic Incorporated 150 CC Easting Geologist/Engineer C. Schweitzer Hole Depth 100.0-feet 6" to 4"-inch Sample Method Core Barrel: Ten-foot intervals. Outer Hole Diam Depth (feet, BGS) Well Soil Description Sample Data Collection Method C Lithologic Column Percent Recovery Details Blows/6' Interval Name (Type) 100 CB 0.0 to 62.0 feet: Basalt with trace vesicles <5%, dark gray when wet, fresh, hard, close non-systematically jointed, randomly oriented (low to high angle), joints are closed. 2 3 5 6 IGA PHASE 1 LAGOON REPURPOSING\FIELD WORK\GINT\WELL LOGS A.GPJ 8 9 10 100 CB 11 12 13 14 15 16 GBLWC L:\PROJECTS\0830.03 CITY OF ST. HELENS\04 17 18 20

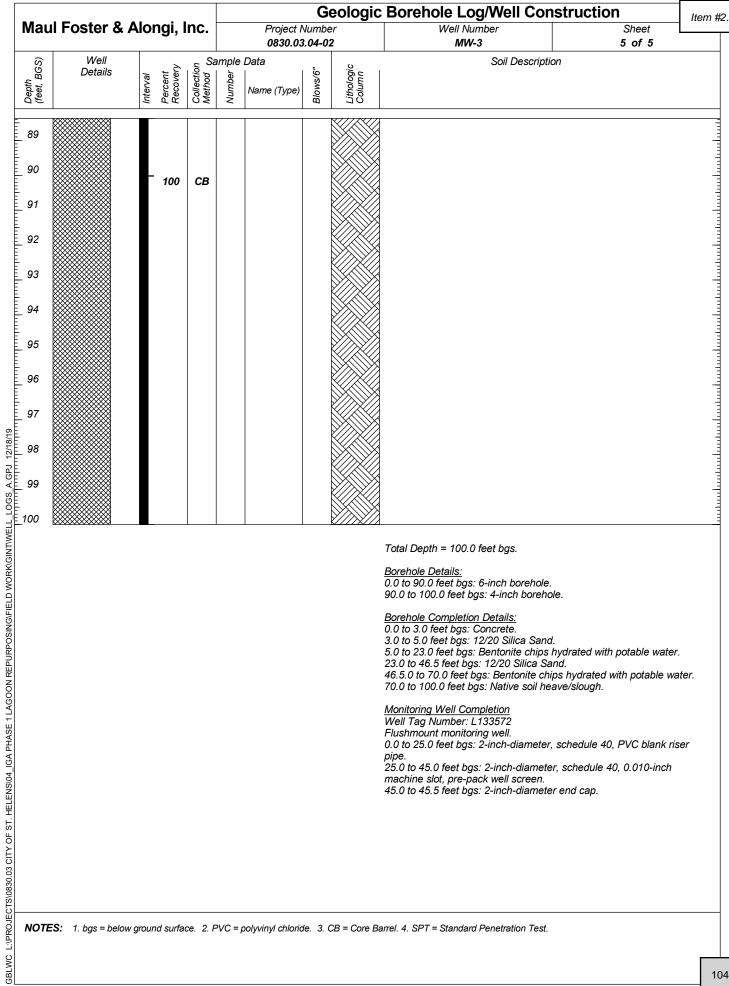
NOTES: 1. bgs = below ground surface. 2. PVC = polyvinyl chloride. 3. CB = Core Barrel.

12/18/19




Well Details Sample Data	90 kg	### Details ###################################	Interval	Percent Recovery	Collection Method So						5 01 5	
Details Total Depth = 100.0 feet bgs. Total Depth = 100.0 feet bgs. Borehole Completion Total Depth = 100.0 feet bgs. Borehole Completion Details On 10 70.0 feet bgs. Felication by the depth of the completion of the comple	89	### Details ###################################	Interval	Percent Recovery	Collection Method c		ات ا 	÷	1 0	SUI DESCRIPTION		
Total Depth = 100.0 feet bgs. Borhological Depth = 100.0 feet bgs. B	90					2	Name (Type)	Blows/6	Lithologic Column	,		
Borehole Details: 0.0 to 70.0 feet bgs: 6-inch borehole. 70.0 to 100.0 feet bgs: 4-inch borehole. Borehole Completion Details: 0.0 to 2.0 feet bgs: Concrete. 2.0 to 48.0 feet bgs: Bentonite chips hydrated with potable water. 48.0 to 71.0 feet bgs: 12/20 Silica Sand. 71.0 to 100.0 feet bgs: Bentonite chips hydrated with potable water. Monitoring Well Completion Well Tag Number: L133560 Flushmount monitoring well. 0.0 to 50.0 feet bgs: 2-inch-diameter, schedule 40, PVC blank riser pipe. 50.0 to 70.0 feet bgs: 2-inch-diameter, schedule 40, 0.010-inch machine slot, pre-pack well screen.	93 94 95 16 16 16 16 16 16 16 16 16 16 16 16 16			100	СВ							
										Borehole Details: 0.0 to 70.0 feet bgs: 6-inch borehole. 70.0 to 100.0 feet bgs: 4-inch borehole. Borehole Completion Details: 0.0 to 2.0 feet bgs: Concrete. 2.0 to 48.0 feet bgs: Bentonite chips hydrated 48.0 to 71.0 feet bgs: Bentonite chips hydrated 48.0 to 71.0 feet bgs: Bentonite chips hydrated 49.0 to 100.0 feet bgs: Bentonite chips hydrated 49.0 to 100.0 feet bgs: Bentonite chips hydrated 49.0 feet bgs: Bentonite chips hydrated 49.0 feet bgs: Bentonite chips hydrated 49.0 feet bgs: Consideration 49.0 feet bgs: Concompletion 49.0 feet bgs: 2-inch-diameter, schedul 49.0 feet bgs: 2-inch-diamet	ed with potable water le 40, PVC blank riser ule 40, 0.010-inch	


Borehole Details:


Borehole Completion Details:

Maul Foster & Along, Inc. Project Name Project Coation Project Coation Start-Rich Date Differ Equipment Geologis/Enginer Geo	Project Name Project Location StartEnd Date St. Helens Lagoon StartEnd Date Driller/Equipment Geologist/Engineer Sample Method Details Patient Start St. Helens St. H				Geologic	Borehole Log/Well Cons	truction	Item
Project Location St. Helens Startlend Date Driller/Equipment Geologist/Engineer Geologist/Engineer Geologist/Engineer Details De	Project Location Start/End Date Start/End Date Sample Method Well Details Sample Data Sample Data Details Sample Data Sample Data Details Sample Data Sample Data Sample Data Soli Description Other Hole Day Name (Type) Solid Description Other Hole Day Name (Type) Solid Description Other Hole Day Name (Type) Solid Description Other Hole Day Solid Description Ot	Maul Foster &	Alongi, Inc.	-				
Details Det	Details Details Detai	Project Location Start/End Date Driller/Equipment Geologist/Engineer	St. Helens 7/17/19 to 7/17/1 Dan Rider/Terra C. Schweitzer	9 Sonic Incorporated 15	50 CC	Surface Elevation (fe Northing Easting Hole Depth	eet) 100.0-:	
Details Det	Details Details Detai	୍ତ Well	\ S	ample Data		Soil Description		
80% gravel, time to coarse, angular, loose; no odor, no sheen; moist. 1.0 to 2.0 feet: GRAVELLY CLAY (CL); brown; 80% fines, medium pasticity; 0% sand; 20% gravel, very fine to medium, angular, stiff, no odor, no sheen; moist. 2.0 to 5.0 feet: SAND WITH GRAVEL (SW); gray, 0% fines; 90% sand very fine to coarse; 10% gravel, fine to very coarse, angular, loose trace cobbles; no odor; no sheen; moist. 5.0 to 5.5 feet: GRAVELLY CLAY (CL); brown; 80% fines, medium pasticity; 0% sand; 20% gravel, very fine to medium, angular; stiff, no odor; no sheen; moist. 5.0 to 5.5 feet: GRAVELLY CLAY (CL); brown; 80% fines, medium pasticity; 0% sand; 20% gravel, very fine to medium, angular; stiff, no odor; no sheen; moist. 5.5 to 8.0 feet: SANDY CLAYEY GRAVEL (GW); gray; 20% fines, medium plasticity; 30% sand, medium to coarse; 50% gravel, fine to coarse, angular, loose; trace cobbles; no odor; no sheen; moist. 8.0 to 10.0 feet: GRAVELLY SAND (SW); brown; 0% fines; 80% sand, fine to coarse; 20% gravel, fine to very coarse, angular; loose; trace silt clasts; no odor; no sheen; moist.	80% gravel, fine to coarse, angular; loose; no odor; no sheen; moist. 1.0 to 2.0 feet: GRAVELLY CLAY (CL); brown; 80% fines, medium, no odor; no sheen; moist. 2.0 to 5.0 feet: SAND WITH GRAVEL (SW); gray; 0% fines; 90% sand very fine to coarse; 10% gravel, fine to very coarse, angular; loose trace cobbles; no odor; no sheen; moist. 5.0 to 5.5 feet: GRAVELLY CLAY (CL); brown; 80% fines, medium plasticity; 0% sand; 20% gravel, very fine to medium, angular; stiff no odor; no sheen; moist. 5.5 to 8.0 feet: SANDY CLAYEY GRAVEL (GW); gray; 20% fines, medium plasticity; 30% sand, medium to coarse; 50% gravel, fine to coarse; angular; loose; trace cobbles; no odor; no sheen; moist. 5.5 to 8.0 feet: SANDY CLAYEY GRAVEL (GW); gray; 20% fines, medium plasticity; 30% sand, medium to coarse; 50% gravel, fine to coarse, angular; loose; trace cobbles; no odor; no sheen; moist. 6.0 foot foot foot foot foot foot foot foo	Depth (feet, BG	Interval Percent Recover Collectio	Name (Type) Name (Type) No. 18	Lithologi			
12	12	A	100 CB			80% gravel, fine to coarse, angular, moist. 1.0 to 2.0 feet: GRAVELLY CLAY (CL); plasticity; 0% sand; 20% gravel, verno odor; no sheen; moist. 2.0 to 5.0 feet: SAND WITH GRAVEL (Very fine to coarse; 10% gravel, fine trace cobbles; no odor; no sheen; no sheen; no odor; no sheen; moist. 5.0 to 5.5 feet: GRAVELLY CLAY (CL); plasticity; 0% sand; 20% gravel, verno odor; no sheen; moist. 5.5 to 8.0 feet: SANDY CLAYEY GRAV medium plasticity; 30% sand, mediuto coarse, angular; loose; trace cobsequence of the coarse; 20% gravel, fine to verace silt clasts; no odor; no sheen;	brown; 80% fines, medium ry fine to medium, angular, SW); gray; 0% fines; 90%; a to very coarse, angular; linoist. brown; 80% fines, medium ry fine to medium, angular, moist. EL (GW); gray; 20% fines, um to coarse; 50% gravel, bles; no odor; no sheen; modium; brown; 0% fines; 80% sery coarse, angular; loose,	rsand, loose; rstiff; rsiff; rine fine noist.
	NOTES: 1. bgs = below ground surface. 2. PVC = polyvinyl chloride. 3. CB = Core Barrel. 4. SPT = Standard Penetration Test.	12 20 20 20 20 20 20 20		11,	,	sand, fine to medium; 10% gravel,	fine to very coarse, angula	

Total Depth = 100.0 feet bgs.

Borehole Details:

0.0 to 90.0 feet bgs: 6-inch borehole. 90.0 to 100.0 feet bgs: 4-inch borehole.

Borehole Completion Details:

0.0 to 3.0 feet bgs: Concrete.

3.0 to 5.0 feet bgs: 12/20 Silica Sand.

5.0 to 23.0 feet bgs: Bentonite chips hydrated with potable water.

23.0 to 46.5 feet bgs: 12/20 Silica Sand.

46.5.0 to 70.0 feet bgs: Bentonite chips hydrated with potable water.

70.0 to 100.0 feet bgs: Native soil heave/slough.

Monitoring Well Completion

Well Tag Number: L133572 Flushmount monitoring well.

0.0 to 25.0 feet bgs: 2-inch-diameter, schedule 40, PVC blank riser

pipe. 25.0 to 45.0 feet bgs: 2-inch-diameter, schedule 40, 0.010-inch

machine slot, pre-pack well screen.

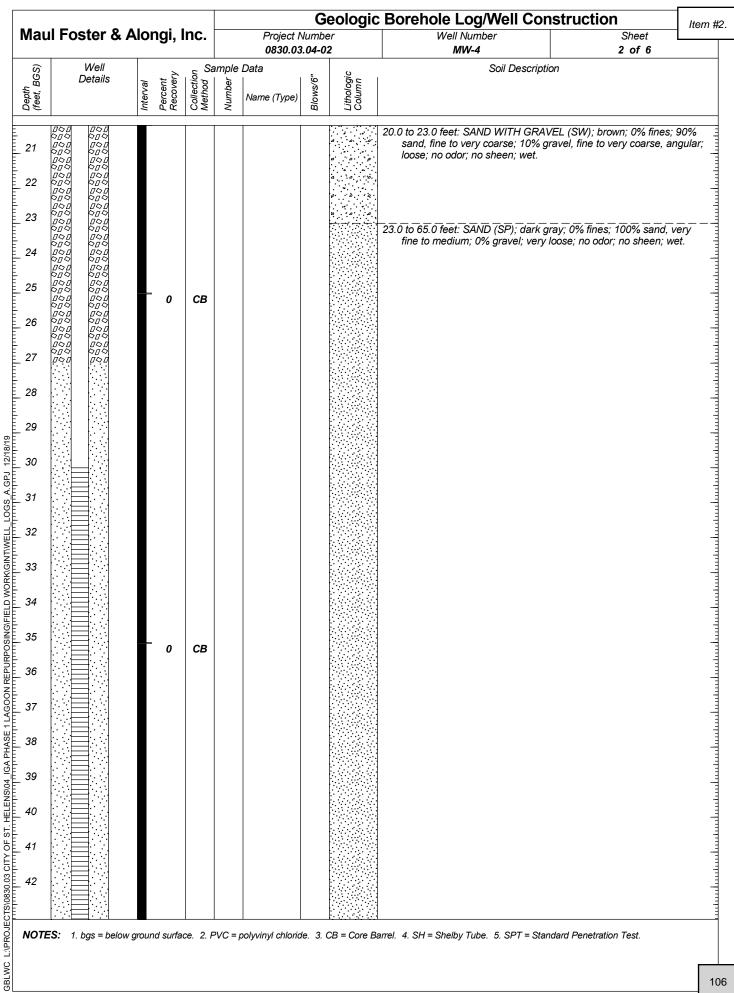
45.0 to 45.5 feet bgs: 2-inch-diameter end cap.

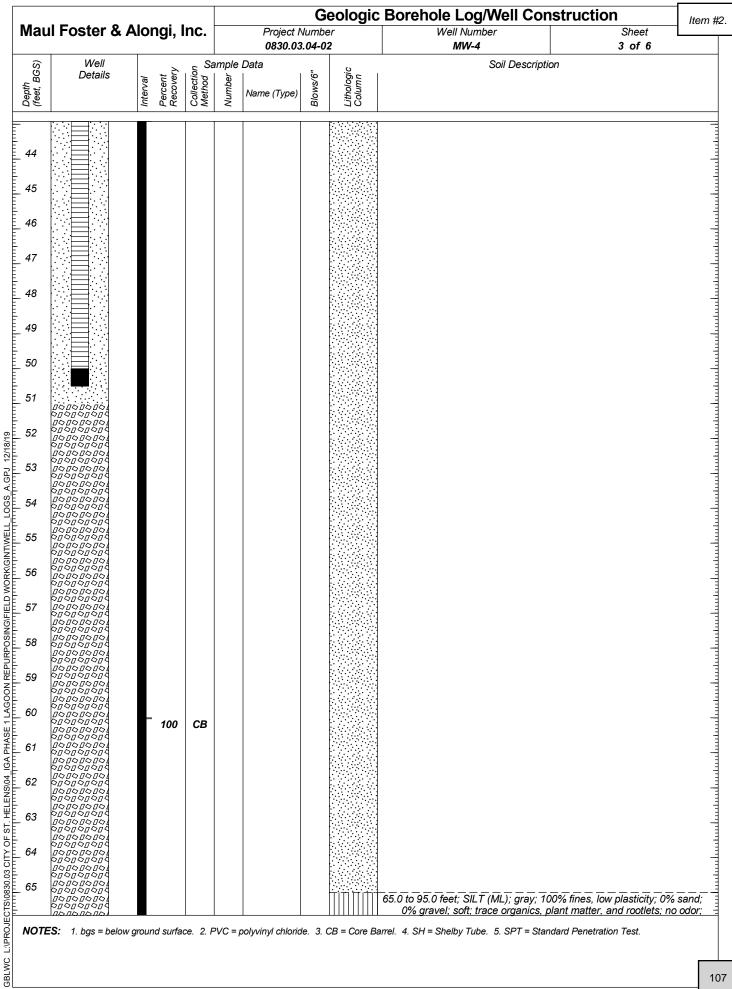
NOTES: 1. bgs = below ground surface. 2. PVC = polyvinyl chloride. 3. CB = Core Barrel. 4. SPT = Standard Penetration Test.

Geologic Borehole Log/Well Construction Item #2. Maul Foster & Alongi, Inc. Well Number Project Number Sheet 0830.03.04-02 MW-4 1 of 6 Project Name St. Helens Lagoon TOC Elevation (feet) Project Location St. Helens Surface Elevation (feet) Start/End Date 7/15/19 to 7/15/19 Northing Driller/Equipment Dan Rider/Terra Sonic Incorporated 150 CC Easting Geologist/Engineer C. Schweitzer Hole Depth 120.0-feet Sample Method Core Barrel: Ten-foot intervals. Outer Hole Diam 6" to 4"-inch Well Sample Data Soil Description BGS) Collection Lithologic Column Details Percent Recovery Blows/6 Interval Depth (feet, B Name (Type) 100 CB 0.0 to 2.0 feet: SANDY GRAVEL (GW); gray; 0% fines; 20% sand; 80% gravel, fine to very coarse, angular; loose; no odor; no sheen; @ 1.5 feet: Becomes brown. 2 2.0 to 4.0 feet: GRAVELLY CLAY (CL); brown; 80% fines, medium plasticity; 0% sand; 20% gravel, very fine to medium, angular; stiff; 3 no odor; no sheen; moist. 4.0 to 8.5 feet: SAND WITH GRAVEL (SW); gray; 0% fines; 90% sand, very fine to coarse; 10% gravel, fine to very coarse, angular; loose; 5 trace cobbles; no odor; no sheen; moist. 100 CB @ 4.1 feet: Piece of black plastic. Shelby tube SH at 5.0' 6 7 8 8.5 to 11.0 feet: GRAVELLY SAND (SW); gray; 0% fines; 70% sand, 9 very fine to coarse; 30% gravel, fine to very coarse, angular; loose; trace cobbles; no odor; no sheen; moist. 10 11 11.0 to 12.0 feet: SANDY CLAYEY GRAVEL (GW); brown; 20% fines, medium plasticity; 30% sand, medium to coarse; 50% gravel, very 12 fine to coarse, angular; loose; trace slightly weathered vesicular basalt cobbles; no odor; no sheen; moist. 12.0 to 13.0 feet: SANDY GRAVELLY CLAY (CL); brown fines with 13 gray sand; 50% fines, medium plasticity; 30% sand, very fine to medium; 20% gravel, very fine to medium, angular; very soft; no odor; no sheen; wet. 14 13.0 to 16.0 feet: GRAVELLY SAND (SW); gray; 0% fines; 80% sand, fine to coarse; 20% gravel, fine to very coarse, angular; loose; trace cobbles; no odor; no sheen; wet. 15 100 CB 25, SPT 21, 16 16 16.0 to 20.0 feet: SANDY GRAVEL WITH CLAY (GW); brown; 10% fines; 40% sand, fine to very coarse; 50% gravel, fine to very 17 coarse, angular; loose; some cobbles; no odor; no sheen; wet. 18 19 20

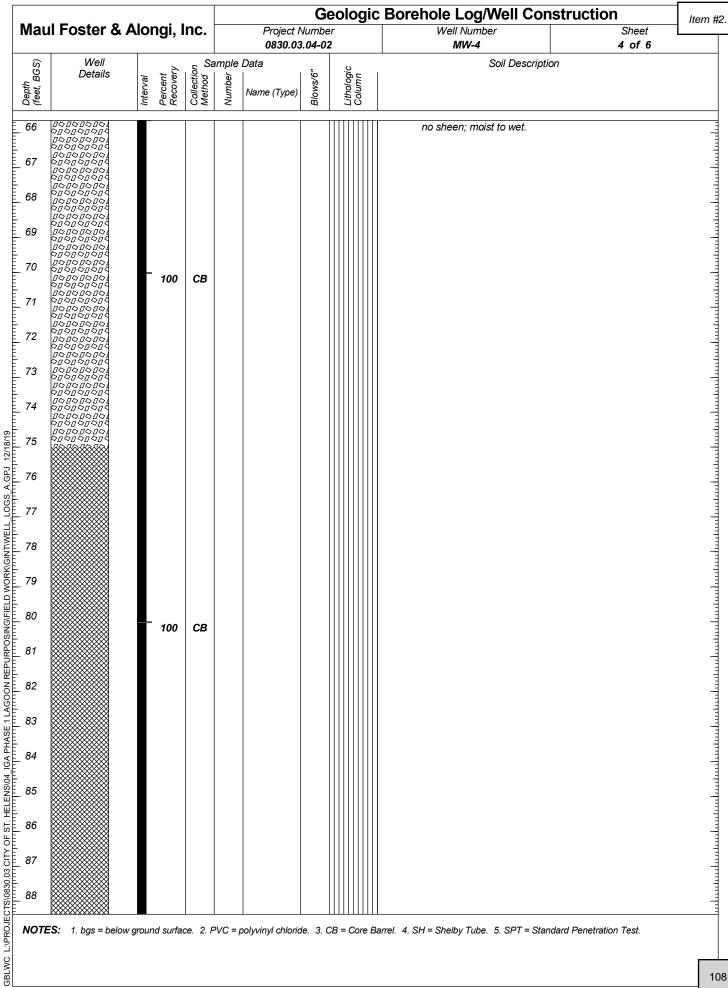
12/18/19

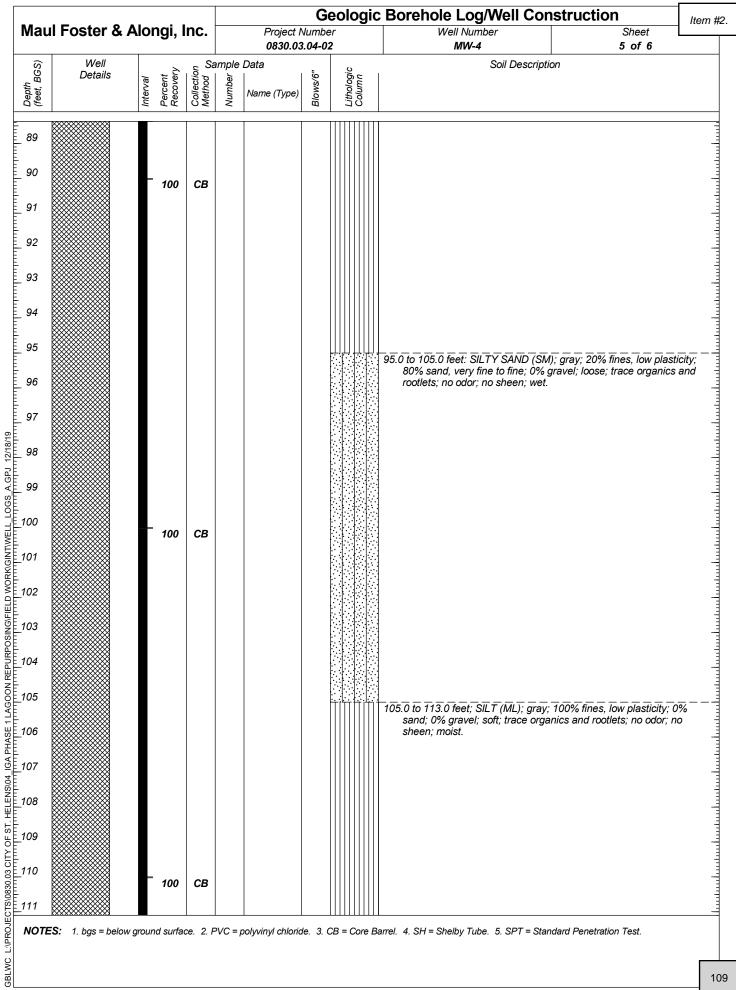
A.GPJ

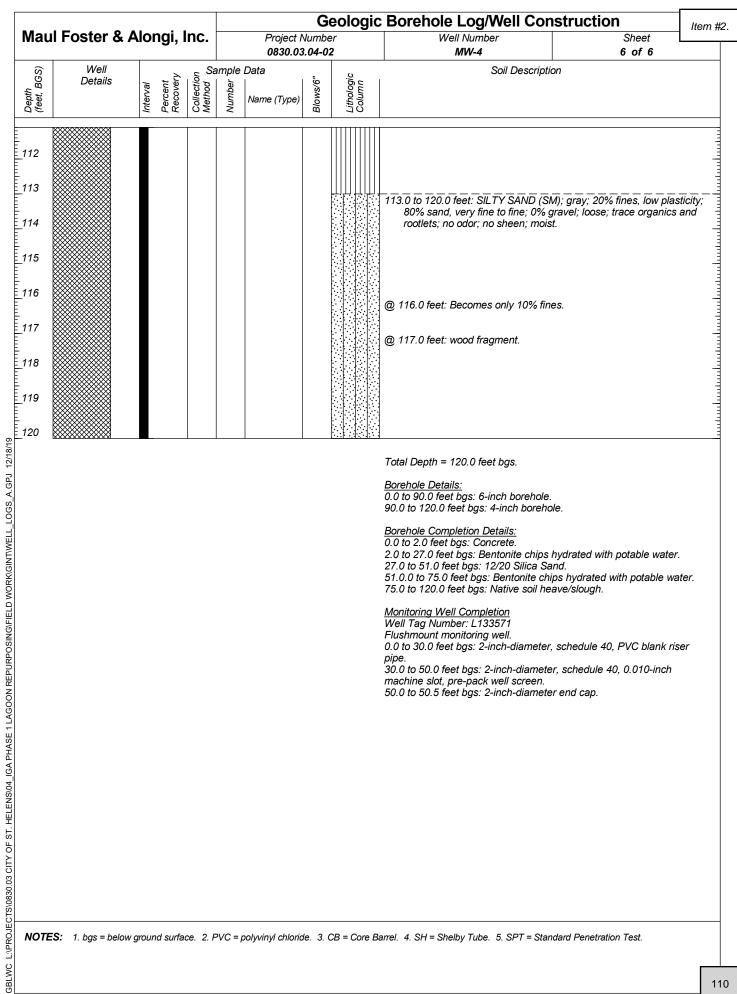

1 LAGOON REPURPOSING/FIELD WORK/GINT/WELL


IGA PHASE

HELENS/04


GBLWC L:\PROJECTS\0830.03 CITY OF ST.


NOTES: 1. bgs = below ground surface. 2. PVC = polyvinyl chloride. 3. CB = Core Barrel. 4. SH = Shelby Tube. 5. SPT = Standard Penetration Test.



NOTES: 1. bgs = below ground surface. 2. PVC = polyvinyl chloride. 3. CB = Core Barrel. 4. SH = Shelby Tube. 5. SPT = Standard Penetration Test.

Total Depth = 120.0 feet bgs.

Borehole Details:

0.0 to 90.0 feet bgs: 6-inch borehole. 90.0 to 120.0 feet bgs: 4-inch borehole.

Borehole Completion Details:

0.0 to 2.0 feet bgs: Concrete.

2.0 to 27.0 feet bgs: Bentonite chips hydrated with potable water.

27.0 to 51.0 feet bgs: 12/20 Silica Sand.

51.0.0 to 75.0 feet bgs: Bentonite chips hydrated with potable water.

75.0 to 120.0 feet bgs: Native soil heave/slough.

Monitoring Well Completion

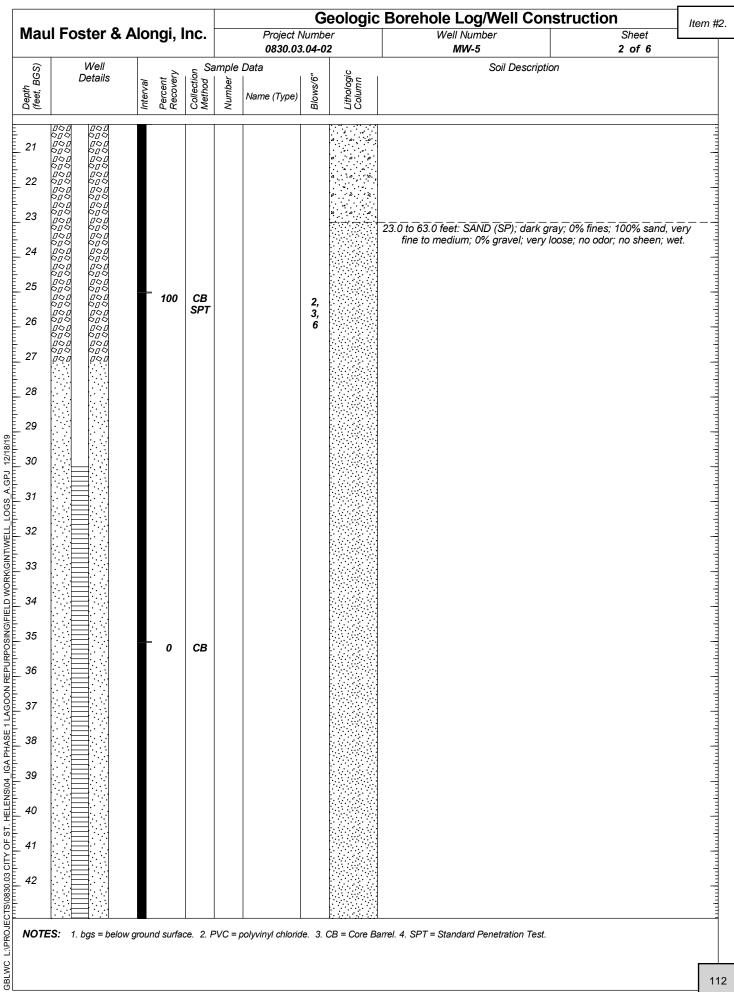
Well Tag Number: L133571 Flushmount monitoring well.

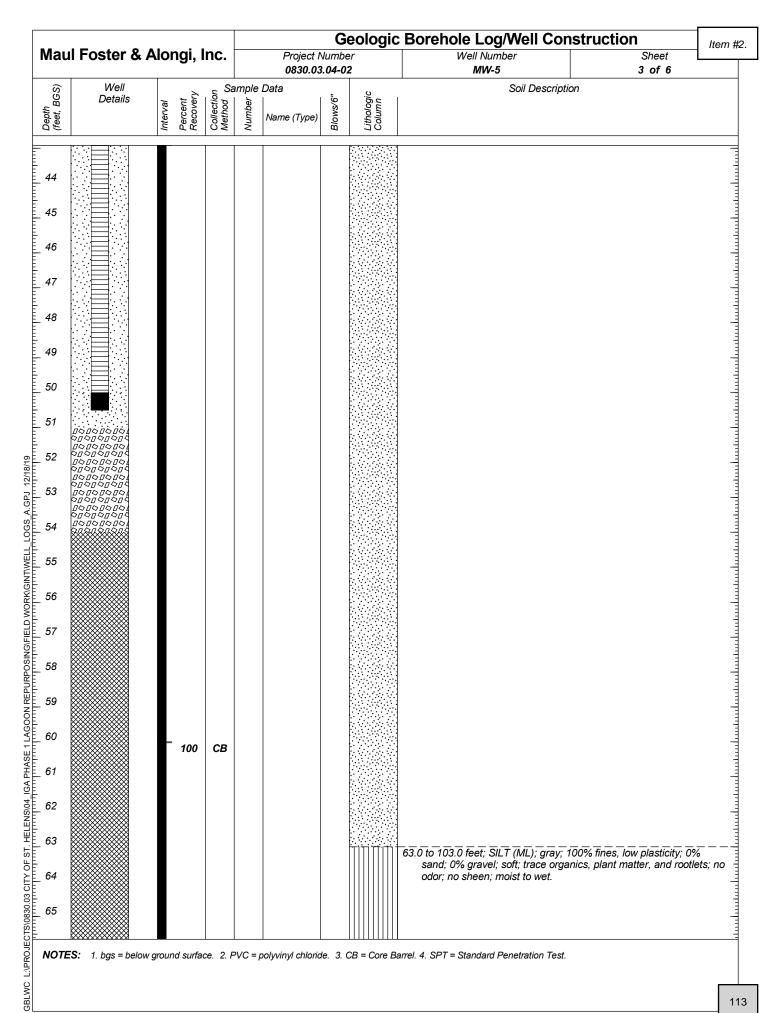
0.0 to 30.0 feet bgs: 2-inch-diameter, schedule 40, PVC blank riser

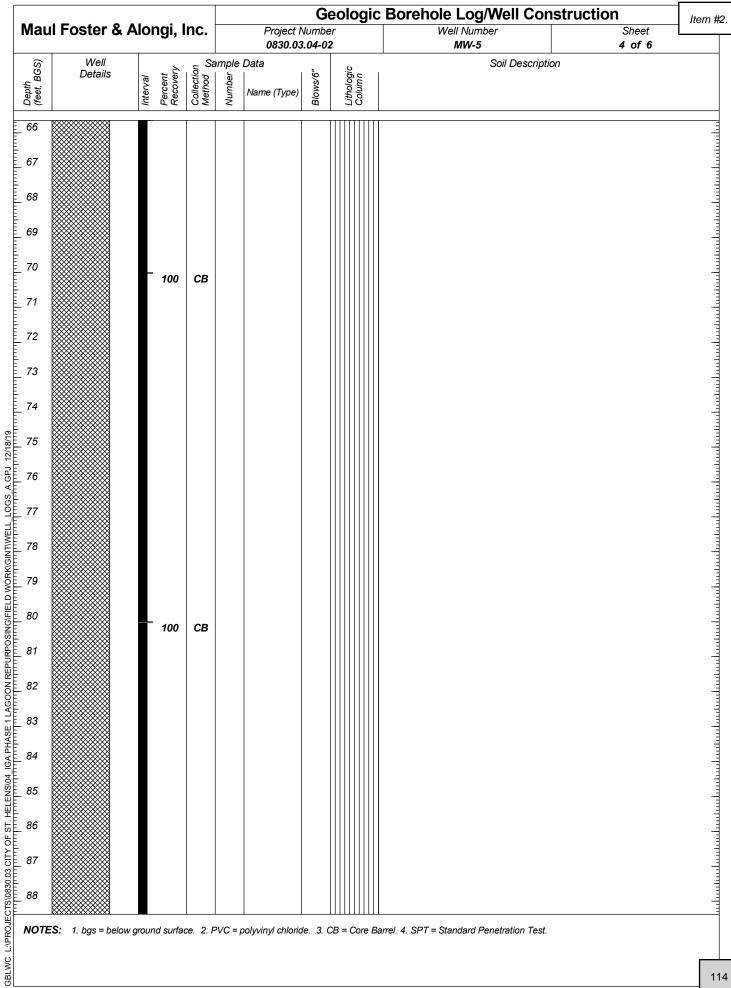
30.0 to 50.0 feet bgs: 2-inch-diameter, schedule 40, 0.010-inch

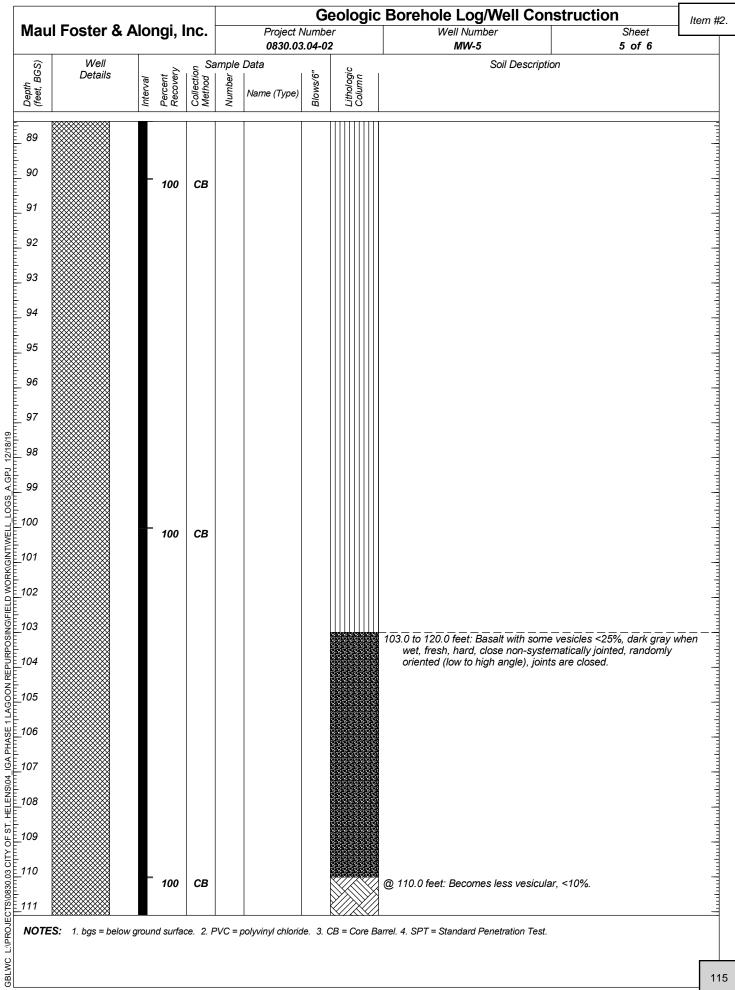
machine slot, pre-pack well screen.

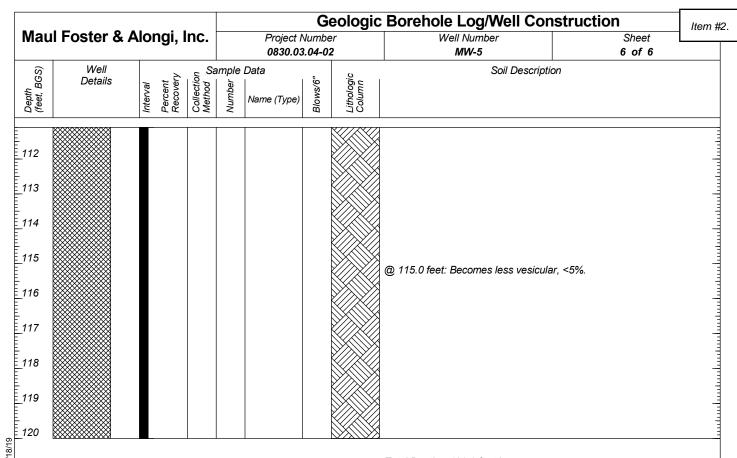
50.0 to 50.5 feet bgs: 2-inch-diameter end cap.


Geologic Borehole Log/Well Construction Item #2. Maul Foster & Alongi, Inc. Well Number Project Number Sheet 0830.03.04-02 MW-5 1 of 6 Project Name St. Helens Lagoon TOC Elevation (feet) Project Location St. Helens Surface Elevation (feet) Start/End Date 7/16/19 to 7/16/19 Northing Driller/Equipment Dan Rider/Terra Sonic Incorporated 150 CC Easting Geologist/Engineer C. Schweitzer Hole Depth 120.0-feet Sample Method Core Barrel: Ten-foot intervals. Outer Hole Diam 6" to 4"-inch Well Sample Data Soil Description BGS) Collection Lithologic Column Details Percent Recovery Blows/6 Interval Depth (feet, B Name (Type) 100 CB 0.0 to 2.0 feet: SANDY GRAVEL (GW); gray; 0% fines; 20% sand; 80% gravel, fine to coarse, angular; loose; no odor; no sheen; 1 2 2.0 to 3.0 feet: GRAVELLY CLAY (CL); brown; 80% fines, medium plasticity; 0% sand; 20% gravel, very fine to medium, angular; stiff; 3 no odor; no sheen; moist. 3.0 to 6.0 feet: SAND WITH GRAVEL (SW); gray; 0% fines; 90% sand, very fine to coarse; 10% gravel, fine to very coarse, angular; loose; trace cobbles; no odor; no sheen; moist. 5 100 CB @ 5.0 feet: Thin brown silt bed. 10 SPT 11, 6 15 6.0 to 9.0 feet: SANDY CLAYEY GRAVEL (GW); gray; 20% fines, medium plasticity; 30% sand, medium to coarse; 50% gravel, very 7 fine to coarse, angular; loose; no odor; no sheen; moist. 8 9 9.0 to 15.0 feet: GRAVELLY SAND (SW); gray; 0% fines; 80% sand, fine to coarse; 20% gravel, fine to very coarse, angular; loose; 10 trace cobbles; no odor; no sheen; moist. 11 12 13 14 15 CB 15.0 to 16.0 feet: SANDY GRAVELLY CLAY (CL); brown fines with 100 gray sand and gravel; 50% fines, medium plasticity; 30% sand, very fine to medium; 20% gravel, fine to medium, angular; very 16 soft; no odor; no sheen; wet. 16.0 to 23.0 feet: SAND WITH GRAVEL (SW); gray; 0% fines; 90% 17 sand, fine to medium; 10% gravel, fine to very coarse, angular; loose; no odor; no sheen; wet. GBLWC L:\PROJECTS\0830.03 CITY OF ST. 18 19 20


12/18/19


A.GPJ


IGA PHASE 1 LAGOON REPURPOSING/FIELD WORK/GINT/WELL


HELENS/04

Total Depth = 120.0 feet bgs.

Borehole Details:

0.0 to 90.0 feet bgs: 6-inch borehole. 90.0 to 120.0 feet bgs: 4-inch borehole.

Borehole Completion Details:

0.0 to 5.0 feet bgs: Concrete.

5.0 to 27.0 feet bgs: Bentonite chips hydrated with potable water.

27.0 to 51.0 feet bgs: 12/20 Silica Sand.

51.0.0 to 54.0 feet bgs: Bentonite chips hydrated with potable water.

54.0 to 120.0 feet bgs: Native soil heave/slough.

Monitoring Well Completion

Well Tag Number: L133553 Flushmount monitoring well.

0.0 to 30.0 feet bgs: 2-inch-diameter, schedule 40, PVC blank riser

pipe

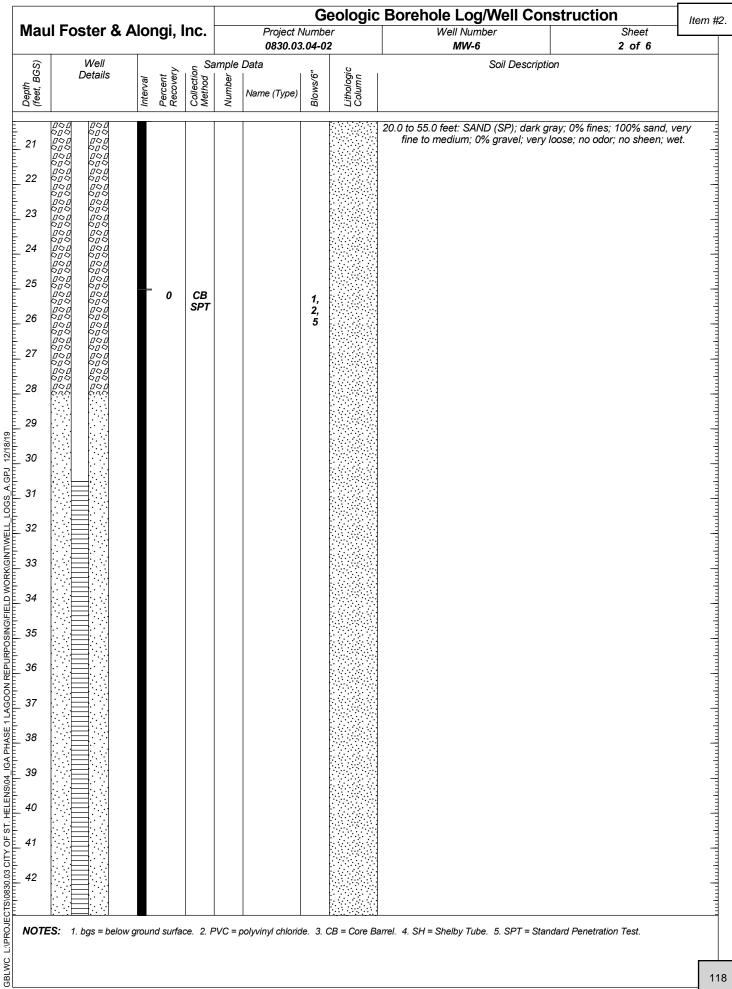
30.0 to 50.0 feet bgs: 2-inch-diameter, schedule 40, 0.010-inch

machine slot, pre-pack well screen.

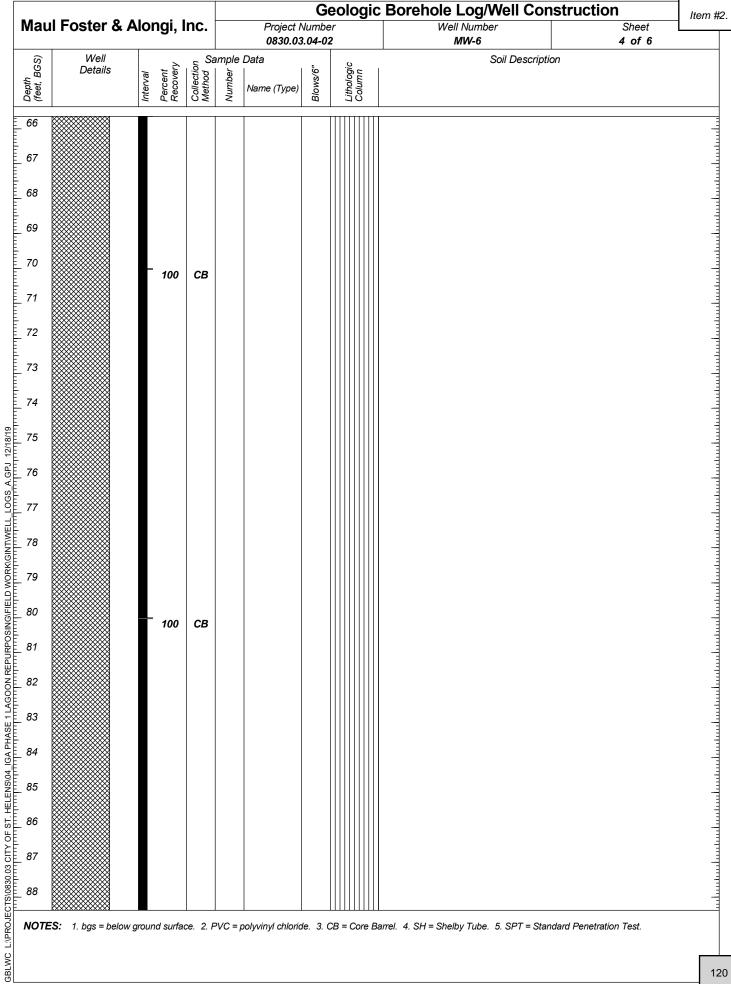
50.0 to 50.5 feet bgs: 2-inch-diameter end cap.

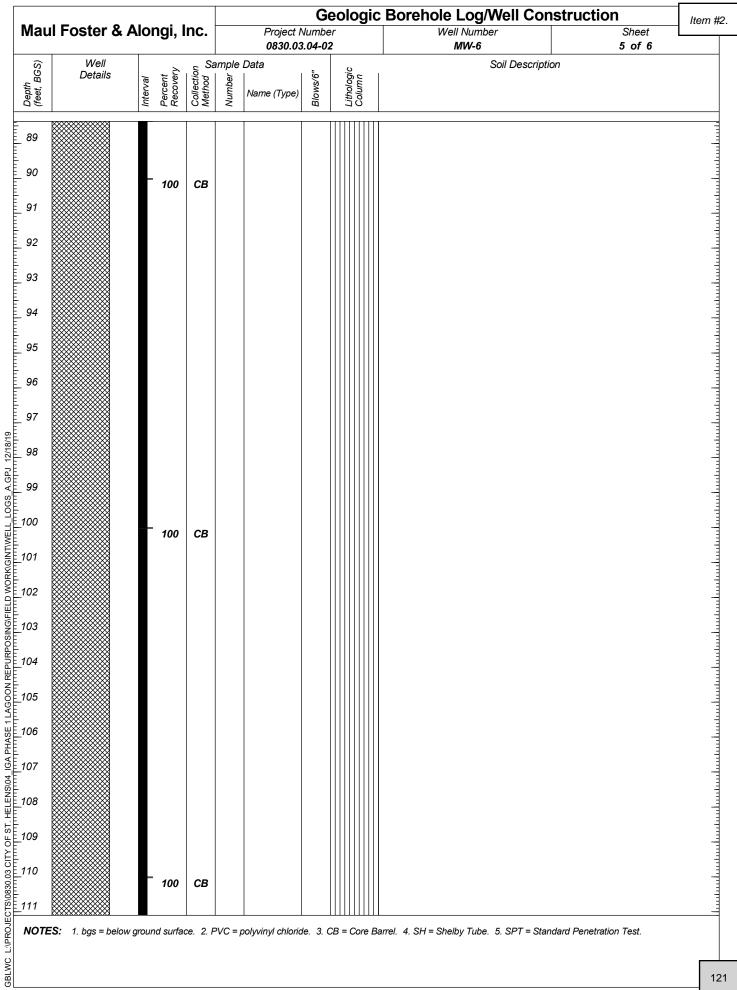
Geologic Borehole Log/Well Construction Item #2. Maul Foster & Alongi, Inc. Well Number Project Number Sheet 0830.03.04-02 MW-6 1 of 6 Project Name St. Helens Lagoon TOC Elevation (feet) Project Location St. Helens Surface Elevation (feet) Start/End Date 7/11/19 to 7/12/19 Northing Driller/Equipment Dan Rider/Terra Sonic Incorporated 150 CC Easting Geologist/Engineer C. Schweitzer Hole Depth 120.0-feet 6" to 4"-inch Sample Method Core Barrel: Ten-foot intervals. Outer Hole Diam Well Sample Data Soil Description BGS) Lithologic Column Collection Details Percent Recovery Blows/6 Interval Depth (feet, B Name (Type) 100 CB 0.0 to 4.0 feet: SANDY GRAVEL (GW); gray; 0% fines; 20% sand; 80% gravel, fine to very coarse, angular; loose; no odor; no sheen; 2 @ 2.5 feet: Becomes brown. 3 4.0 to 5.0 feet: GRAVELLY CLAY (CL); brown; 60% fines, medium plasticity; 0% sand; 40% gravel, very fine to medium, angular; stiff; no odor; no sheen; moist. 5 100 CB 5.0 to 6.0 feet: SANDY CLAYEY GRAVEL (GW); brown with dark gray SPT sand and gravel; 20% fines, medium plasticity; 30% sand, medium 6 to coarse; 50% gravel, very fine to coarse, angular; loose; fines in clumps; no odor; no sheen; moist. 6.0 to 10.0 feet: SAND WITH GRAVEL (SW); brown; 0% fines; 90% 7 sand, very fine to coarse; 10% gravel, fine to very coarse, angular; loose; trace cobbles up to 2 inch; no odor; no sheen; moist. 8 9 10 10.0 to 11.0 feet: SILTY GRAVELLY SAND (SM); dark gray; 30% fines, low plasticity; 50% sand, very fine to medium; 20% gravel, 11 fine to medium, angular; loose; trace cobbles up to 3 inch; no odor; no sheen; moist. 11.0 to 20.0 feet: GRAVELLY SAND (SW); gray; 0% fines; 80% sand, 12 fine to very coarse; 20% gravel, fine to very coarse, angular; loose; trace cobbles up to 2 inch; no odor; no sheen; moist. 13 @ 13.0 feet: Becomes brown, with a thin silt bed. 14 15 100 CB Shelby Tube SH at 15.0' 16 @ 16.0 feet: Becomes gray, with a thin silt bed. 17 18 @ 18.0 feet: Becomes brown. 19 20

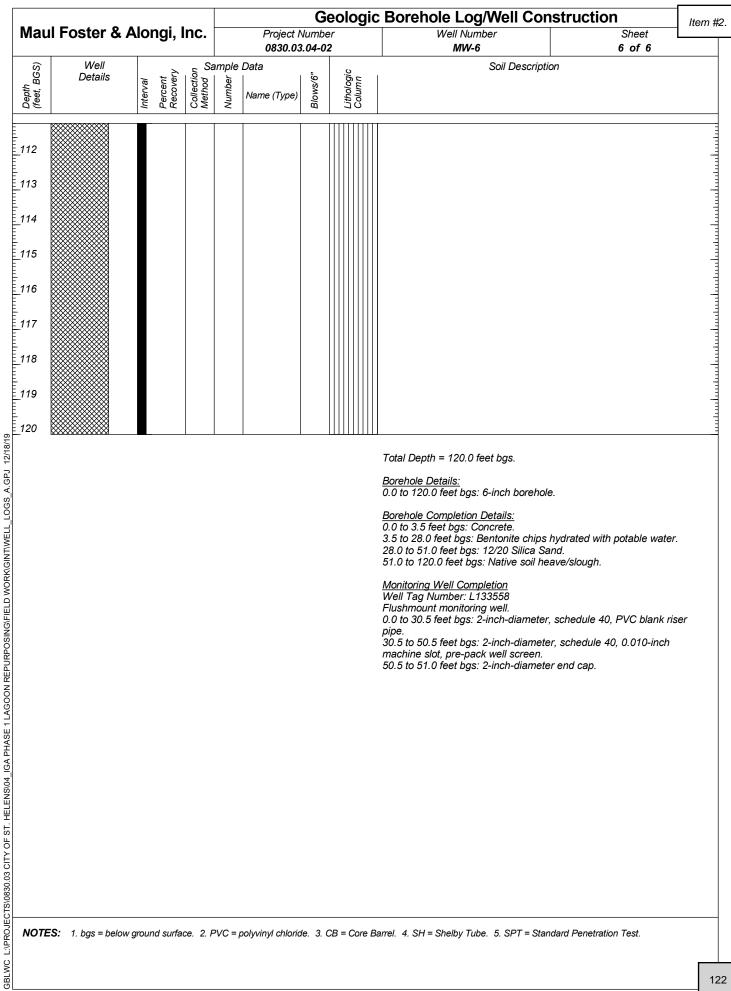
12/18/19


A.GPJ

1 LAGOON REPURPOSING/FIELD WORK/GINT/WELL


IGA PHASE


HELENS/04


GBLWC L:\PROJECTS\0830.03 CITY OF ST.

Total Depth = 120.0 feet bgs.

Borehole Details:

0.0 to 120.0 feet bgs: 6-inch borehole.

Borehole Completion Details:

0.0 to 3.5 feet bgs: Concrete.

3.5 to 28.0 feet bgs: Bentonite chips hydrated with potable water.

28.0 to 51.0 feet bgs: 12/20 Silica Sand.

51.0 to 120.0 feet bgs: Native soil heave/slough.

Monitoring Well Completion Well Tag Number: L133558

Flushmount monitoring well.

0.0 to 30.5 feet bgs: 2-inch-diameter, schedule 40, PVC blank riser

pipe. 30.5 to 50.5 feet bgs: 2-inch-diameter, schedule 40, 0.010-inch

machine slot, pre-pack well screen.

50.5 to 51.0 feet bgs: 2-inch-diameter end cap.

STATE OF OREGON WATER SUPPLY WELL REPORT (as required by ORS 537.765 & OAR 690-205-0210) COLU 55412

1/22/2019

WELL I.D. LABEL# L
START CARD # 1
ORIGINAL LOG #

	1 450 1 01 2
132783	
1041592	Item #2.

(1) LAND OWNER Owner Well I.D.		
First Name GARY Last Name KERVIN	(9) LOCATION OF WELL (legal description)	
Company	County COLUMBIA Twp 4.00 N N/S Range 1.00 W E	W WM
Address PO BOX 780	Sec 9 NW 1/4 of the NE 1/4 Tax Lot 1000	2/ VV VV 1VI
City SCAPPOOSE State OR Zip 97056		
(2) TYPE OF WORK New Well Deepening Conversion	Tax Map Number Lot Lat' or 45.84953100 DMS	or DD
Alteration (complete 2a & 10) Abandonment(complete 5a)		or DD
(2a) PRE-ALTERATION	Street address of well Nearest address	לעל זוס ז
Dia + From To Gauge Stl Plstc Wld Thrd Casing:		
	NEAR 1875 OLD PORTLAND ROAD\NST. HELENS, OREGON 97051	
Material From To Amt sacks/lbs Seal:		
(3) DRILL METHOD	(10) STATIC WATER LEVEL	
Rotary Air Rotary Mud Cable Auger Cable Mud	Date SWL(psi) + SWL	(ft)
	Existing Well / Pre-Alteration	
Reverse Rotary Other	Completed Well 12/26/2018 54	
(4) PROPOSED USE Domestic Irrigation Community	Flowing Artesian? Dry Hole?	
Industrial/ Commericial Livestock Dewatering	WATER BEARING ZONES Depth water was first found 170.00	
Thermal Injection Other	SWL Date From To Est Flow SWL(psi) + SWI	(ft)
		ے(۱۱) ـــــــــــــــــــــــــــــــــــ
(5) BORE HOLE CONSTRUCTION Special Standard (Attach copy)	12/28/2018 170 180 40 5	54
Depth of Completed Well 200.00 ft.		
BORE HOLE SEAL sacks/		
Dia From To Material From To Amt lbs 10 0 20 Bentonite Chips 0 20 7 S		
10 0 20 Bentonite Chips 0 20 7 S		
0 20 200		
Calculated	(11) WELL LOG Ground Elevation	
How was seal placed: Method A B C D E	Material From To	_
X Other POUR	basalt weatherd 0 5	
Backfill placed from ft. to ft. Material	tan claystone 5 14	
Filter pack from ft. to ft. Material Size	gray basailt 14 98	3
	gray brn sandstone 98 110	0
Explosives used: Yes Type Amount	gray basailt 110 170	0
(5a) ABANDONMENT USING UNHYDRATED BENTONITE	pours gray basalt 170 180	0
Proposed Amount Actual Amount	gray basalt 180 200	0
(6) CASING/LINER		
Casing Liner Dia + From To Gauge Stl Plstc Wld Thrd		
●		
○ 4 □ 3 200 40 ○ ○ □ ☒		
Shoe Inside Outside Other Location of shoe(s) 20		
Temp casing Yes Dia From + To		
(7) PERFORATIONS/SCREENS		
Perforations Method saw cut		
Screens Type Material	Date Started 12/26/2018 Completed 12/28/2018	
Perf/ Casing/ Screen Scrn/slot Slot # of Tele/	•	
Screen Liner Dia From To width length slots pipe size	(unbonded) Water Well Constructor Certification	
Perf Liner 4 160 200 .25 6 60	I certify that the work I performed on the construction, deepening, alters abandonment of this well is in compliance with Oregon water supp	
	construction standards. Materials used and information reported above are	
	the best of my knowledge and belief.	c true to
	l	
(a) 171711 mp.ama	License Number 1975 Date 1/22/2019	
(8) WELL TESTS: Minimum testing time is 1 hour	Signed AARON MORLEY (E-filed)	
Pump Bailer • Air Flowing Artesian	7 MINOIVITOREET (E Inica)	
Yield gal/min Drawdown Drill stem/Pump depth Duration (hr)	(bonded) Water Well Constructor Certification	
40 200 1	I accept responsibility for the construction, deepening, alteration, or abar	ndonment
	work performed on this well during the construction dates reported above.	
	performed during this time is in compliance with Oregon water sup	
Temperature 41 °F Lab analysis Yes By	construction standards. This report is true to the best of my knowledge and	belief.
Water quality concerns? Yes (describe below) TDS amount 192 ppm	License Number 1480 Date 1/22/2019	
From To Description Amount Units		
	Signed ARTHUR MCMULLEN (E-filed)	
	Contact Info (optional) 503 397 2356	100
		123

1/22/2019

Item #2.

Map of Hole

STATE OF OREGON WELL LOCATION MAP

This map is supplemental to the WATER SUPPLY WELL REPORT

Oregon Water Resources Department

725 Summer St NE, Salem OR 97301 (503)986-0900

Well Label: 132783

Printed: January 22, 2019

DISCLAIMER: This map is intended to represent the approximate location the well. It is not intended to be construed as survey accurate in any manner.

Provided by well constructor

LOCATION OF WELL

Latitude: 45.849531 Datum: WGS84

Longitude: -122.814785

Township/Range/Section/Quarter-Quarter Section:

WM 4N 1W 9 NWNE Address of Well:

NEAR 1875 OLD PORTLAND ROAD ST. HELENS, OREGON 97051

APPENDIX B FIELD SAMPLING DATA SHEET

Client Name:	St. Helens		Sample Location:		MW-1
Project #:	M0830.03.006		Staff:		C. Schweitzer
Project Name:	St. Helens Lagood Phase 1B		Sampling Date:		2/20/2023
Sampling Event:	Q1 2023		Sample Name:	MV	V1-20230220-GW-70
Sub Area:			Sample Depth:		~70
FSDS QA:	K. Crossley				
Easting:	l l	Northing:		TOC:	

Hydrology/Level Measurements

10:26

Date	Time	DT-Bottom	DT -Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
2/20/2023	9:50			28.98			

 $(0.75" = 0.023 \text{ gal/ft}) \ (1" = 0.041 \text{ gal/ft}) \ (1.5" = 0.092 \text{ gal/ft}) \ (2" = 0.163 \text{ gal/ft}) \ (3" = 0.367 \text{ gal/ft}) \ (4" = 0.653 \text{ gal/ft}) \ (6" = 1.469 \text{ gal/ft}) \ (8" = 2.611 \text{ gal/ft}) \ (8" = 2.611$

Water Quality Data

water Quality Da	ata									
Purge Method	Time	Purge Vol (L)	WLE (ft)	Flowrate (l/min)	рН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ЕН	Turbidity
(1) Submersible	10:10	2.0	-	0.10	7.58	14.0	562.6	1.84	145.0	3.58
Pump	10:17	2.7	33.70	0.10	7.40	14.1	661	1.17	120.2	18.8
	10:20	3.0	-	0.10	7.41	14.1	670	1.17	114.8	19.8
	10:23	3.3	34.60	0.10	7.40	13.9	672	1.22	116.7	19.7
•						•		-		

0.10

7.38

Purge and Sample Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

34.90

3.6

Water	Quality	Observat	ions:

clear; colorless

685

1.19

119.5

11.0

14.1

Sample Information

Final Field Parameters

		Sampling			
Sampling Method	Sample Type	Time	Container Code/Preservative	# of Bottles	Filtered (Yes/No)
(1) Submersible Pump	Groundwater	10:26	VOA-Glass	5	No
Sample Type: Groundwater, Surface	water, Stormwater, Process Water,		Amber-Glass	11	No
Grab Sample, Field Blank, or Other	(specify).		White Poly	3	No
			Yellow Poly		
			Green Poly		
			Red Total Poly	1	No
			Red Dissolved Poly		
			Total Bottles	20	

General Sampling Comments

Screened from 60.0 - 80.0 feet bgs Final DTW: 37.30

Signature

Client Name:	St. Helens		Sample Location:	MW-2
Project #:	M0830.03.006		Staff:	C. Schweitzer
Project Name:	St. Helens Lagood Phase 11	В	Sampling Date:	2/20/2023
Sampling Event:	Q1 2023		Sample Name:	MW2-20230220-GW-60
Sub Area:			Sample Depth:	~60
FSDS QA:	K. Crossley			
Easting:		Northing:		TOC:

Hydrology/Level Measurements

-	,8	<i>j</i>		**				
	Date	Time	DT-Bottom	DT -Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
	2/20/2023	13:30			40.40			

 $(0.75" = 0.023 \text{ gal/ft}) \ (1" = 0.041 \text{ gal/ft}) \ (1.5" = 0.092 \text{ gal/ft}) \ (2" = 0.163 \text{ gal/ft}) \ (3" = 0.367 \text{ gal/ft}) \ (4" = 0.653 \text{ gal/ft}) \ (6" = 1.469 \text{ gal/ft}) \ (8" = 2.611 \text{ gal/ft}) \ (8" = 2.611$

Water Quality Data

water Quanty Da	ata									
Purge Method	Time	Purge Vol (L)	WLE (ft)	Flowrate (l/min)	рН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	EH	Turbidity
(1) Submersible	13:55	2.0	41.50	0.15	8.46	14.1	605.9	0.98	283.8	73.5
Pump	14:05	3.0	-	0.10	8.43	13.4	530.6	0.78	229.0	70.5
	14:15	4.5	43.20	0.15	8.46	14.3	524.8	0.57	182.1	56.0
	14:35	6.5	-	0.10	8.54	13.8	521.5	0.43	100.2	41.6
	14:38	6.8	-	0.10	8.55	13.7	520.8	0.42	94.9	39.8
'			•		•					

Final Field Parameters 14:41 7.1 - 0.10 8.57 14.0 520.0 0.39 90.9 40.7

Purge and Sample Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump

Water	Quality	Observa	ations:

cloudy; colorless

Sample Information

(7) Other (specify)

		Sampling			
Sampling Method	Sample Type	Time	Container Code/Preservative	# of Bottles	Filtered (Yes/No)
(1) Submersible Pump	Groundwater	14:41	VOA-Glass	5	No
Sample Type: Groundwater, Surface	water, Stormwater, Process Water,		Amber-Glass	11	No
Grab Sample, Field Blank, or Other	(specify).		White Poly	3	No
			Yellow Poly		
			Green Poly		
			Red Total Poly	1	No
			Red Dissolved Poly		
			Total Bottles	20	

General Sampling Comments

Gave extra purge time at beginnning due to turbidity Screened from 50.0 to 70.0 feet Final DTW: 46.42

S ₁	gn	at	ure

Client Name:	St. Helens		Sample Location:	MW-3
Project #:	M0830.03.006		Staff:	C. Schweitzer
Project Name:	St. Helens Lagood Phase 11	В	Sampling Date:	2/14/2023
Sampling Event:	Q1 2023		Sample Name:	MW3-20230214-GW-35
Sub Area:			Sample Depth:	~35
FSDS QA:	K. Crossley			
Easting:		Northing:		TOC:

Hydrology/Level Measurements

,	<i>J</i> ,						
Date	Time	DT-Bottom	DT -Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
2/14/2023	9:20			15.60			

 $(0.75" = 0.023 \text{ gal/ft}) \ (1" = 0.041 \text{ gal/ft}) \ (1.5" = 0.092 \text{ gal/ft}) \ (2" = 0.163 \text{ gal/ft}) \ (3" = 0.367 \text{ gal/ft}) \ (4" = 0.653 \text{ gal/ft}) \ (6" = 1.469 \text{ gal/ft}) \ (8" = 2.611 \text{ gal/ft}) \ (8" = 2.611$

Water Quality Data

Purge Method	Time	Purge Vol (L)	WLE (ft)	Flowrate (l/min)	рН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ЕН	Turbidity
(2) Devistable Deve	9:40	2.00	-	0.25	7.00	14.5	478.2	2.79	-87.2	7.07
(2) Peristaltic Pump	9:43	2.75	15.78	0.25	6.89	14.2	538.3	0.92	-109.4	5.81
	9:46	3.50	15.78	0.25	6.89	14.3	535.6	0.67	-117.2	0.05
	9:56	6.00	15.78	0.25	6.95	14.5	478.0	0.58	-113.7	0.02
	9:59	6.75	15.79	0.25	6.98	14.1	460.0	0.75	-115.8	0.02
	10:02	7.50	15.80	0.25	7.01	14.2	459.8	0.75	-115.9	0.02
• -					•					

Final Field Parameters	10:05	8.25	15.80	0.25	7.02	14.3	458.1	0.70	-125.4	0.02

Purge and Sample Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water	Quality	Observa	tions:
-------	---------	---------	--------

clear; colorless; slightly effervescent

Sample Information

		Sampling				
Sampling Method	Sampling Method Sample Type		Container Code/Preservative	# of Bottles	Filtered (Yes/No)	
(2) Peristaltic Pump	Groundwater	10:05	VOA-Glass	5	No	
Sample Type: Groundwater, Surface	water, Stormwater, Process Water,		Amber-Glass 11			
Grab Sample, Field Blank, or Other	(specify).		White Poly 3			
			Yellow Poly			
			Green Poly			
			Red Total Poly	1	No	
			Red Dissolved Poly			
			Total Bottles	20		

General Sampling Comments

DUP collected here: MW3-20230214-GW-35-DUP Screened from 25.0 - 45.0 feet Final DTW: 15.79

Signature

Client Name:	St. Helens		Sample Location:	MW-4
Project #:	M0830.03.006		Staff:	C. Schweitzer
Project Name:	St. Helens Lagood Phase 1	В	Sampling Date:	2/14/2023
Sampling Event:	Q1 2023		Sample Name:	MW4-20230214-GW-40
Sub Area:			Sample Depth:	~40
FSDS QA:	K. Crossley			
Easting:		Northing:		TOC:

Hydrology/Level Measurements

,	<i>J</i> ,						
Date	Time	DT-Bottom	DT -Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
2/14/2023	13:50			19.99			

 $(0.75" = 0.023 \text{ gal/ft}) \ (1" = 0.041 \text{ gal/ft}) \ (1.5" = 0.092 \text{ gal/ft}) \ (2" = 0.163 \text{ gal/ft}) \ (3" = 0.367 \text{ gal/ft}) \ (4" = 0.653 \text{ gal/ft}) \ (6" = 1.469 \text{ gal/ft}) \ (8" = 2.611 \text{ gal/ft}) \ (8" = 2.611$

Water Quality Data

water Quanty Da	ata									
Purge Method	Time	Purge Vol (L)	WLE (ft)	Flowrate (l/min)	рН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ЕН	Turbidity
(2) Peristaltic Pump	14:05	2.0	19.99	0.40	6.84	16.0	2085	1.59	-139.1	>1100
	14:15	6.0	19.99	0.40	6.94	16.2	2096	0.27	-137.2	71.2
	14:25	10.0	19.99	0.40	6.92	16.2	2105	0.21	-156.5	54.8
	14:28	11.2	19.99	0.40	6.92	16.0	2107	0.22	-156.0	42.0
	14:31	12.4	19.99	0.40	6.92	15.9	2096	0.23	-155.5	38.4
	14:34	13.6	19.99	0.40	6.92	16.1	2103	0.22	-155.4	27.6
						-				
i				T		1 1				

Final Field Parameters	14:37	14.8	19.99	0.40	6.93	16.0	2102	0.23	-155.0	22.3
Purge and Sample Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump										

Water	Quality	Observatio	ns:

slightly cloudy; slight brown tint

Sample Information

(7) Other (specify)

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	# of Bottles	Filtered (Yes/No)
(2) Peristaltic Pump	Groundwater	14:37	VOA-Glass	5	No
Sample Type: Groundwater, Surface	water, Stormwater, Process Water,		Amber-Glass	11	No
Grab Sample, Field Blank, or Other	(specify).		White Poly	3	No
			Yellow Poly		
			Green Poly		
			Red Total Poly	1	No
			Red Dissolved Poly		
			Total Bottles	20	

General Sampling Comments

Well under pressure when opened. Very turbid to start, gave it extra purge time at start to help lower turbidity, and gave it extra time after "stable" for more time to lower turbidity. Screened from 30.0 - 50.0 feet bgs Final DTW: 19.99

Signature	Cody Schweitzer
31511414116	Cody Schweitzer

Client Name:	St. Helens		Sample Location:	MW-5
Project #:	M0830.03.006		Staff:	C. Schweitzer
Project Name:	St. Helens Lagood Phase 11	В	Sampling Date:	2/14/2023
Sampling Event:	Q1 2023		Sample Name:	MW5-20230214-GW-40
Sub Area:			Sample Depth:	~40
FSDS QA:	K. Crossley			
Easting:		Northing:		TOC:

Hydrology/Level Measurements

,	<i>J</i> ,						
Date	Time	DT-Bottom	DT -Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
2/14/2023	12:25			18.80			

 $(0.75" = 0.023 \text{ gal/ft}) \ (1" = 0.041 \text{ gal/ft}) \ (1.5" = 0.092 \text{ gal/ft}) \ (2" = 0.163 \text{ gal/ft}) \ (3" = 0.367 \text{ gal/ft}) \ (4" = 0.653 \text{ gal/ft}) \ (6" = 1.469 \text{ gal/ft}) \ (8" = 2.611 \text{ gal/ft}) \ (8" = 2.611$

Water Quality Data

water Quanty Da	ııa									
Purge Method	Time	Purge Vol (L)	WLE (ft)	Flowrate (l/min)	рН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	EH	Turbidity
(2) Peristaltic Pump	12:35	2.00	18.85	0.35	6.97	15.5	1725	2.45	-135.2	0.36
(2) Peristante Pullip	12:45	5.50	18.85	0.35	6.85	15.6	1813	0.42	-151.0	0.26
	12:48	6.55	18.85	0.35	6.86	15.5	1814	0.40	-151.4	0.02
_										
_										
[

Final Field Parameters	12:51	7.60	18.85	0.35	6.87	15.5	1812	0.37	-151.3	0.71
Purge and Sample Methods	: (1) Submersible	Pump (2) Peristal	tic Pump (3) D	isposable Bailer (4) Vacuum l	Pump (5) Ded	icated Bailer (6) Ine	rtia Pump		

Water Quality Observations:

clear; colorless; effervescent

Sample Information

(7) Other (specify)

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	# of Bottles	Filtered (Yes/No)
(2) Peristaltic Pump	Groundwater	12:51	VOA-Glass	5	No
Sample Type: Groundwater, Surface	water, Stormwater, Process Water,		Amber-Glass	11	No
Grab Sample, Field Blank, or Other	(specify).		White Poly	3	No
			Yellow Poly		
			Green Poly		
			Red Total Poly	1	No
			Red Dissolved Poly		
			Total Bottles	20	

General Sampling Comments

Screened from 30.0 - 50.0 feet bgs Final DTW: 18.85

Signature

Client Name:	St. Helens		Sample Location:	MW-6
Project #:	M0830.03.006		Staff:	C. Schweitzer
Project Name:	St. Helens Lagood Phase 11	В	Sampling Date:	2/14/2023
Sampling Event:	Q1 2023		Sample Name:	: MW1-20230214-GW-40.25
Sub Area:			Sample Depth:	~40.25
FSDS QA:	K. Crossley			
Easting:		Northing:		TOC:

Hydrology/Level Measurements

_	,8	<i>j</i>		**				
	Date	Time	DT-Bottom	DT -Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
Γ	2/14/2023	15:50			19.75			

 $(0.75" = 0.023 \text{ gal/ft}) \ (1" = 0.041 \text{ gal/ft}) \ (1.5" = 0.092 \text{ gal/ft}) \ (2" = 0.163 \text{ gal/ft}) \ (3" = 0.367 \text{ gal/ft}) \ (4" = 0.653 \text{ gal/ft}) \ (6" = 1.469 \text{ gal/ft}) \ (8" = 2.611 \text{ gal/ft}) \ (8" = 2.611$

Water Quality Data

water Quanty Da	utu									
Purge Method	Time	Purge Vol (L)	WLE (ft)	Flowrate (l/min)	рН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ЕН	Turbidity
(2) Peristaltic Pump	16:01	2.0	19.75	0.40	6.92	14.8	1855	0.74	-137.7	3.12
(2) I elistatic I ullip	16:11	6.0	19.75	0.40	6.95	14.8	1858	0.32	-150.1	3.02
	16:14	7.2	19.75	0.40	6.95	14.9	1853	0.24	-150.6	0.84
							·			•
Final Field Parameters	16:17	8.4	19.75	0.40	6.95	14.9	1849	0.19	-151.2	3.58

Purge and Sample Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water	Quality	Observations:

clear; colorless; slightly effervescent

Sample Information

		Sampling			
Sampling Method Sample Type		Time	Container Code/Preservative	# of Bottles	Filtered (Yes/No)
(2) Peristaltic Pump	Groundwater	16:17	VOA-Glass	5	No
Sample Type: Groundwater, Surface	water, Stormwater, Process Water,		Amber-Glass	11	No
Grab Sample, Field Blank, or Other	(specify).		White Poly 3		No
			Yellow Poly		
			Green Poly		
			Red Total Poly	1	No
			Red Dissolved Poly		
			Total Bottles	20	

General Sampling Comments

Screened from 30.5 - 50.5 feet bgs Final DTW: 19.75

Signature

Client Name:	St. Helens		Sample Location:	MFA-B3A
Project #:	M0830.03.006		Staff:	C. Schweitzer
Project Name:	St. Helens Lagood Phase 11	В	Sampling Date:	2/7/2023
Sampling Event:	Q1 2023		Sample Name:	MFA-B3A-20230207-GW-36.0
Sub Area:			Sample Depth:	~36
FSDS QA:	K. Crossley			
Easting:		Northing:		TOC:

Hydrology/Level Measurements

	<i>j</i> /		**				
Date	Time	DT-Bottom	DT -Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
2/7/2023	8:00			17.60			

 $(0.75" = 0.023 \text{ gal/ft}) \ (1" = 0.041 \text{ gal/ft}) \ (1.5" = 0.092 \text{ gal/ft}) \ (2" = 0.163 \text{ gal/ft}) \ (3" = 0.367 \text{ gal/ft}) \ (4" = 0.653 \text{ gal/ft}) \ (6" = 1.469 \text{ gal/ft}) \ (8" = 2.611 \text{ gal/ft}) \ (8" = 2.611$

Water Q	uality	Data
---------	--------	------

water Quality Da	ııa									
Purge Method	Time	Purge Vol (L)	WLE (ft)	Flowrate (l/min)	рН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ЕН	Turbidity
(2) Peristaltic Pump										
		· ·			1					
Final Field Parameters	8:30	=	17.60	-	6.97	7.6	706.2	6.51	100.0	overrange

Purge and Sample Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water	Quality	Observatio	ns:

cloudy; brown tint; highly turbid

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	# of Bottles	Filtered (Yes/No)
(2) Peristaltic Pump	Groundwater	8:30	VOA-Glass	5	No
Sample Type: Groundwater, Surface	water, Stormwater, Process Water,		Amber-Glass	11	No
Grab Sample, Field Blank, or Other	(specify).		White Poly	3	No
			Yellow Poly		
			Green Poly		
			Red Total Poly	1	No
			Red Dissolved Poly		
			Total Bottles	20	

General Sampling Comments

Initial WL after well install: 2/6 @ $1500 = \sim 31.0$ / WL prior to purge after setting for 45 min: 2/6 @ 1545 =~25.70 / WL after purgin ~2-3 gallons = dry

WL the next morning: 2/7 @ 0800: 17.60 / DTB the next morning: 2/7 @ 0800: 40.0 TOD: 2.5' above water level of lagoon / TOC: 2.4' above top of deck

WL measurement point: Top of casing 4.9' above lagoon WL / Screened from 34.0 - 38.0 feet below TOD

٥.				
- 51	on	at	ur	Έ

APPENDIX C LAB REPORTS

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Item #2.

AMENDED REPORT

Monday, December 12, 2022 David Weatherby Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

RE: A2H0382 - St. Helens Lagoon - [none]

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A2H0382, which was received by the laboratory on 8/10/2022 at 6:25:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1 3.1 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

134

6700 S.W. S

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Apex Laboratories

ORELAP ID: OR100062

Item #2.

AMENDED REPORT

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DU1-20220810-ISM-COMP	A2H0382-01	Sediment	08/10/22 09:15	08/10/22 18:25
DU1-20220810-ISM-COMP	A2H0382-02	Sediment	08/10/22 09:15	08/10/22 18:25
DU1-20220810-ISM-COMP	А2Н0382-03	Sediment	08/10/22 09:15	08/10/22 18:25

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

AMENDED REPORT

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

ANALYTICAL CASE NARRATIVE

Work Order: A2H0382

Amended Report Revision 1:

8270E Organophosphorus Pesticides Data Correction

This report supersedes all previous reports.

Sample DU1-20220810-ISM-COMP (A2H0382-02): Originally reported Merphos with a positive result. Corrected result is Non-Detect at 18,200ug/kg. Reporting limit is raised due to non-target analyte matrix interference

Mark Zehr Organics Manager 11/28/2022

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

PORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Apex Laboratories

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

ANALYTICAL SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
DU1-20220810-ISM-COMP (A2H0382-02)				Matrix: Sediment Batch: 22H0779			PRO		
Diesel	20500	2110	4230	mg/kg dry	100	08/23/22 06:03	NWTPH-Dx	F-13	
Oil	ND	4230	8460	mg/kg dry	100	08/23/22 06:03	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Re	ecovery: %	Limits: 50-150 %	100	08/23/22 06:03	NWTPH-Dx	S-01	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

AMENDED REPORT

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

ANALYTICAL SAMPLE RESULTS

Gasoline	Range Hy	drocarbons	(Benzene th	nrough Naphtha	alene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DU1-20220810-ISM-COMP (A2H0382-01)				Matrix: Sedi	ment	Batch:	22H0476	
Gasoline Range Organics	ND	182	182	mg/kg dry	50	08/12/22 17:17	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recove	ery: 105 % 101 %	Limits: 50-150 % 50-150 %	-	08/12/22 17:17 08/12/22 17:17	NWTPH-Gx (MS) NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
	result	Limit	Little			<u> </u>		11016
DU1-20220810-ISM-COMP (A2H0382-01)				Matrix: Sed			22H0476	
Acetone	ND	18200	36500	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Acrylonitrile	ND	1820	3650	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Benzene	ND	182	365	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Bromobenzene	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Bromochloromethane	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Bromodichloromethane	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Bromoform	ND	1820	3650	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Bromomethane	ND	18200	18200	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
2-Butanone (MEK)	ND	9110	18200	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
n-Butylbenzene	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
sec-Butylbenzene	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
tert-Butylbenzene	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Carbon disulfide	ND	9110	18200	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Carbon tetrachloride	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Chlorobenzene	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Chloroethane	ND	9110	18200	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Chloroform	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Chloromethane	ND	4560	9110	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
2-Chlorotoluene	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
4-Chlorotoluene	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Dibromochloromethane	ND	1820	3650	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	4560	9110	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
1,2-Dibromoethane (EDB)	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Dibromomethane	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
1,2-Dichlorobenzene	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
,3-Dichlorobenzene	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
,4-Dichlorobenzene	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Dichlorodifluoromethane	ND	1820	3650	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
,1-Dichloroethane	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
,2-Dichloroethane (EDC)	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
,1-Dichloroethene	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
is-1,2-Dichloroethene	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
rans-1,2-Dichloroethene	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Mathad Daf	Notes
Analyte	NESUII		Pittill			•	Method Ref.	notes
DU1-20220810-ISM-COMP (A2H0382-01)				Matrix: Sed	liment	Batch:	22H0476	
1,2-Dichloropropane	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
1,3-Dichloropropane	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
2,2-Dichloropropane	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
1,1-Dichloropropene	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
cis-1,3-Dichloropropene	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
trans-1,3-Dichloropropene	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Ethylbenzene	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Hexachlorobutadiene	ND	1820	3650	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
2-Hexanone	ND	18200	18200	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Isopropylbenzene	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
4-Isopropyltoluene	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Methylene chloride	ND	9110	18200	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	9110	18200	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Naphthalene	ND	1820	3650	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
n-Propylbenzene	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Styrene	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Tetrachloroethene (PCE)	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Toluene	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
1,2,3-Trichlorobenzene	ND	4560	9110	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
1,2,4-Trichlorobenzene	ND	4560	9110	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
1,1,1-Trichloroethane	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
1,1,2-Trichloroethane	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Trichloroethene (TCE)	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
Trichlorofluoromethane	ND	1820	3650	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
,2,3-Trichloropropane	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
,2,4-Trimethylbenzene	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
1,3,5-Trimethylbenzene	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
/inyl chloride	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
n,p-Xylene	ND	911	1820	ug/kg dry	50	08/12/22 17:17	5035A/8260D	
o-Xylene	ND	456	911	ug/kg dry	50	08/12/22 17:17	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D										
Analyte	Sample Result	Detection Limit	Reporting Limit	Uı	nits	Dilution	Date Analyzed	Method Ref.	Notes	
DU1-20220810-ISM-COMP (A2H0382-01)		M			rix: Sedi	ment	Batch: 22H0476			
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 103 %	Limits:	80-120 %	1	08/12/22 17:17	5035A/8260D		
Toluene-d8 (Surr)			95 %		80-120 %	1	08/12/22 17:17	5035A/8260D		
4-Bromofluorobenzene (Surr)			101 %		79-120 %	1	08/12/22 17:17	5035A/8260D		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DU1-20220810-ISM-COMP (A2H0382-01)				Matrix: Sec	diment	Batch: 22H0946		H-01
Benzene	ND	36.5	72.9	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	
Toluene	ND	182	182	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	
Ethylbenzene	ND	91.1	182	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	
m,p-Xylene	ND	182	365	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	
o-Xylene	ND	91.1	182	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	
1,2,4-Trimethylbenzene	ND	182	365	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	
1,3,5-Trimethylbenzene	ND	182	365	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	
Chloroform	ND	182	365	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	
1,2-Dibromo-3-chloropropane	ND	91.1	182	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	
1,2-Dibromoethane (EDB)	ND	36.5	72.9	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	
1,1-Dichloroethane	ND	36.5	72.9	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	
1,2-Dichloroethane (EDC)	ND	36.5	72.9	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	0.20
1,1-Dichloroethene	ND	72.9	72.9	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	Q-30
cis-1,2-Dichloroethene	ND	36.5	72.9	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	
trans-1,2-Dichloroethene	ND	36.5	72.9	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	
1,2-Dichloropropane	ND	36.5	72.9	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	
cis-1,3-Dichloropropene	ND	36.5	72.9	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	
trans-1,3-Dichloropropene	ND	36.5	72.9	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	
Methyl tert-butyl ether (MTBE)	ND	36.5	72.9	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	
Tetrachloroethene (PCE)	ND	583	583	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM	B-07

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting		Date				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
DU1-20220810-ISM-COMP (A2H0382-01)				Matrix: Sediment Batch: 22H0946		22H0946	H-01		
1,1,2,2-Tetrachloroethane	ND	91.1	182	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM		
Trichloroethene (TCE)	ND	36.5	72.9	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM		
1,2,3-Trichloropropane	ND	91.1	182	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM		
Vinyl chloride	ND	182	365	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM		
1,1,2-Trichloroethane	ND	91.1	182	ug/kg dry	100	08/26/22 15:07	5035A/8260D SIM		
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-120 %	5 1	08/26/22 15:07	5035A/8260D SIM		
Toluene-d8 (Surr)			100 %	80-120 %	<i>i</i> 1	08/26/22 15:07	5035A/8260D SIM		
4-Bromofluorobenzene (Surr)			103 %	79-120 %	1	08/26/22 15:07	5035A/8260D SIM		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

ANALYTICAL SAMPLE RESULTS

Analyta	Sample	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	NT 4
Analyte	Result	Limit	Limit			•		Note
DU1-20220810-ISM-COMP (A2H0382-02)				Matrix: Sec	diment	Batch: 22H0777		PRO
Acenaphthene	ND	141	283	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Acenaphthylene	ND	141	283	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Anthracene	211	141	283	ug/kg dry	40	08/23/22 11:47	EPA 8270E	Ja
Benz(a)anthracene	ND	141	283	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Benzo(a)pyrene	ND	212	424	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Benzo(b)fluoranthene	ND	212	424	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Benzo(k)fluoranthene	ND	212	424	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Benzo(g,h,i)perylene	ND	141	283	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Chrysene	ND	141	283	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Dibenz(a,h)anthracene	ND	141	283	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Fluoranthene	179	141	283	ug/kg dry	40	08/23/22 11:47	EPA 8270E	Ja
Fluorene	ND	141	283	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	141	283	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
l-Methylnaphthalene	ND	283	565	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
2-Methylnaphthalene	ND	283	565	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Naphthalene	ND	283	565	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Phenanthrene	366	141	283	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Pyrene	189	141	283	ug/kg dry	40	08/23/22 11:47	EPA 8270E	Ja
Carbazole	ND	212	424	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Dibenzofuran	ND	141	283	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
2-Chlorophenol	ND	707	1410	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
4-Chloro-3-methylphenol	ND	1410	2830	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
2,4-Dichlorophenol	ND	707	1410	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
2,4-Dimethylphenol	ND	707	1410	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
2,4-Dinitrophenol	ND	3530	7070	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	3530	7070	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
2-Methylphenol	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
3+4-Methylphenol(s)	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
2-Nitrophenol	ND	1410	2830	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
4-Nitrophenol	ND	1410	2830	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Pentachlorophenol (PCP)	ND	1410	2830	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Phenol	ND	283	565	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	707	1410	ug/kg dry	40	08/23/22 11:47	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

Project: St. Helens Lagoon
Project Number: [none]

3140 NE Broadway Street Portland, OR 97232

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
DU1-20220810-ISM-COMP (A2H0382-02)				Matrix: Sed	liment	Batch:	22H0777	PRO
2,3,5,6-Tetrachlorophenol	ND	707	1410	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
2,4,5-Trichlorophenol	ND	707	1410	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Nitrobenzene	ND	1410	2830	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
2,4,6-Trichlorophenol	ND	707	1410	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Bis(2-ethylhexyl)phthalate	11800	2120	4240	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Butyl benzyl phthalate	ND	707	1410	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Diethylphthalate	ND	707	1410	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Dimethylphthalate	ND	707	1410	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Di-n-butylphthalate	ND	707	1410	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Di-n-octyl phthalate	ND	1130	1410	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
N-Nitrosodimethylamine	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
N-Nitrosodiphenylamine	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Hexachlorobenzene	ND	141	283	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Hexachlorobutadiene	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Hexachlorocyclopentadiene	ND	707	1410	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Hexachloroethane	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
2-Chloronaphthalene	ND	141	283	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
1,2,4-Trichlorobenzene	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
4-Bromophenyl phenyl ether	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Aniline	ND	707	1410	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
1-Chloroaniline	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
-Nitroaniline	ND	2830	5650	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
-Nitroaniline	ND	2830	5650	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
-Nitroaniline	ND	2830	5650	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
,4-Dinitrotoluene	ND	1410	2830	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
,6-Dinitrotoluene	ND	1410	2830	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Benzoic acid	ND	17700	35300	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
denzyl alcohol	ND	707	1410	ug/kg dry	40	08/23/22 11:47	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
DU1-20220810-ISM-COMP (A2H0382-02)				Matrix: Sedi	ment	Batch:	22H0777	PRO
Isophorone	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Azobenzene (1,2-DPH)	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	3530	7070	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
3,3'-Dichlorobenzidine	ND	2830	5650	ug/kg dry	40	08/23/22 11:47	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	3530	7070	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
1,3-Dinitrobenzene	ND	3530	7070	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
1,4-Dinitrobenzene	ND	3530	7070	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Pyridine	ND	707	1410	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
1,2-Dichlorobenzene	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
1,3-Dichlorobenzene	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
1,4-Dichlorobenzene	ND	353	707	ug/kg dry	40	08/23/22 11:47	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recovery	y: 46 %	Limits: 37-122 %	6 40	08/23/22 11:47	EPA 8270E	S-05
2-Fluorobiphenyl (Surr)			48 %	44-120 %	6 40	08/23/22 11:47	EPA 8270E	S-05
Phenol-d6 (Surr)			37 %	33-122 %	6 40	08/23/22 11:47	EPA 8270E	S-05
p-Terphenyl-d14 (Surr)			55 %	54-127 %	6 40	08/23/22 11:47	EPA 8270E	S-05
2-Fluorophenol (Surr)			9 %	35-120 %	6 40	08/23/22 11:47	EPA 8270E	S-05
2,4,6-Tribromophenol (Surr)			32 %	39-132 %	6 40	08/23/22 11:47	EPA 8270E	S-05

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

ANALYTICAL SAMPLE RESULTS

Analyta	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Analyte	Resuit	Limit	Limit			-		
DU1-20220810-ISM-COMP (A2H0382-02)				Matrix: Sedir	ment	Batch:	22H0778	PRO, R-04
Azinphos methyl (Guthion)	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Chlorpyrifos	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Coumaphos	ND	4230	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Demeton O	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Demeton S	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Diazinon	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Dichlorvos	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Dimethoate	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Disulfoton	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
EPN	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Ethoprop	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Fensulfothion	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Fenthion	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Malathion	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Merphos	ND	18200	18200	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	R-02, AMENI
Methyl parathion	ND	4230	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Mevinphos (Phosdrin)	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Monocrotophos	ND	4230	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Naled (Dibrom)	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Parathion, ethyl	ND	6170	6170	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	R-02
Phorate	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Ronnel (Fenchlorphos)	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Sulfotep	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Sulprofos (Bolstar)	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
ГЕРР	ND	8460	16900	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Tetrachlorvinphos (Rabon)	ND	9640	9640	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	R-02
Tokuthion (Prothiofos)	ND	2110	4230	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	
Trichloronate	ND	6090	6090	ug/kg dry	40	08/23/22 10:48	EPA 8270E OPPs	R-02
Surrogate: Tributyl phosphate (Surr)		Recove	ery: 574%	Limits: 10-136 %	40	08/23/22 10:48	EPA 8270E OPPs	S-05
Triphenyl phosphate (Surr)			368 %	34-121 %	40	08/23/22 10:48	EPA 8270E OPPs	S-05

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

ANALYTICAL SAMPLE RESULTS

		Organochlor	ine Pesticid	es by GC/MS/M	S			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DU1-20220810-ISM-COMP (A2H0382-02)				Matrix: Sedi	ment	Batch	: 2210773	H-08, PRO
Aldrin	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
alpha-BHC	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
beta-BHC	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
gamma-BHC (Lindane)	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
delta-BHC	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
cis-Chlordane	1.46	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
cis-Nonachlor	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
2,4'-DDD	ND	1.06	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
2,4'-DDE	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
2,4'-DDT	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
4,4'-DDD	ND	1.06	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
4,4'-DDE	5.48	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
4,4'-DDT	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
Dieldrin	ND	1.17	1.17	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	R-02
Endosulfan I	ND	10.7	10.7	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	R-02
Endosulfan II	ND	3.71	3.71	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	R-02
Endosulfan sulfate	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
Endrin	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
Endrin Aldehyde	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
Endrin ketone	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
Heptachlor	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
Heptachlor epoxide	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
Hexachlorobutadiene	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
Methoxychlor	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
Mirex	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
Oxychlordane	ND	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
trans-Chlordane	1.99	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
trans-Nonachlor	1.08	0.530	1.06	ug/kg dry	1	09/26/22 16:15	EPA 8270E OCPs	
Surrogate: gamma-BHC-d6 (Surr)		Reco	very: 70 %	Limits: 50-150 %	1	09/26/22 16:15	EPA 8270E OCP	ĭ
4,4'-DDT-d8 (Surr)			107 %	50-150 %	1	09/26/22 16:15	EPA 8270E OCP	ï

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 602	20B (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DU1-20220810-ISM-COMP (A2H0382-02)				Matrix: Sed	liment			
Batch: 22H0793								
Antimony	2.62	0.286	0.571	mg/kg dry	5	08/23/22 20:31	EPA 6020B	PRO
Arsenic	4.21	0.286	0.571	mg/kg dry	5	08/23/22 20:31	EPA 6020B	PRO
Barium	339	0.286	0.571	mg/kg dry	5	08/23/22 20:31	EPA 6020B	PRO
Beryllium	0.327	0.0571	0.114	mg/kg dry	5	08/23/22 20:31	EPA 6020B	PRO
Cadmium	2.97	0.0571	0.114	mg/kg dry	5	08/23/22 20:31	EPA 6020B	PRO
Chromium	70.1	0.286	0.571	mg/kg dry	5	08/23/22 20:31	EPA 6020B	PRO
Copper	259	0.571	1.14	mg/kg dry	5	08/23/22 20:31	EPA 6020B	PRO
Lead	27.1	0.0571	0.114	mg/kg dry	5	08/23/22 20:31	EPA 6020B	PRO
Manganese	711	0.286	0.571	mg/kg dry	5	08/23/22 20:31	EPA 6020B	PRO
Mercury	0.485	0.0228	0.0457	mg/kg dry	5	08/23/22 20:31	EPA 6020B	PRO
Nickel	37.8	0.571	1.14	mg/kg dry	5	08/23/22 20:31	EPA 6020B	PRO
Selenium	2.46	0.286	0.571	mg/kg dry	5	08/23/22 20:31	EPA 6020B	PRO
Silver	2.27	0.0571	0.114	mg/kg dry	5	08/23/22 20:31	EPA 6020B	PRO
Thallium	ND	0.286	0.571	mg/kg dry	5	08/23/22 20:31	EPA 6020B	PRO
Zinc	817	1.14	2.28	mg/kg dry	5	08/23/22 20:31	EPA 6020B	PRO

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

ANALYTICAL SAMPLE RESULTS

Т	otal Hexav	alent Chromi	ium by Color	imetric Spec	trophoton	netry							
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes					
DU1-20220810-ISM-COMP (A2H0382-02)				Matrix: Sec	liment	Batch:	22H0747	PRO					
Chromium (VI)													

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Item #2.

ANALYTICAL REPORT

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DU1-20220810-ISM-COMP (A2H0382-01)				Matrix: Se	ediment	Batch:	22H0481	
% Solids	6.71	1.00	1.00	%	1	08/26/22 08:44	EPA 8000D	
DU1-20220810-ISM-COMP (A2H0382-02)				Matrix: Se	ediment	Batch:	22H0773	PRO
% Solids	93.7	1.00	1.00	%	1	08/22/22 15:57	EPA 8000D	
DU1-20220810-ISM-COMP (A2H0382-03)				Matrix: Se	ediment	Batch:	22H0481	
% Solids	6.71	1.00	1.00	%	1	08/15/22 07:02	EPA 8000D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

Weck Laboratories, Inc.

ANALYTICAL SAMPLE RESULTS (Subcontracted)

		Chlorinate	ed Herbicide	s by GC/ECD				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DU1-20220810-ISM-COMP (A2H0382-02)				Matrix: Sedi	ment	Batch: V	V2H1928	
Batch: W2H1928								
2,4-D	ND	330	1400	ug/kg	10	09/01/22 10:47	EPA 8151A	M-02, M-04
2,4-DB	ND	580	2900	ug/kg	10	09/01/22 10:47	EPA 8151A	M-02, M-04
2,4,5-T	ND	150	720	ug/kg	10	09/01/22 10:47	EPA 8151A	M-02, M-04
2,4,5-TP (Silvex)	ND	180	720	ug/kg	10	09/01/22 10:47	EPA 8151A	M-02, M-04
Dalapon	ND	260	1400	ug/kg	10	09/01/22 10:47	EPA 8151A	M-02, M-04
Dicamba	ND	240	1400	ug/kg	10	09/01/22 10:47	EPA 8151A	M-02, M-04
Dichloroprop	ND	240	1400	ug/kg	10	09/01/22 10:47	EPA 8151A	M-02, M-04
Dinoseb	ND	83	720	ug/kg	10	09/01/22 10:47	EPA 8151A	M-02, M-04
MCPA	ND	54000	140000	ug/kg	10	09/01/22 10:47	EPA 8151A	M-02, M-04
MCPP	ND	140000	140000	ug/kg	10	09/01/22 10:47	EPA 8151A	M-02, M-04
Pentachlorophenol	ND	230	720	ug/kg	10	09/01/22 10:47	EPA 8151A	M-02, M-04
Picloram Batch: W2H1928	ND	220	720	ug/kg	10	09/01/22 10:47	EPA 8151A	M-02, M-04
Surrogate: 2,4-DCAA		Reco	very: 78 %	Limits: 13-119 %	5 10	09/01/22 10:47	EPA 8151A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

AMENDED REPORT

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

Weck Laboratories, Inc.

ANALYTICAL SAMPLE RESULTS (Subcontracted)

Conve	ntional Che	mistry/Phys	ical Paramet	ers by APHA/	EPA/ASTI	M Methods		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DU1-20220810-ISM-COMP (A2H0382-02)	W2H1882							
Batch: W2H1882								_
% Solids	93.9		0.100	% by Weight	1	08/24/22 16:39	EPA 160.3M	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

A2H0382 - 12 12 22 1538

APEXLABORATORIES

AMENDED REPORT

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

QUALITY CONTROL (QC) SAMPLE RESULTS

		Di	esel and/o	or Oil Hyd	rocarbo	ns by NW	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0779 - EPA 3546 (F	uels)						Se	diment				
Blank (22H0779-BLK1)			Prepared	d: 08/22/22 1	6:14 Ana	alyzed: 08/23	3/22 05:23					
NWTPH-Dx												
Diesel	ND	9.09	18.2	mg/kg w	et 1							
Oil	ND	18.2	36.4	mg/kg w	et 1							
Surr: o-Terphenyl (Surr)		Reco	very: 97 %	Limits: 50	150 %	Dil	lution: 1x					
LCS (22H0779-BS1)			Prepared	d: 08/22/22 1	6:14 Ana	alyzed: 08/23	3/22 05:43					
NWTPH-Dx												
Diesel	121	10.0	20.0	mg/kg w	et 1	125		97	38-132%			
Surr: o-Terphenyl (Surr)		Recov	ery: 105 %	Limits: 50	150 %	Dil	lution: 1x					
Duplicate (22H0779-DUP1)			Prepared	d: 08/22/22 1	6:14 Ana	alyzed: 08/23	3/22 06:23					PRO
QC Source Sample: DU1-2022081	0-ISM-CON	1P (A2H0382-0	(2)									
NWTPH-Dx												
Diesel	23300	2130	4250	mg/kg dı	y 100		20500			12	30%	F-1
Oil	ND	4250	8500	mg/kg dı	y 100		ND				30%	
Surr: o-Terphenyl (Surr)		Re	covery: %	Limits: 50	150 %	Dil	lution: 100x	r				S-01

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range H	lydrocarbo	ons (Ben	zene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0476 - EPA 5035A							So	il				
Blank (22H0476-BLK1)			Prepared	1: 08/12/22	08:22 Ana	lyzed: 08/12	/22 16:01					
NWTPH-Gx (MS) Gasoline Range Organics	ND	1.67	3.33	mg/kg v	wet 50							
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	very: 101 % 103 %	Limits: 5	0-150 % 0-150 %	Dilı	ution: 1x					
LCS (22H0476-BS2)			Prepared	d: 08/12/22	08:22 Ana	yzed: 08/12	/22 14:44					
NWTPH-Gx (MS)												
Gasoline Range Organics	23.0	2.50	5.00	mg/kg v		25.0		92	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 96 %	Limits: 5		Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			100 %	5	0-150 %		"					
Duplicate (22H0476-DUP1)			Prepared	d: 08/10/22	09:15 Ana	yzed: 08/12	/22 17:42					
QC Source Sample: DU1-2022081	0-ISM-COM	IP (A2H0382-0	<u>)1)</u>									
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	91.1	182	mg/kg	dry 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Recov	ery: 104 %	Limits: 5	i0-150 %	Dilı	ıtion: 1x					_
1,4-Difluorobenzene (Sur)			100 %	5	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

% REC RPD Detection Reporting Spike Source % REC Result Units Dilution RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 22H0476 - EPA 5035A Soil Blank (22H0476-BLK1) Prepared: 08/12/22 08:22 Analyzed: 08/12/22 16:01 5035A/8260D ND 333 667 ug/kg wet Acetone 50 ND 66.7 50 Acrylonitrile 33.3 ug/kg wet Benzene ND 3.33 6.67 ug/kg wet 50 ND 8.33 16.7 Bromobenzene ug/kg wet 50 Bromochloromethane ND 16.7 33.3 ug/kg wet 50 ND Bromodichloromethane 33.3 ug/kg wet 50 16.7 Bromoform ND 33.3 66.7 ug/kg wet 50 Bromomethane ND 333 333 ug/kg wet 50 2-Butanone (MEK) ND 167 333 ug/kg wet 50 n-Butylbenzene ND 16.7 33.3 50 ug/kg wet sec-Butylbenzene ND 16.7 33.3 ug/kg wet 50 ND tert-Butylbenzene 16.7 33.3 50 ug/kg wet ---Carbon disulfide ND 167 333 ug/kg wet 50 Carbon tetrachloride ND 16.7 33.3 ug/kg wet 50 Chlorobenzene ND 8.33 16.7 ug/kg wet 50 Chloroethane ND 167 333 ug/kg wet 50 ---Chloroform ND 16.7 33.3 ug/kg wet 50 83.3 167 ug/kg wet Chloromethane ND 50 2-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 4-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 Dibromochloromethane ND 33.3 66.7 ug/kg wet 50 1,2-Dibromo-3-chloropropane ND 83.3 167 ug/kg wet 50 1,2-Dibromoethane (EDB) ND 16.7 33.3 ug/kg wet 50 Dibromomethane ND 16.7 33.3 50 ug/kg wet

Apex Laboratories

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

Dichlorodifluoromethane

1,2-Dichloroethane (EDC)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

ND

ND

ND

ND

ND

ND

ND

ND

ND

8.33

8.33

8.33

33.3

8.33

8.33

8.33

8.33

8.33

16.7

16.7

16.7

66.7

16.7

16.7

16.7

16.7

16.7

ug/kg wet

50

50

50

50

50

50

50

50

50

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0476 - EPA 5035A							Soi	I				
Blank (22H0476-BLK1)			Prepared	: 08/12/22 0	8:22 Anal	yzed: 08/12/	/22 16:01					
1,2-Dichloropropane	ND	8.33	16.7	ug/kg we	t 50							
1,3-Dichloropropane	ND	16.7	33.3	ug/kg we	t 50							
2,2-Dichloropropane	ND	16.7	33.3	ug/kg we	t 50							
1,1-Dichloropropene	ND	16.7	33.3	ug/kg we	t 50							
cis-1,3-Dichloropropene	ND	16.7	33.3	ug/kg we	t 50							
trans-1,3-Dichloropropene	ND	16.7	33.3	ug/kg we	t 50							
Ethylbenzene	ND	8.33	16.7	ug/kg we	t 50							
Hexachlorobutadiene	ND	33.3	66.7	ug/kg we	t 50							
2-Hexanone	ND	333	333	ug/kg we								
Isopropylbenzene	ND	16.7	33.3	ug/kg we	t 50							
4-Isopropyltoluene	ND	16.7	33.3	ug/kg we	t 50							
Methylene chloride	ND	167	333	ug/kg we								
4-Methyl-2-pentanone (MiBK)	ND	167	333	ug/kg we								
Methyl tert-butyl ether (MTBE)	ND	16.7	33.3	ug/kg we								
Naphthalene	ND	33.3	66.7	ug/kg we	t 50							
n-Propylbenzene	ND	8.33	16.7	ug/kg we								
Styrene	ND	16.7	33.3	ug/kg we								
1,1,1,2-Tetrachloroethane	ND	8.33	16.7	ug/kg we								
1,1,2,2-Tetrachloroethane	ND	16.7	33.3	ug/kg we								
Tetrachloroethene (PCE)	ND	8.33	16.7	ug/kg we								
Toluene	ND	16.7	33.3	ug/kg we								
1,2,3-Trichlorobenzene	ND	83.3	167	ug/kg we								
1,2,4-Trichlorobenzene	ND	83.3	167	ug/kg we								
1,1,1-Trichloroethane	ND	8.33	16.7	ug/kg we								
1,1,2-Trichloroethane	ND	8.33	16.7	ug/kg we								
Trichloroethene (TCE)	ND	8.33	16.7	ug/kg we								
Trichlorofluoromethane	ND	33.3	66.7	ug/kg we								
1,2,3-Trichloropropane	ND	16.7	33.3	ug/kg we								
1,2,4-Trimethylbenzene	ND	16.7	33.3	ug/kg we								
1,3,5-Trimethylbenzene	ND	16.7	33.3	ug/kg we								
Vinyl chloride	ND	8.33	16.7	ug/kg we								
m,p-Xylene	ND	16.7	33.3	ug/kg we								
o-Xylene	ND	8.33	16.7	ug/kg we								
Surr: 1,4-Difluorobenzene (Surr)	1110	Recon		Limits: 80-			ution: 1x			•		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Namberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	pounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0476 - EPA 5035A							So	il				
Blank (22H0476-BLK1)			Prepared	: 08/12/22 08	3:22 Ana	lyzed: 08/12	/22 16:01					
Surr: Toluene-d8 (Surr)		Rec	overy: 98 %	Limits: 80-	120 %	Dili	ution: 1x					
4-Bromofluorobenzene (Surr)			100 %	79-1	120 %		"					
LCS (22H0476-BS1)			Prepared	: 08/12/22 08	3:22 Ana	lyzed: 08/12	/22 15:10					
5035A/8260D												
Acetone	2450	500	1000	ug/kg wet	50	2000		122	80-120%			Q-5
Acrylonitrile	1040	50.0	100	ug/kg wet	50	1000		104	80-120%			
Benzene	1080	5.00	10.0	ug/kg wet	50	1000		108	80-120%			
Bromobenzene	966	12.5	25.0	ug/kg wet	50	1000		97	80-120%			
Bromochloromethane	1130	25.0	50.0	ug/kg wet	50	1000		113	80-120%			
Bromodichloromethane	1150	25.0	50.0	ug/kg wet	50	1000		115	80-120%			
Bromoform	1080	50.0	100	ug/kg wet	50	1000		108	80-120%			
Bromomethane	1390	500	500	ug/kg wet	50	1000		139	80-120%			Q-5
2-Butanone (MEK)	1920	250	500	ug/kg wet	50	2000		96	80-120%			
n-Butylbenzene	914	25.0	50.0	ug/kg wet	50	1000		91	80-120%			
sec-Butylbenzene	963	25.0	50.0	ug/kg wet	50	1000		96	80-120%			
tert-Butylbenzene	880	25.0	50.0	ug/kg wet	50	1000		88	80-120%			
Carbon disulfide	1020	250	500	ug/kg wet		1000		102	80-120%			
Carbon tetrachloride	1200	25.0	50.0	ug/kg wet		1000		120	80-120%			
Chlorobenzene	1040	12.5	25.0	ug/kg wet	50	1000		104	80-120%			
Chloroethane	1390	250	500	ug/kg wet	50	1000		139	80-120%			Q-5
Chloroform	1100	25.0	50.0	ug/kg wet	50	1000		110	80-120%			
Chloromethane	1090	125	250	ug/kg wet	50	1000		109	80-120%			
2-Chlorotoluene	977	25.0	50.0	ug/kg wet	50	1000		98	80-120%			
4-Chlorotoluene	916	25.0	50.0	ug/kg wet	50	1000		92	80-120%			
Dibromochloromethane	1040	50.0	100	ug/kg wet	50	1000		104	80-120%			
1,2-Dibromo-3-chloropropane	826	125	250	ug/kg wet		1000		83	80-120%			
1,2-Dibromoethane (EDB)	1040	25.0	50.0	ug/kg wet		1000		104	80-120%			
Dibromomethane	1140	25.0	50.0	ug/kg wet		1000		114	80-120%			
1,2-Dichlorobenzene	970	12.5	25.0	ug/kg wet		1000		97	80-120%			
1,3-Dichlorobenzene	988	12.5	25.0	ug/kg wet		1000		99	80-120%			
1,4-Dichlorobenzene	990	12.5	25.0	ug/kg wet		1000		99	80-120%			
Dichlorodifluoromethane	1050	50.0	100	ug/kg wet		1000		105	80-120%			
1,1-Dichloroethane	1100	12.5	25.0	ug/kg wet		1000		110	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0476 - EPA 5035A							So	il				
LCS (22H0476-BS1)			Prepared	: 08/12/22 0	8:22 Anal	lyzed: 08/12/	/22 15:10					
1,2-Dichloroethane (EDC)	1140	12.5	25.0	ug/kg we	t 50	1000		114	80-120%			
1,1-Dichloroethene	1070	12.5	25.0	ug/kg we	t 50	1000		107	80-120%			
cis-1,2-Dichloroethene	978	12.5	25.0	ug/kg we	t 50	1000		98	80-120%			
trans-1,2-Dichloroethene	1020	12.5	25.0	ug/kg we	t 50	1000		102	80-120%			
1,2-Dichloropropane	1060	12.5	25.0	ug/kg we	t 50	1000		106	80-120%			
1,3-Dichloropropane	1010	25.0	50.0	ug/kg we	t 50	1000		101	80-120%			
2,2-Dichloropropane	1260	25.0	50.0	ug/kg we	t 50	1000		126	80-120%			Q-56
1,1-Dichloropropene	1090	25.0	50.0	ug/kg we	t 50	1000		109	80-120%			
cis-1,3-Dichloropropene	1050	25.0	50.0	ug/kg we	t 50	1000		105	80-120%			
trans-1,3-Dichloropropene	1110	25.0	50.0	ug/kg we	t 50	1000		111	80-120%			
Ethylbenzene	1010	12.5	25.0	ug/kg we	t 50	1000		101	80-120%			
Hexachlorobutadiene	968	50.0	100	ug/kg we	t 50	1000		97	80-120%			
2-Hexanone	1530	500	500	ug/kg we		2000		76	80-120%			Q-55
Isopropylbenzene	986	25.0	50.0	ug/kg we	t 50	1000		99	80-120%			
4-Isopropyltoluene	952	25.0	50.0	ug/kg we	t 50	1000		95	80-120%			
Methylene chloride	1170	250	500	ug/kg we	t 50	1000		117	80-120%			
4-Methyl-2-pentanone (MiBK)	1680	250	500	ug/kg we	t 50	2000		84	80-120%			
Methyl tert-butyl ether (MTBE)	1020	25.0	50.0	ug/kg we		1000		102	80-120%			
Naphthalene	673	50.0	100	ug/kg we		1000		67	80-120%			Q-55
n-Propylbenzene	956	12.5	25.0	ug/kg we		1000		96	80-120%			
Styrene	954	25.0	50.0	ug/kg we		1000		95	80-120%			
1,1,2-Tetrachloroethane	1160	12.5	25.0	ug/kg we		1000		116	80-120%			
1,1,2,2-Tetrachloroethane	974	25.0	50.0	ug/kg we		1000		97	80-120%			
Tetrachloroethene (PCE)	1130	12.5	25.0	ug/kg we		1000		113	80-120%			
Toluene	980	25.0	50.0	ug/kg we		1000		98	80-120%			
1,2,3-Trichlorobenzene	852	125	250	ug/kg we		1000		85	80-120%			
1,2,4-Trichlorobenzene	904	125	250	ug/kg we		1000		90	80-120%			
1,1,1-Trichloroethane	1140	12.5	25.0	ug/kg we		1000		114	80-120%			
1,1,2-Trichloroethane	1050	12.5	25.0	ug/kg we		1000		105	80-120%			
Trichloroethene (TCE)	1130	12.5	25.0	ug/kg we		1000		113	80-120%			
Trichlorofluoromethane	888	50.0	100	ug/kg we		1000		89	80-120%			
1,2,3-Trichloropropane	964	25.0	50.0	ug/kg we		1000		96	80-120%			
1,2,4-Trimethylbenzene	980	25.0	50.0	ug/kg we		1000		98	80-120%			
1,3,5-Trimethylbenzene	992	25.0	50.0	ug/kg we		1000		99	80-120%			
-												

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

			Volatile Oi	garne con	ipourius	by LIA 0						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0476 - EPA 5035A							Soi	il				
LCS (22H0476-BS1)			Prepared	: 08/12/22 0	8:22 Ana	yzed: 08/12/	/22 15:10					
/inyl chloride	1180	12.5	25.0	ug/kg wet	50	1000		118	80-120%			
n,p-Xylene	2040	25.0	50.0	ug/kg wet	50	2000		102	80-120%			
-Xylene	926	12.5	25.0	ug/kg wet	50	1000		93	80-120%			
urr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80-	120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			98 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			94 %	79	120 %		"					
Ouplicate (22H0476-DUP1)			Prepared	: 08/10/22 09	9:15 Anal	lyzed: 08/12/	/22 17:42					
OC Source Sample: DU1-20220810)-ISM-COM	IP (A2H0382-	01)									
5035A/8260D												
Acetone	ND	18200	36500	ug/kg dry	50		ND				30%	
Acrylonitrile	ND	1820	3650	ug/kg dry	50		ND				30%	
Benzene	ND	182	365	ug/kg dry	50		ND				30%	
Bromobenzene	ND	456	911	ug/kg dry	50		ND				30%	
Bromochloromethane	ND	911	1820	ug/kg dry	50		ND				30%	
Bromodichloromethane	ND	911	1820	ug/kg dry	50		ND				30%	
Bromoform	ND	1820	3650	ug/kg dry	50		ND				30%	
Bromomethane	ND	18200	18200	ug/kg dry	50		ND				30%	
-Butanone (MEK)	ND	9110	18200	ug/kg dry	50		ND				30%	
-Butylbenzene	ND	911	1820	ug/kg dry	50		ND				30%	
ec-Butylbenzene	ND	911	1820	ug/kg dry	50		ND				30%	
ert-Butylbenzene	ND	911	1820	ug/kg dry	50		ND				30%	
Carbon disulfide	ND	9110	18200	ug/kg dry	50		ND				30%	
Carbon tetrachloride	ND	911	1820	ug/kg dry	50		ND				30%	
Chlorobenzene	ND	456	911	ug/kg dry	50		ND				30%	
Chloroethane	ND	9110	18200	ug/kg dry	50		ND				30%	
Chloroform	ND	911	1820	ug/kg dry	50		ND				30%	
Chloromethane	ND	4560	9110	ug/kg dry	50		ND				30%	
-Chlorotoluene	ND	911	1820	ug/kg dry	50		ND				30%	

Apex Laboratories

Dibromochloromethane

1,2-Dibromo-3-chloropropane

1,2-Dibromoethane (EDB)

4-Chlorotoluene

Dibromomethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND

ND

ND

ND

ND

Philip Menherg

ND

ND

ND

ND

ND

911

1820

4560

911

911

1820

3650

9110

1820

1820

ug/kg dry

ug/kg dry

ug/kg dry

ug/kg dry

ug/kg dry

50

50

50

50

50

30%

30%

30%

30%

30%

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St.

St. Helens Lagoon

Project Number: [none]

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Project Manager: David Weatherby

RPD Detection Reporting Spike Source % REC % REC Result Units Dilution RPD Analyte Limit Amount Result Limits Limit Notes Limit Batch 22H0476 - EPA 5035A Soil Duplicate (22H0476-DUP1) Prepared: 08/10/22 09:15 Analyzed: 08/12/22 17:42 QC Source Sample: DU1-20220810-ISM-COMP (A2H0382-01) 1,2-Dichlorobenzene ND 456 911 50 ND 30% ug/kg dry 456 911 1,3-Dichlorobenzene ND ug/kg dry 50 ND 30% 1,4-Dichlorobenzene ND 456 911 ug/kg dry 50 ND 30% Dichlorodifluoromethane ND 1820 3650 ug/kg dry 50 ND 30% 1,1-Dichloroethane ND 456 911 50 30% ug/kg dry ND 1,2-Dichloroethane (EDC) 911 ND 456 ug/kg dry 50 ND 30% 1,1-Dichloroethene ND 456 911 50 ND 30% ug/kg dry 911 30% cis-1,2-Dichloroethene ND 456 ug/kg dry 50 ND trans-1,2-Dichloroethene ND 456 911 ug/kg dry 50 ND 30% 1,2-Dichloropropane ND 456 911 ug/kg dry 50 ND 30% 1,3-Dichloropropane ND 911 1820 ug/kg dry 50 ND 30% 911 1820 2,2-Dichloropropane ND ug/kg dry 50 ND 30% 1,1-Dichloropropene ND 911 1820 ug/kg dry 50 ND 30% ND 911 30% cis-1,3-Dichloropropene 1820 ug/kg dry 50 ND trans-1,3-Dichloropropene ND 911 1820 ug/kg dry 50 ND 30% Ethylbenzene ND 456 911 ug/kg dry 50 ND ___ 30% Hexachlorobutadiene ND 1820 3650 ug/kg dry 50 ND 30% ND 18200 30% 2-Hexanone 18200 50 ND ug/kg dry Isopropylbenzene ND 911 1820 ug/kg dry 50 ND 30% 911 30% ND 1820 4-Isopropyltoluene ug/kg dry 50 ND 9110 Methylene chloride ND 18200 ug/kg dry 50 ND 30% 4-Methyl-2-pentanone (MiBK) ND 9110 18200 ug/kg dry 50 ND ---30% Methyl tert-butyl ether (MTBE) ND 911 1820 ug/kg dry 50 ND 30% ND 30% Naphthalene 1820 3650 50 ND ug/kg dry ND 456 911 n-Propylbenzene ug/kg dry 50 ND 30% ND 911 1820 ND 30% Styrene 50 ug/kg dry 1,1,1,2-Tetrachloroethane ND 456 911 ND 30% ug/kg dry 50

Apex Laboratories

1,1,2,2-Tetrachloroethane

Tetrachloroethene (PCE)

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

Toluene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30%

30%

30%

30%

30%

30%

ND

ND

ND

ND

ND

ND

Philip Menthera

ND

ND

ND

ND

ND

ND

911

456

911

4560

4560

456

1820

911

1820

9110

9110

911

ug/kg dry

ug/kg dry

ug/kg dry

ug/kg dry

ug/kg dry

ug/kg dry

50

50

50

50

50

50

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

Project:

St. Helens Lagoon

3140 NE Broadway Street Project Number: [none]
Portland, OR 97232 Project Manager: David

Project Number: [none] Report ID:
Project Manager: David Weatherby A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0476 - EPA 5035A							Soi	I				
Duplicate (22H0476-DUP1)			Prepared	1: 08/10/22 0	9:15 Ana	lyzed: 08/12/	/22 17:42					
QC Source Sample: DU1-2022081	0-ISM-COM	IP (A2H0382-	01)									
1,1,2-Trichloroethane	ND	456	911	ug/kg dr	y 50		ND				30%	
Trichloroethene (TCE)	ND	456	911	ug/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND	1820	3650	ug/kg dr	y 50		ND				30%	
1,2,3-Trichloropropane	ND	911	1820	ug/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND	911	1820	ug/kg dr	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND	911	1820	ug/kg dr	y 50		ND				30%	
Vinyl chloride	ND	456	911	ug/kg dr	y 50		ND				30%	
m,p-Xylene	ND	911	1820	ug/kg dr	y 50		ND				30%	
o-Xylene	ND	456	911	ug/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 103 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			96 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			100 %	79-	120 %		"					
Matrix Spike (22H0476-MS1) OC Source Sample: Non-SDG (A2	2H0414-15)		Prepared	1: 08/11/22 1	2:00 Anal	yzed: 08/13/	/22 01:45					A-01
5035A/8260D												
Acetone	36400	9100	18200	ug/kg dr		36300	ND	100	36-164%			Q-5
Acrylonitrile	19600	910	1820	ug/kg dr		18200	ND	108	65-134%			
Benzene	20400	91.0	182	ug/kg dr		18200	ND	112	77-121%			
Bromobenzene	19500	227	455	ug/kg dr		18200	ND	107	78-121%			
Bromochloromethane	21600	455	910	ug/kg dr	y 50	18200	ND	119	78-125%			
Bromodichloromethane	21200											
	21300	455	910	ug/kg dr		18200	ND	117	75-127%			
Bromoform	20200	910	1820	ug/kg dr ug/kg dr		18200 18200	ND	111	67-132%			
					y 50	18200						Q-5
Bromomethane	20200	910	1820	ug/kg dr ug/kg dr ug/kg dr	y 50 y 50 y 50	18200 18200	ND	111	67-132%			Q-5
Bromomethane 2-Butanone (MEK)	20200 26000	910 9100	1820 9100	ug/kg dry ug/kg dry ug/kg dry ug/kg dry	y 50 y 50 y 50 y 50	18200 18200 18200	ND ND	111 143	67-132% 53-143%			Q-5
Bromomethane 2-Butanone (MEK) n-Butylbenzene	20200 26000 26200	910 9100 4550	1820 9100 9100	ug/kg dr ug/kg dr ug/kg dr	y 50 y 50 y 50 y 50	18200 18200 18200 36300	ND ND ND ND	111 143 72	67-132% 53-143% 51-148%		 	Q-5
Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene	20200 26000 26200 17700	910 9100 4550 455	1820 9100 9100 910	ug/kg dry ug/kg dry ug/kg dry ug/kg dry	y 50 y 50 y 50 y 50 y 50	18200 18200 18200 36300 18200	ND ND ND ND	111 143 72 97	67-132% 53-143% 51-148% 70-128%	 	 	Q-5
Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	20200 26000 26200 17700 19200	910 9100 4550 455 455	1820 9100 9100 910 910	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	y 50 y 50 y 50 y 50 y 50 y 50	18200 18200 18200 36300 18200	ND ND ND ND	111 143 72 97 106	67-132% 53-143% 51-148% 70-128% 73-126%	 	 	Q-5
Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide	20200 26000 26200 17700 19200 17500	910 9100 4550 455 455	1820 9100 9100 910 910 910	ug/kg dr ug/kg dr ug/kg dr ug/kg dr ug/kg dr ug/kg dr	7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50	18200 18200 18200 36300 18200 18200	ND ND ND ND ND	111 143 72 97 106 96	67-132% 53-143% 51-148% 70-128% 73-126% 73-125%		 	·
Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene	20200 26000 26200 17700 19200 17500 20100	910 9100 4550 455 455 455 455	1820 9100 9100 910 910 910 910	ug/kg dr ug/kg dr ug/kg dr ug/kg dr ug/kg dr ug/kg dr ug/kg dr	7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50	18200 18200 18200 36300 18200 18200 18200	ND ND ND ND ND ND ND ND	111 143 72 97 106 96 110	67-132% 53-143% 51-148% 70-128% 73-126% 73-125% 63-132%	 	 	Q-5 Q-1

50

ug/kg dry

18200

ND

Apex Laboratories

Chloroform

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

78-123%

116

Philip Nevenberg

21000

910

455

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0476 - EPA 5035A							Soi	iI				
Matrix Spike (22H0476-MS1)			Prepared	: 08/11/22 1	2:00 Anal	yzed: 08/13/	/22 01:45					A-01
QC Source Sample: Non-SDG (A2	H0414-15)											
Chloromethane	20700	2270	4550	ug/kg dry	50	18200	ND	114	50-136%			
2-Chlorotoluene	19500	455	910	ug/kg dry	50	18200	ND	107	75-122%			
4-Chlorotoluene	18100	455	910	ug/kg dry	50	18200	ND	99	72-124%			
Dibromochloromethane	19800	910	1820	ug/kg dry	50	18200	ND	109	74-126%			
1,2-Dibromo-3-chloropropane	16200	2270	4550	ug/kg dry	50	18200	ND	89	61-132%			
1,2-Dibromoethane (EDB)	20000	455	910	ug/kg dry	50	18200	ND	110	78-122%			
Dibromomethane	21500	455	910	ug/kg dry	50	18200	ND	118	78-125%			
1,2-Dichlorobenzene	19000	227	455	ug/kg dry	50	18200	ND	104	78-121%			
1,3-Dichlorobenzene	19500	227	455	ug/kg dry	50	18200	ND	107	77-121%			
1,4-Dichlorobenzene	19300	227	455	ug/kg dry	50	18200	ND	106	75-120%			
Dichlorodifluoromethane	20800	910	1820	ug/kg dry	50	18200	ND	115	29-149%			
1,1-Dichloroethane	21000	227	455	ug/kg dry	50	18200	ND	115	76-125%			
1,2-Dichloroethane (EDC)	21600	227	455	ug/kg dry	50	18200	ND	119	73-128%			
1,1-Dichloroethene	21200	227	455	ug/kg dry	50	18200	ND	117	70-131%			
cis-1,2-Dichloroethene	18300	227	455	ug/kg dry	50	18200	ND	101	77-123%			
trans-1,2-Dichloroethene	20000	227	455	ug/kg dry	50	18200	ND	110	74-125%			
1,2-Dichloropropane	20000	227	455	ug/kg dry	50	18200	ND	110	76-123%			
1,3-Dichloropropane	19100	455	910	ug/kg dry	50	18200	ND	105	77-121%			
2,2-Dichloropropane	19500	455	910	ug/kg dry	50	18200	ND	107	67-133%			Q-54c
1,1-Dichloropropene	20500	455	910	ug/kg dry	50	18200	ND	113	76-125%			
cis-1,3-Dichloropropene	19500	455	910	ug/kg dry	50	18200	ND	107	74-126%			
trans-1,3-Dichloropropene	20200	455	910	ug/kg dry	50	18200	ND	111	71-130%			
Ethylbenzene	19600	227	455	ug/kg dry	50	18200	ND	108	76-122%			
Hexachlorobutadiene	19300	910	1820	ug/kg dry	50	18200	ND	106	61-135%			
2-Hexanone	24900	9100	9100	ug/kg dry	50	36300	ND	68	53-145%			Q-54e
Isopropylbenzene	19000	455	910	ug/kg dry	50	18200	ND	105	68-134%			
4-Isopropyltoluene	18800	455	910	ug/kg dry	50	18200	ND	104	73-127%			
Methylene chloride	22600	4550	9100	ug/kg dry	50	18200	ND	124	70-128%			
4-Methyl-2-pentanone (MiBK)	31900	4550	9100	ug/kg dry	50	36300	ND	88	65-135%			
Methyl tert-butyl ether (MTBE)	19000	455	910	ug/kg dry	50	18200	ND	104	73-125%			
Naphthalene	12900	910	1820	ug/kg dry	50	18200	ND	71	62-129%			Q-54d
n-Propylbenzene	19200	227	455	ug/kg dry	50	18200	ND	105	73-125%			
Styrene	18200	455	910	ug/kg dry	50	18200	ND	100	76-124%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

3140 NE Broadway Street

ANALYTICAL REPORT

AMENDED REPORT

Project Number: [none]

Apex Laboratorie

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project:

Portland, OR 97232 Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

St. Helens Lagoon

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22H0476 - EPA 5035A Soil Matrix Spike (22H0476-MS1) Prepared: 08/11/22 12:00 Analyzed: 08/13/22 01:45 A-01 QC Source Sample: Non-SDG (A2H0414-15) 1,1,1,2-Tetrachloroethane 22300 227 455 ug/kg dry 50 18200 ND 123 78-125% 19000 455 910 18200 1,1,2,2-Tetrachloroethane ug/kg dry 50 ND 105 70-124% Tetrachloroethene (PCE) 22100 227 455 ug/kg dry 50 18200 ND 122 73-128% Toluene 18900 455 910 ug/kg dry 50 18200 ND 104 77-121% 1,2,3-Trichlorobenzene 16600 2270 4550 ug/kg dry 50 18200 ND 92 66-130% 2270 18200 95 1,2,4-Trichlorobenzene 17200 4550 ug/kg dry 50 ND 67-129% 1,1,1-Trichloroethane 21900 227 455 ug/kg dry 50 18200 ND 121 73-130% 1,1,2-Trichloroethane 455 109 19800 227 ug/kg dry 50 18200 ND 78-121% Trichloroethene (TCE) 21500 227 455 ug/kg dry 50 18200 ND 119 77-123% Trichlorofluoromethane 140000 910 1820 ug/kg dry 50 18200 ND 773 62-140% O - 0.11,2,3-Trichloropropane 19200 455 910 ug/kg dry 50 18200 ND 106 73-125% 1,2,4-Trimethylbenzene 455 910 18200 ND 75-123% 19500 ug/kg dry 50 107 1,3,5-Trimethylbenzene 20000 455 910 ug/kg dry 50 18200 ND 110 73-124% Vinyl chloride 227 455 18200 ND 23200 ug/kg dry 50 128 56-135% 455 910 m,p-Xylene 39400 ug/kg dry 50 36300 ND 108 77-124% o-Xylene 17800 227 455 18200 ND 98 77-123%

ug/kg dry

Limits: 80-120 %

80-120 %

79-120 %

Recovery:

103 %

99 %

96%

50

Dilution: 1x

Apex Laboratories

Surr: 1,4-Difluorobenzene (Surr)

4-Bromofluorobenzene (Surr)

Toluene-d8 (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0946 - EPA 5035A							Soi	I				
Blank (22H0946-BLK1)			Prepared	1: 08/26/22 1	0:08 Ana	lyzed: 08/26	/22 14:40					
5035A/8260D SIM												
Benzene	ND	0.667	1.33	ug/kg we	t 100							
Toluene	2.96	1.67	3.33	ug/kg we	t 100							B-02,
Ethylbenzene	ND	1.67	3.33	ug/kg we	t 100							
m,p-Xylene	ND	3.33	6.67	ug/kg we	t 100							
o-Xylene	ND	1.67	3.33	ug/kg we	t 100							
1,2,4-Trimethylbenzene	ND	3.33	6.67	ug/kg we	t 100							
1,3,5-Trimethylbenzene	ND	3.33	6.67	ug/kg we	t 100							
Chloroform	ND	3.33	6.67	ug/kg we	t 100							
1,2-Dibromo-3-chloropropane	ND	1.67	3.33	ug/kg we	t 100							
1,2-Dibromoethane (EDB)	ND	0.667	1.33	ug/kg we	t 100							
1,1-Dichloroethane	ND	0.667	1.33	ug/kg we	t 100							
1,2-Dichloroethane (EDC)	ND	0.667	1.33	ug/kg we	t 100							
1,1-Dichloroethene	ND	1.33	1.33	ug/kg we	t 100							Q-
cis-1,2-Dichloroethene	ND	0.667	1.33	ug/kg we	t 100							
trans-1,2-Dichloroethene	ND	0.667	1.33	ug/kg we	t 100							
1,2-Dichloropropane	ND	0.667	1.33	ug/kg we	t 100							
cis-1,3-Dichloropropene	ND	0.667	1.33	ug/kg we	t 100							
trans-1,3-Dichloropropene	ND	0.667	1.33	ug/kg we	t 100							
Methyl tert-butyl ether (MTBE)	ND	0.667	1.33	ug/kg we								
Tetrachloroethene (PCE)	13.4	0.667	1.33	ug/kg we	t 100							
1,1,2,2-Tetrachloroethane	ND	1.67	3.33	ug/kg we	t 100							
Trichloroethene (TCE)	ND	0.667	1.33	ug/kg we								
1,2,3-Trichloropropane	ND	1.67	3.33	ug/kg we								
Vinyl chloride	ND	3.33	6.67	ug/kg we								
1,1,2-Trichloroethane	ND	1.67	3.33	ug/kg we	t 100							
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 100 %	Limits: 80-		Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %		120 %		"					
4-Bromofluorobenzene (Surr)			103 %	79-	120 %		"					
LCS (22H0946-BS1)			Prepared	1: 08/26/22 1	0:08 Ana	lyzed: 08/26	/22 11:56					
5035A/8260D SIM			1			•						
Benzene	19.7	1.00	2.00	ug/kg we	t 100	20.0		99	80-120%			
Toluene	21.3	2.50	5.00	ug/kg we		20.0		107	80-120%			В-

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vo	latile Orga	mic Comp	ounas b	y EPA 826	אוס מוע					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0946 - EPA 5035A							So	il				
LCS (22H0946-BS1)			Prepared	1: 08/26/22 1	0:08 Ana	lyzed: 08/26	/22 11:56					
Ethylbenzene	20.4	2.50	5.00	ug/kg we	t 100	20.0		102	80-120%			
m,p-Xylene	40.9	5.00	10.0	ug/kg we	t 100	40.0		102	80-120%			
o-Xylene	20.3	2.50	5.00	ug/kg we	t 100	20.0		101	80-120%			
1,2,4-Trimethylbenzene	19.1	5.00	10.0	ug/kg we	t 100	20.0		95	80-120%			
1,3,5-Trimethylbenzene	20.4	5.00	10.0	ug/kg we	t 100	20.0		102	80-120%			
Chloroform	17.5	5.00	10.0	ug/kg we	t 100	20.0		88	80-120%			
1,2-Dibromo-3-chloropropane	16.0	2.50	5.00	ug/kg we	t 100	20.0		80	80-120%			
1,2-Dibromoethane (EDB)	19.9	1.00	2.00	ug/kg we		20.0		100	80-120%			
1,1-Dichloroethane	20.2	1.00	2.00	ug/kg we		20.0		101	80-120%			
1,2-Dichloroethane (EDC)	19.5	1.00	2.00	ug/kg we		20.0		98	80-120%			
1,1-Dichloroethene	13.5	2.00	2.00	ug/kg we		20.0		67	80-120%			Q-3
cis-1,2-Dichloroethene	21.2	1.00	2.00	ug/kg we		20.0		106	80-120%			
trans-1,2-Dichloroethene	20.9	1.00	2.00	ug/kg we		20.0		105	80-120%			
1,2-Dichloropropane	20.8	1.00	2.00	ug/kg we		20.0		104	80-120%			
cis-1,3-Dichloropropene	20.5	1.00	2.00	ug/kg we		20.0		103	80-120%			
trans-1,3-Dichloropropene	21.2	1.00	2.00	ug/kg we		20.0		106	80-120%			
Methyl tert-butyl ether (MTBE)	20.0	1.00	2.00	ug/kg we		20.0		100	80-120%			
Tetrachloroethene (PCE)	27.2	1.00	2.00	ug/kg we		20.0		136	80-120%			B, Q-5
1,1,2,2-Tetrachloroethane	17.6	2.50	5.00	ug/kg we		20.0		88	80-120%			
Trichloroethene (TCE)	20.0	1.00	2.00	ug/kg we		20.0		100	80-120%			
1,2,3-Trichloropropane	17.3	2.50	5.00	ug/kg we		20.0		87	80-120%			
Vinyl chloride	22.6	5.00	10.0	ug/kg we		20.0		113	80-120%			
1,1,2-Trichloroethane	18.9	2.50	5.00	ug/kg we		20.0		94	80-120%			
Surr: 1,4-Difluorobenzene (Surr)			overy: 98 %	Limits: 80-			ution: 1x					
Toluene-d8 (Surr)		need	100 %		120 %	Diii	"					
4-Bromofluorobenzene (Surr)			100 %		120 %		"					
Duplicate (22H0946-DUP1)			Prepared	1: 08/10/22 0	9:15 Ana	lyzed: 08/26	/22 15:34					H-01
OC Source Sample: DU1-20220810 5035A/8260D SIM)-ISM-COM	IP (A2H0382-	<u>01)</u>									
Benzene	ND	36.5	72.9	ug/kg dry	100		ND				30%	
Toluene	ND	182	182	ug/kg dry			ND				30%	
Ethylbenzene	ND	91.1	182	ug/kg dry			ND				30%	
m,p-Xylene	ND	182	365	ug/kg dry			ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vo	latile Orga	nic Comp	ounds b	y EPA 826	OD SIM					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0946 - EPA 5035A							Soi	I				
Duplicate (22H0946-DUP1)			Prepared	d: 08/10/22 0	9:15 Ana	lyzed: 08/26	/22 15:34					H-01
QC Source Sample: DU1-20220810)-ISM-COM	IP (A2H0382-	01)									
o-Xylene	ND	91.1	182	ug/kg dr	y 100		ND				30%	
1,2,4-Trimethylbenzene	ND	182	365	ug/kg dr	y 100		ND				30%	
1,3,5-Trimethylbenzene	ND	182	365	ug/kg dr	y 100		ND				30%	
Chloroform	ND	182	365	ug/kg dr	y 100		ND				30%	
1,2-Dibromo-3-chloropropane	ND	91.1	182	ug/kg dr	y 100		ND				30%	
1,2-Dibromoethane (EDB)	ND	36.5	72.9	ug/kg dr	y 100		ND				30%	
1,1-Dichloroethane	ND	36.5	72.9	ug/kg dr	y 100		ND				30%	
1,2-Dichloroethane (EDC)	ND	36.5	72.9	ug/kg dr	y 100		ND				30%	
1,1-Dichloroethene	ND	72.9	72.9	ug/kg dr	y 100		ND				30%	Q-30
cis-1,2-Dichloroethene	ND	36.5	72.9	ug/kg dr	y 100		ND				30%	
trans-1,2-Dichloroethene	ND	36.5	72.9	ug/kg dr	y 100		ND				30%	
1,2-Dichloropropane	ND	36.5	72.9	ug/kg dr	y 100		ND				30%	
cis-1,3-Dichloropropene	ND	36.5	72.9	ug/kg dr	y 100		ND				30%	
trans-1,3-Dichloropropene	ND	36.5	72.9	ug/kg dr	y 100		ND				30%	
Methyl tert-butyl ether (MTBE)	ND	36.5	72.9	ug/kg dr			ND				30%	
Tetrachloroethene (PCE)	ND	583	583	ug/kg dr	y 100		ND				30%	B-0
1,1,2,2-Tetrachloroethane	ND	91.1	182	ug/kg dr	y 100		ND				30%	
Trichloroethene (TCE)	ND	36.5	72.9	ug/kg dr	y 100		ND				30%	
1,2,3-Trichloropropane	ND	91.1	182	ug/kg dr	y 100		ND				30%	
Vinyl chloride	ND	182	365	ug/kg dr	y 100		ND				30%	
1,1,2-Trichloroethane	ND	91.1	182	ug/kg dr			ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80-	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			102 %	79-	-120 %		"					
Matrix Spike (22H0946-MS1)			Prepared	d: 08/10/22 0	9:15 Ana	lyzed: 08/26	/22 16:00					H-01
QC Source Sample: DU1-20220810)-ISM-COM	IP (A2H0382-	01)									
5035A/8260D SIM												
Benzene	862	36.5	72.9	ug/kg dr	y 100	729	ND	118	77-121%			
Toluene	844	91.1	182	ug/kg dr		729	ND	102	77-121%			B-02
Ethylbenzene	778	91.1	182	ug/kg dr		729	ND	107	76-122%			
m,p-Xylene	1550	182	365	ug/kg dr		1460	ND	106	77-124%			
o-Xylene	786	91.1	182	ug/kg dr		729	ND	108	77-123%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

Item #2.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

A2H0382 - 12 12 22 1538

AMENDED REPORT

Maul Foster & Alongi, INC. St. Helens Lagoon Project: 3140 NE Broadway Street Project Number: [none]

Portland, OR 97232 Project Manager: David Weatherby

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vola	tile Orga	nic Comp	ounds b	y EPA 826	OD SIM					
Analyte	Result	Detection I Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0946 - EPA 5035A							So	il				
Matrix Spike (22H0946-MS1)			Prepared	d: 08/10/22 0	9:15 Ana	lyzed: 08/26	/22 16:00					H-01
QC Source Sample: DU1-20220810	-ISM-COM	IP (A2H0382-01)	_									
1,2,4-Trimethylbenzene	725	182	365	ug/kg dry	100	729	ND	100	75-123%			
1,3,5-Trimethylbenzene	793	182	365	ug/kg dry	100	729	ND	109	73-124%			
Chloroform	732	182	365	ug/kg dry	7 100	729	ND	100	78-123%			
1,2-Dibromo-3-chloropropane	751	91.1	182	ug/kg dry	7 100	729	ND	103	61-132%			
1,2-Dibromoethane (EDB)	801	36.5	72.9	ug/kg dry	100	729	ND	110	78-122%			
1,1-Dichloroethane	831	36.5	72.9	ug/kg dry	7 100	729	ND	114	76-125%			
1,2-Dichloroethane (EDC)	805	36.5	72.9	ug/kg dry	7 100	729	ND	110	73-128%			
1,1-Dichloroethene	549	72.9	72.9	ug/kg dry	100	729	ND	75	70-131%			Q-3
cis-1,2-Dichloroethene	826	36.5	72.9	ug/kg dry	7 100	729	ND	113	77-123%			
trans-1,2-Dichloroethene	844	36.5	72.9	ug/kg dry	7 100	729	ND	116	74-125%			
1,2-Dichloropropane	840	36.5	72.9	ug/kg dry	100	729	ND	115	76-123%			
cis-1,3-Dichloropropene	790	36.5	72.9	ug/kg dry	7 100	729	ND	108	74-126%			
trans-1,3-Dichloropropene	822	36.5	72.9	ug/kg dry	100	729	ND	113	71-130%			
Methyl tert-butyl ether (MTBE)	753	36.5	72.9	ug/kg dry	100	729	ND	103	73-125%			
Tetrachloroethene (PCE)	1250	36.5	72.9	ug/kg dry	100	729	ND	95	73-128%			B, Q-5
1,1,2,2-Tetrachloroethane	743	91.1	182	ug/kg dry	100	729	ND	102	70-124%			
Trichloroethene (TCE)	792	36.5	72.9	ug/kg dry	100	729	ND	109	77-123%			
1,2,3-Trichloropropane	713	91.1	182	ug/kg dry	100	729	ND	98	73-125%			
Vinyl chloride	902	182	365	ug/kg dry	100	729	ND	124	56-135%			
1,1,2-Trichloroethane	773	91.1	182	ug/kg dry	100	729	ND	106	78-121%			
Surr: 1,4-Difluorobenzene (Surr)		Recovery	v: 101 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			101 %	79-	120 %		"					

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0777 - EPA 3546							Sec	diment				
Blank (22H0777-BLK1)			Prepared	: 08/22/22	16:07 Anal	yzed: 08/23	/22 09:31					
EPA 8270E												
Acenaphthene	ND	1.25	2.50	ug/kg we	et 1							
Acenaphthylene	ND	1.25	2.50	ug/kg we	et 1							
Anthracene	ND	1.25	2.50	ug/kg we	et 1							
Benz(a)anthracene	ND	1.25	2.50	ug/kg we	et 1							
Benzo(a)pyrene	ND	1.87	3.75	ug/kg we	et 1							
Benzo(b)fluoranthene	ND	1.87	3.75	ug/kg we	et 1							
Benzo(k)fluoranthene	ND	1.87	3.75	ug/kg we								
Benzo(g,h,i)perylene	ND	1.25	2.50	ug/kg we								
Chrysene	ND	1.25	2.50	ug/kg we	et 1							
Dibenz(a,h)anthracene	ND	1.25	2.50	ug/kg we	et 1							
Fluoranthene	ND	1.25	2.50	ug/kg we								
Fluorene	ND	1.25	2.50	ug/kg we								
Indeno(1,2,3-cd)pyrene	ND	1.25	2.50	ug/kg we								
1-Methylnaphthalene	ND	2.50	5.00	ug/kg we								
2-Methylnaphthalene	ND	2.50	5.00	ug/kg we	et 1							
Naphthalene	ND	2.50	5.00	ug/kg w								
Phenanthrene	ND	1.25	2.50	ug/kg we								
Pyrene	ND	1.25	2.50	ug/kg w								
Carbazole	ND	1.87	3.75	ug/kg w								
Dibenzofuran	ND	1.25	2.50	ug/kg w								
2-Chlorophenol	ND	6.25	12.5	ug/kg w								
4-Chloro-3-methylphenol	ND	12.5	25.0	ug/kg w								
2,4-Dichlorophenol	ND	6.25	12.5	ug/kg w								
2,4-Dimethylphenol	ND	6.25	12.5	ug/kg w								
2,4-Dinitrophenol	ND	31.2	62.5	ug/kg w								
4,6-Dinitro-2-methylphenol	ND	31.2	62.5	ug/kg w								
2-Methylphenol	ND	3.12	6.25	ug/kg w								
3+4-Methylphenol(s)	ND	3.12	6.25	ug/kg we								
2-Nitrophenol	ND	12.5	25.0	ug/kg we								
4-Nitrophenol	ND	12.5	25.0	ug/kg we								
Pentachlorophenol (PCP)	ND	12.5	25.0	ug/kg we								
Phenol	ND	2.50	5.00	ug/kg we								
2,3,4,6-Tetrachlorophenol	ND	6.25	12.5	ug/kg we								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0777 - EPA 3546							Sec	liment				
Blank (22H0777-BLK1)			Prepared	: 08/22/22 16	5:07 Anal	yzed: 08/23/	/22 09:31					
2,3,5,6-Tetrachlorophenol	ND	6.25	12.5	ug/kg wet	1							
2,4,5-Trichlorophenol	ND	6.25	12.5	ug/kg wet	1							
Nitrobenzene	ND	12.5	25.0	ug/kg wet	1							
2,4,6-Trichlorophenol	ND	6.25	12.5	ug/kg wet	1							
Bis(2-ethylhexyl)phthalate	ND	18.7	37.5	ug/kg wet	1							
Butyl benzyl phthalate	ND	6.25	12.5	ug/kg wet	1							
Diethylphthalate	ND	6.25	12.5	ug/kg wet	1							
Dimethylphthalate	ND	6.25	12.5	ug/kg wet	1							
Di-n-butylphthalate	ND	6.25	12.5	ug/kg wet	1							
Di-n-octyl phthalate	ND	10.0	12.5	ug/kg wet								
N-Nitrosodimethylamine	ND	3.12	6.25	ug/kg wet	1							
N-Nitroso-di-n-propylamine	ND	3.12	6.25	ug/kg wet								
N-Nitrosodiphenylamine	ND	3.12	6.25	ug/kg wet								
Bis(2-Chloroethoxy) methane	ND	3.12	6.25	ug/kg wet								
Bis(2-Chloroethyl) ether	ND	3.12	6.25	ug/kg wet								
2,2'-Oxybis(1-Chloropropane)	ND	3.12	6.25	ug/kg wet								
Hexachlorobenzene	ND	1.25	2.50	ug/kg wet								
Hexachlorobutadiene	ND	3.12	6.25	ug/kg wet								
Hexachlorocyclopentadiene	ND	6.25	12.5	ug/kg wet								
Hexachloroethane	ND	3.12	6.25	ug/kg wet								
2-Chloronaphthalene	ND	1.25	2.50	ug/kg wet								
1,2,4-Trichlorobenzene	ND	3.12	6.25	ug/kg wet								
4-Bromophenyl phenyl ether	ND	3.12	6.25	ug/kg wet								
4-Chlorophenyl phenyl ether	ND	3.12	6.25	ug/kg wet								
Aniline	ND	6.25	12.5	ug/kg wet								
4-Chloroaniline	ND	3.12	6.25	ug/kg wet								
2-Nitroaniline	ND	25.0	50.0	ug/kg wet								
3-Nitroaniline	ND ND	25.0	50.0	ug/kg wet								
4-Nitroaniline	ND ND	25.0	50.0	ug/kg wet								
4-Nitroamme 2,4-Dinitrotoluene	ND ND	12.5	25.0	ug/kg wet								
2,4-Dinitrotoluene 2.6-Dinitrotoluene	ND ND	12.5	25.0	ug/kg wet								
2,6-Dinitrotoluene Benzoic acid		12.5	312									
	ND ND			ug/kg wet								
Benzyl alcohol	ND	6.25	12.5	ug/kg wet								
Isophorone	ND	3.12	6.25	ug/kg wet	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic (Compour	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0777 - EPA 3546							Se	diment				
Blank (22H0777-BLK1)			Prepared	1: 08/22/22	16:07 Ana	lyzed: 08/23	/22 09:31					
Azobenzene (1,2-DPH)	ND	3.12	6.25	ug/kg w	et 1							
Bis(2-Ethylhexyl) adipate	ND	31.2	62.5	ug/kg w	et 1							
3,3'-Dichlorobenzidine	ND	25.0	50.0	ug/kg w	et 1							Q-
1,2-Dinitrobenzene	ND	31.2	62.5	ug/kg w	et 1							
1,3-Dinitrobenzene	ND	31.2	62.5	ug/kg w	et 1							
1,4-Dinitrobenzene	ND	31.2	62.5	ug/kg w	et 1							
Pyridine	ND	6.25	12.5	ug/kg w	et 1							
1,2-Dichlorobenzene	ND	3.12	6.25	ug/kg w	et 1							
1,3-Dichlorobenzene	ND	3.12	6.25	ug/kg w	et 1							
1,4-Dichlorobenzene	ND	3.12	6.25	ug/kg w	et 1							
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 86 %	Limits: 37	-122 %	Dilı	ution: 1x					
2-Fluorobiphenyl (Surr)			76 %	44	-120 %		"					
Phenol-d6 (Surr)			68 %	33	-122 %		"					
p-Terphenyl-d14 (Surr)			87 %	54	-127 %		"					
2-Fluorophenol (Surr)			72 %	35	-120 %		"					
2,4,6-Tribromophenol (Surr)			82 %	39	-132 %		"					
LCS (22H0777-BS1)			Prepared	1: 08/22/22	16:07 Ana	lyzed: 08/23	/22 10:05					Q-18
EPA 8270E												
Acenaphthene	502	5.32	10.7	ug/kg we	et 4	533		94	40-123%			
Acenaphthylene	509	5.32	10.7	ug/kg we	et 4	533		95	32-132%			
Anthracene	526	5.32	10.7	ug/kg we	et 4	533		99	47-123%			
Benz(a)anthracene	521	5.32	10.7	ug/kg w	et 4	533		98	49-126%			
Benzo(a)pyrene	553	8.00	16.0	ug/kg w	et 4	533		104	45-129%			
Benzo(b)fluoranthene	546	8.00	16.0	ug/kg w	et 4	533		102	45-132%			
Benzo(k)fluoranthene	531	8.00	16.0	ug/kg w		533		100	47-132%			
Benzo(g,h,i)perylene	544	5.32	10.7	ug/kg w		533		102	43-134%			

Apex Laboratories

Dibenz(a,h)anthracene

Indeno(1,2,3-cd)pyrene

1-Methylnaphthalene

2-Methylnaphthalene

Chrysene

Fluorene

Fluoranthene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

98

98

98

91

100

94

97

50-124%

45-134%

50-127%

43-125%

45-133%

40-120%

38-122%

Philip Memberg

522

524

521

486

535

501

517

5.32

5.32

5.32

5.32

5.32

10.7

10.7

10.7

10.7

10.7

10.7

10.7

21.3

21.3

ug/kg wet

4

4

4

4

4

4

533

533

533

533

533

533

533

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0777 - EPA 3546							Se	diment				
LCS (22H0777-BS1)			Prepared	: 08/22/22 1	6:07 Ana	lyzed: 08/23	/22 10:05					Q-18
Naphthalene	486	10.7	21.3	ug/kg we	t 4	533		91	35-123%			
Phenanthrene	498	5.32	10.7	ug/kg we	t 4	533		93	50-121%			
Pyrene	522	5.32	10.7	ug/kg we	t 4	533		98	47-127%			
Carbazole	548	8.00	16.0	ug/kg we	t 4	533		103	50-123%			
Dibenzofuran	500	5.32	10.7	ug/kg we	t 4	533		94	44-120%			
2-Chlorophenol	490	26.7	53.2	ug/kg we	t 4	533		92	34-121%			
4-Chloro-3-methylphenol	539	53.2	107	ug/kg we	t 4	533		101	45-122%			
2,4-Dichlorophenol	487	26.7	53.2	ug/kg we	t 4	533		91	40-122%			
2,4-Dimethylphenol	547	26.7	53.2	ug/kg we	t 4	533		103	30-127%			
2,4-Dinitrophenol	489	133	267	ug/kg we	t 4	533		92	10-137%			
4,6-Dinitro-2-methylphenol	491	133	267	ug/kg we	t 4	533		92	29-132%			
2-Methylphenol	514	13.3	26.7	ug/kg we	t 4	533		96	32-122%			
3+4-Methylphenol(s)	544	13.3	26.7	ug/kg we		533		102	34-120%			
2-Nitrophenol	579	53.2	107	ug/kg we	t 4	533		108	36-123%			Q-41
4-Nitrophenol	563	53.2	107	ug/kg we		533		106	30-132%			
Pentachlorophenol (PCP)	468	53.2	107	ug/kg we		533		88	25-133%			
Phenol	496	10.7	21.3	ug/kg we		533		93	34-121%			
2,3,4,6-Tetrachlorophenol	504	26.7	53.2	ug/kg we		533		94	44-125%			
2,3,5,6-Tetrachlorophenol	503	26.7	53.2	ug/kg we		533		94	40-120%			
2,4,5-Trichlorophenol	493	26.7	53.2	ug/kg we		533		93	41-124%			
Nitrobenzene	515	53.2	107	ug/kg we		533		97	34-122%			
2,4,6-Trichlorophenol	483	26.7	53.2	ug/kg we		533		91	39-126%			
Bis(2-ethylhexyl)phthalate	554	80.0	160	ug/kg we		533		104	51-133%			
Butyl benzyl phthalate	544	26.7	53.2	ug/kg we		533		102	48-132%			
Diethylphthalate	494	26.7	53.2	ug/kg we		533		93	50-124%			
Dimethylphthalate	483	26.7	53.2	ug/kg we		533		91	48-124%			
Di-n-butylphthalate	572	26.7	53.2	ug/kg we		533		107	51-128%			
Di-n-octyl phthalate	582	42.8	53.2	ug/kg we		533		109	45-140%			
N-Nitrosodimethylamine	420	13.3	26.7	ug/kg we		533		79	23-120%			
N-Nitroso-di-n-propylamine	518	13.3	26.7	ug/kg we		533		97	36-120%			
N-Nitrosodiphenylamine	527	13.3	26.7	ug/kg we		533		99	38-127%			
Bis(2-Chloroethoxy) methane	515	13.3	26.7	ug/kg we		533		97	36-121%			
Bis(2-Chloroethyl) ether	418	13.3	26.7	ug/kg we		533		78	31-120%			
2,2'-Oxybis(1-Chloropropane)	542	13.3	26.7	ug/kg we		533		102	39-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0777 - EPA 3546							Se	diment				
LCS (22H0777-BS1)			Prepared	1: 08/22/22 1	6:07 Ana	lyzed: 08/23	/22 10:05					Q-18
Hexachlorobenzene	468	5.32	10.7	ug/kg we	t 4	533		88	45-122%			
Hexachlorobutadiene	437	13.3	26.7	ug/kg we	t 4	533		82	32-123%			
Hexachlorocyclopentadiene	431	26.7	53.2	ug/kg we	t 4	533		81	10-140%			
Hexachloroethane	444	13.3	26.7	ug/kg we	t 4	533		83	28-120%			
2-Chloronaphthalene	514	5.32	10.7	ug/kg we	t 4	533		96	41-120%			
1,2,4-Trichlorobenzene	467	13.3	26.7	ug/kg we	t 4	533		88	34-120%			
4-Bromophenyl phenyl ether	492	13.3	26.7	ug/kg we	t 4	533		92	46-124%			
4-Chlorophenyl phenyl ether	485	13.3	26.7	ug/kg we	t 4	533		91	45-121%			
Aniline	343	26.7	53.2	ug/kg we	t 4	533		64	10-120%			Q-36
4-Chloroaniline	351	13.3	26.7	ug/kg we	t 4	533		66	17-120%			
2-Nitroaniline	560	107	213	ug/kg we	t 4	533		105	44-127%			
3-Nitroaniline	529	107	213	ug/kg we	t 4	533		99	33-120%			
4-Nitroaniline	564	107	213	ug/kg we	t 4	533		106	51-125%			
2,4-Dinitrotoluene	551	53.2	107	ug/kg we	t 4	533		103	48-126%			
2,6-Dinitrotoluene	512	53.2	107	ug/kg we	t 4	533		96	46-124%			
Benzoic acid	974	668	1330	ug/kg we	t 4	1070		91	10-140%			Ja
Benzyl alcohol	476	26.7	53.2	ug/kg we	t 4	533		89	29-122%			
Isophorone	505	13.3	26.7	ug/kg we	t 4	533		95	30-122%			
Azobenzene (1,2-DPH)	566	13.3	26.7	ug/kg we	t 4	533		106	39-125%			
Bis(2-Ethylhexyl) adipate	549	133	267	ug/kg we	t 4	533		103	61-121%			
3,3'-Dichlorobenzidine	3010	107	213	ug/kg we	t 4	1070		282	22-121%			Q-29
1,2-Dinitrobenzene	523	133	267	ug/kg we	t 4	533		98	44-120%			
1,3-Dinitrobenzene	532	133	267	ug/kg we	t 4	533		100	43-127%			
1,4-Dinitrobenzene	515	133	267	ug/kg we	t 4	533		97	37-132%			
Pyridine	337	26.7	53.2	ug/kg we	t 4	533		63	10-120%			
1,2-Dichlorobenzene	452	13.3	26.7	ug/kg we	t 4	533		85	33-120%			
1,3-Dichlorobenzene	426	13.3	26.7	ug/kg we	t 4	533		80	30-120%			
1,4-Dichlorobenzene	444	13.3	26.7	ug/kg we	t 4	533		83	31-120%			
Surr: Nitrobenzene-d5 (Surr)		Rece	overy: 94 %	Limits: 37-	-122 %	Dilı	ution: 4x					
2-Fluorobiphenyl (Surr)			90 %	44-	120 %		"					
Phenol-d6 (Surr)			90 %	33-	122 %		"					
p-Terphenyl-d14 (Surr)			101 %	54-	127 %		"					
2-Fluorophenol (Surr)			82 %	35-	120 %		"					
2,4,6-Tribromophenol (Surr)			90 %	39-	132 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS Semivolatile Organic Compounds by EPA 8270E

Detection Reporting Spike Source % REC **RPD** Dilution % REC Analyte Result Ĺimit Units Amount Result Limits RPD Limit Notes Limit Batch 22H0777 - EPA 3546 Sediment

Acenaphthene ND Anthracene ND Benzo(a)pyrene ND Benzo(b)fluoranthene ND Benzo(g,h,i)perylene ND Chrysene ND Chysene ND Dibenz(a,h)anthracene ND	141 141 141 141 212 212 425 141 141	284 284 284 284 425 425 425 425 284 284	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	40 40 40 40 40 40	 ND ND 211 ND ND	 	 19 	30% 30% 30% 30%	Ja
Acenaphthene ND Acenaphthylene ND Anthracene 254 Benz(a)anthracene ND Benzo(a)pyrene ND Benzo(b)fluoranthene ND Benzo(g,h,i)perylene ND Chrysene ND Dibenz(a,h)anthracene ND	141 141 141 212 212 425 141 141	284 284 284 425 425 425 284	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	40 40 40 40 40	 ND 211 ND ND	 	 19 	30% 30%	Ja
Acenaphthylene ND Anthracene 254 Benz(a)anthracene ND Benzo(a)pyrene ND Benzo(b)fluoranthene ND Benzo(g,h,i)perylene ND Chrysene ND Dibenz(a,h)anthracene ND	141 141 141 212 212 425 141 141	284 284 284 425 425 425 284	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	40 40 40 40 40	 ND 211 ND ND	 	 19 	30% 30%	Ja
Anthracene 254 Benz(a)anthracene ND Benzo(a)pyrene ND Benzo(b)fluoranthene ND Benzo(k)fluoranthene ND Benzo(g,h,i)perylene ND Chrysene ND Dibenz(a,h)anthracene ND	141 141 212 212 425 141 141	284 284 425 425 425 284	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	40 40 40 40	 211 ND ND	 	19 	30%	Ja
Benz(a)anthracene ND Benzo(a)pyrene ND Benzo(b)fluoranthene ND Benzo(k)fluoranthene ND Benzo(g,h,i)perylene ND Chrysene ND Dibenz(a,h)anthracene ND	141 212 212 425 141 141	284 425 425 425 284	ug/kg dry ug/kg dry ug/kg dry ug/kg dry	40 40 40	 ND ND	 			Ja
Benzo(a)pyrene ND Benzo(b)fluoranthene ND Benzo(k)fluoranthene ND Benzo(g,h,i)perylene ND Chrysene ND Dibenz(a,h)anthracene ND	212 212 425 141 141	425 425 425 284	ug/kg dry ug/kg dry ug/kg dry	40 40	 ND			30%	
Benzo(b)fluoranthene ND Benzo(k)fluoranthene ND Benzo(g,h,i)perylene ND Chrysene ND Dibenz(a,h)anthracene ND	212 425 141 141	425 425 284	ug/kg dry ug/kg dry	40					
Benzo(k)fluoranthene ND Benzo(g,h,i)perylene ND Chrysene ND Dibenz(a,h)anthracene ND	425 141 141	425 284	ug/kg dry		 ND			30%	
Benzo(g,h,i)perylene ND Chrysene ND Dibenz(a,h)anthracene ND	141 141	284		40	1.2	 		30%	
Chrysene ND Dibenz(a,h)anthracene ND	141		na/ka dar	TU	 ND	 		30%	
Dibenz(a,h)anthracene ND		284	ug/kg dry	40	 ND	 		30%	
	141		ug/kg dry	40	 ND	 		30%	
was a second sec		284	ug/kg dry	40	 ND	 		30%	
Fluoranthene 191	141	284	ug/kg dry	40	 179	 	6	30%	Ja
Fluorene ND	141	284	ug/kg dry	40	 ND	 		30%	
Indeno(1,2,3-cd)pyrene ND	284	284	ug/kg dry	40	 ND	 		30%	
1-Methylnaphthalene ND	284	566	ug/kg dry	40	 ND	 		30%	
2-Methylnaphthalene ND	284	566	ug/kg dry	40	 ND	 		30%	
Naphthalene ND	284	566	ug/kg dry	40	 ND	 		30%	
Phenanthrene 321	141	284	ug/kg dry	40	 366	 	13	30%	
Pyrene 178	141	284	ug/kg dry	40	 189	 	6	30%	Ja
Carbazole ND	212	425	ug/kg dry	40	 ND	 		30%	
Dibenzofuran ND	141	284	ug/kg dry	40	 ND	 		30%	
2-Chlorophenol ND	708	1410	ug/kg dry	40	 ND	 		30%	
4-Chloro-3-methylphenol ND	1410	2840	ug/kg dry	40	 ND	 		30%	
2,4-Dichlorophenol ND	708	1410	ug/kg dry	40	 ND	 		30%	
2,4-Dimethylphenol ND	708	1410	ug/kg dry	40	 ND	 		30%	
2,4-Dinitrophenol ND	3540	7080	ug/kg dry	40	 ND	 		30%	
4,6-Dinitro-2-methylphenol ND	3540	7080	ug/kg dry	40	 ND	 		30%	
2-Methylphenol ND	354	708	ug/kg dry	40	 ND	 		30%	
3+4-Methylphenol(s) ND	354	708	ug/kg dry	40	 ND	 		30%	
2-Nitrophenol ND	1410	2840	ug/kg dry	40	 ND	 		30%	
4-Nitrophenol ND	1410	2840	ug/kg dry	40	 ND	 		30%	
Pentachlorophenol (PCP) ND	2840	2840	ug/kg dry	40	 ND	 		30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

Project:

Project Number: [none]

St. Helens Lagoon

3140 NE Broadway Street Portland, OR 97232

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0777 - EPA 3546							Sec	liment				
Duplicate (22H0777-DUP1)			Prepared	: 08/22/22 1	6:07 Anal	yzed: 08/23/	/22 12:21					PRO
QC Source Sample: DU1-2022081	0-ISM-COM	IP (A2H0382-0	<u>)2)</u>									
Phenol	ND	284	566	ug/kg dr	y 40		ND				30%	
2,3,4,6-Tetrachlorophenol	ND	708	1410	ug/kg dr	y 40		ND				30%	
2,3,5,6-Tetrachlorophenol	ND	708	1410	ug/kg dr	y 40		ND				30%	
2,4,5-Trichlorophenol	ND	708	1410	ug/kg dr	y 40		ND				30%	
Nitrobenzene	ND	1410	2840	ug/kg dr	y 40		ND				30%	
2,4,6-Trichlorophenol	ND	708	1410	ug/kg dr	y 40		ND				30%	
Bis(2-ethylhexyl)phthalate	12900	2120	4250	ug/kg dr	y 40		11800			10	30%	
Butyl benzyl phthalate	ND	708	1410	ug/kg dr	y 40		ND				30%	
Diethylphthalate	ND	708	1410	ug/kg dr	y 40		ND				30%	
Dimethylphthalate	ND	708	1410	ug/kg dr	y 40		ND				30%	
Di-n-butylphthalate	ND	708	1410	ug/kg dr	y 40		ND				30%	
Di-n-octyl phthalate	ND	1140	1410	ug/kg dr	y 40		ND				30%	
N-Nitrosodimethylamine	ND	354	708	ug/kg dr	y 40		ND				30%	
N-Nitroso-di-n-propylamine	ND	354	708	ug/kg dr	y 40		ND				30%	
N-Nitrosodiphenylamine	ND	354	708	ug/kg dr	y 40		ND				30%	
Bis(2-Chloroethoxy) methane	ND	354	708	ug/kg dr	y 40		ND				30%	
Bis(2-Chloroethyl) ether	ND	354	708	ug/kg dr	y 40		ND				30%	
2,2'-Oxybis(1-Chloropropane)	ND	354	708	ug/kg dr	y 40		ND				30%	
Hexachlorobenzene	ND	141	284	ug/kg dr	y 40		ND				30%	
Hexachlorobutadiene	ND	354	708	ug/kg dr	y 40		ND				30%	
Hexachlorocyclopentadiene	ND	708	1410	ug/kg dr	y 40		ND				30%	
Hexachloroethane	ND	354	708	ug/kg dr	y 40		ND				30%	
2-Chloronaphthalene	ND	141	284	ug/kg dr	y 40		ND				30%	
1,2,4-Trichlorobenzene	ND	354	708	ug/kg dr	y 40		ND				30%	
4-Bromophenyl phenyl ether	ND	354	708	ug/kg dr	y 40		ND				30%	
4-Chlorophenyl phenyl ether	ND	354	708	ug/kg dr			ND				30%	
Aniline	ND	708	1410	ug/kg dr			ND				30%	
4-Chloroaniline	ND	354	708	ug/kg dr			ND				30%	
2-Nitroaniline	ND	2840	5660	ug/kg dr			ND				30%	
3-Nitroaniline	ND	2840	5660	ug/kg dr			ND				30%	
4-Nitroaniline	ND	2840	5660	ug/kg dr			ND				30%	
2,4-Dinitrotoluene	ND	1410	2840	ug/kg dr			ND				30%	
2,6-Dinitrotoluene	ND	1410	2840	ug/kg dr			ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

St. Helens Lagoon Project:

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0777 - EPA 3546							Sed	diment				
Duplicate (22H0777-DUP1)			Prepared	1: 08/22/22 1	6:07 Ana	alyzed: 08/23	/22 12:21					PRO
QC Source Sample: DU1-2022081	10-ISM-CON	IP (A2H0382-0	<u>)2)</u>									
Benzoic acid	ND	17700	35400	ug/kg dr	y 40		ND				30%	
Benzyl alcohol	ND	708	1410	ug/kg dr	y 40		ND				30%	
Isophorone	ND	354	708	ug/kg dr	y 40		ND				30%	
Azobenzene (1,2-DPH)	ND	354	708	ug/kg dr	y 40		ND				30%	
Bis(2-Ethylhexyl) adipate	ND	3540	7080	ug/kg dr	y 40		ND				30%	
3,3'-Dichlorobenzidine	ND	2840	5660	ug/kg dr	y 40		ND				30%	Q-52
1,2-Dinitrobenzene	ND	3540	7080	ug/kg dr	y 40		ND				30%	
1,3-Dinitrobenzene	ND	3540	7080	ug/kg dr	y 40		ND				30%	
1,4-Dinitrobenzene	ND	3540	7080	ug/kg dr	y 40		ND				30%	
Pyridine	ND	708	1410	ug/kg dr	y 40		ND				30%	
1,2-Dichlorobenzene	ND	354	708	ug/kg dr	y 40		ND				30%	
1,3-Dichlorobenzene	ND	354	708	ug/kg dr	y 40		ND				30%	
1,4-Dichlorobenzene	ND	354	708	ug/kg dr	y 40		ND				30%	
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 57 %	Limits: 37-	-122 %	Dilı	ution: 40x					S-05
2-Fluorobiphenyl (Surr)			59 %	44-	120 %		"					S-05
Phenol-d6 (Surr)			26 %	33-	122 %		"					S-05
p-Terphenyl-d14 (Surr)			64 %	54-	127 %		"					S-05
2-Fluorophenol (Surr)			17 %	35-	120 %		"					S-05
2,4,6-Tribromophenol (Surr)			60 %	39-	132 %		"					S-05

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

St. Helens Lagoon Project:

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Organophosphorus Pesticides (OPPs) by EPA 8270E (GC/MS	Organophosphorus	Pesticides	(OPPs) b	v EPA 8270E	(GC/MS)
--	------------------	------------	----------	-------------	---------

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0778 - EPA 3546							Sec	liment				
Blank (22H0778-BLK1)			Prepared	1: 08/22/22 1	6:11 Anal	yzed: 08/23/	22 09:38					
EPA 8270E OPPs												
Azinphos methyl (Guthion)	ND	22.7	45.5	ug/kg we	t 1							
Chlorpyrifos	ND	22.7	45.5	ug/kg we	t 1							
Coumaphos	ND	22.7	45.5	ug/kg we	t 1							
Demeton O	ND	22.7	45.5	ug/kg we	t 1							
Demeton S	ND	22.7	45.5	ug/kg we	t 1							
Diazinon	ND	22.7	45.5	ug/kg we	t 1							
Dichlorvos	ND	22.7	45.5	ug/kg we	t 1							
Dimethoate	ND	22.7	45.5	ug/kg we	t 1							
Disulfoton	ND	22.7	45.5	ug/kg we	t 1							
EPN	ND	22.7	45.5	ug/kg we	t 1							
Ethoprop	ND	22.7	45.5	ug/kg we	t 1							
Fensulfothion	ND	22.7	45.5	ug/kg we	t 1							
Fenthion	ND	22.7	45.5	ug/kg we	t 1							
Malathion	ND	22.7	45.5	ug/kg we	t 1							
Merphos	ND	22.7	45.5	ug/kg we	t 1							
Methyl parathion	ND	22.7	45.5	ug/kg we	t 1							
Mevinphos (Phosdrin)	ND	22.7	45.5	ug/kg we	t 1							
Monocrotophos	ND	22.7	45.5	ug/kg we	t 1							
Naled (Dibrom)	ND	22.7	45.5	ug/kg we								
Parathion, ethyl	ND	22.7	45.5	ug/kg we								
Phorate	ND	22.7	45.5	ug/kg we	t 1							
Ronnel (Fenchlorphos)	ND	22.7	45.5	ug/kg we	t 1							
Sulfotep	ND	22.7	45.5	ug/kg we								
Sulprofos (Bolstar)	ND	22.7	45.5	ug/kg we								
ГЕРР	ND	90.9	182	ug/kg we								
Tetrachlorvinphos (Rabon)	ND	22.7	45.5	ug/kg we								
Tokuthion (Prothiofos)	ND	22.7	45.5	ug/kg we								
Trichloronate	ND	22.7	45.5	ug/kg we								
Surr: Tributyl phosphate (Surr)		Reco	overy: 69 %	Limits: 10-		Dilı	ution: 1x					
Triphenyl phosphate (Surr)			68 %		121 %		"					

LCS (22H0778-BS1)

Prepared: 08/22/22 16:11 Analyzed: 08/23/22 10:14 EPA 8270E OPPs

Q-18

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Philip Manhera

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Organophosphorus Pesticides (OPPs) by EPA 8270E (GC/MS)

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0778 - EPA 3546							Sec	diment				
LCS (22H0778-BS1)			Prepared	1: 08/22/22 1	6:11 Anal	yzed: 08/23/	/22 10:14					Q-18
Azinphos methyl (Guthion)	268	25.0	50.0	ug/kg we	t 1	400		67	38-156%			
Chlorpyrifos	343	25.0	50.0	ug/kg we	t 1	400		86	47-140%			
Coumaphos	307	25.0	50.0	ug/kg we	t 1	400		77	37-160%			
Demeton O	132	25.0	50.0	ug/kg we	t 1	184		72	66-127%			
Demeton S	137	25.0	50.0	ug/kg we	t 1	194		70	70-121%			
Diazinon	379	25.0	50.0	ug/kg we	t 1	400		95	42-134%			
Dichlorvos	341	25.0	50.0	ug/kg we	t 1	400		85	39-142%			
Dimethoate	293	25.0	50.0	ug/kg we	t 1	400		73	16-139%			
Disulfoton	327	25.0	50.0	ug/kg we	t 1	400		82	28-145%			
EPN	329	25.0	50.0	ug/kg we	t 1	400		82	44-137%			
Ethoprop	357	25.0	50.0	ug/kg we	t 1	400		89	47-128%			
Fensulfothion	352	25.0	50.0	ug/kg we	t 1	400		88	27-147%			Q-41
Fenthion	370	25.0	50.0	ug/kg we	t 1	400		92	44-134%			
Malathion	353	25.0	50.0	ug/kg we	t 1	400		88	46-137%			
Merphos	292	25.0	50.0	ug/kg we	t 1	400		73	66-131%			
Methyl parathion	300	25.0	50.0	ug/kg we	t 1	400		75	49-138%			
Mevinphos (Phosdrin)	333	25.0	50.0	ug/kg we	t 1	400		83	12-176%			
Monocrotophos	291	25.0	50.0	ug/kg we	t 1	400		73	10-153%			
Naled (Dibrom)	270	25.0	50.0	ug/kg we	t 1	400		68	10-174%			
Parathion, ethyl	330	25.0	50.0	ug/kg we	t 1	400		82	50-139%			
Phorate	314	25.0	50.0	ug/kg we	t 1	400		79	23-142%			
Ronnel (Fenchlorphos)	373	25.0	50.0	ug/kg we	t 1	400		93	45-138%			
Sulfotep	372	25.0	50.0	ug/kg we	t 1	400		93	52-126%			Q-41
Sulprofos (Bolstar)	351	25.0	50.0	ug/kg we	t 1	400		88	48-139%			
TEPP	318	100	200	ug/kg we	t 1	400		79	16-126%			
Tetrachlorvinphos (Rabon)	326	25.0	50.0	ug/kg we	t 1	400		81	54-129%			
Tokuthion (Prothiofos)	343	25.0	50.0	ug/kg we	t 1	400		86	45-136%			
Trichloronate	335	25.0	50.0	ug/kg we	t 1	400		84	37-140%			
Surr: Tributyl phosphate (Surr)		Reco	overy: 73 %	Limits: 10-	136 %	Dilı	tion: 1x					
Triphenyl phosphate (Surr)			73 %	34-	121 %		"					

Duplicate (22H0778-DUP1)

Prepared: 08/22/22 16:11 Analyzed: 08/23/22 11:23

PRO, R-04

QC Source Sample: DU1-20220810-ISM-COMP (A2H0382-02)

EPA 8270E OPPs

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

178

Philip Nevenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Organophosphorus Pesticides (OPPs) by EPA 8270E (GC/MS)

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0778 - EPA 3546							Sec	diment				
Duplicate (22H0778-DUP1)			Prepared	1: 08/22/22 1	6:11 Ana	lyzed: 08/23	/22 11:23					PRO, R-04
QC Source Sample: DU1-2022081	10-ISM-CON	ЛР (А2Н0382- 0	<u>)2)</u>									
Azinphos methyl (Guthion)	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Chlorpyrifos	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Coumaphos	ND	6140	6140	ug/kg dr	y 40		ND				30%	R-02
Demeton O	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Demeton S	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Diazinon	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Dichlorvos	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Dimethoate	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Disulfoton	ND	2130	4260	ug/kg dr	y 40		ND				30%	
EPN	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Ethoprop	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Fensulfothion	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Fenthion	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Malathion	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Merphos	ND	19500	19500	ug/kg dr	y 40		ND				30%	R-02
Methyl parathion	ND	4260	4260	ug/kg dr	y 40		ND				30%	
Mevinphos (Phosdrin)	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Monocrotophos	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Naled (Dibrom)	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Parathion, ethyl	ND	5880	5880	ug/kg dr	y 40		ND				30%	R-02
Phorate	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Ronnel (Fenchlorphos)	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Sulfotep	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Sulprofos (Bolstar)	ND	2130	4260	ug/kg dr	y 40		ND				30%	
TEPP	ND	8530	17100	ug/kg dr			ND				30%	
Tetrachlorvinphos (Rabon)	ND	9380	9380	ug/kg dr			ND				30%	R-02
Tokuthion (Prothiofos)	ND	2130	4260	ug/kg dr	y 40		ND				30%	
Trichloronate	ND	4690	4690	ug/kg dr			ND				30%	R-02
Surr: Tributyl phosphate (Surr)		Recov	very: 600 %	Limits: 10-	-136 %	Dilı	ution: 40x					S-05
Triphenyl phosphate (Surr)			310 %	34-	-121 %		"					S-05

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Organochlorine Pesticides by GC/MS/MS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22I0773 - EPA 3546							Sec	liment				
Blank (22I0773-BLK1)			Prepared	1: 09/23/22 1	1:03 Anal	yzed: 09/26/	/22 11:03					
EPA 8270E OCPs												
Aldrin	ND	0.0500	0.100	ug/kg wet	t 1							
alpha-BHC	ND	0.0500	0.100	ug/kg wet	t 1							
oeta-BHC	ND	0.0500	0.100	ug/kg wet	t 1							
gamma-BHC (Lindane)	ND	0.0500	0.100	ug/kg wet	t 1							
delta-BHC	ND	0.0500	0.100	ug/kg wet	t 1							
cis-Chlordane	ND	0.0500	0.100	ug/kg wet	t 1							
cis-Nonachlor	ND	0.0500	0.100	ug/kg wet	t 1							
2,4'-DDD	ND	0.0500	0.100	ug/kg wet	t 1							
2,4'-DDE	ND	0.0500	0.100	ug/kg wet	t 1							
2,4'-DDT	ND	0.0500	0.100	ug/kg wet	t 1							
1,4'-DDD	ND	0.0500	0.100	ug/kg wet	t 1							
1,4'-DDE	ND	0.0500	0.100	ug/kg wet	t 1							
1,4'-DDT	ND	0.0500	0.100	ug/kg wet	t 1							
Dieldrin	ND	0.0300	0.0300	ug/kg wet	t 1							
Endosulfan I	ND	0.0500	0.100	ug/kg wet	t 1							
Endosulfan II	ND	0.0500	0.100	ug/kg wet	t 1							
Endosulfan sulfate	ND	0.0500	0.100	ug/kg wet	t 1							
Endrin	ND	0.0500	0.100	ug/kg wet	t 1							
Endrin Aldehyde	ND	0.0500	0.100	ug/kg wet								
Endrin ketone	ND	0.0500	0.100	ug/kg wet								
Heptachlor	ND	0.0500	0.100	ug/kg wet	t 1							
Heptachlor epoxide	ND	0.0500	0.100	ug/kg wet	t 1							
Hexachlorobutadiene	ND	0.0500	0.100	ug/kg wet								
Methoxychlor	ND	0.0500	0.100	ug/kg wet								
Mirex	ND	0.0500	0.100	ug/kg wet								
Oxychlordane	ND	0.0500	0.100	ug/kg wet								
rans-Chlordane	ND	0.0500	0.100	ug/kg wet								
rans-Nonachlor	ND	0.0500	0.100	ug/kg we								
Surr: gamma-BHC-d6 (Surr)		Reco	very: 78 %	Limits: 50-		Dilı	ution: 1x					
4,4'-DDT-d8 (Surr)			93 %		150 %		"					

LCS (22I0773-BS1)

Prepared: 09/23/22 11:03 Analyzed: 09/26/22 11:31

EPA 8270E OCPs

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

			Organoch									
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22I0773 - EPA 3546							Sec	diment				
LCS (22I0773-BS1)			Prepared	1: 09/23/22 1	1:03 Ana	lyzed: 09/26	/22 11:31					
Aldrin	2.17	0.0500	0.100	ug/kg we	t 1	2.50		87	54-135%			
alpha-BHC	2.30	0.0500	0.100	ug/kg we	t 1	2.50		92	58-132%			
beta-BHC	2.37	0.0500	0.100	ug/kg we	t 1	2.50		95	63-140%			
gamma-BHC (Lindane)	2.33	0.0500	0.100	ug/kg we	t 1	2.50		93	62-132%			
delta-BHC	2.40	0.0500	0.100	ug/kg we	t 1	2.50		96	65-140%			
cis-Chlordane	2.26	0.0500	0.100	ug/kg we	t 1	2.50		90	57-151%			
cis-Nonachlor	2.14	0.0500	0.100	ug/kg we	t 1	2.50		86	68-151%			
2,4'-DDD	2.33	0.0500	0.100	ug/kg we	t 1	2.50		93	71-125%			
2,4'-DDE	2.42	0.0500	0.100	ug/kg we	t 1	2.50		97	61-131%			
2,4'-DDT	2.44	0.0500	0.100	ug/kg we	t 1	2.50		98	78-133%			
1,4'-DDD	2.32	0.0500	0.100	ug/kg we	t 1	2.50		93	71-126%			
1,4'-DDE	2.43	0.0500	0.100	ug/kg we		2.50		97	67-124%			
1,4'-DDT	2.44	0.0500	0.100	ug/kg we		2.50		98	75-130%			
Dieldrin	2.24	0.0300	0.0300	ug/kg we		2.50		90	70-135%			
Endosulfan I	2.26	0.0500	0.100	ug/kg we		2.50		90	62-148%			
Endosulfan II	2.38	0.0500	0.100	ug/kg we		2.50		95	57-141%			
Endosulfan sulfate	2.17	0.0500	0.100	ug/kg we		2.50		87	55-152%			
Endrin	2.17	0.0500	0.100	ug/kg we		2.50		87	73-138%			
Endrin Aldehyde	1.54	0.0500	0.100	ug/kg we		2.50		62	10-146%			
Endrin ketone	2.19	0.0500	0.100	ug/kg we		2.50		87	62-146%			
Heptachlor	2.27	0.0500	0.100	ug/kg we		2.50		91	60-154%			
Heptachlor epoxide	2.24	0.0500	0.100	ug/kg we		2.50		90	65-140%			
Hexachlorobutadiene	1.63	0.0500	0.100	ug/kg we		2.50		65	20-120%			
Methoxychlor	1.99	0.0500	0.100	ug/kg we		2.50		79	73-135%			
Mirex	2.15	0.0500	0.100	ug/kg we		2.50		86	61-149%			
Oxychlordane	2.26	0.0500	0.100	ug/kg we		2.50		90	65-133%			
rans-Chlordane	2.34	0.0500	0.100	ug/kg we		2.50		93	62-145%			
rans-Nonachlor	1.96	0.0500	0.100	ug/kg we		2.50		78	59-153%			
Surr: gamma-BHC-d6 (Surr)	1.70		very: 81%	Limits: 50-			ution: 1x	, 0	27 13370			
surr: gamma-ънс-ао (surr) 4,4'-DDT-d8 (Surr)		кесо	93 %		150 %	Diii	uuon: 1x					
			93 /0	50-	130 /0							
Duplicate (22I0773-DUP1)			Prepared	1: 09/23/22 1	1:03 Anal	lyzed: 09/26	/22 13:25					H-08, Pl
QC Source Sample: Non-SDG (A	_											
Aldrin	ND	0.0507	0.101	ug/kg dry	/ 1		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Report ID: A2H0382 - 12 12 22 1538

Project Manager: David Weatherby

QUALITY CONTROL (QC) SAMPLE RESULTS

Organochlorine Pesticides by GC/MS/MS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22I0773 - EPA 3546							Sec	liment				
Duplicate (22I0773-DUP1)			Prepared	1: 09/23/22 1	1:03 Anal	yzed: 09/26/	/22 13:25					H-08, PRO
QC Source Sample: Non-SDG (A	210266-63)											
alpha-BHC	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
beta-BHC	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
gamma-BHC (Lindane)	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
delta-BHC	ND	0.0507	0.101	ug/kg dry			ND				30%	
cis-Chlordane	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
cis-Nonachlor	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
2,4'-DDD	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
2,4'-DDE	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
2,4'-DDT	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	Q-05
4,4'-DDD	0.0538	0.0507	0.101	ug/kg dry	, 1		0.0510			5	30%	Ja
4,4'-DDE	0.0891	0.0507	0.101	ug/kg dry	, 1		0.184			69	30%	Q-05, Ja
4,4'-DDT	0.381	0.0507	0.101	ug/kg dry	, 1		0.358			6	30%	
Dieldrin	0.0307	0.0304	0.0304	ug/kg dry	, 1		0.0462			40	30%	Q-05
Endosulfan I	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
Endosulfan II	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
Endosulfan sulfate	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
Endrin	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
Endrin Aldehyde	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
Endrin ketone	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
Heptachlor	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
Heptachlor epoxide	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
Hexachlorobutadiene	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
Methoxychlor	ND	0.101	0.101	ug/kg dry	, 1		ND				30%	
Mirex	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
Oxychlordane	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
trans-Chlordane	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
trans-Nonachlor	ND	0.0507	0.101	ug/kg dry	, 1		ND				30%	
Surr: gamma-BHC-d6 (Surr)		Reco	very: 75 %	Limits: 50-	150 %	Dilı	ution: 1x					
4,4'-DDT-d8 (Surr)			95 %	50-	150 %		"					

Matrix Spike (22I0773-MS1)

Prepared: 09/23/22 11:03 Analyzed: 09/26/22 13:53

H-08, PRO

OC Source Sample: Non-SDG (A2I0266-63) EPA 8270E OCPs

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS Organochlorine Pesticides by GC/MS/MS

RPD Detection Reporting Spike Source % REC Result Units Dilution % REC RPD Analyte Limit Amount Result Limits Limit Notes Limit Batch 22I0773 - EPA 3546 Sediment Matrix Spike (22I0773-MS1) Prepared: 09/23/22 11:03 Analyzed: 09/26/22 13:53 H-08, PRO QC Source Sample: Non-SDG (A2I0266-63) Aldrin 1.98 0.0508 0.102 1 2.54 ND 78 54-135% ug/kg dry 0.0508 0.102alpha-BHC 2.20 ug/kg dry 1 2.54 ND 87 58-132% beta-BHC 1.80 0.0508 0.102 ug/kg dry 1 2.54 ND 71 63-140% gamma-BHC (Lindane) 2.06 0.05080.102 ug/kg dry 1 2.54 ND 81 62-132% delta-BHC 1.92 0.0508 0.102 2.54 ND 76 65-140% ug/kg dry 1 0.0508 2.54 cis-Chlordane 1.87 0.102 ug/kg dry 1 ND 74 57-151% cis-Nonachlor 1.86 0.05080.1022.54 ND 73 68-151% ug/kg dry 1 2,4'-DDD 2.14 0.0508 0.102ug/kg dry 1 2.54 ND 84 71-125% 2,4'-DDE 2.22 0.0508 0.102 ug/kg dry 1 2.54 ND 87 61-131% 2,4'-DDT 2.34 0.0508 0.102 ug/kg dry 1 2.54 ND 92 78-133% 4,4'-DDD 2.25 0.0508 0.102 ug/kg dry 1 2.54 0.0510 86 71-126% 4,4'-DDE 2.29 0.05080.102ug/kg dry 1 2.54 0.184 83 67-124% 4,4'-DDT 91 2.67 0.0508 0.102 ug/kg dry 1 2.54 0.358 75-130% 1.84 0.0305 0.0305 2.54 70 Dieldrin ug/kg dry 1 0.0462 70-135% 0.0508 Endosulfan I 1.87 0.102 ug/kg dry 1 2.54 ND 73 62-148% Endosulfan II 2.16 0.0508 0.102 ug/kg dry 1 2.54 ND 85 57-141% Endosulfan sulfate 2.09 0.0508 0.102 ug/kg dry 1 2.54 ND 82 55-152% 2.54 Q-01 Endrin 1.82 0.05080.102ND 71 73-138% ug/kg dry 1 2.54 Endrin Aldehyde 1.53 0.05080.102 ug/kg dry 1 ND 60 10-146% 0.0508 0.102 Endrin ketone 2.54 2.14 ug/kg dry 1 ND 84 62-146%

2.54

2.54

2.54

2.54

2.54

2.54

2.54

2.54

0.0508

0.0508

0.0508

0.0508

0.0508

0.0508

0.0508

0.0508

Recovery:

0.102

0.102

0.102

0.102

0.102

0.102

0.102

0.102

75 %

95 %

ug/kg dry

Limits: 50-150 %

50-150 %

1

1

1

1

1

1

1

2.22

1.90

1.92

2.21

2.07

1.84

1.88

1.71

Apex Laboratories

Surr: gamma-BHC-d6 (Surr)

4,4'-DDT-d8 (Surr)

Heptachlor

Methoxychlor

Oxychlordane

trans-Chlordane

trans-Nonachlor

Mirex

Heptachlor epoxide

Hexachlorobutadiene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

87

75

76

87

81

72

74

67

ND

ND

ND

ND

ND

ND

ND

ND

Dilution: 1x

60-154%

65-140%

20-120%

73-135%

61-149%

65-133%

62-145%

59-153%

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by l	EPA 6020	B (ICPMS	3)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0793 - EPA 3051A							Sec	diment				
Blank (22H0793-BLK1)			Prepared	: 08/23/22 0	9:46 Anal	yzed: 08/23	/22 20:20					
EPA 6020B												
Antimony	ND	0.240	0.481	mg/kg we	et 5							
Arsenic	ND	0.240	0.481	mg/kg we	et 5							
Barium	ND	0.240	0.481	mg/kg we	et 5							
Beryllium	ND	0.0481	0.0962	mg/kg we	et 5							
Cadmium	ND	0.0481	0.0962	mg/kg we	et 5							
Chromium	ND	0.240	0.481	mg/kg we								
Copper	ND	0.481	0.962	mg/kg we	et 5							
Lead	ND	0.0481	0.0962	mg/kg we								
Manganese	ND	0.240	0.481	mg/kg we								
Mercury	ND	0.0192	0.0385	mg/kg we	et 5							
Nickel	ND	0.481	0.962	mg/kg we	et 5							
Selenium	ND	0.240	0.481	mg/kg we	et 5							
Silver	ND	0.0481	0.0962	mg/kg we	et 5							
Гhallium	ND	0.240	0.481	mg/kg we	et 5							
Zinc	ND	0.962	1.92	mg/kg we	et 5							
LCS (22H0793-BS1)			Prepared	: 08/23/22 0	9:46 Anal	yzed: 08/23	/22 20:26					
EPA 6020B												
Antimony	12.9	0.250	0.500	mg/kg we	et 5	12.5		103	80-120%			
Arsenic	23.4	0.250	0.500	mg/kg we	et 5	25.0		94	80-120%			
Barium	25.2	0.250	0.500	mg/kg we	et 5	25.0		101	80-120%			
Beryllium	12.0	0.0500	0.100	mg/kg we	et 5	12.5		96	80-120%			
Cadmium	24.4	0.0500	0.100	mg/kg we	et 5	25.0		98	80-120%			
Chromium	24.3	0.250	0.500	mg/kg we	et 5	25.0		97	80-120%			
Copper	24.9	0.500	1.00	mg/kg we	et 5	25.0		100	80-120%			
Lead	23.1	0.0500	0.100	mg/kg we	et 5	25.0		92	80-120%			
Manganese	24.1	0.250	0.500	mg/kg we	et 5	25.0		96	80-120%			
Mercury	0.456	0.0200	0.0400	mg/kg we	et 5	0.500		91	80-120%			
Nickel	24.7	0.500	1.00	mg/kg we	et 5	25.0		99	80-120%			
Selenium	12.9	0.250	0.500	mg/kg we	et 5	12.5		103	80-120%			
Silver	11.7	0.0500	0.100	mg/kg we	et 5	12.5		93	80-120%			
Γhallium	12.2	0.250	0.500	mg/kg we	et 5	12.5		98	80-120%			
Zinc	24.5	1.00	2.00	mg/kg we	et 5	25.0		98	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by	EPA 6020	B (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0793 - EPA 3051A							Sed	diment				
Duplicate (22H0793-DUP1)			Prepared	: 08/23/22 0	9:46 Ana	lyzed: 08/23	/22 20:36					
QC Source Sample: DU1-20220810	-ISM-COM	IP (A2H0382-0	02)									
EPA 6020B												
Antimony	2.71	0.283	0.565	mg/kg dr	y 5		2.62			3	20%	PRO
Arsenic	4.05	0.283	0.565	mg/kg dr	y 5		4.21			4	20%	PR
Barium	335	0.283	0.565	mg/kg dr	y 5		339			1	20%	PRO
Beryllium	0.328	0.0565	0.113	mg/kg dr	y 5		0.327			0.3	20%	PRO
Cadmium	2.91	0.0565	0.113	mg/kg dr	y 5		2.97			2	20%	PRO
Chromium	69.3	0.283	0.565	mg/kg dr	y 5		70.1			1	20%	PRO
Copper	254	0.565	1.13	mg/kg dr	y 5		259			2	20%	PRO
Lead	27.6	0.0565	0.113	mg/kg dr			27.1			2	20%	PRO
Manganese	693	0.283	0.565	mg/kg dr			711			3	20%	PRO
Mercury	0.456	0.0226	0.0452	mg/kg dr	y 5		0.485			6	20%	PRO
Nickel	36.6	0.565	1.13	mg/kg dr			37.8			3	20%	PRO
Selenium	2.68	0.283	0.565	mg/kg dr			2.46			8	20%	PRO
Silver	2.20	0.0565	0.113	mg/kg dr	y 5		2.27			3	20%	PRO
Thallium	ND	0.283	0.565	mg/kg dr			ND				20%	PRO
Zinc	803	1.13	2.26	mg/kg dr			817			2	20%	PRO
Matrix Spike (22H0793-MS1)			Prepared	: 08/23/22 0	9:46 Ana	lyzed: 08/23	/22 20:56					
QC Source Sample: DU1-20220810	-ISM-COM	IP (A2H0382-0	02)									
EPA 6020B												
Antimony	14.4	0.281	0.563	mg/kg dr	y 5	14.1	2.62	84	75-125%			PRO
Arsenic	29.4	0.281	0.563	mg/kg dr	•	28.1	4.21	90	75-125%			PRO
Barium	357	0.281	0.563	mg/kg dr	•	28.1	339	64	75-125%			PRO,Q-0
Beryllium	14.4	0.0563	0.113	mg/kg dr	-	14.1	0.327	100	75-125%			PRO
Cadmium	30.3	0.0563	0.113	mg/kg dr		28.1	2.97	97	75-125%			PRO
Chromium	94.8	0.281	0.563	mg/kg dr		28.1	70.1	88	75-125%			PR
Copper	274	0.563	1.13	mg/kg dr		28.1	259	52	75-125%			PRO,Q-0
Lead	53.2	0.0563	0.113	mg/kg dr		28.1	27.1	93	75-125%			PRO
Manganese	706	0.281	0.563	mg/kg dr		28.1	711	-16	75-125%			PRO,Q-0
Mercury	0.997	0.0225	0.0450	mg/kg dr	-	0.563	0.485	91	75-125%			PRO

Apex Laboratories

Nickel

Selenium

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

90

105

75-125%

75-125%

28.1

14.1

37.8

2.46

Philip Neienberg

63.2

17.3

0.563

0.281

1.13

0.563

mg/kg dry

mg/kg dry

5

5

PRO

PRO

13.9

806

0.281

1.13

0.563

2.25

ANALYTICAL REPORT

AMENDED REPORT

Apex Laboratorie

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

PRO

PRO,Q-03

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Thallium

Zinc

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS) Detection Reporting Spike Source % REC **RPD** Analyte Result Limit Units Dilution Result % REC Limits RPD Limit Amount Limit Notes Batch 22H0793 - EPA 3051A Sediment Matrix Spike (22H0793-MS1) Prepared: 08/23/22 09:46 Analyzed: 08/23/22 20:56 QC Source Sample: DU1-20220810-ISM-COMP (A2H0382-02) Silver 91 PRO 15.1 0.0563 0.113 mg/kg dry 5 14.1 2.27 75-125%

5

5

14.1

28.1

mg/kg dry

mg/kg dry

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

99

-39

75-125%

75-125%

ND

817

Philip Neimberg

Apex Laboratories

6700 S.W. Sandburg Street
Tigard, OR 97223

Item #2.

503-718-2323 ORELAP ID: **OR100062**

Report ID:

A2H0382 - 12 12 22 1538

AMENDED REPORT

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

QUALITY CONTROL (QC) SAMPLE RESULTS

		Total Hexa	valent Chr	omium b	y Colorin	netric Spe	ctropho	tometry				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0747 - EPA 3060A							So	il				
Blank (22H0747-BLK2)			Prepared	: 08/22/22	08:37 Ana	lyzed: 08/23	3/22 14:03					
EPA 7196A												
Chromium (VI)	ND	0.225	0.450	mg/kg w	ret 1							Q-10
LCS (22H0747-BS2)			Prepared	: 08/22/22	08:37 Ana	lyzed: 08/23	3/22 14:03					
EPA 7196A												
Chromium (VI)	16.4	0.225	0.450	mg/kg w	ret 1	20.0		82	80-120%			Q-10
Duplicate (22H0747-DUP1)			Prepared	: 08/22/22	08:37 Ana	lyzed: 08/23	3/22 14:06					PRO
QC Source Sample: DU1-20220810-	-ISM-COM	IP (A2H0382-	02)									
EPA 7196A												
Chromium (VI)	ND	10.6	21.2	mg/kg d	ry 50		ND				20%	Q-5′
Matrix Spike (22H0747-MS1)			Prepared	: 08/22/22	08:37 Ana	lyzed: 08/23	3/22 14:07					PRO
OC Source Sample: DU1-20220810-	-ISM-COM	IP (A2H0382-	02)									
EPA 7196A												
Chromium (VI)	ND	10.6	21.2	mg/kg d	ry 50	20.9	ND		75-125%			Cr6-01, Q-5
Matrix Spike (22H0747-MS2)			Prepared	: 08/22/22	08:37 Ana	lyzed: 08/23	3/22 14:09					PRO
QC Source Sample: DU1-20220810-	-ISM-COM	IP (A2H0382-	02)									
EPA 7196A												
Chromium (VI)	ND	21.1	42.2	mg/kg d	ry 100	1010	ND		75-125%			Cr6-01, Q-5
Post Spike (22H0747-PS1)			Prepared	: 08/22/22	08:37 Ana	lyzed: 08/23	3/22 14:12					PRO

ug/L

50

19900

53.7

86

85-115%

Apex Laboratories

EPA 7196A Chromium (VI)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Manherg

QC Source Sample: DU1-20220810-ISM-COMP (A2H0382-02)

17200

Q-57

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

QC Source Sample: Non-SDG (A2H0213-02) 6 Solids 97.8 1.00 1.00 % 1 97.8 0.02 10%													
Analyte	Result			Units	Dilution			% REC				Notes	
Batch 22H0481 - Total Solids	(Dry Weig	ht)					Soi	l					
Duplicate (22H0481-DUP1)			Prepared	1: 08/12/22	13:08 Ana	lyzed: 08/15	/22 07:02					PRO	
QC Source Sample: Non-SDG (A	2H0213-02)												
% Solids	97.8	1.00	1.00	%	1		97.8			0.02	10%		
Duplicate (22H0481-DUP2)			Prepared	d: 08/12/22	13:08 Ana	lyzed: 08/15	/22 07:02					PRO	
QC Source Sample: Non-SDG (A	2H0213-04)												
% Solids	97.5	1.00	1.00	%	1		97.5			0.01	10%		
Duplicate (22H0481-DUP3)			Prepared	1: 08/12/22	13:08 Ana	lyzed: 08/15	/22 07:02					PRO	
QC Source Sample: Non-SDG (A	2H0213-06)												
% Solids	97.6	1.00	1.00	%	1		97.7			0.05	10%		
Duplicate (22H0481-DUP4)			Prepared	d: 08/12/22	19:24 Ana	lyzed: 08/15	/22 07:02					PRO	
QC Source Sample: Non-SDG (A	2H0216-02)												
% Solids	97.5	1.00	1.00	%	1		97.5			0.04	10%		
Duplicate (22H0481-DUP5)			Prepared	1: 08/12/22	19:24 Ana	lyzed: 08/15	/22 07:02					PRO	
QC Source Sample: Non-SDG (A	2H0216-04)												
% Solids	97.6	1.00	1.00	%	1		97.6			0.001	10%		
Duplicate (22H0481-DUP6)			Prepared	1: 08/12/22	19:24 Ana	lyzed: 08/15	/22 07:02						
QC Source Sample: DU1-2022081 EPA 8000D	10-ISM-CON	MP (A2H0382-	03)										
% Solids	7.08	1.00	1.00	%	1		6.71			5	10%		
/ 0 DOII 00	7.00	1.00	1.00	/0	1		0.71			J	10/0		

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Item #2.

AMENDED REPORT 503

Maul Foster & Alongi, INC.

Project: St. I

St. Helens Lagoon

3140 NE Broadway Street Project Number: [none]
Portland, OR 97232 Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	nt Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0773 - Total Solids (Dry Weig	ht)					Soil					-
Duplicate (22H0773-DUP1)			Prepared	: 08/22/22	15:12 Anal	lyzed: 08/22	/22 15:57					PRO
QC Source Sample: DU1-2022081	0-ISM-CON	IP (A2H0382-	02)									
EPA 8000D												
% Solids	94.1	1.00	1.00	%	1		93.7			0.4	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

Project:

St. Helens Lagoon

3140 NE Broadway Street Portland, OR 97232 Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

Weck Laboratories, Inc.

QUALITY CONTROL (QC) SAMPLE RESULTS Chlorinated Herbicides by GC/ECD

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch W2H1928 - EPA 3550/S	Sonication						Soli	id				
Blank (W2H1928-BLK1)			Prepared	: 08/24/22 (09:10 Anal	yzed: 09/01/	22 08:41					
EPA 8151A												
2,4-D	ND	9.3	40	ug/kg	1							
2,4-DB	ND	16	80	ug/kg	1							
2,4,5-T	ND	4.2	20	ug/kg	1							
2,4,5-TP (Silvex)	ND	5.1	20	ug/kg	1							
Dalapon	ND	7.1	40	ug/kg	1							
Dicamba	ND	6.7	40	ug/kg	1							
Dichloroprop	ND	6.8	40	ug/kg	1							
Dinoseb	ND	2.3	20	ug/kg	1							
MCPA	ND	1500	4000	ug/kg	1							
MCPP	ND	750	4000	ug/kg	1							
Pentachlorophenol	ND	6.3	20	ug/kg	1							
Picloram	ND	6.2	20	ug/kg	1							
Surr: 2,4-DCAA		Reco	overy: 97%	Limits: 13	-119 %	Dilu	tion: 1x					

LCS (W2H1928-BS1)			Prepared	1: 08/24/22 09	:10 Ana	alyzed: 09/01/2	22 09:13				
EPA 8151A											
2,4-D	91.6	9.3	40	ug/kg	1	100		92	53-130%	 	
2,4-DB	139	16	80	ug/kg	1	200		70	28-119%	 	
2,4,5-T	50.5	4.2	20	ug/kg	1	50.0		101	40-108%	 	
2,4,5-TP (Silvex)	45.5	5.1	20	ug/kg	1	50.0		91	38-108%	 	
Dalapon	67.7	7.1	40	ug/kg	1	100		68	17-122%	 	
Dicamba	91.2	6.7	40	ug/kg	1	100		91	48-107%	 	
Dichloroprop	91.4	6.8	40	ug/kg	1	100		91	45-117%	 	
Dinoseb	18.2	2.3	20	ug/kg	1	50.0		36	0.1-83%	 	J
MCPA	10400	1500	4000	ug/kg	1	10000		104	33-107%	 	
MCPP	8300	750	4000	ug/kg	1	10000		83	34-117%	 	
Pentachlorophenol	42.3	6.3	20	ug/kg	1	50.0		85	40-102%	 	
Picloram	44.9	6.2	20	ug/kg	1	50.0		90	22-139%	 	
Surr: 2,4-DCAA		Recover	y: 110 %	Limits: 13-1	19%	Dilu	tion: 1x				_

Matrix Spike (W2H1928-MS1)

Prepared: 08/24/22 09:10 Analyzed: 09/01/22 09:44

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

Weck Laboratories, Inc.

QUALITY CONTROL (QC) SAMPLE RESULTS

			Chlorin	nated He	rbicides b	y GC/EC	D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch W2H1928 - EPA 3550	/Sonication						So	lid				
Matrix Spike (W2H1928-M	S1)		Prepared	: 08/24/22	09:10 Anal	yzed: 09/01	/22 09:44					
QC Source Sample: A2H0382-	02 (A2H0382-0	<u>2)</u>										
EPA 8151A												
2,4-D	ND	0.0	1500	ug/kg	10	365	ND		21-126%			M-02, M-0 MS-
2,4-DB	32.1	0.0	2900	ug/kg	10	731	ND	4	13-133%			M-02, M-0
2,4,5-T	ND	0.0	730	ug/kg	10	183	ND		17-123%			MS-01 M-02, M-0
2,4,3-1	ND	0.0	730	ug/kg	10	103	ND		17-12370			MS-
2,4,5-TP (Silvex)	20.7	0.0	730	ug/kg	10	183	ND	11	15-126%			M-02, M-0
Dalapon	ND	0.0	1500	ug/kg	10	365	ND		9.6-101%			MS-01 M-02, M-0
-								_				MS-
Dicamba	12.0	0.0	1500	ug/kg	10	365	ND	3	11-107%			M-02, M-0 MS-01
Dichloroprop	231	0.0	1500	ug/kg	10	365	ND	63	44-133%			M-02, M-0
Dinoseb	15.8	0.0	730	ug/kg	10	183	ND	9	0.1-72%			M-02, M-0
MCPA	8890	0.0	150000	ug/kg	10	36500	ND	24	23-123%			M-02, M-0
Mann			1.50000		10	26500			• • • • • • • • • • • • • • • • • • • •			14.02.14.0
MCPP	ND	0.0	150000	ug/kg	10	36500	ND		24-120%			M-02, M-0 MS-
Pentachlorophenol	7.57	0.0	730	ug/kg	10	183	ND	4	10-103%			M-02, M-0
Picloram	ND	0.0	730	na/ka	10	183	ND		17-155%			MS-0: M-02, M-0
riciorani	ND	0.0	730	ug/kg	10	103	ND		17-135/0			MS-
Surr: 2,4-DCAA		Re	covery: 8%	Limits: 13	3-119 %	Dilı	ution: 10x					S-04
Matrix Spike Dup (W2H192	28-MSD1)		Prepared:	: 08/24/22	09:10 Anal	lyzed: 09/01	/22 10:15					
QC Source Sample: A2H0382-	· · · · · · · · · · · · · · · · · · ·	2)	F-wee			J						
EPA 8151A	261	0.0	1.500		10	264		70	01.10601		:	14.00 3.4.0
2,4-D	261	0.0	1500	ug/kg	10	364	ND	72	21-126%	200	25%	M-02, M-0 R-03
2,4-DB	296	0.0	2900	ug/kg	10	727	ND	41	13-133%	200	25%	M-02, M-0
2.4.5 T	107	0.0	720	//	10	102	ND	50	17 1220/	200	250/	R-03
2,4,5-T	106	0.0	730	ug/kg	10	182	ND	59	17-123%	200	25%	M-02, M-0 R-03

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

Weck Laboratories, Inc.

QUALITY CONTROL (QC) SAMPLE RESULTS

			Chlorin	ated He	rbicides k	y GC/EC	<u>D</u>					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch W2H1928 - EPA 35	50/Sonication						So	lid				
Matrix Spike Dup (W2H1	928-MSD1)		Prepared:	08/24/22 ()9:10 Anal	lyzed: 09/01	/22 10:15					
QC Source Sample: A2H038	32-02 (A2H0382-02))										
2,4,5-TP (Silvex)	152	0.0	730	ug/kg	10	182	ND	84	15-126%	200	25%	M-02, M-04 R-03,
Dalapon	206	0.0	1500	ug/kg	10	364	ND	57	9.6-101%	200	25%	M-02, M-04 R-03,
Dicamba	163	0.0	1500	ug/kg	10	364	ND	45	11-107%	200	25%	M-02, M-04 R-03,
Dichloroprop	429	250	1500	ug/kg	10	364	ND	118	44-133%	200	25%	M-02, M-04 R-03,
Dinoseb	55.2	0.0	730	ug/kg	10	182	ND	30	0.1-72%	200	25%	M-02, M-04 R-03,
MCPA	15900	0.0	150000	ug/kg	10	36400	ND	44	23-123%	200	25%	M-02, M-04 R-03,
MCPP	32000	27000	150000	ug/kg	10	36400	ND	88	24-120%	200	25%	M-02, M-04 R-03,
Pentachlorophenol	57.7	0.0	730	ug/kg	10	182	ND	32	10-103%	200	25%	M-02, M-04 R-03,
Picloram	109	0.0	730	ug/kg	10	182	ND	60	17-155%	200	25%	M-02, M-04 R-03,
Surr: 2,4-DCAA		Reco	very: 67 %	Limits: 13	-119 %	Dilı	ution: 10x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

Item #2.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

Weck Laboratories, Inc.

QUALITY CONTROL (QC) SAMPLE RESULTS

	Conve	entional Ch	nemistry/Ph	nysical Pa	arameter	s by APH	A/EPA/AS	TM Meth	ods			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch W2H1882NON	E (METALS)						Soli	d				
Duplicate (W2H1882-D	UP1)		Prepared	: 08/23/22	14:37 Ana	lyzed: 08/24	/22 16:39					
QC Source Sample: Non-S	DG (2H23010-03)											
% Solids	28.1		0.100	% by Wei	ght 1		27.4			3	20%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Menterg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

SAMPLE PREPARATION INFORMATION

		Diesel and	l/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3546 (Fue	els)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22H0779							
A2H0382-02	Sediment	NWTPH-Dx	08/10/22 09:15	08/22/22 16:14	10.09g/10mL	10g/5mL	1.98
	Gas	oline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
<u>Prep: EPA 5035A</u>					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22H0476	~)					
A2H0382-01	Sediment	NWTPH-Gx (MS)	08/10/22 09:15	08/10/22 09:15	165.15g/250mL	5g/5mL	1.51
		Volatile (Organic Compounds	by EPA 8260D			
<u>Prep: EPA 5035A</u>					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22H0476							
A2H0382-01	Sediment	5035A/8260D	08/10/22 09:15	08/10/22 09:15	165.15g/250mL	5g/5mL	1.51
		Volatile Orç	ganic Compounds b	y EPA 8260D SIM			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22H0946							
A2H0382-01	Sediment	5035A/8260D SIM	08/10/22 09:15	08/10/22 09:15	165.15g/250mL	5g/5mL	1.51
		Semivolatil	e Organic Compour	ds by EPA 8270E			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22H0777			1	1			
А2Н0382-02	Sediment	EPA 8270E	08/10/22 09:15	08/22/22 16:07	15.09g/5mL	15g/2mL	2.49
		Organophosphoru	s Pesticides (OPPs)	by EPA 8270E (G0	C/MS)		
Prep: EPA 3546			•	•	Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
			1	1			
Batch: 22H0778							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Menterg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

SAMPLE PREPARATION INFORMATION

		Organophosphoru	s Pesticides (OPPs) by EPA 8270E (G	C/MS)		
<u>Prep: EPA 3546</u>	<u> </u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
		Organo	chlorine Pesticides	by GC/MS/MS			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 2210773 A2H0382-02	Sediment	EPA 8270E OCPs	08/10/22 09:15	09/23/22 11:03	10.06g/10mL	10g/1mL	9.94
		Total	Metals by EPA 602	0B (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22H0793							
A2H0382-02	Sediment	EPA 6020B	08/10/22 09:15	08/23/22 09:46	0.467g/50mL	0.5g/50mL	1.07
		Total Hexavalent 0	Chromium by Colorir	metric Spectrophoto	ometry		
Prep: EPA 3060A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22H0747							
A2H0382-02	Sediment	EPA 7196A	08/10/22 09:15	08/22/22 08:37	2.5342g/100mL	2.5g/111mL	0.89
			Percent Dry We	ight			
Prep: Total Solids (Dr	ry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22H0481							
A2H0382-01	Sediment	EPA 8000D	08/10/22 09:15	08/12/22 13:08			NA
A2H0382-03	Sediment	EPA 8000D	08/10/22 09:15	08/12/22 13:08			NA
Batch: 22H0773							
A2H0382-02	Sediment	EPA 8000D	08/10/22 09:15	08/22/22 15:12			NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

AMENDED REPORT

Prepared

08/23/22 14:37

1g/1ml

Apex Laboratorie

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.

St. Helens Lagoon Project:

3140 NE Broadway Street Portland, OR 97232

Lab Number

Batch: W2H1882 A2H0382-02

Matrix

Sediment

Method

EPA 160.3M

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

1g/1ml

NA

Weck Laboratories, Inc.

SAMPLE PREPARATION INFORMATION

	Chlorinated Herbicides by GC/ECD										
Prep: EPA 3550/Sc Lab Number	onication Matrix	Method	Sampled	Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor				
Batch: W2H1928 A2H0382-02	Sediment	EPA 8151A	08/10/22 09:15	08/24/22 09:10	8.34g/10ml	30g/10ml	3.60				
Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods											
Prep: NONE (ME	TALS) Matrix	Method	Sampled	Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor				

Sampled

08/10/22 09:15

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Philip Menberg

(700 C W C---

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratorie

Item #2.

AMENDED REPORT 503-718

Maul Foster & Alongi, INC. Project: St. Helens Lagoon

3140 NE Broadway StreetProject Number: [none]Report ID:Portland, OR 97232Project Manager: David WeatherbyA2H0382 - 12 12 22 1538

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

H-08

A-01	Sample was received outside of recommended temperature.
AMEND	The Result, Reporting Level, Recovery and/or RPD has changed. Note: Batch QC marked as AMENDED may or may not have been issued prior to the change. Case Narrative included if client data is affected.
В	Analyte detected in an associated blank at a level above the MRL. (See Notes and Conventions below.)
B-02	Analyte detected in an associated blank at a level between one-half the MRL and the MRL. (See Notes and Conventions below.)
B-07	Analyte detected in the corresponding extraction blank at a level greater than the MRL, and detected in this sample at a level below that found in the blank. Reporting level for this analyte has been raised above the potential analyte contamination.
Cr6-01	Matrix Spike fails due to probable reducing conditions present in the sample. Sample is ND. Data quality is not affected because any hexavalent chromium present in the sample is likely to have been reduced to chromium three.
F-13	The chromatographic pattern does not resemble the fuel standard used for quantitation

- H-01 This sample was analyzed outside the recommended holding time.
- Ja Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- **PRO** Sample has undergone sample processing prior to extraction and analysis.
- **Q-01** Spike recovery and/or RPD is outside acceptance limits.
- Q-03 Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
- Q-05 Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.

Sample hold time extended by freezing at -18 degrees C. Total time at 4 degrees C was less than the method hold time.

- Q-16 Reanalysis of an original Batch QC sample.
- Q-18 Matrix Spike results for this extraction batch are not reported due to the high dilution necessary for analysis of the source sample.
- Q-29 Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
- Q-30 Recovery for Lab Control Spike (LCS) is below the lower control limit. Data may be biased low.
- Q-36 Daily CCV recovery for this analyte was below the +/-20% criteria listed in EPA 8270, however there is adequate sensitivity to ensure detection at the reporting level.
- Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
- Q-52 Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.
- Q-54 Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +16%. The results are reported as Estimated Values.
- Q-54a Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +19%. The results are reported as Estimated Values.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Normberg

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Report ID:

AMENDED REPORT

 Maul Foster & Alongi, INC.
 Project:
 St. Helens Lagoon

 3140 NE Broadway Street
 Project Number:
 [none]

 Portland, OR 97232
 Project Manager:
 David Weatherby

Project Manager: David Weatherby A2H0382 - 12 12 22 1538

Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +2%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +6%. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -13%. The results are reported as Estimated Values.
Q-54e	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -4%. The results are reported as Estimated Values.
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260
Q-57	Compensation for background color and/or turbidity has been made by subtracting the absorbance of a second aliquot of sample to which all reagents except the color producing reagent have been added, in accordance with the method.
R-02	The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
R-04	Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.
S-01	Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference.

Weck Laboratories, Inc.

S-05

J	Estimated conc. detected <mrl and="">MDL.</mrl>

M-02 Due to the nature of matrix interferences, sample was diluted prior to preparation. The MDL and MRL were raised due to the dilution.

Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.

- M-04 Due to the nature of matrix interferences, sample extract was diluted prior to analysis. The MDL and MRL were raised due to the dilution.
- MS-01 The spike recovery for this QC sample is outside of established control limits possibly due to sample matrix interference.
- R-03 The RPD is not applicable for result below the reporting limit (either ND or J value).
- S-04 The surrogate recovery for this sample is outside of established control limits due to possible sample matrix effect.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC. Project: St. Helens Lagoon

3140 NE Broadway StreetProject Number: [none]Report ID:Portland, OR 97232Project Manager: David WeatherbyA2H0382 - 12 12 22 1538

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

Apex Laboratorie

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon
Project Number: [none]

Troject rumber. [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

200

AMENDED REPORT

6700 S.W

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Apex Laboratorie

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.

Project:

Project Number: [none]

St. Helens Lagoon

3140 NE Broadway Street Portland, OR 97232

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis

TNI ID

Analyte

TNI_ID

Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Menberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project:

St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

AI EA LAD. 12232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fax: 503-718-0333	:03-718-2323 Fax: 5	03-718-0333	T # 0 # 7	Lab # / [V [] V] 2 V
Company: Maul Foster Alongi	Project Mgr. David Weatherby	Veatherby	Project Name: St. Helens Lagoon	Project # M0830.03.006
140 NE Broadway St, Portland, Oi		Phone; (971) 544-2139	Email: dweatherby@maulfoster.com, mbenzinger@maulfoster.com	inger@maulfoster.com
Sampled by Colo Shacher Sampler signature Lumber Sampler signature Lifter	ndercon		ANALYSIS REQUEST	
	TIME	101 Metals 60208** RESOD VOCS RESOD VOCS RESON PIED*	SIST V 1878 CHORINOTE CHORINOTE STORY STOR	PFAS EPA-S37 Mod
PHA-20108HT-1-0		·		
DAT-260200-TSM-COMP 8/10/12	M & SIIX	ж ж ж	X	×
Normal Turn Around Time (TAT) = 5-10 Business Days	TAT) = 5-10 Business I		SPECIAL INSTRUCTIONS:	
TAT Requested (circle) 4 DAY A DAY CAMPLES ARE HELD FOR 20 DAYS	-	72 HR Other:	*RSM prep on all sediment, associated sands, and gravel. Remove sticks and foreign material (plastic, trash, etc.) Collect test sample from ?	d gravel. Remove sticks and foreign y weight using Jap2D RSM technique. e, Ag, Tl, Zn
SHED BY:	RECEIVED BY: Signature: MMAAA	Date: 8/16/22	RELINQUISHED BY; Signature: Date:	RECEIVED BY: Signature: Date:
Princi Name Time. Time.	Printed Name:	Time: 18:25	Printed Name: Time:	Printed Name: Time:
Company	Company:		Сопралу:	Сотралу:

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project:

St. Helens Lagoon

Project Number: [none]

Project Manager: David Weatherby

Report ID: A2H0382 - 12 12 22 1538

Client: May Fos	ter Alongi	Element WO#: A2_ <u>H038Z</u>
Project/Project #: 🛠 .	Helens Lavono IMC	03.003.006
240	m C	
	8/10 1/10/22@18:25 By:	26M
		UPSSwiftSenvoySDSOther
	Fr Grand C. State C.	@ 18 28 By: 2 Am
Chain of Custody include		Custody seals? Yes No_>
Signed/dated by client?	Yes No No	
Signed/dated by Apex?	Yes × No	
	Cooler #1 Cooler #2 Coo	oler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	3.1	
Received on ice? (Y/N)	<u> </u>	
Temp. blanks? (Y/N)		
Ice type: (Gel/Real/Other)	feat	- Approximate Activities - Approximate - App
Condition:	<u>600d</u>	
Green dots applied to out Out of temperature sample Sample Inspection: Dar		@
Green dots applied to out Out of temperature sample Sample Inspection: Da All samples intact? Yes	of temperature samples? Yes/les form initiated? Yes/lob te/time inspected:	@ 1556 By: 19
Green dots applied to out Out of temperature sample Sample Inspection: Da All samples intact? Yes	of temperature samples? Yes/les form initiated? Yes/lob te/time inspected:	@
Green dots applied to out Out of temperature sample Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree?	of temperature samples? Yeskes form initiated? Yeskes te/time inspected: Yeskes No Comments: Yes No Comments: Comment	@ 1556 By:
Green dots applied to out Out of temperature sample Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree? COC/container discrepance	of temperature samples? Yes/es form initiated? Yes/form te/time inspected: Yes/form No Comments: Yes No Comments: Yes No Comment Comment Services form initiated? Yes 1	@
Green dots applied to out Out of temperature sample Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree? COC/container discrepanc Containers/volumes receiv	of temperature samples? Yes/es form initiated? Yes/form te/time inspected: Yes/form te/time inspected: Yes/form te/time inspected: Yes No Comment Co	@ 1556 By:
Green dots applied to out Out of temperature sample Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree? COC/container discrepanc Containers/volumes receiv	of temperature samples? Yes/es form initiated? Yes/form te/time inspected: Yes/form No Comments: Yes No Comments: Yes No Comment Comment Services form initiated? Yes 1	@ 1556 By:
Green dots applied to out Out of temperature sample Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree? COC/container discrepanc Containers/volumes receiv	of temperature samples? Yes/es form initiated? Yes/form te/time inspected: Yes/form te/time inspected: Yes/form te/time inspected: Yes No Comment Co	@ 1556 By:
Green dots applied to out Out of temperature sample Sample Inspection: Da All samples intact? Yes	of temperature samples? Yes/es form initiated? Yes/es form initiated? Yes/es/es form initiated? Yes/es/es/es/es/es/es/es/es/es/es/es/es/e	@ 1556 By:
Green dots applied to out Out of temperature sample Sample Inspection: Da All samples intact? Yes	of temperature samples? Yes/es form initiated? Yes/form te/time inspected: Yes/form te/time inspected: Yes/form te/time inspected: Yes No Comments: Yes No Comments: Yed appropriate for analysis? Yes No No No No Yed: Yes No No Yed: Yes No NA PH a	@ 1556 By:
Green dots applied to out Out of temperature sample Sample Inspection: Da All samples intact? Yes	of temperature samples? Yes/es form initiated? Yes/es form initiated? Yes/es/es form initiated? Yes/es/es/es/es/es/es/es/es/es/es/es/es/e	@ 1556 By:
Green dots applied to out Out of temperature sample Sample Inspection: Da All samples intact? Yes	of temperature samples? Yes/es form initiated? Yes/es form initiated? Yes/es/es form initiated? Yes/es/es/es/es/es/es/es/es/es/es/es/es/e	@ 1556 By:
Green dots applied to out Out of temperature sample Sample Inspection: Date All samples intact? Yes	of temperature samples? Yes/es form initiated? Yes/form initiated? Yes/form initiated? Yes/form initiated? Yes No Comment vies form initiated? Yes No te headspace? Yes No No PH a	@
Green dots applied to out Out of temperature sample Sample Inspection: Da All samples intact? Yes	of temperature samples? Yes/es form initiated? Yes/es form initiated? Yes/es/es form initiated? Yes/es/es/es/es/es/es/es/es/es/es/es/es/e	@ 1556 By:

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Menterg

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Item #2.

Wednesday, April 19, 2023 David Weatherby Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

RE: A3A1010 - St. Helens Lagoon - M0830.03.006

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3A1010, which was received by the laboratory on 1/31/2023 at 10:08:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information	
(See Cooler Receipt Form for details)	

 Cooler #1
 3.1 degC
 Cooler #2
 1.4 degC

 Cooler #3
 2.8 degC
 Cooler #4
 0.9 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:3140 NE Broadway StreetProject NurPortland, OR 97232Project Mar

Project Number: M0830.03.006
Project Manager: David Weatherby

St. Helens Lagoon

Report ID: A3A1010 - 04 19 23 1708

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INF	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MFA-B1-20230130-21.9	A3A1010-01	Sediment	01/30/23 16:00	01/31/23 10:08
MFA-B3-20230131-31.0	A3A1010-02	Sediment	01/31/23 10:50	01/31/23 10:08
MFA-B2-20230131-23.0	A3A1010-03	Sediment	01/31/23 09:00	01/31/23 10:08
MFA-B4-20230202-SL-26.5	A3A1010-04	Sediment	02/02/23 09:10	01/31/23 10:08
MFA-B5-20230203-SL-27.0	A3A1010-05	Sediment	02/03/23 15:00	01/31/23 10:08
MFA-B1-B5-COMP-SL	A3A1010-06	Sediment	01/30/23 16:00	01/31/23 10:08
MFA-B1-B5-COMP-SL-PRO	A3A1010-07	Sediment	01/30/23 16:00	01/31/23 10:08

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

205

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

ANALYTICAL CASE NARRATIVE

A3A1010 Apex Laboratories

Sample Processing: Air Dried Samples

All samples for Chlorinated Pesticides by EPA 8270E are air dried prior to extraction and analysis.

A separate Dry Weight analysis is performed on the air dried samples in order to report data on a dry weight basis.

8270E Chlorinated Pesticides - Reporting levels raised due to Matrix.

Reporting levels for multiple analytes have been raised due to matrix interference for sample "MFA-SL-Composite After Processing" (Apex Labs ID A3A1010-07).

David Jack Technical Manager March 15, 2023

Sample B1-B5-COMP-SL (A3A1010-06) was composited by combining equal volumes of methanol from methanol-preserved VOAs for samples MFA-B1-20230130-21.9, MFA-B3-20230131-31.0, MFA-B2-20230131-23.0, MFA-B4-20230202-SL-26.5, and MFA-B5-20230203-SL-27.

Sample B1-B5-COMP-SL-PRO (A3A1010-07) was composited by combining equal weights of material from jars received for samples MFA-B1-20230130-21.9, MFA-B3-20230131-31.0, MFA-B2-20230131-23.0, MFA-B4-20230202-SL-26.5, and MFA-B5-20230203-SL-27.0. The composited sample was air-dried before analysis.

Philip Nerenberg Lab Director 4/19/23

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

206

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project: St. Helens Lagoon Project Number: M0830.03.006 Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

ANALYTICAL SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MFA-B1-B5-COMP-SL-PRO (A3A1010-07)				Matrix: Sedir	nent	Batch: 2	23B0765	COMP, PRO	
Diesel	26100	1030	2070	mg/kg dry	100	02/21/23 21:58	NWTPH-Dx	F-03, F-11	
Oil	ND	2070	4130	mg/kg dry	100	02/21/23 21:58	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		R	Recovery: %	Limits: 50-150 %	100	02/21/23 21:58	NWTPH-Dx	S-01	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

207

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

ANALYTICAL SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MFA-B1-B5-COMP-SL (A3A1010-06)				Matrix: Sedi	ment	Batch:	23B0290	СОМР
Gasoline Range Organics	ND	26.7	53.3	mg/kg dry	50	02/08/23 13:31	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recove	ery: 100 % 106 %	Limits: 50-150 % 50-150 %	-	02/08/23 13:31 02/08/23 13:31	NWTPH-Gx (MS) NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

208

Apex Laboratories

ANALYTICAL REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MFA-B1-B5-COMP-SL (A3A1010-06)				Matrix: Sec	diment	Batch:	23B0290	COMP
Acetone	ND	5330	10700	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Acrylonitrile	ND	533	1070	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Bromobenzene	ND	133	267	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Bromochloromethane	ND	267	533	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Bromodichloromethane	ND	267	533	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Bromoform	ND	533	1070	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Bromomethane	ND	5330	5330	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
2-Butanone (MEK)	ND	2670	5330	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
n-Butylbenzene	ND	267	533	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
sec-Butylbenzene	ND	267	533	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
ert-Butylbenzene	ND	267	533	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Carbon disulfide	ND	2670	5330	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Carbon tetrachloride	ND	267	533	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Chlorobenzene	ND	133	267	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Chloroethane	ND	5330	5330	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Chloromethane	ND	1330	2670	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
2-Chlorotoluene	ND	267	533	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
1-Chlorotoluene	ND	267	533	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Dibromochloromethane	ND	533	1070	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Dibromomethane	ND	267	533	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
1,2-Dichlorobenzene	ND	133	267	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
1,3-Dichlorobenzene	ND	133	267	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
1,4-Dichlorobenzene	ND	133	267	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Dichlorodifluoromethane	ND	533	1070	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
1,3-Dichloropropane	ND	267	533	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
2,2-Dichloropropane	ND	267	533	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
1,1-Dichloropropene	ND	267	533	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Hexachlorobutadiene	ND	533	1070	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
2-Hexanone	ND	2670	5330	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Sopropylbenzene	ND	267	533	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
4-Isopropyltoluene	ND	267	533	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Methylene chloride	ND	2670	5330	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	2670	5330	ug/kg dry	50	02/08/23 13:31	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Namberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MFA-B1-B5-COMP-SL (A3A1010-06)				Matrix: Sedi	ment	Batch:	23B0290	COMP
Naphthalene	ND	533	1070	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
n-Propylbenzene	ND	133	267	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Styrene	ND	267	533	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	133	267	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
1,2,3-Trichlorobenzene	ND	1330	2670	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
1,2,4-Trichlorobenzene	ND	1330	2670	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
1,1,1-Trichloroethane	ND	133	267	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Trichlorofluoromethane	ND	533	1070	ug/kg dry	50	02/08/23 13:31	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 107 %	Limits: 80-120 %	1	02/08/23 13:31	5035A/8260D	
Toluene-d8 (Surr)			99 %	80-120 %	1	02/08/23 13:31	5035A/8260D	
4-Bromofluorobenzene (Surr)			94 %	79-120 %	1	02/08/23 13:31	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

ANALYTICAL REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

ANALYTICAL SAMPLE RESULTS

	Vol	atile Organic	Compounds	by EPA 8260	DD SIM			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MFA-B1-B5-COMP-SL (A3A1010-06)				Matrix: Sediment		Batch:	23B0452	COMP
Benzene	ND	10.7	21.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
Toluene	29.7	26.7	53.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	J
Ethylbenzene	ND	26.7	53.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
m,p-Xylene	ND	53.3	107	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
o-Xylene	ND	26.7	53.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
1,2,4-Trimethylbenzene	ND	53.3	107	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
1,3,5-Trimethylbenzene	ND	53.3	107	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
Chloroform	ND	53.3	107	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
1,2-Dibromo-3-chloropropane	ND	26.7	53.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
1,2-Dibromoethane (EDB)	ND	10.7	21.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
1,1-Dichloroethane	ND	10.7	21.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
1,2-Dichloroethane (EDC)	ND	10.7	21.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
1,1-Dichloroethene	ND	10.7	21.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
cis-1,2-Dichloroethene	ND	10.7	21.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
trans-1,2-Dichloroethene	ND	10.7	21.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
1,2-Dichloropropane	ND	10.7	21.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
cis-1,3-Dichloropropene	ND	10.7	21.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
trans-1,3-Dichloropropene	ND	10.7	21.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
Methyl tert-butyl ether (MTBE)	ND	21.3	21.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
Tetrachloroethene (PCE)	ND	10.7	21.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MFA-B1-B5-COMP-SL (A3A1010-06)				Matrix: Sedi	ment	Batch:	23B0452	СОМР
1,1,2,2-Tetrachloroethane	ND	53.3	53.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
Trichloroethene (TCE)	ND	10.7	21.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
1,2,3-Trichloropropane	ND	26.7	53.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
Vinyl chloride	ND	53.3	107	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
1,1,2-Trichloroethane	ND	26.7	53.3	ug/kg dry	100	02/12/23 13:16	5035A/8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 102 %	Limits: 80-120 %	<u> </u>	02/12/23 13:16	5035A/8260D SIM	
Toluene-d8 (Surr)			99 %	80-120 %	i = I	02/12/23 13:16	5035A/8260D SIM	
4-Bromofluorobenzene (Surr)			98 %	79-120 %	i = I	02/12/23 13:16	5035A/8260D SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

ANALYTICAL SAMPLE RESULTS

Analyte	Sample	Detection	Reporting	TT 1	Ditai	Date	N) of	NT 4
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method I		Notes
MFA-B1-B5-COMP-SL-PRO (A3A1010-07)	,			Matrix: Sed	diment	Batch:	23B0782	COMP	P, H-02, PRO
Acenaphthene	ND	197	396	ug/kg dry	40	02/21/23 23:47	EPA 8270		
Acenaphthylene	ND	197	396	ug/kg dry	40	02/21/23 23:47	EPA 8270	9E	
Anthracene	ND	197	396	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Benz(a)anthracene	ND	197	396	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Benzo(a)pyrene	ND	297	594	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Benzo(b)fluoranthene	ND	297	594	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Benzo(k)fluoranthene	ND	297	594	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Benzo(g,h,i)perylene	ND	197	396	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Chrysene	ND	197	396	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Dibenz(a,h)anthracene	ND	197	396	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Fluoranthene	ND	197	396	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Fluorene	ND	197	396	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Indeno(1,2,3-cd)pyrene	ND	197	396	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
1-Methylnaphthalene	ND	396	791	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
2-Methylnaphthalene	ND	396	791	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Naphthalene	ND	396	791	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Phenanthrene	582	197	396	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Pyrene	304	197	396	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	J
Carbazole	ND	297	594	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Dibenzofuran	ND	197	396	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
2-Chlorophenol	ND	990	1970	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
4-Chloro-3-methylphenol	ND	1970	3960	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
2,4-Dichlorophenol	ND	990	1970	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
2,4-Dimethylphenol	ND	990	1970	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
2,4-Dinitrophenol	ND	4940	9900	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
4,6-Dinitro-2-methylphenol	ND	4940	9900	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
2-Methylphenol	ND	494	990	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
3+4-Methylphenol(s)	ND	494	990	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
2-Nitrophenol	ND	1970	3960	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
l-Nitrophenol	ND	1970	3960	ug/kg dry	40	02/21/23 23:47	EPA 8270		
Pentachlorophenol (PCP)	ND	1970	3960	ug/kg dry	40	02/21/23 23:47	EPA 8270		
Phenol	ND	396	791	ug/kg dry ug/kg dry	40	02/21/23 23:47	EPA 8270		
2,3,4,6-Tetrachlorophenol	ND	990	1970	ug/kg dry ug/kg dry	40	02/21/23 23:47	EPA 8270		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method R	}ef N∘	otes
•						-	23B0782	COMP, H-02	
MFA-B1-B5-COMP-SL-PRO (A3A1010-07)				Matrix: Sed					<u> </u>
2,3,5,6-Tetrachlorophenol	ND	990	1970	ug/kg dry	40	02/21/23 23:47	EPA 8270		
2,4,5-Trichlorophenol	ND	990	1970	ug/kg dry	40	02/21/23 23:47	EPA 8270		
2,4,6-Trichlorophenol	ND	990	1970	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Bis(2-ethylhexyl)phthalate	4080	2970	5940	ug/kg dry	40	02/21/23 23:47	EPA 8270	Œ .	J
Butyl benzyl phthalate	ND	1970	1970	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Diethylphthalate	ND	990	1970	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Dimethylphthalate	ND	990	1970	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Di-n-butylphthalate	ND	990	1970	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Di-n-octyl phthalate	ND	1720	1970	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
N-Nitrosodimethylamine	ND	494	990	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
N-Nitroso-di-n-propylamine	ND	494	990	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
N-Nitrosodiphenylamine	ND	990	990	ug/kg dry	40	02/21/23 23:47	EPA 8270)E	
Bis(2-Chloroethoxy) methane	ND	494	990	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Bis(2-Chloroethyl) ether	ND	494	990	ug/kg dry	40	02/21/23 23:47	EPA 8270)E	
2,2'-Oxybis(1-Chloropropane)	ND	494	990	ug/kg dry	40	02/21/23 23:47	EPA 8270)E	
Hexachlorobenzene	ND	197	396	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Hexachlorobutadiene	ND	494	990	ug/kg dry	40	02/21/23 23:47	EPA 8270)E	
Hexachlorocyclopentadiene	ND	990	1970	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Hexachloroethane	ND	494	990	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
2-Chloronaphthalene	ND	197	396	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
1,2,4-Trichlorobenzene	ND	494	990	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
4-Bromophenyl phenyl ether	ND	494	990	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
4-Chlorophenyl phenyl ether	ND	494	990	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Aniline	ND	990	1970	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
4-Chloroaniline	ND	494	990	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
2-Nitroaniline	ND	3960	7910	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
3-Nitroaniline	ND	3960	7910	ug/kg dry	40	02/21/23 23:47	EPA 8270)E	
4-Nitroaniline	ND	3960	7910	ug/kg dry	40	02/21/23 23:47	EPA 8270	ЭE	
Nitrobenzene	ND	1970	3960	ug/kg dry	40	02/21/23 23:47	EPA 8270)E	
2,4-Dinitrotoluene	ND	1970	3960	ug/kg dry	40	02/21/23 23:47	EPA 8270		
2,6-Dinitrotoluene	ND	1970	3960	ug/kg dry	40	02/21/23 23:47	EPA 8270		
Benzoic acid	ND	49400	49400	ug/kg dry	40	02/21/23 23:47	EPA 8270		
Benzyl alcohol	ND	990	1970	ug/kg dry	40	02/21/23 23:47	EPA 8270		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Re	f. Notes
MFA-B1-B5-COMP-SL-PRO (A3A1010-07)				Matrix: Sedi	iment	Batch:	23B0782	COMP, H-02, PR
Isophorone	ND	494	990	ug/kg dry	40	02/21/23 23:47	EPA 8270E	
Azobenzene (1,2-DPH)	ND	494	990	ug/kg dry	40	02/21/23 23:47	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	4940	9900	ug/kg dry	40	02/21/23 23:47	EPA 8270E	
3,3'-Dichlorobenzidine	ND	3960	7910	ug/kg dry	40	02/21/23 23:47	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	4940	9900	ug/kg dry	40	02/21/23 23:47	EPA 8270E	
1,3-Dinitrobenzene	ND	4940	9900	ug/kg dry	40	02/21/23 23:47	EPA 8270E	
1,4-Dinitrobenzene	ND	4940	9900	ug/kg dry	40	02/21/23 23:47	EPA 8270E	
Pyridine	ND	990	1970	ug/kg dry	40	02/21/23 23:47	EPA 8270E	
1,2-Dichlorobenzene	ND	494	990	ug/kg dry	40	02/21/23 23:47	EPA 8270E	
1,3-Dichlorobenzene	ND	494	990	ug/kg dry	40	02/21/23 23:47	EPA 8270E	
1,4-Dichlorobenzene	ND	494	990	ug/kg dry	40	02/21/23 23:47	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recov	very: 49 %	Limits: 37-122 %	6 40	02/21/23 23:47	EPA 8270E	S-05
2-Fluorobiphenyl (Surr)			63 %	44-120 %	6 40	02/21/23 23:47	EPA 8270E	S-05
Phenol-d6 (Surr)			17 %	33-122 %	6 40	02/21/23 23:47	EPA 8270E	S-05
p-Terphenyl-d14 (Surr)			77 %	54-127 %	6 40	02/21/23 23:47	EPA 8270E	S-05
2-Fluorophenol (Surr)			17 %	35-120 %	6 40	02/21/23 23:47	EPA 8270E	S-05
2,4,6-Tribromophenol (Surr)			136 %	39-132 %	6 40	02/21/23 23:47	EPA 8270E	S-05

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

ANALYTICAL SAMPLE RESULTS

	Comple	Detection	Reporting			Date				
Analyte	Sample Result	Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method 1	Ref.	Notes	
MFA-B1-B5-COMP-SL-PRO (A3A1010-07)				Matrix: Sedir	nent	Batch:	n: 23B0783 COI		MP, H-02, PRO	
Azinphos methyl (Guthion)	ND	1010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Chlorpyrifos	ND	1010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Coumaphos	ND	2940	2940	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs	R-02	
Demeton O	ND	1010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Demeton S	ND	1010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Diazinon	ND	1010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Dichlorvos	ND	1010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Dimethoate	ND	1010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Disulfoton	ND	1010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
EPN	ND	1010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Ethoprop	ND	1010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Fensulfothion	ND	1010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Fenthion	ND	1010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Malathion	ND	2010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Merphos	ND	30000	30000	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs	R-02	
Methyl parathion	ND	2010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Mevinphos (Phosdrin)	ND	1010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Monocrotophos	ND	2010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Naled (Dibrom)	ND	1010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Parathion, ethyl	ND	9500	9500	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs	R-02	
Phorate	ND	1010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Ronnel (Fenchlorphos)	ND	1010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Sulfotep	ND	1010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Sulprofos (Bolstar)	ND	2010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
ГЕРР	ND	4030	8050	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Tetrachlorvinphos (Rabon)	ND	11000	11000	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs	R-02	
Tokuthion (Prothiofos)	ND	2010	2010	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs		
Trichloronate	ND	13200	13200	ug/kg dry	40	02/21/23 19:10	EPA 8270E	OPPs	R-02	
Surrogate: Tributyl phosphate (Surr)		Recove	ery: 455 %	Limits: 10-136 %	40	02/21/23 19:10	EPA 8270E	OPPs	S-05	
Triphenyl phosphate (Surr)			221 %	34-121 %	40	02/21/23 19:10	EPA 8270E	OPPs	S-05	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

216

Philip Meinberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

ANALYTICAL SAMPLE RESULTS

				es by GC/MS/M				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MFA-B1-B5-COMP-SL-PRO (A3A1010-07	")			Matrix: Sedi	ment	Batch:	Batch: 23C0074 03/23 17:29 EPA 8270E OCP	COMP, PRO
Aldrin	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	7
alpha-BHC	ND	2.72	2.72	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	R-02
beta-BHC	ND	3.21	3.21	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	R-02
gamma-BHC (Lindane)	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	;
delta-BHC	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	;
cis-Chlordane	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	;
cis-Nonachlor	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	1
2,4'-DDD	ND	3.95	3.95	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	R-02
2,4'-DDE	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	1
2,4'-DDT	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	1
4,4'-DDD	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	;
4,4'-DDE	3.05	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	1
4,4'-DDT	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	1
Endosulfan sulfate	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	1
Endrin	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	1
Endrin ketone	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	1
Heptachlor	ND	4.20	4.20	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	R-02
Heptachlor epoxide	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	;
Hexachlorobutadiene	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	;
Methoxychlor	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	;
Mirex	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	1
Oxychlordane	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	;
trans-Chlordane	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	1
trans-Nonachlor	ND	1.24	2.47	ug/kg dry	1	03/03/23 17:29	EPA 8270E OCPs	1
Surrogate: gamma-BHC-d6 (Surr)		Recon	very: 68 %	Limits: 50-150 %	5 1	03/03/23 17:29	EPA 8270E OCP	s S-05
4,4'-DDT-d8 (Surr)			80 %	50-150 %		03/03/23 17:29	EPA 8270E OCP	
MFA-B1-B5-COMP-SL-PRO (A3A1010-07	RE1)			Matrix: Sedi	ment	Batch:	23C0074	COMP, PRO
Dieldrin	ND	242	242	ug/kg dry	10	03/07/23 22:29	EPA 8270E OCPs	s R-02
Endosulfan I	ND	12.4	24.7	ug/kg dry	10	03/07/23 22:29	EPA 8270E OCPs	R-02
Endosulfan II	ND	12.4	24.7	ug/kg dry	10	03/07/23 22:29	EPA 8270E OCPs	s R-02

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

ANALYTICAL REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)													
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes					
MFA-B1-B5-COMP-SL-PRO (A3A1010-07))			Matrix: Sec	diment								
Batch: 23B0914													
Antimony	0.944	0.265	0.530	mg/kg dry	5	02/27/23 18:43	EPA 6020B	COMP, PRO,Q-42					
Arsenic	3.48	0.265	0.530	mg/kg dry	5	02/27/23 18:43	EPA 6020B	COMP, PRO					
Barium	174	0.265	0.530	mg/kg dry	5	02/27/23 18:43	EPA 6020B	COMP, PRO					
Beryllium	0.316	0.0530	0.106	mg/kg dry	5	02/27/23 18:43	EPA 6020B	COMP, PRO					
Cadmium	3.24	0.0530	0.106	mg/kg dry	5	02/27/23 18:43	EPA 6020B	COMP, PRO					
Chromium	191	0.265	0.530	mg/kg dry	5	02/27/23 18:43	EPA 6020B	COMP, PRO					
Copper	142	0.530	1.06	mg/kg dry	5	02/27/23 18:43	EPA 6020B	COMP, PRO					
Lead	40.2	0.0530	0.106	mg/kg dry	5	02/27/23 18:43	EPA 6020B	COMP, PRO					
Manganese	763	0.265	0.530	mg/kg dry	5	02/27/23 18:43	EPA 6020B	COMP, PRO					
Mercury	0.881	0.0212	0.0424	mg/kg dry	5	02/27/23 18:43	EPA 6020B	COMP, PRO					
Nickel	46.8	0.530	1.06	mg/kg dry	5	02/27/23 18:43	EPA 6020B	COMP, PRO					
Selenium	0.813	0.265	0.530	mg/kg dry	5	02/27/23 18:43	EPA 6020B	COMP, PRO					
Silver	2.50	0.0530	0.106	mg/kg dry	5	02/27/23 18:43	EPA 6020B	COMP, PRO					
Thallium	ND	0.265	0.530	mg/kg dry	5	02/27/23 18:43	EPA 6020B	COMP, PRO					
Zinc	531	1.06	2.12	mg/kg dry	5	02/27/23 18:43	EPA 6020B	COMP, PRO					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

ANALYTICAL SAMPLE RESULTS

	Total Hexav	alent Chrom	ium by Color	imetric Spe	ctrophoton	netry							
	Sample Detection Reporting Date												
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes					
MFA-B1-B5-COMP-SL-PRO (A3A	1010-07)			Matrix: Se	diment	Batch:	23B0959	COMP, PRO					
Chromium (VI)	ND	11.4	20.1	mg/kg	50	02/28/23 12:45	EPA 7196A	Q-57, R-04					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight						
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref	Notes		
MFA-B1-20230130-21.9 (A3A1010-01)				Matrix:	Sediment	Batch:	23B0043			
% Solids	14.0	1.00	1.00	%	1	02/02/23 05:57	EPA 8000D			
MFA-B3-20230131-31.0 (A3A1010-02)				Matrix:	Sediment	Batch:	23B0116			
% Solids	14.0	1.00	1.00	%	1	02/03/23 04:15	EPA 8000D			
MFA-B2-20230131-23.0 (A3A1010-03) Matrix: Sediment Batch: 23B0116										
% Solids	16.4	1.00	1.00	%	1	02/03/23 04:15	EPA 8000D			
MFA-B4-20230202-SL-26.5 (A3A1010-04)				Matrix:	Sediment	Batch:	23B0202			
% Solids	17.2	1.00	1.00	%	1	02/07/23 06:25	EPA 8000D			
MFA-B5-20230203-SL-27.0 (A3A1010-05)				Matrix:	Sediment	Batch:	23B0202			
% Solids	34.3	1.00	1.00	%	1	02/07/23 06:25	EPA 8000D			
MFA-B1-B5-COMP-SL (A3A1010-06)				Matrix:	Sediment	Batch:	23B0202	СОМР		
% Solids	19.2	1.00	1.00	%	1	02/07/23 00:00	EPA 8000D	A-01		
MFA-B1-B5-COMP-SL-PRO (A3A1010-07)				Matrix:	Sediment	Batch:	23B0961	COMP, PRO		
% Solids	95.7	1.00	1.00	%	1	02/28/23 06:46	EPA 8000D			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/d	or Oil Hyd	Irocarbor	ns by NW	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0765 - EPA 3546 (F	uels)						Sec	diment				
Blank (23B0765-BLK1)			Prepared	d: 02/21/23	07:18 Ana	lyzed: 02/21	/23 21:17					
NWTPH-Dx												
Diesel	ND	10.0	20.0	mg/kg w	ret 1							
Oil	ND	20.0	40.0	mg/kg w	ret 1							
Surr: o-Terphenyl (Surr)		Reco	overy: 88 %	Limits: 50	0-150 %	Dill	ution: 1x					
LCS (23B0765-BS1)			Prepared	d: 02/21/23	07:18 Ana	lyzed: 02/21	/23 21:37					
NWTPH-Dx												
Diesel	115	10.0	20.0	mg/kg w	ret 1	125		92	38-132%			
Surr: o-Terphenyl (Surr)		Reco	very: 105 %	Limits: 50	0-150 %	Dil	ution: 1x					
Duplicate (23B0765-DUP1)			Prepared	d: 02/21/23	07:18 Ana	lyzed: 02/21	/23 22:18					COMP, PRO
QC Source Sample: MFA-B1-B5-	COMP-SL-F	PRO (A3A1010	<u>)-07)</u>									
NWTPH-Dx												
Diesel	22700	1010	2020	mg/kg d	ry 100		26100			14	30%	F-03, F-11
Oil	ND	2020	4030	mg/kg d	ry 100		ND				30%	
Surr: o-Terphenyl (Surr)		R	ecovery: %	Limits: 50	0-150 %	Dil	ution: 100x	:				S-01

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

Apex Laboratories

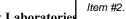
6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project: St. Helens Lagoon Project Number: M0830.03.006 Project Manager: David Weatherby


Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range F	lydrocarbo	ons (Ben	zene throu	igh Naphi	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0290 - EPA 5035A							Soi	I				
Blank (23B0290-BLK1)			Prepared	d: 02/08/23	08:00 Anal	yzed: 02/08	/23 11:49					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	2.50	5.00	mg/kg v	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 93 %	Limits: 5	0-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			103 %	5	0-150 %		"					
LCS (23B0290-BS2)			Prepared	d: 02/08/23	08:00 Anal	yzed: 02/08/	/23 11:23					
NWTPH-Gx (MS)												
Gasoline Range Organics	20.4	2.50	5.00	mg/kg v	vet 50	25.0		82	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 92 %	Limits: 5	0-150 %	Dilı	ition: 1x		<u> </u>			
1,4-Difluorobenzene (Sur)			101 %	5	0-150 %		"					
Duplicate (23B0290-DUP1)			Prepared	d: 02/07/23	11:34 Anal	yzed: 02/08/	23 14:22					V-15
QC Source Sample: Non-SDG (A3	B0183-01)											
Gasoline Range Organics	ND	111	221	mg/kg v	vet 500		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 93 %	Limits: 5	0-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			104 %	5	0-150 %		"					
Duplicate (23B0290-DUP2)			Prepared	d: 02/03/23	08:52 Anal	yzed: 02/08/	/23 15:38					COME
QC Source Sample: Non-SDG (A3	B0176-21)											
Gasoline Range Organics	ND	3.07	6.14	mg/kg d	lry 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 94 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			107 %	5	0-150 %		"					

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: St. Helens Lagoon Project Number: M0830.03.006 3140 NE Broadway Street Portland, OR 97232 Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0290 - EPA 5035A							Soi	I				
Blank (23B0290-BLK1)			Prepared	: 02/08/23 0	8:00 Anal	yzed: 02/08/	/23 11:49					
5035A/8260D												
Acetone	ND	500	1000	ug/kg we	t 50							
Acrylonitrile	ND	50.0	100	ug/kg we								
Benzene	ND	5.00	10.0	ug/kg we	t 50							
Bromobenzene	ND	12.5	25.0	ug/kg we								
Bromochloromethane	ND	25.0	50.0	ug/kg we								
Bromodichloromethane	ND	25.0	50.0	ug/kg we								
Bromoform	ND	50.0	100	ug/kg we								
Bromomethane	ND	500	500	ug/kg we								
-Butanone (MEK)	ND	250	500	ug/kg we								
-Butylbenzene	ND	25.0	50.0	ug/kg we								
ec-Butylbenzene	ND	25.0	50.0	ug/kg we								
ert-Butylbenzene	ND	25.0	50.0	ug/kg we								
Carbon disulfide	ND	250	500	ug/kg we								
Carbon tetrachloride	ND	25.0	50.0	ug/kg we								
Chlorobenzene	ND	12.5	25.0	ug/kg we								
Chloroethane	ND	500	500	ug/kg we								
Chloroform	ND	25.0	50.0	ug/kg we								
Chloromethane	ND	125	250	ug/kg we								
-Chlorotoluene	ND	25.0	50.0	ug/kg we								
-Chlorotoluene	ND	25.0	50.0	ug/kg we								
Dibromochloromethane	ND	50.0	100	ug/kg we								
,2-Dibromo-3-chloropropane	ND	125	250	ug/kg we								
,2-Dibromoethane (EDB)	ND	25.0	50.0	ug/kg we								
Dibromomethane	ND	25.0	50.0	ug/kg we								
,2-Dichlorobenzene	ND	12.5	25.0	ug/kg we								
,3-Dichlorobenzene	ND	12.5	25.0	ug/kg we								
.4-Dichlorobenzene	ND	12.5	25.0	ug/kg we								
Dichlorodifluoromethane	ND	50.0	100	ug/kg we								
,1-Dichloroethane	ND	12.5	25.0	ug/kg we								
,2-Dichloroethane (EDC)	ND	12.5	25.0	ug/kg we								
,1-Dichloroethene	ND	12.5	25.0	ug/kg we								
is-1,2-Dichloroethene	ND	12.5	25.0	ug/kg we								
rans-1,2-Dichloroethene	ND	12.5	25.0	ug/kg we								

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes

Analyte	Result	Limit	Limit	Units L	llution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Batch 23B0290 - EPA 5035A							Soi	I				
Blank (23B0290-BLK1)			Prepared	1: 02/08/23 08:	00 Anal	yzed: 02/08/	/23 11:49					
1,2-Dichloropropane	ND	12.5	25.0	ug/kg wet	50							
1,3-Dichloropropane	ND	25.0	50.0	ug/kg wet	50							
2,2-Dichloropropane	ND	25.0	50.0	ug/kg wet	50							
1,1-Dichloropropene	ND	25.0	50.0	ug/kg wet	50							
cis-1,3-Dichloropropene	ND	25.0	50.0	ug/kg wet	50							
trans-1,3-Dichloropropene	ND	25.0	50.0	ug/kg wet	50							
Ethylbenzene	ND	12.5	25.0	ug/kg wet	50							
Hexachlorobutadiene	ND	50.0	100	ug/kg wet	50							
2-Hexanone	ND	250	500	ug/kg wet	50							
Isopropylbenzene	ND	25.0	50.0	ug/kg wet	50							
4-Isopropyltoluene	ND	25.0	50.0	ug/kg wet	50							
Methylene chloride	ND	250	500	ug/kg wet	50							
4-Methyl-2-pentanone (MiBK)	ND	250	500	ug/kg wet	50							
Methyl tert-butyl ether (MTBE)	ND	25.0	50.0	ug/kg wet	50							
Naphthalene	ND	50.0	100	ug/kg wet	50							
n-Propylbenzene	ND	12.5	25.0	ug/kg wet	50							
Styrene	ND	25.0	50.0	ug/kg wet	50							
1,1,1,2-Tetrachloroethane	ND	12.5	25.0	ug/kg wet	50							
1,1,2,2-Tetrachloroethane	ND	25.0	50.0	ug/kg wet	50							
Tetrachloroethene (PCE)	ND	12.5	25.0	ug/kg wet	50							
Toluene	ND	25.0	50.0	ug/kg wet	50							
1,2,3-Trichlorobenzene	ND	125	250	ug/kg wet	50							
1,2,4-Trichlorobenzene	ND	125	250	ug/kg wet	50							
1,1,1-Trichloroethane	ND	12.5	25.0	ug/kg wet	50							
1,1,2-Trichloroethane	ND	12.5	25.0	ug/kg wet	50							
Trichloroethene (TCE)	ND	12.5	25.0	ug/kg wet	50							
Trichlorofluoromethane	ND	50.0	100	ug/kg wet	50							
1,2,3-Trichloropropane	ND	25.0	50.0	ug/kg wet	50							
1,2,4-Trimethylbenzene	ND	25.0	50.0	ug/kg wet	50							
1,3,5-Trimethylbenzene	ND	25.0	50.0	ug/kg wet	50							
Vinyl chloride	ND	12.5	25.0	ug/kg wet	50							
m,p-Xylene	ND	25.0	50.0	ug/kg wet	50							
o-Xylene	ND	12.5	25.0	ug/kg wet	50							

Surr: 1,4-Difluorobenzene (Surr) Recovery: 106 % Limits: 80-120 % Dilution: Ix

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

224

Philip Marenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0290 - EPA 5035A							So	il				
Blank (23B0290-BLK1)			Prepared	1: 02/08/23 0	8:00 Ana	lyzed: 02/08	/23 11:49					
Surr: Toluene-d8 (Surr)		Reco	very: 102 %	Limits: 80-	120 %	Dilt	ution: 1x					
4-Bromofluorobenzene (Surr)			95 %	79-	120 %		"					
LCS (23B0290-BS1)			Prepared	: 02/08/23 0	8:00 Ana	lyzed: 02/08	/23 10:58					
5035A/8260D												
Acetone	2690	500	1000	ug/kg we	t 50	2000		135	80-120%			Q-5
Acrylonitrile	1260	50.0	100	ug/kg we	t 50	1000		126	80-120%			Q-5
Benzene	1090	5.00	10.0	ug/kg we	t 50	1000		109	80-120%			
Bromobenzene	926	12.5	25.0	ug/kg we	t 50	1000		93	80-120%			
Bromochloromethane	1250	25.0	50.0	ug/kg we	t 50	1000		125	80-120%			Q-5
Bromodichloromethane	1110	25.0	50.0	ug/kg we	t 50	1000		111	80-120%			
Bromoform	988	50.0	100	ug/kg we	t 50	1000		99	80-120%			
Bromomethane	2090	500	500	ug/kg we	t 50	1000		209	80-120%			Q-5
2-Butanone (MEK)	2460	250	500	ug/kg we	t 50	2000		123	80-120%			Q-5
n-Butylbenzene	879	25.0	50.0	ug/kg we	t 50	1000		88	80-120%			
sec-Butylbenzene	922	25.0	50.0	ug/kg we	t 50	1000		92	80-120%			
tert-Butylbenzene	826	25.0	50.0	ug/kg we	t 50	1000		83	80-120%			
Carbon disulfide	1020	250	500	ug/kg we	t 50	1000		102	80-120%			
Carbon tetrachloride	1110	25.0	50.0	ug/kg we	t 50	1000		111	80-120%			
Chlorobenzene	994	12.5	25.0	ug/kg we	t 50	1000		99	80-120%			
Chloroethane	770	500	500	ug/kg we	t 50	1000		77	80-120%			Q-5
Chloroform	1160	25.0	50.0	ug/kg we	t 50	1000		116	80-120%			
Chloromethane	1010	125	250	ug/kg we	t 50	1000		101	80-120%			
2-Chlorotoluene	884	25.0	50.0	ug/kg we	t 50	1000		88	80-120%			
4-Chlorotoluene	898	25.0	50.0	ug/kg we	t 50	1000		90	80-120%			
Dibromochloromethane	962	50.0	100	ug/kg we	t 50	1000		96	80-120%			
1,2-Dibromo-3-chloropropane	884	125	250	ug/kg we	t 50	1000		88	80-120%			
1,2-Dibromoethane (EDB)	1040	25.0	50.0	ug/kg we	t 50	1000		104	80-120%			
Dibromomethane	1170	25.0	50.0	ug/kg we	t 50	1000		117	80-120%			
1,2-Dichlorobenzene	955	12.5	25.0	ug/kg we		1000		96	80-120%			
1,3-Dichlorobenzene	969	12.5	25.0	ug/kg we		1000		97	80-120%			
1,4-Dichlorobenzene	964	12.5	25.0	ug/kg we		1000		96	80-120%			
Dichlorodifluoromethane	964	50.0	100	ug/kg we		1000		96	80-120%			
1,1-Dichloroethane	1180	12.5	25.0	ug/kg we		1000		118	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0290 - EPA 5035A							So	il				
LCS (23B0290-BS1)			Prepared	: 02/08/23 0	8:00 Ana	lyzed: 02/08	/23 10:58					
1,2-Dichloroethane (EDC)	1210	12.5	25.0	ug/kg we	t 50	1000		121	80-120%			Q-56
1,1-Dichloroethene	1120	12.5	25.0	ug/kg we	t 50	1000		112	80-120%			
cis-1,2-Dichloroethene	1110	12.5	25.0	ug/kg we	t 50	1000		111	80-120%			
trans-1,2-Dichloroethene	1110	12.5	25.0	ug/kg we	t 50	1000		111	80-120%			
1,2-Dichloropropane	1120	12.5	25.0	ug/kg we	t 50	1000		112	80-120%			
1,3-Dichloropropane	1000	25.0	50.0	ug/kg we	t 50	1000		100	80-120%			
2,2-Dichloropropane	1130	25.0	50.0	ug/kg we	t 50	1000		113	80-120%			
1,1-Dichloropropene	1040	25.0	50.0	ug/kg we	t 50	1000		104	80-120%			
cis-1,3-Dichloropropene	1050	25.0	50.0	ug/kg we	t 50	1000		105	80-120%			
trans-1,3-Dichloropropene	1080	25.0	50.0	ug/kg we	t 50	1000		108	80-120%			
Ethylbenzene	986	12.5	25.0	ug/kg we	t 50	1000		99	80-120%			
Hexachlorobutadiene	961	50.0	100	ug/kg we	t 50	1000		96	80-120%			
2-Hexanone	1810	250	500	ug/kg we	t 50	2000		91	80-120%			
Isopropylbenzene	872	25.0	50.0	ug/kg we	t 50	1000		87	80-120%			
4-Isopropyltoluene	874	25.0	50.0	ug/kg we	t 50	1000		87	80-120%			
Methylene chloride	1080	250	500	ug/kg we	t 50	1000		108	80-120%			
4-Methyl-2-pentanone (MiBK)	1980	250	500	ug/kg we	t 50	2000		99	80-120%			
Methyl tert-butyl ether (MTBE)	1020	25.0	50.0	ug/kg we	t 50	1000		102	80-120%			
Naphthalene	808	50.0	100	ug/kg we	t 50	1000		81	80-120%			
n-Propylbenzene	941	12.5	25.0	ug/kg we	t 50	1000		94	80-120%			
Styrene	846	25.0	50.0	ug/kg we	t 50	1000		85	80-120%			
1,1,1,2-Tetrachloroethane	1020	12.5	25.0	ug/kg we	t 50	1000		102	80-120%			
1,1,2,2-Tetrachloroethane	1030	25.0	50.0	ug/kg we	t 50	1000		103	80-120%			
Tetrachloroethene (PCE)	1060	12.5	25.0	ug/kg we	t 50	1000		106	80-120%			
Toluene	1000	25.0	50.0	ug/kg we	t 50	1000		100	80-120%			
1,2,3-Trichlorobenzene	946	125	250	ug/kg we	t 50	1000		95	80-120%			
1,2,4-Trichlorobenzene	803	125	250	ug/kg we	t 50	1000		80	80-120%			
1,1,1-Trichloroethane	1120	12.5	25.0	ug/kg we		1000		112	80-120%			
1,1,2-Trichloroethane	1040	12.5	25.0	ug/kg we	t 50	1000		104	80-120%			
Trichloroethene (TCE)	1100	12.5	25.0	ug/kg we		1000		110	80-120%			
Trichlorofluoromethane	873	50.0	100	ug/kg we		1000		87	80-120%			
1,2,3-Trichloropropane	1040	25.0	50.0	ug/kg we		1000		104	80-120%			
1,2,4-Trimethylbenzene	932	25.0	50.0	ug/kg we		1000		93	80-120%			
1,3,5-Trimethylbenzene	964	25.0	50.0	ug/kg we		1000		96	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	pounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0290 - EPA 5035A							So	il				
LCS (23B0290-BS1)			Prepared	1: 02/08/23 0	8:00 Ana	lyzed: 02/08	2/23 10:58					
Vinyl chloride	1950	12.5	25.0	ug/kg wet	50	1000		195	80-120%			Q-5
m,p-Xylene	1990	25.0	50.0	ug/kg wet	50	2000		99	80-120%			
o-Xylene	851	12.5	25.0	ug/kg wet	50	1000		85	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 105 %	Limits: 80-	120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			101 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			92 %	79-	120 %		"					
Duplicate (23B0290-DUP1)			Prepared	d: 02/07/23 1	1:34 Anal	lyzed: 02/08	/23 14:22					V-15
OC Source Sample: Non-SDG (A3	B0183-01)											
Acetone	ND	22100	44200	ug/kg wet	500		ND				30%	
Acrylonitrile	ND	2210	4420	ug/kg wet	500		ND				30%	
Benzene	ND	221	442	ug/kg wet	500		ND				30%	
Bromobenzene	ND	553	1110	ug/kg wet	500		ND				30%	
Bromochloromethane	ND	1110	2210	ug/kg wet	500		ND				30%	
Bromodichloromethane	ND	1110	2210	ug/kg wet	500		ND				30%	
Bromoform	ND	2210	4420	ug/kg wet	500		ND				30%	
Bromomethane	ND	22100	22100	ug/kg wet	500		ND				30%	
2-Butanone (MEK)	ND	11100	22100	ug/kg wet	500		ND				30%	
n-Butylbenzene	ND	1110	2210	ug/kg wet	500		ND				30%	
sec-Butylbenzene	ND	1110	2210	ug/kg wet	500		ND				30%	
tert-Butylbenzene	ND	1110	2210	ug/kg wet	500		ND				30%	
Carbon disulfide	ND	11100	22100	ug/kg wet	500		ND				30%	
Carbon tetrachloride	ND	1110	2210	ug/kg wet	500		ND				30%	
Chlorobenzene	ND	553	1110	ug/kg wet	500		ND				30%	
Chloroethane	ND	22100	22100	ug/kg wet	500		ND				30%	
Chloroform	ND	1110	2210	ug/kg wet	500		ND				30%	
Chloromethane	ND	5530	11100	ug/kg wet	500		ND				30%	
2-Chlorotoluene	ND	1110	2210	ug/kg wet	500		ND				30%	
4-Chlorotoluene	ND	1110	2210	ug/kg wet	500		ND				30%	
Dibromochloromethane	ND	2210	4420	ug/kg wet	500		ND				30%	
1,2-Dibromo-3-chloropropane	ND	5530	11100	ug/kg wet	500		ND				30%	
1,2-Dibromoethane (EDB)	ND	1110	2210	ug/kg wet	500		ND				30%	
Dibromomethane	ND	1110	2210	ug/kg wet	500		ND				30%	

Apex Laboratories

1,2-Dichlorobenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND

Philip Nevenberg

553

1110

ug/kg wet 500

ND

30%

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006Portland, OR 97232Project Manager:David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

Batch 23B0290 - EPA 5035A Prepared: 02/07/23 11:34 Analyzed: 02/08/23 14:22 Prepared: 02/08/23					260D	by EPA 8	npounds	janic Con	Volatile Org			
Duplicate (2380290-DUP1)		RPD Limit	RPD	% REC			Dilution	Units			Result	Analyte
OC Source Sample: Non-SDG (A3B0183-01) 1,3-Dichlorobenzene ND 553 1110 ug/kg wet 500 ND 30% 1,4-Dichlorobenzene ND 553 1110 ug/kg wet 500 ND 30% 1,1-Dichloroethane ND 553 1110 ug/kg wet 500 ND 30% 1,1-Dichloroethane (EDC) ND 553 1110 ug/kg wet 500 ND 30% 1,1-Dichloroethane (EDC) ND 553 1110 ug/kg wet 500 ND 30% 1,1-Dichloroethene ND 553 1110 ug/kg wet 500 ND 30% trans-1,2-Dichloroethene ND 553 1110 ug/kg wet 500 ND 30% 1,2-Dichloropropane ND 153 1110 ug/kg wet 500 ND 30% 2,2-Dichloropropane ND 1110 2210					Soil							Batch 23B0290 - EPA 5035A
1,3-Dichlorobenzene	V-1				23 14:22	yzed: 02/08/	1:34 Anal	02/07/23 1	Prepared:			Duplicate (23B0290-DUP1)
1,4-Dichlorobenzene											<u>B0183-01)</u>	QC Source Sample: Non-SDG (A31
Dichlorodifluoromethane	%	30%		 	ND		t 500	ug/kg we	1110	553	ND	1,3-Dichlorobenzene
1,1-Dichloroethane ND 553 1110 ug/kg wet 500 ND 30% 1,2-Dichloroethane (EDC) ND 553 1110 ug/kg wet 500 ND 30% 1,1-Dichloroethene ND 553 1110 ug/kg wet 500 ND 30% trans-1,2-Dichloroethene ND 553 1110 ug/kg wet 500 ND 30% 1,2-Dichloropropane ND 553 1110 ug/kg wet 500 ND 30% 1,2-Dichloropropane ND 1110 2210 ug/kg wet 500 ND 30% 1,1-Dichloropropane ND 1110 2210 ug/kg wet 500 ND 30% 1,1-Dichloropropene ND 1110 2210 ug/kg wet 500 ND 30% 1,1-Dichloropropene ND 1110 2210 ug/kg wet 500 ND	%	30%		 	ND		t 500	ug/kg we	1110	553	ND	1,4-Dichlorobenzene
1,1-Dichloroethene ND 553 1110 ug/kg wet 500 ND ND 30% 1,1-Dichloroethene ND 553 1110 ug/kg wet 500 ND ND 30% 1,1-Dichloroethene ND 553 1110 ug/kg wet 500 ND ND 30% 1,2-Dichloroptopane ND 553 1110 ug/kg wet 500 ND ND 30% 1,3-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND ND 30% 1,3-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND ND 30% 1,3-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND ND 30% 1,3-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND ND 30% 1,3-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,3-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,3-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,3-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,3-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,3-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,3-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,3-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,4-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,4-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,4-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,4-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,4-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,4-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,4-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,4-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,4-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,4-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,4-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30% 1,1-Dichloroptopane ND 1110 2210 ug/kg wet 500 ND 30%	%	30%		 	ND		t 500	ug/kg we	4420	2210	ND	Dichlorodifluoromethane
1,1-Dichloroethene	%	30%		 	ND		t 500	ug/kg we	1110	553	ND	1,1-Dichloroethane
cis-1,2-Dichloroethene ND 553 1110 ug/kg wet 500 ND 30% trans-1,2-Dichloroethene ND 553 1110 ug/kg wet 500 ND 30% 1,2-Dichloropropane ND 553 1110 ug/kg wet 500 ND 30% 1,3-Dichloropropane ND 1110 2210 ug/kg wet 500 ND 30% 1,1-Dichloropropane ND 1110 2210 ug/kg wet 500 ND 30% 1,1-Dichloropropane ND 1110 2210 ug/kg wet 500 ND 30% cis-1,3-Dichloropropene ND 1110 2210 ug/kg wet 500 ND 30% Ethlylbenzene ND 553 1110 ug/kg wet 500	%	30%		 	ND		t 500	ug/kg we	1110	553	ND	1,2-Dichloroethane (EDC)
	%	30%		 	ND		t 500	ug/kg we	1110	553	ND	1,1-Dichloroethene
1,2-Dichloropropane ND 553 1110 ug/kg wet 500	%	30%		 	ND		t 500	ug/kg we	1110	553	ND	cis-1,2-Dichloroethene
1,3-Dichloropropane ND 1110 2210 ug/kg wet 500 ND 30%	%	30%		 	ND		t 500	ug/kg we	1110	553	ND	rans-1,2-Dichloroethene
2,2-Dichloropropane ND 1110 2210 ug/kg wet 500 ND 30% 1,1-Dichloropropene ND 1110 2210 ug/kg wet 500 ND 30% cis-1,3-Dichloropropene ND 1110 2210 ug/kg wet 500 ND 30% cis-1,3-Dichloropropene ND 1110 2210 ug/kg wet 500 ND 30% Ethylbenzene ND 553 1110 ug/kg wet 500 ND 30% Hetaschlorobutadiene ND 11100 22100 ug/kg wet 500 ND 30% 2-Hexanone ND 11100 22100 ug/kg wet 500 ND 30% 4-Beachlorobutadiene ND 11110 2210 ug/kg wet 500	%	30%		 	ND		t 500	ug/kg we	1110	553	ND	1,2-Dichloropropane
2,2-Dichloropropane	%	30%		 	ND		t 500	ug/kg we	2210	1110	ND	,3-Dichloropropane
Sis-1,3-Dichloropropene ND 1110 2210 ug/kg wet 500 ND 30%	%	30%		 	ND		t 500	ug/kg we	2210	1110	ND	2,2-Dichloropropane
Sis-1,3-Dichloropropene ND 1110 2210 ug/kg wet 500 ND 30% 30	%	30%		 	ND				2210	1110	ND	* *
Tans-1,3-Dichloropropene	%	30%		 	ND				2210	1110	ND	cis-1,3-Dichloropropene
Ethylbenzene ND 553 1110 ug/kg wet 500 ND 30% Hexachlorobutadiene ND 2210 4420 ug/kg wet 500 ND 30% 2-Hexanone ND 11100 22100 ug/kg wet 500 ND 30% Isopropylbenzene ND 1110 2210 ug/kg wet 500 ND 30% 4-Isopropyltoluene ND 1110 2210 ug/kg wet 500 ND 30% Methylene chloride ND 11100 22100 ug/kg wet 500 ND 30% 4-Methyl-2-pentanone (MiBK) ND 11100 22100 ug/kg wet 500 ND 30% Methyl tert-butyl ether (MTBE) ND 1110 2210 ug/kg wet 500 ND 30% Methyl tert-butyl ether (MTBE) ND 1110 2210 ug/kg wet 500 ND 30% Naphthalene ND 2210 4420 ug/kg wet 500 ND 30% Styrene ND 1110 2210 ug/kg wet 500 ND 30% Styrene ND 1110 2210 ug/kg wet 500 ND 30% Styrene ND 1110 2210 ug/kg wet 500 ND 30% Styrene ND 1110 2210 ug/kg wet 500 ND 30% Styrene ND 1110 2210 ug/kg wet 500 ND 30% 1,1,2,2-Tetrachloroethane ND 553 1110 ug/kg wet 500 ND 30% Tetrachloroethane ND 1110 2210 ug/kg wet 500 ND 30% Tetrachloroethene (PCE) ND 553 1110 ug/kg wet 500 ND 30% Toluene ND 1110 2210 ug/kg wet 500 ND 30% Toluene ND 1110 2210 ug/kg wet 500 ND 30% Toluene ND 5530 11100 ug/kg wet 500 ND 30% Toluene ND 5530 11100 ug/kg wet 500 ND 30% Toluene ND 5530 11100 ug/kg wet 500 ND 30% Toluene ND 5530 11100 ug/kg wet 500 ND 30% Toluene ND 5530 11100 ug/kg wet 500 ND 30% Toluene ND 5530 11100 ug/kg wet 500 ND 30% Toluene ND 5530 11100 ug/kg wet 500 ND 30% Toluene ND 5530 11100 ug/kg wet 500 ND 30% Toluene ND 5530 11100 ug/kg wet 500 ND 30% Toluene ND 5530 11100 ug/kg wet 500 ND 30% Toluene ND 5530 11100 ug/kg wet 500 ND 30% Toluene ND 5530 11100 ug/kg wet 500 ND 30% Toluene ND 5530 11100 ug/kg wet 500 ND 30% Toluene ND 5530 11100 ug/kg wet 500 ND 30% Toluene ND 5530 11100 ug/kg wet 500 ND 30% Toluene ND 5530 11100 ug/kg wet 500 ND	%	30%		 	ND				2210	1110	ND	
Hexachlorobutadiene	%	30%		 	ND				1110	553	ND	, , ,
ND	%	30%		 	ND				4420	2210	ND	•
Stopropylbenzene ND 1110 2210 ug/kg wet 500 ND 30%		30%		 								
A-Isopropyltoluene ND 1110 2210 ug/kg wet 500 ND 30% A-Methylene chloride ND 11100 22100 ug/kg wet 500 ND 30% A-Methyl-2-pentanone (MiBK) ND 11100 22100 ug/kg wet 500 ND 30% A-Methyl-2-pentanone (MiBK) ND 11100 22100 ug/kg wet 500 ND 30% A-Methyl tert-butyl ether (MTBE) ND 1110 2210 ug/kg wet 500 ND 30% A-Propylbenzene ND 2210 4420 ug/kg wet 500 ND 30% A-Propylbenzene ND 553 1110 ug/kg wet 500 ND 30% A-Propylbenzene ND 1110 2210 ug/kg wet 500 ND 30% A-Propylbenzene ND 1110 2210 ug/kg wet 500 ND 30% A-Propylbenzene ND 1110 2210 ug/kg wet 500 ND 30% A-Propylbenzene ND 1110 2210 ug/kg wet 500 ND 30% A-Propylbenzene ND 1110 2210 ug/kg wet 500 ND 30% A-Propylbenzene ND 1110 2210 ug/kg wet 500 ND 30% A-Propylbenzene ND 1110 2210 ug/kg wet 500 ND 30% A-Propylbenzene ND 1110 2210 ug/kg wet 500 ND 30% A-Propylbenzene ND 1110 2210 ug/kg wet 500 ND 30% A-Propylbenzene ND 1110 2210 ug/kg wet 500 ND 30% A-Propylbenzene ND 1110 2210 ug/kg wet 500 ND 30% A-Propylbenzene ND 1110 2210 ug/kg wet 500 ND 30% A-Propylbenzene ND 1110 2210 ug/kg wet 500 ND 30% A-Propylbenzene ND 1110 2210 ug/kg wet 500 ND 30% A-Propylbenzene ND 1110 2210 ug/kg wet 500 ND 30% A-Propylbenzene ND 1110 2210 ug/kg wet 500 ND 30% A-Propylbenzene ND 1110 2210 ug/kg wet 500 ND 30% A-Propylbenzene ND 1110 ug/kg wet 500 ND 30% A-Propylbenzene ND 5530 11100 ug/kg wet 500 ND 30% A-Propylbenzene ND 5530 11100 ug/kg wet 500 ND 30% A-Propylbenzene ND 5530 11100 ug/kg wet 500 ND 30% A-Propylbenzene ND 5530 11100 ug/kg wet 500 ND		30%		 								
Methylene chloride ND 11100 22100 ug/kg wet 500 ND 30% 4-Methyl-2-pentanone (MiBK) ND 11100 22100 ug/kg wet 500 ND 30% Methyl tert-butyl ether (MTBE) ND 1110 2210 ug/kg wet 500 ND 30% Naphthalene ND 2210 4420 ug/kg wet 500 ND 30% A-Propylbenzene ND 553 1110 ug/kg wet 500 ND 30% Styrene ND 1110 2210 ug/kg wet 500 ND 30% 1,1,2,2-Tetrachloroethane ND 553 1110 ug/kg wet 500 ND 30% Tetrachloroethene (PCE) ND 553 1110 ug/kg wet <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				 								
4-Methyl-2-pentanone (MiBK) ND 11100 22100 ug/kg wet 500 ND 30% Methyl tert-butyl ether (MTBE) ND 1110 2210 ug/kg wet 500 ND 30% Naphthalene ND 2210 4420 ug/kg wet 500 ND 30% Naphthalene ND 553 1110 ug/kg wet 500 ND 30% ND ND 30% ND 1110 2210 ug/kg wet 500 ND 30% ND 1,1,1,2-Tetrachloroethane ND 553 1110 ug/kg wet 500 ND 30% ND 1,1,1,2-Tetrachloroethane ND 1110 2210 ug/kg wet 500 ND 30% ND 1,1,2,2-Tetrachloroethane ND 1110 2210 ug/kg wet 500 ND 30% ND 1,2,2-Tetrachloroethane ND 553 1110 ug/kg wet 500 ND 30% ND 1,2,3-Trichloroethane ND 1110 2210 ug/kg wet 500 ND 30% ND 1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND 30% ND												
Methyl tert-butyl ether (MTBE) ND 1110 2210 ug/kg wet 500 ND 30% Naphthalene ND 2210 4420 ug/kg wet 500 ND 30% n-Propylbenzene ND 553 1110 ug/kg wet 500 ND 30% Styrene ND 1110 2210 ug/kg wet 500 ND 30% 1,1,2,2-Tetrachloroethane ND 553 1110 ug/kg wet 500 ND 30% Tetrachloroethane ND 553 1110 ug/kg wet 500 ND 30% Totachloroethene (PCE) ND 553 1110 ug/kg wet 500 ND 30% Totachloroethene ND 1110 2210 ug/kg wet 500<				 								•
Naphthalene ND 2210 4420 ug/kg wet 500 ND 30% n-Propylbenzene ND 553 1110 ug/kg wet 500 ND 30% Styrene ND 1110 2210 ug/kg wet 500 ND 30% 1,1,2,2-Tetrachloroethane ND 1110 2210 ug/kg wet 500 ND 30% 1,1,2,2-Tetrachloroethane ND 1110 2210 ug/kg wet 500 ND 30% Fetrachloroethene (PCE) ND 553 1110 ug/kg wet 500 ND 30% Toluene ND 1110 2210 ug/kg wet 500 ND 30% 1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet		30%		 								• • •
ND 553 1110 ug/kg wet 500 ND 30% Styrene ND 1110 2210 ug/kg wet 500 ND 30% 1,1,2,2-Tetrachloroethane ND 1110 2210 ug/kg wet 500 ND 30% 1,1,2,2-Tetrachloroethane ND 1110 2210 ug/kg wet 500 ND 30% Tetrachloroethene (PCE) ND 553 1110 ug/kg wet 500 ND 30% Toluene ND 1110 2210 ug/kg wet 500 ND 30% 1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND 30% 1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND 30% 1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND 30% 1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND 30% 1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND 30% 1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND 30% 1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND 30% 1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND 30% 1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND 30% 1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND 30% 1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND 30% 1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND 30% 1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND		30%		 				~ ~				• • • • •
ND 1110 2210 ug/kg wet 500 ND 30%		30%										•
1,1,1,2-Tetrachloroethane ND 553 1110 ug/kg wet 500 ND 30% 1,1,2,2-Tetrachloroethane ND 1110 2210 ug/kg wet 500 ND 30% Tetrachloroethene (PCE) ND 553 1110 ug/kg wet 500 ND 30% Toluene ND 1110 2210 ug/kg wet 500 ND 30% 1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND 30%												**
1,1,2,2-Tetrachloroethane ND 1110 2210 ug/kg wet 500 ND 30% Fetrachloroethene (PCE) ND 553 1110 ug/kg wet 500 ND 30% Foluene ND 1110 2210 ug/kg wet 500 ND 30% 1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND 30%												•
Fetrachloroethene (PCE) ND 553 1110 ug/kg wet 500 ND 30% Foluene ND 1110 2210 ug/kg wet 500 ND 30% 1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND 30%				 								
Foluene ND 1110 2210 ug/kg wet 500 ND 30% (1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND 30%												* * *
1,2,3-Trichlorobenzene ND 5530 11100 ug/kg wet 500 ND 30%												` /
		30%										
		30%										
		30%										<i>, ,</i>

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

228

Portland, OR 97232

ANALYTICAL REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. St. Helens Lagoon Project: 3140 NE Broadway Street Project Number: M0830.03.006

Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0290 - EPA 5035A							Soil	l				
Duplicate (23B0290-DUP1)			Prepared	1: 02/07/23 1	1:34 Anal	yzed: 02/08/	/23 14:22					V-1
QC Source Sample: Non-SDG (A3	B0183-01)											
Trichloroethene (TCE)	ND	553	1110	ug/kg we	et 500		ND				30%	
Trichlorofluoromethane	ND	2210	4420	ug/kg we	et 500		ND				30%	
1,2,3-Trichloropropane	ND	1110	2210	ug/kg we			ND				30%	
,2,4-Trimethylbenzene	ND	1110	2210	ug/kg we	et 500		ND				30%	
1,3,5-Trimethylbenzene	ND	1110	2210	ug/kg we	t 500		ND				30%	
Vinyl chloride	ND	553	1110	ug/kg we			ND				30%	
n,p-Xylene	ND	1110	2210	ug/kg we	t 500		ND				30%	
o-Xylene	ND	553	1110	ug/kg we	et 500		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 107 %	Limits: 80-	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			93 %	79-	120 %		"					
QC Source Sample: Non-SDG (A3	B0176-21)		1			-						
Acetone	ND	614	1230	ug/kg dr			ND				30%	
Acrylonitrile	ND	61.4	123	ug/kg dr	y 50		ND				30%	
Benzene	ND	6.14	12.3	ug/kg dr	y 50		ND				30%	
Bromobenzene	ND	15.4	30.7	ug/kg dr	y 50		ND				30%	
Bromochloromethane	ND	30.7	61.4	ug/kg dr	y 50		ND				30%	
Bromodichloromethane	ND	30.7	61.4	ug/kg dr	y 50		ND				30%	
Bromoform	ND	61.4	123	ug/kg dr	y 50		ND				30%	
Bromomethane	ND	614	614	ug/kg dr	y 50		ND				30%	
2-Butanone (MEK)	ND	307	614	ug/kg dr	y 50		ND				30%	
n-Butylbenzene	ND	30.7	61.4	ug/kg dr	y 50		ND				30%	
sec-Butylbenzene	ND	30.7	61.4	ug/kg dr	y 50		ND				30%	
ert-Butylbenzene	ND	30.7	61.4	ug/kg dr	y 50		ND				30%	
Carbon disulfide	ND	307	614	ug/kg dr	y 50		ND				30%	
Carbon tetrachloride	ND	30.7	61.4	ug/kg dr	y 50		ND				30%	
Chlorobenzene	ND	15.4	30.7	ug/kg dr	y 50		ND				30%	
Chloroethane	ND	614	614	ug/kg dr	y 50		ND				30%	
Chloroform	ND	30.7	61.4	ug/kg dr	y 50		ND				30%	
Chloromethane	ND	154	307	ug/kg dr	y 50		ND				30%	
2-Chlorotoluene	ND	30.7	61.4	ug/kg dr	y 50		ND				30%	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006Portland, OR 97232Project Manager:David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source % REC Result Units Dilution RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 23B0290 - EPA 5035A Soil Duplicate (23B0290-DUP2) Prepared: 02/03/23 08:52 Analyzed: 02/08/23 15:38 COMP QC Source Sample: Non-SDG (A3B0176-21) 4-Chlorotoluene ND 30.7 61.4 50 ND 30% ug/kg dry ND Dibromochloromethane 61.4 123 ug/kg dry 50 ND 30% 1,2-Dibromo-3-chloropropane ND 154 307 ug/kg dry 50 ND 30% 1,2-Dibromoethane (EDB) ND 30.7 61.4 ug/kg dry 50 ND 30% Dibromomethane ND 30.7 61.4 50 30% ug/kg dry ND 1,2-Dichlorobenzene ND 15.4 30.7 ug/kg dry 50 ND 30% 1,3-Dichlorobenzene ND 15.4 30.7 50 ND 30% ug/kg dry 30% 1,4-Dichlorobenzene ND 15.4 30.7 ug/kg dry 50 ND Dichlorodifluoromethane ND 61.4 123 ug/kg dry 50 ND 30% 1,1-Dichloroethane ND 15.4 30.7 ug/kg dry 50 ND 30% 1,2-Dichloroethane (EDC) ND 15.4 30.7 ug/kg dry 50 ND 30% ND 30.7 1,1-Dichloroethene 15.4 ug/kg dry 50 ND 30% cis-1,2-Dichloroethene ND 15.4 30.7 ug/kg dry 50 ND 30% ND 15.4 30.7 30% trans-1,2-Dichloroethene ug/kg dry 50 ND 1,2-Dichloropropane ND 15.4 30.7 ug/kg dry 50 ND 30% 1,3-Dichloropropane ND 30.7 61.4 ug/kg dry 50 ND ___ 30% 2,2-Dichloropropane ND 30.7 61.4 ug/kg dry 50 ND 30% ND 30.7 30% 61.4 50 ND 1,1-Dichloropropene ug/kg dry cis-1,3-Dichloropropene ND 30.7 61.4 ug/kg dry 50 ND 30% trans-1,3-Dichloropropene ND 30.7 61.4 ND 30% ug/kg dry 50 ND Ethylbenzene 15.4 30.7 ug/kg dry 50 ND 30% Hexachlorobutadiene ND 61.4 123 ug/kg dry 50 ND 30% 2-Hexanone ND 307 614 ug/kg dry 50 ND 30% ND 30% Isopropylbenzene 30.7 61.4 50 ND ug/kg dry ND 30.7 61.4 4-Isopropyltoluene ug/kg dry 50 ND 30% ND 307 614 ND 30% Methylene chloride 50 ug/kg dry 4-Methyl-2-pentanone (MiBK) ND 307 614 ND 30% ug/kg dry 50 ND Methyl tert-butyl ether (MTBE) 30.7 61.4 ug/kg dry 50 ND ---30% Naphthalene ND 61.4 123 ug/kg dry 50 ND 30% ND 15.4 30.7 30% n-Propylbenzene ug/kg dry 50 ND Styrene ND 30.7 61.4 50 ND 30% ug/kg dry 30.7 ND 15.4 50 ND 30% 1.1.1.2-Tetrachloroethane ug/kg dry 1,1,2,2-Tetrachloroethane ND 30.7 61.4 50 ND 30% ug/kg dry

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

		•	Volatile Or	ganic Cor	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0290 - EPA 5035A							Soi	il				
Duplicate (23B0290-DUP2)			Prepared	d: 02/03/23 ()8:52 Ana	lyzed: 02/08	/23 15:38					COMP
QC Source Sample: Non-SDG (A3	B0176-21)											
Tetrachloroethene (PCE)	ND	15.4	30.7	ug/kg dr	y 50		ND				30%	
Toluene	ND	30.7	61.4	ug/kg dr	y 50		ND				30%	
1,2,3-Trichlorobenzene	ND	154	307	ug/kg dr	y 50		ND				30%	
1,2,4-Trichlorobenzene	ND	154	307	ug/kg dr	y 50		ND				30%	
1,1,1-Trichloroethane	ND	15.4	30.7	ug/kg dr	y 50		ND				30%	
1,1,2-Trichloroethane	ND	15.4	30.7	ug/kg dr	y 50		ND				30%	
Trichloroethene (TCE)	ND	15.4	30.7	ug/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND	61.4	123	ug/kg dr	y 50		ND				30%	
1,2,3-Trichloropropane	ND	30.7	61.4	ug/kg dr	y 50		ND				30%	
,2,4-Trimethylbenzene	ND	30.7	61.4	ug/kg dr	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND	30.7	61.4	ug/kg dr	y 50		ND				30%	
Vinyl chloride	ND	15.4	30.7	ug/kg dr	y 50		ND				30%	
m,p-Xylene	ND	30.7	61.4	ug/kg dr	y 50		ND				30%	
o-Xylene	ND	15.4	30.7	ug/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 107 %	Limits: 80	-120 %	Dila	ution: 1x					
Toluene-d8 (Surr)			102 %	80-	-120 %		"					
4-Bromofluorobenzene (Surr)			93 %	79-	-120 %		"					
Matrix Spike (23B0290-MS1)			Prepared	d: 02/03/23 1	10:53 Ana	lyzed: 02/08	/23 19:53					СОМР
QC Source Sample: Non-SDG (A3	B0176-30)											
5035A/8260D												
Acetone	3770	586	1170	ug/kg dr	y 50	2340	ND	161	36-164%			Q-5
Acrylonitrile	1590	58.6	117	ug/kg dr		1170	ND	136	65-134%			Q-5
Benzene	1400	5.86	11.7	ug/kg dr	-	1170	ND	120	77-121%			•
Bromobenzene	1140	14.7	29.3	ug/kg dr		1170	ND	98	78-121%			
Bromochloromethane	1630	29.3	58.6	ug/kg dr	•	1170	ND	139	78-125%			Q-5
Bromodichloromethane	1420	29.3	58.6	ug/kg dr		1170	ND	121	75-127%			
Bromoform	1180	58.6	117	ug/kg dr	•	1170	ND	101	67-132%			
Bromomethane	2790	586	586	ug/kg dr		1170	ND	238	53-143%			O-5
2-Butanone (MEK)	3230	293	586	ug/kg dr		2340	ND	138	51-148%			Q-5
n-Butylbenzene	1140	29.3	58.6	ug/kg dr		1170	ND	97	70-128%			
	11-10	27.5	50.0	45/ Kg til	, 50	11/0	.112		70 120/0			

Apex Laboratories

sec-Butylbenzene

tert-Butylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

99

89

73-126%

73-125%

Philip Merenberg

1160

1040

29.3

29.3

58.6

58.6

ug/kg dry

ug/kg dry

50

50

1170

1170

ND

ND

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Reporting Detection Spike Source % REC **RPD** Dilution % REC Analyte Result Ĺimit Units Amount Result Limits RPD Limit Notes Limit

Batch 23B0290 - EPA 5035A							So	oil			
Matrix Spike (23B0290-MS1)			Prepared	: 02/03/23 10:	53 Ana	lyzed: 02/08/	/23 19:53				COMP
QC Source Sample: Non-SDG (A3	B0176-30)										
Carbon disulfide	1340	293	586	ug/kg dry	50	1170	ND	114	63-132%	 	
Carbon tetrachloride	1410	29.3	58.6	ug/kg dry	50	1170	ND	120	70-135%	 	
Chlorobenzene	1240	14.7	29.3	ug/kg dry	50	1170	ND	106	79-120%	 	
Chloroethane	1310	586	586	ug/kg dry	50	1170	ND	111	59-139%	 	Q-54
Chloroform	1480	29.3	58.6	ug/kg dry	50	1170	ND	126	78-123%	 	
Chloromethane	1400	147	293	ug/kg dry	50	1170	ND	119	50-136%	 	
2-Chlorotoluene	1090	29.3	58.6	ug/kg dry	50	1170	ND	93	75-122%	 	
4-Chlorotoluene	1120	29.3	58.6	ug/kg dry	50	1170	ND	96	72-124%	 	
Dibromochloromethane	1180	58.6	117	ug/kg dry	50	1170	ND	101	74-126%	 	
1,2-Dibromo-3-chloropropane	1100	147	293	ug/kg dry	50	1170	ND	94	61-132%	 	
1,2-Dibromoethane (EDB)	1320	29.3	58.6	ug/kg dry	50	1170	ND	112	78-122%	 	
Dibromomethane	1480	29.3	58.6	ug/kg dry	50	1170	ND	126	78-125%	 	
1,2-Dichlorobenzene	1150	14.7	29.3	ug/kg dry	50	1170	ND	98	78-121%	 	
1,3-Dichlorobenzene	1190	14.7	29.3	ug/kg dry	50	1170	ND	102	77-121%	 	
1,4-Dichlorobenzene	1180	14.7	29.3	ug/kg dry	50	1170	ND	101	75-120%	 	
Dichlorodifluoromethane	1350	58.6	117	ug/kg dry	50	1170	ND	115	29-149%	 	
1,1-Dichloroethane	1520	14.7	29.3	ug/kg dry	50	1170	ND	130	76-125%	 	Q-0
1,2-Dichloroethane (EDC)	1540	14.7	29.3	ug/kg dry	50	1170	ND	131	73-128%	 	Q-54
1,1-Dichloroethene	1470	14.7	29.3	ug/kg dry	50	1170	ND	126	70-131%	 	
cis-1,2-Dichloroethene	1430	14.7	29.3	ug/kg dry	50	1170	ND	122	77-123%	 	
trans-1,2-Dichloroethene	1420	14.7	29.3	ug/kg dry	50	1170	ND	121	74-125%	 	
1,2-Dichloropropane	1480	14.7	29.3	ug/kg dry	50	1170	ND	126	76-123%	 	Q-0
1,3-Dichloropropane	1260	29.3	58.6	ug/kg dry	50	1170	ND	107	77-121%	 	
2,2-Dichloropropane	1370	29.3	58.6	ug/kg dry	50	1170	ND	117	67-133%	 	
1,1-Dichloropropene	1330	29.3	58.6	ug/kg dry	50	1170	ND	114	76-125%	 	
cis-1,3-Dichloropropene	1290	29.3	58.6	ug/kg dry	50	1170	ND	110	74-126%	 	
trans-1,3-Dichloropropene	1320	29.3	58.6	ug/kg dry	50	1170	ND	113	71-130%	 	
Ethylbenzene	1240	14.7	29.3	ug/kg dry	50	1170	ND	106	76-122%	 	
Hexachlorobutadiene	1140	58.6	117	ug/kg dry	50	1170	ND	97	61-135%	 	
2-Hexanone	2230	293	586	ug/kg dry	50	2340	ND	95	53-145%	 	
Isopropylbenzene	1080	29.3	58.6	ug/kg dry	50	1170	ND	92	68-134%	 	
4-Isopropyltoluene	1070	29.3	58.6	ug/kg dry	50	1170	ND	92	73-127%	 	
Methylene chloride	1420	293	586	ug/kg dry	50	1170	ND	121	70-128%	 	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

Apex Laboratorie

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006Portland, OR 97232Project Manager:David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Result Units Dilution % REC RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 23B0290 - EPA 5035A Soil Matrix Spike (23B0290-MS1) Prepared: 02/03/23 10:53 Analyzed: 02/08/23 19:53 COMP QC Source Sample: Non-SDG (A3B0176-30) 4-Methyl-2-pentanone (MiBK) 2550 293 586 50 2340 ND 109 65-135% ug/kg dry Methyl tert-butyl ether (MTBE) 29.3 1260 58.6 ug/kg dry 50 1170 ND 108 73-125% Naphthalene 1030 58.6 117 ug/kg dry 50 1170 ND 88 62-129% n-Propylbenzene 1190 14.7 29.3 ug/kg dry 50 1170 ND 102 73-125% 1080 29.3 58.6 ug/kg dry 50 1170 ND 92 76-124% Styrene 29.3 1,1,1,2-Tetrachloroethane 1280 14.7 ug/kg dry 50 1170 ND 109 78-125% 1,1,2,2-Tetrachloroethane 1290 29.3 58.6 ug/kg dry 50 1170 ND 110 70-124% Tetrachloroethene (PCE) 1310 14.7 29.3 ug/kg dry 50 1170 ND 112 73-128% Toluene 1260 29.3 58.6 ug/kg dry 50 1170 ND 107 77-121% 1,2,3-Trichlorobenzene 1130 147 293 ug/kg dry 50 1170 ND 97 66-130% 1,2,4-Trichlorobenzene 1000 147 293 ug/kg dry 50 1170 ND 85 67-129% 1,1,1-Trichloroethane 14.7 29.3 1170 1440 ug/kg dry 50 ND 123 73-130% 1,1,2-Trichloroethane 1300 14.7 29.3 ug/kg dry 50 1170 ND 111 78-121% 14.7 Trichloroethene (TCE) 1400 29.3 1170 77-123% ug/kg dry 50 ND 119 Q-01 Trichlorofluoromethane 3230 58.6 117 ug/kg dry 50 1170 ND 275 62-140% 1,2,3-Trichloropropane 1270 29.3 58.6 ug/kg dry 50 1170 ND 108 73-125% 1,2,4-Trimethylbenzene 1190 29.3 58.6 ug/kg dry 50 1170 ND 102 75-123% 29.3 1,3,5-Trimethylbenzene 1200 58.6 50 1170 ND 103 73-124% ug/kg dry 2710 29.3 1170 ND 56-135% Q-54e Vinyl chloride 14.7 ug/kg dry 50 231 29.3 2510 58.6 50 2340 ND 107 77-124% m,p-Xylene ug/kg dry 1070 29.3 1170 ND 92 77-123% o-Xylene 14.7 ug/kg dry 50 Surr: 1,4-Difluorobenzene (Surr) Recovery: 105 % Limits: 80-120 % Dilution: 1x

80-120 %

79-120 %

99 %

90 %

Apex Laboratories

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

			latile Orga		ounus D	y =1 A 020	OD GIN					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0452 - EPA 5035A							Soi	I				
Blank (23B0452-BLK1)			Prepared	: 02/12/23 1	0:17 Ana	lyzed: 02/12/	/23 12:49					
5035A/8260D SIM												
Benzene	ND	1.00	2.00	ug/kg we	t 100							
Toluene	ND	2.50	5.00	ug/kg we	t 100							
Ethylbenzene	ND	2.50	5.00	ug/kg we	t 100							
n,p-Xylene	ND	5.00	10.0	ug/kg we	t 100							
o-Xylene	ND	2.50	5.00	ug/kg we	t 100							
1,2,4-Trimethylbenzene	ND	5.00	10.0	ug/kg we	t 100							
1,3,5-Trimethylbenzene	ND	5.00	10.0	ug/kg we	t 100							
Chloroform	ND	5.00	10.0	ug/kg we								
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/kg we	t 100							
1,2-Dibromoethane (EDB)	ND	1.00	2.00	ug/kg we	t 100							
,1-Dichloroethane	ND	1.00	2.00	ug/kg we								
,2-Dichloroethane (EDC)	ND	1.00	2.00	ug/kg we	t 100							
1,1-Dichloroethene	ND	1.00	2.00	ug/kg we	t 100							
cis-1,2-Dichloroethene	ND	1.00	2.00	ug/kg we								
rans-1,2-Dichloroethene	ND	1.00	2.00	ug/kg we								
1,2-Dichloropropane	ND	1.00	2.00	ug/kg we								
cis-1,3-Dichloropropene	ND	1.00	2.00	ug/kg we								
rans-1,3-Dichloropropene	ND	1.00	2.00	ug/kg we								
Methyl tert-butyl ether (MTBE)	ND	1.00	2.00	ug/kg we								
Tetrachloroethene (PCE)	ND	1.00	2.00	ug/kg we								
1,1,2,2-Tetrachloroethane	ND	2.50	5.00	ug/kg we								
Trichloroethene (TCE)	ND	1.00	2.00	ug/kg we								
1,2,3-Trichloropropane	ND	2.50	5.00	ug/kg we								
Vinyl chloride	ND	5.00	10.0	ug/kg we								
1,1,2-Trichloroethane	ND	2.50	5.00	ug/kg we								
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 102 %	Limits: 80-		Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %		120 %		"					
4-Bromofluorobenzene (Surr)			98 %		120 %		"					
(/////												
LCS (23B0452-BS1)			Prepared	: 02/12/23 1	0:17 Ana	lyzed: 02/12	/23 11:56					
5035A/8260D SIM												
Benzene	20.9	1.00	2.00	ug/kg we	t 100	20.0		105	80-120%			
Гoluene	19.8	2.50	5.00	ug/kg we	t 100	20.0		99	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vo	latile Orga	nic Comp	ounds b	y EPA 826	OD SIM					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0452 - EPA 5035A							Soi	l				
LCS (23B0452-BS1)			Prepared	d: 02/12/23 1	0:17 Anal	lyzed: 02/12	/23 11:56					
	19.8	2.50	5.00	ug/kg we	t 100	20.0		99	80-120%			
m,p-Xylene	39.5	5.00	10.0	ug/kg we	t 100	40.0		99	80-120%			
o-Xylene	20.0	2.50	5.00	ug/kg we	t 100	20.0		100	80-120%			
1,2,4-Trimethylbenzene	19.7	5.00	10.0	ug/kg we	t 100	20.0		98	80-120%			
1,3,5-Trimethylbenzene	19.4	5.00	10.0	ug/kg we	t 100	20.0		97	80-120%			
Chloroform	19.5	5.00	10.0	ug/kg we	t 100	20.0		98	80-120%			
1,2-Dibromo-3-chloropropane	21.6	2.50	5.00	ug/kg we	t 100	20.0		108	80-120%			
1,2-Dibromoethane (EDB)	20.7	1.00	2.00	ug/kg we	t 100	20.0		104	80-120%			
1,1-Dichloroethane	20.9	1.00	2.00	ug/kg we		20.0		105	80-120%			
1,2-Dichloroethane (EDC)	20.8	1.00	2.00	ug/kg we		20.0		104	80-120%			
1,1-Dichloroethene	21.2	1.00	2.00	ug/kg we	t 100	20.0		106	80-120%			
cis-1,2-Dichloroethene	21.4	1.00	2.00	ug/kg we	t 100	20.0		107	80-120%			
trans-1,2-Dichloroethene	20.0	1.00	2.00	ug/kg we		20.0		100	80-120%			
1,2-Dichloropropane	21.5	1.00	2.00	ug/kg we	t 100	20.0		108	80-120%			
cis-1,3-Dichloropropene	20.4	1.00	2.00	ug/kg we		20.0		102	80-120%			
trans-1,3-Dichloropropene	21.6	1.00	2.00	ug/kg we	t 100	20.0		108	80-120%			
Methyl tert-butyl ether (MTBE)	20.9	1.00	2.00	ug/kg we		20.0		104	80-120%			
Tetrachloroethene (PCE)	19.5	1.00	2.00	ug/kg we		20.0		97	80-120%			
1,1,2,2-Tetrachloroethane	22.1	2.50	5.00	ug/kg we		20.0		111	80-120%			
Trichloroethene (TCE)	20.1	1.00	2.00	ug/kg we		20.0		101	80-120%			
1,2,3-Trichloropropane	20.7	2.50	5.00	ug/kg we		20.0		103	80-120%			
Vinyl chloride	20.4	5.00	10.0	ug/kg we		20.0		102	80-120%			
1,1,2-Trichloroethane	20.5	2.50	5.00	ug/kg we		20.0		102	80-120%			
Surr: 1,4-Difluorobenzene (Surr)			very: 100 %	Limits: 80-			ıtion: 1x					
Toluene-d8 (Surr)		1,000	99 %		120 %	2	"					
4-Bromofluorobenzene (Surr)			97%		120 %		"					
Duplicate (23B0452-DUP1)			Prenared	d: 01/30/23 1	6:00 Anal	vzed: 02/12	/23 13:43					со
OC Source Sample: MFA-B1-B5-C	COMP-SL (A3A1010-06)	F.W.		. , , , , , , , , , , , , , , , , , , ,	<i>y</i>						
5035A/8260D SIM												
Benzene	ND	10.7	21.3	ug/kg dry	100		ND				30%	
Toluene	31.0	26.7	53.3	ug/kg dry			29.7			4	30%	
Ethylbenzene	ND	26.7	53.3	ug/kg dry			ND				30%	
,		-0.7	00.0									

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vo	latile Orga	nic Comp	ounds b	y EPA 826	OUD SIM					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0452 - EPA 5035A							Soi	I				
Duplicate (23B0452-DUP1)			Prepared	1: 01/30/23 1	6:00 Ana	lyzed: 02/12	/23 13:43					COMP
QC Source Sample: MFA-B1-B5-C	COMP-SL ((A3A1010-06)										
o-Xylene	ND	26.7	53.3	ug/kg dry	100		ND				30%	
1,2,4-Trimethylbenzene	ND	53.3	107	ug/kg dry	100		ND				30%	
1,3,5-Trimethylbenzene	ND	53.3	107	ug/kg dry	100		ND				30%	
Chloroform	ND	53.3	107	ug/kg dry	100		ND				30%	
1,2-Dibromo-3-chloropropane	ND	26.7	53.3	ug/kg dry	100		ND				30%	
1,2-Dibromoethane (EDB)	ND	10.7	21.3	ug/kg dry	100		ND				30%	
1,1-Dichloroethane	ND	10.7	21.3	ug/kg dry			ND				30%	
1,2-Dichloroethane (EDC)	ND	10.7	21.3	ug/kg dry	100		ND				30%	
1,1-Dichloroethene	ND	10.7	21.3	ug/kg dry	100		ND				30%	
cis-1,2-Dichloroethene	ND	10.7	21.3	ug/kg dry			ND				30%	
trans-1,2-Dichloroethene	ND	10.7	21.3	ug/kg dry	100		ND				30%	
1,2-Dichloropropane	ND	10.7	21.3	ug/kg dry	100		ND				30%	
cis-1,3-Dichloropropene	ND	10.7	21.3	ug/kg dry	100		ND				30%	
trans-1,3-Dichloropropene	ND	10.7	21.3	ug/kg dry	100		ND				30%	
Methyl tert-butyl ether (MTBE)	ND	10.7	21.3	ug/kg dry	100		ND				30%	
Tetrachloroethene (PCE)	ND	10.7	21.3	ug/kg dry	100		ND				30%	
1,1,2,2-Tetrachloroethane	ND	53.3	53.3	ug/kg dry			ND				30%	
Trichloroethene (TCE)	ND	10.7	21.3	ug/kg dry	100		ND				30%	
1,2,3-Trichloropropane	ND	26.7	53.3	ug/kg dry			ND				30%	
Vinyl chloride	ND	53.3	107	ug/kg dry			ND				30%	
1,1,2-Trichloroethane	ND	26.7	53.3	ug/kg dry			ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 103 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			97 %	79-	120 %		"					
Matrix Spike (23B0452-MS1)			Prepared	l: 01/30/23 1	6:00 Ana	lyzed: 02/12	/23 14:10					COMP
QC Source Sample: MFA-B1-B5-C	COMP-SL ((A3A1010-06)	*									
5035A/8260D SIM	~ (
Benzene	214	10.7	21.3	ug/kg dry	100	213	ND	100	77-121%			
Toluene	212	26.7	53.3	ug/kg dry		213	29.7	85	77-121%			
Ethylbenzene	199	26.7	53.3	ug/kg dry		213	ND	93	76-122%			
m,p-Xylene	386	53.3	107	ug/kg dry		426	ND	91	77-124%			
o-Xylene	194	26.7	53.3	ug/kg dry		213	ND	91	77-123%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006Report ID:Portland, OR 97232Project Manager:David WeatherbyA3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vo	latile Orga	nic Comp	ounds b	y EPA 826	60D SIM					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0452 - EPA 5035A							So	il				
Matrix Spike (23B0452-MS1)			Prepared	1: 01/30/23 1	6:00 Ana	lyzed: 02/12	/23 14:10					COM
QC Source Sample: MFA-B1-B5-C	OMP-SL (A3A1010-06)										
1,2,4-Trimethylbenzene	204	53.3	107	ug/kg dry	100	213	ND	96	75-123%			
1,3,5-Trimethylbenzene	203	53.3	107	ug/kg dry	100	213	ND	95	73-124%			
Chloroform	203	53.3	107	ug/kg dry	100	213	ND	95	78-123%			
1,2-Dibromo-3-chloropropane	160	26.7	53.3	ug/kg dry	100	213	ND	75	61-132%			
1,2-Dibromoethane (EDB)	187	10.7	21.3	ug/kg dry	100	213	ND	88	78-122%			
1,1-Dichloroethane	212	10.7	21.3	ug/kg dry	100	213	ND	99	76-125%			
1,2-Dichloroethane (EDC)	204	10.7	21.3	ug/kg dry	100	213	ND	95	73-128%			
1,1-Dichloroethene	238	10.7	21.3	ug/kg dry	100	213	ND	112	70-131%			
cis-1,2-Dichloroethene	217	10.7	21.3	ug/kg dry	100	213	ND	102	77-123%			
trans-1,2-Dichloroethene	215	10.7	21.3	ug/kg dry	100	213	ND	101	74-125%			
1,2-Dichloropropane	209	10.7	21.3	ug/kg dry	100	213	ND	98	76-123%			
cis-1,3-Dichloropropene	190	10.7	21.3	ug/kg dry	100	213	ND	89	74-126%			
trans-1,3-Dichloropropene	193	10.7	21.3	ug/kg dry	100	213	ND	91	71-130%			
Methyl tert-butyl ether (MTBE)	204	10.7	21.3	ug/kg dry	100	213	ND	91	73-125%			
Tetrachloroethene (PCE)	199	10.7	21.3	ug/kg dry	100	213	ND	93	73-128%			
1,1,2,2-Tetrachloroethane	222	26.7	53.3	ug/kg dry	100	213	ND	82	70-124%			
Trichloroethene (TCE)	206	10.7	21.3	ug/kg dry	100	213	ND	97	77-123%			
1,2,3-Trichloropropane	168	26.7	53.3	ug/kg dry	100	213	ND	79	73-125%			
Vinyl chloride	252	53.3	107	ug/kg dry	100	213	ND	118	56-135%			
1,1,2-Trichloroethane	183	26.7	53.3	ug/kg dry	100	213	ND	86	78-121%			
Surr: 1,4-Difluorobenzene (Surr)		Recor	very: 103 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			98 %	79-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

237

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

D	D	C 1	C	0/ DEC	DDD

Analyte	Result	Detection Limit	Reporting Limit	Units Dilution	Spike on Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0782 - EPA 3546						Sec	diment				
Blank (23B0782-BLK1)			Prepared	: 02/21/23 10:05 A	analyzed: 02/21	/23 22:07					
EPA 8270E											
Acenaphthene	ND	1.33	2.67	ug/kg wet 1							
Acenaphthylene	ND	1.33	2.67	ug/kg wet 1							
Anthracene	ND	1.33	2.67	ug/kg wet 1							
Benz(a)anthracene	ND	1.33	2.67	ug/kg wet 1							
Benzo(a)pyrene	ND	2.00	4.00	ug/kg wet 1							
Benzo(b)fluoranthene	ND	2.00	4.00	ug/kg wet 1							
Benzo(k)fluoranthene	ND	2.00	4.00	ug/kg wet 1							
Benzo(g,h,i)perylene	ND	1.33	2.67	ug/kg wet 1							
Chrysene	ND	1.33	2.67	ug/kg wet 1							
Dibenz(a,h)anthracene	ND	1.33	2.67	ug/kg wet 1							
Fluoranthene	ND	1.33	2.67	ug/kg wet 1							
Fluorene	ND	1.33	2.67	ug/kg wet 1							
Indeno(1,2,3-cd)pyrene	ND	1.33	2.67	ug/kg wet 1							
l-Methylnaphthalene	ND	2.67	5.33	ug/kg wet 1							
2-Methylnaphthalene	ND	2.67	5.33	ug/kg wet 1							
Naphthalene	ND	2.67	5.33	ug/kg wet 1							
Phenanthrene	ND	1.33	2.67	ug/kg wet 1							
Pyrene	ND	1.33	2.67	ug/kg wet 1							
Carbazole	ND	2.00	4.00	ug/kg wet 1							
Dibenzofuran	ND	1.33	2.67	ug/kg wet 1							
2-Chlorophenol	ND	6.67	13.3	ug/kg wet 1							
4-Chloro-3-methylphenol	ND	13.3	26.7	ug/kg wet 1							
2,4-Dichlorophenol	ND	6.67	13.3	ug/kg wet 1							
2,4-Dimethylphenol	ND	6.67	13.3	ug/kg wet 1							
2,4-Dinitrophenol	ND	33.3	66.7	ug/kg wet 1							
4,6-Dinitro-2-methylphenol	ND	33.3	66.7	ug/kg wet 1							
2-Methylphenol	ND	3.33	6.67	ug/kg wet 1							
3+4-Methylphenol(s)	ND	3.33	6.67	ug/kg wet 1							
2-Nitrophenol	ND	13.3	26.7	ug/kg wet 1							
4-Nitrophenol	ND	13.3	26.7	ug/kg wet 1							
Pentachlorophenol (PCP)	ND	13.3	26.7	ug/kg wet 1							
Phenol	ND	2.67	5.33	ug/kg wet 1							
2,3,4,6-Tetrachlorophenol	ND	6.67	13.3	ug/kg wet 1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0782 - EPA 3546							Sec	liment				
Blank (23B0782-BLK1)			Prepared	: 02/21/23	0:05 Anal	yzed: 02/21/	/23 22:07					
2,3,5,6-Tetrachlorophenol	ND	6.67	13.3	ug/kg we	et 1							
2,4,5-Trichlorophenol	ND	6.67	13.3	ug/kg we	et 1							
2,4,6-Trichlorophenol	ND	6.67	13.3	ug/kg we	et 1							
Bis(2-ethylhexyl)phthalate	ND	20.0	40.0	ug/kg we	et 1							
Butyl benzyl phthalate	ND	9.50	13.3	ug/kg we	et 1							
Diethylphthalate	ND	6.67	13.3	ug/kg we	et 1							
Dimethylphthalate	ND	6.67	13.3	ug/kg we	et 1							
Di-n-butylphthalate	ND	6.67	13.3	ug/kg we	et 1							
Di-n-octyl phthalate	ND	11.6	13.3	ug/kg we	et 1							
N-Nitrosodimethylamine	ND	3.33	6.67	ug/kg we	et 1							
N-Nitroso-di-n-propylamine	ND	3.33	6.67	ug/kg we	et 1							
N-Nitrosodiphenylamine	ND	3.33	6.67	ug/kg we	et 1							
Bis(2-Chloroethoxy) methane	ND	3.33	6.67	ug/kg we								
Bis(2-Chloroethyl) ether	ND	3.33	6.67	ug/kg we								
2,2'-Oxybis(1-Chloropropane)	ND	3.33	6.67	ug/kg we								
Hexachlorobenzene	ND	1.33	2.67	ug/kg we								
Hexachlorobutadiene	ND	3.33	6.67	ug/kg we								
Hexachlorocyclopentadiene	ND	6.67	13.3	ug/kg we								
Hexachloroethane	ND	3.33	6.67	ug/kg we								
2-Chloronaphthalene	ND	1.33	2.67	ug/kg we								
1,2,4-Trichlorobenzene	ND	3.33	6.67	ug/kg we								
4-Bromophenyl phenyl ether	ND	3.33	6.67	ug/kg we								
4-Chlorophenyl phenyl ether	ND	3.33	6.67	ug/kg we								
Aniline	ND	6.67	13.3	ug/kg we								
4-Chloroaniline	ND	3.33	6.67	ug/kg we								
2-Nitroaniline	ND	26.7	53.3	ug/kg we								
3-Nitroaniline	ND	26.7	53.3	ug/kg we								
4-Nitroaniline	ND	26.7	53.3	ug/kg we								
Nitrobenzene	ND	13.3	26.7	ug/kg we								
2,4-Dinitrotoluene	ND	13.3	26.7	ug/kg we								
2,6-Dinitrotoluene	ND	13.3	26.7	ug/kg we								
Benzoic acid	ND	167	333	ug/kg we								
Benzyl alcohol	ND	6.67	13.3	ug/kg we								
Isophorone	ND	3.33	6.67	ug/kg we								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Manberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic (Jonipour	ius by EP	A 02/UE					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0782 - EPA 3546							Sec	diment				
Blank (23B0782-BLK1)			Prepared	1: 02/21/23	10:05 Ana	lyzed: 02/21	/23 22:07					
Azobenzene (1,2-DPH)	ND	3.33	6.67	ug/kg w	et 1							
Bis(2-Ethylhexyl) adipate	ND	33.3	66.7	ug/kg we	et 1							
3,3'-Dichlorobenzidine	ND	26.7	53.3	ug/kg we	et 1							Q-
1,2-Dinitrobenzene	ND	33.3	66.7	ug/kg we	et 1							
1,3-Dinitrobenzene	ND	33.3	66.7	ug/kg we	et 1							
1,4-Dinitrobenzene	ND	33.3	66.7	ug/kg we	et 1							
Pyridine	ND	6.67	13.3	ug/kg we	et 1							
1,2-Dichlorobenzene	ND	3.33	6.67	ug/kg we	et 1							
1,3-Dichlorobenzene	ND	3.33	6.67	ug/kg we	et 1							
1,4-Dichlorobenzene	ND	3.33	6.67	ug/kg we	et 1							
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 90 %	Limits: 37	-122 %	Dilt	ution: 1x					
2-Fluorobiphenyl (Surr)			84 %	44	-120 %		"					
Phenol-d6 (Surr)			90 %	33	-122 %		"					
p-Terphenyl-d14 (Surr)			101 %	54	-127 %		"					
2-Fluorophenol (Surr)			91 %	35	-120 %		"					
2,4,6-Tribromophenol (Surr)			78 %	39	-132 %		"					
LCS (23B0782-BS1)			Prepared	1: 02/21/23	10:05 Ana	lyzed: 02/21	/23 22:40					
EPA 8270E												
Acenaphthene	449	5.32	10.7	ug/kg we	et 4	533		84	40-123%			
Acenaphthylene	486	5.32	10.7	ug/kg we	et 4	533		91	32-132%			
Anthracene	490	5.32	10.7	ug/kg we	et 4	533		92	47-123%			
Benz(a)anthracene	487	5.32	10.7	ug/kg we	et 4	533		91	49-126%			
Benzo(a)pyrene	511	8.00	16.0	ug/kg we	et 4	533		96	45-129%			
Benzo(b)fluoranthene	524	8.00	16.0	ug/kg we	et 4	533		98	45-132%			
Benzo(k)fluoranthene	517	8.00	16.0	ug/kg we	et 4	533		97	47-132%			
Benzo(g,h,i)perylene	472	5.32	10.7	ug/kg we	et 4	533		88	43-134%			
Chrysene	469	5.32	10.7	ug/kg we	et 4	533		88	50-124%			
Dibenz(a,h)anthracene	480	5.32	10.7	ug/kg we	et 4	533		90	45-134%			
Fluoranthene	489	5.32	10.7	ug/kg we	et 4	533		92	50-127%			
Fluorene	472	5.32	10.7	ug/kg we		533		89	43-125%			
Indeno(1,2,3-cd)pyrene	495	5.32	10.7	ug/kg we		533		93	45-133%			
1-Methylnaphthalene	444	10.7	21.3	ug/kg we	et 4	533		83	40-120%			
2-Methylnaphthalene	459	10.7	21.3	ug/kg we		533		86	38-122%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006

Portland, OR 97232 Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0782 - EPA 3546							Sec	diment				
LCS (23B0782-BS1)			Prepared	: 02/21/23 1	0:05 Anal	yzed: 02/21/	/23 22:40					
Naphthalene	444	10.7	21.3	ug/kg we	t 4	533		83	35-123%			
Phenanthrene	453	5.32	10.7	ug/kg we	t 4	533		85	50-121%			
Pyrene	488	5.32	10.7	ug/kg we	t 4	533		91	47-127%			
Carbazole	490	8.00	16.0	ug/kg we	t 4	533		92	50-123%			
Dibenzofuran	457	5.32	10.7	ug/kg we	t 4	533		86	44-120%			
2-Chlorophenol	475	26.7	53.2	ug/kg we	t 4	533		89	34-121%			
1-Chloro-3-methylphenol	500	53.2	107	ug/kg we	t 4	533		94	45-122%			
2,4-Dichlorophenol	500	26.7	53.2	ug/kg we	t 4	533		94	40-122%			
2,4-Dimethylphenol	501	26.7	53.2	ug/kg we	t 4	533		94	30-127%			
2,4-Dinitrophenol	407	133	267	ug/kg we	t 4	533		76	10-137%			
4,6-Dinitro-2-methylphenol	450	133	267	ug/kg we	t 4	533		84	29-132%			
2-Methylphenol	450	13.3	26.7	ug/kg we	t 4	533		84	32-122%			
3+4-Methylphenol(s)	457	13.3	26.7	ug/kg we	t 4	533		86	34-120%			
2-Nitrophenol	547	53.2	107	ug/kg we		533		103	36-123%			
I-Nitrophenol	461	53.2	107	ug/kg we		533		86	30-132%			
Pentachlorophenol (PCP)	361	53.2	107	ug/kg we		533		68	25-133%			
Phenol	515	10.7	21.3	ug/kg we		533		97	34-121%			
2,3,4,6-Tetrachlorophenol	441	26.7	53.2	ug/kg we		533		83	44-125%			
2,3,5,6-Tetrachlorophenol	438	26.7	53.2	ug/kg we		533		82	40-120%			
2,4,5-Trichlorophenol	490	26.7	53.2	ug/kg we		533		92	41-124%			
2,4,6-Trichlorophenol	485	26.7	53.2	ug/kg we		533		91	39-126%			
Bis(2-ethylhexyl)phthalate	526	80.0	160	ug/kg we		533		99	51-133%			
Butyl benzyl phthalate	553	38.0	53.2	ug/kg we		533		104	48-132%			
Diethylphthalate	484	26.7	53.2	ug/kg we		533		91	50-124%			
Dimethylphthalate	468	26.7	53.2	ug/kg we		533		88	48-124%			
Di-n-butylphthalate	540	26.7	53.2	ug/kg we		533		101	51-128%			
Di-n-octyl phthalate	667	46.4	53.2	ug/kg we		533		125	45-140%			
N-Nitrosodimethylamine	447	13.3	26.7	ug/kg we		533		84	23-120%			
N-Nitroso-di-n-propylamine	472	13.3	26.7	ug/kg we		533		88	36-120%			
N-Nitrosodiphenylamine	469	13.3	26.7	ug/kg we		533		88	38-127%			
Bis(2-Chloroethoxy) methane	455	13.3	26.7	ug/kg we		533		85	36-121%			
Bis(2-Chloroethyl) ether	450	13.3	26.7	ug/kg we		533		84	31-120%			
2,2'-Oxybis(1-Chloropropane)	437	13.3	26.7	ug/kg we		533		82	39-120%			
Hexachlorobenzene	456	5.32	10.7	ug/kg we		533		85	45-122%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E % REC RPD Detection Reporting Spike Source Result Units Dilution % REC RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 23B0782 - EPA 3546 Sediment LCS (23B0782-BS1) Prepared: 02/21/23 10:05 Analyzed: 02/21/23 22:40 410 13.3 26.7 4 533 77 Hexachlorobutadiene ug/kg wet 32-123% Hexachlorocyclopentadiene 463 26.7 53.2 ug/kg wet 4 533 87 10-140% ---------Hexachloroethane 438 13.3 26.7 ug/kg wet 4 533 82 28-120% 2-Chloronaphthalene 458 5.32 10.7 ug/kg wet 4 533 86 41-120% 1,2,4-Trichlorobenzene 442 13.3 26.7 533 83 34-120% ug/kg wet 4 4-Bromophenyl phenyl ether 459 13.3 26.7 ug/kg wet 4 533 86 46-124% 4-Chlorophenyl phenyl ether 455 13.3 26.7 ug/kg wet 4 533 85 45-121% 57 Aniline 302 26.7 53.2 ug/kg wet 4 533 10-120% Q-31 13.3 4-Chloroaniline 269 26.7 ug/kg wet 4 533 50 17-120% 2-Nitroaniline 476 107 213 ug/kg wet 4 533 89 44-127% 3-Nitroaniline 381 107 213 4 533 71 33-120% ug/kg wet 107 213 4-Nitroaniline 460 ug/kg wet 4 533 86 51-125% 107 533 87 34-122% Nitrobenzene 464 53.2 ug/kg wet 4 2,4-Dinitrotoluene 467 53.2 107 ug/kg wet 4 533 87 48-126% 2,6-Dinitrotoluene 107 533 457 53.2 ug/kg wet 4 86 46-124% Benzoic acid 1090 668 668 ug/kg wet 4 1070 102 10-140% Q-31 26.7 53.2 79 Benzyl alcohol 423 4 533 29-122% ug/kg wet 467 26.7 4 533 88 30-122% Isophorone 13.3 ug/kg wet 533 481 13.3 26.7 4 90 39-125% Azobenzene (1,2-DPH) ug/kg wet ---Bis(2-Ethylhexyl) adipate 569 133 267 ug/kg wet 4 533 107 61-121% 3,3'-Dichlorobenzidine 2010 107 213 4 1070 189 22-121% Q-29, Q-52 ug/kg wet 1,2-Dinitrobenzene 464 133 267 ug/kg wet 4 533 87 44-120% 1,3-Dinitrobenzene 459 133 4 533 86 43-127% 2.67 ug/kg wet 1,4-Dinitrobenzene 487 133 267 4 533 91 37-132% ug/kg wet 379 4 533 71 Pyridine 26.7 53.2 10-120% ug/kg wet 1,2-Dichlorobenzene 429 13.3 26.7 ug/kg wet 4 533 81 33-120% 428 13.3 26.7 4 533 80 30-120% 1.3-Dichlorobenzene ug/kg wet ---1,4-Dichlorobenzene 424 13.3 26.7 ug/kg wet 4 533 80 31-120% Surr: Nitrobenzene-d5 (Surr) Recovery: 90 % Limits: 37-122 % Dilution: 4x 89 % 2-Fluorobiphenyl (Surr) 44-120 % Phenol-d6 (Surr) 89 % 33-122 % p-Terphenyl-d14 (Surr) 103 % 54-127 %

35-120 %

39-132 %

93 %

90 %

Apex Laboratories

2-Fluorophenol (Surr)

2,4,6-Tribromophenol (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Noonberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006

Portland, OR 97232 Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E % REC RPD Detection Reporting Spike Source Result Units Dilution % REC RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 23B0782 - EPA 3546 Sediment LCS Dup (23B0782-BSD1) Prepared: 02/21/23 10:08 Analyzed: 02/21/23 23:14 Q-19 EPA 8270E Acenaphthene 454 5.32 10.7 ug/kg wet 4 533 85 40-123% 1 30% 483 5.32 10.7 4 533 91 32-132% 0.7 30% Acenaphthylene ug/kg wet 90 Anthracene 478 5.32 10.7 ug/kg wet 4 533 47-123% 2 30% 486 5.32 10.7 4 533 91 49-126% 0.3 30% Benz(a)anthracene ug/kg wet Benzo(a)pyrene 505 8.00 16.0 ug/kg wet 4 533 95 45-129% 1 30% Benzo(b)fluoranthene 512 8.00 16.0 ug/kg wet 4 533 96 45-132% 2 30% Benzo(k)fluoranthene 501 8.00 16.0 ug/kg wet 4 533 94 47-132% 3 30% 43-134% Benzo(g,h,i)perylene 471 5.32 10.7 ug/kg wet 4 533 88 0.3 30% Chrysene 474 5.32 10.7 ug/kg wet 4 533 89 50-124% 1 30% 464 5.32 10.7 4 533 87 45-134% 4 30% Dibenz(a,h)anthracene ug/kg wet Fluoranthene 479 5.32 10.7 ug/kg wet 4 533 90 50-127% 2 30% Fluorene 474 5.32 10.7 4 533 89 43-125% 0.3 30% ug/kg wet 488 5.32 10.7 533 91 45-133% 30% Indeno(1,2,3-cd)pyrene ug/kg wet 4 1 1-Methylnaphthalene 441 10.7 21.3 ug/kg wet 4 533 83 40-120% 0.7 30% 10.7 21.3 38-122% 2-Methylnaphthalene 451 ug/kg wet 4 533 85 2 30% Naphthalene 447 10.7 21.3 ug/kg wet 4 533 84 35-123% 0.6 30% Phenanthrene 451 5.32 10.7 ug/kg wet 4 533 84 50-121% 0.6 30% Pyrene 483 5.32 10.7 ug/kg wet 4 533 91 47-127% 1 30% Carbazole 463 8.00 16.0 533 87 50-123% 30% ug/kg wet 4 6 Dibenzofuran 458 5.32 10.7 ug/kg wet 4 533 86 44-120% 0.2 30% 2-Chlorophenol 474 26.7 53.2 4 533 89 34-121% 0.09 30% ug/kg wet 53.2 107 90 45-122% 4-Chloro-3-methylphenol 481 ug/kg wet 4 533 4 30% 493 53.2 533 92 40-122% 2 2,4-Dichlorophenol 26.7 ug/kg wet 4 30% 2,4-Dimethylphenol 499 26.7 53.2 ug/kg wet 4 533 94 30-127% 0.4 30% 267 2,4-Dinitrophenol 401 133 4 533 75 10-137% 2 30% ug/kg wet 4,6-Dinitro-2-methylphenol 4 533 85 29-132% 1 456 133 267 ug/kg wet 30% 2-Methylphenol 453 13.3 26.7 ug/kg wet 4 533 85 32-122% 0.6 30% 3+4-Methylphenol(s) 446 13.3 26.7 533 84 34-120% 2 30% ug/kg wet 4 548 53.2 107 4 533 103 36-123% 30% 2-Nitrophenol ug/kg wet 0.1 4-Nitrophenol 450 53.2 107 ug/kg wet 4 533 84 30-132% 3 30% Pentachlorophenol (PCP) 357 53.2 107 4 533 67 25-133% 1 30% ug/kg wet 509 10.7 21.3 4 533 95 34-121% ug/kg wet 1 30%

4

533

ug/kg wet

Apex Laboratories

2,3,4,6-Tetrachlorophenol

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

44-125%

0.8

30%

82

Philip Menterg

438

26.7

53.2

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0782 - EPA 3546							Se	diment				
LCS Dup (23B0782-BSD1)			Prepared	1: 02/21/23 1	0:08 Ana	lyzed: 02/21	/23 23:14					Q-19
2,3,5,6-Tetrachlorophenol	438	26.7	53.2	ug/kg we	t 4	533		82	40-120%	0.07	30%	
2,4,5-Trichlorophenol	491	26.7	53.2	ug/kg we	t 4	533		92	41-124%	0.2	30%	
2,4,6-Trichlorophenol	469	26.7	53.2	ug/kg we	t 4	533		88	39-126%	3	30%	
Bis(2-ethylhexyl)phthalate	523	80.0	160	ug/kg we	t 4	533		98	51-133%	0.6	30%	
Butyl benzyl phthalate	546	38.0	53.2	ug/kg we	t 4	533		102	48-132%	1	30%	
Diethylphthalate	488	26.7	53.2	ug/kg we	t 4	533		91	50-124%	0.7	30%	
Dimethylphthalate	472	26.7	53.2	ug/kg we	t 4	533		88	48-124%	0.7	30%	
Di-n-butylphthalate	546	26.7	53.2	ug/kg we	t 4	533		102	51-128%	1	30%	
Di-n-octyl phthalate	644	46.4	53.2	ug/kg we	t 4	533		121	45-140%	3	30%	
N-Nitrosodimethylamine	451	13.3	26.7	ug/kg we	t 4	533		85	23-120%	1	30%	
N-Nitroso-di-n-propylamine	457	13.3	26.7	ug/kg we	t 4	533		86	36-120%	3	30%	
N-Nitrosodiphenylamine	461	13.3	26.7	ug/kg we	t 4	533		86	38-127%	2	30%	
Bis(2-Chloroethoxy) methane	457	13.3	26.7	ug/kg we	t 4	533		86	36-121%	0.4	30%	
Bis(2-Chloroethyl) ether	444	13.3	26.7	ug/kg we	t 4	533		83	31-120%	1	30%	
2,2'-Oxybis(1-Chloropropane)	433	13.3	26.7	ug/kg we	t 4	533		81	39-120%	0.9	30%	
Hexachlorobenzene	452	5.32	10.7	ug/kg we	t 4	533		85	45-122%	0.7	30%	
Hexachlorobutadiene	420	13.3	26.7	ug/kg we	t 4	533		79	32-123%	2	30%	
Hexachlorocyclopentadiene	475	26.7	53.2	ug/kg we	t 4	533		89	10-140%	3	30%	
Hexachloroethane	440	13.3	26.7	ug/kg we	t 4	533		82	28-120%	0.5	30%	
2-Chloronaphthalene	461	5.32	10.7	ug/kg we	t 4	533		86	41-120%	0.7	30%	
1,2,4-Trichlorobenzene	450	13.3	26.7	ug/kg we	t 4	533		84	34-120%	2	30%	
4-Bromophenyl phenyl ether	455	13.3	26.7	ug/kg we	t 4	533		85	46-124%	0.8	30%	
4-Chlorophenyl phenyl ether	461	13.3	26.7	ug/kg we	t 4	533		87	45-121%	1	30%	
Aniline	314	26.7	53.2	ug/kg we	t 4	533		59	10-120%	4	30%	
4-Chloroaniline	277	13.3	26.7	ug/kg we	t 4	533		52	17-120%	3	30%	Q-31
2-Nitroaniline	469	107	213	ug/kg we	t 4	533		88	44-127%	1	30%	
3-Nitroaniline	380	107	213	ug/kg we	t 4	533		71	33-120%	0.2	30%	
4-Nitroaniline	454	107	213	ug/kg we	t 4	533		85	51-125%	1	30%	
Nitrobenzene	459	53.2	107	ug/kg we	t 4	533		86	34-122%	1	30%	
2,4-Dinitrotoluene	477	53.2	107	ug/kg we		533		89	48-126%	2	30%	
2,6-Dinitrotoluene	459	53.2	107	ug/kg we	t 4	533		86	46-124%	0.4	30%	
Benzoic acid	948	668	668	ug/kg we		1070		89	10-140%	14	30%	Q-31
Benzyl alcohol	409	26.7	53.2	ug/kg we		533		77	29-122%	3	30%	
Isophorone	453	13.3	26.7	ug/kg we		533		85	30-122%	3	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project: St. Helens Lagoon Project Number: M0830.03.006 Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0782 - EPA 3546							Se	diment				
LCS Dup (23B0782-BSD1)			Prepared	1: 02/21/23 1	0:08 Anal	yzed: 02/21	/23 23:14					Q-19
Azobenzene (1,2-DPH)	480	13.3	26.7	ug/kg we	t 4	533		90	39-125%	0.2	30%	
Bis(2-Ethylhexyl) adipate	564	133	267	ug/kg we	t 4	533		106	61-121%	0.8	30%	
3,3'-Dichlorobenzidine	1970	107	213	ug/kg we	t 4	1070		184	22-121%	2	30%	Q-29, Q-5
1,2-Dinitrobenzene	471	133	267	ug/kg we	t 4	533		88	44-120%	2	30%	
1,3-Dinitrobenzene	456	133	267	ug/kg we	t 4	533		86	43-127%	0.7	30%	
1,4-Dinitrobenzene	484	133	267	ug/kg we	t 4	533		91	37-132%	0.6	30%	
Pyridine	389	26.7	53.2	ug/kg we	t 4	533		73	10-120%	3	30%	
1,2-Dichlorobenzene	437	13.3	26.7	ug/kg we	t 4	533		82	33-120%	2	30%	
1,3-Dichlorobenzene	433	13.3	26.7	ug/kg we	t 4	533		81	30-120%	1	30%	
1,4-Dichlorobenzene	432	13.3	26.7	ug/kg we	t 4	533		81	31-120%	2	30%	
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 87 %	Limits: 37-	-122 %	Dilt	ution: 4x					
2-Fluorobiphenyl (Surr)			86 %	44-	120 %		"					
Phenol-d6 (Surr)			85 %	33-	122 %		"					
p-Terphenyl-d14 (Surr)			97 %	54-	127 %		"					
2-Fluorophenol (Surr)			92 %	35-	120 %		"					
2,4,6-Tribromophenol (Surr)			86 %	39-	132 %		"					
Matrix Spike (23B0782-MS1)			Prepared	1: 02/21/23 1	0:05 Anal	vzed: 02/22	/23 12:55				COMP	P, H-02, PRO

Matrix Spike (23B0782-MS1)				: 02/21/23 10:	05 Ana	lyzed: 02/22	/23 12:55			COMP,	H-02, PRO
OC Source Sample: MFA-B1-B5-	COMP-SL-PRO	(A3A1010-0	<u>7)</u>								
<u>EPA 8270E</u>											
Acenaphthene	314	198	397	ug/kg dry	40	794	ND	40	40-123%	 	J, Q-11
Acenaphthylene	257	198	397	ug/kg dry	40	794	ND	32	32-132%	 	J, Q-11
Anthracene	323	198	397	ug/kg dry	40	794	ND	41	47-123%	 	Q-11, J
Benz(a)anthracene	333	198	397	ug/kg dry	40	794	ND	42	49-126%	 	Q-11, J
Benzo(a)pyrene	386	298	595	ug/kg dry	40	794	ND	49	45-129%	 	Q-11, J
Benzo(b)fluoranthene	389	298	595	ug/kg dry	40	794	ND	49	45-132%	 	Q-11, J
Benzo(k)fluoranthene	361	298	595	ug/kg dry	40	794	ND	45	47-132%	 	Q-11, J
Benzo(g,h,i)perylene	ND	198	397	ug/kg dry	40	794	ND		43-134%	 	Q-11
Chrysene	268	198	397	ug/kg dry	40	794	ND	34	50-124%	 	Q-11, J
Dibenz(a,h)anthracene	ND	198	397	ug/kg dry	40	794	ND		45-134%	 	Q-11
Fluoranthene	423	198	397	ug/kg dry	40	794	ND	53	50-127%	 	Q-11
Fluorene	356	198	397	ug/kg dry	40	794	ND	45	43-125%	 	Q-11, J
Indeno(1,2,3-cd)pyrene	ND	198	397	ug/kg dry	40	794	ND		45-133%	 	Q-11
1-Methylnaphthalene	ND	397	793	ug/kg dry	40	794	ND		40-120%	 	Q-11

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0782 - EPA 3546							Se	diment				
Matrix Spike (23B0782-MS1)			Prepared	: 02/21/23 1	0:05 Anal	yzed: 02/22	/23 12:55				COM	P, H-02, PRO
QC Source Sample: MFA-B1-B5-C	COMP-SL-F	PRO (A3A1010) <u>-07)</u>									
2-Methylnaphthalene	ND	397	793	ug/kg dr	y 40	794	ND		38-122%			Q-11
Naphthalene	ND	397	793	ug/kg dr	y 40	794	ND		35-123%			Q-11
Phenanthrene	565	198	397	ug/kg dr	y 40	794	582	-2	50-121%			Q-11
Pyrene	427	198	397	ug/kg dr	y 40	794	304	15	47-127%			Q-11
Carbazole	445	298	595	ug/kg dr	y 40	794	ND	56	50-123%			Q-11, J
Dibenzofuran	301	198	397	ug/kg dr	y 40	794	ND	38	44-120%			Q-11, J
2-Chlorophenol	ND	993	1980	ug/kg dr	y 40	794	ND		34-121%			Q-11
4-Chloro-3-methylphenol	ND	1980	3970	ug/kg dr	y 40	794	ND		45-122%			Q-11, Q-41
2,4-Dichlorophenol	ND	993	1980	ug/kg dr	y 40	794	ND		40-122%			Q-11
2,4-Dimethylphenol	ND	993	1980	ug/kg dr	y 40	794	ND		30-127%			Q-11
2,4-Dinitrophenol	ND	4960	9930	ug/kg dr	y 40	794	ND		10-137%			Q-11, Q-41
4,6-Dinitro-2-methylphenol	ND	4960	9930	ug/kg dr	y 40	794	ND		29-132%			Q-11, Q-41
2-Methylphenol	ND	496	993	ug/kg dr	y 40	794	ND		32-122%			Q-11
3+4-Methylphenol(s)	ND	496	993	ug/kg dr	y 40	794	ND		34-120%			Q-11
2-Nitrophenol	ND	1980	3970	ug/kg dr	y 40	794	ND		36-123%			Q-11
4-Nitrophenol	ND	1980	3970	ug/kg dr	y 40	794	ND		30-132%			Q-11, Q-41
Pentachlorophenol (PCP)	ND	1980	3970	ug/kg dr	y 40	794	ND		25-133%			Q-11
Phenol	ND	397	793	ug/kg dr	y 40	794	ND		34-121%			Q-11, Q-41
2,3,4,6-Tetrachlorophenol	ND	993	1980	ug/kg dr	y 40	794	ND		44-125%			Q-11
2,3,5,6-Tetrachlorophenol	ND	993	1980	ug/kg dr	y 40	794	ND		40-120%			Q-11
2,4,5-Trichlorophenol	ND	993	1980	ug/kg dr	y 40	794	ND		41-124%			Q-11
2,4,6-Trichlorophenol	ND	993	1980	ug/kg dr	y 40	794	ND		39-126%			Q-11
Bis(2-ethylhexyl)phthalate	ND	2980	5950	ug/kg dr	y 40	794	4080	-514	51-133%			Q-11
Butyl benzyl phthalate	1840	1410	1980	ug/kg dr		794	ND	11	48-132%			Q-11, J
Diethylphthalate	ND	993	1980	ug/kg dr	y 40	794	ND		50-124%			Q-11
Dimethylphthalate	ND	993	1980	ug/kg dr	y 40	794	ND		48-124%			Q-11
Di-n-butylphthalate	ND	993	1980	ug/kg dr	y 40	794	ND		51-128%			Q-11
Di-n-octyl phthalate	2050	1730	1980	ug/kg dr		794	ND	259	45-140%			Q-11
N-Nitrosodimethylamine	ND	496	993	ug/kg dr		794	ND		23-120%			Q-11
N-Nitroso-di-n-propylamine	ND	496	993	ug/kg dr		794	ND		36-120%			Q-11
N-Nitrosodiphenylamine	687	496	993	ug/kg dr		794	ND	-13	38-127%			Q-11, J
Bis(2-Chloroethoxy) methane	ND	496	993	ug/kg dr		794	ND		36-121%			Q-11
Bis(2-Chloroethyl) ether	ND	496	993	ug/kg dr		794	ND		31-120%			Q-11, Q-41

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0782 - EPA 3546							Se	diment				
Matrix Spike (23B0782-MS1)			Prepared	: 02/21/23 1	0:05 Ana	lyzed: 02/22	/23 12:55				COM	IP, H-02, PRO
QC Source Sample: MFA-B1-B5-C	OMP-SL-F	PRO (A3A1010) <u>-07)</u>									
2,2'-Oxybis(1-Chloropropane)	ND	496	993	ug/kg dry	y 40	794	ND		39-120%			Q-11
Hexachlorobenzene	267	198	397	ug/kg dry	y 40	794	ND	34	45-122%			Q-11, J
Hexachlorobutadiene	ND	496	993	ug/kg dry	y 40	794	ND		32-123%			Q-11
Hexachlorocyclopentadiene	ND	993	1980	ug/kg dry	y 40	794	ND		10-140%			Q-11, Q-41
Hexachloroethane	ND	496	993	ug/kg dry	40	794	ND		28-120%			Q-11
2-Chloronaphthalene	280	198	397	ug/kg dry	y 40	794	ND	35	41-120%			Q-11, J
1,2,4-Trichlorobenzene	ND	496	993	ug/kg dry	40	794	ND		34-120%			Q-11
4-Bromophenyl phenyl ether	ND	496	993	ug/kg dry	y 40	794	ND		46-124%			Q-11
4-Chlorophenyl phenyl ether	ND	496	993	ug/kg dry	y 40	794	ND		45-121%			Q-11
Aniline	ND	993	1980	ug/kg dry	y 40	794	ND		10-120%			Q-11
4-Chloroaniline	ND	496	993	ug/kg dry	y 40	794	ND		17-120%			Q-11
2-Nitroaniline	ND	3970	7930	ug/kg dry		794	ND		44-127%			Q-11
3-Nitroaniline	ND	3970	7930	ug/kg dry	y 40	794	ND		33-120%			Q-11
4-Nitroaniline	ND	3970	7930	ug/kg dry		794	ND		51-125%			Q-11
Nitrobenzene	ND	1980	3970	ug/kg dry	y 40	794	ND		34-122%			Q-11
2,4-Dinitrotoluene	ND	1980	3970	ug/kg dry	y 40	794	ND		48-126%			Q-11
2,6-Dinitrotoluene	ND	1980	3970	ug/kg dry		794	ND		46-124%			Q-11
Benzoic acid	ND	24900	49600	ug/kg dry	y 40	1590	ND		10-140%			Q-11
Benzyl alcohol	ND	993	1980	ug/kg dry	y 40	794	ND		29-122%			Q-11
Isophorone	ND	496	993	ug/kg dry		794	ND		30-122%			Q-11
Azobenzene (1,2-DPH)	ND	496	993	ug/kg dry		794	ND		39-125%			Q-11
Bis(2-Ethylhexyl) adipate	ND	4960	9930	ug/kg dry		794	ND		61-121%			Q-11
3,3'-Dichlorobenzidine	ND	3970	7930	ug/kg dry		1590	ND		22-121%			Q-11, Q-52
1,2-Dinitrobenzene	ND	4960	9930	ug/kg dry		794	ND		44-120%			Q-11
1,3-Dinitrobenzene	ND	4960	9930	ug/kg dry		794	ND		43-127%			Q-11
1,4-Dinitrobenzene	ND	4960	9930	ug/kg dry		794	ND		37-132%			Q-11, Q-41
Pyridine	ND	993	1980	ug/kg dry		794	ND		10-120%			Q-11
1,2-Dichlorobenzene	ND	496	993	ug/kg dry		794	ND		33-120%			Q-11
1,3-Dichlorobenzene	ND	496	993	ug/kg dry		794	ND		30-120%			Q-11
1,4-Dichlorobenzene	ND	496	993	ug/kg dry		794	ND		31-120%			Q-11
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 23 %	Limits: 37-		Dilı	ution: 40x					S-05
2-Fluorobiphenyl (Surr)			34 %		120 %		"					S-05
Phenol-d6 (Surr)			12 %		122 %		"					S-05

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratorie

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS Semivolatile Organic Compounds by EPA 8270E

Detection Reporting Spike Source % REC **RPD** Dilution Amount % REC Analyte Result Ĺimit Units Result Limits RPD Limit Notes Limit Batch 23B0782 - EPA 3546 Sediment

Matrix Spike (23B0782-MS1)	Prepared	d: 02/21/23 10:05 Analy	zed: 02/22/23 12:55	COMP, H-02, PRO
QC Source Sample: MFA-B1-B5-COMP-SL-	PRO (A3A1010-07)			
Surr: p-Terphenyl-d14 (Surr)	Recovery: 46 %	Limits: 54-127 %	Dilution: 40x	S-05
2-Fluorophenol (Surr)	13 %	35-120 %	"	S-05
2,4,6-Tribromophenol (Surr)	130 %	39-132 %	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Manhera

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

	Organopl	hosphorus	Pesticide	s (OPPs) by EPA 8	8270E (G	iC/MS)				
Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
						Sec	diment				
		Prepared	: 02/21/23 1	0:10 Anal	lyzed: 02/21	/23 17:23					
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	100	200	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
ND	25.0	50.0	ug/kg we	t 1							
	ND N	ND	Result Detection Limit Reporting Limit	Prepared: 02/21/23 1	Detection Limit Limit Units Dilution	Prepared: 02/21/23 10:10 Analyzed: 02/21	Result Detection Limit Limit Units Dilution Spike Amount Result	ND	Detection Limit Limit Detection Limit Detection Limit Detection Limit Detection Limit Detection Dete	Result Detection Limit Limit Units Dilution Spike Result % REC % REC Limits RPD	Result Detection Limit Limit Units Dilution Spike Result Result % REC Limits RPD Limit

LCS (23B0783-BS1)

Triphenyl phosphate (Surr)

Prepared: 02/21/23 10:10 Analyzed: 02/21/23 17:58

34-121 %

85 %

EPA 8270E OPPs

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Manhera

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0783 - EPA 3546							Sec	diment				
LCS (23B0783-BS1)			Prepared	1: 02/21/23 1	0:10 Ana	lyzed: 02/21/	/23 17:58					
Azinphos methyl (Guthion)	424	25.0	50.0	ug/kg we	t 1	400		106	38-156%			
Chlorpyrifos	371	25.0	50.0	ug/kg we	t 1	400		93	47-140%			
Coumaphos	432	25.0	50.0	ug/kg we	t 1	400		108	37-160%			
Demeton O	188	25.0	50.0	ug/kg we	t 1	184		102	66-127%			
Demeton S	182	25.0	50.0	ug/kg we	t 1	194		94	70-121%			
Diazinon	417	25.0	50.0	ug/kg we	t 1	400		104	42-134%			
Dichlorvos	411	25.0	50.0	ug/kg we	t 1	400		103	39-142%			
Dimethoate	387	25.0	50.0	ug/kg we	t 1	400		97	16-139%			
Disulfoton	427	25.0	50.0	ug/kg we	t 1	400		107	28-145%			
EPN	447	25.0	50.0	ug/kg we	t 1	400		112	44-137%			
Ethoprop	402	25.0	50.0	ug/kg we	t 1	400		100	47-128%			
Fensulfothion	414	25.0	50.0	ug/kg we	t 1	400		103	27-147%			
Fenthion	389	25.0	50.0	ug/kg we	t 1	400		97	44-134%			
Malathion	348	25.0	50.0	ug/kg we	t 1	400		87	46-137%			
Merphos	446	25.0	50.0	ug/kg we	t 1	400		112	66-131%			
Methyl parathion	438	25.0	50.0	ug/kg we	t 1	400		109	49-138%			
Mevinphos (Phosdrin)	405	25.0	50.0	ug/kg we	t 1	400		101	12-176%			
Monocrotophos	346	25.0	50.0	ug/kg we	t 1	400		86	10-153%			
Naled (Dibrom)	414	25.0	50.0	ug/kg we		400		103	10-174%			
Parathion, ethyl	409	25.0	50.0	ug/kg we		400		102	50-139%			
Phorate	441	25.0	50.0	ug/kg we	t 1	400		110	23-142%			
Ronnel (Fenchlorphos)	379	25.0	50.0	ug/kg we		400		95	45-138%			
Sulfotep	370	25.0	50.0	ug/kg we		400		93	52-126%			
Sulprofos (Bolstar)	398	25.0	50.0	ug/kg we		400		100	48-139%			
ГЕРР	333	100	200	ug/kg we		400		83	16-126%			
Tetrachlorvinphos (Rabon)	444	25.0	50.0	ug/kg we		400		111	54-129%			
Tokuthion (Prothiofos)	423	25.0	50.0	ug/kg we		400		106	45-136%			
Trichloronate	395	25.0	50.0	ug/kg we		400		99	37-140%			
Surr: Tributyl phosphate (Surr)		Rece	overy: 90 %	Limits: 10-		Dilı	ition: Ix					
Triphenyl phosphate (Surr)			101 %		121 %		"					
LCS Dup (23B0783-BSD1)			Prepared	1: 02/21/23 1	0:11 Anal	lyzed: 02/21/	/23 18:34					Q-
			r			·						
EPA 8270E OPPs												

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: St. Helens Lagoon

3140 NE Broadway Street Project Number: M0830.03.006 Report ID: Portland, OR 97232 Project Manager: David Weatherby A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

Organophosphorus Pesticides (OPPs) by EPA 8270E (GC/MS)	
---	--

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0783 - EPA 3546							Sed	diment				
LCS Dup (23B0783-BSD1)			Prepared	1: 02/21/23 1	0:11 Anal	yzed: 02/21/	23 18:34					Q-19
Chlorpyrifos	362	25.0	50.0	ug/kg we	t 1	400		91	47-140%	2	30%	
Coumaphos	409	25.0	50.0	ug/kg we	t 1	400		102	37-160%	5	30%	
Demeton O	186	25.0	50.0	ug/kg we	t 1	184		101	66-127%	1	30%	
Demeton S	177	25.0	50.0	ug/kg we	t 1	194		91	70-121%	3	30%	
Diazinon	410	25.0	50.0	ug/kg we	t 1	400		102	42-134%	2	30%	
Dichlorvos	414	25.0	50.0	ug/kg we	t 1	400		103	39-142%	0.6	30%	
Dimethoate	382	25.0	50.0	ug/kg we	t 1	400		95	16-139%	1	30%	
Disulfoton	413	25.0	50.0	ug/kg we	t 1	400		103	28-145%	3	30%	
EPN	429	25.0	50.0	ug/kg we	t 1	400		107	44-137%	4	30%	
Ethoprop	391	25.0	50.0	ug/kg we	t 1	400		98	47-128%	3	30%	
Fensulfothion	402	25.0	50.0	ug/kg we	t 1	400		100	27-147%	3	30%	
Fenthion	381	25.0	50.0	ug/kg we	t 1	400		95	44-134%	2	30%	
Malathion	338	25.0	50.0	ug/kg we	t 1	400		85	46-137%	3	30%	
Merphos	429	25.0	50.0	ug/kg we	t 1	400		107	66-131%	4	30%	
Methyl parathion	432	25.0	50.0	ug/kg we	t 1	400		108	49-138%	1	30%	
Mevinphos (Phosdrin)	407	25.0	50.0	ug/kg we	t 1	400		102	12-176%	0.4	30%	
Monocrotophos	361	25.0	50.0	ug/kg we	t 1	400		90	10-153%	4	30%	
Naled (Dibrom)	409	25.0	50.0	ug/kg we	t 1	400		102	10-174%	1	30%	
Parathion, ethyl	403	25.0	50.0	ug/kg we	t 1	400		101	50-139%	1	30%	
Phorate	430	25.0	50.0	ug/kg we	t 1	400		108	23-142%	2	30%	
Ronnel (Fenchlorphos)	376	25.0	50.0	ug/kg we	t 1	400		94	45-138%	1	30%	
Sulfotep	361	25.0	50.0	ug/kg we	t 1	400		90	52-126%	2	30%	
Sulprofos (Bolstar)	383	25.0	50.0	ug/kg we	t 1	400		96	48-139%	4	30%	
TEPP	356	100	200	ug/kg we	t 1	400		89	16-126%	7	30%	
Tetrachlorvinphos (Rabon)	437	25.0	50.0	ug/kg we	t 1	400		109	54-129%	2	30%	
Tokuthion (Prothiofos)	418	25.0	50.0	ug/kg we	t 1	400		104	45-136%	1	30%	
Trichloronate	384	25.0	50.0	ug/kg we	t 1	400		96	37-140%	3	30%	
Surr: Tributyl phosphate (Surr)		Reco	overy: 87 %	Limits: 10-	136 %	Dilu	ution: 1x					_
Triphenyl phosphate (Surr)			94 %	34-	121 %		"					

Matrix Spike (23B0783-MS1) Prepared: 02/21/23 10:10 Analyzed: 02/22/23 14:24

972

1940

COMP, H-02, PRO

QC Source Sample: MFA-B1-B5-COMP-SL-PRO (A3A1010-07)

ND

EPA 8270E OPPs Azinphos methyl (Guthion)

Apex Laboratories ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$

ug/kg dry

40

389

custody document. This analytical report must be reproduced in its entirety.

38-156%

ND

Philip Nevenberg

Q-11

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

Organophosphorus Pesticides (OPPs) by EPA 8270E (GC/MS)

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0783 - EPA 3546							Sec	diment				
Matrix Spike (23B0783-MS1)			Prepared	1: 02/21/23 1	0:10 Ana	lyzed: 02/22	/23 14:24				COM	IP, H-02, PRO
QC Source Sample: MFA-B1-B5-C	COMP-SL-P	RO (A3A1010	<u>-07)</u>									
Chlorpyrifos	ND	972	1940	ug/kg dr	y 40	389	ND		47-140%			Q-11
Coumaphos	4750	2840	2840	ug/kg dr	y 40	389	ND	469	37-160%			Q-11
Demeton O	ND	972	1940	ug/kg dr	y 40	179	ND		66-127%			Q-11
Demeton S	ND	972	1940	ug/kg dr	y 40	189	ND		70-121%			Q-11
Diazinon	ND	972	1940	ug/kg dr	y 40	389	ND		42-134%			Q-11
Dichlorvos	ND	972	1940	ug/kg dr	y 40	389	ND		39-142%			Q-11
Dimethoate	ND	972	1940	ug/kg dr	y 40	389	ND		16-139%			Q-11
Disulfoton	ND	972	1940	ug/kg dr	y 40	389	ND		28-145%			Q-11
EPN	ND	972	1940	ug/kg dr	y 40	389	ND		44-137%			Q-11
Ethoprop	ND	972	1940	ug/kg dr	y 40	389	ND		47-128%			Q-11
Fensulfothion	ND	972	1940	ug/kg dr	y 40	389	ND		27-147%			Q-11
Fenthion	ND	972	1940	ug/kg dr	y 40	389	ND		44-134%			Q-11
Malathion	ND	1940	1940	ug/kg dr	y 40	389	ND		46-137%			Q-11
Merphos	ND	28900	28900	ug/kg dr	y 40	389	ND	-7680	66-131%			Q-11
Methyl parathion	ND	1940	1940	ug/kg dr	y 40	389	ND		49-138%			Q-11
Mevinphos (Phosdrin)	ND	972	1940	ug/kg dr	y 40	389	ND		12-176%			Q-11
Monocrotophos	ND	1940	1940	ug/kg dr	y 40	389	ND		10-153%			Q-11
Naled (Dibrom)	ND	972	1940	ug/kg dr	y 40	389	ND		10-174%			Q-11
Parathion, ethyl	ND	9170	9170	ug/kg dr	y 40	389	ND	-2440	50-139%			Q-11
Phorate	ND	972	1940	ug/kg dr	y 40	389	ND		23-142%			Q-11, Q-41
Ronnel (Fenchlorphos)	ND	972	1940	ug/kg dr	y 40	389	ND		45-138%			Q-11
Sulfotep	ND	972	1940	ug/kg dr	y 40	389	ND		52-126%			Q-11
Sulprofos (Bolstar)	ND	1940	1940	ug/kg dr	y 40	389	ND		48-139%			Q-11
TEPP	ND	3890	7770	ug/kg dr	y 40	389	ND		16-126%			Q-11
Tetrachlorvinphos (Rabon)	10700	10600	10600	ug/kg dr	y 40	389	ND	-50	54-129%			Q-11
Tokuthion (Prothiofos)	ND	1940	1940	ug/kg dr	y 40	389	ND		45-136%			Q-11
Trichloronate	ND	12800	12800	ug/kg dr	y 40	389	ND	-3380	37-140%			Q-11
Surr: Tributyl phosphate (Surr)		Recov	ery: 455 %	Limits: 10-	-136 %	Dilı	ution: 40x					S-05
Triphenyl phosphate (Surr)			181 %	34-	121 %		"					S-05

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

252

Philip Newsberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

			Organoch	niorine Pe	sticides	by GC/MS	S/MS					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23C0074 - EPA 3546							Soi	I				
Blank (23C0074-BLK1)			Prepared	1: 03/02/23 (9:12 Ana	lyzed: 03/03	/23 15:06					
EPA 8270E OCPs												
Aldrin	ND	0.0500	0.100	ug/kg we	et 1							
alpha-BHC	ND	0.0500	0.100	ug/kg we	et 1							
beta-BHC	ND	0.0500	0.100	ug/kg we	et 1							
gamma-BHC (Lindane)	ND	0.0500	0.100	ug/kg we	et 1							
delta-BHC	ND	0.0500	0.100	ug/kg we	et 1							
cis-Chlordane	ND	0.0500	0.100	ug/kg we	et 1							
cis-Nonachlor	ND	0.0500	0.100	ug/kg we	et 1							
2,4'-DDD	ND	0.0500	0.100	ug/kg we	et 1							
2,4'-DDE	ND	0.0500	0.100	ug/kg we	et 1							
2,4'-DDT	ND	0.0500	0.100	ug/kg we	et 1							
4,4'-DDD	ND	0.0500	0.100	ug/kg we	et 1							
4,4'-DDE	ND	0.0500	0.100	ug/kg we								
4,4'-DDT	ND	0.0500	0.100	ug/kg we	et 1							
Dieldrin	ND	0.0300	0.0300	ug/kg we								
Endosulfan I	ND	0.0500	0.100	ug/kg we	et 1							
Endosulfan II	ND	0.0500	0.100	ug/kg we	et 1							
Endosulfan sulfate	ND	0.0500	0.100	ug/kg we								
Endrin	ND	0.0500	0.100	ug/kg we								
Endrin ketone	ND	0.0500	0.100	ug/kg we								
Heptachlor	ND	0.0500	0.100	ug/kg we								
Heptachlor epoxide	ND	0.0500	0.100	ug/kg we								
Hexachlorobutadiene	ND	0.0500	0.100	ug/kg we								
Methoxychlor	ND	0.0500	0.100	ug/kg we								
Mirex	ND	0.0500	0.100	ug/kg we								
Oxychlordane	ND	0.0500	0.100	ug/kg we								
rans-Chlordane	ND	0.0500	0.100	ug/kg we								
trans-Nonachlor	ND	0.0500	0.100	ug/kg we								
Surr: gamma-BHC-d6 (Surr)			very: 95%	Limits: 50		Dilı	ution: 1x					
4,4'-DDT-d8 (Surr)		1.000	104 %		-150 %	5	"					
Blank (23C0074-BLK2)			Prepared	1: 03/02/23 ()9:12 Ana	lyzed: 03/07	/23 20:06					Q-
EPA 8270E OCPs												
Endrin Aldehyde	ND	0.100	0.100	ug/kg we	et 1							
-												

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neighberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project: St. Helens Lagoon Project Number: M0830.03.006 Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

			Organoch	nlorine Pe	sticides	by GC/MS	S/MS					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23C0074 - EPA 3546							Soi	il				
LCS (23C0074-BS1)			Prepared	1: 03/02/23 0	9:12 Anal	lyzed: 03/03	/23 15:34					Q-
EPA 8270E OCPs												
Aldrin	2.59	0.0500	0.100	ug/kg we	t 1	2.50		104	54-135%			
alpha-BHC	2.63	0.0500	0.100	ug/kg we		2.50		105	58-132%			
peta-BHC	2.68	0.0500	0.100	ug/kg we	t 1	2.50		107	63-140%			
gamma-BHC (Lindane)	2.57	0.0500	0.100	ug/kg we	t 1	2.50		103	62-132%			
delta-BHC	2.66	0.0500	0.100	ug/kg we	t 1	2.50		106	65-140%			
cis-Chlordane	2.71	0.0500	0.100	ug/kg we	t 1	2.50		108	57-151%			
cis-Nonachlor	2.67	0.0500	0.100	ug/kg we	t 1	2.50		107	68-151%			
2,4'-DDD	2.40	0.0500	0.100	ug/kg we	t 1	2.50		96	71-125%			
2,4'-DDE	2.42	0.0500	0.100	ug/kg we	t 1	2.50		97	61-131%			
2,4'-DDT	2.56	0.0500	0.100	ug/kg we	t 1	2.50		102	78-133%			
4,4'-DDD	2.40	0.0500	0.100	ug/kg we	t 1	2.50		96	71-126%			
4,4'-DDE	2.36	0.0500	0.100	ug/kg we	t 1	2.50		94	67-124%			
4,4'-DDT	2.52	0.0500	0.100	ug/kg we	t 1	2.50		101	75-130%			
Dieldrin	2.49	0.0300	0.0300	ug/kg we	t 1	2.50		99	70-135%			
Endosulfan I	2.77	0.0500	0.100	ug/kg we	t 1	2.50		111	62-148%			
Endosulfan II	2.26	0.0500	0.100	ug/kg we	t 1	2.50		90	57-141%			
Endosulfan sulfate	2.39	0.0500	0.100	ug/kg we	t 1	2.50		96	55-152%			
Endrin	2.69	0.0500	0.100	ug/kg we	t 1	2.50		107	73-138%			
Endrin ketone	2.47	0.0500	0.100	ug/kg we	t 1	2.50		99	62-146%			
Heptachlor	2.82	0.0500	0.100	ug/kg we	t 1	2.50		113	60-154%			
Heptachlor epoxide	2.68	0.0500	0.100	ug/kg we	t 1	2.50		107	65-140%			
Hexachlorobutadiene	1.62	0.0500	0.100	ug/kg we	t 1	2.50		65	20-120%			
Methoxychlor	2.59	0.0500	0.100	ug/kg we		2.50		104	73-135%			
Mirex	2.42	0.0500	0.100	ug/kg we		2.50		97	61-149%			
Oxychlordane	2.60	0.0500	0.100	ug/kg we	t 1	2.50		104	65-133%			
rans-Chlordane	2.81	0.0500	0.100	ug/kg we		2.50		112	62-145%			
trans-Nonachlor	2.73	0.0500	0.100	ug/kg we		2.50		109	59-153%			
Surr: gamma-BHC-d6 (Surr)		Reco	very: 95 %	Limits: 50-	150 %	Dili	ution: 1x					
Surr: gamma-BHC-d6 (Surr)		Reco	very: 95 %		150 %	Dili	ution: 1x					

LCS (23C0074-BS2)

4,4'-DDT-d8 (Surr)

Prepared: 03/02/23 09:12 Analyzed: 03/07/23 20:35

50-150 %

103 %

Q-16, Q-21

EPA 8270E OCPs

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Philip Manhera

ANALYTICAL REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

			Organoch	lorine Pe	sticides	by GC/MS	S/MS					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23C0074 - EPA 3546							Soi	il				
LCS (23C0074-BS2)			Prepared	: 03/02/23 0	9:12 Ana	yzed: 03/07	/23 20:35					Q-16, Q-2
Endrin Aldehyde	1.52	0.100	0.100	ug/kg we	t 1	2.50		61	10-146%			
LCS Dup (23C0074-BSD1)			Prepared	: 03/02/23 0	9:12 Anal	yzed: 03/03	/23 16:03					
EPA 8270E OCPs			1									
Aldrin	2.46	0.0500	0.100	ug/kg we	t 1	2.50		99	54-135%	5	30%	
alpha-BHC	2.54	0.0500	0.100	ug/kg we		2.50		102	58-132%	3	30%	
beta-BHC	2.56	0.0500	0.100	ug/kg we		2.50		102	63-140%	5	30%	
gamma-BHC (Lindane)	2.48	0.0500	0.100	ug/kg we	t 1	2.50		99	62-132%	4	30%	
delta-BHC	2.55	0.0500	0.100	ug/kg we	t 1	2.50		102	65-140%	4	30%	
cis-Chlordane	2.72	0.0500	0.100	ug/kg we	t 1	2.50		109	57-151%	0.2	30%	
eis-Nonachlor	2.54	0.0500	0.100	ug/kg we	t 1	2.50		102	68-151%	5	30%	
2,4'-DDD	2.48	0.0500	0.100	ug/kg we	t 1	2.50		99	71-125%	3	30%	
2,4'-DDE	2.43	0.0500	0.100	ug/kg we	t 1	2.50		97	61-131%	0.6	30%	
2,4'-DDT	2.62	0.0500	0.100	ug/kg we	t 1	2.50		105	78-133%	3	30%	
4,4'-DDD	2.46	0.0500	0.100	ug/kg we	t 1	2.50		98	71-126%	3	30%	
4,4'-DDE	2.39	0.0500	0.100	ug/kg we	t 1	2.50		96	67-124%	1	30%	
4,4'-DDT	2.60	0.0500	0.100	ug/kg we	t 1	2.50		104	75-130%	3	30%	
Dieldrin	2.41	0.0300	0.0300	ug/kg we	t 1	2.50		96	70-135%	3	30%	
Endosulfan I	2.69	0.0500	0.100	ug/kg we	t 1	2.50		108	62-148%	3	30%	
Endosulfan II	2.33	0.0500	0.100	ug/kg we	t 1	2.50		93	57-141%	3	30%	
Endosulfan sulfate	2.49	0.0500	0.100	ug/kg we	t 1	2.50		100	55-152%	4	30%	
Endrin	2.53	0.0500	0.100	ug/kg we	t 1	2.50		101	73-138%	6	30%	
Endrin ketone	2.58	0.0500	0.100	ug/kg we	t 1	2.50		103	62-146%	4	30%	
Heptachlor	2.69	0.0500	0.100	ug/kg we	t 1	2.50		108	60-154%	5	30%	
Heptachlor epoxide	2.56	0.0500	0.100	ug/kg we	t 1	2.50		102	65-140%	4	30%	
Hexachlorobutadiene	1.84	0.0500	0.100	ug/kg we	t 1	2.50		74	20-120%	13	30%	
Methoxychlor	2.73	0.0500	0.100	ug/kg we	t 1	2.50		109	73-135%	5	30%	
Mirex	2.49	0.0500	0.100	ug/kg we	t 1	2.50		100	61-149%	3	30%	
Oxychlordane	2.51	0.0500	0.100	ug/kg we	t 1	2.50		100	65-133%	4	30%	
trans-Chlordane	2.59	0.0500	0.100	ug/kg we	t 1	2.50		104	62-145%	8	30%	
trans-Nonachlor	2.58	0.0500	0.100	ug/kg we	t 1	2.50		103	59-153%	6	30%	
Surr: gamma-BHC-d6 (Surr)		Reco	very: 95 %	Limits: 50-	150 %	Dilı	ution: 1x					
4,4'-DDT-d8 (Surr)			105 %	50-	150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

255

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

			Organoch	lorine Pe	sticides	by GC/MS	S/MS					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23C0074 - EPA 3546							Soi					
LCS Dup (23C0074-BSD2)			Prepared	: 03/02/23 0	9:12 Anal	lyzed: 03/07	/23 21:03					Q-16
EPA 8270E OCPs Endrin Aldehyde	1.51	0.100	0.100	ug/kg we	et 1	2.50		60	10-146%	0.9	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: St. Helens Lagoon

 3140 NE Broadway Street
 Project Number:
 M0830.03.006
 Report ID:

 Portland, OR 97232
 Project Manager:
 David Weatherby
 A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by E	PA 6020	B (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0914 - EPA 3051A							Sec	diment				
Blank (23B0914-BLK1)			Prepared	: 02/27/23 00	6:58 Anal	yzed: 02/27/	/23 18:16					
EPA 6020B												
Antimony	ND	0.250	0.500	mg/kg we	t 5							
Arsenic	ND	0.250	0.500	mg/kg we	t 5							
Barium	ND	0.250	0.500	mg/kg we	t 5							
Beryllium	ND	0.0500	0.100	mg/kg we	t 5							
Cadmium	ND	0.0500	0.100	mg/kg we	t 5							
Chromium	ND	0.250	0.500	mg/kg we	t 5							
Copper	ND	0.500	1.00	mg/kg we	t 5							
Lead	ND	0.0500	0.100	mg/kg we	t 5							
Manganese	ND	0.250	0.500	mg/kg we	t 5							
Mercury	ND	0.0200	0.0400	mg/kg we	t 5							
Vickel	ND	0.500	1.00	mg/kg we	t 5							
elenium	ND	0.250	0.500	mg/kg we								
Silver	ND	0.0500	0.100	mg/kg we	t 5							
Thallium	ND	0.250	0.500	mg/kg we								
Zinc	ND	1.00	2.00	mg/kg we	t 5							
CG (22D0014 BG1)							/aa 40 aa					
LCS (23B0914-BS1)			Prepared	: 02/27/23 00	5:58 Anai	yzed: 02/27/	/23 18:27					
EPA 6020B	12.2	0.250	0.500	/1		10.5		07	00 1200/			
Antimony	12.2	0.250	0.500	mg/kg we		12.5		97	80-120%			
Arsenic	23.2	0.250	0.500	mg/kg we		25.0		93	80-120%			
Barium	24.4	0.250	0.500	mg/kg we		25.0		97	80-120%			
Beryllium	12.0	0.0500	0.100	mg/kg we		12.5		96	80-120%			
Cadmium	23.2	0.0500	0.100	mg/kg we		25.0		93	80-120%			
Chromium	22.1	0.250	0.500	mg/kg we		25.0		89	80-120%			
Copper	22.4	0.500	1.00	mg/kg we		25.0		90	80-120%			
ead	24.5	0.0500	0.100	mg/kg we		25.0		98	80-120%			
Manganese	23.1	0.250	0.500	mg/kg we		25.0		92	80-120%			
Mercury	0.455	0.0200	0.0400	mg/kg we		0.500		91	80-120%			
Nickel	23.1	0.500	1.00	mg/kg we		25.0		92	80-120%			
Selenium	11.5	0.250	0.500	mg/kg we	t 5	12.5		92	80-120%			
Silver	12.1	0.0500	0.100	mg/kg we	t 5	12.5		97	80-120%			
Thallium	11.9	0.250	0.500	mg/kg we	t 5	12.5		95	80-120%			
Zinc	23.6	1.00	2.00	mg/kg we	t 5	25.0		95	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by	EPA 602	OB (ICPMS	3)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0914 - EPA 3051A							Sed	diment				
Duplicate (23B0914-DUP1)			Prepared	: 02/27/23 0	6:58 Ana	lyzed: 02/27	/23 18:48					
QC Source Sample: MFA-B1-B5-C	COMP-SL-F	PRO (A3A1010	<u>)-07)</u>									
EPA 6020B												
Antimony	0.902	0.277	0.555	mg/kg dr	y 5		0.944			5	20%	COMP, PR
Arsenic	3.49	0.277	0.555	mg/kg dr	y 5		3.48			0.2	20%	COMP, PR
Barium	169	0.277	0.555	mg/kg dr	y 5		174			3	20%	COMP, PRO
Beryllium	0.336	0.0555	0.111	mg/kg dr	y 5		0.316			6	20%	COMP, PRO
Cadmium	3.04	0.0555	0.111	mg/kg dr	y 5		3.24			6	20%	COMP, PRO
Chromium	183	0.277	0.555	mg/kg dr	y 5		191			5	20%	COMP, PRO
Copper	128	0.555	1.11	mg/kg dr	y 5		142			10	20%	COMP, PRO
Lead	39.5	0.0555	0.111	mg/kg dr	y 5		40.2			2	20%	COMP, PRO
Manganese	699	0.277	0.555	mg/kg dr	y 5		763			9	20%	COMP, PRO
Mercury	0.833	0.0222	0.0444	mg/kg dr	•		0.881			6	20%	COMP, PRO
Nickel	44.6	0.555	1.11	mg/kg dr	•		46.8			5	20%	COMP, PRO
Selenium	0.767	0.277	0.555	mg/kg dr	•		0.813			6	20%	COMP, PRO
Silver	2.49	0.0555	0.111	mg/kg dr			2.50			0.3	20%	COMP, PRO
Γhallium	ND	0.277	0.555	mg/kg dr	-		ND				20%	COMP, PRO
Zinc	482	1.11	2.22	mg/kg dr	-		531			10	20%	COMP, PRO
Matrix Spike (23B0914-MS1)			Prepared	: 02/27/23 0	6:58 Ana	lyzed: 02/27	/23 18:53					
QC Source Sample: MFA-B1-B5-C	COMP-SL-F	PRO (A3A1010) <u>-07)</u>									
EPA 6020B												
Antimony	10.4	0.268	0.536	mg/kg dr	y 5	13.4	0.944	71	75-125%			COMP PRO,Q-0
Arsenic	27.6	0.268	0.536	mg/kg dr	y 5	26.8	3.48	90	75-125%			COMP, PRO
Barium	199	0.268	0.536	mg/kg dr	y 5	26.8	174	91	75-125%			COMP, PRO
Beryllium	13.4	0.0536	0.107	mg/kg dr	y 5	13.4	0.316	97	75-125%			COMP, PRO
Cadmium	29.0	0.0536	0.107	mg/kg dr	y 5	26.8	3.24	96	75-125%			COMP, PRO
Chromium	203	0.268	0.536	mg/kg dr	y 5	26.8	191	44	75-125%			COMP PRO,Q-6
Copper	158	0.536	1.07	mg/kg dr	y 5	26.8	142	59	75-125%			COMP PRO,Q-6
Lead	66.3	0.0536	0.107	mg/kg dr	y 5	26.8	40.2	97	75-125%			COMP, PRO
Manganese	739	0.268	0.536	mg/kg dr	y 5	26.8	763	-91	75-125%			COMP PRO,Q-6
		0.0015	0.0420		_	0.506	0.001	0.0	EE 1050/			COLED DD

Apex Laboratories

Mercury

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

75-125%

99

0.881

Philip Nevenberg

0.0215

0.0429

mg/kg dry

0.536

1.41

COMP, PRO

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by l	EPA 6020	OB (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0914 - EPA 3051A			·				Se	diment				
Matrix Spike (23B0914-MS1)			Prepared	: 02/27/23 0	6:58 Ana	lyzed: 02/27	//23 18:53					
QC Source Sample: MFA-B1-B5-C	OMP-SL-I	PRO (A3A1010	<u>0-07)</u>				·				·	
Nickel	68.9	0.536	1.07	mg/kg dr	y 5	26.8	46.8	82	75-125%			COMP, PRO
Selenium	14.1	0.268	0.536	mg/kg dr	y 5	13.4	0.813	99	75-125%			COMP, PRO
Silver	15.3	0.0536	0.107	mg/kg dr	y 5	13.4	2.50	95	75-125%			COMP, PRO
Thallium	13.0	0.268	0.536	mg/kg dr	y 5	13.4	ND	97	75-125%			COMP, PRO
Zinc	529	1.07	2.15	mg/kg dr	y 5	26.8	531	-6	75-125%			COMP, PRO,Q-65

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

		Total Hexa	valent Chr	omium b	y Colorim	etric Spe	ctropho	tometry				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0959 - EPA 3060A							Sol	id				
Blank (23B0959-BLK1)			Prepared	: 02/27/23	14:57 Anal	yzed: 02/28	/23 12:44					
EPA 7196A Chromium (VI)	ND	0.225	0.450	mg/kg	1							
LCS (23B0959-BS1)			Prepared	: 02/27/23	14:57 Anal	yzed: 02/28	/23 12:44					
EPA 7196A Chromium (VI)	17.0	0.225	0.450	mg/kg	1	20.0		85	80-120%			
LCS Dup (23B0959-BSD1)			Prepared	: 02/27/23	14:57 Anal	yzed: 02/28	/23 12:45					
EPA 7196A Chromium (VI)	19.4	0.225	0.450	mg/kg	1	20.0		97	80-120%	13	20%	
Matrix Spike (23B0959-MS1)			Prepared	: 02/27/23	14:57 Anal	yzed: 02/28	/23 12:46					
EPA 7196A Chromium (VI)	ND	10.0	20.0	mg/kg	50	19.7			75-125%			Cr6-01, Q-57, R-04
Post Spike (23B0959-PS1)			Prepared	: 02/27/23	14:57 Anal	yzed: 02/28	/23 12:50					
EPA 7196A Chromium (VI)	ND			ug/L	50	19900			85-115%			Cr6-01, Q-57, R-04

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

260

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Weig	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0043 - Total Solids (Dr	ry Weigl	ht)					Soil					
Duplicate (23B0043-DUP1)			Prepared	: 02/01/23	13:29 Anal	lyzed: 02/02/	/23 05:57					PRO
QC Source Sample: Non-SDG (A3A0 % Solids	97.2	1.00	1.00	%	1		97.2			0.01	10%	
Duplicate (23B0043-DUP2)			Prepared	: 02/01/23	13:29 Anal	lyzed: 02/02/	/23 05:57					PRO
QC Source Sample: Non-SDG (A3A0	<u> 1911-04)</u>											
% Solids	97.5	1.00	1.00	%	1		97.4			0.08	10%	
Duplicate (23B0043-DUP3)			Prepared	: 02/01/23	18:38 Anal	lyzed: 02/02/	/23 05:57					
QC Source Sample: Non-SDG (A3B0	0033-01)											
% Solids	76.1	1.00	1.00	%	1		75.9			0.3	10%	
Duplicate (23B0043-DUP4)			Prepared	: 02/01/23	18:38 Anal	lyzed: 02/02/	/23 05:57					
QC Source Sample: Non-SDG (A3B0	0033-02)											
% Solids	77.3	1.00	1.00	%	1		77.6			0.4	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0116 - Total Solids (E	ry Weigl	ht)					Soil					
Duplicate (23B0116-DUP1)			Prepared	: 02/02/23	19:28 Ana	yzed: 02/03	/23 04:15					
QC Source Sample: Non-SDG (A3E) % Solids	64.5	1.00	1.00	%	1		60.6			6	10%	
Duplicate (23B0116-DUP2)			Prepared	: 02/02/23	19:28 Ana	yzed: 02/03	/23 04:15					
QC Source Sample: Non-SDG (A3E	<u>80049-02)</u>											
% Solids	56.0	1.00	1.00	%	1		55.9			0.1	10%	
Duplicate (23B0116-DUP3)			Prepared	: 02/02/23	19:28 Ana	yzed: 02/03	/23 04:15					
QC Source Sample: Non-SDG (A3E	<u>80049-03)</u>											
% Solids	64.5	1.00	1.00	%	1		65.1			0.8	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Weig	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0202 - Total Solids (Dry Weig	ht)					Soi	I				
Duplicate (23B0202-DUP1)			Prepared	: 02/06/23	13:38 Anal	yzed: 02/07	/23 06:25					PRO
QC Source Sample: Non-SDG (A3	3A0960-02)											
% Solids	97.3	1.00	1.00	%	1		97.4			0.1	10%	
Duplicate (23B0202-DUP2)			Prepared	: 02/06/23	13:38 Anal	yzed: 02/07	/23 06:25					PRO
QC Source Sample: Non-SDG (A3	3A0960-04)											
% Solids	97.1	1.00	1.00	%	1		97.1			0.04	10%	
Duplicate (23B0202-DUP3)			Prepared	: 02/06/23	13:38 Anal	yzed: 02/07	/23 06:25					PRO
QC Source Sample: Non-SDG (A3	3A0960-06)											
% Solids	96.9	1.00	1.00	%	1		97.0			0.09	10%	
Duplicate (23B0202-DUP4)			Prepared	: 02/06/23	13:38 Anal	yzed: 02/07	/23 06:25					PRO
QC Source Sample: Non-SDG (A3	A0960-08)											
% Solids	96.9	1.00	1.00	%	1		96.9			0.03	10%	
Duplicate (23B0202-DUP5)			Prepared	: 02/06/23	13:38 Anal	yzed: 02/07	/23 06:25					
QC Source Sample: Non-SDG (A3	B0140-01)											
% Solids	75.1	1.00	1.00	%	1		73.2			3	10%	
Duplicate (23B0202-DUP6)			Prepared	: 02/06/23	13:38 Anal	yzed: 02/07	/23 06:25					
QC Source Sample: Non-SDG (A3	B0140-02)											
% Solids	90.2	1.00	1.00	%	1		90.2			0.02	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Weig	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0961 - Total Solids (D	ry Weig	ht)					Soil					
Duplicate (23B0961-DUP1)			Prepared	: 02/27/23	15:30 Anal	yzed: 02/28	/23 06:46					
QC Source Sample: Non-SDG (A3B	0820-01)											
% Solids	76.8	1.00	1.00	%	1		76.1			0.9	10%	
Duplicate (23B0961-DUP2)			Prepared	: 02/27/23	15:30 Anal	yzed: 02/28	/23 06:46					
QC Source Sample: Non-SDG (A3B	0820-02)											
% Solids	77.7	1.00	1.00	%	1		78.5			1	10%	
Duplicate (23B0961-DUP3)			Prepared	: 02/27/23	19:00 Anal	yzed: 02/28	/23 06:46					
QC Source Sample: Non-SDG (A3B	0849-03)											
% Solids	91.6	1.00	1.00	%	1		91.6			0.06	10%	
Duplicate (23B0961-DUP4)			Prepared	: 02/27/23	19:00 Anal	yzed: 02/28	/23 06:46					
QC Source Sample: Non-SDG (A3B	0849-04)											
% Solids	91.5	1.00	1.00	%	1		92.0			0.5	10%	
Duplicate (23B0961-DUP5)			Prepared	: 02/27/23	19:00 Anal	yzed: 02/28	/23 06:46					
QC Source Sample: Non-SDG (A3B	0849-05)									_		
% Solids	91.9	1.00	1.00	%	1		92.2			0.3	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

SAMPLE PREPARATION INFORMATION

		Diesel and	l/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3546 (Fue	els)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0765							
A3A1010-07	Sediment	NWTPH-Dx	01/30/23 16:00	02/21/23 07:18	10.11g/5mL	10g/5mL	0.99
	Gas	oline Range Hydrocark	oons (Benzene thro	ugh Naphthalene) b	/ NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0290			1	1			
A3A1010-06	Sediment	NWTPH-Gx (MS)	01/30/23 16:00	01/30/23 16:00	20.2g/25mL	5g/5mL	1.24
		Volatile (Organic Compounds	by EPA 8260D			
Prep: EPA 5035A			- '	-	Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0290	Matrix	Wethod	Sampled	Терагеи			
A3A1010-06	Sediment	5035A/8260D	01/30/23 16:00	01/30/23 16:00	20.2g/25mL	5g/5mL	1.24
		Volatile Org	ganic Compounds b	y EPA 8260D SIM			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0452	Width	Withou	Sumpled	Теригеа			
A3A1010-06	Sediment	5035A/8260D SIM	01/30/23 16:00	01/30/23 16:00	20.2g/25mL	5g/5mL	1.24
		Semivolatil	e Organic Compour	nds by EPA 8270E			
Prep: EPA 3546				-	Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0782	iviauix	Wichiou	Sampicu	Терагеи	<u> </u>		
A3A1010-07	Sediment	EPA 8270E	01/30/23 16:00	02/21/23 10:05	10.56g/5mL	15g/2mL	3.55
		Organophosphoru	s Pesticides (OPPs) by EPA 8270E (GC	:/MS)		
Prep: EPA 3546				, ,	Sample	Default	RL Prep
		N. 4 . 4			Sample Initial/Final	Initial/Final	Factor
Lab Number	Matrix	Method	Sampled	Prepared	minal/Final	minai/r mai	racior
Batch: 23B0783 A3A1010-07	Sediment	EPA 8270E OPPs	01/30/23 16:00	02/21/23 10:10	10.38g/5mL	10g/5mL	0.96

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project: St. Helens Lagoon Project Number: M0830.03.006 Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

SAMPLE PREPARATION INFORMATION

		Organophosphoru	31 031101003 (01 1 3)	by LI A 0270L (O	-,,		
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
		Organo	chlorine Pesticides	oy GC/MS/MS			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number Batch: 23C0074	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A3A1010-07	Sediment	EPA 8270E OCPs	01/30/23 16:00	03/02/23 09:12	10.57g/25mL	10g/1mL	23.70
A3A1010-07RE1	Sediment	EPA 8270E OCPs	01/30/23 16:00	03/02/23 09:12	10.57g/25mL	10g/1mL	23.70
		Total	Metals by EPA 6020	OB (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0914 A3A1010-07	Sediment	EPA 6020B	01/30/23 16:00	02/27/23 06:58	0.493g/50mL	0.5g/50mL	1.01
		Total Hexavalent C	Chromium by Colorir	netric Spectrophoto	metry		
Prep: EPA 3060A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0959 A3A1010-07	Sediment	EPA 7196A	01/30/23 16:00	02/27/23 14:57	2.5194g/100mL	2.5g/111mL	0.89
			Percent Dry Wei	ght			
Prep: Total Solids (Dr	y Weight)				Sample	Default	RL Prep
					T '4' 1/E' 1	T 1/1 1/00: 1	Factor
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	1 444101
Lab Number <u>Batch: 23B0043</u> A3A1010-01	Matrix Sediment	Method EPA 8000D	Sampled 01/30/23 16:00	Prepared 02/01/23 13:29	Initial/Final	Initial/Final	NA
Batch: 23B0043 A3A1010-01 Batch: 23B0116	Sediment	EPA 8000D	01/30/23 16:00	02/01/23 13:29	Initial/Final	Initial/Final	NA
Batch: 23B0043 A3A1010-01 Batch: 23B0116 A3A1010-02	Sediment Sediment	EPA 8000D	01/30/23 16:00	02/01/23 13:29	Initial/Final	Initial/Final	NA NA
Batch: 23B0043 A3A1010-01 Batch: 23B0116 A3A1010-02 A3A1010-03	Sediment	EPA 8000D	01/30/23 16:00	02/01/23 13:29	Initial/Final	Initial/Final	NA
Batch: 23B0043 A3A1010-01 Batch: 23B0116 A3A1010-02 A3A1010-03 Batch: 23B0202	Sediment Sediment Sediment	EPA 8000D EPA 8000D EPA 8000D	01/30/23 16:00 01/31/23 10:50 01/31/23 09:00	02/01/23 13:29 02/02/23 19:28 02/02/23 19:28	Initial/Final	Initial/Final	NA NA NA
Batch: 23B0043 A3A1010-01 Batch: 23B0116 A3A1010-02 A3A1010-03	Sediment Sediment	EPA 8000D	01/30/23 16:00	02/01/23 13:29	Initial/Final	Initial/Final	NA NA

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

SAMPLE PREPARATION INFORMATION

			Percent Dry We	ight			
Prep: Total Solids (Dry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0961							
A3A1010-07	Sediment	EPA 8000D	01/30/23 16:00	02/27/23 19:00			NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

Apex Laboratorie

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: St. Helens Lagoon 3140 NE Broadway Street Project Number: M0830.03.006 Portland, OR 97232 Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Ape

ex Laborat	tories_
A-01	The Average of Dry Weight Results from the discrete samples was used for DW for Composite sample for Volatiles.
COMP	Analyzed sample is a composite of discrete samples that was performed in the laboratory.
Cr6-01	Matrix Spike fails due to probable reducing conditions present in the sample. Sample is ND. Data quality is not affected because any hexavalent chromium present in the sample is likely to have been reduced to chromium three.
F-03	The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.
F-11	The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.
H-02	This sample was extracted outside of the recommended holding time.
J	Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
PRO	Sample has undergone sample processing prior to extraction and analysis.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-11	Spike recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
Q-16	Reanalysis of an original Batch QC sample.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
Q-21	Matrix Spike results for this extraction batch are not reported due to the interfering organic compounds in the source sample. Batch is accepted based on results of the Blank Spikes.
Q-29	Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
Q-31	Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low.
Q-41	Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
Q-42	Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
Q-52	Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +1%. The

Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +15%. The

Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +3%. The

Apex Laboratories

Q-54a

Q-54b

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

268

Philip Nevenberg

results are reported as Estimated Values.

results are reported as Estimated Values.

results are reported as Estimated Values.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006Report ID:Portland, OR 97232Project Manager:David WeatherbyA3A1010 - 04 19 23 1708

Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +5%. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +6%. The results are reported as Estimated Values.
Q-54e	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +75%. The results are reported as Estimated Values.
Q-54f	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +89%. The results are reported as Estimated Values.
Q-54g	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -3%. The results are reported as Estimated Values.
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260
Q-57	Compensation for background color and/or turbidity has been made by subtracting the absorbance of a second aliquot of sample to which all reagents except the color producing reagent have been added, in accordance with the method.
Q-65	Spike recovery is estimated due to the high analyte concentration of the source sample.
R-02	The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
R-04	Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.
S-01	Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference.
S-05	Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
V-15	Sample aliquot was subsampled from the sample container. The subsampled aliquot was preserved in the laboratory within 48 hours of sampling.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006Portland, OR 97232Project Manager:David Weatherby

Report ID: A3A1010 - 04 19 23 1708

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006Portland, OR 97232Project Manager:David Weatherby

Report ID: A3A1010 - 04 19 23 1708

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

271

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006Portland, OR 97232Project Manager:David Weatherby

Report ID: A3A1010 - 04 19 23 1708

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ANALYTICAL REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006

3140 NE Broadway Street Project Number: M0830.03.006 Report ID:

Portland, OR 97232 Project Manager: David Weatherby A3A1010 - 04 19 23 1708

12232 S.W. Garden Place, Tigard, OR 97223 Ph: 503-718-2323 Fax: 503-718-0333	OR 97223 Ph. 51	13-718-2323	Fax: 503-	718-0333									İ	Star.	25/18/1/23			7 7
Company: Maul Foster Alongi Address: 3140 NE Broadway St. Portland. OR 97232	nd. OR 97232	Project Mgr. David Weatherby	David Wear	therby Phone: (9'	herby Phone: (971) 544-2139		Proje	Project Name: St. Helens Lagoon Francial: dassetherber@monifecter.com reheavings@monifecter.com	St. Hele,	ns Lagoc	m ter	hana	l leg	Proje	ect # M(Project # M0830.03.006	901	
Sampled by: Couls Sampler signature:							1	Tigur. Own	ANA	ANALYSIS REQUEST	EQUES	IIIOGIIT	1801(6)111	ilinosier.	III O			
Site Location: OR WA Other.	DVIE	TIME	# OF CONTAINERS	Frozen Storage*	**************************************	101 Mes- 17 VOCS 8260D-SIM 8260D VOCS	SIDIO	Ct-VI >196A/218.6	2NOCS 8270E	Mod\s33.1 For Start Start St	0977 <u>9</u> 0700 83 <u>7</u> 0 <u>F</u> 71690 17 0C Pest	SUDJUJ/SUKO	PFAS EPA-537	1777				
P17-2102013-21.9	27/95/10	7 009!	多 工 2	×	×	×	メ	×	×	×	×	بح	×					
Normal Turn Around Time (TAT) = 5-10 Business Days) = 5-10 Business Da		SPECIAL INSTRUCTIONS:	RUCTIONS														
TAT Requested: STANDARD SAMPLES ARE HELD FOR 30 DA Received vice	30 DA Received vie-		**Please store a portion Pest, and Chi Herb. Store portion of each is VOCs, Metals, Hg. Ch. Store sediment PFAS. **Composite sediment ***Sb, As, Ba, Be, Cill Desention limit smooth	Herb. Herb. , Hg. Cr-VI, st. Hg. Cr-VI, at PFAS cont sediment sar	**Please store aprofin of each sediment sample at -18 °C until all 5 components have been received, then composite and analyze for NWTPH-Dx, SVOC, OP Pest, ILL-OC Pest, and Cbl Herb. Store portion of each sediment sample at standard temperature (16 °C), until all 5 components have been received, then composite and analyze for NWTPH-Gx, VOCs, LL-Store sodiment PFAS containers at 0-6 °C until all 5 components have been received, then subcontract to Bureau Veritas for compositing and analysis ***Composite sediment samples after all 5 components have been received, except for PFAS, which will be composited by Bureau Veritas. ****Store Sediment Samples after all 5 components have been received, except for PFAS, which will be composited by Bureau Veritas. ****Pomposite administration of the Sed Ag TI, Zn ****Pomposite administration of the Sed Ag TI, Zn *****Pomposite administration of the Sed Ag TI, Zn	sample at -1 i standard ter ns, and PCB C until all 5 c	8 °C until a' mperature ((Congeners. components s have beer.	II 5 compor 0-6 °C), uni have been received, i	til all 5 cor received, except for	been rece npenents I then subor PFAS, wit	ived, then nave been ontract to I	composit received, Bureau V e compos	e and anal then comp rritas for c	yze for NW oosite and a ompositing	VTPH-Dx analyze fo g and anal	, SVOC, C r NWTPH ysis.	P Pest, LI -Gx, VOC	oc
Signature Signature Signature	Date: 01/23		2	Date:	Date:		RELINQUISHED Signature:			ੂ ਹੋ	Date: Signature Ol. 31, 2013	523	RECEIVED B	ED		Date	Date 1/31/23	ii
inged Name.	Time: O& 4 S	Printed Name's ERIC ERICKSON Company: MFA	COLOR	Time	5 <i>h80</i>		Printed Name.) EQUIC EPLICACY Company: INFA	Z TE	8	100	Time:		Printed K	Frinted Marke. E.N. Johne Company: ANEX LABS	T of	Time	8001	9

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ANALYTICAL REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

*Please store a portion of each sediment sample at -18 °C until all 5 components have been received, then composite and analyze for NWTPH-Dx, SVOC, OP Peet, LL-OC Peet, and Chi Hen.

Store portion of each sediment sample at standard temperature (0.6 °C), until all 5 compenents have been received, then composite and analyze for NWTPH-Gx, VOCs, LL-VOC, Swards Fig. Cx-VI, Downs/Funas, and PSTS Congeners.

Store sediment PPAS containers at 0.6 °C until all 5 components have been received, then subconfract to Bureau Vertias for compositing and analysis. Project # M0830,03,006 Email: dweatherby@maulfoster.com, mbenzinger@maulfoster.com * Accived 2/1/23 **Composite sediment samples after all 5 components have been received, except for PFAS, which will be composited by Bureau Verias. 85181 1613B 1000 BO ANALYSIS REOUEST ENCLOSED TEMP. X × × Chlorinated Herb Project Name: St. Helens Lagoon OP Pest 8270E 2NOCS 8270E XO-HOTWN CHAIN OF CUSTODY CI-VI 7196A/218.6 EASE 1158 Tot Metals 60208*** ***Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Hg, Mn, Ni, Se, Ag, Tl, Zn TT NOCE 8500D-SIM 8260D VOCS Phone: (971) 544-2139 XD-HAIMN Composite** *96D101S N9SO72 12232 S.W. Garden Place, Tigard, OR 97223 Ph.: 503-718-2323 Fax: 503-718-0333 SPECIAL INSTRUCTIONS roject Mgr. David Weatherby # OF CONTAINERS 7 7 MATRIX 35 LIME 01/31/23 ≅ FVB ID# Normal Turn Around Time (TAT) 55 OUC-101 05005 10220131 TAT Requested: STANDARD SAMPLE ID MFA-RZ Site Location: Other

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ANALYTICAL REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006

Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

APEX LABS	CHAIN OF CUSTODY	STODY COC Lot MAD
12232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fax: 503-718-0333	3-718-2323 Fαx: 503-718-0333	
Company: Maul Foster Alongi	Project Mgr. David Weatherby	Project Name: St. Helens Lagoon Project # M0830.03.006
Address: 3140 NE Broadway St, Portland, OR 97232	Phone: (971) 544-2139	Email: dweatherby@maulfoster.com, mbenzinger@maulfoster.com
Sampler by: Cell Elmer Paris Sampler signature:		ANALYSIS REQUEST
Site Location: OR WA Other: SAMPLE ID A PERIOD IN THE	TO WOLS #260D-SIM 10 FCONTOCING # OF CONTAINERS MATRIX TIME	MATPH-DX SUC-VI 7195/12/8/2 MATPH-DX MATPH-
WFA-BU-20730202-9-765 02/0423	X X X X X h spin ous	× × × × × × × × × × × × × × × × × × ×
Normal Turn Around Time (TAT) = 5-10 Business Days TAT Requested:	8	FECIAL INSTRUCTIONS: *Store a portion of each sediment sample at standard temperature (0-6 °C) until all 5 compensents have been received, then composite and analyze for Metals and Hg. Composite MeOH-preserved VOAs and analyze for NWTPH-Gx, VOCs, and LL-VOCs.
CTANDADD	Store 250 mL PFAS sediment containers at 0-0 °C unt	Store 250 mL PPAS sediment containers at 0-6 °C uniti all 5 components have been received, then subcontract to Bureau Vertus for compositing and analysis.
(SIANDAKD)	Store remainder of each sediment sample at -18 °C until all 5 or ***Sb, As, Be, Bc, Cd, Ct, Cb, Pb, Hg, Mn, Ni, Sc, Ag, Tl, Zn	Store remainder of each sediment sample at -18 °C until all 5 components have been received, then composite and analyze for all remaining tests. ***Sb, As, Bs, Be, Cd, Cr, Cu, Pb, Hg, Mn, Ni, Se, Ag, Tl, Zn
SAMPLES ARE HELD FOR 30 DA Received via:	tection limit report.	nperature blank to send to Bureau Morite
Signature. Signature. Signature. Signature. Trans. Trans.	RECEIVED PK: Date: Signature	Significant Superior Date: Date: Superior Date: Date: Superior Date: Date: Superior Date: Dat
Company Company Of 15	Elickson 0915	FOLKELICKSOL 1 D STAWN TRANGED 1170. Company. MFD Company.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ANALYTICAL REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006

Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

APEX LABS		CHAIN OF CUSTODY		1 Jo 7 200
12232 S.W. Garden Place, Tigard, OR 97223 Phr. 503-718-2323 Fax: 503-718-0333	7223 Ph: 503-718-2323 Fax: 503-	718-0333	Lab # A3A151()	<u></u>
Company: Maul Foster Alongi	Project Mgr. David Weatherby	therby	Project Name: St. Helens Lagoon	Project # M0830.03.006
Address: 3140 NE Broadway St, Portland, OR 97232	97232	Phone: (971) 544-2139	Email: dweatherby@maulfoster.com, mbenzinger@maulfoster.com	maulfoster.com
Sampled by: Cally Schuscher Sampler signature:			ANALYSIS REQUEST	
Site Location: OR WA Other. ##	DATE TIME WATRIX # OF CONTAINERS	Frozen Storage*	PRASENATION POSTING ENASTRACE POSTING SPORTS POSTIN	7ZES/POW 2ES-V28 EW-232 1808 (1988)
MA-95-0023023-54-77.0	H SUN OUSI Edgo/20	× × × ×	XXXXXX	
Normal Turn Atound Time (TAT) = 5-10 Business Days TAT Requested: SAMPLES ARE HELD FOR 30 DA Received via: SUBJURY: Date: Date: Oct	S S S S S S S S S S S S S S S S S S S	PECIAL INSTRUCTIONS: *Store a portion of each sediment sample at standard temperature Composite MeOH-preserved VOAs and analyze for NWTPH-G. Store 250 mL PFAS sediment containers at 0-6 °C until all 5 co Store termainder of each sediment containers at 0-6 °C until all 5 co ****5, As, Ba, Be, Cd, Ct, Cu, Pb, Hg, Mn, Ni, Sc, Ag, Tl, Zn Detection limit report. ****** ********* ****** ****** ****	v. (0.6 °C) until all 5 comparients have been receive v. (VOCs, and LL-VOCs, and ILL-VOCs, a	id, then composite and analyze for Metals and Hg. ureau Verius for compositing and analysis. as RECEIVED BY: Signature: Trightype: Time 2.05
Company Structure 08	0847 ALICANICASA Company	1,100	Collessa 1205 A	Wy Mixporia

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

	ER RECEIPT FORM
Client: Man Foster Alongi	Element WO#: A3A1010
Project/Project #: 5t. Heleus Lagary	M0830.03.006
Delivery Info: Date/time received: \(\frac{1}{3} \) \(\frac{1}{2} \) \(\text{@} \text{1008} \) By: Delivered by: \(\text{Apex} \subseteq \text{Client} \) ESS \(\text{FedEx} \) \(\text{UPS} \) Fo Cooler Inspection \(\text{Date/time inspected:} \) \(\text{1/31/23} \) Chain of Custody included? \(\text{Yes} \) \(\text{No} \) Signed/dated by client? \(\text{Yes} \) \(\text{No} \)	EST Radio Morgan SDS Evergreen Other (a) 1113 By: EST Other #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
· — — — — — — — — — — — — — — — — — — —	And the second s
Bottle labels/COCs agree? Yes X No Comments	S:
Bottle labels/COCs agree? Yes X No Comments COC/container discrepancies form initiated? Yes No	No
COC/container discrepancies form initiated? Yes N Containers/volumes received appropriate for analysis? Y Do VOA vials have visible headspace? Yes No Comments Water samples: pH checked: Yes No NA pH appropriate for analysis? Y	No
COC/container discrepancies form initiated? Yes N Containers/volumes received appropriate for analysis? Y Co VOA vials have visible headspace? Yes No Comments_ Water samples: pH checked: Yes No NAX pH ap	No

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Item #2.

ANALYTICAL REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project: St. Helens Lagoon Project Number: M0830.03.006 Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

	APEX LABS COOLER RECEIPT FORM
Client: MAUL 1	FUSTER ALONG) Element WO#: A3A 1010
	HELENS LAGDON # MO 830.03.006
Delivery Info:	*Additional volume*
Delivered by: Anex VCI	1/23 @ 1200 By: SAT
Cooler Inspection D	ient_ESSFedExUPSRadioMorganSDSEvergreenOther
Chain of Custody include	Pate/time inspected: 2/1/23 @ / 655 By: SAT
Signed/dated by client?	Yes No
and by onone:	
Temperature (°C)	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Custody seals? (Y/N)	N
Received on ice? (Y/N)	<u> </u>
Temp. blanks? (Y/N)	7
Ice type: (Gel/Real/Other)	Real
Condition (In/Out):	10
Sample Inspection: Dat	es form initiated? Yes/No e/time inspected: 2/1/23 @ 17:24 By: AM
Sample Inspection: Dat	e/time inspected: 1/./2 3 @ r4: 24 By: AW)
Sample Inspection: Dat All samples intact? Yes	e/time inspected: 21/23 @ 14:24 By:
All samples intact? Yes > Bottle labels/COCs agree?	e/time inspected: 2/1/23 @ 17:24 By: (XAV) L No Comments: Yes \(\sum_{\text{No}} \) No Comments:
All samples intact? Yes > Bottle labels/COCs agree? COC/container discrepanci	e/time inspected: 2//23 @ r4: 24 By: EXAM No Comments: Yes Y No Comments: es form initiated? Yes No Y
All samples intact? Yes > Bottle labels/COCs agree? COC/container discrepanci	e/time inspected: 2//2
Sample Inspection: Dat All samples intact? Yes Bottle labels/COCs agree? COC/container discrepanci Containers/volumes receive	e/time inspected: 2//2 3 @ 14: 24 By: EAN) L No _ Comments: Yes \subseteq No _ Comments: es form initiated? Yes _ No \subseteq No _ Comments: ad appropriate for analysis? Yes \subseteq No _ Comments:
Sample Inspection: Dat All samples intact? Yes Bottle labels/COCs agree? COC/container discrepanci Containers/volumes receive Do VOA vials have visible Comments	e/time inspected: 21/23 @ 17:24 By: AW No Comments: Yes \(\subseteq \) No Comments: es form initiated? Yes No \(\subseteq \) No Comments: ed appropriate for analysis? Yes \(\subseteq \) No Comments: headspace? Yes No NA \(\subseteq \)
Bottle labels/COCs agree? COC/container discrepancic Containers/volumes received Do VOA vials have visible Comments	e/time inspected: 2//2 @ r4: 24 By: EAN) L No _ Comments: Yes \subseteq No _ Comments: es form initiated? Yes _ No \subseteq No _ Comments: ad appropriate for analysis? Yes \subseteq No _ Comments:
Sample Inspection: Data All samples intact? Yes Shortle labels/COCs agree? COC/container discrepancic Containers/volumes received Do VOA vials have visible Comments	e/time inspected: 21/23 @ 17:24 By: AW No Comments: Yes \(\subseteq \) No Comments: es form initiated? Yes No \(\subseteq \) No Comments: ed appropriate for analysis? Yes \(\subseteq \) No Comments: headspace? Yes No NA \(\subseteq \)
Bottle labels/COCs agree? COC/container discrepanci Containers/volumes receive Do VOA vials have visible Comments Water samples: pH checked	e/time inspected: 21/23 @ 17:24 By: AW No Comments: Yes \(\subseteq \) No Comments: es form initiated? Yes No \(\subseteq \) No Comments: ed appropriate for analysis? Yes \(\subseteq \) No Comments: headspace? Yes No NA \(\subseteq \)
Bottle labels/COCs agree? COC/container discrepanci Containers/volumes receive Do VOA vials have visible Comments Water samples: pH checked	e/time inspected: 2//2 @ r4: 24 By: E/AW) L No _ Comments: Yes \(\subseteq \text{No} \) Comments: es form initiated? Yes _ No \(\subseteq \text{Domments} \) Ed appropriate for analysis? Yes \(\supseteq \text{No} \) Comments: headspace? Yes _ No _ NA \(\subseteq \text{Domments} \)
Bottle labels/COCs agree? COC/container discrepanci Containers/volumes receive Do VOA vials have visible Comments Water samples: pH checked Comments:	e/time inspected: 21/23 @ 17:24 By: AW No Comments: Yes \(\subseteq \) No Comments: es form initiated? Yes No \(\subseteq \) No Comments: ed appropriate for analysis? Yes \(\subseteq \) No Comments: headspace? Yes No NA \(\subseteq \)
Sample Inspection: Dat All samples intact? Yes > Bottle labels/COCs agree? COC/container discrepanci Containers/volumes receive Do VOA vials have visible Comments Water samples: pH checked Comments:	e/time inspected: 21/23 @ 17:24 By: AM No _ Comments: Yes \(\subseteq \text{No} \) Comments: es form initiated? Yes _ No \(\subseteq \text{No} \) Comments: ed appropriate for analysis? Yes \(\subseteq \text{No} \) No _ Comments: theadspace? Yes _ No _ NA \(\subseteq \text{Subsection} \) PH appropriate? Yes _ No _ NA \(\subseteq \text{Subsection} \) Subseteq \(\subseteq \text{Subsection} \) With \(\subseteq \text{Subsection} \) A \(\subseteq \tex
Sample Inspection: Dat All samples intact? Yes Bottle labels/COCs agree? COC/container discrepanci Containers/volumes receive Do VOA vials have visible Comments Water samples: pH checked Comments: Additional information:	e/time inspected: 2//2 @ t4: 24 By: EAN) L No Comments: Yes L No Comments: es form initiated? Yes No Load appropriate for analysis? Yes No Comments: headspace? Yes No NA L

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Item #2.

ANALYTICAL REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project: St. Helens Lagoon Project Number: M0830.03.006 Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

	APEX LABS COOL	ER RECEIPT FORM	3154
Client: MFA -	PORTLAND	Element WO#: A3_A\[\]\	20972
Project/Project #:	T. HEIFNS LAGOO	N # M0830.03.066	
Delivery Info:	1 1/200 1/400	*Additional \	rolument
) 23 @ ((70 By:	CAT	
		RadioMorganSDS_Evergreen	Other
•		Radio_Morgan_SDS_Evergreen_ B.@_1325_By:SAT	
Chain of Custody include	ed? Yes \times No \times	В. STT	A TOTAL MAIN BURGADOR
Signed/dated by client?	. ^	_	
signed/dated by chem:	- ,	oler #3 Cooler #4 Cooler #5 Cooler #6	G1#7
Temperature (°C)	2.8 <u>Cooler #2 Cooler #2</u>	E ORONGE M. S. C. C. MARINE THE TRANSPORT OF THE PROPERTY OF T	
Custody seals? (Y/N)	The second secon		
Received on ice? (Y/N)			
Temp. blanks? (Y/N)			***************************************
Ice type: (Gel/Real/Other)			
Condition (In/Out):	10		N 321132
All samples intact? Yes	No Comments:	Name of the Control o	100 A 100 A
Bottle labels/COCs agree?	Yes Y No Comment	ts:	<u>.</u>
COC/container discrepand	cies form initiated? Yes	No X	
		Yes \(\sqrt{No} \) Comments:	
	11 1		····
Do VOA vials have visible	e headspace? Yes No _	NA <u></u>	A Commission of the Commission
Comments	Note to relative charts		
Water samples: pH checke	ed: YesNoNA \sum_ pH a	ppropriate? YesNoNA	
Water samples: pH checker Comments:		ppropriate? Yes_No_NA\/ Subsampler	
Water samples: pH checke			: 24 M
Water samples: pH checker Comments: Additional information:		Subscripter Witness: 0	:24M 25:
Comments Water samples: pH checker Comments: Additional information: Labeled by:		Subscripter Witness: C	:

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Item #2.

APEX LABORATORIES

ANALYTICAL REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3A1010 - 04 19 23 1708

Client: Mau/	Fosker Mongi Element WO#: A3A1010
	St. Helens Lagoon # M0830,03.00
110jecu110jeci#.	or necess toget
Delivery Info:	3 46
Date/time received:	16/23 @ 1705 By: /2 AM
Delivered by: Apex C	Elient_ESSFedEx_UPS_RadioMorganSDSEvergreenOther
Cooler Inspection I	Date/time inspected: 2/6/23 @ 152/ By: Km
Chain of Custody includ	
Signed/dated by client?	Yes No
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	0.9
Custody seals? (Y/N)	<u>N</u>
Received on ice? (Y/N)	<u> </u>
Temp. blanks? (Y/N)	
Ice type: (Gel/Real/Other	
Condition (In/Out):	In
Green dots applied to out Out of temperature sampl Sample Inspection: Da	Possible reason why: t of temperature samples? Yes/No eles form initiated? Yes/No ate/time inspected: 0/6/2 @ 16:04 By: JAM
Green dots applied to out Out of temperature sampl Sample Inspection: Date All samples intact? Yes	tof temperature samples? Yes/No les form initiated? Yes/No ate/time inspected: 0/6/2 z @ 16:07 By: DAM
Green dots applied to out Out of temperature sampl Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree	A of temperature samples? Yes/No cles form initiated? Yes/No ate/time inspected: 0/6/23 @ 16:04 By: JAM X No Comments: Yes X No Comments:
Green dots applied to out Out of temperature sampl Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree	A of temperature samples? Yes/No cles form initiated? Yes/No ate/time inspected: 0/6/23 @ 16:04 By: JAM _X No Comments:
Green dots applied to out Out of temperature sampl Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree COC/container discrepance	A of temperature samples? Yes/No cles form initiated? Yes/No ate/time inspected: 0/6/23 @ 16:04 By: JAM X No Comments: Yes X No Comments:
Green dots applied to out Out of temperature sampl Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree COC/container discrepanc Containers/volumes receive	A of temperature samples? Yes/No cles form initiated? Yes/No ate/time inspected: 0/6/23 @ 16:04 By: JAM _X No Comments:
Green dots applied to out Out of temperature sampl Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree COC/container discrepand Containers/volumes receiv Do VOA vials have visible Comments	A of temperature samples? Yes/No cles form initiated? Yes/No ate/time inspected: Q/6/2 = @ 16:04 By: AMM X No _ Comments: Comments:
Green dots applied to out Out of temperature sampl Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree COC/container discrepand Containers/volumes receiv Do VOA vials have visible Comments	A of temperature samples? Yes/No cles form initiated? Yes/No ate/time inspected: 0/6/23 @ 16:04 By: XXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Green dots applied to out Out of temperature sampl Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree COC/container discrepand Containers/volumes receiv Do VOA vials have visible Comments Water samples: pH checker	A of temperature samples? Yes/No cles form initiated? Yes/No ate/time inspected: Q/6/2 = @ 16:04 By: AMM X No _ Comments: Comments:
Green dots applied to out Out of temperature sampl Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree COC/container discrepanc Containers/volumes receiv Do VOA vials have visible Comments Water samples: pH checker	A of temperature samples? Yes/No cles form initiated? Yes/No ate/time inspected: Q/6/2 = @ 16:04 By: AMM X No _ Comments: Comments:
Green dots applied to out Out of temperature sampl Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree COC/container discrepand Containers/volumes receiv Do VOA vials have visible Comments Water samples: pH checke	dof temperature samples? Yes/No cles form initiated? Yes/No ate/time inspected: 0/6/2 3 @ 16:04 By: AMM X No _ Comments: Comments: Coies form initiated? Yes _ No X ived appropriate for analysis? Yes X No _ Comments: Cle headspace? Yes _ No _ NA X ed: Yes _ No _ NA X ed: Yes _ No _ NA X pH appropriate? Yes _ No _ NA X ed: Yes _ No _ NA X pH appropriate? Yes _ No _ NA X ed: Yes _ No _ NA X pH appropriate? Yes _ No _ NA X ed: Yes _ Yes _ No _ NA X ed: Yes _ Yes
Green dots applied to out Out of temperature sampl Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agree COC/container discrepand Containers/volumes receiv Do VOA vials have visible Comments Water samples: pH checke	dof temperature samples? Yes/No cles form initiated? Yes/No ate/time inspected: 0/6/2 3 @ 16:04 By: AMM X No _ Comments: Comments: Coies form initiated? Yes _ No X ived appropriate for analysis? Yes X No _ Comments: Cle headspace? Yes _ No _ NA X ed: Yes _ No _ NA X ed: Yes _ No _ NA X pH appropriate? Yes _ No _ NA X ed: Yes _ No _ NA X pH appropriate? Yes _ No _ NA X ed: Yes _ No _ NA X pH appropriate? Yes _ No _ NA X ed: Yes _ Yes _ No _ NA X ed: Yes _ Yes
Green dots applied to out Out of temperature sampl Sample Inspection: Da All samples intact? Yes Bottle labels/COCs agreed COC/container discrepant Containers/volumes received to VOA vials have visible Comments Water samples: pH checked Comments:	dof temperature samples? Yes/No cles form initiated? Yes/No ate/time inspected: 0/6/2 3 @ 16:04 By: AMM X No _ Comments: Comments: Coies form initiated? Yes _ No X ived appropriate for analysis? Yes X No _ Comments: Cle headspace? Yes _ No _ NA X ed: Yes _ No _ NA X ed: Yes _ No _ NA X pH appropriate? Yes _ No _ NA X ed: Yes _ No _ NA X pH appropriate? Yes _ No _ NA X ed: Yes _ No _ NA X pH appropriate? Yes _ No _ NA X ed: Yes _ Yes _ No _ NA X ed: Yes _ Yes
Green dots applied to out Out of temperature sampl Sample Inspection: Da All samples intact? Yes	dof temperature samples? Yes/No cles form initiated? Yes/No ate/time inspected: 0/6/2 3 @ 16:04 By: AMM X No _ Comments: Comments: Coies form initiated? Yes _ No X ived appropriate for analysis? Yes X No _ Comments: Cle headspace? Yes _ No _ NA X ed: Yes _ No _ NA X ed: Yes _ No _ NA X pH appropriate? Yes _ No _ NA X ed: Yes _ No _ NA X pH appropriate? Yes _ No _ NA X ed: Yes _ No _ NA X pH appropriate? Yes _ No _ NA X ed: Yes _ Yes _ No _ NA X ed: Yes _ Yes

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Item #2.

AMENDED REPORT

Friday, April 21, 2023
David Weatherby
Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

RE: A3B0217 - St. Helens Lagoon - M0830.03.006

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3B0217, which was received by the laboratory on 2/7/2023 at 2:29:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Default Cooler 4.4 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

281

Maul Foster & Alongi, INC.

3140 NE Broadway Street

Portland, OR 97232

ANALYTICAL REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Report ID:

AMENDED REPORT

Project: St. Helens Lagoon
Project Number: M0830.03.006

Project Manager: David Weatherby A3B0217 - 04 21 23 1023

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORMATION									
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received						
MFA-B3A-20230207-GW-36.0	A3B0217-01	Water	02/07/23 08:30	02/07/23 14:29						
Field Blank	A3B0217-02	Water	02/07/23 08:20	02/07/23 14:29						
Trip Blank	A3B0217-03	Water	02/07/23 00:00	02/07/23 14:29						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

282

Philip Marenberg

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

ANALYTICAL SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx										
	Sample	Detection	Reporting			Date				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
MFA-B3A-20230207-GW-36.0 (A3B0217-01)			Matrix: Wate	er	Batch:	Batch: 23B0657				
Diesel	ND	0.112	0.225	mg/L	1	02/18/23 02:55	NWTPH-Dx			
Oil	ND	0.225	0.449	mg/L	1	02/18/23 02:55	NWTPH-Dx			
Surrogate: o-Terphenyl (Surr)		Reco	very: 93 %	Limits: 50-150 %	5 1	02/18/23 02:55	NWTPH-Dx			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

283

Philip Maenberg

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

ANALYTICAL SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
MFA-B3A-20230207-GW-36.0 (A3B021	A-B3A-20230207-GW-36.0 (A3B0217-01RE1)			Matrix: Water Batch: 23B0509			23B0509	V-04		
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	02/14/23 11:15	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 97 % 107 %	Limits: 50-150 % 50-150 %	-	02/14/23 11:15 02/14/23 11:15	NWTPH-Gx (MS) NWTPH-Gx (MS)			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

284

Philip Maenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MFA-B3A-20230207-GW-36.0 (A3B)	0217-01RE1)			Matrix: Wa	ater	Batch:	23B0509	V-04
Acetone	ND	20.0	20.0	ug/L	1	02/14/23 11:15	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	02/14/23 11:15	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	02/14/23 11:15	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	02/14/23 11:15	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	02/14/23 11:15	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	02/14/23 11:15	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	02/14/23 11:15	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	02/14/23 11:15	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	02/14/23 11:15	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	02/14/23 11:15	EPA 8260D	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	02/14/23 11:15	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	02/14/23 11:15	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	02/14/23 11:15	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	02/14/23 11:15	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	02/14/23 11:15	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	02/14/23 11:15	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/14/23 11:15	EPA 8260D	
1-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/14/23 11:15	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	02/14/23 11:15	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	02/14/23 11:15	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/14/23 11:15	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/14/23 11:15	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/14/23 11:15	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	02/14/23 11:15	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	02/14/23 11:15	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	02/14/23 11:15	EPA 8260D	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1	02/14/23 11:15	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	02/14/23 11:15	EPA 8260D	
2-Hexanone	ND	5.00	10.0	ug/L	1	02/14/23 11:15	EPA 8260D	
sopropylbenzene	ND	0.500	1.00	ug/L	1	02/14/23 11:15	EPA 8260D	
l-Isopropyltoluene	ND	0.500	1.00	ug/L	1	02/14/23 11:15	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	02/14/23 11:15	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	02/14/23 11:15	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

ANALYTICAL SAMPLE RESULTS

	v	olatile Organ	ic Compou	nds by EPA 826	טט			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MFA-B3A-20230207-GW-36.0 (A3B0217-01RE1)				Matrix: Wate	er	Batch:	23B0509	V-04
Naphthalene	ND	1.00	2.00	ug/L	1	02/14/23 11:15	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	02/14/23 11:15	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	02/14/23 11:15	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	02/14/23 11:15	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/14/23 11:15	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/14/23 11:15	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	02/14/23 11:15	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	02/14/23 11:15	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 93 %	Limits: 80-120 %	1	02/14/23 11:15	EPA 8260D	
Toluene-d8 (Surr)			105 %	80-120 %		02/14/23 11:15	EPA 8260D	
4-Bromofluorobenzene (Surr)			97 %	80-120 %	1	02/14/23 11:15	EPA 8260D	
Trip Blank (A3B0217-03)				Matrix: Water		Batch: 23B0344		
Acetone	ND	10.0	20.0	ug/L	1	02/09/23 12:40	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	02/09/23 12:40	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	02/09/23 12:40	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	02/09/23 12:40	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	02/09/23 12:40	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	02/09/23 12:40	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	02/09/23 12:40	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	02/09/23 12:40	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	02/09/23 12:40	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	02/09/23 12:40	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	02/09/23 12:40	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	02/09/23 12:40	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	02/09/23 12:40	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	02/09/23 12:40	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	02/09/23 12:40	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	02/09/23 12:40	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/09/23 12:40	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/09/23 12:40	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	02/09/23 12:40	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	02/09/23 12:40	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/09/23 12:40	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Manherg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
Trip Blank (A3B0217-03)				Matrix: Wate	er	Batch:	23B0344		
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/09/23 12:40	EPA 8260D		
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/09/23 12:40	EPA 8260D		
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	02/09/23 12:40	EPA 8260D		
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	02/09/23 12:40	EPA 8260D		
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	02/09/23 12:40	EPA 8260D		
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	02/09/23 12:40	EPA 8260D		
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	02/09/23 12:40	EPA 8260D		
2-Hexanone	ND	5.00	10.0	ug/L	1	02/09/23 12:40	EPA 8260D		
Isopropylbenzene	ND	0.500	1.00	ug/L	1	02/09/23 12:40	EPA 8260D		
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	02/09/23 12:40	EPA 8260D		
Methylene chloride	ND	5.00	10.0	ug/L	1	02/09/23 12:40	EPA 8260D		
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	02/09/23 12:40	EPA 8260D		
Naphthalene	ND	1.00	2.00	ug/L	1	02/09/23 12:40	EPA 8260D		
n-Propylbenzene	ND	0.250	0.500	ug/L	1	02/09/23 12:40	EPA 8260D		
Styrene	ND	0.500	1.00	ug/L	1	02/09/23 12:40	EPA 8260D		
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	02/09/23 12:40	EPA 8260D		
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/09/23 12:40	EPA 8260D		
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/09/23 12:40	EPA 8260D		
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	02/09/23 12:40	EPA 8260D		
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	02/09/23 12:40	EPA 8260D		
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 94%	Limits: 80-120 %	1	02/09/23 12:40	EPA 8260D		
Toluene-d8 (Surr)			104 %	80-120 %	1	02/09/23 12:40	EPA 8260D		
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	02/09/23 12:40	EPA 8260D		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

ANALYTICAL SAMPLE RESULTS

	Vola	atile Organic Co	ompound	s by EPA 8260D	SIM			
	Sample		Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MFA-B3A-20230207-GW-36.0 (A3B021	7-01)			Matrix: Wate	<u>r</u>	Batch:	23B0743	
Benzene	0.0754	0.0500	0.100	ug/L	1	02/20/23 18:00	EPA 8260D SIM	Ja
Toluene	0.0904	0.0500	0.100	ug/L	1	02/20/23 18:00	EPA 8260D SIM	Ja
Ethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
m,p-Xylene	ND	0.100	0.200	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
o-Xylene	ND	0.0500	0.100	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
1,2,4-Trimethylbenzene	0.0578	0.0500	0.100	ug/L	1	02/20/23 18:00	EPA 8260D SIM	Ja
1,3,5-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
Chloroform	0.122	0.0500	0.100	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
1,2-Dibromo-3-chloropropane	ND	0.100	0.200	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
1,1-Dichloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
1,2-Dichloroethane (EDC)	ND	0.0100	0.0200	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
1,1-Dichloroethene	ND	0.0200	0.0200	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
cis-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
trans-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
1,2-Dichloropropane	ND	0.0100	0.0200	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
cis-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
trans-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
Methyl tert-butyl ether (MTBE)	ND	0.0100	0.0200	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
1,1,2,2-Tetrachloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
Tetrachloroethene (PCE)	ND	0.0100	0.0200	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
Trichloroethene (TCE)	ND	0.0100	0.0200	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
1,2,3-Trichloropropane	ND	0.0500	0.100	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
1,1,2-Trichloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 18:00	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	104 %	Limits: 80-120 %	5 1	02/20/23 18:00	EPA 8260D SIM	
Toluene-d8 (Surr)			100 %	80-120 %	5 1	02/20/23 18:00	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	5 1	02/20/23 18:00	EPA 8260D SIM	
Trip Blank (A3B0217-03)				Matrix: Wate	or	Batch:	23B0743	
Benzene	ND	0.0500	0.100	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
Toluene	ND	0.0500	0.100	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
Ethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
m,p-Xylene	ND	0.100	0.200	ug/L ug/L	1	02/20/23 16:12	EPA 8260D SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

ANALYTICAL SAMPLE RESULTS

	G 1	Dot+:-	D on - ::4:			Dot-		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Trip Blank (A3B0217-03)				Matrix: Wate	er	Batch:	23B0743	
o-Xylene	ND	0.0500	0.100	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
1,2,4-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
1,3,5-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
Chloroform	0.0693	0.0500	0.100	ug/L	1	02/20/23 16:12	EPA 8260D SIM	Ja
1,2-Dibromo-3-chloropropane	ND	0.100	0.200	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
1,1-Dichloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
1,2-Dichloroethane (EDC)	ND	0.0100	0.0200	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
1,1-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
cis-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
trans-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
1,2-Dichloropropane	ND	0.0100	0.0200	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
cis-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
trans-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
Methyl tert-butyl ether (MTBE)	ND	0.0100	0.0200	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
1,1,2,2-Tetrachloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
Tetrachloroethene (PCE)	ND	0.0100	0.0200	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
Trichloroethene (TCE)	ND	0.0100	0.0200	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
1,2,3-Trichloropropane	ND	0.0500	0.100	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
1,1,2-Trichloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 16:12	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	y: 103 %	Limits: 80-120 %	6 I	02/20/23 16:12	EPA 8260D SIM	
Toluene-d8 (Surr)			100 %	80-120 %		02/20/23 16:12	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	6 1	02/20/23 16:12	EPA 8260D SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

ANALYTICAL SAMPLE RESULTS

	G 1	Data -ti	D			Data		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MFA-B3A-20230207-GW-36.0 (A3E	30217-01RE3)			Matrix: Wa	ater	Batch:	23B0481	
Acenaphthene	ND	0.0128	0.0256	ug/L	1	02/13/23 19:59	EPA 8270E	Q-30
Acenaphthylene	ND	0.0128	0.0256	ug/L	1	02/13/23 19:59	EPA 8270E	
Anthracene	ND	0.0128	0.0256	ug/L	1	02/13/23 19:59	EPA 8270E	
Benz(a)anthracene	ND	0.0128	0.0256	ug/L	1	02/13/23 19:59	EPA 8270E	
Benzo(a)pyrene	ND	0.0192	0.0385	ug/L	1	02/13/23 19:59	EPA 8270E	
Benzo(b)fluoranthene	ND	0.0192	0.0385	ug/L	1	02/13/23 19:59	EPA 8270E	
Benzo(k)fluoranthene	ND	0.0192	0.0385	ug/L	1	02/13/23 19:59	EPA 8270E	
Benzo(g,h,i)perylene	ND	0.0128	0.0256	ug/L	1	02/13/23 19:59	EPA 8270E	
Chrysene	ND	0.0128	0.0256	ug/L	1	02/13/23 19:59	EPA 8270E	
Dibenz(a,h)anthracene	ND	0.0128	0.0256	ug/L	1	02/13/23 19:59	EPA 8270E	
Fluoranthene	ND	0.0128	0.0256	ug/L	1	02/13/23 19:59	EPA 8270E	
Fluorene	ND	0.0128	0.0256	ug/L	1	02/13/23 19:59	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	0.0128	0.0256	ug/L	1	02/13/23 19:59	EPA 8270E	
1-Methylnaphthalene	ND	0.0256	0.0513	ug/L	1	02/13/23 19:59	EPA 8270E	Q-30
2-Methylnaphthalene	ND	0.0256	0.0513	ug/L	1	02/13/23 19:59	EPA 8270E	Q-30
Naphthalene	ND	0.0256	0.0513	ug/L	1	02/13/23 19:59	EPA 8270E	Q-30
Phenanthrene	ND	0.0128	0.0256	ug/L	1	02/13/23 19:59	EPA 8270E	
Pyrene	ND	0.0128	0.0256	ug/L	1	02/13/23 19:59	EPA 8270E	
Carbazole	ND	0.0192	0.0385	ug/L	1	02/13/23 19:59	EPA 8270E	
Dibenzofuran	ND	0.0128	0.0256	ug/L	1	02/13/23 19:59	EPA 8270E	Q-30
2-Chlorophenol	ND	0.0641	0.128	ug/L	1	02/13/23 19:59	EPA 8270E	
4-Chloro-3-methylphenol	ND	0.128	0.256	ug/L	1	02/13/23 19:59	EPA 8270E	
2,4-Dichlorophenol	ND	0.0641	0.128	ug/L	1	02/13/23 19:59	EPA 8270E	
2,4-Dimethylphenol	ND	0.0641	0.128	ug/L	1	02/13/23 19:59	EPA 8270E	
2,4-Dinitrophenol	ND	0.321	0.641	ug/L	1	02/13/23 19:59	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	0.321	0.641	ug/L	1	02/13/23 19:59	EPA 8270E	
2-Methylphenol	ND	0.0321	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	
3+4-Methylphenol(s)	ND	0.0321	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	
2-Nitrophenol	ND	0.128	0.256	ug/L	1	02/13/23 19:59	EPA 8270E	
4-Nitrophenol	ND	0.256	0.256	ug/L	1	02/13/23 19:59	EPA 8270E	
Pentachlorophenol (PCP)	ND	0.128	0.256	ug/L	1	02/13/23 19:59	EPA 8270E	
Phenol	ND	0.256	0.513	ug/L	1	02/13/23 19:59	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	0.0641	0.128	ug/L	1	02/13/23 19:59	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

ANALYTICAL SAMPLE RESULTS

	Com1-	Datastic	Reporting			Date		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
MFA-B3A-20230207-GW-36.0 (A3B	0217-01RE3)			Matrix: W	ater	Batch:	23B0481	
2,3,5,6-Tetrachlorophenol	ND	0.0641	0.128	ug/L	1	02/13/23 19:59	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.0641	0.128	ug/L	1	02/13/23 19:59	EPA 8270E	
2,4,6-Trichlorophenol	0.0665	0.0641	0.128	ug/L	1	02/13/23 19:59	EPA 8270E	Ja
Bis(2-ethylhexyl)phthalate	ND	0.256	0.513	ug/L	1	02/13/23 19:59	EPA 8270E	
Butyl benzyl phthalate	ND	0.256	0.513	ug/L	1	02/13/23 19:59	EPA 8270E	
Diethylphthalate	ND	0.256	0.513	ug/L	1	02/13/23 19:59	EPA 8270E	
Dimethylphthalate	ND	0.256	0.513	ug/L	1	02/13/23 19:59	EPA 8270E	
Di-n-butylphthalate	ND	0.256	0.513	ug/L	1	02/13/23 19:59	EPA 8270E	
Di-n-octyl phthalate	ND	0.256	0.513	ug/L	1	02/13/23 19:59	EPA 8270E	
N-Nitrosodimethylamine	ND	0.0321	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	0.0641	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	
N-Nitrosodiphenylamine	ND	0.0321	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	0.0321	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	0.0321	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	0.0321	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	
Hexachlorobenzene	ND	0.0128	0.0256	ug/L	1	02/13/23 19:59	EPA 8270E	
Hexachlorobutadiene	ND	0.0321	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	
Hexachlorocyclopentadiene	ND	0.0641	0.128	ug/L	1	02/13/23 19:59	EPA 8270E	
Hexachloroethane	ND	0.0321	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	
2-Chloronaphthalene	ND	0.0128	0.0256	ug/L	1	02/13/23 19:59	EPA 8270E	Q-30
1,2,4-Trichlorobenzene	ND	0.0321	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	Q-30
4-Bromophenyl phenyl ether	ND	0.0321	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	Q-30
4-Chlorophenyl phenyl ether	ND	0.0321	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	Q-30
Aniline	ND	0.0641	0.128	ug/L	1	02/13/23 19:59	EPA 8270E	
4-Chloroaniline	ND	0.0321	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	
2-Nitroaniline	ND	0.256	0.513	ug/L	1	02/13/23 19:59	EPA 8270E	
3-Nitroaniline	ND	0.256	0.513	ug/L	1	02/13/23 19:59	EPA 8270E	
4-Nitroaniline	ND	0.256	0.513	ug/L	1	02/13/23 19:59	EPA 8270E	
Nitrobenzene	ND	0.128	0.256	ug/L	1	02/13/23 19:59	EPA 8270E	
2,4-Dinitrotoluene	ND	0.128	0.256	ug/L	1	02/13/23 19:59	EPA 8270E	
2,6-Dinitrotoluene	ND	0.256	0.256	ug/L	1	02/13/23 19:59	EPA 8270E	
Isophorone	0.0541	0.0321	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	Ja
Azobenzene (1,2-DPH)	ND	0.0641	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

ANALYTICAL SAMPLE RESULTS

	Sen	nivolatile Organ	ic Comp	ounds by EPA 8	3270E			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MFA-B3A-20230207-GW-36.0 (A3B021	7-01RE3)			Matrix: Wate	er	Batch: 2	23B0481	
Bis(2-Ethylhexyl) adipate	ND	0.321	0.641	ug/L	1	02/13/23 19:59	EPA 8270E	
3,3'-Dichlorobenzidine	ND	0.641	1.28	ug/L	1	02/13/23 19:59	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	0.321	0.641	ug/L	1	02/13/23 19:59	EPA 8270E	
1,3-Dinitrobenzene	ND	0.321	0.641	ug/L	1	02/13/23 19:59	EPA 8270E	
1,4-Dinitrobenzene	ND	0.321	0.641	ug/L	1	02/13/23 19:59	EPA 8270E	
Pyridine	ND	0.128	0.256	ug/L	1	02/13/23 19:59	EPA 8270E	
1,2-Dichlorobenzene	ND	0.0321	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	Q-30
1,3-Dichlorobenzene	0.0432	0.0321	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	Ja, Q-30
1,4-Dichlorobenzene	ND	0.0321	0.0641	ug/L	1	02/13/23 19:59	EPA 8270E	Q-30
Surrogate: Nitrobenzene-d5 (Surr)		Recovery	: 47%	Limits: 44-120 %	5 I	02/13/23 19:59	EPA 8270E	
2-Fluorobiphenyl (Surr)			40 %	44-120 %	<i>i</i> 1	02/13/23 19:59	EPA 8270E	S-06
Phenol-d6 (Surr)			21 %	10-133 %	1	02/13/23 19:59	EPA 8270E	
p-Terphenyl-d14 (Surr)			69 %	50-134 %	I	02/13/23 19:59	EPA 8270E	
2-Fluorophenol (Surr)			31 %	19-120 %	1	02/13/23 19:59	EPA 8270E	
2,4,6-Tribromophenol (Surr)			75 %	43-140 %	5 1	02/13/23 19:59	EPA 8270E	
MFA-B3A-20230207-GW-36.0 (A3B021	7-01RE4)			Matrix: Wate	er	Batch:	23B0481	
Benzoic acid	1.83	1.60	3.21	ug/L	1	02/14/23 14:06	EPA 8270E	Ja
Benzyl alcohol	0.212	0.128	0.256	ug/L	1	02/14/23 14:06	EPA 8270E	Ja

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MFA-B3A-20230207-GW-36.0 (A3B02	17-01RE1)			Matrix: Wate	r	Batch:	: 23B0312	
Azinphos methyl (Guthion)	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Chlorpyrifos	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Coumaphos	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Demeton O	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Demeton S	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Diazinon	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Dichlorvos	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Dimethoate	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Disulfoton	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
EPN	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Ethoprop	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Fensulfothion	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Fenthion	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Malathion	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Merphos	ND	0.658	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Methyl parathion	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Mevinphos (Phosdrin)	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Monocrotophos	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Naled (Dibrom)	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Parathion, ethyl	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Phorate	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Ronnel (Fenchlorphos)	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Sulfotep	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
sulprofos (Bolstar)	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
EPP	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
etrachlorvinphos (Rabon)	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
okuthion (Prothiofos)	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
richloronate	ND	0.329	0.658	ug/L	1	02/08/23 19:48	EPA 8270E OPPs	
Surrogate: Tributyl phosphate (Surr)		Recov	very: 85 %	Limits: 56-124 %	1	02/08/23 19:48	EPA 8270E OPPs	
Triphenyl phosphate (Surr)			82 %	58-121 %		02/08/23 19:48	EPA 8270E OPPs	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

ANALYTICAL SAMPLE RESULTS

Notes											
Analyte	•		1 0	Units	Dilution		Method Ref.	Notes			
MFA-B3A-20230207-GW-36.0	(A3B0217-01)			Matrix: W	ater						
Batch: 23B0281											
Antimony	0.697	0.500	1.00	ug/L	1	02/09/23 19:39	EPA 6020B	Ja			
Arsenic	29.1	0.500	1.00	ug/L	1	02/09/23 19:39	EPA 6020B				
Barium	1080	1.00	2.00	ug/L	1	02/09/23 19:39	EPA 6020B				
Beryllium	6.44	0.100	0.200	ug/L	1	02/09/23 19:39	EPA 6020B				
Cadmium	1.50	0.100	0.200	ug/L	1	02/09/23 19:39	EPA 6020B				
Chromium	339	1.00	2.00	ug/L	1	02/09/23 19:39	EPA 6020B				
Copper	210	1.00	2.00	ug/L	1	02/09/23 19:39	EPA 6020B				
Lead	66.8	0.110	0.200	ug/L	1	02/09/23 19:39	EPA 6020B				
Manganese	2350	0.500	1.00	ug/L	1	02/09/23 19:39	EPA 6020B				
Nickel	285	1.00	2.00	ug/L	1	02/09/23 19:39	EPA 6020B				
Selenium	4.48	0.500	1.00	ug/L	1	02/09/23 19:39	EPA 6020B				
Silver	0.776	0.100	0.200	ug/L	1	02/09/23 19:39	EPA 6020B				
Thallium	0.711	0.100	0.200	ug/L	1	02/09/23 19:39	EPA 6020B				
Zinc	802	2.00	4.00	ug/L	1	02/09/23 19:39	EPA 6020B				
MFA-B3A-20230207-GW-36.0	(A3B0217-01RE2)			Matrix: W	ater						
Batch: 23B0281											
Mercury	0.328	0.0800	0.160	ug/L	2	02/13/23 10:12	EPA 6020B				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

Weck Laboratories, Inc.

ANALYTICAL SAMPLE RESULTS (Subcontracted)

		Uniorinate	eu merbicide	s by GC/ECD				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MFA-B3A-20230207-GW-36.0 (A3B0217-0	1)			Matrix: Wate	∍r	Batch: V	W3B1025	
Batch: W3B1025								
2,4-D	ND	0.34	0.50	ug/l	1	02/25/23 08:34	EPA 8151A	
2,4-DB	ND	0.99	2.5	ug/l	1	02/25/23 08:34	EPA 8151A	
2,4,5-T	ND	0.14	0.25	ug/l	1	02/25/23 08:34	EPA 8151A	
2,4,5-TP (Silvex)	ND	0.14	0.25	ug/l	1	02/25/23 08:34	EPA 8151A	
3,5-Dichlorobenzoic acid	ND	0.28	1.2	ug/l	1	02/25/23 08:34	EPA 8151A	
4-Nitrophenol	ND	0.50	1.2	ug/l	1	02/25/23 08:34	EPA 8151A	
Acifluorfen	ND	0.24	0.50	ug/l	1	02/25/23 08:34	EPA 8151A	
Bentazon	ND	0.55	2.5	ug/l	1	02/25/23 08:34	EPA 8151A	
Dalapon	ND	0.16	0.50	ug/l	1	02/25/23 08:34	EPA 8151A	
Dicamba	ND	0.19	0.75	ug/l	1	02/25/23 08:34	EPA 8151A	
Dichloroprop	ND	0.24	1.0	ug/l	1	02/25/23 08:34	EPA 8151A	
Dinoseb	ND	0.090	0.50	ug/l	1	02/25/23 08:34	EPA 8151A	
DCPA	ND	0.20	0.25	ug/l	1	02/25/23 08:34	EPA 8151A	
MCPA	ND	40	100	ug/l	1	02/25/23 08:34	EPA 8151A	
MCPP	ND	27	100	ug/l	1	02/25/23 08:34	EPA 8151A	
Pentachlorophenol	ND	0.18	0.25	ug/l	1	02/25/23 08:34	EPA 8151A	
Picloram Batch: W3B1025	ND	0.13	0.75	ug/l	1	02/25/23 08:34	EPA 8151A	
Surrogate: 2,4-DCAA		Reco	very: 91 %	Limits: 56-156 %	6 I	02/25/23 08:34	EPA 8151A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

AMENDED REPORT

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

Weck Laboratories, Inc.

ANALYTICAL SAMPLE RESULTS (Subcontracted)

		Hexav	alent Chromi	um by IC				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MFA-B3A-20230207-GW-36.0 (A3B0217	-01)			Matrix: W	ater	Batch: \	W3B1145	
Batch: W3B1145								
Chromium 6+	0.057	0.0079	0.020	ug/l	1	02/14/23 16:44	EPA 218.6	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Report ID:

A3B0217 - 04 21 23 1023

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

QUALITY CONTROL (QC) SAMPLE RESULTS

		Di	iesel and/d	or Oil Hyd	Irocarbor	ns by NWT	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0657 - EPA 3510C	(Fuels/Acid	Ext.)					Wa	ter				
Blank (23B0657-BLK1)			Prepared	d: 02/17/23	07:46 Ana	lyzed: 02/18/	/23 01:45					
NWTPH-Dx												
Diesel	ND	0.100	0.200	mg/L	1							
Oil	ND	0.200	0.400	mg/L	1							
Surr: o-Terphenyl (Surr)		Recov	very: 131 %	Limits: 50	0-150 %	Dilu	ution: 1x					
LCS (23B0657-BS1)			Prepared	d: 02/17/23	07:46 Ana	lyzed: 02/18/	/23 02:08					
NWTPH-Dx												
Diesel	0.860	0.100	0.200	mg/L	1	1.25		69	36-132%			
Surr: o-Terphenyl (Surr)		Reco	overy: 99 %	Limits: 50	0-150 %	Dilu	ution: 1x					
LCS Dup (23B0657-BSD1)			Prepared	d: 02/17/23	07:46 Ana	lyzed: 02/18/	/23 02:32					Q-1
NWTPH-Dx												
Diesel	0.782	0.100	0.200	mg/L	1	1.25		63	36-132%	9	30%	
Surr: o-Terphenyl (Surr)		Reco	very: 92 %	Limits: 50	0-150 %	Dilu	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range H	ydrocarbo	ons (Benz	zene thro	igh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0344 - EPA 5030C							Wa	ter				
Blank (23B0344-BLK1)			Prepared	d: 02/09/23	08:37 Anal	yzed: 02/09	/23 12:18					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 92 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			105 %	50	0-150 %		"					
LCS (23B0344-BS2)			Prepare	d: 02/09/23	08:37 Ana	yzed: 02/09	/23 11:44					
NWTPH-Gx (MS)												
Gasoline Range Organics	0.543	0.0500	0.100	mg/L	1	0.500		109	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recov	ery: 101 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			104 %	50	0-150 %		"					
Duplicate (23B0344-DUP1)			Prepared	d: 02/09/23	08:37 Ana	yzed: 02/09	/23 13:47					
QC Source Sample: Non-SDG (A3	B0269-13)											
Gasoline Range Organics	0.485	0.0500	0.100	mg/L	1		0.419			15	30%	F-12
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 96 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			110 %	50	0-150 %		"					
Duplicate (23B0344-DUP2)			Prepared	d: 02/09/23	08:37 Ana	yzed: 02/09	/23 14:54					
QC Source Sample: Non-SDG (A3	B0270-01)											
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 99 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			110 %	50	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Newsberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

St. Helens Lagoon Project: Project Number: M0830.03.006 Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

Detection Reporting Limit Units Dilution Spike Source Spike Source Spike Source Spike Source Spike Source Spike Spik												
Analyte	Result			Units	Dilution			% REC		RPD		Notes
Batch 23B0509 - EPA 5030C							Wa	ter				
Blank (23B0509-BLK1)			Prepared	d: 02/14/23	08:30 Ana	lyzed: 02/14/	/23 10:53					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 96 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			107 %	50	0-150 %		"					
LCS (23B0509-BS2)			Prepared	d: 02/14/23	08:30 Ana	lyzed: 02/14/	/23 10:31					
NWTPH-Gx (MS)												
Gasoline Range Organics	0.515	0.0500	0.100	mg/L	1	0.500		103	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recov	ery: 101 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			106 %	50	0-150 %		"					
Duplicate (23B0509-DUP1)			Prepared	d: 02/14/23	10:22 Ana	lyzed: 02/14/	/23 12:00					
QC Source Sample: Non-SDG (A3	B0393-04)											
Gasoline Range Organics	0.169	0.0500	0.100	mg/L	1		0.162			5	30%	
Surr: 4-Bromofluorobenzene (Sur)		Recov	ery: 101 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			109 %	50	0-150 %		"					
Duplicate (23B0509-DUP2)			Prepared	d: 02/14/23	10:22 Ana	lyzed: 02/14/	/23 13:29					
QC Source Sample: Non-SDG (A3	B0406-03)											
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 98 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			108 %	50	0-150 %		"					

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID:
A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23B0344 - EPA 5030C Water Blank (23B0344-BLK1) Prepared: 02/09/23 08:37 Analyzed: 02/09/23 12:18 EPA 8260D ND 10.0 20.0 Acetone ug/L 2.00 ND Acrylonitrile 1.00 ug/L 1 Benzene ND 0.100 0.200 ug/L 1 Bromobenzene ND 0.250 0.500 ug/L 1 Bromochloromethane ND 0.500 1.00 ug/L 1 ND Bromodichloromethane 0.500 1.00 ug/L 1 Bromoform ND 0.500 1.00 ug/L 5.00 Bromomethane ND 5.00 ug/L 1 2-Butanone (MEK) ND 5.00 10.0 ug/L 1 n-Butylbenzene ND 0.500 1.00 ug/L 1 sec-Butylbenzene ND 0.500 1.00 ug/L 1 ND 0.500 tert-Butylbenzene 1.00 ug/L 1 ---Carbon disulfide ND 5.00 10.0 ug/L 1 Carbon tetrachloride ND 0.500 ug/L 1.00 1 Chlorobenzene ND 0.250 0.500 ug/L 1 Chloroethane ND 5.00 5.00 ug/L 1 ---Chloroform ND 0.500 1.00 ug/L 1 ND 2.50 5.00 Chloromethane 1 ug/L 2-Chlorotoluene ND 0.500 1.00 ug/L 1 4-Chlorotoluene ND 0.500 1.00 ug/L 1 Dibromochloromethane ND 0.500 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 2.50 5.00 ug/L 1 1,2-Dibromoethane (EDB) ND 0.250 0.500 ug/L 1 ug/L Dibromomethane ND 0.500 1.00 1 0.250 1,2-Dichlorobenzene ND 0.500 ug/L 1 ug/L 1,3-Dichlorobenzene ND 0.250 0.500 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ---ND 0.200 1,1-Dichloroethane 0.400ug/L 1 1,2-Dichloroethane (EDC) ND 0.200 0.400 ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1 cis-1,2-Dichloroethene ND 0.200 0.400 ug/L 1

Apex Laboratories

trans-1,2-Dichloroethene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

0.200

ND

0.400

ug/L

1

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC **RPD** Dilution % REC Limits RPD Analyte Result Ĺimit Units Amount Result Limit Notes Limit

Batch 23B0344 - EPA 5030C							Wa	ater		
Blank (23B0344-BLK1)			Prepared:	02/09/23 08	:37 Anal	yzed: 02/09	/23 12:18			
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1				 	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1				 	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1				 	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1				 	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1				 	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1				 	
Ethylbenzene	ND	0.250	0.500	ug/L	1				 	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1				 	
2-Hexanone	ND	5.00	10.0	ug/L	1				 	
Isopropylbenzene	ND	0.500	1.00	ug/L	1				 	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1				 	
Methylene chloride	ND	5.00	10.0	ug/L	1				 	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1				 	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1				 	
Naphthalene	ND	1.00	2.00	ug/L	1				 	
n-Propylbenzene	ND	0.250	0.500	ug/L	1				 	
Styrene	ND	0.500	1.00	ug/L	1				 	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1				 	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1				 	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1				 	
Toluene	ND	0.500	1.00	ug/L	1				 	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1				 	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1				 	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1				 	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1				 	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1				 	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1				 	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1				 	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1				 	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1				 	
Vinyl chloride	ND	0.200	0.400	ug/L	1				 	
m,p-Xylene	ND	0.500	1.00	ug/L	1				 	
o-Xylene	ND	0.250	0.500	ug/L	1				 	

Surr: 1,4-Difluorobenzene (Surr) Recovery: 94 % Limits: 80-120 % Dilution: Ix

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0344 - EPA 5030C							Wa	ter				
Blank (23B0344-BLK1)			Prepared	1: 02/09/23	08:37 Ana	yzed: 02/09	/23 12:18					
Surr: Toluene-d8 (Surr)		Recor	very: 107 %	Limits: 80	0-120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			100 %	80	0-120 %		"					
LCS (23B0344-BS1)			Prepared	1: 02/09/23	08:37 Anal	yzed: 02/09	/23 10:43					
EPA 8260D												
Acetone	42.3	10.0	20.0	ug/L	1	40.0		106	80-120%			ICV-0
Acrylonitrile	17.6	1.00	2.00	ug/L	1	20.0		88	80-120%			
Benzene	19.2	0.100	0.200	ug/L	1	20.0		96	80-120%			
Bromobenzene	18.6	0.250	0.500	ug/L	1	20.0		93	80-120%			
Bromochloromethane	21.7	0.500	1.00	ug/L	1	20.0		109	80-120%			
Bromodichloromethane	21.0	0.500	1.00	ug/L	1	20.0		105	80-120%			
Bromoform	21.7	0.500	1.00	ug/L	1	20.0		108	80-120%			
Bromomethane	20.3	5.00	5.00	ug/L	1	20.0		101	80-120%			
2-Butanone (MEK)	37.0	5.00	10.0	ug/L	1	40.0		92	80-120%			ICV-0
n-Butylbenzene	22.4	0.500	1.00	ug/L	1	20.0		112	80-120%			
sec-Butylbenzene	21.8	0.500	1.00	ug/L	1	20.0		109	80-120%			
tert-Butylbenzene	20.0	0.500	1.00	ug/L	1	20.0		100	80-120%			
Carbon disulfide	21.1	5.00	10.0	ug/L	1	20.0		105	80-120%			
Carbon tetrachloride	24.0	0.500	1.00	ug/L	1	20.0		120	80-120%			
Chlorobenzene	20.5	0.250	0.500	ug/L	1	20.0		102	80-120%			
Chloroethane	27.8	5.00	5.00	ug/L	1	20.0		139	80-120%			Q-5
Chloroform	21.2	0.500	1.00	ug/L	1	20.0		106	80-120%			
Chloromethane	17.3	2.50	5.00	ug/L	1	20.0		87	80-120%			
2-Chlorotoluene	19.5	0.500	1.00	ug/L	1	20.0		97	80-120%			
4-Chlorotoluene	19.6	0.500	1.00	ug/L	1	20.0		98	80-120%			
Dibromochloromethane	21.8	0.500	1.00	ug/L	1	20.0		109	80-120%			
1,2-Dibromo-3-chloropropane	16.7	2.50	5.00	ug/L	1	20.0		83	80-120%			
1,2-Dibromoethane (EDB)	20.0	0.250	0.500	ug/L	1	20.0		100	80-120%			
Dibromomethane	20.1	0.500	1.00	ug/L	1	20.0		100	80-120%			
1,2-Dichlorobenzene	19.7	0.250	0.500	ug/L	1	20.0		98	80-120%			
1,3-Dichlorobenzene	19.5	0.250	0.500	ug/L	1	20.0		98	80-120%			
1,4-Dichlorobenzene	18.9	0.250	0.500	ug/L	1	20.0		95	80-120%			
Dichlorodifluoromethane	23.6	0.500	1.00	ug/L	1	20.0		118	80-120%			
1,1-Dichloroethane	20.1	0.200	0.400	ug/L	1	20.0		100	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neienberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0344 - EPA 5030C							Wa	ter				
LCS (23B0344-BS1)			Prepared	: 02/09/23	08:37 Ana	lyzed: 02/09/	/23 10:43					
1,2-Dichloroethane (EDC)	22.1	0.200	0.400	ug/L	1	20.0		110	80-120%			
1,1-Dichloroethene	23.0	0.200	0.400	ug/L	1	20.0		115	80-120%			
cis-1,2-Dichloroethene	19.2	0.200	0.400	ug/L	1	20.0		96	80-120%			
trans-1,2-Dichloroethene	20.1	0.200	0.400	ug/L	1	20.0		100	80-120%			
1,2-Dichloropropane	18.3	0.250	0.500	ug/L	1	20.0		92	80-120%			
1,3-Dichloropropane	20.7	0.500	1.00	ug/L	1	20.0		104	80-120%			
2,2-Dichloropropane	22.1	0.500	1.00	ug/L	1	20.0		110	80-120%			
1,1-Dichloropropene	19.8	0.500	1.00	ug/L	1	20.0		99	80-120%			
cis-1,3-Dichloropropene	21.0	0.500	1.00	ug/L	1	20.0		105	80-120%			
trans-1,3-Dichloropropene	22.9	0.500	1.00	ug/L	1	20.0		114	80-120%			
Ethylbenzene	21.6	0.250	0.500	ug/L	1	20.0		108	80-120%			
Hexachlorobutadiene	19.9	2.50	5.00	ug/L	1	20.0		99	80-120%			
2-Hexanone	38.2	5.00	10.0	ug/L	1	40.0		95	80-120%			
Isopropylbenzene	21.8	0.500	1.00	ug/L	1	20.0		109	80-120%			
4-Isopropyltoluene	21.1	0.500	1.00	ug/L	1	20.0		106	80-120%			
Methylene chloride	19.4	5.00	10.0	ug/L	1	20.0		97	80-120%			
4-Methyl-2-pentanone (MiBK)	40.5	5.00	10.0	ug/L	1	40.0		101	80-120%			
Methyl tert-butyl ether (MTBE)	17.9	0.500	1.00	ug/L	1	20.0		89	80-120%			
Naphthalene	17.5	1.00	2.00	ug/L	1	20.0		87	80-120%			
n-Propylbenzene	21.2	0.250	0.500	ug/L	1	20.0		106	80-120%			
Styrene	20.6	0.500	1.00	ug/L	1	20.0		103	80-120%			
1,1,1,2-Tetrachloroethane	20.0	0.200	0.400	ug/L	1	20.0		100	80-120%			
1,1,2,2-Tetrachloroethane	20.7	0.250	0.500	ug/L	1	20.0		104	80-120%			
Tetrachloroethene (PCE)	19.8	0.200	0.400	ug/L	1	20.0		99	80-120%			
Toluene	20.4	0.500	1.00	ug/L	1	20.0		102	80-120%			
1,2,3-Trichlorobenzene	19.1	1.00	2.00	ug/L	1	20.0		96	80-120%			
1,2,4-Trichlorobenzene	17.1	1.00	2.00	ug/L	1	20.0		85	80-120%			
1,1,1-Trichloroethane	22.1	0.200	0.400	ug/L	1	20.0		111	80-120%			
1,1,2-Trichloroethane	20.2	0.250	0.500	ug/L	1	20.0		101	80-120%			
Trichloroethene (TCE)	16.6	0.200	0.400	ug/L	1	20.0		83	80-120%			
Trichlorofluoromethane	26.7	1.00	2.00	ug/L	1	20.0		133	80-120%			Q
1,2,3-Trichloropropane	20.9	0.500	1.00	ug/L	1	20.0		104	80-120%			
1,2,4-Trimethylbenzene	21.6	0.500	1.00	ug/L	1	20.0		108	80-120%			
1,3,5-Trimethylbenzene	20.9	0.500	1.00	ug/L	1	20.0		104	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0344 - EPA 5030C							Wa	ter				
LCS (23B0344-BS1)			Prepared	1: 02/09/23	08:37 Ana	lyzed: 02/09/	/23 10:43					
Vinyl chloride	19.8	0.200	0.400	ug/L	1	20.0		99	80-120%			
m,p-Xylene	43.3	0.500	1.00	ug/L	1	40.0		108	80-120%			
o-Xylene	20.8	0.250	0.500	ug/L	1	20.0		104	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 90 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			103 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			90 %	80	0-120 %		"					
Duplicate (23B0344-DUP1)			Prepared	1: 02/09/23	08:37 Anal	lyzed: 02/09/	/23 13:47					
OC Source Sample: Non-SDG (A3	B0269-13)					-						
Acetone	ND	20.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
n-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	0.820	0.500	1.00	ug/L	1		0.630			26	30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	
Dibromomethane	ND	0.500	1.00	ug/L	1		ND				30%	
				-								

Apex Laboratories

1,2-Dichlorobenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND

Philip Menterg

ND

0.250

0.500

ug/L

1

30%

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D RPD Detection Reporting Spike Source % REC Result Units Dilution % REC RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 23B0344 - EPA 5030C Water Duplicate (23B0344-DUP1) Prepared: 02/09/23 08:37 Analyzed: 02/09/23 13:47 QC Source Sample: Non-SDG (A3B0269-13) 1,3-Dichlorobenzene ND 0.250 0.500 ug/L 1 ND 30% 0.250 1,4-Dichlorobenzene ND 0.500 ug/L 1 ND 30% ug/L Dichlorodifluoromethane ND 0.500 1.00 1 ND 30% 1,1-Dichloroethane ND 0.200 0.400 ug/L 1 ND 30% 1,2-Dichloroethane (EDC) ND 0.200 0.400 1 ND 30% ug/L ---1,1-Dichloroethene ND 0.200 0.400 ug/L 1 ND 30% ug/L cis-1,2-Dichloroethene 13.7 0.200 0.400 1 13.2 4 30% trans-1,2-Dichloroethene 30% ND 0.200 0.400ug/L 1 ND 1,2-Dichloropropane ND 0.250 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% 2,2-Dichloropropane ND 0.500 1.00 ug/L 1 ND 30% 0.500 1.00 1,1-Dichloropropene ND ug/L 1 ND 30% cis-1,3-Dichloropropene ND 0.500 1.00 ug/L 1 ND 30% ND 0.500 1.00 30% trans-1,3-Dichloropropene ug/L 1 ND ug/L Ethylbenzene ND 0.250 0.500 1 ND 30% Hexachlorobutadiene ND 2.50 5.00 ug/L 1 ND ___ 30% 2-Hexanone ND 5.00 10.0 ug/L 1 ND 30% ND 30% Isopropylbenzene 0.500 1.00 ND ug/L 1 4-Isopropyltoluene ND 0.500 1.00 ug/L 1 ND 30% 30% Methylene chloride ND 5.00 10.0 ND ug/L 1 4-Methyl-2-pentanone (MiBK) ND 5.00 10.0 ug/L 1 ND 30% Methyl tert-butyl ether (MTBE) ND 0.500 1.00 ug/L 1 ND ---30% Naphthalene ND 1.00 2.00 ug/L 1 ND 30% ND 30% n-Propylbenzene 0.250 0.500 ND ug/L 1 ND 0.500 1.00 Styrene ug/L 1 ND 30% ND 0.200 0.400 ug/L ND 30% 1.1.1.2-Tetrachloroethane 1 1,1,2,2-Tetrachloroethane ND 0.250 0.500 ND 30% ug/L 1 Tetrachloroethene (PCE) 170 0.200 0.400 ug/L 1 ---145 16 30% ND 0.500 1.00 ug/L 1 ND 30% ND 1.00 2.00 30% 1,2,3-Trichlorobenzene ug/L 1 ND ---1,2,4-Trichlorobenzene ND 1.00 2.00 1 ND 30% ug/L 0.200 0.400 1,1,1-Trichloroethane ND ND 30% ug/L 1

Apex Laboratories

1,1,2-Trichloroethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND

Philip Merenberg

ND

0.250

0.500

ug/L

1

30%

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0344 - EPA 5030C							Wat	ter				
Duplicate (23B0344-DUP1)			Prepared	1: 02/09/23	08:37 Anal	lyzed: 02/09	/23 13:47					
QC Source Sample: Non-SDG (A3	B0269-13)											
Trichloroethene (TCE)	18.9	0.200	0.400	ug/L	1		16.8			12	30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
n,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 97%	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			106 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	0-120 %		"					
QC Source Sample: Non-SDG (A3		20.0	20.0	ua/I	1		ND				30%	
Acetone	ND	20.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
n-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

St. Helens Lagoon Project: Project Number: M0830.03.006 Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Orç	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0344 - EPA 5030C							Wat	ter				
Duplicate (23B0344-DUP2)			Prepared	: 02/09/23	08:37 Anal	yzed: 02/09	/23 14:54					
QC Source Sample: Non-SDG (A3	BB0270-01)											
4-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	
Dibromomethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1		ND				30%	
,1-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
is-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
,2-Dichloropropane	ND	0.250	0.500	ug/L	1		ND				30%	
,3-Dichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
is-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
Ethylbenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Jexachlorobutadiene	ND	2.50	5.00	ug/L	1		ND				30%	
-Hexanone	ND	5.00	10.0	ug/L	1		ND				30%	
sopropylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
-Isopropyltoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Methylene chloride	ND	5.00	10.0	ug/L	1		ND				30%	
-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1		ND				30%	
fethyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L			ND				30%	
Saphthalene	ND	1.00	2.00	ug/L	1		ND				30%	
-Propylbenzene	ND	0.250	0.500	ug/L	1		ND				30%	
tyrene	ND	0.500	1.00	ug/L ug/L	1		ND				30%	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L ug/L	1		ND				30%	
,1,2,2-Tetrachloroethane	ND ND	0.250	0.500	ug/L ug/L	1		ND ND				30%	
.,1,2,2-Tetracmoroetnane	ND	0.230	0.300	ug/L	1		ND				30%	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

		•	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0344 - EPA 5030C							Wa	ter				
Duplicate (23B0344-DUP2)			Prepared	: 02/09/23	08:37 Anal	yzed: 02/09/	/23 14:54					
QC Source Sample: Non-SDG (A31	B0270-01)											
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Toluene	ND	0.500	1.00	ug/L	1		ND				30%	
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
n,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 97 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			106 %		-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	0-120 %		"					
Matrix Spike (23B0344-MS1)			Prepared	1: 02/09/23	08:37 Anal	yzed: 02/09/	/23 21:58					
QC Source Sample: Non-SDG (A31	B0266-01)											
EPA 8260D	<u>.</u>											
Acetone	39.4	10.0	20.0	ug/L	1	40.0	ND	98	39-160%			ICV-(
Acrylonitrile	15.8	1.00	2.00	ug/L	1	20.0	ND	79	63-135%			
Benzene	19.7	0.100	0.200	ug/L	1	20.0	2.66	85	79-120%			
Bromobenzene	15.1	0.250	0.500	ug/L	1	20.0	ND	76	80-120%			Q-(
Bromochloromethane	19.0	0.500	1.00	ug/L	1	20.0	ND	95	78-123%			
Bromodichloromethane	19.0	0.500	1.00	ug/L	1	20.0	ND	95	79-125%			
Bromoform	18.9	0.500	1.00	ug/L	1	20.0	ND	94	66-130%			
Bromomethane	21.6	5.00	5.00	ug/L	1	20.0	ND	108	53-141%			
2-Butanone (MEK)	31.7	5.00	10.0	ug/L	1	40.0	ND	79	56-143%			ICV-0
Daminone (MLIX)	31./	5.00	10.0	_								10 1-0
-Rutylhenzene	183	0.500	1.00	110r/T	1	20.0	ND	92	75_128%			
n-Butylbenzene sec-Butylbenzene	18.3 18.4	0.500 0.500	1.00 1.00	ug/L ug/L	1 1	20.0 20.0	ND ND	92 92	75-128% 77-126%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

RPD Detection Reporting Spike Source % REC % REC Result Units Dilution RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 23B0344 - EPA 5030C Water Matrix Spike (23B0344-MS1) Prepared: 02/09/23 08:37 Analyzed: 02/09/23 21:58 QC Source Sample: Non-SDG (A3B0266-01) Carbon disulfide 19.0 5.00 10.0 1 20.0 ND 95 64-133% ug/L 20.0 Carbon tetrachloride 21.2 0.500 1.00 ug/L 1 ND 106 72-136% Chlorobenzene 17.3 0.250 0.500 ug/L 1 20.0 ND 87 80-120% Chloroethane 28.8 5.00 5.00 ug/L 1 20.0 ND 144 60-138% O-54c Chloroform 18.9 0.500 1.00 1 20.0 ND 94 79-124% ug/L 20.0 Chloromethane 16.6 2.50 5.00 ug/L 1 ND 83 50-139% 2-Chlorotoluene 15.9 0.500 1.00 1 20.0 ND 80 79-122% ug/L 20.0 4-Chlorotoluene 15.7 0.500 1.00 ug/L 1 ND 78 78-122% Dibromochloromethane 18.5 0.500 1.00 ug/L 1 20.0 ND 93 74-126% 1,2-Dibromo-3-chloropropane 13.3 2.50 5.00 ug/L 1 20.0 ND 66 62-128% 1,2-Dibromoethane (EDB) 16.9 0.250 0.500 ug/L 1 20.0 ND 84 77-121% 17.3 0.500 1.00 20.0 87 79-123% Dibromomethane ug/L 1 ND 20.0 1,2-Dichlorobenzene 16.5 0.250 0.500 ug/L 1 ND 83 80-120% 16.5 0.250 0.500 20.0 ND 82 1,3-Dichlorobenzene ug/L 1 80-120% 1,4-Dichlorobenzene 16.2 0.250 0.500 ug/L 1 20.0 ND 81 79-120% Dichlorodifluoromethane 22.0 0.5001.00 ug/L 1 20.0 ND 110 32-152% ___ 1,1-Dichloroethane 18.5 0.200 0.400 ug/L 1 20.0 ND 93 77-125% 20.0 0.200 20.0 1,2-Dichloroethane (EDC) 0.400 ND 100 73-128% ug/L 1

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

40.0

20.0

20.0

20.0

ND

103

83

90

84

86

86

89

78

94

91

78

76

93

89

86

Apex Laboratories

1,1-Dichloroethene

cis-1,2-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

Hexachlorobutadiene

Ethylbenzene

2-Hexanone

Isopropylbenzene

4-Isopropyltoluene

Methylene chloride

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

trans-1,2-Dichloroethene

20.6

16.6

18.1

16.8

17.3

17.2

17.8

15.6

18.8

18.2

15.6

30.6

18.6

17.7

17.2

0.200

0.200

0.200

0.250

0.500

0.500

0.500

0.500

0.500

0.250

2.50

5.00

0.500

0.500

5.00

0.400

0.400

0.400

0.500

1.00

1.00

1.00

1.00

1.00

0.500

5.00

10.0

1.00

1.00

10.0

ug/L

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

71-131%

78-123%

75-124%

78-122%

80-120%

60-139%

79-125%

75-124%

73-127%

79-121%

66-134%

57-139%

72-131%

77-127%

74-124%

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC **RPD** % REC Dilution Analyte Result Ĺimit Units Amount Result Limits RPD Limit Notes Limit Batch 23B0344 - EPA 5030C Water

Dalcii 2300344 - EPA 3030C							VV	atei			
Matrix Spike (23B0344-MS1)			Prepared	1: 02/09/23 08	3:37 Ana	alyzed: 02/09	/23 21:58				
QC Source Sample: Non-SDG (A3I	30266-01)										
4-Methyl-2-pentanone (MiBK)	32.7	5.00	10.0	ug/L	1	40.0	ND	82	67-130%	 	
Methyl tert-butyl ether (MTBE)	15.5	0.500	1.00	ug/L	1	20.0	ND	78	71-124%	 	
Naphthalene	14.2	1.00	2.00	ug/L	1	20.0	ND	71	61-128%	 	
n-Propylbenzene	17.5	0.250	0.500	ug/L	1	20.0	ND	88	76-126%	 	
Styrene	17.0	0.500	1.00	ug/L	1	20.0	ND	85	78-123%	 	
1,1,1,2-Tetrachloroethane	17.0	0.200	0.400	ug/L	1	20.0	ND	85	78-124%	 	
1,1,2,2-Tetrachloroethane	16.6	0.250	0.500	ug/L	1	20.0	ND	83	71-121%	 	
Tetrachloroethene (PCE)	17.0	0.200	0.400	ug/L	1	20.0	ND	85	74-129%	 	
Toluene	17.5	0.500	1.00	ug/L	1	20.0	ND	87	80-121%	 	
1,2,3-Trichlorobenzene	16.0	1.00	2.00	ug/L	1	20.0	ND	80	69-129%	 	
1,2,4-Trichlorobenzene	13.8	1.00	2.00	ug/L	1	20.0	ND	69	69-130%	 	
1,1,1-Trichloroethane	20.8	0.200	0.400	ug/L	1	20.0	ND	104	74-131%	 	
1,1,2-Trichloroethane	17.2	0.250	0.500	ug/L	1	20.0	ND	86	80-120%	 	
Trichloroethene (TCE)	14.9	0.200	0.400	ug/L	1	20.0	ND	74	79-123%	 	Q-01
Trichlorofluoromethane	25.6	1.00	2.00	ug/L	1	20.0	ND	128	65-141%	 	Q-54a
1,2,3-Trichloropropane	17.3	0.500	1.00	ug/L	1	20.0	ND	86	73-122%	 	
1,2,4-Trimethylbenzene	17.6	0.500	1.00	ug/L	1	20.0	ND	88	76-124%	 	
1,3,5-Trimethylbenzene	16.9	0.500	1.00	ug/L	1	20.0	ND	84	75-124%	 	
Vinyl chloride	19.6	0.200	0.400	ug/L	1	20.0	ND	98	58-137%	 	
m,p-Xylene	36.9	0.500	1.00	ug/L	1	40.0	ND	92	80-121%	 	
o-Xylene	17.1	0.250	0.500	ug/L	1	20.0	ND	86	78-122%	 	
Surr: 1,4-Difluorobenzene (Surr)		Recove	ry: 93 %	Limits: 80-1	20 %	Dilt	ution: 1x				_
Toluene-d8 (Surr)			101 %	80-1	20 %		"				
4-Bromofluorobenzene (Surr)			86 %	80-1	20 %		"				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23B0509 - EPA 5030C Water Blank (23B0509-BLK1) Prepared: 02/14/23 08:30 Analyzed: 02/14/23 10:53 EPA 8260D ND 10.0 20.0 Acetone ug/L ND 2.00 Acrylonitrile 1.00 ug/L 1 Benzene ND 0.100 0.200 ug/L 1 Bromobenzene ND 0.250 0.500 ug/L 1 Bromochloromethane ND 0.500 1.00 ug/L 1 ND Bromodichloromethane 0.500 1.00 ug/L 1 Bromoform ND 0.500 1.00 ug/L 1 5.00 Bromomethane ND 5.00 ug/L 1 2-Butanone (MEK) ND 5.00 10.0 ug/L 1 n-Butylbenzene ND 0.500 1.00 ug/L 1 sec-Butylbenzene ND 0.500 1.00 ug/L 1 ND 0.500 tert-Butylbenzene 1.00 ug/L 1 ---Carbon disulfide ND 5.00 10.0 ug/L 1 Carbon tetrachloride ND 0.500 ug/L 1.00 1 Chlorobenzene ND 0.250 0.500 ug/L 1 Chloroethane ND 5.00 5.00 ug/L 1 ---Chloroform ND 0.500 1.00 ug/L 1 ND 2.50 5.00 Chloromethane 1 ug/L 2-Chlorotoluene ND 0.500 1.00 ug/L 1 4-Chlorotoluene ND 0.500 1.00 ug/L 1 Dibromochloromethane ND 0.500 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 2.50 5.00 ug/L 1 1,2-Dibromoethane (EDB) ND 0.250 0.500 ug/L 1 ug/L Dibromomethane ND 0.500 1.00 1 0.250 1,2-Dichlorobenzene ND 0.500 ug/L 1 ug/L 1,3-Dichlorobenzene ND 0.250 0.500 1 1,4-Dichlorobenzene ND 0.250 0.500 ug/L 1 Dichlorodifluoromethane ND 0.500 1.00 ug/L 1 ---ND 0.200 1,1-Dichloroethane 0.400ug/L 1 1,2-Dichloroethane (EDC) ND 0.200 0.400 ug/L 1 1,1-Dichloroethene ND 0.200 0.400 ug/L 1

Apex Laboratories

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

ND

ND

0.200

0.200

0.400

0.400

ug/L

ug/L

1

1

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

<u>Report ID:</u> A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0509 - EPA 5030C							Wa	ter				
Blank (23B0509-BLK1)			Prepared	: 02/14/23	08:30 Anal	yzed: 02/14	/23 10:53					
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1							
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1							
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1							
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1							
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1							
2-Hexanone	ND	5.00	10.0	ug/L	1							
Isopropylbenzene	ND	0.500	1.00	ug/L	1							
1-Isopropyltoluene	ND	0.500	1.00	ug/L	1							
Methylene chloride	ND	5.00	10.0	ug/L	1							
1-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	1.00	2.00	ug/L	1							
n-Propylbenzene	ND	0.250	0.500	ug/L	1							
Styrene	ND	0.500	1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1							
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1							
Toluene	ND	0.500	1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1							
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1							
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1							
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1							
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1							
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
Vinyl chloride	ND	0.200	0.400	ug/L	1							
n,p-Xylene	ND	0.500	1.00	ug/L	1							
o-Xylene	ND	0.250	0.500	ug/L	1							
Surr: 1.4-Difluorobenzene (Surr)		Reco	overv: 95 %	Limits: 80	0-120 %	Dilı	ution: 1x					—

Surr: 1,4-Difluorobenzene (Surr)

Recovery: 95 % Limits: 80-120 %

Dilution: 1x

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0509 - EPA 5030C							Wa	ter				
Blank (23B0509-BLK1)			Prepared	1: 02/14/23	08:30 Ana	lyzed: 02/14	/23 10:53					
Surr: Toluene-d8 (Surr)		Recor	very: 107 %	Limits: 80	0-120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			99 %	80	0-120 %		"					
LCS (23B0509-BS1)			Prepared	1: 02/14/23	08:30 Ana	lyzed: 02/14	/23 09:58					
EPA 8260D												
Acetone	39.5	10.0	20.0	ug/L	1	40.0		99	80-120%			ICV-0
Acrylonitrile	19.9	1.00	2.00	ug/L	1	20.0		99	80-120%			
Benzene	19.3	0.100	0.200	ug/L	1	20.0		97	80-120%			
Bromobenzene	18.6	0.250	0.500	ug/L	1	20.0		93	80-120%			
Bromochloromethane	22.5	0.500	1.00	ug/L	1	20.0		112	80-120%			
Bromodichloromethane	21.8	0.500	1.00	ug/L	1	20.0		109	80-120%			
Bromoform	22.4	0.500	1.00	ug/L	1	20.0		112	80-120%			
Bromomethane	24.2	5.00	5.00	ug/L	1	20.0		121	80-120%			Q-5
2-Butanone (MEK)	38.2	5.00	10.0	ug/L	1	40.0		96	80-120%			ICV-0
n-Butylbenzene	21.5	0.500	1.00	ug/L	1	20.0		108	80-120%			
sec-Butylbenzene	21.6	0.500	1.00	ug/L	1	20.0		108	80-120%			
tert-Butylbenzene	19.9	0.500	1.00	ug/L	1	20.0		99	80-120%			
Carbon disulfide	21.6	5.00	10.0	ug/L	1	20.0		108	80-120%			
Carbon tetrachloride	23.7	0.500	1.00	ug/L	1	20.0		119	80-120%			
Chlorobenzene	19.8	0.250	0.500	ug/L	1	20.0		99	80-120%			
Chloroethane	34.9	5.00	5.00	ug/L	1	20.0		175	80-120%			Q-5
Chloroform	21.4	0.500	1.00	ug/L	1	20.0		107	80-120%			
Chloromethane	19.3	2.50	5.00	ug/L	1	20.0		97	80-120%			
2-Chlorotoluene	19.7	0.500	1.00	ug/L	1	20.0		99	80-120%			
4-Chlorotoluene	19.3	0.500	1.00	ug/L	1	20.0		96	80-120%			
Dibromochloromethane	21.5	0.500	1.00	ug/L	1	20.0		107	80-120%			
1,2-Dibromo-3-chloropropane	16.3	2.50	5.00	ug/L	1	20.0		81	80-120%			
1,2-Dibromoethane (EDB)	19.5	0.250	0.500	ug/L	1	20.0		97	80-120%			
Dibromomethane	20.7	0.500	1.00	ug/L	1	20.0		103	80-120%			
1,2-Dichlorobenzene	20.3	0.250	0.500	ug/L	1	20.0		101	80-120%			
1,3-Dichlorobenzene	19.8	0.250	0.500	ug/L	1	20.0		99	80-120%			
1,4-Dichlorobenzene	19.6	0.250	0.500	ug/L	1	20.0		98	80-120%			
Dichlorodifluoromethane	23.2	0.500	1.00	ug/L	1	20.0		116	80-120%			
1,1-Dichloroethane	20.8	0.200	0.400	ug/L	1	20.0		104	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC RPD Analyte Result Limit Limit Units Dilution Amount Result % REC Limits RPD Limit Notes

Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Batch 23B0509 - EPA 5030C							Wa	ter				
LCS (23B0509-BS1)			Prepared	: 02/14/23	08:30 Anal	lyzed: 02/14/	/23 09:58					
1,2-Dichloroethane (EDC)	22.7	0.200	0.400	ug/L	1	20.0		114	80-120%			
1,1-Dichloroethene	22.6	0.200	0.400	ug/L	1	20.0		113	80-120%			
cis-1,2-Dichloroethene	19.7	0.200	0.400	ug/L	1	20.0		98	80-120%			
trans-1,2-Dichloroethene	19.8	0.200	0.400	ug/L	1	20.0		99	80-120%			
1,2-Dichloropropane	19.3	0.250	0.500	ug/L	1	20.0		97	80-120%			
1,3-Dichloropropane	20.5	0.500	1.00	ug/L	1	20.0		102	80-120%			
2,2-Dichloropropane	22.0	0.500	1.00	ug/L	1	20.0		110	80-120%			
1,1-Dichloropropene	19.9	0.500	1.00	ug/L	1	20.0		99	80-120%			
cis-1,3-Dichloropropene	20.0	0.500	1.00	ug/L	1	20.0		100	80-120%			
trans-1,3-Dichloropropene	22.7	0.500	1.00	ug/L	1	20.0		114	80-120%			
Ethylbenzene	20.4	0.250	0.500	ug/L	1	20.0		102	80-120%			
Hexachlorobutadiene	19.5	2.50	5.00	ug/L	1	20.0		97	80-120%			
2-Hexanone	37.3	5.00	10.0	ug/L	1	40.0		93	80-120%			
Isopropylbenzene	20.8	0.500	1.00	ug/L	1	20.0		104	80-120%			
4-Isopropyltoluene	21.0	0.500	1.00	ug/L	1	20.0		105	80-120%			
Methylene chloride	20.0	5.00	10.0	ug/L	1	20.0		100	80-120%			
4-Methyl-2-pentanone (MiBK)	38.6	5.00	10.0	ug/L	1	40.0		96	80-120%			
Methyl tert-butyl ether (MTBE)	18.4	0.500	1.00	ug/L	1	20.0		92	80-120%			
Naphthalene	17.6	1.00	2.00	ug/L	1	20.0		88	80-120%			
n-Propylbenzene	20.6	0.250	0.500	ug/L	1	20.0		103	80-120%			
Styrene	20.4	0.500	1.00	ug/L	1	20.0		102	80-120%			
1,1,1,2-Tetrachloroethane	19.5	0.200	0.400	ug/L	1	20.0		97	80-120%			
1,1,2,2-Tetrachloroethane	20.1	0.250	0.500	ug/L	1	20.0		100	80-120%			
Tetrachloroethene (PCE)	19.2	0.200	0.400	ug/L	1	20.0		96	80-120%			
Toluene	19.3	0.500	1.00	ug/L	1	20.0		97	80-120%			
1,2,3-Trichlorobenzene	19.5	1.00	2.00	ug/L	1	20.0		97	80-120%			
1,2,4-Trichlorobenzene	17.6	1.00	2.00	ug/L	1	20.0		88	80-120%			
1,1,1-Trichloroethane	22.1	0.200	0.400	ug/L	1	20.0		111	80-120%			
1,1,2-Trichloroethane	20.8	0.250	0.500	ug/L	1	20.0		104	80-120%			
Trichloroethene (TCE)	18.2	0.200	0.400	ug/L	1	20.0		91	80-120%			
Trichlorofluoromethane	27.4	1.00	2.00	ug/L	1	20.0		137	80-120%			Ç
1,2,3-Trichloropropane	21.7	0.500	1.00	ug/L	1	20.0		109	80-120%			
1,2,4-Trimethylbenzene	21.5	0.500	1.00	ug/L	1	20.0		108	80-120%			
1,3,5-Trimethylbenzene	20.5	0.500	1.00	ug/L	1	20.0		102	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0509 - EPA 5030C							Wa	ter				
LCS (23B0509-BS1)			Prepared	1: 02/14/23	08:30 Anal	yzed: 02/14	/23 09:58					
Vinyl chloride	22.2	0.200	0.400	ug/L	1	20.0		111	80-120%			
m,p-Xylene	41.3	0.500	1.00	ug/L	1	40.0		103	80-120%			
o-Xylene	19.6	0.250	0.500	ug/L	1	20.0		98	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 94 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			91 %	80	0-120 %		"					
Duplicate (23B0509-DUP1)			Prepared	1: 02/14/23	10:22 Anal	lyzed: 02/14	/23 12:00					
OC Source Sample: Non-SDG (A3	B0393-04)											
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	11.4	0.100	0.200	ug/L	1		11.3			1	30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
n-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
l-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	
Dibromomethane	ND	0.500	1.00	ug/L	1		ND				30%	
				-								

Apex Laboratories

1,2-Dichlorobenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND

Philip Meinberg

ND

0.250

0.500

ug/L

1

30%

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

St. Helens Lagoon Project: Project Number: M0830.03.006 Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Orç	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0509 - EPA 5030C							Wat	ter				
Duplicate (23B0509-DUP1)			Prepared	: 02/14/23	10:22 Anal	yzed: 02/14/	/23 12:00					
QC Source Sample: Non-SDG (A3	B0393-04)											
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1		ND				30%	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1		ND				30%	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
,2-Dichloropropane	ND	0.250	0.500	ug/L	1		ND				30%	
,3-Dichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
eis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
Ethylbenzene	4.45	0.250	0.500	ug/L	1		4.25			5	30%	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1		ND				30%	
2-Hexanone	ND	5.00	10.0	ug/L	1		ND				30%	
sopropylbenzene	0.550	0.500	1.00	ug/L	1		0.530			4	30%	
1-Isopropyltoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Methylene chloride	ND	5.00	10.0	ug/L	1		ND				30%	
1-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1		ND				30%	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1		ND				30%	
Naphthalene	2.69	1.00	2.00	ug/L	1		2.49			8	30%	
n-Propylbenzene	0.760	0.250	0.500	ug/L	1		0.780			3	30%	
Styrene	ND	0.500	1.00	ug/L	1		ND				30%	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Toluene	ND	0.500	1.00	ug/L	1		ND				30%	
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1		ND				30%	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ $custody\ document.\ This\ analytical\ report\ must\ be\ reproduced\ in\ its\ entirety.$

Philip Nevenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	260D						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 23B0509 - EPA 5030C							Wa	ter					
Duplicate (23B0509-DUP1)			Prepared	1: 02/14/23	10:22 Ana	lyzed: 02/14	/23 12:00						
QC Source Sample: Non-SDG (A3	B0393-04)												
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%		
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%		
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%		
1,2,4-Trimethylbenzene	2.85	0.500	1.00	ug/L	1		2.73			4	30%		
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%		
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%		
m,p-Xylene	0.840	0.500	1.00	ug/L	1		0.760			10	30%		
o-Xylene	5.89	0.250	0.500	ug/L	1		5.58			5	30%		
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 94 %	Limits: 80	0-120 %	Dilı	ution: 1x						
Toluene-d8 (Surr)			106 %	80	0-120 %		"						
4-Bromofluorobenzene (Surr)			94 %	80	0-120 %		"						
QC Source Sample: Non-SDG (A3		10.0	20.0	/T	4		ND				200/		
Acetone	ND	10.0	20.0	ug/L	1		ND				30%		
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%		
Benzene	ND	0.100	0.200	ug/L	1		ND				30%		
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%		
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%		
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%		
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%		
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%		
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%		
n-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%		
sec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%		
tert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%		
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%		
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%		
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%		
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%		
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%		
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%		
2-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project: St. Helens Lagoon Project Number: M0830.03.006 Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Orç	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0509 - EPA 5030C							Wat	ter				
Duplicate (23B0509-DUP2)			Prepared	: 02/14/23	10:22 Anal	yzed: 02/14/	/23 13:29					
QC Source Sample: Non-SDG (A3	BB0406-03)											
4-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	
Dibromomethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1		ND				30%	
,1-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
is-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
ans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
,2-Dichloropropane	ND	0.250	0.500	ug/L	1		ND				30%	
,3-Dichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
ris-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
Ethylbenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1		ND				30%	
-Hexanone	ND	5.00	10.0	ug/L	1		ND				30%	
sopropylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
-Isopropyltoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Methylene chloride	ND	5.00	10.0	ug/L ug/L	1		ND				30%	
-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1		ND				30%	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L ug/L	1		ND				30%	
laphthalene	ND	1.00	2.00	ug/L ug/L	1		ND				30%	
-Propylbenzene	ND ND	0.250	0.500	·	1		ND ND				30%	
• •	ND ND	0.500	1.00	ug/L	1		ND ND				30%	
tyrene		0.300	0.400	ug/L			ND ND					
,1,1,2-Tetrachloroethane	ND			ug/L	1						30%	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1		ND				30%	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

		•	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0509 - EPA 5030C							Wa	iter				
Duplicate (23B0509-DUP2)			Prepared	: 02/14/23	10:22 Ana	lyzed: 02/14	/23 13:29					
QC Source Sample: Non-SDG (A3	B0406-03)											
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Toluene	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
n,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 96 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			104 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	0-120 %		"					
Matrix Spike (23B0509-MS1)			Prepared	: 02/14/23	10:22 Ana	lyzed: 02/14	/23 14:35					
QC Source Sample: Non-SDG (A3	B0406-06)											
EPA 8260D	_											
Acetone	1090	10.0	20.0	ug/L	1	40.0	1070	47	39-160%			E, ICV-
Acrylonitrile	22.5	1.00	2.00	ug/L	1	20.0	ND	99	63-135%			
Benzene	48.9	0.100	0.200	ug/L	1	20.0	29.5	97	79-120%			
Bromobenzene	18.5	0.250	0.500	ug/L	1	20.0	ND	92	80-120%			
Bromochloromethane	21.1	0.500	1.00	ug/L	1	20.0	ND	106	78-123%			
Bromodichloromethane	21.2	0.500	1.00	ug/L	1	20.0	ND	106	79-125%			
Bromoform	20.2	0.500	1.00	ug/L	1	20.0	ND	101	66-130%			
Bromomethane	82.5	5.00	5.00	ug/L	1	20.0	61.0	108	53-141%			Q-
-Butanone (MEK)	113	5.00	10.0	ug/L	1	40.0	69.1	110	56-143%			ICV-
n-Butylbenzene	23.5	0.500	1.00	ug/L	1	20.0	0.690	114	75-128%			
ec-Butylbenzene	21.4	0.500	1.00	ug/L	1	20.0	1.07	102	77-126%			
ert-Butylbenzene	19.7	0.500	1.00	ug/L	1	20.0	ND	99	78-124%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neienberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0509 - EPA 5030C							Wa	ter				
Matrix Spike (23B0509-MS1)			Prepared	1: 02/14/23	10:22 Ana	lyzed: 02/14	/23 14:35					
QC Source Sample: Non-SDG (A	3B0406-06)											
Carbon disulfide	28.3	5.00	10.0	ug/L	1	20.0	ND	141	64-133%			Q-0
Carbon tetrachloride	24.6	0.500	1.00	ug/L	1	20.0	ND	123	72-136%			
Chlorobenzene	19.6	0.250	0.500	ug/L	1	20.0	ND	98	80-120%			
Chloroethane	43.8	5.00	5.00	ug/L	1	20.0	13.3	152	60-138%			Q-54
Chloroform	21.2	0.500	1.00	ug/L	1	20.0	ND	106	79-124%			
Chloromethane	144	2.50	5.00	ug/L	1	20.0	127	84	50-139%			
2-Chlorotoluene	18.9	0.500	1.00	ug/L	1	20.0	ND	95	79-122%			
4-Chlorotoluene	18.6	0.500	1.00	ug/L	1	20.0	ND	93	78-122%			
Dibromochloromethane	20.9	0.500	1.00	ug/L	1	20.0	ND	105	74-126%			
1,2-Dibromo-3-chloropropane	20.4	2.50	5.00	ug/L	1	20.0	ND	102	62-128%			
1,2-Dibromoethane (EDB)	20.2	0.250	0.500	ug/L	1	20.0	ND	101	77-121%			
Dibromomethane	20.3	0.500	1.00	ug/L	1	20.0	ND	102	79-123%			
1,2-Dichlorobenzene	19.4	0.250	0.500	ug/L	1	20.0	ND	97	80-120%			
1,3-Dichlorobenzene	18.8	0.250	0.500	ug/L	1	20.0	ND	94	80-120%			
1,4-Dichlorobenzene	18.3	0.250	0.500	ug/L	1	20.0	ND	92	79-120%			
Dichlorodifluoromethane	23.0	0.500	1.00	ug/L	1	20.0	ND	115	32-152%			
1,1-Dichloroethane	21.0	0.200	0.400	ug/L	1	20.0	ND	105	77-125%			
1,2-Dichloroethane (EDC)	20.7	0.200	0.400	ug/L	1	20.0	ND	102	73-128%			
1,1-Dichloroethene	23.5	0.200	0.400	ug/L	1	20.0	ND	118	71-131%			
cis-1,2-Dichloroethene	20.6	0.200	0.400	ug/L	1	20.0	ND	103	78-123%			
trans-1,2-Dichloroethene	21.7	0.200	0.400	ug/L	1	20.0	ND	108	75-124%			
1,2-Dichloropropane	20.1	0.250	0.500	ug/L	1	20.0	ND	101	78-122%			
1,3-Dichloropropane	19.6	0.500	1.00	ug/L	1	20.0	ND	98	80-120%			
2,2-Dichloropropane	21.0	0.500	1.00	ug/L	1	20.0	ND	105	60-139%			
1,1-Dichloropropene	22.1	0.500	1.00	ug/L	1	20.0	ND	110	79-125%			
cis-1,3-Dichloropropene	19.1	0.500	1.00	ug/L	1	20.0	ND	96	75-124%			
trans-1,3-Dichloropropene	21.2	0.500	1.00	ug/L	1	20.0	ND	106	73-127%			
Ethylbenzene	177	0.250	0.500	ug/L	1	20.0	180	-13	79-121%			Q-0
Hexachlorobutadiene	17.2	2.50	5.00	ug/L	1	20.0	ND	86	66-134%			
2-Hexanone	54.6	5.00	10.0	ug/L	1	40.0	10.6	110	57-139%			
Isopropylbenzene	29.8	0.500	1.00	ug/L	1	20.0	9.06	104	72-131%			
4-Isopropyltoluene	26.0	0.500	1.00	ug/L	1	20.0	3.15	114	77-127%			
				- ~		• • •						

Apex Laboratories

Methylene chloride

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

104

74-124%

ND

20.0

Philip Meinberg

20.9

5.00

10.0

ug/L

1

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Result Units Dilution % REC RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 23B0509 - EPA 5030C Water Matrix Spike (23B0509-MS1) Prepared: 02/14/23 10:22 Analyzed: 02/14/23 14:35 QC Source Sample: Non-SDG (A3B0406-06) 4-Methyl-2-pentanone (MiBK) 64.1 5.00 10.0 1 40.0 22.9 103 67-130% ug/L Methyl tert-butyl ether (MTBE) 20.0 18.6 0.500 1.00 ug/L 1 ND 93 71-124% ug/L Naphthalene 95.8 1.00 2.00 1 20.0 83.8 60 61-128% Q-03 n-Propylbenzene 40.6 0.250 0.500 ug/L 1 20.0 21.4 96 76-126% 18.8 0.500 1.00 1 20.0 ND 94 78-123% Styrene ug/L 20.0 92 1,1,1,2-Tetrachloroethane 18.4 0.200 0.400ug/L 1 ND 78-124% 1,1,2,2-Tetrachloroethane 20.4 0.250 0.500 1 20.0 ND 102 71-121% ug/L Tetrachloroethene (PCE) 19.9 20.0 74-129% 0.200 0.400ug/L 1 ND 100 Q-01 Toluene 116 0.500 1.00 ug/L 1 20.0 107 43 80-121% 1,2,3-Trichlorobenzene 19.4 1.00 2.00 ug/L 1 20.0 ND 97 69-129% 1,2,4-Trichlorobenzene 18.0 1.00 2.00 ug/L 1 20.0 ND 90 69-130% 1,1,1-Trichloroethane 22.3 0.200 0.40020.0 74-131% ug/L 1 ND 111 20.0 97 1,1,2-Trichloroethane 19.3 0.250 0.500 ug/L 1 ND 80-120% 20.0 Trichloroethene (TCE) 18.3 0.200 0.400 ND 92 79-123% ug/L 1 ug/L Q-54b Trichlorofluoromethane 27.0 1.00 2.00 1 20.0 ND 135 65-141% 1,2,3-Trichloropropane 20.8 0.500 1.00 ug/L 1 20.0 ND 104 73-122% 1,2,4-Trimethylbenzene 264 0.500 1.00 ug/L 1 20.0 269 -25 76-124% E, Q-03 84.9 20.0 78 75-124% 1,3,5-Trimethylbenzene 0.500 1.00 69.3 ug/L 1 25.1 0.200 20.0 ND 58-137% Vinyl chloride 0.400ug/L 1 126 Q-03, E 0.500 1.00 627 40.0 802 -437 80-121% m,p-Xylene ug/L 1 393 0.250 0.500 20.0 443 E, Q-03 o-Xylene ug/L -251 78-122% Surr: 1,4-Difluorobenzene (Surr) Recovery: 98 % Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 99 % 80-120 %

80-120 %

95 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

4-Bromofluorobenzene (Surr)

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

			_			Snike	Source		0/ ===		D	
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0743 - EPA 5030C							Wa	ter				
Blank (23B0743-BLK1)			Prepared	: 02/20/23	13:10 Anal	lyzed: 02/20	/23 15:45					
EPA 8260D SIM												
Benzene	ND	0.0500	0.100	ug/L	1							
Toluene	ND	0.0500	0.100	ug/L	1							
Ethylbenzene	ND	0.0500	0.100	ug/L	1							
m,p-Xylene	ND	0.100	0.200	ug/L	1							
o-Xylene	ND	0.0500	0.100	ug/L	1							
1,2,4-Trimethylbenzene	ND	0.0500	0.100	ug/L	1							
1,3,5-Trimethylbenzene	ND	0.0500	0.100	ug/L	1							
Chloroform	ND	0.0500	0.100	ug/L	1							
1,2-Dibromo-3-chloropropane	ND	0.100	0.200	ug/L	1							
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1							
1,1-Dichloroethane	ND	0.0100	0.0200	ug/L	1							
1,2-Dichloroethane (EDC)	ND	0.0100	0.0200	ug/L	1							
1,1-Dichloroethene	ND	0.0100	0.0200	ug/L	1							
cis-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1							
trans-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1							
1,2-Dichloropropane	ND	0.0100	0.0200	ug/L	1							
cis-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1							
trans-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.0100	0.0200	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.0100	0.0200	ug/L	1							
Tetrachloroethene (PCE)	ND	0.0100	0.0200	ug/L	1							
Trichloroethene (TCE)	ND	0.0100	0.0200	ug/L	1							
1,2,3-Trichloropropane	ND	0.0500	0.100	ug/L	1							
Vinyl chloride	ND	0.0100	0.0200	ug/L	1							
1,1,2-Trichloroethane	ND	0.0100	0.0200	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recove	ery: 104 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80	0-120 %		"					
LCS (23B0743-BS1)			Prepared	: 02/20/23	13:10 Anal	vzed: 02/20	/23 14:52					
EPA 8260D SIM						, 0 2 , 2 0						
Benzene	0.227	0.0500	0.100	ug/L	1	0.200		114	80-120%			
Toluene	0.209	0.0500	0.100	ug/L	1	0.200		105	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	latile Orga	nic Com	pounds b	y EPA 826	OD SIM					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0743 - EPA 5030C							Wa	ter				
LCS (23B0743-BS1)			Prepared	: 02/20/23	13:10 Anal	lyzed: 02/20/	/23 14:52					
Ethylbenzene	0.202	0.0500	0.100	ug/L	1	0.200		101	80-120%			
n,p-Xylene	0.408	0.100	0.200	ug/L	1	0.400		102	80-120%			
o-Xylene	0.204	0.0500	0.100	ug/L	1	0.200		102	80-120%			
1,2,4-Trimethylbenzene	0.207	0.0500	0.100	ug/L	1	0.200		104	80-120%			
1,3,5-Trimethylbenzene	0.205	0.0500	0.100	ug/L	1	0.200		103	80-120%			
Chloroform	0.232	0.0500	0.100	ug/L	1	0.200		116	80-120%			
1,2-Dibromo-3-chloropropane	0.202	0.100	0.200	ug/L	1	0.200		101	80-120%			
1,2-Dibromoethane (EDB)	0.199	0.0100	0.0200	ug/L	1	0.200		100	80-120%			
1,1-Dichloroethane	0.234	0.0100	0.0200	ug/L	1	0.200		117	80-120%			
1,2-Dichloroethane (EDC)	0.221	0.0100	0.0200	ug/L	1	0.200		111	80-120%			
1,1-Dichloroethene	0.228	0.0100	0.0200	ug/L	1	0.200		114	80-120%			
cis-1,2-Dichloroethene	0.235	0.0100	0.0200	ug/L	1	0.200		118	80-120%			
rans-1,2-Dichloroethene	0.228	0.0100	0.0200	ug/L	1	0.200		114	80-120%			
1,2-Dichloropropane	0.229	0.0100	0.0200	ug/L	1	0.200		114	80-120%			
cis-1,3-Dichloropropene	0.202	0.0100	0.0200	ug/L	1	0.200		101	80-120%			
rans-1,3-Dichloropropene	0.210	0.0100	0.0200	ug/L	1	0.200		105	80-120%			
Methyl tert-butyl ether (MTBE)	0.223	0.0100	0.0200	ug/L	1	0.200		112	80-120%			
1,1,2,2-Tetrachloroethane	0.214	0.0100	0.0200	ug/L	1	0.200		107	80-120%			
Tetrachloroethene (PCE)	0.196	0.0100	0.0200	ug/L	1	0.200		98	80-120%			
Trichloroethene (TCE)	0.219	0.0100	0.0200	ug/L	1	0.200		110	80-120%			
1,2,3-Trichloropropane	0.196	0.0500	0.100	ug/L	1	0.200		98	80-120%			
Vinyl chloride	0.227	0.0100	0.0200	ug/L	1	0.200		113	80-120%			
1,1,2-Trichloroethane	0.204	0.0100	0.0200	ug/L	1	0.200		102	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 104 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	-120 %		"					
Duplicate (23B0743-DUP1)			Prenared	: 02/20/23	13:10 Anal	yzed: 02/20/	/23 17:33					
OC Source Sample: Non-SDG (A3	B0522-01)		Trepared	. 02/20/23	12.10 / Illu	., 234. 02, 20,	25 17.55					
Benzene	ND	0.0500	0.100	ug/L	1		ND				30%	
Toluene	ND	0.0500	0.100	ug/L	1		ND				30%	
Ethylbenzene	ND	0.0500	0.100	ug/L	1		ND				30%	
n,p-Xylene	ND	0.100	0.200	ug/L ug/L	1		ND				30%	
o-Xylene	ND	0.0500	0.100	ug/L	1		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	latile Orga	nic Com	pounds b	y EPA 826	OD SIM					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0743 - EPA 5030C							Wa	ter				
Duplicate (23B0743-DUP1)			Prepared	: 02/20/23	13:10 Ana	yzed: 02/20	/23 17:33					
QC Source Sample: Non-SDG (A3	B0522-01)											
1,2,4-Trimethylbenzene	ND	0.0500	0.100	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.0500	0.100	ug/L	1		ND				30%	
Chloroform	ND	0.0500	0.100	ug/L	1		ND				30%	
1,2-Dibromo-3-chloropropane	ND	0.100	0.200	ug/L	1		ND				30%	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1		ND				30%	
1,1-Dichloroethane	ND	0.0100	0.0200	ug/L	1		ND				30%	
1,2-Dichloroethane (EDC)	ND	0.0100	0.0200	ug/L	1		ND				30%	
1,1-Dichloroethene	ND	0.0100	0.0200	ug/L	1		ND				30%	
cis-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1		ND				30%	
rans-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1		ND				30%	
1,2-Dichloropropane	ND	0.0100	0.0200	ug/L	1		ND				30%	
cis-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1		ND				30%	
trans-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1		ND				30%	
Methyl tert-butyl ether (MTBE)	ND	0.0100	0.0200	ug/L	1		ND				30%	
1,1,2,2-Tetrachloroethane	ND	0.0100	0.0200	ug/L	1		ND				30%	
Tetrachloroethene (PCE)	ND	0.0100	0.0200	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND	0.0100	0.0200	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.0500	0.100	ug/L	1		ND				30%	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1		ND				30%	
1,1,2-Trichloroethane	ND	0.0100	0.0200	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recove	ery: 103 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			99 %		0-120 %		"					
Matrix Spike (23B0743-MS1)			Prepared	: 02/20/23	13:10 Ana	lyzed: 02/20	/23 20:14			_		
QC Source Sample: Non-SDG (A3	B0522-05)		•									
EPA 8260D SIM												
Benzene	0.192	0.0500	0.100	ug/L	1	0.200	ND	96	79-120%			
Toluene	0.166	0.0500	0.100	ug/L	1	0.200	ND	83	80-121%			
Ethylbenzene	0.147	0.0500	0.100	ug/L	1	0.200	ND	74	79-121%			(
n,p-Xylene	0.285	0.100	0.200	ug/L	1	0.400	ND	71	80-121%			(
o-Xylene	0.142	0.0500	0.100	ug/L	1	0.200	ND	71	78-122%			
1,2,4-Trimethylbenzene	0.142	0.0500	0.100	ug/L	1	0.200	ND	71	76-124%			(

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D SIM

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0743 - EPA 5030C							Wa	ter				
Matrix Spike (23B0743-MS1)			Prepared	: 02/20/23	13:10 Anal	lyzed: 02/20	/23 20:14					
QC Source Sample: Non-SDG (A3)	B0522-05)											
1,3,5-Trimethylbenzene	0.132	0.0500	0.100	ug/L	1	0.200	ND	66	75-124%			Q-01
Chloroform	0.179	0.0500	0.100	ug/L	1	0.200	ND	90	79-124%			
1,2-Dibromo-3-chloropropane	0.134	0.100	0.200	ug/L	1	0.200	ND	67	62-128%			Ja
1,2-Dibromoethane (EDB)	0.150	0.0100	0.0200	ug/L	1	0.200	ND	75	77-121%			Q-01
1,1-Dichloroethane	0.191	0.0100	0.0200	ug/L	1	0.200	ND	95	77-125%			
1,2-Dichloroethane (EDC)	0.177	0.0100	0.0200	ug/L	1	0.200	ND	88	73-128%			
1,1-Dichloroethene	0.196	0.0100	0.0200	ug/L	1	0.200	ND	98	71-131%			
cis-1,2-Dichloroethene	0.204	0.0100	0.0200	ug/L	1	0.200	0.0212	91	78-123%			
trans-1,2-Dichloroethene	0.190	0.0100	0.0200	ug/L	1	0.200	ND	95	75-124%			
1,2-Dichloropropane	0.178	0.0100	0.0200	ug/L	1	0.200	ND	89	78-122%			
cis-1,3-Dichloropropene	0.154	0.0100	0.0200	ug/L	1	0.200	ND	77	75-124%			
trans-1,3-Dichloropropene	0.158	0.0100	0.0200	ug/L	1	0.200	ND	79	73-127%			
Methyl tert-butyl ether (MTBE)	0.178	0.0100	0.0200	ug/L	1	0.200	ND	89	71-124%			
1,1,2,2-Tetrachloroethane	0.164	0.0100	0.0200	ug/L	1	0.200	ND	82	71-121%			
Tetrachloroethene (PCE)	0.158	0.0100	0.0200	ug/L	1	0.200	ND	79	74-129%			
Trichloroethene (TCE)	0.175	0.0100	0.0200	ug/L	1	0.200	ND	87	79-123%			
1,2,3-Trichloropropane	0.154	0.0500	0.100	ug/L	1	0.200	ND	77	73-122%			
Vinyl chloride	0.227	0.0100	0.0200	ug/L	1	0.200	ND	113	58-137%			
1,1,2-Trichloroethane	0.157	0.0100	0.0200	ug/L	1	0.200	ND	78	80-120%			Q-01
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 105 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	0-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Reporting Detection Spike Source % REC **RPD** Dilution % REC Analyte Result Ĺimit Units Amount Result Limits RPD Limit Notes Limit

Anaryte	Resuit	Limit	Liiiit	Units	Dilution	Amount	Kesuit	70 KEC	Limits	KPD	Limit	Notes
Batch 23B0481 - EPA 3510C (<i>F</i>	Acid/Base I	Neutral)					Wa	ter				
Blank (23B0481-BLK1)			Prepared	02/13/23	11:36 Anal	yzed: 02/13/	23 18:15					
EPA 8270E												
Acenaphthene	ND	0.0100	0.0200	ug/L	1							Q-30
Acenaphthylene	ND	0.0100	0.0200	ug/L	1							
Anthracene	ND	0.0100	0.0200	ug/L	1							
Benz(a)anthracene	ND	0.0100	0.0200	ug/L	1							
Benzo(a)pyrene	ND	0.0150	0.0300	ug/L	1							
Benzo(b)fluoranthene	ND	0.0150	0.0300	ug/L	1							
Benzo(k)fluoranthene	ND	0.0150	0.0300	ug/L	1							
Benzo(g,h,i)perylene	ND	0.0100	0.0200	ug/L	1							
Chrysene	ND	0.0100	0.0200	ug/L	1							
Dibenz(a,h)anthracene	ND	0.0100	0.0200	ug/L	1							
Fluoranthene	ND	0.0100	0.0200	ug/L	1							
Fluorene	ND	0.0100	0.0200	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND	0.0100	0.0200	ug/L	1							
1-Methylnaphthalene	ND	0.0200	0.0400	ug/L	1							Q-30
2-Methylnaphthalene	ND	0.0200	0.0400	ug/L	1							Q-30
Naphthalene	ND	0.0200	0.0400	ug/L	1							Q-30
Phenanthrene	ND	0.0100	0.0200	ug/L	1							
Pyrene	ND	0.0100	0.0200	ug/L	1							
Carbazole	ND	0.0150	0.0300	ug/L	1							
Dibenzofuran	ND	0.0100	0.0200	ug/L	1							Q-30
2-Chlorophenol	ND	0.0500	0.100	ug/L	1							
4-Chloro-3-methylphenol	ND	0.100	0.200	ug/L	1							
2,4-Dichlorophenol	ND	0.0500	0.100	ug/L	1							
2,4-Dimethylphenol	ND	0.0500	0.100	ug/L	1							
2,4-Dinitrophenol	ND	0.250	0.500	ug/L	1							
4,6-Dinitro-2-methylphenol	ND	0.250	0.500	ug/L	1							
2-Methylphenol	ND	0.0250	0.0500	ug/L	1							
3+4-Methylphenol(s)	ND	0.0250	0.0500	ug/L	1							
2-Nitrophenol	ND	0.100	0.200	ug/L	1							
4-Nitrophenol	ND	0.100	0.200	ug/L	1							
Pentachlorophenol (PCP)	ND	0.100	0.200	ug/L	1							
Phenol	ND	0.200	0.400	ug/L	1							
2,3,4,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0481 - EPA 3510C (Acid/Base	Neutral)					Wa	ter				
Blank (23B0481-BLK1)			Prepared	: 02/13/23	11:36 Anal	yzed: 02/13/	/23 18:15					
2,3,5,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1							
2,4,5-Trichlorophenol	ND	0.0500	0.100	ug/L	1							
2,4,6-Trichlorophenol	ND	0.0500	0.100	ug/L	1							
Bis(2-ethylhexyl)phthalate	ND	0.200	0.400	ug/L	1							
Butyl benzyl phthalate	ND	0.200	0.400	ug/L	1							
Diethylphthalate	ND	0.200	0.400	ug/L	1							
Dimethylphthalate	ND	0.200	0.400	ug/L	1							
Di-n-butylphthalate	ND	0.200	0.400	ug/L	1							
Di-n-octyl phthalate	ND	0.200	0.400	ug/L	1							
N-Nitrosodimethylamine	ND	0.0250	0.0500	ug/L	1							
N-Nitroso-di-n-propylamine	ND	0.0250	0.0500	ug/L	1							
N-Nitrosodiphenylamine	ND	0.0250	0.0500	ug/L	1							
Bis(2-Chloroethoxy) methane	ND	0.0250	0.0500	ug/L	1							
Bis(2-Chloroethyl) ether	ND	0.0250	0.0500	ug/L	1							
2,2'-Oxybis(1-Chloropropane)	ND	0.0250	0.0500	ug/L	1							
Hexachlorobenzene	ND	0.0100	0.0200	ug/L	1							
Hexachlorobutadiene	ND	0.0250	0.0500	ug/L	1							
Hexachlorocyclopentadiene	ND	0.0500	0.100	ug/L	1							
Hexachloroethane	ND	0.0250	0.0500	ug/L	1							
2-Chloronaphthalene	ND	0.0100	0.0200	ug/L	1							Q-30
1,2,4-Trichlorobenzene	ND	0.0250	0.0500	ug/L	1							Q-30
4-Bromophenyl phenyl ether	ND	0.0250	0.0500	ug/L	1							Q-30
4-Chlorophenyl phenyl ether	ND	0.0250	0.0500	ug/L	1							Q-30
Aniline	ND	0.0500	0.100	ug/L	1							
4-Chloroaniline	ND	0.0250	0.0500	ug/L	1							
2-Nitroaniline	ND	0.200	0.400	ug/L	1							
3-Nitroaniline	ND	0.200	0.400	ug/L	1							
4-Nitroaniline	ND	0.200	0.400	ug/L	1							
Nitrobenzene	ND	0.100	0.200	ug/L	1							
2,4-Dinitrotoluene	ND	0.100	0.200	ug/L	1							
2,6-Dinitrotoluene	ND	0.100	0.200	ug/L	1							
Benzoic acid	ND	1.25	2.50	ug/L	1							
Benzyl alcohol	ND	0.100	0.200	ug/L	1							
Isophorone	ND	0.0250	0.0500	ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

		Sei	mivolatile	Organic	Compour	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0481 - EPA 3510C (A	Acid/Base	Neutral)					Wa	iter				
Blank (23B0481-BLK1)			Prepared	: 02/13/23	11:36 Anal	lyzed: 02/13	/23 18:15					
Azobenzene (1,2-DPH)	ND	0.0250	0.0500	ug/L	1							
Bis(2-Ethylhexyl) adipate	ND	0.250	0.500	ug/L	1							
3,3'-Dichlorobenzidine	ND	0.500	1.00	ug/L	1							Q-5
1,2-Dinitrobenzene	ND	0.250	0.500	ug/L	1							
1,3-Dinitrobenzene	ND	0.250	0.500	ug/L	1							
1,4-Dinitrobenzene	ND	0.250	0.500	ug/L	1							
Pyridine	ND	0.100	0.200	ug/L	1							
1,2-Dichlorobenzene	ND	0.0250	0.0500	ug/L	1							Q-3
1,3-Dichlorobenzene	ND	0.0250	0.0500	ug/L	1							Q-3
1,4-Dichlorobenzene	ND	0.0250	0.0500	ug/L	1							Q-3
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 72 %	Limits: 44	4-120 %	Dilt	ution: 1x					
2-Fluorobiphenyl (Surr)			55 %	44	4-120 %		"					
Phenol-d6 (Surr)			24 %		0-133 %		"					
p-Terphenyl-d14 (Surr)			93 %		0-134 %		"					
2-Fluorophenol (Surr)			42 %		0-120 %		"					
2,4,6-Tribromophenol (Surr)			63 %		3-140 %		"					
LCS (23B0481-BS1)			Prepared	: 02/13/23	11:36 Anal	lyzed: 02/13	/23 18:50					
EPA 8270E												
Acenaphthene	1.80	0.0400	0.0800	ug/L	4	4.00		45	47-122%			Q-3
Acenaphthylene	1.99	0.0400	0.0800	ug/L	4	4.00		50	41-130%			
Anthracene	2.95	0.0400	0.0800	ug/L	4	4.00		74	57-123%			
Benz(a)anthracene	3.45	0.0400	0.0800	ug/L	4	4.00		86	58-125%			
Benzo(a)pyrene	3.42	0.0600	0.120	ug/L	4	4.00		85	54-128%			
Benzo(b)fluoranthene	3.66	0.0600	0.120	ug/L	4	4.00		91	53-131%			
Benzo(k)fluoranthene	3.63	0.0600	0.120	ug/L	4	4.00		91	57-129%			
Benzo(g,h,i)perylene	3.53	0.0400	0.0800	ug/L	4	4.00		88	50-134%			
Chrysene	3.35	0.0400	0.0800	ug/L	4	4.00		84	59-123%			
Dibenz(a,h)anthracene	3.43	0.0400	0.0800	ug/L	4	4.00		86	51-134%			
Fluoranthene	3.43	0.0400	0.0800	ug/L	4	4.00		86	57-128%			
Fluorene	2.34	0.0400	0.0800	ug/L	4	4.00		58	52-124%			
Indeno(1,2,3-cd)pyrene	3.51	0.0400	0.0800	ug/L	4	4.00		88	52-134%			
1-Methylnaphthalene	1.31	0.0800	0.160	ug/L	4	4.00		33	41-120%			Q-3
2-Methylnaphthalene	1.27	0.0800	0.160	ug/L	4	4.00		32	40-121%			Q-3

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0481 - EPA 3510C (Acid/Base	Neutral)					Wa	ter				
LCS (23B0481-BS1)			Prepared	: 02/13/23	11:36 Anal	yzed: 02/13/	/23 18:50					
Naphthalene	1.37	0.0800	0.160	ug/L	4	4.00		34	40-121%			Q-30
Phenanthrene	2.83	0.0400	0.0800	ug/L	4	4.00		71	59-120%			
Pyrene	3.41	0.0400	0.0800	ug/L	4	4.00		85	57-126%			
Carbazole	3.27	0.0600	0.120	ug/L	4	4.00		82	60-122%			
Dibenzofuran	1.93	0.0400	0.0800	ug/L	4	4.00		48	53-120%			Q-30
2-Chlorophenol	2.20	0.200	0.400	ug/L	4	4.00		55	38-120%			
4-Chloro-3-methylphenol	2.38	0.400	0.800	ug/L	4	4.00		60	52-120%			
2,4-Dichlorophenol	2.26	0.200	0.400	ug/L	4	4.00		56	47-121%			
2,4-Dimethylphenol	2.41	0.200	0.400	ug/L	4	4.00		60	31-124%			
2,4-Dinitrophenol	2.67	1.00	2.00	ug/L	4	4.00		67	23-143%			
4,6-Dinitro-2-methylphenol	3.14	1.00	2.00	ug/L	4	4.00		78	44-137%			
2-Methylphenol	1.87	0.100	0.200	ug/L	4	4.00		47	30-120%			
3+4-Methylphenol(s)	1.63	0.100	0.200	ug/L	4	4.00		41	29-120%			
2-Nitrophenol	2.30	0.400	0.800	ug/L	4	4.00		58	47-123%			
4-Nitrophenol	1.07	0.400	0.800	ug/L	4	4.00		27	10-120%			
Pentachlorophenol (PCP)	2.78	0.400	0.800	ug/L	4	4.00		70	35-138%			
Phenol	0.921	0.800	0.800	ug/L	4	4.00		23	10-120%			
2,3,4,6-Tetrachlorophenol	2.82	0.200	0.400	ug/L	4	4.00		70	50-128%			
2,3,5,6-Tetrachlorophenol	2.68	0.200	0.400	ug/L	4	4.00		67	50-121%			
2,4,5-Trichlorophenol	2.55	0.200	0.400	ug/L	4	4.00		64	53-123%			
2,4,6-Trichlorophenol	2.33	0.200	0.400	ug/L	4	4.00		58	50-125%			
Bis(2-ethylhexyl)phthalate	3.51	0.800	1.60	ug/L	4	4.00		88	55-135%			
Butyl benzyl phthalate	3.64	0.800	1.60	ug/L	4	4.00		91	53-134%			
Diethylphthalate	3.93	0.800	1.60	ug/L	4	4.00		98	56-125%			
Dimethylphthalate	3.53	0.800	1.60	ug/L	4	4.00		88	45-127%			
Di-n-butylphthalate	4.14	0.800	1.60	ug/L	4	4.00		104	59-127%			
Di-n-octyl phthalate	3.86	0.800	1.60	ug/L	4	4.00		96	51-140%			
N-Nitrosodimethylamine	1.56	0.100	0.200	ug/L	4	4.00		39	19-120%			
N-Nitroso-di-n-propylamine	2.42	0.100	0.200	ug/L	4	4.00		61	49-120%			
N-Nitrosodiphenylamine	2.65	0.100	0.200	ug/L	4	4.00		66	51-123%			
Bis(2-Chloroethoxy) methane	2.62	0.100	0.200	ug/L	4	4.00		66	48-120%			
Bis(2-Chloroethyl) ether	2.30	0.100	0.200	ug/L	4	4.00		57	43-120%			
2,2'-Oxybis(1-Chloropropane)	1.90	0.100	0.200	ug/L ug/L	4	4.00		48	41-120%			
Hexachlorobenzene	2.32	0.0400	0.0800	ug/L ug/L	4	4.00		58	53-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project: St. Helens Lagoon Project Number: M0830.03.006 Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0481 - EPA 3510C (Acid/Base	Neutral)					Wa	ter				
LCS (23B0481-BS1)			Prepared	: 02/13/23	11:36 Anal	lyzed: 02/13	/23 18:50					
Hexachlorobutadiene	0.893	0.100	0.200	ug/L	4	4.00		22	22-124%			
Hexachlorocyclopentadiene	0.414	0.200	0.400	ug/L	4	4.00		10	10-127%			Q-31
Hexachloroethane	0.858	0.100	0.200	ug/L	4	4.00		21	21-120%			
2-Chloronaphthalene	1.37	0.0400	0.0800	ug/L	4	4.00		34	40-120%			Q-30
1,2,4-Trichlorobenzene	1.08	0.100	0.200	ug/L	4	4.00		27	29-120%			Q-30
4-Bromophenyl phenyl ether	2.07	0.100	0.200	ug/L	4	4.00		52	55-124%			Q-30
4-Chlorophenyl phenyl ether	1.88	0.100	0.200	ug/L	4	4.00		47	53-121%			Q-30
Aniline	1.71	0.200	0.400	ug/L	4	4.00		43	10-120%			Q-31

Aniine	1./1	0.200	0.400	ug/L	4	4.00	 43	10-120%	 	Q-31
4-Chloroaniline	1.98	0.100	0.200	ug/L	4	4.00	 50	33-120%	 	
2-Nitroaniline	2.52	0.800	1.60	ug/L	4	4.00	 63	55-127%	 	
3-Nitroaniline	2.86	0.800	1.60	ug/L	4	4.00	 72	41-128%	 	
4-Nitroaniline	2.97	0.800	1.60	ug/L	4	4.00	 74	25-120%	 	
Nitrobenzene	2.00	0.400	0.800	ug/L	4	4.00	 50	45-121%	 	
2,4-Dinitrotoluene	3.33	0.400	0.800	ug/L	4	4.00	 83	57-128%	 	
2,6-Dinitrotoluene	3.10	0.400	0.800	ug/L	4	4.00	 78	57-124%	 	
Benzoic acid	3.11	0.200	0.200	ug/L	4	8.00	 39	10-120%	 	Q-31
Benzyl alcohol	1.68	0.400	0.800	ug/L	4	4.00	 42	31-120%	 	Q-31
Isophorone	2.65	0.100	0.200	ug/L	4	4.00	 66	42-124%	 	
Azobenzene (1,2-DPH)	2.59	0.100	0.200	ug/L	4	4.00	 65	61-120%	 	
Bis(2-Ethylhexyl) adipate	3.72	1.00	2.00	ug/L	4	4.00	 93	63-121%	 	
3,3'-Dichlorobenzidine	14.6	2.00	4.00	ug/L	4	8.00	 182	27-129%	 	Q-29, Q-41, Q-52
1.2-Dinitrobenzene	3.19	1.00	2.00	ug/L	4	4.00	 80	59-120%	 	Q-32
1,3-Dinitrobenzene	2.82	1.00	2.00	ug/L	4	4.00	 71	49-128%	 	
1,4-Dinitrobenzene	2.69	1.00	2.00	ug/L	4	4.00	 67	54-120%	 	
Pyridine	1.19	0.400	0.800	ug/L	4	4.00	 30	10-120%	 	
1,2-Dichlorobenzene	1.02	0.100	0.200	ug/L	4	4.00	 25	32-120%	 	Q-30
1,3-Dichlorobenzene	0.971	0.100	0.200	ug/L	4	4.00	 24	28-120%	 	Q-30

1,4-□	Dichlorobenzene	0.984	0.100	0.200	ug/L	4	4.00	
Surr:	Nitrobenzene-d5 (Surr)		Recovery	: 52 %	Limits: 44-12	0 %	Dilution	: 4x
	2-Fluorobiphenyl (Surr)			52 %	44-12	0 %		"
	Phenol-d6 (Surr)			19 %	10-13	3 %		"
	p-Terphenyl-d14 (Surr)			89 %	50-13	4 %		"
	2-Fluorophenol (Surr)			38 %	19-12	0 %		"
	2,4,6-Tribromophenol (Surr)			67 %	43-14	0 %		"

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

25

29-120%

Philip Merenberg

Q-30

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 23B0481 - EPA 3510C (Acid/Base	Neutral)					Wa	ter					
LCS Dup (23B0481-BSD1)			Prepared	: 02/13/23	11:36 Ana	lyzed: 02/13/	/23 19:24					Q-19	
EPA 8270E													
Acenaphthene	2.18	0.0400	0.0800	ug/L	4	4.00		55	47-122%	19	30%		
Acenaphthylene	2.48	0.0400	0.0800	ug/L	4	4.00		62	41-130%	22	30%		
Anthracene	3.41	0.0400	0.0800	ug/L	4	4.00		85	57-123%	14	30%		
Benz(a)anthracene	3.79	0.0400	0.0800	ug/L	4	4.00		95	58-125%	9	30%		
Benzo(a)pyrene	3.77	0.0600	0.120	ug/L	4	4.00		94	54-128%	10	30%		
Benzo(b)fluoranthene	3.97	0.0600	0.120	ug/L	4	4.00		99	53-131%	8	30%		
Benzo(k)fluoranthene	3.94	0.0600	0.120	ug/L	4	4.00		99	57-129%	8	30%		
Benzo(g,h,i)perylene	3.90	0.0400	0.0800	ug/L	4	4.00		97	50-134%	10	30%		
Chrysene	3.75	0.0400	0.0800	ug/L	4	4.00		94	59-123%	11	30%		
Dibenz(a,h)anthracene	3.78	0.0400	0.0800	ug/L	4	4.00		95	51-134%	10	30%		
Fluoranthene	3.83	0.0400	0.0800	ug/L	4	4.00		96	57-128%	11	30%		
Fluorene	2.68	0.0400	0.0800	ug/L	4	4.00		67	52-124%	14	30%		
Indeno(1,2,3-cd)pyrene	3.87	0.0400	0.0800	ug/L	4	4.00		97	52-134%	10	30%		
l-Methylnaphthalene	1.71	0.0800	0.160	ug/L	4	4.00		43	41-120%	27	30%		
2-Methylnaphthalene	1.67	0.0800	0.160	ug/L	4	4.00		42	40-121%	27	30%		
Naphthalene	1.75	0.0800	0.160	ug/L	4	4.00		44	40-121%	24	30%		
Phenanthrene	3.21	0.0400	0.0800	ug/L	4	4.00		80	59-120%	13	30%		
Pyrene	3.82	0.0400	0.0800	ug/L	4	4.00		95	57-126%	11	30%		
Carbazole	3.79	0.0600	0.120	ug/L	4	4.00		95	60-122%	15	30%		
Dibenzofuran	2.38	0.0400	0.0800	ug/L	4	4.00		59	53-120%	21	30%		
2-Chlorophenol	2.78	0.200	0.400	ug/L	4	4.00		70	38-120%	23	30%		
4-Chloro-3-methylphenol	3.07	0.400	0.800	ug/L	4	4.00		77	52-120%	25	30%		
2,4-Dichlorophenol	3.05	0.200	0.400	ug/L	4	4.00		76	47-121%	30	30%		
2,4-Dimethylphenol	2.99	0.200	0.400	ug/L	4	4.00		75	31-124%	22	30%		
2,4-Dinitrophenol	4.21	1.00	2.00	ug/L	4	4.00		105	23-143%	45	30%	(
4,6-Dinitro-2-methylphenol	3.98	1.00	2.00	ug/L	4	4.00		100	44-137%	24	30%		
2-Methylphenol	2.47	0.100	0.200	ug/L	4	4.00		62	30-120%	28	30%		
3+4-Methylphenol(s)	2.17	0.100	0.200	ug/L	4	4.00		54	29-120%	28	30%		
2-Nitrophenol	3.61	0.400	0.800	ug/L	4	4.00		90	47-123%	44	30%	(
4-Nitrophenol	1.21	0.400	0.800	ug/L	4	4.00		30	10-120%	13	30%		
Pentachlorophenol (PCP)	3.44	0.400	0.800	ug/L	4	4.00		86	35-138%	21	30%		
Phenol	1.03	0.800	0.800	ug/L	4	4.00		26	10-120%	12	30%		

Apex Laboratories

2,3,4,6-Tetrachlorophenol

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

50-128%

30%

16

82

Philip Nevenberg

0.200

3.29

0.400

ug/L

4

4.00

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0481 - EPA 3510C (Acid/Base	Neutral)					Wa	ter				
LCS Dup (23B0481-BSD1)			Prepared	: 02/13/23	11:36 Anal	lyzed: 02/13/	/23 19:24					Q-19
2,3,5,6-Tetrachlorophenol	3.24	0.200	0.400	ug/L	4	4.00		81	50-121%	19	30%	
2,4,5-Trichlorophenol	3.20	0.200	0.400	ug/L	4	4.00		80	53-123%	22	30%	
2,4,6-Trichlorophenol	3.06	0.200	0.400	ug/L	4	4.00		76	50-125%	27	30%	
Bis(2-ethylhexyl)phthalate	3.81	0.800	1.60	ug/L	4	4.00		95	55-135%	8	30%	
Butyl benzyl phthalate	4.02	0.800	1.60	ug/L	4	4.00		100	53-134%	10	30%	
Diethylphthalate	3.80	0.800	1.60	ug/L	4	4.00		95	56-125%	3	30%	
Dimethylphthalate	3.69	0.800	1.60	ug/L	4	4.00		92	45-127%	4	30%	
Di-n-butylphthalate	4.38	0.800	1.60	ug/L	4	4.00		109	59-127%	5	30%	
Di-n-octyl phthalate	4.17	0.800	1.60	ug/L	4	4.00		104	51-140%	8	30%	
N-Nitrosodimethylamine	1.86	0.100	0.200	ug/L	4	4.00		47	19-120%	18	30%	
N-Nitroso-di-n-propylamine	3.53	0.100	0.200	ug/L	4	4.00		88	49-120%	37	30%	Q-24
N-Nitrosodiphenylamine	3.23	0.100	0.200	ug/L	4	4.00		81	51-123%	20	30%	
Bis(2-Chloroethoxy) methane	3.29	0.100	0.200	ug/L	4	4.00		82	48-120%	23	30%	
Bis(2-Chloroethyl) ether	3.19	0.100	0.200	ug/L	4	4.00		80	43-120%	32	30%	Q-24
2,2'-Oxybis(1-Chloropropane)	2.56	0.100	0.200	ug/L	4	4.00		64	41-120%	29	30%	
Hexachlorobenzene	2.50	0.0400	0.0800	ug/L	4	4.00		63	53-125%	8	30%	
Hexachlorobutadiene	1.03	0.100	0.200	ug/L	4	4.00		26	22-124%	14	30%	
Hexachlorocyclopentadiene	0.590	0.200	0.400	ug/L	4	4.00		15	10-127%	35	30%	Q-24, Q-31
Hexachloroethane	1.10	0.100	0.200	ug/L	4	4.00		27	21-120%	24	30%	
2-Chloronaphthalene	1.75	0.0400	0.0800	ug/L	4	4.00		44	40-120%	24	30%	
1,2,4-Trichlorobenzene	1.31	0.100	0.200	ug/L	4	4.00		33	29-120%	19	30%	
4-Bromophenyl phenyl ether	2.45	0.100	0.200	ug/L	4	4.00		61	55-124%	17	30%	
4-Chlorophenyl phenyl ether	2.16	0.100	0.200	ug/L	4	4.00		54	53-121%	14	30%	
Aniline	2.22	0.200	0.400	ug/L	4	4.00		55	10-120%	26	30%	Q-31
4-Chloroaniline	2.51	0.100	0.200	ug/L	4	4.00		63	33-120%	24	30%	
2-Nitroaniline	3.40	0.800	1.60	ug/L	4	4.00		85	55-127%	30	30%	
3-Nitroaniline	3.45	0.800	1.60	ug/L	4	4.00		86	41-128%	19	30%	
4-Nitroaniline	2.84	0.800	1.60	ug/L	4	4.00		71	25-120%	4	30%	
Nitrobenzene	2.96	0.400	0.800	ug/L	4	4.00		74	45-121%		30%	Q-24
2,4-Dinitrotoluene	3.61	0.400	0.800	ug/L	4	4.00		90	57-128%	8	30%	
2,6-Dinitrotoluene	3.51	0.400	0.800	ug/L	4	4.00		88	57-124%		30%	
Benzoic acid	3.72	0.200	0.200	ug/L	4	8.00		46	10-120%	18	30%	Q-31
Benzyl alcohol	2.34	0.400	0.800	ug/L	4	4.00		59	31-120%	33	30%	Q-24, Q-31
Isophorone	3.43	0.100	0.200	ug/L	4	4.00		86	42-124%	25	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0481 - EPA 3510C (Acid/Base	Neutral)					Wa	ter				
LCS Dup (23B0481-BSD1)			Prepared	d: 02/13/23	11:36 Ana	lyzed: 02/13/	/23 19:24					Q-19
Azobenzene (1,2-DPH)	3.20	0.100	0.200	ug/L	4	4.00		80	61-120%	21	30%	
Bis(2-Ethylhexyl) adipate	4.00	1.00	2.00	ug/L	4	4.00		100	63-121%	7	30%	
3,3'-Dichlorobenzidine	15.1	2.00	4.00	ug/L	4	8.00		189	27-129%	3	30%	Q-29, Q-41, Q-52
1,2-Dinitrobenzene	3.59	1.00	2.00	ug/L	4	4.00		90	59-120%	12	30%	
1,3-Dinitrobenzene	3.38	1.00	2.00	ug/L	4	4.00		85	49-128%	18	30%	
1,4-Dinitrobenzene	3.45	1.00	2.00	ug/L	4	4.00		86	54-120%	25	30%	
Pyridine	1.77	0.400	0.800	ug/L	4	4.00		44	10-120%	39	30%	Q-24
1,2-Dichlorobenzene	1.31	0.100	0.200	ug/L	4	4.00		33	32-120%	25	30%	
1,3-Dichlorobenzene	1.21	0.100	0.200	ug/L	4	4.00		30	28-120%	22	30%	
1,4-Dichlorobenzene	1.23	0.100	0.200	ug/L	4	4.00		31	29-120%	22	30%	
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 79 %	Limits: 44	4-120 %	Dilı	ıtion: 4x					
2-Fluorobiphenyl (Surr)			66 %	44	4-120 %		"					
Phenol-d6 (Surr)			23 %	10	0-133 %		"					
p-Terphenyl-d14 (Surr)			95 %	50	0-134 %		"					
2-Fluorophenol (Surr)			41 %	19	0-120 %		"					
2,4,6-Tribromophenol (Surr)			83 %	43	3-140 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

Organophosphorus Pesticides (OPPs) by EPA 8270E (GC/MS)

		<u>.</u>										
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0312 - EPA 3510C	(Neutral p	H)					Wa	ter				
Blank (23B0312-BLK1)			Prepared	: 02/08/23	12:07 Ana	yzed: 02/08	/23 16:18					
EPA 8270E OPPs												
Azinphos methyl (Guthion)	ND	0.250	0.500	ug/L	1							
Chlorpyrifos	ND	0.250	0.500	ug/L	1							
Coumaphos	ND	0.250	0.500	ug/L	1							
Demeton O	ND	0.250	0.500	ug/L	1							
Demeton S	ND	0.250	0.500	ug/L	1							
Diazinon	ND	0.250	0.500	ug/L	1							
Dichlorvos	ND	0.250	0.500	ug/L	1							
Dimethoate	ND	0.250	0.500	ug/L	1							
Disulfoton	ND	0.250	0.500	ug/L	1							
EPN	ND	0.250	0.500	ug/L	1							
Ethoprop	ND	0.250	0.500	ug/L	1							
Fensulfothion	ND	0.250	0.500	ug/L	1							
Fenthion	ND	0.250	0.500	ug/L	1							
Malathion	ND	0.250	0.500	ug/L	1							
Merphos	ND	0.250	0.500	ug/L	1							
Methyl parathion	ND	0.250	0.500	ug/L	1							
Mevinphos (Phosdrin)	ND	0.250	0.500	ug/L	1							
Monocrotophos	ND	0.250	0.500	ug/L	1							
Naled (Dibrom)	ND	0.250	0.500	ug/L	1							
Parathion, ethyl	ND	0.250	0.500	ug/L	1							
Phorate	ND	0.250	0.500	ug/L	1							
Ronnel (Fenchlorphos)	ND	0.250	0.500	ug/L	1							
Sulfotep	ND	0.250	0.500	ug/L	1							
Sulprofos (Bolstar)	ND	0.250	0.500	ug/L	1							
TEPP	ND	0.250	0.500	ug/L	1							

LCS (23B0312-BS1)

Tetrachlorvinphos (Rabon)

Surr: Tributyl phosphate (Surr)

Triphenyl phosphate (Surr)

Tokuthion (Prothiofos)

Trichloronate

Prepared: 02/08/23 12:07 Analyzed: 02/08/23 16:53

58-121 %

EPA 8270E OPPs

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dilution: 1x

334

Philip Nevenberg

ND

ND

ND

0.250

0.250

0.250

Recovery:

0.500

0.500

0.500

88 %

93 %

ug/L

ug/L

ug/L 1
Limits: 56-124 %

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0312 - EPA 3510C	(Neutral pl	1)					Wa	ter				
LCS (23B0312-BS1)			Prepared	: 02/08/23	12:07 Anal	yzed: 02/08	/23 16:53					
Azinphos methyl (Guthion)	4.66	0.500	1.00	ug/L	2	4.00		116	43-135%			
Chlorpyrifos	3.89	0.500	1.00	ug/L	2	4.00		97	47-133%			
Coumaphos	4.47	0.500	1.00	ug/L	2	4.00		112	45-135%			
Demeton O	1.86	0.500	1.00	ug/L	2	1.84		101	10-125%			
Demeton S	1.85	0.500	1.00	ug/L	2	1.94		95	21-162%			
Diazinon	4.42	0.500	1.00	ug/L	2	4.00		110	43-129%			
Dichlorvos	4.64	0.500	1.00	ug/L	2	4.00		116	39-138%			
Dimethoate	3.79	0.500	1.00	ug/L	2	4.00		95	26-125%			
Disulfoton	4.09	0.500	1.00	ug/L	2	4.00		102	36-134%			
EPN	4.52	0.500	1.00	ug/L	2	4.00		113	47-133%			
Ethoprop	4.21	0.500	1.00	ug/L	2	4.00		105	52-125%			
Fensulfothion	4.79	0.500	1.00	ug/L	2	4.00		120	15-141%			
Fenthion	4.20	0.500	1.00	ug/L	2	4.00		105	42-137%			
Malathion	3.86	0.500	1.00	ug/L	2	4.00		96	44-132%			
Merphos	4.66	0.500	1.00	ug/L	2	4.00		116	26-133%			
Methyl parathion	4.47	0.500	1.00	ug/L	2	4.00		112	49-134%			
Mevinphos (Phosdrin)	4.24	0.500	1.00	ug/L	2	4.00		106	10-196%			
Monocrotophos	1.14	0.500	1.00	ug/L	2	4.00		29	10-159%			
Naled (Dibrom)	4.26	0.500	1.00	ug/L	2	4.00		107	10-146%			
Parathion, ethyl	4.33	0.500	1.00	ug/L	2	4.00		108	52-134%			
Phorate	4.45	0.500	1.00	ug/L	2	4.00		111	23-139%			
Ronnel (Fenchlorphos)	3.95	0.500	1.00	ug/L ug/L	2	4.00		99	42-133%			
Sulfotep	3.86	0.500	1.00	ug/L ug/L	2	4.00		97	47-126%			
Sulprofos (Bolstar)	4.07	0.500	1.00	ug/L ug/L	2	4.00		102	47-135%			
ГЕРР	3.87	0.500	1.00	ug/L ug/L	2	4.00		97	10-208%			
Tetrachlorvinphos (Rabon)	4.76	0.500	1.00	ug/L ug/L	2	4.00		119	42-125%			
Tokuthion (Prothiofos)	4.47	0.500	1.00	ug/L ug/L	2	4.00		112	43-132%			
Frichloronate	3.92	0.500	1.00	ug/L ug/L	2	4.00		98	28-137%			
	3.92			Limits: 56				70	20-13//0		-	
Surr: Tributyl phosphate (Surr)		кесо	•			Dili	ition: 2x					
Triphenyl phosphate (Surr)			102 %	38	-121 %							
LCS Dup (23B0312-BSD1)			Prepared	. 02/08/23	12:07 Anal	yzed: 02/08	/23 17-28					Q-
EPA 8270E OPPs			Tropared	. 52,00,23		., 200. 02/00/						· ·
Azinphos methyl (Guthion)	4.57	0.500	1.00	ug/L	2	4.00		114	43-135%	2	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

Organophosphorus Pesticides (OPPs) by EPA 8270E (GC/MS)

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0312 - EPA 3510C	(Neutral pl	1)					Wa	ter				
LCS Dup (23B0312-BSD1)			Prepared	1: 02/08/23	12:07 Anal	yzed: 02/08/	/23 17:28					Q-19
Chlorpyrifos	3.82	0.500	1.00	ug/L	2	4.00		96	47-133%	2	30%	
Coumaphos	4.35	0.500	1.00	ug/L	2	4.00		109	45-135%	3	30%	
Demeton O	1.85	0.500	1.00	ug/L	2	1.84		100	10-125%	0.7	30%	
Demeton S	1.81	0.500	1.00	ug/L	2	1.94		93	21-162%	2	30%	
Diazinon	4.30	0.500	1.00	ug/L	2	4.00		108	43-129%	3	30%	
Dichlorvos	4.60	0.500	1.00	ug/L	2	4.00		115	39-138%	0.8	30%	
Dimethoate	3.76	0.500	1.00	ug/L	2	4.00		94	26-125%	0.8	30%	
Disulfoton	3.96	0.500	1.00	ug/L	2	4.00		99	36-134%	3	30%	
EPN	4.48	0.500	1.00	ug/L	2	4.00		112	47-133%	0.9	30%	
Ethoprop	4.09	0.500	1.00	ug/L	2	4.00		102	52-125%	3	30%	
Fensulfothion	4.78	0.500	1.00	ug/L	2	4.00		119	15-141%	0.3	30%	
Fenthion	4.00	0.500	1.00	ug/L	2	4.00		100	42-137%	5	30%	
Malathion	3.72	0.500	1.00	ug/L	2	4.00		93	44-132%	4	30%	
Merphos	4.61	0.500	1.00	ug/L	2	4.00		115	26-133%	1	30%	
Methyl parathion	4.41	0.500	1.00	ug/L	2	4.00		110	49-134%	1	30%	
Mevinphos (Phosdrin)	4.26	0.500	1.00	ug/L	2	4.00		106	10-196%	0.3	30%	
Monocrotophos	1.22	0.500	1.00	ug/L	2	4.00		31	10-159%	7	30%	
Naled (Dibrom)	4.13	0.500	1.00	ug/L	2	4.00		103	10-146%	3	30%	
Parathion, ethyl	4.11	0.500	1.00	ug/L	2	4.00		103	52-134%	5	30%	
Phorate	4.17	0.500	1.00	ug/L	2	4.00		104	23-139%	7	30%	
Ronnel (Fenchlorphos)	3.88	0.500	1.00	ug/L	2	4.00		97	42-133%	2	30%	
Sulfotep	3.77	0.500	1.00	ug/L	2	4.00		94	47-126%	2	30%	
Sulprofos (Bolstar)	3.92	0.500	1.00	ug/L	2	4.00		98	47-135%	4	30%	
TEPP	3.80	0.500	1.00	ug/L	2	4.00		95	10-208%	2	30%	
Tetrachlorvinphos (Rabon)	4.59	0.500	1.00	ug/L	2	4.00		115	42-125%	4	30%	
Tokuthion (Prothiofos)	4.41	0.500	1.00	ug/L	2	4.00		110	43-132%	1	30%	
Trichloronate	3.81	0.500	1.00	ug/L	2	4.00		95	28-137%	3	30%	
Surr: Tributyl phosphate (Surr) Triphenyl phosphate (Surr)		Reco	very: 91 % 97 %	Limits: 50	5-124 % 8-121 %	Dilu	ution: 2x					_

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0281 - EPA 3015A							Wa	ter				
Blank (23B0281-BLK1)			Prepared	: 02/08/23	07:43 Anal	yzed: 02/09	/23 15:08					
EPA 6020B												
Antimony	ND	0.500	1.00	ug/L	1							
Arsenic	ND	0.500	1.00	ug/L	1							
Barium	ND	1.00	2.00	ug/L	1							
Beryllium	ND	0.100	0.200	ug/L	1							
Cadmium	ND	0.100	0.200	ug/L	1							
Chromium	ND	1.00	2.00	ug/L	1							
Copper	ND	1.00	2.00	ug/L	1							
Lead	ND	0.110	0.200	ug/L	1							
Manganese	ND	0.500	1.00	ug/L	1							
Nickel	ND	1.00	2.00	ug/L	1							
Selenium	ND	0.500	1.00	ug/L	1							
Silver	ND	0.100	0.200	ug/L	1							
Thallium	ND	0.100	0.200	ug/L	1							
Zinc	ND	2.00	4.00	ug/L	1							
Blank (23B0281-BLK2)			Prepared	: 02/08/23	07:43 Anal	lyzed: 02/10	/23 11:47					
EPA 6020B												
Mercury	ND	0.0400	0.0800	ug/L	1							Q-1
LCS (23B0281-BS1)			Prepared	: 02/08/23	07:43 Anal	yzed: 02/09/	/23 15:13					
EPA 6020B												
Antimony	27.9	0.500	1.00	ug/L	1	27.8		101	80-120%			
Arsenic	53.8	0.500	1.00	ug/L	1	55.6		97	80-120%			
Barium	58.1	1.00	2.00	ug/L	1	55.6		105	80-120%			
Beryllium	26.7	0.100	0.200	ug/L	1	27.8		96	80-120%			
Cadmium	56.5	0.100	0.200	ug/L	1	55.6		102	80-120%			
Chromium	54.2	1.00	2.00	ug/L	1	55.6		98	80-120%			
Copper	56.4	1.00	2.00	ug/L	1	55.6		101	80-120%			
Lead	56.3	0.110	0.200	ug/L	1	55.6		101	80-120%			
Manganese	56.0	0.500	1.00	ug/L	1	55.6		101	80-120%			
Mercury	1.08	0.0400	0.0800	ug/L	1	1.11		97	80-120%			
Nickel	56.6	1.00	2.00	ug/L	1	55.6		102	80-120%			
	28.2	0.500	1.00	ug/L								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0281 - EPA 3015A							Wa	ter				
LCS (23B0281-BS1)			Prepared	02/08/23	07:43 Anal	yzed: 02/09	/23 15:13					
Silver	29.6	0.100	0.200	ug/L	1	27.8		107	80-120%			
Thallium	27.1	0.100	0.200	ug/L	1	27.8		97	80-120%			
Zinc	54.6	2.00	4.00	ug/L	1	55.6		98	80-120%			
Duplicate (23B0281-DUP1)			Prepared	02/08/23	07:43 Anal	yzed: 02/09	/23 15:23					
QC Source Sample: Non-SDG (A3	B0239-01)											
Antimony	4.01	0.500	1.00	ug/L	1		4.16			4	20%	
Arsenic	0.636	0.500	1.00	ug/L	1		0.643			1	20%	J
Barium	14.9	1.00	2.00	ug/L	1		14.4			3	20%	
Beryllium	ND	0.100	0.200	ug/L	1		ND				20%	
Cadmium	ND	0.100	0.200	ug/L	1		ND				20%	
Chromium	ND	1.00	2.00	ug/L	1		ND				20%	
Copper	6.31	1.00	2.00	ug/L	1		6.12			3	20%	
Lead	0.998	0.110	0.200	ug/L	1		1.06			6	20%	
Manganese	14.8	0.500	1.00	ug/L	1		14.9			0.7	20%	
Mercury	ND	0.0400	0.0800	ug/L	1		ND				20%	
Nickel	1.16	1.00	2.00	ug/L	1		1.21			4	20%	J
Selenium	ND	0.500	1.00	ug/L	1		ND				20%	
Silver	ND	0.100	0.200	ug/L	1		ND				20%	
Thallium	ND	0.100	0.200	ug/L	1		0.156			***	20%	
Zinc	95.2	2.00	4.00	ug/L	1		93.3			2	20%	
Matrix Spike (23B0281-MS1)			Prepared	: 02/08/23	07:43 Anal	lyzed: 02/09	/23 15:28					
QC Source Sample: Non-SDG (A3	B0239-01)											
EPA 6020B												
Antimony	33.3	0.500	1.00	ug/L	1	27.8	4.16	105	75-125%			
Arsenic	54.5	0.500	1.00	ug/L	1	55.6	0.643	97	75-125%			
Barium	73.4	1.00	2.00	ug/L	1	55.6	14.4	106	75-125%			
Beryllium	28.3	0.100	0.200	ug/L	1	27.8	ND	102	75-125%			
Cadmium	57.3	0.100	0.200	ug/L	1	55.6	ND	103	75-125%			
Chromium	54.4	1.00	2.00	ug/L	1	55.6	ND	98	75-125%			
Copper	60.9	1.00	2.00	ug/L	1	55.6	6.12	99	75-125%			
Lead	56.5	0.110	0.200	ug/L	1	55.6	1.06	100	75-125%			
Manganese	70.3	0.500	1.00	ug/L	1	55.6	14.9	100	75-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by	EPA 6020	B (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0281 - EPA 3015A							Wa	ter				
Matrix Spike (23B0281-MS1)			Prepared	: 02/08/23	07:43 Anal	yzed: 02/09	/23 15:28					
QC Source Sample: Non-SDG (A3)	B0239-01)											
Mercury	1.07	0.0400	0.0800	ug/L	1	1.11	ND	96	75-125%			
Nickel	56.0	1.00	2.00	ug/L	1	55.6	1.21	99	75-125%			
Selenium	28.2	0.500	1.00	ug/L	1	27.8	ND	102	75-125%			
Silver	29.8	0.100	0.200	ug/L	1	27.8	ND	107	75-125%			
Thallium	26.7	0.100	0.200	ug/L	1	27.8	0.156	96	75-125%			
Zinc	147	2.00	4.00	ug/L	1	55.6	93.3	97	75-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

<u>Report ID:</u> A3B0217 - 04 21 23 1023

Weck Laboratories, Inc.

QUALITY CONTROL (QC) SAMPLE RESULTS

			Chlori	nated He	rbicides l	y GC/EC	D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch W3B1025 - EPA 3510C							Wa	ter				
Blank (W3B1025-BLK1)			Prepared	: 02/13/23	07:55 Anal	lyzed: 02/25	/23 03:52					
EPA 8151A												
2,4-D	ND	0.34	0.50	ug/l	1							
2,4-DB	ND	0.99	2.5	ug/l	1							
2,4,5-T	ND	0.14	0.25	ug/l	1							
2,4,5-TP (Silvex)	ND	0.14	0.25	ug/l	1							
3,5-Dichlorobenzoic acid	ND	0.28	1.2	ug/l	1							
4-Nitrophenol	ND	0.50	1.2	ug/l	1							
Acifluorfen	ND	0.24	0.50	ug/l	1							
Bentazon	ND	0.55	2.5	ug/l	1							
Dalapon	ND	0.16	0.50	ug/l	1							
Dicamba	ND	0.19	0.75	ug/l	1							
Dichloroprop	ND	0.24	1.0	ug/l	1							
Dinoseb	ND	0.090	0.50	ug/l	1							
DCPA	ND	0.20	0.25	ug/l	1							
MCPA	ND	40	100	ug/l	1							
MCPP	ND	27	100	ug/l	1							
Pentachlorophenol	ND	0.18	0.25	ug/l	1							
Picloram	ND	0.13	0.75	ug/l	1							
Surr: 2,4-DCAA		Reco	overy: 98 %	Limits: 50	6-156 %	Dilı	ution: 1x					

			1			lyzed: 02/25/			
EPA 8151A									
2,4-D	2.18	0.34	0.50	ug/l	1	3.00	 73	56-164%	
2,4-DB	3.61	0.99	2.5	ug/l	1	6.00	 60	27-161%	
2,4,5-T	1.05	0.14	0.25	ug/l	1	1.50	 70	39-151%	
2,4,5-TP (Silvex)	1.08	0.14	0.25	ug/l	1	1.50	 72	46-142%	
3,5-Dichlorobenzoic acid	2.36	0.28	1.2	ug/l	1	3.00	 79	54-154%	
4-Nitrophenol	4.05	0.50	1.2	ug/l	1	6.00	 68	3-105%	
Acifluorfen	1.43	0.24	0.50	ug/l	1	1.50	 95	39-134%	
Bentazon	4.78	0.55	2.5	ug/l	1	6.00	 80	44-139%	
Dalapon	2.21	0.16	0.50	ug/l	1	3.00	 74	40-139%	
Dicamba	2.28	0.19	0.75	ug/l	1	3.00	 76	46-140%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

17

18

17

22

20

20

20

19

40-139%

46-140%

43-158%

42-146%

34-135%

28-144%

31-153%

37-136%

35-138%

25%

25%

25%

25%

25%

25%

25%

25%

25%

Weck Laboratories, Inc.

QUALITY CONTROL (QC) SAMPLE RESULTS

Chlorinated Herbicides by GC/ECD

			• • • • • • • • • • • • • • • • • • • •	iatoa iio	10101000	3, 00, 10.						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch W3B1025 - EPA 3510C							Wa	iter				
LCS (W3B1025-BS1)			Prepared	: 02/13/23	07:55 Anal	lyzed: 02/25	/23 04:23					
Dichloroprop	2.31	0.24	1.0	ug/l	1	3.00		77	43-158%			
Dinoseb	1.15	0.090	0.50	ug/l	1	1.50		77	42-146%			
DCPA	1.18	0.20	0.25	ug/l	1	1.50		79	34-135%			
MCPA	228	40	100	ug/l	1	300		76	28-144%			
MCPP	193	27	100	ug/l	1	300		64	31-153%			
Pentachlorophenol	1.08	0.18	0.25	ug/l	1	1.50		72	37-136%			
Picloram	1.05	0.13	0.75	ug/l	1	1.50		70	35-138%			
Surr: 2,4-DCAA		Reco	overy: 94%	Limits: 50	6-156 %	Dilı	ution: 1x					
LCS Dup (W3B1025-BSD1)			Prepared	: 02/13/23	07:55 Anal	lyzed: 02/25	/23 04:54					
EPA 8151A												
2,4-D	2.72	0.34	0.50	ug/l	1	3.00		91	56-164%	22	25%	
2,4-DB	4.58	0.99	2.5	ug/l	1	6.00		76	27-161%	24	25%	
2,4,5-T	1.26	0.14	0.25	ug/l	1	1.50		84	39-151%	18	25%	
2,4,5-TP (Silvex)	1.34	0.14	0.25	ug/l	1	1.50		89	46-142%	22	25%	
3,5-Dichlorobenzoic acid	2.87	0.28	1.2	ug/l	1	3.00		96	54-154%	20	25%	
4-Nitrophenol	4.87	0.50	1.2	ug/l	1	6.00		81	3-105%	18	25%	
Acifluorfen	1.81	0.24	0.50	ug/l	1	1.50		121	39-134%	23	25%	
Bentazon	5.96	0.55	2.5	ug/l	1	6.00		99	44-139%	22	25%	

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/1

ug/l

ug/l

Limits: 56-156 %

1

1

1

1

1

1

1

1

1

3.00

3.00

3.00

1.50

1.50

300

300

1.50

Dilution: 1x

0.50

0.75

1.0

0.50

0.25

100

100

0.25

0.75

112 %

Apex Laboratories

Dalapon

Dicamba

Dinoseb

DCPA

MCPA

MCPP

Picloram

Dichloroprop

Pentachlorophenol

Surr: 2,4-DCAA

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

88

91

91

95

96

93

79

87

Philip Memberg

2.63

2.73

2.74

1.43

1.44

278

236

1.31

1.34

0.16

0.19

0.24

0.090

0.20

40

27

0.18

0.13

Recovery:

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

Weck Laboratories, Inc.

QUALITY CONTROL (QC) SAMPLE RESULTS

			Hex	avalent	Chromiu	n by IC						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch W3B1145NONE (LC)							Wa	ter				
Blank (W3B1145-BLK1)			Prepared	02/14/23	10:02 Anal	yzed: 02/14	/23 16:44					
EPA 218.6												
Chromium 6+	ND	0.0079	0.020	ug/l	1							
LCS (W3B1145-BS1)			Prepared	02/14/23	10:02 Anal	yzed: 02/14	/23 16:44					
EPA 218.6												
Chromium 6+	4.87	0.0079	0.020	ug/l	1	5.00		97	90-110%			
Matrix Spike (W3B1145-MS1)			Prepared	02/14/23	10:02 Anal	yzed: 02/14	/23 16:44					
OC Source Sample: Non-SDG (3B0)	8159-05)											
EPA 218.6												
Chromium 6+	7.53	0.0079	0.020	ug/l	1	5.00	0.227	146	88-112%			MS-0:
Matrix Spike (W3B1145-MS2)			Prepared	02/14/23	10:02 Anal	yzed: 02/14	/23 16:44					
QC Source Sample: Non-SDG (3B0)	8159-07)											
EPA 218.6												
Chromium 6+	6.10	0.0079	0.020	ug/l	1	5.00	0.0353	121	88-112%			MS-0:
Matrix Spike Dup (W3B1145-M	SD1)		Prepared:	02/14/23	10:02 Anal	yzed: 02/14	/23 16:44					
QC Source Sample: Non-SDG (3B0)	8159-05 <u>)</u>											
Chromium 6+	5.78	0.0079	0.020	ug/l	1	5.00	0.227	111	88-112%	26	10%	MS-0:
Matrix Spike Dup (W3B1145-M	SD2)		Prepared	02/14/23	10:02 Anal	yzed: 02/14	/23 16:44					
QC Source Sample: Non-SDG (3B0)	8159-07)											
Chromium 6+	6.53	0.0079	0.020	ug/l	1	5.00	0.0353	130	88-112%	7	10%	MS-0

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

SAMPLE PREPARATION INFORMATION

		Diesel and	d/or Oil Hydrocarbon	s by NWTPH-Dx			
Prep: EPA 3510C (Fu	els/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0657							
A3B0217-01	Water	NWTPH-Dx	02/07/23 08:30	02/17/23 07:46	890mL/5mL	1000mL/5mL	1.12
	Gas	oline Range Hydrocarl	bons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0509							
A3B0217-01RE1	Water	NWTPH-Gx (MS)	02/07/23 08:30	02/14/23 10:24	5mL/5mL	5mL/5mL	1.00
		Volatile (Organic Compounds	by EPA 8260D			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0344			_	-			
A3B0217-03	Water	EPA 8260D	02/07/23 00:00	02/09/23 08:37	5mL/5mL	5mL/5mL	1.00
Batch: 23B0509							
A3B0217-01RE1	Water	EPA 8260D	02/07/23 08:30	02/14/23 10:24	5mL/5mL	5mL/5mL	1.00
		Volatile Orç	ganic Compounds b	y EPA 8260D SIM			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0743			_				
A3B0217-01	Water	EPA 8260D SIM	02/07/23 08:30	02/20/23 13:10	5mL/5mL	5mL/5mL	1.00
A3B0217-03	Water	EPA 8260D SIM	02/07/23 00:00	02/20/23 13:10	5mL/5mL	5mL/5mL	1.00
		Semivolatil	e Organic Compour	ds by EPA 8270E			
Prep: EPA 3510C (Aci	id/Base Neutral)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0481		EPA 8270E	02/07/23 08:30	02/13/23 11:36	780mL/1mL	1000mL/1mL	1.28
Batch: 23B0481 A3B0217-01RE3	Water	EFA 62/0E	02/07/23 00.30				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

SAMPLE PREPARATION INFORMATION

	Organophosphorus Pesticides (OPPs) by EPA 8270E (GC/MS)												
Prep: EPA 3510C (N	eutral pH)				Sample	Default	RL Prep						
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor						
Batch: 23B0312													
A3B0217-01RE1	Water	EPA 8270E OPPs	02/07/23 08:30	02/08/23 12:07	760mL/2mL	1000 mL/2 mL	1.32						
	Total Metals by EPA 6020B (ICPMS)												

		Tota	al Metals by EPA 602	0B (ICPMS)			
Prep: EPA 3015A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0281							
A3B0217-01	Water	EPA 6020B	02/07/23 08:30	02/08/23 07:43	45mL/50mL	45mL/50mL	1.00
A3B0217-01RE2	Water	EPA 6020B	02/07/23 08:30	02/08/23 07:43	45mL/50mL	45mL/50mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

AMENDED REPORT

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

Weck Laboratories, Inc.

SAMPLE PREPARATION INFORMATION

		Ch	lorinated Herbicides b	by GC/ECD						
Prep: EPA 3510C					Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
Batch: W3B1025										
A3B0217-01	Water	EPA 8151A	02/07/23 08:30	02/13/23 07:55	952ml/10ml	1000ml/10ml	1.05			
Hexavalent Chromium by IC										
			Hexavalent Chromiu	m by IC						
Prep: NONE (LC)			Hexavalent Chromiu	m by IC	Sample	Default	RL Prep			
Prep: NONE (LC) Lab Number	Matrix	Method	Hexavalent Chromiu Sampled	m by IC Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor			
	Matrix	Method		•	1					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

Maul Foster & Alongi, INC.

3140 NE Broadway Street

Portland, OR 97232

ANALYTICAL REPORT

Apex Laboratorie

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

AMENDED REPORT

Project: St. Helens Lagoon
Project Number: M0830.03.006

Report ID: A3B0217 - 04 21 23 1023

QUALIFIER DEFINITIONS

Project Manager: David Weatherby

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- **E** Estimated Value. The result is above the calibration range of the instrument.
- F-12 The result for this hydrocarbon range is primarily due to the presence of individual analyte peaks in the quantitation range. No fuel pattern detected
- ICV-01 Estimated Result. Initial Calibration Verification (ICV) failed high. There is no effect on non-detect results.
 - Ja Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- Q-01 Spike recovery and/or RPD is outside acceptance limits.
- Q-03 Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
- Q-16 Reanalysis of an original Batch QC sample.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-24 The RPD for this spike and spike duplicate is above established control limits. Recoveries for both the spike and spike duplicate are within control limits.
- Q-29 Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
- Q-30 Recovery for Lab Control Spike (LCS) is below the lower control limit. Data may be biased low.
- Q-31 Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low.
- Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
- Q-52 Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.
- Q-54 Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +1%. The results are reported as Estimated Values.
- Q-54a Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +13%. The results are reported as Estimated Values.
- Q-54b Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +17%. The results are reported as Estimated Values.
- Q-54c Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +19%. The results are reported as Estimated Values.
- Q-54d Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +55%. The results are reported as Estimated Values.
- Q-56 Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260
- **S-06** Surrogate recovery is outside of established control limits.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

V-04 Composite of VOA vials analyzed due to sediment in vials.

Weck Laboratories, Inc.

MS-05 The spike recovery and/or RPD were outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Manhera

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006Report ID:Portland, OR 97232Project Manager:David WeatherbyA3B0217 - 04 21 23 1023

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

348

AMENDED REPORT

Apex Laboratorie

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006Portland, OR 97232Project Manager:David Weatherby

<u>Report ID:</u> A3B0217 - 04 21 23 1023

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Menberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006

Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

APEX LABS			C	HAIN	CHAIN OF CUSTODY	CUST	(OD)	2		Lat	Lab# A360217	76217		202	7 Jo 7 200	4
12232 S.W. Garden Place, Tigard, OR 97223 Phr. 503-718-2323 Fax: 503-718-0333	IR 97223 Ph. 50.	3-718-2323 Fax.	503-718-0	1333		ŀ							-			
Company: Maul Foster Alongi		Project Mgr. David Weatherby	d Weatherby			Ъ	Project Name: St. Helens Lagoon	ne: St. He	ens Lago	ou			Project	Project # M0830.03.006	900.60	
Address: 3140 NE Broadway St, Portland, OR 97232	, OR 97232		Phon	Phone: (971) 544-2139	4-2139		Email: d	weatherby	@maulfo	ster.com,	mbenzin	ger@mai	Email: dweatherby@maulfoster.com, inbenzinger@maulfoster.com	-		
Sampled by: (L. L. Schweder	1/4							AN	ANALYSIS REQUEST	REQUE	Į.					
Site Location. OR WA Other. SAMPLE ID	LAB ID #	TIME MATRIX	# OF CONTAINERS	Frozen Storage**	NWTPH-Gx	Tot Metals 60261	1196A/218	SVOCS 8270E		Dioxins/Futors	Dioxins/Furons 1613B	MOG/537 beys Epa-537 bes Congeners 1668C		***************************************		
MFA-83A-2033/202-7-	cs/e3/2>	68008 GLU 20	22	*	メ	X	×	X	×	X	X	×				
Field Blank	84/2/13	38	7									- X				
Ton Riche	ileys)	3	7		×											
Normal Turn Around Time (TAT) = 5-10 Business Days	= 5-10 Business Day	IS	SPECIAL INSTRUCTIONS: *Store a portion of each sediment sample at standard temperature (0-6 °C) until all 5 compenents have been received, then composite and analyze for Metals and Hg.	TONS: ach sedimen	sample at str	ndard tempe	rature (0-6 °	C) until all	5 compens	nts have be	sen receive	d, then con	posite and a	nalyze for)	fetals and H	
TAT Requested:		Comp	Composite McOH-preserved VOAs and analyze for NWTPH-Gx, VOCs, and IL-VOCs. Sore 250 mil. PPAS sediment containers at 0-6 °C until all 5 components have been received, then subcontract to Bureau Veritas for compositing and analysis.	reserved VC sediment co.	As and analy stainers at 0-t	°C until all	H-Gx, VOC 5 componen	s, and LL-1 ts have been	OCs.	then subco	infract to B	исап Уст	as for compo	siting and	malysis.	
STANDARD		Store	Store remainder of each sediment sample at -18 °C until all 5 components have been received, then composite and analyze for all remaining tests ***\$5. As, Ba, Be, Cd, Cr, Cu, Pb, Hg, Mn, Ni, Se, Au, Tl, Zn	ach sedimen	sample at -1	C until all	5 componer Zn	its have bee	n received,	треп сотр	oosite and	malyze for	all remaining	tests.		
WPLES ARE HELD FOR		RECEIVED BY	Detection limit report	Date. 07. 07. U.C.	0.7.	Please useer RELINOUIN Signature:	Please usegnicities of temperature blank to send to Bureau Veritas RELINQUIBHED BY: Date: Signophure. O 1.01,023	d temperatu	re blank to	ank to send to Bureau Veritas RECEIVED BY: Signature	reau Verit	RECEIVED BY.	D BY:	1	Date: 7172	TE TE
MEMSENUME TO CONTRAIN TO THE STANKER	5121	Printed Name: V Type: 17/15 Company: WILL	211451	THE.	5	Company:	Prince Name. Time. [PAC BLICKETA JULY Company. [M. A.	Pick	575	Time.		Printed Name:	Printed Name: Time: RathCLE NCAT 14:29 Company: Accompany:	77	E C. Z	9

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project: St. Helens Lagoon Project Number: M0830.03.006 Project Manager: David Weatherby

Report ID: A3B0217 - 04 21 23 1023

(NA. 1 1'-0'	
Client: 11/10/10/10/1	Element WO#: A3D6217
Project/Project #: St.	Helens Laggon MO830.03.006
Delivery Info :	
Date/time received: 217	123 @ 14.29 By: Chip
Delivered by: ApexClien	t__ESSFedExUPSRadioMorganSDSEvergreenOther
Cooler Inspection Date	e/time inspected: 317123 @ 14739 By: 1244
Chain of Custody included	Yes <u>X</u> No
Signed/dated by client?	Yes No
Temperature (°C)	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #6 Cooler #6
Custody seals? (Y/N)	<u>N</u>
Received on ice? (Y/N)	<u> </u>
Temp. blanks? (Y/N)	N
Ice type: (Gel/Real/Other)	<u>(PA)</u>
Condition (In/Out):	<u> </u>
Out of temperature samples	form initiated? Ves/NA
Sample Inspection: Date	form initiated? Yes/No /time inspected: 2/1123 @ 17:17 By: 2x4V) _ No Comments:
Sample Inspection: Date All samples intact? Yes	/time inspected: 2/1123 @ 17:17 By: 249V)
Sample Inspection: Date All samples intact? Yes Bottle labels/COCs agree?	/time inspected: 2/11/3 @ 17:17 By: 2/19/
Sample Inspection: Date All samples intact? Yes Bottle labels/COCs agree? COC/container discrepancies	/time inspected: 2/11/3 @ 17:17 By: 2/17/ No Comments:
Sample Inspection: Date All samples intact? Yes Bottle labels/COCs agree? COC/container discrepancies	/time inspected: 2/11/3 @ 17:17 By: 2/19/
Sample Inspection: Date All samples intact? Yes Bottle labels/COCs agree? COC/container discrepancie Containers/volumes receive	/time inspected: 2/11/3 @ 17:17 By: 2/47/ _ No Comments:
Sample Inspection: Date All samples intact? Yes Bottle labels/COCs agree? COC/container discrepancie Containers/volumes receive	/time inspected: 2/11/3 @ 17:17 By: 2/47/ _ No Comments:
Sample Inspection: Date All samples intact? Yes Bottle labels/COCs agree? COC/container discrepancie Containers/volumes receive	/time inspected: 2/11/3 @ 17:17 By: 2/47/ _ No Comments:
Sample Inspection: Date All samples intact? Yes Bottle labels/COCs agree? COC/container discrepancie Containers/volumes receive Do VOA vials have visible to Comments AH VOA'S Water samples: pH checked	Atime inspected: 2/1123 @ 17:17 By: 2/19/ No Comments: Yes \(\subseteq \text{No} \) Comments: Is form initiated? Yes No \(\subseteq \) No Comments: dispropriate for analysis? Yes \(\subseteq \text{No} \) No Comments: Deadspace? Yes No \(\subseteq \text{NA} \) NA ANALYSE SELIMON
Sample Inspection: Date All samples intact? Yes Bottle labels/COCs agree? COC/container discrepancie Containers/volumes receive Do VOA vials have visible to Comments AH VOA'S Water samples: pH checked	/time inspected: 2/11/3 @ 17:17 By: 2/47/ _ No Comments:
Sample Inspection: Date All samples intact? Yes Bottle labels/COCs agree? COC/container discrepancie Containers/volumes receive Do VOA vials have visible to Comments AH VOA'S Water samples: pH checked Comments:	/time inspected: 2/11/3 @ 17:17 By: 2/17/ No Comments: Yes \(\sum \) No Comments: Is form initiated? Yes No \(\sum \) No Comments: Ineadspace? Yes No \(\sum \) NA Section of the phappropriate? Yes \(\sum \) No NA EYES \(\sum \) NO NA pH appropriate? Yes \(\sum \) No NA Section of the phappropriate in the phappropria
Sample Inspection: Date All samples intact? Yes Bottle labels/COCs agree? COC/container discrepancie Containers/volumes receive Do VOA vials have visible to Comments AH VOA'S Water samples: pH checked Comments:	/time inspected: 2/11/3 @ 17:17 By: 2/17/ No Comments: Yes \(\sum \) No Comments: Is form initiated? Yes No \(\sum \) No Comments: Ineadspace? Yes No \(\sum \) NA Section of the phappropriate? Yes \(\sum \) No NA EYES \(\sum \) NO NA pH appropriate? Yes \(\sum \) No NA Section of the phappropriate in the phappropria
Sample Inspection: Date All samples intact? Yes Bottle labels/COCs agree? COC/container discrepancie Containers/volumes receive Do VOA vials have visible to Comments AH VOA'S Water samples: pH checked Comments: Additional information: (34)	Atime inspected: 2/1123 @ 17:17 By: 247) No Comments: Yes \(\subseteq \text{No} \) Comments: Is form initiated? Yes No \(\subseteq \) No Comments: Ineadspace? Yes No \(\subseteq \text{NA} \) NA SAM 2/1123
Sample Inspection: Date All samples intact? Yes Bottle labels/COCs agree? COC/container discrepancie Containers/volumes receive Do VOA vials have visible to Comments AH VOA'S Water samples: pH checked	/time inspected: 2/11/3 @ 17:17 By: 2/17/ No Comments: Yes \(\sum \) No Comments: Is form initiated? Yes No \(\sum \) No Comments: Ineadspace? Yes No \(\sum \) NA Section of the phappropriate? Yes \(\sum \) No NA EYES \(\sum \) NO NA pH appropriate? Yes \(\sum \) No NA Section of the phappropriate in the phappropria

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Item #2.

AMENDED REPORT

Tuesday, May 2, 2023
David Weatherby
Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

RE: A3B0522 - St. Helens Lagoon - M0830.03.006

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3B0522, which was received by the laboratory on 2/15/2023 at 7:30:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

	Cooler Receip	t Information		
	(See Cooler Receip	t Form for details)		
Cooler#1	1.9 degC	Cooler#2	0.3 degC	
Cooler#3	0.3 degC	Cooler#4	0.4 degC	
Cooler#5	0.9 degC	Cooler#6	5.4 degC	

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

353

Item #2.

ANALYTICAL REPORT

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INF	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW3-20230214-GW-35	A3B0522-01	Water	02/14/23 10:05	02/15/23 07:30
MW3-20230214-GW-35-DUP	A3B0522-02	Water	02/14/23 10:05	02/15/23 07:30
MW5-20230214-GW-40	A3B0522-03	Water	02/14/23 12:51	02/15/23 07:30
MW4-20230214-GW-40	A3B0522-04	Water	02/14/23 14:37	02/15/23 07:30
MW6-20230214-GW-40.25	A3B0522-05	Water	02/14/23 16:17	02/15/23 07:30
Field Blank-02	A3B0522-06	Water	02/14/23 16:10	02/15/23 07:30
Trip Blank	A3B0522-07	Water	02/14/23 00:00	02/15/23 07:30

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL CASE NARRATIVE

A3B0522 Apex Laboratories

Amended Report Revision 1:

EPA Method 8270E data correction.

This report supersedes all previous reports.

Samples were originally reported from an out of hold time batch (23B0895). The samples were re-extracted due to low Blank Spike recoveries. The original in hold time batch (23B0761) is now reported.

Mark Zehr Organics Manager 4/21/2023

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

ANALYTICAL REPORT

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or O	il Hydrocar	bons by NWTPI	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW3-20230214-GW-35 (A3B0522-01)				Matrix: Wate	r	Batch:	23B0986	
Diesel	ND	0.103	0.206	mg/L	1	03/01/23 01:12	NWTPH-Dx	
Oil	ND	0.206	0.412	mg/L	1	03/01/23 01:12	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 81 %	Limits: 50-150 %	1	03/01/23 01:12	NWTPH-Dx	
MW3-20230214-GW-35-DUP (A3B0522-0	2)			Matrix: Wate	r	Batch:	23B0986	
Diesel	ND	0.108	0.215	mg/L	1	03/01/23 01:32	NWTPH-Dx	
Oil	ND	0.215	0.430	mg/L	1	03/01/23 01:32	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 70 %	Limits: 50-150 %	1	03/01/23 01:32	NWTPH-Dx	
MW5-20230214-GW-40 (A3B0522-03)				Matrix: Wate	r	Batch:	23B0986	PRES
Diesel	0.139	0.103	0.206	mg/L	1	03/01/23 01:53	NWTPH-Dx	Ja
Oil	ND	0.206	0.412	mg/L	1	03/01/23 01:53	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 90 %	Limits: 50-150 %	1	03/01/23 01:53	NWTPH-Dx	
MW4-20230214-GW-40 (A3B0522-04)				Matrix: Wate	r	Batch:	23B0986	
Diesel	0.148	0.106	0.213	mg/L	1	03/01/23 02:13	NWTPH-Dx	Ja
Oil	0.213	0.213	0.426	mg/L	1	03/01/23 02:13	NWTPH-Dx	Ja
Surrogate: o-Terphenyl (Surr)		Reco	very: 79 %	Limits: 50-150 %	1	03/01/23 02:13	NWTPH-Dx	
MW6-20230214-GW-40.25 (A3B0522-05)				Matrix: Wate	r	Batch:	23B0986	
Diesel	0.180	0.105	0.211	mg/L	1	03/01/23 02:34	NWTPH-Dx	Ja
Oil	0.316	0.211	0.421	mg/L	1	03/01/23 02:34	NWTPH-Dx	Ja
Surrogate: o-Terphenyl (Surr)		Reco	very: 87 %	Limits: 50-150 %	1	03/01/23 02:34	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

Apex Laboratories

ANALYTICAL REPORT

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

Gasolir	ne Range Hy	drocarbons (E	Benzene th	rough Naphtha	alene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW3-20230214-GW-35 (A3B0522-01)				Matrix: Wate	er	Batch	23B0828	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	02/22/23 17:01	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 100 %	Limits: 50-150 %	1	02/22/23 17:01	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			109 %	50-150 %	1	02/22/23 17:01	NWTPH-Gx (MS)	
MW3-20230214-GW-35-DUP (A3B0522-0	12)			Matrix: Wate	er	Batch	23B0828	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	02/22/23 17:23	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 98 %	Limits: 50-150 %	1	02/22/23 17:23	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			106 %	50-150 %	1	02/22/23 17:23	NWTPH-Gx (MS)	
MW5-20230214-GW-40 (A3B0522-03)				Matrix: Wate	er	Batch	: 23B0828	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	02/22/23 17:45	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 102 %	Limits: 50-150 %	1	02/22/23 17:45	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			107 %	50-150 %	1	02/22/23 17:45	NWTPH-Gx (MS)	
MW4-20230214-GW-40 (A3B0522-04)				Matrix: Wate	er	Batch	: 23B0828	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	02/22/23 18:07	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 97%	Limits: 50-150 %	1	02/22/23 18:07	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			105 %	50-150 %	1	02/22/23 18:07	NWTPH-Gx (MS)	
MW6-20230214-GW-40.25 (A3B0522-05)				Matrix: Wate	er	Batch	: 23B0828	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	02/22/23 18:30	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 100 %	Limits: 50-150 %	1	02/22/23 18:30	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			108 %	50-150 %	1	02/22/23 18:30	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

			ic Compound	.,				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
MW3-20230214-GW-35 (A3B0522-01)				Matrix: Wa	ater	Batch:	23B0828	
Acetone	ND	10.0	20.0	ug/L	1	02/22/23 17:01	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L ug/L	1	02/22/23 17:01	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L ug/L	1	02/22/23 17:01	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L ug/L	1	02/22/23 17:01	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	02/22/23 17:01	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	02/22/23 17:01	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	02/22/23 17:01	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 17:01	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	02/22/23 17:01	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	02/22/23 17:01	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	02/22/23 17:01	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	02/22/23 17:01	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 17:01	EPA 8260D	
1,3-Dichlorobenzene	0.350	0.250	0.500	ug/L	1	02/22/23 17:01	EPA 8260D	Ja
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 17:01	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	02/22/23 17:01	EPA 8260D	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	02/22/23 17:01	EPA 8260D	
,1-Dichloroethene	ND	0.200	0.400	ug/L	1	02/22/23 17:01	EPA 8260D	
sis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	02/22/23 17:01	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	02/22/23 17:01	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW3-20230214-GW-35 (A3B0522-01)				Matrix: W	ater	Batch:	23B0828	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	02/22/23 17:01	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	02/22/23 17:01	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	02/22/23 17:01	EPA 8260D	
2-Hexanone	ND	10.0	10.0	ug/L	1	02/22/23 17:01	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	02/22/23 17:01	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	02/22/23 17:01	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
Naphthalene	ND	2.00	2.00	ug/L	1	02/22/23 17:01	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	02/22/23 17:01	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	02/22/23 17:01	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	02/22/23 17:01	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	02/22/23 17:01	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/22/23 17:01	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/22/23 17:01	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	02/22/23 17:01	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	02/22/23 17:01	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	02/22/23 17:01	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	02/22/23 17:01	EPA 8260D	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
√inyl chloride	ND	0.200	0.400	ug/L	1	02/22/23 17:01	EPA 8260D	
n,p-Xylene	ND	0.500	1.00	ug/L	1	02/22/23 17:01	EPA 8260D	
p-Xylene	ND	0.250	0.500	ug/L	1	02/22/23 17:01	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neighberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW3-20230214-GW-35 (A3B0522-01)				Matrix: Wate	r	Batch: 2	23B0828	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 98 %	Limits: 80-120 %	1	02/22/23 17:01	EPA 8260D	
Toluene-d8 (Surr)			104 %	80-120 %	1	02/22/23 17:01	EPA 8260D	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	02/22/23 17:01	EPA 8260D	
MW3-20230214-GW-35-DUP (A3B0522-0	02)			Matrix: Wate	r	Batch: 2	23B0828	
Acetone	ND	10.0	20.0	ug/L	1	02/22/23 17:23	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	02/22/23 17:23	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	02/22/23 17:23	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	02/22/23 17:23	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	02/22/23 17:23	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	02/22/23 17:23	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	02/22/23 17:23	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 17:23	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	02/22/23 17:23	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	02/22/23 17:23	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	02/22/23 17:23	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	02/22/23 17:23	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 17:23	EPA 8260D	
1,3-Dichlorobenzene	0.440	0.250	0.500	ug/L	1	02/22/23 17:23	EPA 8260D	Ja
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 17:23	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	02/22/23 17:23	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Vc	platile Organ	ic Compound	us by EPA 8.	260D			
A 1.	Sample	Detection	Reporting	TT	P.1 - 1	Date	M 4 48 2	3.7
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW3-20230214-GW-35-DUP (A3B0522-	-02)			Matrix: Wa	ater	Batch:	23B0828	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	02/22/23 17:23	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	02/22/23 17:23	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	02/22/23 17:23	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	02/22/23 17:23	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	02/22/23 17:23	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	02/22/23 17:23	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	02/22/23 17:23	EPA 8260D	
2-Hexanone	ND	10.0	10.0	ug/L	1	02/22/23 17:23	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	02/22/23 17:23	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	02/22/23 17:23	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
Naphthalene	ND	2.00	2.00	ug/L	1	02/22/23 17:23	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	02/22/23 17:23	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	02/22/23 17:23	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	02/22/23 17:23	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	02/22/23 17:23	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/22/23 17:23	EPA 8260D	
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/22/23 17:23	EPA 8260D	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	02/22/23 17:23	EPA 8260D	
,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	02/22/23 17:23	EPA 8260D	
Frichloroethene (TCE)	ND	0.200	0.400	ug/L	1	02/22/23 17:23	EPA 8260D	
richlorofluoromethane	ND	1.00	2.00	ug/L	1	02/22/23 17:23	EPA 8260D	
,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	<u>v</u>		ic compou	nds by EPA 826	VD			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW3-20230214-GW-35-DUP (A3B0522-0	12)			Matrix: Wate	r	Batch: 2	23B0828	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
Vinyl chloride	ND	0.200	0.400	ug/L	1	02/22/23 17:23	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	02/22/23 17:23	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	02/22/23 17:23	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 98 %	Limits: 80-120 %	1	02/22/23 17:23	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	I	02/22/23 17:23	EPA 8260D	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	02/22/23 17:23	EPA 8260D	
MW5-20230214-GW-40 (A3B0522-03)				Matrix: Wate	r	Batch:	23B0828	
Acetone	ND	10.0	20.0	ug/L	1	02/22/23 17:45	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	02/22/23 17:45	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	02/22/23 17:45	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	02/22/23 17:45	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	02/22/23 17:45	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	02/22/23 17:45	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	02/22/23 17:45	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 17:45	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	02/22/23 17:45	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	02/22/23 17:45	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	02/22/23 17:45	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	02/22/23 17:45	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 17:45	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

			Departing Departing			Dat-		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW5-20230214-GW-40 (A3B0522-03)				Matrix: W	ater	Batch:	23B0828	
,3-Dichlorobenzene	0.260	0.250	0.500	ug/L	1	02/22/23 17:45	EPA 8260D	Ja
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 17:45	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1	02/22/23 17:45	EPA 8260D	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	02/22/23 17:45	EPA 8260D	
,1-Dichloroethene	ND	0.200	0.400	ug/L	1	02/22/23 17:45	EPA 8260D	
ris-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	02/22/23 17:45	EPA 8260D	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	02/22/23 17:45	EPA 8260D	
,2-Dichloropropane	ND	0.250	0.500	ug/L	1	02/22/23 17:45	EPA 8260D	
,3-Dichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
sis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	02/22/23 17:45	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	02/22/23 17:45	EPA 8260D	
2-Hexanone	ND	10.0	10.0	ug/L	1	02/22/23 17:45	EPA 8260D	
sopropylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
l-Isopropyltoluene	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	02/22/23 17:45	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	02/22/23 17:45	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
Naphthalene	ND	2.00	2.00	ug/L	1	02/22/23 17:45	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	02/22/23 17:45	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	02/22/23 17:45	EPA 8260D	
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	02/22/23 17:45	EPA 8260D	
etrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	02/22/23 17:45	EPA 8260D	
oluene	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D	
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/22/23 17:45	EPA 8260D	
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/22/23 17:45	EPA 8260D	
.1.1-Trichloroethane	ND	0.200	0.400	ug/L	1	02/22/23 17:45	EPA 8260D	
,1,2-Trichloroethane	ND	0.250	0.500	ug/L ug/L	1	02/22/23 17:45	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MW5-20230214-GW-40 (A3B0522-03)				Matrix: Wate	er	Batch: 2	atch: 23B0828		
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	02/22/23 17:45	EPA 8260D		
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	02/22/23 17:45	EPA 8260D		
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D		
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D		
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D		
Vinyl chloride	ND	0.200	0.400	ug/L	1	02/22/23 17:45	EPA 8260D		
m,p-Xylene	ND	0.500	1.00	ug/L	1	02/22/23 17:45	EPA 8260D		
o-Xylene	ND	0.250	0.500	ug/L	1	02/22/23 17:45	EPA 8260D		
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 97 %	Limits: 80-120 %	I	02/22/23 17:45	EPA 8260D		
Toluene-d8 (Surr)			102 %	80-120 %		02/22/23 17:45	EPA 8260D		
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	02/22/23 17:45	EPA 8260D		
MW4-20230214-GW-40 (A3B0522-04)				Matrix: Wate	er	Batch: 2	23B0828		
Acetone	ND	10.0	20.0	ug/L	1	02/22/23 18:07	EPA 8260D		
Acrylonitrile	ND	1.00	2.00	ug/L	1	02/22/23 18:07	EPA 8260D		
Benzene	ND	0.100	0.200	ug/L	1	02/22/23 18:07	EPA 8260D		
Bromobenzene	ND	0.250	0.500	ug/L	1	02/22/23 18:07	EPA 8260D		
Bromochloromethane	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D		
Bromodichloromethane	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D		
Bromoform	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D		
Bromomethane	ND	5.00	5.00	ug/L	1	02/22/23 18:07	EPA 8260D		
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	02/22/23 18:07	EPA 8260D		
n-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D		
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D		
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D		
Carbon disulfide	ND	5.00	10.0	ug/L	1	02/22/23 18:07	EPA 8260D		
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D		
Chlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 18:07	EPA 8260D		
Chloroethane	ND	5.00	5.00	ug/L	1	02/22/23 18:07	EPA 8260D		
Chloroform	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D		
Chloromethane	ND	2.50	5.00	ug/L	1	02/22/23 18:07	EPA 8260D		
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D		
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D		
Dibromochloromethane	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	us by EPA 8	∠סטט			
Analyta	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Analyte	Kesuit	Pillill	Lillill			•		notes
MW4-20230214-GW-40 (A3B0522-04)				Matrix: W	ater	Batch: 23B0828		
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	02/22/23 18:07	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	02/22/23 18:07	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 18:07	EPA 8260D	
1,3-Dichlorobenzene	0.330	0.250	0.500	ug/L	1	02/22/23 18:07	EPA 8260D	Ja
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 18:07	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	02/22/23 18:07	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	02/22/23 18:07	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	02/22/23 18:07	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	02/22/23 18:07	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	02/22/23 18:07	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	02/22/23 18:07	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	02/22/23 18:07	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	02/22/23 18:07	EPA 8260D	
2-Hexanone	ND	10.0	10.0	ug/L	1	02/22/23 18:07	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	02/22/23 18:07	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	02/22/23 18:07	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D	
Naphthalene	ND	2.00	2.00	ug/L	1	02/22/23 18:07	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	02/22/23 18:07	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D	
1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	02/22/23 18:07	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	02/22/23 18:07	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	02/22/23 18:07	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoui	nds by EPA 826	מט			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW4-20230214-GW-40 (A3B0522-04)				Matrix: Wate	r	Batch: 2	23B0828	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/22/23 18:07	EPA 8260D	-
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/22/23 18:07	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	02/22/23 18:07	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	02/22/23 18:07	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	02/22/23 18:07	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	02/22/23 18:07	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D	
Vinyl chloride	ND	0.200	0.400	ug/L	1	02/22/23 18:07	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	02/22/23 18:07	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	02/22/23 18:07	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 96 %	Limits: 80-120 %	I	02/22/23 18:07	EPA 8260D	
Toluene-d8 (Surr)			103 %	80-120 %		02/22/23 18:07	EPA 8260D	
4-Bromofluorobenzene (Surr)			97 %	80-120 %	I	02/22/23 18:07	EPA 8260D	
MW6-20230214-GW-40.25 (A3B0522-05)				Matrix: Wate	er	Batch: 2	23B0828	
Acetone	ND	10.0	20.0	ug/L	1	02/22/23 18:30	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	02/22/23 18:30	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	02/22/23 18:30	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	02/22/23 18:30	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	02/22/23 18:30	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	02/22/23 18:30	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	02/22/23 18:30	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 18:30	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	02/22/23 18:30	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

			ic Compound	, = 1 17 0				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
•		n						1,0108
MW6-20230214-GW-40.25 (A3B0522-05)				Matrix: Wa	ater	Batch:	23B0828	
Chloromethane	ND	2.50	5.00	ug/L	1	02/22/23 18:30	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	02/22/23 18:30	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	02/22/23 18:30	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 18:30	EPA 8260D	
1,3-Dichlorobenzene	0.250	0.250	0.500	ug/L	1	02/22/23 18:30	EPA 8260D	Ja
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 18:30	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	02/22/23 18:30	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	02/22/23 18:30	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	02/22/23 18:30	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	02/22/23 18:30	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	02/22/23 18:30	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	02/22/23 18:30	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	02/22/23 18:30	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	02/22/23 18:30	EPA 8260D	
2-Hexanone	ND	10.0	10.0	ug/L	1	02/22/23 18:30	EPA 8260D	
Isopropylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	02/22/23 18:30	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	02/22/23 18:30	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
Naphthalene	ND	2.00	2.00	ug/L	1	02/22/23 18:30	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	02/22/23 18:30	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW6-20230214-GW-40.25 (A3B0522-05)				Matrix: Wate	er	Batch: 2	23B0828	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	02/22/23 18:30	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	02/22/23 18:30	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	02/22/23 18:30	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/22/23 18:30	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/22/23 18:30	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	02/22/23 18:30	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	02/22/23 18:30	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	02/22/23 18:30	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	02/22/23 18:30	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
Vinyl chloride	ND	0.200	0.400	ug/L	1	02/22/23 18:30	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	02/22/23 18:30	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	02/22/23 18:30	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 97 %	Limits: 80-120 %	I	02/22/23 18:30	EPA 8260D	
Toluene-d8 (Surr)			103 %	80-120 %	1	02/22/23 18:30	EPA 8260D	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	I	02/22/23 18:30	EPA 8260D	
Trip Blank (A3B0522-07)				Matrix: Wate	er	Batch: 2	23B0828	
Acetone	ND	10.0	20.0	ug/L	1	02/22/23 16:16	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	02/22/23 16:16	EPA 8260D	
Benzene	ND	0.100	0.200	ug/L	1	02/22/23 16:16	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	02/22/23 16:16	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	02/22/23 16:16	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	02/22/23 16:16	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	02/22/23 16:16	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Namberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

		olatile Organ	ic Compound	us by EPA 8	∠ 60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Trip Blank (A3B0522-07)				Matrix: Wa	ater	Batch:	23B0828	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 16:16	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	02/22/23 16:16	EPA 8260D	
Chloroform	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	02/22/23 16:16	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1	02/22/23 16:16	EPA 8260D	
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1	02/22/23 16:16	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 16:16	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 16:16	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 16:16	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1	02/22/23 16:16	EPA 8260D	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1	02/22/23 16:16	EPA 8260D	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	02/22/23 16:16	EPA 8260D	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	02/22/23 16:16	EPA 8260D	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	02/22/23 16:16	EPA 8260D	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1	02/22/23 16:16	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
eis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
Ethylbenzene	ND	0.250	0.500	ug/L	1	02/22/23 16:16	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	02/22/23 16:16	EPA 8260D	
-Hexanone	ND	10.0	10.0	ug/L	1	02/22/23 16:16	EPA 8260D	
sopropylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
-Isopropyltoluene	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	02/22/23 16:16	EPA 8260D	
-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	02/22/23 16:16	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Vo	olatile Organ	ic Compoun	nds by EPA 826	30D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Trip Blank (A3B0522-07)				Matrix: Wate	er e	Batch: 2	23B0828	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	_
Naphthalene	ND	2.00	2.00	ug/L	1	02/22/23 16:16	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	02/22/23 16:16	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	02/22/23 16:16	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1	02/22/23 16:16	EPA 8260D	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	02/22/23 16:16	EPA 8260D	
Toluene	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/22/23 16:16	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/22/23 16:16	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	02/22/23 16:16	EPA 8260D	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1	02/22/23 16:16	EPA 8260D	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	02/22/23 16:16	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	02/22/23 16:16	EPA 8260D	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
Vinyl chloride	ND	0.200	0.400	ug/L	1	02/22/23 16:16	EPA 8260D	
m,p-Xylene	ND	0.500	1.00	ug/L	1	02/22/23 16:16	EPA 8260D	
o-Xylene	ND	0.250	0.500	ug/L	1	02/22/23 16:16	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	very: 98 %	Limits: 80-120 %	6 I	02/22/23 16:16	EPA 8260D	
Toluene-d8 (Surr)			105 %	80-120 %		02/22/23 16:16	EPA 8260D	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	6 1	02/22/23 16:16	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Vola	tile Organic (Compound	s by EPA 8260D	SIM			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW3-20230214-GW-35 (A3B0522-01)				Matrix: Wate	er	Batch:	23B0743	
Benzene	ND	0.0500	0.100	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
Toluene	ND	0.0500	0.100	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
Ethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
m,p-Xylene	ND	0.100	0.200	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
o-Xylene	ND	0.0500	0.100	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
1,2,4-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
1,3,5-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
Chloroform	ND	0.0500	0.100	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
1,2-Dibromo-3-chloropropane	ND	0.100	0.200	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
1,1-Dichloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
1,2-Dichloroethane (EDC)	ND	0.0100	0.0200	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
1,1-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
cis-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
trans-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
1,2-Dichloropropane	ND	0.0100	0.0200	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
cis-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
trans-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
Methyl tert-butyl ether (MTBE)	ND	0.0100	0.0200	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
1,1,2,2-Tetrachloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
Tetrachloroethene (PCE)	ND	0.0100	0.0200	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
Trichloroethene (TCE)	ND	0.0100	0.0200	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
1,2,3-Trichloropropane	ND	0.0500	0.100	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
1,1,2-Trichloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 17:06	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 104 %	Limits: 80-120 %	1	02/20/23 17:06	EPA 8260D SIM	
Toluene-d8 (Surr)			99 %	80-120 %	1	02/20/23 17:06	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	02/20/23 17:06	EPA 8260D SIM	
MW3-20230214-GW-35-DUP (A3B0522-0)2)			Matrix: Wate	er	Batch:	23B0743	
Benzene	ND	0.0500	0.100	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
Toluene	ND	0.0500	0.100	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
Ethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
m,p-Xylene	ND	0.100	0.200	ug/L	1	02/20/23 18:27	EPA 8260D SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Newsberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	VOI	atile Organic	compound	s by EPA 8260D	SIM			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW3-20230214-GW-35-DUP (A3B0522-	02)			Matrix: Wate	r	Batch:	23B0743	
o-Xylene	ND	0.0500	0.100	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
1,2,4-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
1,3,5-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
Chloroform	ND	0.0500	0.100	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
1,2-Dibromo-3-chloropropane	ND	0.100	0.200	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
1,1-Dichloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
1,2-Dichloroethane (EDC)	ND	0.0100	0.0200	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
1,1-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
cis-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
trans-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
1,2-Dichloropropane	ND	0.0100	0.0200	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
cis-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
trans-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
Methyl tert-butyl ether (MTBE)	ND	0.0100	0.0200	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
1,1,2,2-Tetrachloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
Tetrachloroethene (PCE)	ND	0.0100	0.0200	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
Trichloroethene (TCE)	ND	0.0100	0.0200	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
1,2,3-Trichloropropane	ND	0.0500	0.100	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
1,1,2-Trichloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 18:27	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	ry: 103 %	Limits: 80-120 %	1	02/20/23 18:27	EPA 8260D SIM	
Toluene-d8 (Surr)			99 %	80-120 %	1	02/20/23 18:27	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	02/20/23 18:27	EPA 8260D SIM	
MW5-20230214-GW-40 (A3B0522-03)				Matrix: Wate	r	Batch:	23B0743	
Benzene	ND	0.0500	0.100	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
Toluene	ND	0.0500	0.100	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
Ethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
m,p-Xylene	ND	0.100	0.200	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
o-Xylene	ND	0.0500	0.100	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
1,2,4-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
1,3,5-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
Chloroform	ND	0.0500	0.100	ug/L	1	02/20/23 18:54	EPA 8260D SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW5-20230214-GW-40 (A3B0522-03)				Matrix: Wate	er	Batch:	23B0743	
1,2-Dibromo-3-chloropropane	ND	0.100	0.200	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
1,1-Dichloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
1,2-Dichloroethane (EDC)	ND	0.0100	0.0200	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
1,1-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
cis-1,2-Dichloroethene	0.0291	0.0100	0.0200	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
trans-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
1,2-Dichloropropane	ND	0.0100	0.0200	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
cis-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
trans-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
Methyl tert-butyl ether (MTBE)	ND	0.0100	0.0200	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
1,1,2,2-Tetrachloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
Tetrachloroethene (PCE)	ND	0.0100	0.0200	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
Trichloroethene (TCE)	ND	0.0100	0.0200	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
1,2,3-Trichloropropane	ND	0.0500	0.100	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
1,1,2-Trichloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 18:54	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 105 %	Limits: 80-120 %	5 1	02/20/23 18:54	EPA 8260D SIM	
Toluene-d8 (Surr)			98 %	80-120 %	5 1	02/20/23 18:54	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	5 1	02/20/23 18:54	EPA 8260D SIM	
MW4-20230214-GW-40 (A3B0522-04)				Matrix: Wate	er	Batch:	23B0743	
Benzene	ND	0.0500	0.100	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
Toluene	ND	0.0500	0.100	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
Ethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
m,p-Xylene	ND	0.100	0.200	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
o-Xylene	ND	0.0500	0.100	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
1,2,4-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
1,3,5-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
Chloroform	ND	0.0500	0.100	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
1,2-Dibromo-3-chloropropane	ND	0.100	0.200	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
1,1-Dichloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
1,2-Dichloroethane (EDC)	ND	0.0100	0.0200	ug/L	1	02/20/23 19:20	EPA 8260D SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	¥U16	Line Organic	Jonipouliu	s by EPA 8260D	J.171			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
MW4-20230214-GW-40 (A3B0522-04)				Matrix: Wate	r	Batch:	23B0743	
1,1-Dichloroethene	ND	0.0200	0.0200	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
cis-1,2-Dichloroethene	ND	0.0200	0.0200	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
trans-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
1,2-Dichloropropane	ND	0.0100	0.0200	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
cis-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
trans-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
Methyl tert-butyl ether (MTBE)	ND	0.0100	0.0200	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
1,1,2,2-Tetrachloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
Tetrachloroethene (PCE)	ND	0.0100	0.0200	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
Trichloroethene (TCE)	ND	0.0100	0.0200	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
1,2,3-Trichloropropane	ND	0.0500	0.100	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
1,1,2-Trichloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 19:20	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 105 %	Limits: 80-120 %	1	02/20/23 19:20	EPA 8260D SIM	
Toluene-d8 (Surr)			98 %	80-120 %	1	02/20/23 19:20	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	02/20/23 19:20	EPA 8260D SIM	
MW6-20230214-GW-40.25 (A3B0522-05)				Matrix: Wate	r	Batch:	Batch: 23B0743	
Benzene	ND	0.0500	0.100	ug/L	1	02/20/23 19:47	EPA 8260D SIM	
Toluene	ND	0.0500	0.100	ug/L	1	02/20/23 19:47	EPA 8260D SIM	
Ethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 19:47	EPA 8260D SIM	Q-42
m,p-Xylene	ND	0.100	0.200	ug/L	1	02/20/23 19:47	EPA 8260D SIM	Q-42
o-Xylene	ND	0.0500	0.100	ug/L	1	02/20/23 19:47	EPA 8260D SIM	Q-42
1,2,4-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 19:47	EPA 8260D SIM	Q-42
1,3,5-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 19:47	EPA 8260D SIM	Q-42
Chloroform	ND	0.0500	0.100	ug/L	1	02/20/23 19:47	EPA 8260D SIM	
1,2-Dibromo-3-chloropropane	ND	0.100	0.200	ug/L	1	02/20/23 19:47	EPA 8260D SIM	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	02/20/23 19:47	EPA 8260D SIM	Q-4
1,1-Dichloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 19:47	EPA 8260D SIM	
1,2-Dichloroethane (EDC)	ND	0.0100	0.0200	ug/L	1	02/20/23 19:47	EPA 8260D SIM	
1,1-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 19:47	EPA 8260D SIM	
cis-1,2-Dichloroethene	0.0212	0.0100	0.0200	ug/L	1	02/20/23 19:47	EPA 8260D SIM	
trans-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 19:47	EPA 8260D SIM	
1,2-Dichloropropane	ND	0.0100	0.0200	ug/L	1	02/20/23 19:47	EPA 8260D SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	VOI	anie Organic (Joinpoulla	s by EPA 8260[JIIVI			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW6-20230214-GW-40.25 (A3B0522-05)				Matrix: Wate	r	Batch:	23B0743	
eis-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	02/20/23 19:47	EPA 8260D SIM	
rans-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	02/20/23 19:47	EPA 8260D SIM	
Methyl tert-butyl ether (MTBE)	ND	0.0100	0.0200	ug/L	1	02/20/23 19:47	EPA 8260D SIM	
1,1,2,2-Tetrachloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 19:47	EPA 8260D SIM	
Tetrachloroethene (PCE)	ND	0.0100	0.0200	ug/L	1	02/20/23 19:47	EPA 8260D SIM	
Trichloroethene (TCE)	ND	0.0100	0.0200	ug/L	1	02/20/23 19:47	EPA 8260D SIM	
1,2,3-Trichloropropane	ND	0.0500	0.100	ug/L	1	02/20/23 19:47	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	02/20/23 19:47	EPA 8260D SIM	
1,1,2-Trichloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 19:47	EPA 8260D SIM	Q-42
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 104 %	Limits: 80-120 %	I	02/20/23 19:47	EPA 8260D SIM	
Toluene-d8 (Surr)			99 %	80-120 %	I	02/20/23 19:47	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	02/20/23 19:47	EPA 8260D SIM	
Trip Blank (A3B0522-07)				Matrix: Wate	er	Batch:	23B0743	
Benzene	ND	0.0500	0.100	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
Toluene	ND	0.0500	0.100	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
Ethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
n,p-Xylene	ND	0.100	0.200	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
p-Xylene	ND	0.0500	0.100	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
1,2,4-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
1,3,5-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
Chloroform	0.218	0.0500	0.100	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
1,2-Dibromo-3-chloropropane	ND	0.100	0.200	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
1,1-Dichloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
1,2-Dichloroethane (EDC)	ND	0.0100	0.0200	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
1,1-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
cis-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
rans-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
1,2-Dichloropropane	ND	0.0100	0.0200	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
cis-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
rans-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
Methyl tert-butyl ether (MTBE)	ND	0.0100	0.0200	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
1,1,2,2-Tetrachloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 16:39	EPA 8260D SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Vola	atile Organic	Compound	s by EPA 8260I	DSIM			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Trip Blank (A3B0522-07)	•			Matrix: Wate	er	Batch:	23B0743	
Tetrachloroethene (PCE)	ND	0.0100	0.0200	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
Trichloroethene (TCE)	ND	0.0100	0.0200	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
1,2,3-Trichloropropane	ND	0.0500	0.100	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
1,1,2-Trichloroethane	ND	0.0100	0.0200	ug/L	1	02/20/23 16:39	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 104 %	Limits: 80-120 %	6 I	02/20/23 16:39	EPA 8260D SIM	
Toluene-d8 (Surr)			100 %	80-120 %	6 I	02/20/23 16:39	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	ó 1	02/20/23 16:39	EPA 8260D SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

		nivolatile Org	•	au by Er/	. v= : VL			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
•	Result	PHIIII	Lillit			•		
MW3-20230214-GW-35 (A3B0522-01)				Matrix: W	ater	Batch:	23B0761	AMEND
Acenaphthene	0.0419	0.00962	0.0192	ug/L	1	02/21/23 19:16	EPA 8270E	
Acenaphthylene	0.0340	0.00962	0.0192	ug/L	1	02/21/23 19:16	EPA 8270E	
Anthracene	0.0165	0.00962	0.0192	ug/L	1	02/21/23 19:16	EPA 8270E	Ja
Benz(a)anthracene	ND	0.00962	0.0192	ug/L	1	02/21/23 19:16	EPA 8270E	
Benzo(a)pyrene	ND	0.0144	0.0288	ug/L	1	02/21/23 19:16	EPA 8270E	
Benzo(b)fluoranthene	ND	0.0144	0.0288	ug/L	1	02/21/23 19:16	EPA 8270E	
Benzo(k)fluoranthene	ND	0.0144	0.0288	ug/L	1	02/21/23 19:16	EPA 8270E	
Benzo(g,h,i)perylene	ND	0.00962	0.0192	ug/L	1	02/21/23 19:16	EPA 8270E	
Chrysene	ND	0.00962	0.0192	ug/L	1	02/21/23 19:16	EPA 8270E	
Dibenz(a,h)anthracene	ND	0.00962	0.0192	ug/L	1	02/21/23 19:16	EPA 8270E	
Fluoranthene	0.0240	0.00962	0.0192	ug/L	1	02/21/23 19:16	EPA 8270E	
Fluorene	0.0586	0.00962	0.0192	ug/L	1	02/21/23 19:16	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	0.00962	0.0192	ug/L	1	02/21/23 19:16	EPA 8270E	
1-Methylnaphthalene	0.0239	0.0192	0.0385	ug/L	1	02/21/23 19:16	EPA 8270E	Q-30, Ja
2-Methylnaphthalene	ND	0.0192	0.0385	ug/L	1	02/21/23 19:16	EPA 8270E	Q-30
Naphthalene	0.0722	0.0192	0.0385	ug/L	1	02/21/23 19:16	EPA 8270E	Q-30
Phenanthrene	ND	0.00962	0.0192	ug/L	1	02/21/23 19:16	EPA 8270E	
Pyrene	ND	0.00962	0.0192	ug/L	1	02/21/23 19:16	EPA 8270E	
Carbazole	0.0178	0.0144	0.0288	ug/L	1	02/21/23 19:16	EPA 8270E	Ja
Dibenzofuran	0.0174	0.00962	0.0192	ug/L	1	02/21/23 19:16	EPA 8270E	Ja
2-Chlorophenol	ND	0.0481	0.0962	ug/L	1	02/21/23 19:16	EPA 8270E	
4-Chloro-3-methylphenol	ND	0.0962	0.192	ug/L	1	02/21/23 19:16	EPA 8270E	
2,4-Dichlorophenol	ND	0.0481	0.0962	ug/L	1	02/21/23 19:16	EPA 8270E	
2,4-Dimethylphenol	ND	0.0481	0.0962	ug/L	1	02/21/23 19:16	EPA 8270E	
2,4-Dinitrophenol	ND	0.240	0.481	ug/L	1	02/21/23 19:16	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	0.240	0.481	ug/L	1	02/21/23 19:16	EPA 8270E	
2-Methylphenol	ND	0.0240	0.0481	ug/L	1	02/21/23 19:16	EPA 8270E	
3+4-Methylphenol(s)	ND	0.0240	0.0481	ug/L	1	02/21/23 19:16	EPA 8270E	
2-Nitrophenol	ND	0.0962	0.192	ug/L	1	02/21/23 19:16	EPA 8270E	
4-Nitrophenol	ND	0.0962	0.192	ug/L	1	02/21/23 19:16	EPA 8270E	
Pentachlorophenol (PCP)	ND	0.0962	0.192	ug/L	1	02/21/23 19:16	EPA 8270E	
Phenol	ND	0.192	0.385	ug/L	1	02/21/23 19:16	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	0.0481	0.0962	ug/L	1	02/21/23 19:16	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Sem	nivolatile Org	anic Compor	unds by EPA	A 8270E			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW3-20230214-GW-35 (A3B0522-01)				Matrix: W	ater	Batch:	23B0761	AMEND
2,3,5,6-Tetrachlorophenol	ND	0.0481	0.0962	ug/L	1	02/21/23 19:16	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.0481	0.0962	ug/L	1	02/21/23 19:16	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.0481	0.0962	ug/L	1	02/21/23 19:16	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	0.192	0.385	ug/L	1	02/21/23 19:16	EPA 8270E	
Butyl benzyl phthalate	ND	0.192	0.385	ug/L	1	02/21/23 19:16	EPA 8270E	
Diethylphthalate	ND	0.192	0.385	ug/L	1	02/21/23 19:16	EPA 8270E	
Dimethylphthalate	ND	0.192	0.385	ug/L	1	02/21/23 19:16	EPA 8270E	
Di-n-butylphthalate	ND	0.192	0.385	ug/L	1	02/21/23 19:16	EPA 8270E	
Di-n-octyl phthalate	ND	0.192	0.385	ug/L	1	02/21/23 19:16	EPA 8270E	
N-Nitrosodimethylamine	ND	0.0240	0.0481	ug/L	1	02/21/23 19:16	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	0.0240	0.0481	ug/L	1	02/21/23 19:16	EPA 8270E	
N-Nitrosodiphenylamine	0.0257	0.0240	0.0481	ug/L	1	02/21/23 19:16	EPA 8270E	Ja
Bis(2-Chloroethoxy) methane	0.0623	0.0240	0.0481	ug/L	1	02/21/23 19:16	EPA 8270E	
Bis(2-Chloroethyl) ether	0.0407	0.0240	0.0481	ug/L	1	02/21/23 19:16	EPA 8270E	Ja
2,2'-Oxybis(1-Chloropropane)	0.0264	0.0240	0.0481	ug/L	1	02/21/23 19:16	EPA 8270E	Ja
Hexachlorobenzene	0.0179	0.00962	0.0192	ug/L	1	02/21/23 19:16	EPA 8270E	Ja
Hexachlorobutadiene	0.0358	0.0240	0.0481	ug/L	1	02/21/23 19:16	EPA 8270E	Q-30, Ja
Hexachlorocyclopentadiene	ND	0.0481	0.0962	ug/L	1	02/21/23 19:16	EPA 8270E	Q-30
Hexachloroethane	0.0378	0.0240	0.0481	ug/L	1	02/21/23 19:16	EPA 8270E	Q-30, Ja
2-Chloronaphthalene	0.0513	0.00962	0.0192	ug/L	1	02/21/23 19:16	EPA 8270E	Q-30
1,2,4-Trichlorobenzene	ND	0.0240	0.0481	ug/L	1	02/21/23 19:16	EPA 8270E	Q-30
4-Bromophenyl phenyl ether	0.0493	0.0240	0.0481	ug/L	1	02/21/23 19:16	EPA 8270E	
4-Chlorophenyl phenyl ether	0.0507	0.0240	0.0481	ug/L	1	02/21/23 19:16	EPA 8270E	
Aniline	ND	0.0481	0.0962	ug/L	1	02/21/23 19:16	EPA 8270E	
4-Chloroaniline	ND	0.0240	0.0481	ug/L	1	02/21/23 19:16	EPA 8270E	
2-Nitroaniline	ND	0.192	0.385	ug/L	1	02/21/23 19:16	EPA 8270E	
3-Nitroaniline	ND	0.192	0.385	ug/L	1	02/21/23 19:16	EPA 8270E	
4-Nitroaniline	ND	0.192	0.385	ug/L	1	02/21/23 19:16	EPA 8270E	
Nitrobenzene	ND	0.0962	0.192	ug/L	1	02/21/23 19:16	EPA 8270E	
2,4-Dinitrotoluene	ND	0.0962	0.192	ug/L	1	02/21/23 19:16	EPA 8270E	
2,6-Dinitrotoluene	ND	0.0962	0.192	ug/L	1	02/21/23 19:16	EPA 8270E	
Benzoic acid	ND	2.40	2.40	ug/L	1	02/21/23 19:16	EPA 8270E	
Benzyl alcohol	ND	0.0962	0.192	ug/L	1	02/21/23 19:16	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
MW3-20230214-GW-35 (A3B0522-01)	Result	Limit	Limit	Matrix: Wate			23B0761	AMEND
Isophorone	0.0272	0.0240	0.0481	ug/L	1	02/21/23 19:16	EPA 8270E	Ja
Azobenzene (1,2-DPH)	ND	0.0240	0.0481	ug/L	1	02/21/23 19:16	EPA 8270E	94
Bis(2-Ethylhexyl) adipate	ND	0.240	0.481	ug/L	1	02/21/23 19:16	EPA 8270E	
3,3'-Dichlorobenzidine	ND	0.481	0.962	ug/L	1	02/21/23 19:16	EPA 8270E	Q-52
1.2-Dinitrobenzene	ND	0.240	0.481	ug/L	1	02/21/23 19:16	EPA 8270E	V 3.
1,3-Dinitrobenzene	ND	0.240	0.481	ug/L	1	02/21/23 19:16	EPA 8270E	
1.4-Dinitrobenzene	ND	0.240	0.481	ug/L	1	02/21/23 19:16	EPA 8270E	
Pyridine	ND	0.0962	0.192	ug/L	1	02/21/23 19:16	EPA 8270E	
1,2-Dichlorobenzene	ND ND	0.0240	0.192	ug/L ug/L	1	02/21/23 19:16	EPA 8270E	Q-30
1,3-Dichlorobenzene	0.0950	0.0240	0.0481	ug/L ug/L	1	02/21/23 19:16	EPA 8270E	Q-3(
1,4-Dichlorobenzene	0.0930 ND	0.0240	0.0481	ug/L ug/L	1	02/21/23 19:16	EPA 8270E	Q-30
	ND							
Surrogate: Nitrobenzene-d5 (Surr) 2-Fluorobiphenyl (Surr)		Recovery	31 %	Limits: 44-120 % 44-120 %		02/21/23 19:16 02/21/23 19:16	EPA 8270E EPA 8270E	S-00 S-00
Phenol-d6 (Surr)			18 %	10-133 %		02/21/23 19:16	EPA 8270E	5-0
p-Terphenyl-d14 (Surr)			73 %	50-134 %		02/21/23 19:16	EPA 8270E	
2-Fluorophenol (Surr)			27 %	19-120 %	1	02/21/23 19:16	EPA 8270E	
2,4,6-Tribromophenol (Surr)			64 %	43-140 %	1	02/21/23 19:16	EPA 8270E	
MW3-20230214-GW-35-DUP (A3B0522-0	2)			Matrix: Wate	r	Batch: 2	23B0761	AMEND
Acenaphthene	0.0167	0.00943	0.0189	ug/L	1	02/21/23 19:50	EPA 8270E	Ja
Acenaphthylene	0.0129	0.00943	0.0189	ug/L	1	02/21/23 19:50	EPA 8270E	Ja
Anthracene	ND	0.00943	0.0189	ug/L	1	02/21/23 19:50	EPA 8270E	
Benz(a)anthracene	ND	0.00943	0.0189	ug/L	1	02/21/23 19:50	EPA 8270E	
Benzo(a)pyrene	ND	0.0142	0.0283	ug/L	1	02/21/23 19:50	EPA 8270E	
Benzo(b)fluoranthene	ND	0.0142	0.0283	ug/L	1	02/21/23 19:50	EPA 8270E	
Benzo(k)fluoranthene	ND	0.0142	0.0283	ug/L	1	02/21/23 19:50	EPA 8270E	
Benzo(g,h,i)perylene	ND	0.00943	0.0189	ug/L	1	02/21/23 19:50	EPA 8270E	
Chrysene	ND	0.00943	0.0189	ug/L	1	02/21/23 19:50	EPA 8270E	
Dibenz(a,h)anthracene	ND	0.00943	0.0189	ug/L	1	02/21/23 19:50	EPA 8270E	
Fluoranthene	0.0106	0.00943	0.0189	ug/L	1	02/21/23 19:50	EPA 8270E	Ja
Fluorene	0.0201	0.00943	0.0189	ug/L	1	02/21/23 19:50	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	0.00943	0.0189	ug/L	1	02/21/23 19:50	EPA 8270E	
1-Methylnaphthalene	ND	0.0189	0.0377	ug/L	1	02/21/23 19:50	EPA 8270E	Q-3
· 1				0				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW3-20230214-GW-35-DUP (A3B0522-0	02)			Matrix: Wa	ater	Batch:	23B0761	AMEND
Naphthalene	0.0362	0.0189	0.0377	ug/L	1	02/21/23 19:50	EPA 8270E	Q-30, Ja
Phenanthrene	ND	0.00943	0.0189	ug/L	1	02/21/23 19:50	EPA 8270E	
Pyrene	ND	0.00943	0.0189	ug/L	1	02/21/23 19:50	EPA 8270E	
Carbazole	ND	0.0142	0.0283	ug/L	1	02/21/23 19:50	EPA 8270E	
Dibenzofuran	ND	0.00943	0.0189	ug/L	1	02/21/23 19:50	EPA 8270E	
2-Chlorophenol	ND	0.0472	0.0943	ug/L	1	02/21/23 19:50	EPA 8270E	
4-Chloro-3-methylphenol	ND	0.0943	0.189	ug/L	1	02/21/23 19:50	EPA 8270E	
2,4-Dichlorophenol	ND	0.0472	0.0943	ug/L	1	02/21/23 19:50	EPA 8270E	
2,4-Dimethylphenol	ND	0.0472	0.0943	ug/L	1	02/21/23 19:50	EPA 8270E	
2,4-Dinitrophenol	ND	0.236	0.472	ug/L	1	02/21/23 19:50	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	0.236	0.472	ug/L	1	02/21/23 19:50	EPA 8270E	
2-Methylphenol	ND	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	
3+4-Methylphenol(s)	ND	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	
2-Nitrophenol	ND	0.0943	0.189	ug/L	1	02/21/23 19:50	EPA 8270E	
4-Nitrophenol	ND	0.0943	0.189	ug/L	1	02/21/23 19:50	EPA 8270E	
Pentachlorophenol (PCP)	ND	0.0943	0.189	ug/L	1	02/21/23 19:50	EPA 8270E	
Phenol	ND	0.189	0.377	ug/L	1	02/21/23 19:50	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	0.0472	0.0943	ug/L	1	02/21/23 19:50	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	0.0472	0.0943	ug/L	1	02/21/23 19:50	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.0472	0.0943	ug/L	1	02/21/23 19:50	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.0472	0.0943	ug/L	1	02/21/23 19:50	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	0.189	0.377	ug/L	1	02/21/23 19:50	EPA 8270E	
Butyl benzyl phthalate	ND	0.189	0.377	ug/L	1	02/21/23 19:50	EPA 8270E	
Diethylphthalate	ND	0.189	0.377	ug/L	1	02/21/23 19:50	EPA 8270E	
Dimethylphthalate	ND	0.189	0.377	ug/L	1	02/21/23 19:50	EPA 8270E	
Di-n-butylphthalate	ND	0.189	0.377	ug/L	1	02/21/23 19:50	EPA 8270E	
Di-n-octyl phthalate	ND	0.189	0.377	ug/L	1	02/21/23 19:50	EPA 8270E	
N-Nitrosodimethylamine	ND	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	
N-Nitrosodiphenylamine	ND	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	
Bis(2-Chloroethoxy) methane	0.0257	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	Ja
Bis(2-Chloroethyl) ether	ND	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Sample		Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW3-20230214-GW-35-DUP (A3B0522-	02)			Matrix: Wate	er	Batch:	23B0761	AMEND
Hexachlorobenzene	ND	0.00943	0.0189	ug/L	1	02/21/23 19:50	EPA 8270E	
Hexachlorobutadiene	ND	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	Q-30
Hexachlorocyclopentadiene	ND	0.0472	0.0943	ug/L	1	02/21/23 19:50	EPA 8270E	Q-30
Hexachloroethane	ND	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	Q-30
2-Chloronaphthalene	0.0206	0.00943	0.0189	ug/L	1	02/21/23 19:50	EPA 8270E	Q-30
1,2,4-Trichlorobenzene	ND	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	Q-30
4-Bromophenyl phenyl ether	ND	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	
Aniline	ND	0.0472	0.0943	ug/L	1	02/21/23 19:50	EPA 8270E	
4-Chloroaniline	ND	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	
2-Nitroaniline	ND	0.189	0.377	ug/L	1	02/21/23 19:50	EPA 8270E	
3-Nitroaniline	ND	0.189	0.377	ug/L	1	02/21/23 19:50	EPA 8270E	
4-Nitroaniline	ND	0.189	0.377	ug/L	1	02/21/23 19:50	EPA 8270E	
Nitrobenzene	ND	0.0943	0.189	ug/L	1	02/21/23 19:50	EPA 8270E	
2,4-Dinitrotoluene	ND	0.0943	0.189	ug/L	1	02/21/23 19:50	EPA 8270E	
2,6-Dinitrotoluene	ND	0.0943	0.189	ug/L	1	02/21/23 19:50	EPA 8270E	
Benzoic acid	ND	2.36	2.36	ug/L	1	02/21/23 19:50	EPA 8270E	
Benzyl alcohol	ND	0.0943	0.189	ug/L	1	02/21/23 19:50	EPA 8270E	
Isophorone	ND	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	
Azobenzene (1,2-DPH)	ND	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	0.236	0.472	ug/L	1	02/21/23 19:50	EPA 8270E	
3,3'-Dichlorobenzidine	ND	0.472	0.943	ug/L	1	02/21/23 19:50	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	0.236	0.472	ug/L	1	02/21/23 19:50	EPA 8270E	
1,3-Dinitrobenzene	ND	0.236	0.472	ug/L	1	02/21/23 19:50	EPA 8270E	
1,4-Dinitrobenzene	ND	0.236	0.472	ug/L	1	02/21/23 19:50	EPA 8270E	
Pyridine	ND	0.0943	0.189	ug/L	1	02/21/23 19:50	EPA 8270E	
1,2-Dichlorobenzene	ND	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	Q-30
1,3-Dichlorobenzene	0.0939	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	Q-30
1,4-Dichlorobenzene	ND	0.0236	0.0472	ug/L	1	02/21/23 19:50	EPA 8270E	Q-30
Surrogate: Nitrobenzene-d5 (Surr)		Recovery	: 34 %	Limits: 44-120 %	5 I	02/21/23 19:50	EPA 8270E	S-06
2-Fluorobiphenyl (Surr)			27 %	44-120 %	5 1	02/21/23 19:50	EPA 8270E	S-06
Phenol-d6 (Surr)			13 %	10-133 %		02/21/23 19:50	EPA 8270E	
p-Terphenyl-d14 (Surr)			55 %	50-134 %	5 I	02/21/23 19:50	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

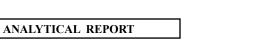
AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624


ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW3-20230214-GW-35-DUP (A3B0522-0	2)			Matrix: Wate	r	Batch: 2	23B0761	AMEND
Surrogate: 2,4,6-Tribromophenol (Surr)		Recover	ry: 49 %	Limits: 43-140 %	1	02/21/23 19:50 EPA 8270E		
MW5-20230214-GW-40 (A3B0522-03)					r	Batch: 2	23B0761	AMEND
Acenaphthene	0.0296	0.0118	0.0235	ug/L	1	02/21/23 20:25	EPA 8270E	
Acenaphthylene	ND	0.0118	0.0235	ug/L	1	02/21/23 20:25	EPA 8270E	
Anthracene	ND	0.0235	0.0235	ug/L	1	02/21/23 20:25	EPA 8270E	
Benz(a)anthracene	ND	0.0118	0.0235	ug/L	1	02/21/23 20:25	EPA 8270E	
Benzo(a)pyrene	ND	0.0176	0.0353	ug/L	1	02/21/23 20:25	EPA 8270E	
Benzo(b)fluoranthene	ND	0.0176	0.0353	ug/L	1	02/21/23 20:25	EPA 8270E	
Benzo(k)fluoranthene	ND	0.0176	0.0353	ug/L	1	02/21/23 20:25	EPA 8270E	
Benzo(g,h,i)perylene	ND	0.0118	0.0235	ug/L	1	02/21/23 20:25	EPA 8270E	
Chrysene	ND	0.0118	0.0235	ug/L	1	02/21/23 20:25	EPA 8270E	
Dibenz(a,h)anthracene	ND	0.0118	0.0235	ug/L	1	02/21/23 20:25	EPA 8270E	
Fluoranthene	ND	0.0118	0.0235	ug/L	1	02/21/23 20:25	EPA 8270E	
Fluorene	ND	0.0118	0.0235	ug/L	1	02/21/23 20:25	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	0.0118	0.0235	ug/L	1	02/21/23 20:25	EPA 8270E	
1-Methylnaphthalene	ND	0.0235	0.0471	ug/L	1	02/21/23 20:25	EPA 8270E	Q-30
2-Methylnaphthalene	ND	0.0235	0.0471	ug/L	1	02/21/23 20:25	EPA 8270E	Q-30
Naphthalene	ND	0.0235	0.0471	ug/L	1	02/21/23 20:25	EPA 8270E	Q-30
Phenanthrene	ND	0.0235	0.0235	ug/L	1	02/21/23 20:25	EPA 8270E	
Pyrene	ND	0.0118	0.0235	ug/L	1	02/21/23 20:25	EPA 8270E	
Carbazole	ND	0.0176	0.0353	ug/L	1	02/21/23 20:25	EPA 8270E	
Dibenzofuran	ND	0.0118	0.0235	ug/L	1	02/21/23 20:25	EPA 8270E	
2-Chlorophenol	ND	0.0588	0.118	ug/L	1	02/21/23 20:25	EPA 8270E	
4-Chloro-3-methylphenol	ND	0.235	0.235	ug/L	1	02/21/23 20:25	EPA 8270E	
2,4-Dichlorophenol	ND	0.0588	0.118	ug/L	1	02/21/23 20:25	EPA 8270E	
2,4-Dimethylphenol	ND	0.0588	0.118	ug/L	1	02/21/23 20:25	EPA 8270E	
2,4-Dinitrophenol	ND	0.294	0.588	ug/L	1	02/21/23 20:25	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	0.294	0.588	ug/L	1	02/21/23 20:25	EPA 8270E	
2-Methylphenol	ND	0.0294	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	
s+4-Methylphenol(s)	ND	0.0294	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	
2-Nitrophenol	ND	0.118	0.235	ug/L	1	02/21/23 20:25	EPA 8270E	
I-Nitrophenol	ND	0.118	0.235	ug/L	1	02/21/23 20:25	EPA 8270E	
Pentachlorophenol (PCP)	ND	0.118	0.235	ug/L	1	02/21/23 20:25	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW5-20230214-GW-40 (A3B0522-03)				Matrix: W	ater	Batch: 23B0761		AMEND
Phenol	ND	0.235	0.471	ug/L	1	02/21/23 20:25	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	0.0588	0.118	ug/L	1	02/21/23 20:25	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	0.0588	0.118	ug/L	1	02/21/23 20:25	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.0588	0.118	ug/L	1	02/21/23 20:25	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.0588	0.118	ug/L	1	02/21/23 20:25	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	0.235	0.471	ug/L	1	02/21/23 20:25	EPA 8270E	
Butyl benzyl phthalate	ND	0.235	0.471	ug/L	1	02/21/23 20:25	EPA 8270E	
Diethylphthalate	ND	0.235	0.471	ug/L	1	02/21/23 20:25	EPA 8270E	
Dimethylphthalate	ND	0.235	0.471	ug/L	1	02/21/23 20:25	EPA 8270E	
Di-n-butylphthalate	ND	0.235	0.471	ug/L	1	02/21/23 20:25	EPA 8270E	
Di-n-octyl phthalate	ND	0.235	0.471	ug/L	1	02/21/23 20:25	EPA 8270E	
N-Nitrosodimethylamine	ND	0.0588	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	0.0588	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	
N-Nitrosodiphenylamine	ND	0.0294	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	0.0294	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	0.0294	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	0.0294	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	
Hexachlorobenzene	ND	0.0118	0.0235	ug/L	1	02/21/23 20:25	EPA 8270E	
Hexachlorobutadiene	ND	0.0294	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	Q-30
Hexachlorocyclopentadiene	ND	0.0588	0.118	ug/L	1	02/21/23 20:25	EPA 8270E	Q-30
Hexachloroethane	ND	0.0294	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	Q-30
2-Chloronaphthalene	ND	0.0118	0.0235	ug/L	1	02/21/23 20:25	EPA 8270E	Q-30
1,2,4-Trichlorobenzene	ND	0.0294	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	Q-30
4-Bromophenyl phenyl ether	ND	0.0294	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	0.0294	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	
Aniline	ND	0.0588	0.118	ug/L	1	02/21/23 20:25	EPA 8270E	
4-Chloroaniline	ND	0.0294	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	
2-Nitroaniline	ND	0.235	0.471	ug/L	1	02/21/23 20:25	EPA 8270E	
3-Nitroaniline	ND	0.235	0.471	ug/L	1	02/21/23 20:25	EPA 8270E	
4-Nitroaniline	ND	0.235	0.471	ug/L	1	02/21/23 20:25	EPA 8270E	
Nitrobenzene	ND	0.118	0.235	ug/L	1	02/21/23 20:25	EPA 8270E	
2,4-Dinitrotoluene	ND	0.118	0.235	ug/L	1	02/21/23 20:25	EPA 8270E	
2,6-Dinitrotoluene	ND	0.118	0.235	ug/L	1	02/21/23 20:25	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Sen	nivolatile Org	anic Comp	ounds by EPA 8	3270E			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
•	Kesuit	Lillit	Lillit					
MW5-20230214-GW-40 (A3B0522-03)				Matrix: Wate	er	Batch:	23B0761	AMEND
Benzoic acid	ND	2.94	2.94	ug/L	1	02/21/23 20:25	EPA 8270E	
Benzyl alcohol	ND	0.118	0.235	ug/L	1	02/21/23 20:25	EPA 8270E	
Isophorone	ND	0.0294	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	
Azobenzene (1,2-DPH)	ND	0.0588	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	0.294	0.588	ug/L	1	02/21/23 20:25	EPA 8270E	
3,3'-Dichlorobenzidine	ND	0.588	1.18	ug/L	1	02/21/23 20:25	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	0.294	0.588	ug/L	1	02/21/23 20:25	EPA 8270E	
1,3-Dinitrobenzene	ND	0.294	0.588	ug/L	1	02/21/23 20:25	EPA 8270E	
1,4-Dinitrobenzene	ND	0.294	0.588	ug/L	1	02/21/23 20:25	EPA 8270E	
Pyridine	ND	0.118	0.235	ug/L	1	02/21/23 20:25	EPA 8270E	
1,2-Dichlorobenzene	ND	0.0294	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	Q-30
1,3-Dichlorobenzene	0.108	0.0294	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	Q-30
1,4-Dichlorobenzene	ND	0.0294	0.0588	ug/L	1	02/21/23 20:25	EPA 8270E	Q-30
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 63 %	Limits: 44-120 %	1	02/21/23 20:25	EPA 8270E	
2-Fluorobiphenyl (Surr)			46 %	44-120 %	1	02/21/23 20:25	EPA 8270E	
Phenol-d6 (Surr)			29 %	10-133 %	1	02/21/23 20:25	EPA 8270E	
p-Terphenyl-d14 (Surr)			89 %	50-134 %		02/21/23 20:25	EPA 8270E	
2-Fluorophenol (Surr)			44 %	19-120 %		02/21/23 20:25	EPA 8270E	
2,4,6-Tribromophenol (Surr)			85 %	43-140 %	1	02/21/23 20:25	EPA 8270E	
MW4-20230214-GW-40 (A3B0522-04)				Matrix: Wate	er	Batch:	23B0761	AMEND
Acenaphthene	ND	0.0123	0.0247	ug/L	1	02/21/23 21:00	EPA 8270E	
Acenaphthylene	ND	0.0123	0.0247	ug/L	1	02/21/23 21:00	EPA 8270E	
Anthracene	ND	0.0247	0.0247	ug/L	1	02/21/23 21:00	EPA 8270E	
Benz(a)anthracene	ND	0.0123	0.0247	ug/L	1	02/21/23 21:00	EPA 8270E	
Benzo(a)pyrene	ND	0.0185	0.0370	ug/L	1	02/21/23 21:00	EPA 8270E	
Benzo(b)fluoranthene	ND	0.0185	0.0370	ug/L	1	02/21/23 21:00	EPA 8270E	
Benzo(k)fluoranthene	ND	0.0185	0.0370	ug/L	1	02/21/23 21:00	EPA 8270E	
Benzo(g,h,i)perylene	ND	0.0123	0.0247	ug/L	1	02/21/23 21:00	EPA 8270E	
Chrysene	ND	0.0123	0.0247	ug/L	1	02/21/23 21:00	EPA 8270E	
Dibenz(a,h)anthracene	ND	0.0123	0.0247	ug/L	1	02/21/23 21:00	EPA 8270E	
Fluoranthene	ND	0.0123	0.0247	ug/L	1	02/21/23 21:00	EPA 8270E	
Fluorene	ND	0.0123	0.0247	ug/L ug/L	1	02/21/23 21:00	EPA 8270E	
	ND	0.0123	0.0247	•	1	02/21/23 21:00	EPA 8270E	
Indeno(1,2,3-cd)pyrene	עאו	0.0123	0.024/	ug/L	1	02/21/23 21.00	EIA 02/0E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Manherg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project: St. Helens Lagoon Project Number: M0830.03.006 Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW4-20230214-GW-40 (A3B0522-04)				Matrix: W	ater	Batch:	23B0761	AMEND
l-Methylnaphthalene	ND	0.0247	0.0494	ug/L	1	02/21/23 21:00	EPA 8270E	Q-30
2-Methylnaphthalene	ND	0.0247	0.0494	ug/L	1	02/21/23 21:00	EPA 8270E	Q-30
Naphthalene	ND	0.0247	0.0494	ug/L	1	02/21/23 21:00	EPA 8270E	Q-30
Phenanthrene	ND	0.0247	0.0247	ug/L	1	02/21/23 21:00	EPA 8270E	
Pyrene	ND	0.0123	0.0247	ug/L	1	02/21/23 21:00	EPA 8270E	
Carbazole	ND	0.0185	0.0370	ug/L	1	02/21/23 21:00	EPA 8270E	
Dibenzofuran	ND	0.0123	0.0247	ug/L	1	02/21/23 21:00	EPA 8270E	
2-Chlorophenol	ND	0.0617	0.123	ug/L	1	02/21/23 21:00	EPA 8270E	
4-Chloro-3-methylphenol	ND	0.247	0.247	ug/L	1	02/21/23 21:00	EPA 8270E	
2,4-Dichlorophenol	ND	0.0617	0.123	ug/L	1	02/21/23 21:00	EPA 8270E	
2,4-Dimethylphenol	ND	0.0617	0.123	ug/L	1	02/21/23 21:00	EPA 8270E	
2,4-Dinitrophenol	ND	0.309	0.617	ug/L	1	02/21/23 21:00	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	0.309	0.617	ug/L	1	02/21/23 21:00	EPA 8270E	
2-Methylphenol	ND	0.0309	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	
3+4-Methylphenol(s)	ND	0.0617	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	
2-Nitrophenol	ND	0.123	0.247	ug/L	1	02/21/23 21:00	EPA 8270E	
1-Nitrophenol	ND	0.123	0.247	ug/L	1	02/21/23 21:00	EPA 8270E	
Pentachlorophenol (PCP)	ND	0.123	0.247	ug/L	1	02/21/23 21:00	EPA 8270E	
Phenol	ND	0.247	0.494	ug/L	1	02/21/23 21:00	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	0.0617	0.123	ug/L	1	02/21/23 21:00	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	0.0617	0.123	ug/L	1	02/21/23 21:00	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.0617	0.123	ug/L	1	02/21/23 21:00	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.0617	0.123	ug/L	1	02/21/23 21:00	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	0.247	0.494	ug/L	1	02/21/23 21:00	EPA 8270E	
Butyl benzyl phthalate	ND	0.247	0.494	ug/L	1	02/21/23 21:00	EPA 8270E	
Diethylphthalate	ND	0.247	0.494	ug/L	1	02/21/23 21:00	EPA 8270E	
Dimethylphthalate	ND	0.247	0.494	ug/L	1	02/21/23 21:00	EPA 8270E	
Di-n-butylphthalate	ND	0.247	0.494	ug/L	1	02/21/23 21:00	EPA 8270E	
Di-n-octyl phthalate	ND	0.247	0.494	ug/L	1	02/21/23 21:00	EPA 8270E	
V-Nitrosodimethylamine	ND	0.0309	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	
J-Nitroso-di-n-propylamine	ND	0.0617	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	
V-Nitrosodiphenylamine	ND	0.0309	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	
bis(2-Chloroethoxy) methane	ND	0.0309	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Analyte	Kesuit	LIIIIt	LIIIII			•		
MW4-20230214-GW-40 (A3B0522-04)				Matrix: Wate	r	Batch:	23B0761	AMEND
Bis(2-Chloroethyl) ether	ND	0.0309	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	0.0309	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	
Hexachlorobenzene	ND	0.0123	0.0247	ug/L	1	02/21/23 21:00	EPA 8270E	
Hexachlorobutadiene	ND	0.0309	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	Q-30
Hexachlorocyclopentadiene	ND	0.0617	0.123	ug/L	1	02/21/23 21:00	EPA 8270E	Q-30
Hexachloroethane	ND	0.0309	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	Q-30
2-Chloronaphthalene	ND	0.0123	0.0247	ug/L	1	02/21/23 21:00	EPA 8270E	Q-30
1,2,4-Trichlorobenzene	ND	0.0309	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	Q-30
4-Bromophenyl phenyl ether	ND	0.0309	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	0.0309	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	
Aniline	ND	0.0617	0.123	ug/L	1	02/21/23 21:00	EPA 8270E	
4-Chloroaniline	ND	0.0309	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	
2-Nitroaniline	ND	0.247	0.494	ug/L	1	02/21/23 21:00	EPA 8270E	
3-Nitroaniline	ND	0.247	0.494	ug/L	1	02/21/23 21:00	EPA 8270E	
4-Nitroaniline	ND	0.247	0.494	ug/L	1	02/21/23 21:00	EPA 8270E	
Nitrobenzene	ND	0.123	0.247	ug/L	1	02/21/23 21:00	EPA 8270E	
2,4-Dinitrotoluene	ND	0.123	0.247	ug/L	1	02/21/23 21:00	EPA 8270E	
2,6-Dinitrotoluene	ND	0.123	0.247	ug/L	1	02/21/23 21:00	EPA 8270E	
Benzoic acid	ND	1.54	3.09	ug/L	1	02/21/23 21:00	EPA 8270E	
Benzyl alcohol	ND	0.123	0.247	ug/L	1	02/21/23 21:00	EPA 8270E	
Isophorone	ND	0.0309	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	
Azobenzene (1,2-DPH)	ND	0.0617	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	0.309	0.617	ug/L	1	02/21/23 21:00	EPA 8270E	
3,3'-Dichlorobenzidine	ND	0.617	1.23	ug/L	1	02/21/23 21:00	EPA 8270E	Q-52
,2-Dinitrobenzene	ND	0.309	0.617	ug/L	1	02/21/23 21:00	EPA 8270E	
,3-Dinitrobenzene	ND	0.309	0.617	ug/L	1	02/21/23 21:00	EPA 8270E	
,4-Dinitrobenzene	ND	0.309	0.617	ug/L	1	02/21/23 21:00	EPA 8270E	
Pyridine	ND	0.123	0.247	ug/L	1	02/21/23 21:00	EPA 8270E	
,2-Dichlorobenzene	ND	0.0309	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	Q-30
,3-Dichlorobenzene	0.122	0.0309	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	Q-30
,4-Dichlorobenzene	ND	0.0309	0.0617	ug/L	1	02/21/23 21:00	EPA 8270E	Q-30
Surrogate: Nitrobenzene-d5 (Surr)		Recov	ery: 63 %	Limits: 44-120 %	1	02/21/23 21:00	EPA 8270E	
2-Fluorobiphenyl (Surr)			48 %	44-120 %	1	02/21/23 21:00	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW4-20230214-GW-40 (A3B0522-04)				Matrix: Wate	r	Batch: 2	23B0761	AMEND
Surrogate: Phenol-d6 (Surr)		Recove	ry: 31 %	Limits: 10-133 %	1	02/21/23 21:00	EPA 8270E	
p-Terphenyl-d14 (Surr)			81 %	50-134 %	1	02/21/23 21:00	EPA 8270E	
2-Fluorophenol (Surr)			47 %	19-120 %		02/21/23 21:00	EPA 8270E	
2,4,6-Tribromophenol (Surr)			84 %	43-140 %	1	02/21/23 21:00	EPA 8270E	
MW6-20230214-GW-40.25 (A3B0522-05)				Matrix: Wate	r	Batch: 2	23B0761	AMEND
Acenaphthene	0.0378	0.0111	0.0222	ug/L	1	02/21/23 21:34	EPA 8270E	
Acenaphthylene	0.0230	0.0111	0.0222	ug/L	1	02/21/23 21:34	EPA 8270E	
Anthracene	ND	0.0111	0.0222	ug/L	1	02/21/23 21:34	EPA 8270E	
Benz(a)anthracene	ND	0.0111	0.0222	ug/L	1	02/21/23 21:34	EPA 8270E	
Benzo(a)pyrene	0.0211	0.0167	0.0333	ug/L	1	02/21/23 21:34	EPA 8270E	Ja
Benzo(b)fluoranthene	0.0182	0.0167	0.0333	ug/L	1	02/21/23 21:34	EPA 8270E	Ja
Benzo(k)fluoranthene	0.0232	0.0167	0.0333	ug/L	1	02/21/23 21:34	EPA 8270E	Ja
Benzo(g,h,i)perylene	ND	0.0111	0.0222	ug/L	1	02/21/23 21:34	EPA 8270E	
Chrysene	0.0146	0.0111	0.0222	ug/L	1	02/21/23 21:34	EPA 8270E	Ja
Dibenz(a,h)anthracene	ND	0.0111	0.0222	ug/L	1	02/21/23 21:34	EPA 8270E	
Fluoranthene	0.0185	0.0111	0.0222	ug/L	1	02/21/23 21:34	EPA 8270E	Ja
Fluorene	0.0301	0.0111	0.0222	ug/L	1	02/21/23 21:34	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	0.0111	0.0222	ug/L	1	02/21/23 21:34	EPA 8270E	
1-Methylnaphthalene	ND	0.0222	0.0444	ug/L	1	02/21/23 21:34	EPA 8270E	Q-30
2-Methylnaphthalene	ND	0.0222	0.0444	ug/L	1	02/21/23 21:34	EPA 8270E	Q-30
Naphthalene	ND	0.0222	0.0444	ug/L	1	02/21/23 21:34	EPA 8270E	Q-30
Phenanthrene	0.0239	0.0111	0.0222	ug/L	1	02/21/23 21:34	EPA 8270E	
Pyrene	ND	0.0111	0.0222	ug/L	1	02/21/23 21:34	EPA 8270E	
Carbazole	ND	0.0333	0.0333	ug/L	1	02/21/23 21:34	EPA 8270E	
Dibenzofuran	ND	0.0222	0.0222	ug/L	1	02/21/23 21:34	EPA 8270E	
2-Chlorophenol	ND	0.0556	0.111	ug/L	1	02/21/23 21:34	EPA 8270E	
4-Chloro-3-methylphenol	ND	0.222	0.222	ug/L	1	02/21/23 21:34	EPA 8270E	
2,4-Dichlorophenol	ND	0.0556	0.111	ug/L	1	02/21/23 21:34	EPA 8270E	
2,4-Dimethylphenol	ND	0.0556	0.111	ug/L	1	02/21/23 21:34	EPA 8270E	
2,4-Dinitrophenol	ND	0.278	0.556	ug/L	1	02/21/23 21:34	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	0.278	0.556	ug/L	1	02/21/23 21:34	EPA 8270E	
2-Methylphenol	ND	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E	
3+4-Methylphenol(s)	ND	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neighberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

			anic Compo			_		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW6-20230214-GW-40.25 (A3B0522-05)				Matrix: Wa	ater	Batch:	23B0761	AMEND
2-Nitrophenol	ND	0.111	0.222	ug/L	1	02/21/23 21:34	EPA 8270E	
4-Nitrophenol	ND	0.222	0.222	ug/L	1	02/21/23 21:34	EPA 8270E	
Pentachlorophenol (PCP)	ND	0.111	0.222	ug/L	1	02/21/23 21:34	EPA 8270E	
Phenol	ND	0.222	0.444	ug/L	1	02/21/23 21:34	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	0.0556	0.111	ug/L	1	02/21/23 21:34	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	0.0556	0.111	ug/L	1	02/21/23 21:34	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.0556	0.111	ug/L	1	02/21/23 21:34	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.0556	0.111	ug/L	1	02/21/23 21:34	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	0.222	0.444	ug/L	1	02/21/23 21:34	EPA 8270E	
Butyl benzyl phthalate	ND	0.222	0.444	ug/L	1	02/21/23 21:34	EPA 8270E	
Diethylphthalate	ND	0.222	0.444	ug/L	1	02/21/23 21:34	EPA 8270E	
Dimethylphthalate	ND	0.222	0.444	ug/L	1	02/21/23 21:34	EPA 8270E	
Di-n-butylphthalate	0.347	0.222	0.444	ug/L	1	02/21/23 21:34	EPA 8270E	Ja
Di-n-octyl phthalate	ND	0.222	0.444	ug/L	1	02/21/23 21:34	EPA 8270E	
N-Nitrosodimethylamine	ND	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E	
N-Nitrosodiphenylamine	ND	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E	
Bis(2-Chloroethoxy) methane	0.0519	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E	Ja
Bis(2-Chloroethyl) ether	ND	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E	
Hexachlorobenzene	ND	0.0111	0.0222	ug/L	1	02/21/23 21:34	EPA 8270E	
Hexachlorobutadiene	ND	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E	Q-30
Hexachlorocyclopentadiene	ND	0.0556	0.111	ug/L	1	02/21/23 21:34	EPA 8270E	Q-30
Hexachloroethane	ND	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E	Q-30
2-Chloronaphthalene	0.0255	0.0111	0.0222	ug/L	1	02/21/23 21:34	EPA 8270E	Q-30
1,2,4-Trichlorobenzene	ND	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E	Q-30
4-Bromophenyl phenyl ether	ND	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E	
Aniline	ND	0.0556	0.111	ug/L	1	02/21/23 21:34	EPA 8270E	
4-Chloroaniline	ND	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E	
2-Nitroaniline	ND	0.222	0.444	ug/L	1	02/21/23 21:34	EPA 8270E	
3-Nitroaniline	ND	0.222	0.444	ug/L	1	02/21/23 21:34	EPA 8270E	
l-Nitroaniline	ND	0.222	0.444	ug/L	1	02/21/23 21:34	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Sample	Detection I	Reporting		Date				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
MW6-20230214-GW-40.25 (A3B0522-05)				Matrix: Wate	ər	Batch: 23B0761		AMEND	
Nitrobenzene	ND	0.111	0.222	ug/L	1	02/21/23 21:34	EPA 8270E		
2,4-Dinitrotoluene	ND	0.111	0.222	ug/L	1	02/21/23 21:34	EPA 8270E		
2,6-Dinitrotoluene	ND	0.111	0.222	ug/L	1	02/21/23 21:34	EPA 8270E		
Benzoic acid	ND	2.78	2.78	ug/L	1	02/21/23 21:34	EPA 8270E		
Benzyl alcohol	ND	0.111	0.222	ug/L	1	02/21/23 21:34	EPA 8270E		
Isophorone	0.0398	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E	Ja	
Azobenzene (1,2-DPH)	ND	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E		
Bis(2-Ethylhexyl) adipate	ND	0.278	0.556	ug/L	1	02/21/23 21:34	EPA 8270E		
3,3'-Dichlorobenzidine	ND	0.556	1.11	ug/L	1	02/21/23 21:34	EPA 8270E	Q-52	
1,2-Dinitrobenzene	ND	0.278	0.556	ug/L	1	02/21/23 21:34	EPA 8270E		
1,3-Dinitrobenzene	ND	0.278	0.556	ug/L	1	02/21/23 21:34	EPA 8270E		
1,4-Dinitrobenzene	ND	0.278	0.556	ug/L	1	02/21/23 21:34	EPA 8270E		
Pyridine	ND	0.111	0.222	ug/L	1	02/21/23 21:34	EPA 8270E		
1,2-Dichlorobenzene	ND	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E	Q-30	
1,3-Dichlorobenzene	0.0919	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E	Q-30	
1,4-Dichlorobenzene	ND	0.0278	0.0556	ug/L	1	02/21/23 21:34	EPA 8270E	Q-30	
Surrogate: 2-Fluorobiphenyl (Surr)		Recovery:	47 %	Limits: 44-120 %	5 <i>1</i>	02/21/23 21:34	EPA 8270E		
Phenol-d6 (Surr)			27 %	10-133 %	5 1	02/21/23 21:34	EPA 8270E		
p-Terphenyl-d14 (Surr)			76 %	50-134 %	5 1	02/21/23 21:34	EPA 8270E		
2-Fluorophenol (Surr)			22 %	19-120 %		02/21/23 21:34	EPA 8270E		
2,4,6-Tribromophenol (Surr)			55 %	43-140 %	5 1	02/21/23 21:34	EPA 8270E		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Organopho	opiiorus Pes	suciues (UF	PPs) by EPA 827	v⊑ (GC/I	vi3)		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW3-20230214-GW-35 (A3B0522-01)				Matrix: Wate	er	Batch:	23B0739	
Azinphos methyl (Guthion)	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Chlorpyrifos	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Coumaphos	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Demeton O	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Demeton S	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Diazinon	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Dichlorvos	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Dimethoate	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Disulfoton	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
EPN	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Ethoprop	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Fensulfothion	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Fenthion	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Malathion	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Merphos	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Methyl parathion	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Mevinphos (Phosdrin)	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Monocrotophos	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Naled (Dibrom)	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Parathion, ethyl	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Phorate	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Ronnel (Fenchlorphos)	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Sulfotep	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Sulprofos (Bolstar)	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
ГЕРР	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Tetrachlorvinphos (Rabon)	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Tokuthion (Prothiofos)	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Trichloronate	ND	0.248	0.495	ug/L	1	02/20/23 20:32	EPA 8270E OPPs	
Surrogate: Tributyl phosphate (Surr) Triphenyl phosphate (Surr)		Recov	very: 77 % 104 %	Limits: 56-124 % 58-121 %		02/20/23 20:32 02/20/23 20:32	EPA 8270E OPPs EPA 8270E OPPs	
MW3-20230214-GW-35-DUP (A3B0522-0	02)			Matrix: Wate	r	Batch:		
<u> </u>	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW3-20230214-GW-35-DUP (A3B0522-0	2)			Matrix: Wate	r	Batch:	23B0739	
Chlorpyrifos	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Coumaphos	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Demeton O	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Demeton S	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Diazinon	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Dichlorvos	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Dimethoate	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Disulfoton	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
EPN	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Ethoprop	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Fensulfothion	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Fenthion	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Malathion	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Merphos	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Methyl parathion	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Mevinphos (Phosdrin)	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Monocrotophos	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Naled (Dibrom)	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Parathion, ethyl	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Phorate	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Ronnel (Fenchlorphos)	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Sulfotep	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Sulprofos (Bolstar)	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
ТЕРР	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Tetrachlorvinphos (Rabon)	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Tokuthion (Prothiofos)	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Trichloronate	ND	0.248	0.495	ug/L	1	02/20/23 21:07	EPA 8270E OPPs	
Surrogate: Tributyl phosphate (Surr)		Recov	very: 91 %	Limits: 56-124 %	1	02/20/23 21:07	EPA 8270E OPPs	
Triphenyl phosphate (Surr)			110 %	58-121 %	1	02/20/23 21:07	EPA 8270E OPPs	
MW5-20230214-GW-40 (A3B0522-03)	3)			Matrix: Wate	r	Batch: 23B0739		
Azinphos methyl (Guthion)	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Chlorpyrifos	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW5-20230214-GW-40 (A3B0522-03)				Matrix: Wate	er	Batch:	23B0739	
Coumaphos	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Demeton O	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Demeton S	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Diazinon	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Dichlorvos	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Dimethoate	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Disulfoton	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
EPN	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Ethoprop	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Fensulfothion	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Fenthion	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Malathion	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Merphos	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Methyl parathion	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Mevinphos (Phosdrin)	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Monocrotophos	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Naled (Dibrom)	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Parathion, ethyl	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Phorate	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Ronnel (Fenchlorphos)	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Sulfotep	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Sulprofos (Bolstar)	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
TEPP	ND	0.549	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Tetrachlorvinphos (Rabon)	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Tokuthion (Prothiofos)	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Trichloronate	ND	0.275	0.549	ug/L	1	02/20/23 21:42	EPA 8270E OPPs	
Surrogate: Tributyl phosphate (Surr)		Recov	very: 92 %	Limits: 56-124 %	% I	02/20/23 21:42	EPA 8270E OPPs	
Triphenyl phosphate (Surr)			98 %	58-121 %		02/20/23 21:42	EPA 8270E OPPs	
/IW4-20230214-GW-40 (A3B0522-04)	Matrix: Water Ba					Batch:	23B0739	
Azinphos methyl (Guthion)	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Chlorpyrifos	ND	0.269	0.538	ug/L ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Coumaphos	ND ND	0.269	0.538	ug/L ug/L	1	02/20/23 22:18	EPA 8270E OPPs	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

	Jiganopile	zapilolua Fet	Juliues (UF	PPs) by EPA 827	, JL (GU/			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW4-20230214-GW-40 (A3B0522-04)				Matrix: Wate	er	Batch: 23B0739		
Demeton O	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Demeton S	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Diazinon	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Dichlorvos	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Dimethoate	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Disulfoton	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
EPN	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Ethoprop	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Fensulfothion	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Fenthion	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Malathion	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Merphos	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Methyl parathion	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Mevinphos (Phosdrin)	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Monocrotophos	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Naled (Dibrom)	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Parathion, ethyl	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Phorate	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Ronnel (Fenchlorphos)	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Sulfotep	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Sulprofos (Bolstar)	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
ТЕРР	ND	0.538	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Tetrachlorvinphos (Rabon)	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Tokuthion (Prothiofos)	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Trichloronate	ND	0.269	0.538	ug/L	1	02/20/23 22:18	EPA 8270E OPPs	
Surrogate: Tributyl phosphate (Surr)		Recove	ery: 102 %	Limits: 56-124 %	1	02/20/23 22:18	EPA 8270E OPPs	
Triphenyl phosphate (Surr)			102 %	58-121 %	1	02/20/23 22:18	EPA 8270E OPPs	
MW6-20230214-GW-40.25 (A3B0522-05))			Matrix: Wate	er	Batch:	23B0739	
Azinphos methyl (Guthion)	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Chlorpyrifos	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Coumaphos	ND	0.532	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Demeton O	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Newsberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

A 17	Sample	Detection	Reporting	¥ Y . *.	D'1 - :	Date	34 d 4= =	**
Analyte	Result	Limit	Limit		Dilution	Analyzed	Method Ref.	Notes
MW6-20230214-GW-40.25 (A3B0522-05)				Matrix: Water	r	Batch:	: 23B0739	
Demeton S	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Diazinon	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Dichlorvos	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Dimethoate	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Disulfoton	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
EPN	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Ethoprop	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Fensulfothion	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Fenthion	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Malathion	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Merphos	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Methyl parathion	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Mevinphos (Phosdrin)	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Monocrotophos	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Naled (Dibrom)	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Parathion, ethyl	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Phorate	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Ronnel (Fenchlorphos)	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Sulfotep	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Sulprofos (Bolstar)	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
TEPP	ND	0.532	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Cetrachlorvinphos (Rabon)	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Okuthion (Prothiofos)	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
richloronate	ND	0.266	0.532	ug/L	1	02/20/23 22:53	EPA 8270E OPPs	
Surrogate: Tributyl phosphate (Surr)		Recov	very: 99 %	Limits: 56-124 %	1	02/20/23 22:53	EPA 8270E OPPs	
Triphenyl phosphate (Surr)			96 %	58-121 %	1	02/20/23 22:53	EPA 8270E OPPs	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS	3)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW3-20230214-GW-35 (A3B0522-01)				Matrix: W	ater			
Batch: 23B0647								
Antimony	ND	0.500	1.00	ug/L	1	02/18/23 04:30	EPA 6020B	
Arsenic	0.773	0.500	1.00	ug/L	1	02/18/23 04:30	EPA 6020B	Ja
Barium	70.1	1.00	2.00	ug/L	1	02/18/23 04:30	EPA 6020B	
Beryllium	ND	0.100	0.200	ug/L	1	02/18/23 04:30	EPA 6020B	
Cadmium	ND	0.100	0.200	ug/L	1	02/18/23 04:30	EPA 6020B	
Chromium	ND	1.00	2.00	ug/L	1	02/18/23 04:30	EPA 6020B	
Copper	ND	1.00	2.00	ug/L	1	02/18/23 04:30	EPA 6020B	
Lead	ND	0.110	0.200	ug/L	1	02/18/23 04:30	EPA 6020B	
Manganese	826	0.500	1.00	ug/L	1	02/18/23 04:30	EPA 6020B	
Mercury	ND	0.0400	0.0800	ug/L	1	02/18/23 04:30	EPA 6020B	
Nickel	1.21	1.00	2.00	ug/L	1	02/18/23 04:30	EPA 6020B	Ja
Selenium	ND	0.500	1.00	ug/L	1	02/18/23 04:30	EPA 6020B	
Silver	ND	0.100	0.200	ug/L	1	02/18/23 04:30	EPA 6020B	
Thallium	ND	0.100	0.200	ug/L	1	02/18/23 04:30	EPA 6020B	
Zinc	ND	2.00	4.00	ug/L	1	02/18/23 04:30	EPA 6020B	
MW3-20230214-GW-35-DUP (A3B0522-0)2)			Matrix: W	ater			
Batch: 23B0647								
Antimony	ND	0.500	1.00	ug/L	1	02/18/23 04:45	EPA 6020B	
Arsenic	0.722	0.500	1.00	ug/L	1	02/18/23 04:45	EPA 6020B	Ja
Barium	70.9	1.00	2.00	ug/L	1	02/18/23 04:45	EPA 6020B	
Beryllium	ND	0.100	0.200	ug/L	1	02/18/23 04:45	EPA 6020B	
Cadmium	ND	0.100	0.200	ug/L	1	02/18/23 04:45	EPA 6020B	
Chromium	ND	1.00	2.00	ug/L	1	02/18/23 04:45	EPA 6020B	
Copper	ND	1.00	2.00	ug/L	1	02/18/23 04:45	EPA 6020B	
Lead	ND	0.110	0.200	ug/L	1	02/18/23 04:45	EPA 6020B	
Manganese	826	0.500	1.00	ug/L	1	02/18/23 04:45	EPA 6020B	
Mercury	ND	0.0400	0.0800	ug/L	1	02/18/23 04:45	EPA 6020B	
Nickel	ND	1.00	2.00	ug/L	1	02/18/23 04:45	EPA 6020B	
Selenium	ND	0.500	1.00	ug/L	1	02/18/23 04:45	EPA 6020B	
Silver	ND	0.100	0.200	ug/L	1	02/18/23 04:45	EPA 6020B	
Thallium	ND	0.100	0.200	ug/L	1	02/18/23 04:45	EPA 6020B	
Zinc	ND	2.00	4.00	ug/L	1	02/18/23 04:45	EPA 6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinterg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

		Total Meta	ils by EPA 60	20B (ICPMS	5)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW5-20230214-GW-40 (A3B0522-03)				Matrix: Wa	ater			
Batch: 23B0647								
Antimony	ND	0.500	1.00	ug/L	1	02/18/23 04:51	EPA 6020B	
Arsenic	11.2	0.500	1.00	ug/L	1	02/18/23 04:51	EPA 6020B	
Barium	760	1.00	2.00	ug/L	1	02/18/23 04:51	EPA 6020B	
Beryllium	ND	0.100	0.200	ug/L	1	02/18/23 04:51	EPA 6020B	
Cadmium	ND	0.100	0.200	ug/L	1	02/18/23 04:51	EPA 6020B	
Chromium	ND	1.00	2.00	ug/L	1	02/18/23 04:51	EPA 6020B	
Copper	ND	1.00	2.00	ug/L	1	02/18/23 04:51	EPA 6020B	
Lead	ND	0.110	0.200	ug/L	1	02/18/23 04:51	EPA 6020B	
Mercury	ND	0.0400	0.0800	ug/L	1	02/18/23 04:51	EPA 6020B	
Nickel	2.46	1.00	2.00	ug/L	1	02/18/23 04:51	EPA 6020B	
Selenium	ND	0.500	1.00	ug/L	1	02/18/23 04:51	EPA 6020B	
Silver	ND	0.100	0.200	ug/L	1	02/18/23 04:51	EPA 6020B	
Thallium	ND	0.100	0.200	ug/L	1	02/18/23 04:51	EPA 6020B	
Zinc	ND	2.00	4.00	ug/L	1	02/18/23 04:51	EPA 6020B	
MW5-20230214-GW-40 (A3B0522-03RE1)			Matrix: W	ater			
Batch: 23B0647								
Manganese	6640	25.0	50.0	ug/L	50	02/20/23 16:04	EPA 6020B	
MW4-20230214-GW-40 (A3B0522-04)				Matrix: Wa	ater			
Batch: 23B0647								
Antimony	ND	0.500	1.00	ug/L	1	02/18/23 05:07	EPA 6020B	
Arsenic	25.8	0.500	1.00	ug/L	1	02/18/23 05:07	EPA 6020B	
Barium	856	1.00	2.00	ug/L	1	02/18/23 05:07	EPA 6020B	
Beryllium	ND	0.100	0.200	ug/L	1	02/18/23 05:07	EPA 6020B	
Cadmium	ND	0.100	0.200	ug/L	1	02/18/23 05:07	EPA 6020B	
Chromium	2.26	1.00	2.00	ug/L	1	02/18/23 05:07	EPA 6020B	
Copper	1.18	1.00	2.00	ug/L	1	02/18/23 05:07	EPA 6020B	Ja
Lead	0.375	0.110	0.200	ug/L	1	02/18/23 05:07	EPA 6020B	
Mercury	ND	0.0400	0.0800	ug/L	1	02/18/23 05:07	EPA 6020B	
Nickel	4.04	1.00	2.00	ug/L	1	02/18/23 05:07	EPA 6020B	
Selenium	ND	0.500	1.00	ug/L	1	02/18/23 05:07	EPA 6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
MW4-20230214-GW-40 (A3B0522-04)				Matrix: Wa	ater							
Silver	ND	0.100	0.200	ug/L	1	02/18/23 05:07	EPA 6020B					
Thallium	ND	0.100	0.200	ug/L	1	02/18/23 05:07	EPA 6020B					
Zinc	3.58	2.00	4.00	ug/L	1	02/18/23 05:07	EPA 6020B	Ja				
MW4-20230214-GW-40 (A3B0522-04RE1))			Matrix: W	ater							
Batch: 23B0647												
Manganese	4080	25.0	50.0	ug/L	50	02/20/23 16:09	EPA 6020B					
MW6-20230214-GW-40.25 (A3B0522-05)				Matrix: W	ater							
Batch: 23B0647												
Antimony	ND	0.500	1.00	ug/L	1	02/18/23 05:12	EPA 6020B					
Arsenic	27.7	0.500	1.00	ug/L	1	02/18/23 05:12	EPA 6020B					
Barium	617	1.00	2.00	ug/L	1	02/18/23 05:12	EPA 6020B					
Beryllium	ND	0.100	0.200	ug/L	1	02/18/23 05:12	EPA 6020B					
Cadmium	ND	0.100	0.200	ug/L	1	02/18/23 05:12	EPA 6020B					
Chromium	1.20	1.00	2.00	ug/L	1	02/18/23 05:12	EPA 6020B	Ja				
Copper	ND	1.00	2.00	ug/L	1	02/18/23 05:12	EPA 6020B					
Lead	ND	0.110	0.200	ug/L	1	02/18/23 05:12	EPA 6020B					
Mercury	ND	0.0400	0.0800	ug/L	1	02/18/23 05:12	EPA 6020B					
Nickel	2.49	1.00	2.00	ug/L	1	02/18/23 05:12	EPA 6020B					
Selenium	ND	0.500	1.00	ug/L	1	02/18/23 05:12	EPA 6020B					
Silver	ND	0.100	0.200	ug/L	1	02/18/23 05:12	EPA 6020B					
Thallium	ND	0.100	0.200	ug/L	1	02/18/23 05:12	EPA 6020B					
MW6-20230214-GW-40.25 (A3B0522-05R	E1)			Matrix: W	ater							
Batch: 23B0647												
Manganese	2860	25.0	50.0	ug/L	50	02/20/23 16:14	EPA 6020B					
MW6-20230214-GW-40.25 (A3B0522-05R	E2)			Matrix: Wa	ater							
Batch: 23B0647												
Zinc	5.18	2.00	4.00	ug/L	1	02/20/23 16:20	EPA 6020B					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

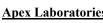
6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

Weck Laboratories, Inc.


ANALYTICAL SAMPLE RESULTS (Subcontracted)

		Chlorinate	ed Herbicide	s by GC/ECD				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW3-20230214-GW-35 (A3B0522-01)				Matrix: Wate	er	Batch: V	W3B1728	
Batch: W3B1728								
2,4-D	ND	1.7	2.5	ug/l	5	03/02/23 07:31	EPA 8151A	M-04
2,4-DB	ND	5.0	12	ug/l	5	03/02/23 07:31	EPA 8151A	M-04
2,4,5-T	ND	0.70	1.2	ug/l	5	03/02/23 07:31	EPA 8151A	M-04
2,4,5-TP (Silvex)	ND	0.70	1.2	ug/l	5	03/02/23 07:31	EPA 8151A	M-04
3,5-Dichlorobenzoic acid	ND	1.4	6.2	ug/l	5	03/02/23 07:31	EPA 8151A	M-04
4-Nitrophenol	ND	2.5	6.2	ug/l	5	03/02/23 07:31	EPA 8151A	M-04
Acifluorfen	ND	1.2	2.5	ug/l	5	03/02/23 07:31	EPA 8151A	M-04
Bentazon	ND	2.8	12	ug/l	5	03/02/23 07:31	EPA 8151A	M-04
Dalapon	ND	0.80	2.5	ug/l	5	03/02/23 07:31	EPA 8151A	M-04
Dicamba	ND	0.95	3.8	ug/l	5	03/02/23 07:31	EPA 8151A	M-04
Dichloroprop	ND	1.2	5.0	ug/l	5	03/02/23 07:31	EPA 8151A	M-04
Dinoseb	ND	0.45	2.5	ug/l	5	03/02/23 07:31	EPA 8151A	M-04
DCPA	ND	1.0	1.2	ug/l	5	03/02/23 07:31	EPA 8151A	M-04
MCPA	ND	200	500	ug/l	5	03/02/23 07:31	EPA 8151A	M-04
MCPP	ND	140	500	ug/l	5	03/02/23 07:31	EPA 8151A	M-04
Pentachlorophenol	ND	0.90	1.2	ug/l	5	03/02/23 07:31	EPA 8151A	M-04
Picloram	ND	0.65	3.8	ug/l	5	03/02/23 07:31	EPA 8151A	M-04
Batch: W3B1728								
Surrogate: 2,4-DCAA		Reco	very: 47 %	Limits: 56-156 %	5	03/02/23 07:31	EPA 8151A	S-04
MW3-20230214-GW-35-DUP (A3B0522-0	2)			Matrix: Wate	ər	Batch: V	W3B1728	
Batch: W3B1728								
2,4-D	ND	1.7	2.5	ug/l	5	03/02/23 08:02	EPA 8151A	M-04
2,4-DB	ND	5.0	12	ug/l	5	03/02/23 08:02	EPA 8151A	M-04
2,4,5-T	ND	0.70	1.2	ug/l	5	03/02/23 08:02	EPA 8151A	M-04
2,4,5-TP (Silvex)	ND	0.70	1.2	ug/l	5	03/02/23 08:02	EPA 8151A	M-04
3,5-Dichlorobenzoic acid	ND	1.4	6.2	ug/l	5	03/02/23 08:02	EPA 8151A	M-04
4-Nitrophenol	ND	2.5	6.2	ug/l	5	03/02/23 08:02	EPA 8151A	M-04
Acifluorfen	ND	1.2	2.5	ug/l	5	03/02/23 08:02	EPA 8151A	M-04
Bentazon	ND	2.8	12	ug/l	5	03/02/23 08:02	EPA 8151A	M-04
Dalapon	ND	0.80	2.5	ug/l	5	03/02/23 08:02	EPA 8151A	M-04

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

Weck Laboratories, Inc.

ANALYTICAL SAMPLE RESULTS (Subcontracted)

	Chlorinated Herbicides by GC/ECD													
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes						
MW3-20230214-GW-35-DUP (A3B0522-02))			Matrix: Wate	r	Batch: \	W3B1728							
Dicamba	ND	0.95	3.8	ug/l	5	03/02/23 08:02	EPA 8151A	M-04						
Dichloroprop	ND	1.2	5.0	ug/l	5	03/02/23 08:02	EPA 8151A	M-04						
Dinoseb	ND	0.45	2.5	ug/l	5	03/02/23 08:02	EPA 8151A	M-04						
DCPA	ND	1.0	1.2	ug/l	5	03/02/23 08:02	EPA 8151A	M-04						
MCPA	ND	200	500	ug/l	5	03/02/23 08:02	EPA 8151A	M-04						
MCPP	ND	140	500	ug/l	5	03/02/23 08:02	EPA 8151A	M-04						
Pentachlorophenol	ND	0.90	1.2	ug/l	5	03/02/23 08:02	EPA 8151A	M-04						
Picloram Batch: W3B1728	ND	0.65	3.8	ug/l	5	03/02/23 08:02	EPA 8151A	M-04						
Surrogate: 2,4-DCAA		Reco	very: 61 %	Limits: 56-156 %	5	03/02/23 08:02	EPA 8151A							
MW5-20230214-GW-40 (A3B0522-03)				Matrix: Wate	r	Batch: \	W3B1728							
Batch: W3B1728														
2,4-D	ND	1.7	2.5	ug/l	5	03/02/23 08:33	EPA 8151A	M-04						
2,4-DB	ND	5.0	12	ug/l	5	03/02/23 08:33	EPA 8151A	M-04						
2,4,5-T	ND	0.70	1.2	ug/l	5	03/02/23 08:33	EPA 8151A	M-04						
2,4,5-TP (Silvex)	ND	0.70	1.2	ug/l	5	03/02/23 08:33	EPA 8151A	M-04						
3,5-Dichlorobenzoic acid	ND	1.4	6.2	ug/l	5	03/02/23 08:33	EPA 8151A	M-04						
4-Nitrophenol	ND	2.5	6.2	ug/l	5	03/02/23 08:33	EPA 8151A	M-04						
Acifluorfen	ND	1.2	2.5	ug/l	5	03/02/23 08:33	EPA 8151A	M-04						
Bentazon	ND	2.8	12	ug/l	5	03/02/23 08:33	EPA 8151A	M-04						
Dalapon	ND	0.80	2.5	ug/l	5	03/02/23 08:33	EPA 8151A	M-04						
Dicamba	ND	0.95	3.8	ug/l	5	03/02/23 08:33	EPA 8151A	M-04						
Dichloroprop	ND	1.2	5.0	ug/l	5	03/02/23 08:33	EPA 8151A	M-04						
Dinoseb	ND	0.45	2.5	ug/l	5	03/02/23 08:33	EPA 8151A	M-04						
DCPA	ND	1.0	1.2	ug/l	5	03/02/23 08:33	EPA 8151A	M-04						
MCPA	ND	200	500	ug/l	5	03/02/23 08:33	EPA 8151A	M-04						
MCPP	ND	140	500	ug/l	5	03/02/23 08:33	EPA 8151A	M-04						
Pentachlorophenol	ND	0.90	1.2	ug/l	5	03/02/23 08:33	EPA 8151A	M-04						
Picloram Batch: W3B1728	ND	0.65	3.8	ug/l	5	03/02/23 08:33	EPA 8151A	M-04						
Surrogate: 2,4-DCAA		Reco	very: 82 %	Limits: 56-156 %	5	03/02/23 08:33	EPA 8151A							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Menterg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

Weck Laboratories, Inc.

ANALYTICAL SAMPLE RESULTS (Subcontracted)

Chlorinated Herbicides by GC/ECD													
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes					
MW4-20230214-GW-40 (A3B0522-04)				Matrix: Wate	er	Batch: V	V3B1728						
Batch: W3B1728													
2,4-D	ND	1.7	2.5	ug/l	5	03/02/23 09:04	EPA 8151A	M-04					
2,4-DB	ND	5.0	12	ug/l	5	03/02/23 09:04	EPA 8151A	M-04					
2,4,5-T	ND	0.70	1.2	ug/l	5	03/02/23 09:04	EPA 8151A	M-04					
2,4,5-TP (Silvex)	ND	0.70	1.2	ug/l	5	03/02/23 09:04	EPA 8151A	M-04					
3,5-Dichlorobenzoic acid	ND	1.4	6.2	ug/l	5	03/02/23 09:04	EPA 8151A	M-04					
4-Nitrophenol	ND	2.5	6.2	ug/l	5	03/02/23 09:04	EPA 8151A	M-04					
Acifluorfen	ND	1.2	2.5	ug/l	5	03/02/23 09:04	EPA 8151A	M-04					
Bentazon	ND	2.8	12	ug/l	5	03/02/23 09:04	EPA 8151A	M-04					
Dalapon	ND	0.80	2.5	ug/l	5	03/02/23 09:04	EPA 8151A	M-04					
Dicamba	ND	0.95	3.8	ug/l	5	03/02/23 09:04	EPA 8151A	M-04					
Dichloroprop	ND	1.2	5.0	ug/l	5	03/02/23 09:04	EPA 8151A	M-04					
Dinoseb	ND	0.45	2.5	ug/l	5	03/02/23 09:04	EPA 8151A	M-04					
DCPA	ND	1.0	1.2	ug/l	5	03/02/23 09:04	EPA 8151A	M-04					
MCPA	ND	200	500	ug/l	5	03/02/23 09:04	EPA 8151A	M-04					
MCPP	ND	140	500	ug/l	5	03/02/23 09:04	EPA 8151A	M-04					
Pentachlorophenol	ND	0.90	1.2	ug/l	5	03/02/23 09:04	EPA 8151A	M-04					
Picloram Batch: W3B1728	ND	0.65	3.8	ug/l	5	03/02/23 09:04	EPA 8151A	M-04					
Surrogate: 2,4-DCAA		Reco	very: 76 %	Limits: 56-156 %	5	03/02/23 09:04	EPA 8151A						
MW6-20230214-GW-40.25 (A3B0522-05)				Matrix: Wate	er	Batch: V	V3B1728						
Batch: W3B1728													
2,4-D	ND	1.7	2.5	ug/l	5	03/02/23 09:36	EPA 8151A	M-04					
2,4-DB	ND	5.0	12	ug/l	5	03/02/23 09:36	EPA 8151A	M-04					
2,4,5-T	ND	0.70	1.2	ug/l	5	03/02/23 09:36	EPA 8151A	M-04					
2,4,5-TP (Silvex)	ND	0.70	1.2	ug/l	5	03/02/23 09:36	EPA 8151A	M-04					
3,5-Dichlorobenzoic acid	ND	1.4	6.2	ug/l	5	03/02/23 09:36	EPA 8151A	M-04					
1-Nitrophenol	ND	2.5	6.2	ug/l	5	03/02/23 09:36	EPA 8151A	M-04					
Acifluorfen	ND	1.2	2.5	ug/l	5	03/02/23 09:36	EPA 8151A	M-04					
Bentazon	ND	2.8	12	ug/l	5	03/02/23 09:36	EPA 8151A	M-04					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

Weck Laboratories, Inc.

ANALYTICAL SAMPLE RESULTS (Subcontracted)

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW6-20230214-GW-40.25 (A3B0522-05)				Matrix: Wate	er	Batch: V		
Dalapon	ND	0.80	2.5	ug/l	5	03/02/23 09:36	EPA 8151A	M-04
Dicamba	ND	0.95	3.8	ug/l	5	03/02/23 09:36	EPA 8151A	M-04
Dichloroprop	ND	1.2	5.0	ug/l	5	03/02/23 09:36	EPA 8151A	M-04
Dinoseb	ND	0.45	2.5	ug/l	5	03/02/23 09:36	EPA 8151A	M-04
DCPA	ND	1.0	1.2	ug/l	5	03/02/23 09:36	EPA 8151A	M-04
MCPA	ND	200	500	ug/l	5	03/02/23 09:36	EPA 8151A	M-04
MCPP	ND	140	500	ug/l	5	03/02/23 09:36	EPA 8151A	M-04
Pentachlorophenol	ND	0.90	1.2	ug/l	5	03/02/23 09:36	EPA 8151A	M-04
Picloram Batch: W3B1728	ND	0.65	3.8	ug/l	5	03/02/23 09:36	EPA 8151A	M-04
Surrogate: 2,4-DCAA		Recov	very: 72 %	Limits: 56-156 %	5 5	03/02/23 09:36	EPA 8151A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

Weck Laboratories, Inc.

ANALYTICAL SAMPLE RESULTS (Subcontracted)

Hexavalent Chromium by IC													
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes					
MW3-20230214-GW-35 (A3B0522-01)				Matrix: W	ater	Batch: \	W3B1784						
Batch: W3B1784													
Chromium 6+	ND	0.0079	0.020	ug/l	1	02/23/23 14:38	EPA 218.6						
MW3-20230214-GW-35-DUP (A3B0522-02	:)			Matrix: W	ater	Batch: \	W3B1784						
Batch: W3B1784													
Chromium 6+	ND	0.0079	0.020	ug/l	1	02/23/23 14:50	EPA 218.6						
MW5-20230214-GW-40 (A3B0522-03)				Matrix: W	ater	Batch: \	W3B2351						
Batch: W3B2351													
Chromium 6+	ND	0.040	0.10	ug/l	5	02/28/23 17:44	EPA 218.6	M-05					
MW4-20230214-GW-40 (A3B0522-04)				Matrix: W	ater	Batch: \	W3B2351						
Batch: W3B2351													
Chromium 6+	ND	0.040	0.10	ug/l	5	02/28/23 17:56	EPA 218.6	M-05					
MW6-20230214-GW-40.25 (A3B0522-05)				Matrix: W	ater	Batch: \	W3B2351						
Batch: W3B2351	•				•		_	•					
Chromium 6+	ND	0.040	0.10	ug/l	5	02/28/23 18:08	EPA 218.6	M-05					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes		
Batch 23B0986 - EPA 3510C (Fuels/Acid	Ext.)					Wa	ter						
Blank (23B0986-BLK1)			Prepared	1: 02/28/23	11:48 Anal	lyzed: 03/01/	/23 00:10							
NWTPH-Dx														
Diesel	ND	0.100	0.200	mg/L	1									
Oil	ND	0.200	0.400	mg/L	1									
Surr: o-Terphenyl (Surr)		Reco	very: 83 %	Limits: 50	0-150 %	Dilı	ıtion: 1x							
LCS (23B0986-BS1)			Prepared	1: 02/28/23	11:48 Anal	lyzed: 03/01/	/23 00:31							
NWTPH-Dx														
Diesel	0.708	0.100	0.200	mg/L	1	1.25		57	36-132%					
Surr: o-Terphenyl (Surr)		Reco	very: 98 %	Limits: 50	0-150 %	Dilı	ution: 1x							
LCS Dup (23B0986-BSD1)			Prepared	1: 02/28/23	11:48 Anal	lyzed: 03/01/	/23 00:51					Q-19		
NWTPH-Dx														
Diesel	0.714	0.100	0.200	mg/L	1	1.25		57	36-132%	0.8	30%			
Surr: o-Terphenyl (Surr)		Reco	very: 97 %	Limits: 50	0-150 %	Dilı	ıtion: 1x							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 23B0828 - EPA 5030C							Wa	ter					
Blank (23B0828-BLK1)			Prepare	d: 02/22/23	08:30 Ana	lyzed: 02/22	/23 11:47						
NWTPH-Gx (MS)													
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1								
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 95 %	Limits: 5	0-150 %	Dilı	ution: 1x						
1,4-Difluorobenzene (Sur)			106 %	50	0-150 %		"						
LCS (23B0828-BS2)			Prepared	d: 02/22/23	08:30 Anal	lyzed: 02/22	/23 10:40						
NWTPH-Gx (MS)													
Gasoline Range Organics	0.545	0.0500	0.100	mg/L	1	0.500		109	80-120%				
Surr: 4-Bromofluorobenzene (Sur)		Recove	ry: 100 %	Limits: 5	0-150 %	Dilı	ution: 1x						
1,4-Difluorobenzene (Sur)			104 %	50	0-150 %		"						
Duplicate (23B0828-DUP1)			Prepare	d: 02/22/23	11:21 Anal	yzed: 02/22	/23 20:44						
QC Source Sample: MW3-202302	14-GW-35-D	OUP (A3B0522-	02)										
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1		ND				30%		
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 99 %	Limits: 5	0-150 %	Dilı	ution: 1x						
1,4-Difluorobenzene (Sur)			105 %	50	0-150 %		"						
Duplicate (23B0828-DUP2)			Prepare	d: 02/22/23	11:21 Anal	yzed: 02/22	/23 21:06						
QC Source Sample: Non-SDG (A3	B0674-01)												
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1		ND				30%		
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 98 %	Limits: 5	0-150 %	Dilı	ution: 1x						
1,4-Difluorobenzene (Sur)			107 %	50	0-150 %		"						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Newsberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 23B0828 - EPA 5030C							Wa	ter					
Blank (23B0828-BLK1)			Prepared	: 02/22/23	08:30 Ana	lyzed: 02/22	/23 11:47						
EPA 8260D													
Acetone	ND	10.0	20.0	ug/L	1								
Acrylonitrile	ND	1.00	2.00	ug/L	1								
Benzene	ND	0.100	0.200	ug/L	1								
Bromobenzene	ND	0.250	0.500	ug/L	1								
Bromochloromethane	ND	0.500	1.00	ug/L	1								
Bromodichloromethane	ND	0.500	1.00	ug/L	1								
Bromoform	ND	0.500	1.00	ug/L	1								
Bromomethane	ND	5.00	5.00	ug/L	1								
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1								
n-Butylbenzene	ND	0.500	1.00	ug/L	1								
sec-Butylbenzene	ND	0.500	1.00	ug/L	1								
ert-Butylbenzene	ND	0.500	1.00	ug/L	1								
Carbon disulfide	ND	5.00	10.0	ug/L	1								
Carbon tetrachloride	ND	0.500	1.00	ug/L	1								
Chlorobenzene	ND	0.250	0.500	ug/L	1								
Chloroethane	ND	5.00	5.00	ug/L	1								
Chloroform	ND	0.500	1.00	ug/L	1								
Chloromethane	ND	2.50	5.00	ug/L	1								
2-Chlorotoluene	ND	0.500	1.00	ug/L	1								
4-Chlorotoluene	ND	0.500	1.00	ug/L	1								
Dibromochloromethane	ND	0.500	1.00	ug/L	1								
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1								
1,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1								
Dibromomethane	ND	0.500	1.00	ug/L	1								
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1								
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1								
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1								
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1								
,1-Dichloroethane	ND	0.200	0.400	ug/L	1								
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1								
,1-Dichloroethene	ND	0.200	0.400	ug/L	1								
is-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1								
1.2 Diemorocaiene	1112	0.200	0.400	ug/L						-			

Apex Laboratories

trans-1,2-Dichloroethene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neienberg

ND

0.200

0.400

ug/L

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0828 - EPA 5030C							Wa	ter				
Blank (23B0828-BLK1)			Prepared	: 02/22/23	08:30 Anal	yzed: 02/22	/23 11:47					
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1							
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1							
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1							
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1							
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1							
2-Hexanone	ND	10.0	10.0	ug/L	1							
Isopropylbenzene	ND	0.500	1.00	ug/L	1							
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1							
Methylene chloride	ND	5.00	10.0	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	2.00	2.00	ug/L	1							
n-Propylbenzene	ND	0.250	0.500	ug/L	1							
Styrene	ND	0.500	1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1							
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1							
Toluene	ND	0.500	1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1							
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1							
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1							
Trichlorofluoromethane	ND	1.00	2.00	ug/L ug/L	1							
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L ug/L	1							
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L ug/L	1							
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L ug/L	1							
Vinyl chloride	ND	0.200	0.400	ug/L ug/L	1							
m,p-Xylene	ND ND	0.200	1.00	ug/L ug/L	1							
o-Xylene	ND ND	0.300	0.500	ug/L ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)	עויו		very: 98%	Limits: 80			ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0828 - EPA 5030C							Wa	ter				
Blank (23B0828-BLK1)			Prepared	1: 02/22/23	08:30 Ana	lyzed: 02/22	/23 11:47					
Surr: Toluene-d8 (Surr)		Recon	very: 105 %	Limits: 80	0-120 %	Dilt	ution: 1x					
4-Bromofluorobenzene (Surr)			100 %	80)-120 %		"					
LCS (23B0828-BS1)			Prepared	1: 02/22/23	08:30 Ana	lyzed: 02/22	/23 11:02					
EPA 8260D												
Acetone	34.2	10.0	20.0	ug/L	1	40.0		85	80-120%			ICV-0
Acrylonitrile	16.6	1.00	2.00	ug/L	1	20.0		83	80-120%			
Benzene	17.8	0.100	0.200	ug/L	1	20.0		89	80-120%			
Bromobenzene	17.6	0.250	0.500	ug/L	1	20.0		88	80-120%			
Bromochloromethane	20.3	0.500	1.00	ug/L	1	20.0		101	80-120%			
Bromodichloromethane	21.1	0.500	1.00	ug/L	1	20.0		106	80-120%			
Bromoform	21.8	0.500	1.00	ug/L	1	20.0		109	80-120%			
Bromomethane	26.5	5.00	5.00	ug/L	1	20.0		132	80-120%			Q-5
2-Butanone (MEK)	32.2	5.00	10.0	ug/L	1	40.0		80	80-120%			ICV-0
n-Butylbenzene	19.9	0.500	1.00	ug/L	1	20.0		99	80-120%			
sec-Butylbenzene	19.9	0.500	1.00	ug/L	1	20.0		99	80-120%			
tert-Butylbenzene	18.0	0.500	1.00	ug/L	1	20.0		90	80-120%			
Carbon disulfide	20.0	5.00	10.0	ug/L	1	20.0		100	80-120%			
Carbon tetrachloride	24.2	0.500	1.00	ug/L	1	20.0		121	80-120%			Q-5
Chlorobenzene	19.7	0.250	0.500	ug/L	1	20.0		98	80-120%			
Chloroethane	33.8	5.00	5.00	ug/L	1	20.0		169	80-120%			Q-5
Chloroform	20.0	0.500	1.00	ug/L	1	20.0		100	80-120%			
Chloromethane	18.0	2.50	5.00	ug/L	1	20.0		90	80-120%			
2-Chlorotoluene	18.8	0.500	1.00	ug/L	1	20.0		94	80-120%			
4-Chlorotoluene	17.9	0.500	1.00	ug/L	1	20.0		90	80-120%			
Dibromochloromethane	21.5	0.500	1.00	ug/L	1	20.0		107	80-120%			
1,2-Dibromo-3-chloropropane	16.8	2.50	5.00	ug/L	1	20.0		84	80-120%			
1,2-Dibromoethane (EDB)	20.0	0.250	0.500	ug/L	1	20.0		100	80-120%			
Dibromomethane	19.8	0.500	1.00	ug/L	1	20.0		99	80-120%			
1,2-Dichlorobenzene	19.7	0.250	0.500	ug/L	1	20.0		98	80-120%			
1,3-Dichlorobenzene	18.8	0.250	0.500	ug/L	1	20.0		94	80-120%			
1,4-Dichlorobenzene	18.6	0.250	0.500	ug/L	1	20.0		93	80-120%			
Dichlorodifluoromethane	24.4	0.500	1.00	ug/L	1	20.0		122	80-120%			Q-5
1,1-Dichloroethane	18.7	0.200	0.400	ug/L	1	20.0		93	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neighberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC RPD

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0828 - EPA 5030C							Wa	ter				
LCS (23B0828-BS1)			Prepared	: 02/22/23	08:30 Ana	lyzed: 02/22/	/23 11:02					
1,2-Dichloroethane (EDC)	22.5	0.200	0.400	ug/L	1	20.0		112	80-120%			
1,1-Dichloroethene	20.6	0.200	0.400	ug/L	1	20.0		103	80-120%			
cis-1,2-Dichloroethene	18.0	0.200	0.400	ug/L	1	20.0		90	80-120%			
trans-1,2-Dichloroethene	18.3	0.200	0.400	ug/L	1	20.0		92	80-120%			
1,2-Dichloropropane	17.3	0.250	0.500	ug/L	1	20.0		87	80-120%			
1,3-Dichloropropane	18.9	0.500	1.00	ug/L	1	20.0		94	80-120%			
2,2-Dichloropropane	21.5	0.500	1.00	ug/L	1	20.0		108	80-120%			
1,1-Dichloropropene	18.6	0.500	1.00	ug/L	1	20.0		93	80-120%			
cis-1,3-Dichloropropene	19.2	0.500	1.00	ug/L	1	20.0		96	80-120%			
trans-1,3-Dichloropropene	21.7	0.500	1.00	ug/L	1	20.0		108	80-120%			
Ethylbenzene	19.5	0.250	0.500	ug/L	1	20.0		97	80-120%			
Hexachlorobutadiene	18.8	2.50	5.00	ug/L	1	20.0		94	80-120%			
2-Hexanone	31.4	10.0	10.0	ug/L	1	40.0		79	80-120%			Q-55
Isopropylbenzene	19.9	0.500	1.00	ug/L	1	20.0		99	80-120%			
4-Isopropyltoluene	19.3	0.500	1.00	ug/L	1	20.0		97	80-120%			
Methylene chloride	18.8	5.00	10.0	ug/L	1	20.0		94	80-120%			
4-Methyl-2-pentanone (MiBK)	34.3	5.00	10.0	ug/L	1	40.0		86	80-120%			
Methyl tert-butyl ether (MTBE)	17.2	0.500	1.00	ug/L	1	20.0		86	80-120%			
Naphthalene	15.0	2.00	2.00	ug/L	1	20.0		75	80-120%			Q-55
n-Propylbenzene	18.6	0.250	0.500	ug/L	1	20.0		93	80-120%			
Styrene	19.3	0.500	1.00	ug/L	1	20.0		96	80-120%			
1,1,1,2-Tetrachloroethane	19.8	0.200	0.400	ug/L	1	20.0		99	80-120%			
1,1,2,2-Tetrachloroethane	18.6	0.250	0.500	ug/L	1	20.0		93	80-120%			
Tetrachloroethene (PCE)	19.3	0.200	0.400	ug/L	1	20.0		96	80-120%			
Toluene	19.0	0.500	1.00	ug/L	1	20.0		95	80-120%			
1,2,3-Trichlorobenzene	17.6	1.00	2.00	ug/L	1	20.0		88	80-120%			
1,2,4-Trichlorobenzene	16.4	1.00	2.00	ug/L	1	20.0		82	80-120%			
1,1,1-Trichloroethane	21.6	0.200	0.400	ug/L	1	20.0		108	80-120%			
1,1,2-Trichloroethane	19.8	0.250	0.500	ug/L	1	20.0		99	80-120%			
Trichloroethene (TCE)	16.7	0.200	0.400	ug/L	1	20.0		83	80-120%			
Trichlorofluoromethane	26.0	1.00	2.00	ug/L	1	20.0		130	80-120%			Q-56
1,2,3-Trichloropropane	19.5	0.500	1.00	ug/L	1	20.0		98	80-120%			
1,2,4-Trimethylbenzene	19.6	0.500	1.00	ug/L	1	20.0		98	80-120%			
1,3,5-Trimethylbenzene	18.9	0.500	1.00	ug/L	1	20.0		94	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0828 - EPA 5030C							Wa	ter				
LCS (23B0828-BS1)			Prepared	1: 02/22/23	08:30 Ana	lyzed: 02/22	/23 11:02					
Vinyl chloride	22.3	0.200	0.400	ug/L	1	20.0		111	80-120%			
n,p-Xylene	40.9	0.500	1.00	ug/L	1	40.0		102	80-120%			
-Xylene	18.5	0.250	0.500	ug/L	1	20.0		93	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 93 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			88 %	80	-120 %		"					
Duplicate (23B0828-DUP1)			Prepared	1: 02/22/23	11:21 Anal	yzed: 02/22/	/23 20:44					
OC Source Sample: MW3-202302	14-GW-35-E	OUP (A3B0522	-02)									
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	
Dibromomethane	ND	0.500	1.00	ug/L	1		ND				30%	

Apex Laboratories

1,2-Dichlorobenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND

Philip Meinberg

ND

0.250

0.500

ug/L

30%

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Org	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0828 - EPA 5030C							Wat	ter				
Duplicate (23B0828-DUP1)			Prepared	: 02/22/23	11:21 Anal	yzed: 02/22/	23 20:44					
QC Source Sample: MW3-202302	14-GW-35-D	OUP (A3B0522	<u>-02)</u>									
1,3-Dichlorobenzene	0.370	0.250	0.500	ug/L	1		0.440			17	30%	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1		ND				30%	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1		ND				30%	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1		ND				30%	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
Ethylbenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1		ND				30%	
2-Hexanone	ND	10.0	10.0	ug/L	1		ND				30%	
Isopropylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Methylene chloride	ND	5.00	10.0	ug/L	1		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1		ND				30%	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1		ND				30%	
Naphthalene	ND	2.00	2.00	ug/L	1		ND				30%	
n-Propylbenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Styrene	ND	0.500	1.00	ug/L	1		ND				30%	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Toluene	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0828 - EPA 5030C							Wat	er				
Duplicate (23B0828-DUP1)			Prepared	1: 02/22/23	11:21 Anal	yzed: 02/22/	/23 20:44					
QC Source Sample: MW3-202302	14-GW-35-I	OUP (A3B0522	-02)									
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
n,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			104 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		"					
QC Source Sample: Non-SDG (A3		10.0	20.0	/T	1		ND				200/	
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
n-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 23B0828 - EPA 5030C							Wat	er					
Ouplicate (23B0828-DUP2)			Prepared	: 02/22/23	11:21 Anal	yzed: 02/22/	/23 21:06						
QC Source Sample: Non-SDG (A3	B0674-01)												
-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%		
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%		
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%		
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%		
Dibromomethane	ND	0.500	1.00	ug/L	1		ND				30%		
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%		
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%		
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%		
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1		ND				30%		
,1-Dichloroethane	ND	0.200	0.400	ug/L	1		ND				30%		
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1		ND				30%		
,1-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%		
is-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%		
ans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%		
,2-Dichloropropane	ND	0.250	0.500	ug/L	1		ND				30%		
,3-Dichloropropane	ND	0.500	1.00	ug/L	1		ND				30%		
,2-Dichloropropane	ND	0.500	1.00	ug/L	1		ND				30%		
,1-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%		
is-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%		
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%		
thylbenzene	ND	0.250	0.500	ug/L	1		ND				30%		
Iexachlorobutadiene	ND	2.50	5.00	ug/L	1		ND				30%		
-Hexanone	ND	10.0	10.0	ug/L	1		ND				30%		
sopropylbenzene	ND	0.500	1.00	ug/L	1		ND				30%		
-Isopropyltoluene	ND	0.500	1.00	ug/L	1		ND				30%		
Methylene chloride	ND	5.00	10.0	ug/L	1		ND				30%		
-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1		ND				30%		
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1		ND				30%		
Japhthalene	ND	2.00	2.00	ug/L	1		ND				30%		
-Propylbenzene	ND	0.250	0.500	ug/L	1		ND				30%		
tyrene	ND	0.500	1.00	ug/L	1		ND				30%		
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1		ND				30%		
,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L ug/L	1		ND				30%		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

		•	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0828 - EPA 5030C							Wa	ter				
Duplicate (23B0828-DUP2)			Prepared	1: 02/22/23	11:21 Anal	yzed: 02/22/	/23 21:06					
QC Source Sample: Non-SDG (A3	B0674-01)											
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Toluene	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
m,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 98 %	Limits: 80	0-120 %	Dilı	ution: 1x					_
Toluene-d8 (Surr)			104 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80)-120 %		"					
Matrix Spike (23B0828-MS1)			Prepared	1: 02/22/23	11:21 Anal	yzed: 02/22/	/23 21:28					
QC Source Sample: Non-SDG (A3	B0730-01)											
EPA 8260D												
Acetone	41.6	10.0	20.0	ug/L	1	40.0	ND	104	39-160%			ICV-
Acrylonitrile	16.8	1.00	2.00	ug/L	1	20.0	ND	84	63-135%			
Benzene	19.6	0.100	0.200	ug/L	1	20.0	ND	98	79-120%			
Bromobenzene	16.9	0.250	0.500	ug/L	1	20.0	ND	85	80-120%			
Bromochloromethane	20.8	0.500	1.00	ug/L	1	20.0	ND	104	78-123%			
Bromodichloromethane	22.8	0.500	1.00	ug/L	1	20.0	ND	114	79-125%			
Bromoform	23.0	0.500	1.00	ug/L	1	20.0	ND	115	66-130%			
Bromomethane	30.9	5.00	5.00	ug/L	1	20.0	ND	155	53-141%			Q-
2-Butanone (MEK)	34.8	5.00	10.0	ug/L	1	40.0	ND	87	56-143%			ICV
n-Butylbenzene	12.4	0.500	1.00	ug/L	1	20.0	ND	62	75-128%			Q
sec-Butylbenzene	14.0	0.500	1.00	ug/L	1	20.0	ND	70	77-126%			Q-
tert-Butylbenzene	13.8	0.500	1.00	ug/L	1	20.0	ND	69	78-124%			Q-

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinherg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

RPD

% REC

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Spike

Source

Detection

Reporting

% REC Result Units Dilution RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 23B0828 - EPA 5030C Water Matrix Spike (23B0828-MS1) Prepared: 02/22/23 11:21 Analyzed: 02/22/23 21:28 QC Source Sample: Non-SDG (A3B0730-01) Carbon disulfide 22.2 5.00 10.0 1 20.0 ND 111 64-133% ug/L 20.0 Carbon tetrachloride 26.1 0.500 1.00 ug/L 1 ND 130 72-136% Q-54 Chlorobenzene 19.4 0.250 0.500 ug/L 1 20.0 ND 97 80-120% Q-42 Chloroethane 41.1 5.00 5.00 ug/L 1 20.0 ND 205 60-138% Chloroform 22.4 0.500 1.00 1 20.0 0.880 107 79-124% ug/L 20.0 97 Chloromethane 19.4 2.50 5.00 ug/L 1 ND 50-139% 2-Chlorotoluene 16.8 0.500 1.00 1 20.0 ND 84 79-122% ug/L 20.0 79 4-Chlorotoluene 15.8 0.500 1.00 ug/L 1 ND 78-122% Dibromochloromethane 21.8 0.500 1.00 ug/L 1 20.0 ND 109 74-126% 1,2-Dibromo-3-chloropropane 15.9 2.50 5.00 ug/L 1 20.0 ND 80 62-128% 1,2-Dibromoethane (EDB) 19.6 0.250 0.500 ug/L 1 20.0 ND 98 77-121% 0.500 1.00 20.0 79-123% Dibromomethane 21.4 ug/L 1 ND 107 20.0 1,2-Dichlorobenzene 17.7 0.250 0.500 ug/L 1 ND 88 80-120% 16.9 0.250 0.500 20.0 ND 1,3-Dichlorobenzene ug/L 1 84 80-120% 1,4-Dichlorobenzene 17.0 0.250 0.500 ug/L 1 20.0 ND 85 79-120% Dichlorodifluoromethane 26.8 0.5001.00 ug/L 1 20.0 ND 134 32-152% ___ 1,1-Dichloroethane 20.6 0.200 0.400 ug/L 1 20.0 ND 103 77-125% 23.4 20.0 1,2-Dichloroethane (EDC) 0.200 0.400ND 117 73-128% ug/L 1 20.0 71-131% 1,1-Dichloroethene 23.6 0.200 0.400ug/L 1 ND 118 0.200 0.400 18.1 20.0 ND 90 78-123% cis-1,2-Dichloroethene ug/L 1 19.0 0.200 20.0 95 75-124% trans-1,2-Dichloroethene 0.400 ug/L 1 ND 1,2-Dichloropropane 18.6 0.250 0.500 ug/L 1 20.0 ND 93 78-122%

Apex Laboratories

1,3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

Hexachlorobutadiene

Ethylbenzene

2-Hexanone

Isopropylbenzene

4-Isopropyltoluene

Methylene chloride

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

18.9

20.6

19.9

19.1

21.0

19.5

10.7

29.2

17.7

13.5

19.1

0.500

0.500

0.500

0.500

0.500

0.250

2.50

10.0

0.500

0.500

5.00

1.00

1.00

1.00

1.00

1.00

0.500

5.00

10.0

1.00

1.00

10.0

ug/L

1

1

1

1

1

1

1

1

1

1

1

20.0

20.0

20.0

20.0

20.0

20.0

20.0

40.0

20.0

20.0

20.0

ND

95

103

100

95

105

98

54

73

89

68

95

80-120%

60-139%

79-125%

75-124%

73-127%

79-121%

66-134%

57-139%

72-131%

77-127%

74-124%

O-01

Q-01

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0828 - EPA 5030C							Wa	ter				
Matrix Spike (23B0828-MS1)			Prepared	: 02/22/23	11:21 Anal	yzed: 02/22/	/23 21:28					
QC Source Sample: Non-SDG (A3	B0730-01)											
4-Methyl-2-pentanone (MiBK)	34.6	5.00	10.0	ug/L	1	40.0	ND	87	67-130%			
Methyl tert-butyl ether (MTBE)	17.3	0.500	1.00	ug/L	1	20.0	ND	87	71-124%			
Naphthalene	13.4	2.00	2.00	ug/L	1	20.0	ND	67	61-128%			Q-54b
n-Propylbenzene	16.3	0.250	0.500	ug/L	1	20.0	ND	82	76-126%			
Styrene	18.6	0.500	1.00	ug/L	1	20.0	ND	93	78-123%			
1,1,1,2-Tetrachloroethane	19.4	0.200	0.400	ug/L	1	20.0	ND	97	78-124%			
1,1,2,2-Tetrachloroethane	14.2	0.250	0.500	ug/L	1	20.0	ND	71	71-121%			
Tetrachloroethene (PCE)	19.0	0.200	0.400	ug/L	1	20.0	ND	95	74-129%			
Toluene	20.0	0.500	1.00	ug/L	1	20.0	0.500	97	80-121%			
1,2,3-Trichlorobenzene	12.6	1.00	2.00	ug/L	1	20.0	ND	63	69-129%			Q-01
1,2,4-Trichlorobenzene	10.8	1.00	2.00	ug/L	1	20.0	ND	54	69-130%			Q-01
1,1,1-Trichloroethane	23.9	0.200	0.400	ug/L	1	20.0	ND	120	74-131%			
1,1,2-Trichloroethane	19.0	0.250	0.500	ug/L	1	20.0	ND	95	80-120%			
Trichloroethene (TCE)	21.5	0.200	0.400	ug/L	1	20.0	ND	107	79-123%			
Trichlorofluoromethane	30.1	1.00	2.00	ug/L	1	20.0	ND	151	65-141%			Q-54a
1,2,3-Trichloropropane	19.1	0.500	1.00	ug/L	1	20.0	ND	95	73-122%			
1,2,4-Trimethylbenzene	18.0	0.500	1.00	ug/L	1	20.0	0.580	87	76-124%			
1,3,5-Trimethylbenzene	16.3	0.500	1.00	ug/L	1	20.0	ND	82	75-124%			
Vinyl chloride	24.1	0.200	0.400	ug/L	1	20.0	ND	121	58-137%			
m,p-Xylene	39.7	0.500	1.00	ug/L	1	40.0	0.820	97	80-121%			
o-Xylene	17.8	0.250	0.500	ug/L	1	20.0	0.280	88	78-122%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 97%	Limits: 80	0-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			89 %	80	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D SIM												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0743 - EPA 5030C							Wa	ter				
Blank (23B0743-BLK1)			Prepared	: 02/20/23	13:10 Anal	lyzed: 02/20/	/23 15:45					
EPA 8260D SIM												
Benzene	ND	0.0500	0.100	ug/L	1							
Toluene	ND	0.0500	0.100	ug/L	1							
Ethylbenzene	ND	0.0500	0.100	ug/L	1							
n,p-Xylene	ND	0.100	0.200	ug/L	1							
o-Xylene	ND	0.0500	0.100	ug/L	1							
1,2,4-Trimethylbenzene	ND	0.0500	0.100	ug/L	1							
1,3,5-Trimethylbenzene	ND	0.0500	0.100	ug/L	1							
Chloroform	ND	0.0500	0.100	ug/L	1							
1,2-Dibromo-3-chloropropane	ND	0.100	0.200	ug/L	1							
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1							
,1-Dichloroethane	ND	0.0100	0.0200	ug/L	1							
,2-Dichloroethane (EDC)	ND	0.0100	0.0200	ug/L	1							
,1-Dichloroethene	ND	0.0100	0.0200	ug/L	1							
eis-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1							
rans-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1							
1,2-Dichloropropane	ND	0.0100	0.0200	ug/L	1							
cis-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1							
rans-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.0100	0.0200	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.0100	0.0200	ug/L	1							
Tetrachloroethene (PCE)	ND	0.0100	0.0200	ug/L	1							
Trichloroethene (TCE)	ND	0.0100	0.0200	ug/L	1							
,2,3-Trichloropropane	ND	0.0500	0.100	ug/L	1							
Vinyl chloride	ND	0.0100	0.0200	ug/L	1							
,1,2-Trichloroethane	ND	0.0100	0.0200	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recove	ery: 104 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %		0-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80	0-120 %		"					
LCS (23B0743-BS1)			Prepared	: 02/20/23	13:10 Anal	yzed: 02/20/	/23 14:52					
EPA 8260D SIM												
Benzene	0.227	0.0500	0.100	ug/L	1	0.200		114	80-120%			
Toluene	0.209	0.0500	0.100	ug/L	1	0.200		105	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0743 - EPA 5030C							Wa	ter				
LCS (23B0743-BS1)			Prepared	1: 02/20/23	13:10 Ana	lyzed: 02/20/	/23 14:52					
Ethylbenzene	0.202	0.0500	0.100	ug/L	1	0.200		101	80-120%			
m,p-Xylene	0.408	0.100	0.200	ug/L	1	0.400		102	80-120%			
o-Xylene	0.204	0.0500	0.100	ug/L	1	0.200		102	80-120%			
1,2,4-Trimethylbenzene	0.207	0.0500	0.100	ug/L	1	0.200		104	80-120%			
1,3,5-Trimethylbenzene	0.205	0.0500	0.100	ug/L	1	0.200		103	80-120%			
Chloroform	0.232	0.0500	0.100	ug/L	1	0.200		116	80-120%			
1,2-Dibromo-3-chloropropane	0.202	0.100	0.200	ug/L	1	0.200		101	80-120%			
1,2-Dibromoethane (EDB)	0.199	0.0100	0.0200	ug/L	1	0.200		100	80-120%			
1,1-Dichloroethane	0.234	0.0100	0.0200	ug/L	1	0.200		117	80-120%			
1,2-Dichloroethane (EDC)	0.221	0.0100	0.0200	ug/L	1	0.200		111	80-120%			
1,1-Dichloroethene	0.228	0.0100	0.0200	ug/L	1	0.200		114	80-120%			
cis-1,2-Dichloroethene	0.235	0.0100	0.0200	ug/L	1	0.200		118	80-120%			
trans-1,2-Dichloroethene	0.228	0.0100	0.0200	ug/L	1	0.200		114	80-120%			
1,2-Dichloropropane	0.229	0.0100	0.0200	ug/L	1	0.200		114	80-120%			
cis-1,3-Dichloropropene	0.202	0.0100	0.0200	ug/L	1	0.200		101	80-120%			
trans-1,3-Dichloropropene	0.210	0.0100	0.0200	ug/L	1	0.200		105	80-120%			
Methyl tert-butyl ether (MTBE)	0.223	0.0100	0.0200	ug/L	1	0.200		112	80-120%			
1,1,2,2-Tetrachloroethane	0.214	0.0100	0.0200	ug/L	1	0.200		107	80-120%			
Tetrachloroethene (PCE)	0.196	0.0100	0.0200	ug/L	1	0.200		98	80-120%			
Trichloroethene (TCE)	0.219	0.0100	0.0200	ug/L	1	0.200		110	80-120%			
1,2,3-Trichloropropane	0.196	0.0500	0.100	ug/L	1	0.200		98	80-120%			
Vinyl chloride	0.227	0.0100	0.0200	ug/L	1	0.200		113	80-120%			
1,1,2-Trichloroethane	0.204	0.0100	0.0200	ug/L	1	0.200		102	80-120%			
Surr: 1,4-Difluorobenzene (Surr)			ery: 104 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	0-120 %		"					
Duplicate (23B0743-DUP1)			Prepared	l: 02/20/23	13:10 Ana	lyzed: 02/20/	/23 17:33					
OC Source Sample: MW3-2023021	4-GW-35 (A3B0522-01)			J 11114	J =====						
EPA 8260D SIM		. 10100000-011										
Benzene	ND	0.0500	0.100	ug/L	1		ND				30%	
Toluene	ND	0.0500	0.100	ug/L	1		ND				30%	
Ethylbenzene	ND	0.0500	0.100	ug/L	1		ND				30%	
Lui, isemzene	ND	0.100	0.200	ug/L	1		.11				2070	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

		VOI	atile Orga	inc com	pourius D	y LFA 020	JOD SINI					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0743 - EPA 5030C							Wa	ter				
Duplicate (23B0743-DUP1)			Prepared	d: 02/20/23	13:10 Anal	lyzed: 02/20	/23 17:33					
QC Source Sample: MW3-2023021	14-GW-35 ((A3B0522-01)										
o-Xylene	ND	0.0500	0.100	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND	0.0500	0.100	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.0500	0.100	ug/L	1		ND				30%	
Chloroform	ND	0.0500	0.100	ug/L	1		ND				30%	
1,2-Dibromo-3-chloropropane	ND	0.100	0.200	ug/L	1		ND				30%	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1		ND				30%	
1,1-Dichloroethane	ND	0.0100	0.0200	ug/L	1		ND				30%	
1,2-Dichloroethane (EDC)	ND	0.0100	0.0200	ug/L	1		ND				30%	
1,1-Dichloroethene	ND	0.0100	0.0200	ug/L	1		ND				30%	
cis-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1		ND				30%	
trans-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1		ND				30%	
1,2-Dichloropropane	ND	0.0100	0.0200	ug/L	1		ND				30%	
cis-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1		ND				30%	
trans-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1		ND				30%	
Methyl tert-butyl ether (MTBE)	ND	0.0100	0.0200	ug/L	1		ND				30%	
1,1,2,2-Tetrachloroethane	ND	0.0100	0.0200	ug/L	1		ND				30%	
Tetrachloroethene (PCE)	ND	0.0100	0.0200	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND	0.0100	0.0200	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.0500	0.100	ug/L	1		ND				30%	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1		ND				30%	
1,1,2-Trichloroethane	ND	0.0100	0.0200	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recove	ery: 103 %	Limits: 80	0-120 %	Dilı	ution: 1x					_
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80	0-120 %		"					
Matrix Spike (23B0743-MS1)			Prepared	1: 02/20/23	13:10 Ana	lyzed: 02/20/	/23 20:14					
QC Source Sample: MW6-2023021	14-GW-40.2	5 (A3B0522-05)				-						
EPA 8260D SIM			_									
Benzene	0.192	0.0500	0.100	ug/L	1	0.200	ND	96	79-120%			
Toluene	0.166	0.0500	0.100	ug/L	1	0.200	ND	83	80-121%			
Ethylbenzene	0.147	0.0500	0.100	ug/L	1	0.200	ND	74	79-121%			
m,p-Xylene	0.285	0.100	0.200	ug/L	1	0.400	ND	71	80-121%			
o-Xylene	0.142	0.0500	0.100	ug/L	1	0.200	ND	71	78-122%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D SIM	

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0743 - EPA 5030C							Wa	ter				
Matrix Spike (23B0743-MS1)			Prepared	: 02/20/23	13:10 Ana	lyzed: 02/20	/23 20:14					
QC Source Sample: MW6-2023021	14-GW-40.2	5 (A3B0522-05	<u>)</u>									
1,2,4-Trimethylbenzene	0.142	0.0500	0.100	ug/L	1	0.200	ND	71	76-124%			Q-01
1,3,5-Trimethylbenzene	0.132	0.0500	0.100	ug/L	1	0.200	ND	66	75-124%			Q-01
Chloroform	0.179	0.0500	0.100	ug/L	1	0.200	ND	90	79-124%			
1,2-Dibromo-3-chloropropane	0.134	0.100	0.200	ug/L	1	0.200	ND	67	62-128%			Ja
1,2-Dibromoethane (EDB)	0.150	0.0100	0.0200	ug/L	1	0.200	ND	75	77-121%			Q-01
1,1-Dichloroethane	0.191	0.0100	0.0200	ug/L	1	0.200	ND	95	77-125%			
1,2-Dichloroethane (EDC)	0.177	0.0100	0.0200	ug/L	1	0.200	ND	88	73-128%			
1,1-Dichloroethene	0.196	0.0100	0.0200	ug/L	1	0.200	ND	98	71-131%			
cis-1,2-Dichloroethene	0.204	0.0100	0.0200	ug/L	1	0.200	0.0212	91	78-123%			
trans-1,2-Dichloroethene	0.190	0.0100	0.0200	ug/L	1	0.200	ND	95	75-124%			
1,2-Dichloropropane	0.178	0.0100	0.0200	ug/L	1	0.200	ND	89	78-122%			
cis-1,3-Dichloropropene	0.154	0.0100	0.0200	ug/L	1	0.200	ND	77	75-124%			
trans-1,3-Dichloropropene	0.158	0.0100	0.0200	ug/L	1	0.200	ND	79	73-127%			
Methyl tert-butyl ether (MTBE)	0.178	0.0100	0.0200	ug/L	1	0.200	ND	89	71-124%			
1,1,2,2-Tetrachloroethane	0.164	0.0100	0.0200	ug/L	1	0.200	ND	82	71-121%			
Tetrachloroethene (PCE)	0.158	0.0100	0.0200	ug/L	1	0.200	ND	79	74-129%			
Trichloroethene (TCE)	0.175	0.0100	0.0200	ug/L	1	0.200	ND	87	79-123%			
1,2,3-Trichloropropane	0.154	0.0500	0.100	ug/L	1	0.200	ND	77	73-122%			
Vinyl chloride	0.227	0.0100	0.0200	ug/L	1	0.200	ND	113	58-137%			
1,1,2-Trichloroethane	0.157	0.0100	0.0200	ug/L	1	0.200	ND	78	80-120%			Q-01
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 105 %	Limits: 80	0-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			98 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	0-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Menberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

RPD

% REC

QUALITY CONTROL (QC) SAMPLE RESULTS

Detection

Reporting

Semivolatile Organic Compounds by EPA 8270E

Spike

Source

Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Batch 23B0761 - EPA 3510C	(Acid/Base	Neutral)					Wa	ter				
Blank (23B0761-BLK1)			Prepared	: 02/21/23	06:52 Anal	yzed: 02/21/	23 16:21					
EPA 8270E												
Acenaphthene	ND	0.0100	0.0200	ug/L	1							
Acenaphthylene	ND	0.0100	0.0200	ug/L	1							
Anthracene	ND	0.0100	0.0200	ug/L	1							
Benz(a)anthracene	ND	0.0100	0.0200	ug/L	1							
Benzo(a)pyrene	ND	0.0150	0.0300	ug/L	1							
Benzo(b)fluoranthene	ND	0.0150	0.0300	ug/L	1							
Benzo(k)fluoranthene	ND	0.0150	0.0300	ug/L	1							
Benzo(g,h,i)perylene	ND	0.0100	0.0200	ug/L	1							
Chrysene	ND	0.0100	0.0200	ug/L	1							
Dibenz(a,h)anthracene	ND	0.0100	0.0200	ug/L	1							
Fluoranthene	ND	0.0100	0.0200	ug/L	1							
Fluorene	ND	0.0100	0.0200	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND	0.0100	0.0200	ug/L	1							
1-Methylnaphthalene	ND	0.0200	0.0400	ug/L	1							Q-3
2-Methylnaphthalene	ND	0.0200	0.0400	ug/L	1							Q-3
Naphthalene	ND	0.0200	0.0400	ug/L	1							Q-3
Phenanthrene	ND	0.0100	0.0200	ug/L	1							
Pyrene	ND	0.0100	0.0200	ug/L	1							
Carbazole	ND	0.0150	0.0300	ug/L	1							
Dibenzofuran	ND	0.0100	0.0200	ug/L	1							
2-Chlorophenol	ND	0.0500	0.100	ug/L	1							
4-Chloro-3-methylphenol	ND	0.100	0.200	ug/L	1							
2,4-Dichlorophenol	ND	0.0500	0.100	ug/L	1							
2,4-Dimethylphenol	ND	0.0500	0.100	ug/L	1							
2,4-Dinitrophenol	ND	0.250	0.500	ug/L	1							
4,6-Dinitro-2-methylphenol	ND	0.250	0.500	ug/L	1							
2-Methylphenol	ND	0.0250	0.0500	ug/L	1							
3+4-Methylphenol(s)	ND	0.0250	0.0500	ug/L	1							
2-Nitrophenol	ND	0.100	0.200	ug/L	1							
4-Nitrophenol	ND	0.100	0.200	ug/L	1							
Pentachlorophenol (PCP)	ND	0.100	0.200	ug/L	1							
Phenol	ND	0.200	0.400	ug/L	1							
2,3,4,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0761 - EPA 3510C (Acid/Base	Neutral)					Wa	ter				
Blank (23B0761-BLK1)			Prepared	: 02/21/23	06:52 Anal	yzed: 02/21/	/23 16:21					
2,3,5,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1							
2,4,5-Trichlorophenol	ND	0.0500	0.100	ug/L	1							
2,4,6-Trichlorophenol	ND	0.0500	0.100	ug/L	1							
Bis(2-ethylhexyl)phthalate	ND	0.200	0.400	ug/L	1							
Butyl benzyl phthalate	ND	0.200	0.400	ug/L	1							
Diethylphthalate	ND	0.200	0.400	ug/L	1							
Dimethylphthalate	ND	0.200	0.400	ug/L	1							
Di-n-butylphthalate	ND	0.200	0.400	ug/L	1							
Di-n-octyl phthalate	ND	0.200	0.400	ug/L	1							
N-Nitrosodimethylamine	ND	0.0250	0.0500	ug/L	1							
N-Nitroso-di-n-propylamine	ND	0.0250	0.0500	ug/L	1							
N-Nitrosodiphenylamine	ND	0.0250	0.0500	ug/L	1							
Bis(2-Chloroethoxy) methane	ND	0.0250	0.0500	ug/L	1							
Bis(2-Chloroethyl) ether	ND	0.0250	0.0500	ug/L	1							
2,2'-Oxybis(1-Chloropropane)	ND	0.0250	0.0500	ug/L	1							
Hexachlorobenzene	ND	0.0100	0.0200	ug/L	1							
Hexachlorobutadiene	ND	0.0250	0.0500	ug/L	1							Q-30
Hexachlorocyclopentadiene	ND	0.0500	0.100	ug/L	1							Q-30
Hexachloroethane	ND	0.0250	0.0500	ug/L	1							Q-30
2-Chloronaphthalene	ND	0.0100	0.0200	ug/L	1							Q-30
1,2,4-Trichlorobenzene	ND	0.0250	0.0500	ug/L	1							Q-30
4-Bromophenyl phenyl ether	ND	0.0250	0.0500	ug/L	1							
4-Chlorophenyl phenyl ether	ND	0.0250	0.0500	ug/L	1							
Aniline	ND	0.0500	0.100	ug/L	1							
4-Chloroaniline	ND	0.0250	0.0500	ug/L	1							
2-Nitroaniline	ND	0.200	0.400	ug/L	1							
3-Nitroaniline	ND	0.200	0.400	ug/L	1							
4-Nitroaniline	ND	0.200	0.400	ug/L	1							
Nitrobenzene	ND	0.100	0.200	ug/L	1							
2,4-Dinitrotoluene	ND	0.100	0.200	ug/L	1							
2,6-Dinitrotoluene	ND	0.100	0.200	ug/L	1							
Benzoic acid	ND	1.25	2.50	ug/L	1							
Benzyl alcohol	ND	0.100	0.200	ug/L	1							
Isophorone	ND	0.0250	0.0500	ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0761 - EPA 3510C (A	Acid/Base	Neutral)					Wa	ter				
Blank (23B0761-BLK1)			Prepared	: 02/21/23	06:52 Ana	lyzed: 02/21/	/23 16:21					
Azobenzene (1,2-DPH)	ND	0.0250	0.0500	ug/L	1							
Bis(2-Ethylhexyl) adipate	ND	0.250	0.500	ug/L	1							
3,3'-Dichlorobenzidine	ND	0.500	1.00	ug/L	1							Q-
1,2-Dinitrobenzene	ND	0.250	0.500	ug/L	1							
1,3-Dinitrobenzene	ND	0.250	0.500	ug/L	1							
1,4-Dinitrobenzene	ND	0.250	0.500	ug/L	1							
Pyridine	ND	0.100	0.200	ug/L	1							
1,2-Dichlorobenzene	ND	0.0250	0.0500	ug/L	1							Q-
1,3-Dichlorobenzene	ND	0.0250	0.0500	ug/L	1							Q-
1,4-Dichlorobenzene	ND	0.0250	0.0500	ug/L	1							Q-
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 45 %	Limits: 44	1-120 %	Dilı	ıtion: 1x					
2-Fluorobiphenyl (Surr)			45 %	44	-120 %		"					
Phenol-d6 (Surr)			19 %	10	-133 %		"					
p-Terphenyl-d14 (Surr)			92 %	50	-134 %		"					
2-Fluorophenol (Surr)			33 %	19	-120 %		"					
2,4,6-Tribromophenol (Surr)			53 %	43	-140 %		"					
LCS (23B0761-BS1)			Prepared	: 02/21/23	06:52 Ana	yzed: 02/21/	/23 16:55					
EPA 8270E												
Acenaphthene	1.96	0.0400	0.0800	ug/L	4	4.00		49	47-122%			
Acenaphthylene	2.12	0.0400	0.0800	ug/L	4	4.00		53	41-130%			
Anthracene	3.19	0.0400	0.0800	ug/L	4	4.00		80	57-123%			
Benz(a)anthracene	3.52	0.0400	0.0800	ug/L	4	4.00		88	58-125%			
Benzo(a)pyrene	3.47	0.0600	0.120	ug/L	4	4.00		87	54-128%			
Benzo(b)fluoranthene	3.69	0.0600	0.120	ug/L	4	4.00		92	53-131%			
Benzo(k)fluoranthene	3.55	0.0600	0.120	ug/L	4	4.00		89	57-129%			
Benzo(g,h,i)perylene	3.65	0.0400	0.0800	ug/L	4	4.00		91	50-134%			
Chrysene	3.47	0.0400	0.0800	ug/L	4	4.00		87	59-123%			
Dibenz(a,h)anthracene	3.40	0.0400	0.0800	ug/L	4	4.00		85	51-134%			
Fluoranthene	3.45	0.0400	0.0800	ug/L	4	4.00		86	57-128%			
Fluorene	2.56	0.0400	0.0800	ug/L	4	4.00		64	52-124%			
Indeno(1,2,3-cd)pyrene	3.58	0.0400	0.0800	ug/L	4	4.00		90	52-134%			
1-Methylnaphthalene	1.36	0.0800	0.160	ug/L	4	4.00		34	41-120%			Q-
2-Methylnaphthalene	1.33	0.0800	0.160	ug/L	4	4.00		33	40-121%			Q-:

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0761 - EPA 3510C (Acid/Base	Neutral)					Wa	ter				
LCS (23B0761-BS1)			Prepared	02/21/23	06:52 Anal	lyzed: 02/21/	/23 16:55					
Naphthalene	1.28	0.0800	0.160	ug/L	4	4.00		32	40-121%			Q-30
Phenanthrene	2.97	0.0400	0.0800	ug/L	4	4.00		74	59-120%			
Pyrene	3.43	0.0400	0.0800	ug/L	4	4.00		86	57-126%			
Carbazole	3.40	0.0600	0.120	ug/L	4	4.00		85	60-122%			
Dibenzofuran	2.23	0.0400	0.0800	ug/L	4	4.00		56	53-120%			
2-Chlorophenol	2.14	0.200	0.400	ug/L	4	4.00		53	38-120%			
4-Chloro-3-methylphenol	2.70	0.400	0.800	ug/L	4	4.00		67	52-120%			
2,4-Dichlorophenol	2.42	0.200	0.400	ug/L	4	4.00		61	47-121%			
2,4-Dimethylphenol	2.37	0.200	0.400	ug/L	4	4.00		59	31-124%			
2,4-Dinitrophenol	3.27	1.00	2.00	ug/L	4	4.00		82	23-143%			
4,6-Dinitro-2-methylphenol	3.50	1.00	2.00	ug/L	4	4.00		88	44-137%			
2-Methylphenol	1.92	0.100	0.200	ug/L	4	4.00		48	30-120%			
3+4-Methylphenol(s)	1.78	0.100	0.200	ug/L	4	4.00		45	29-120%			
2-Nitrophenol	2.42	0.400	0.800	ug/L	4	4.00		61	47-123%			
4-Nitrophenol	1.26	0.400	0.800	ug/L	4	4.00		31	10-120%			
Pentachlorophenol (PCP)	3.04	0.400	0.800	ug/L	4	4.00		76	35-138%			
Phenol	0.886	0.800	0.800	ug/L	4	4.00		22	10-120%			
2,3,4,6-Tetrachlorophenol	3.08	0.200	0.400	ug/L	4	4.00		77	50-128%			
2,3,5,6-Tetrachlorophenol	3.07	0.200	0.400	ug/L	4	4.00		77	50-121%			
2,4,5-Trichlorophenol	2.76	0.200	0.400	ug/L	4	4.00		69	53-123%			
2,4,6-Trichlorophenol	2.57	0.200	0.400	ug/L	4	4.00		64	50-125%			
Bis(2-ethylhexyl)phthalate	4.09	0.800	1.60	ug/L	4	4.00		102	55-135%			
Butyl benzyl phthalate	4.12	0.800	1.60	ug/L	4	4.00		103	53-134%			
Diethylphthalate	3.88	0.800	1.60	ug/L	4	4.00		97	56-125%			
Dimethylphthalate	3.45	0.800	1.60	ug/L	4	4.00		86	45-127%			
Di-n-butylphthalate	4.32	0.800	1.60	ug/L	4	4.00		108	59-127%			
Di-n-octyl phthalate	4.40	0.800	1.60	ug/L	4	4.00		110	51-140%			
N-Nitrosodimethylamine	1.54	0.100	0.200	ug/L	4	4.00		39	19-120%			
N-Nitroso-di-n-propylamine	2.41	0.100	0.200	ug/L	4	4.00		60	49-120%			
N-Nitrosodiphenylamine	2.66	0.100	0.200	ug/L	4	4.00		67	51-123%			
Bis(2-Chloroethoxy) methane	2.57	0.100	0.200	ug/L	4	4.00		64	48-120%			
Bis(2-Chloroethyl) ether	2.08	0.100	0.200	ug/L	4	4.00		52	43-120%			
2,2'-Oxybis(1-Chloropropane)	1.93	0.100	0.200	ug/L	4	4.00		48	41-120%			
Hexachlorobenzene	2.67	0.0400	0.0800	ug/L	4	4.00		67	53-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0761 - EPA 3510C ((Acid/Base	Neutral)					Wa	iter				
LCS (23B0761-BS1)			Prepared	: 02/21/23	06:52 Anal	lyzed: 02/21/	/23 16:55					
Hexachlorobutadiene	0.599	0.100	0.200	ug/L	4	4.00		15	22-124%			Q-30
Hexachlorocyclopentadiene	0.436	0.200	0.400	ug/L	4	4.00		11	10-127%			
Hexachloroethane	0.574	0.100	0.200	ug/L	4	4.00		14	21-120%			Q-30
2-Chloronaphthalene	1.57	0.0400	0.0800	ug/L	4	4.00		39	40-120%			Q-30
1,2,4-Trichlorobenzene	0.892	0.100	0.200	ug/L	4	4.00		22	29-120%			Q-30
4-Bromophenyl phenyl ether	2.51	0.100	0.200	ug/L	4	4.00		63	55-124%			
4-Chlorophenyl phenyl ether	2.29	0.100	0.200	ug/L	4	4.00		57	53-121%			
Aniline	1.75	0.200	0.400	ug/L	4	4.00		44	10-120%			
4-Chloroaniline	2.08	0.100	0.200	ug/L	4	4.00		52	33-120%			Q-31
2-Nitroaniline	2.91	0.800	1.60	ug/L	4	4.00		73	55-127%			
3-Nitroaniline	3.04	0.800	1.60	ug/L	4	4.00		76	41-128%			
4-Nitroaniline	3.44	0.800	1.60	ug/L	4	4.00		86	25-120%			
Nitrobenzene	2.01	0.400	0.800	ug/L	4	4.00		50	45-121%			
2,4-Dinitrotoluene	3.40	0.400	0.800	ug/L	4	4.00		85	57-128%			
2,6-Dinitrotoluene	3.02	0.400	0.800	ug/L	4	4.00		75	57-124%			
Benzoic acid	3.76	2.00	2.00	ug/L	4	8.00		47	10-120%			Q-31
Benzyl alcohol	1.94	0.400	0.800	ug/L	4	4.00		49	31-120%			
Isophorone	2.59	0.100	0.200	ug/L	4	4.00		65	42-124%			
Azobenzene (1,2-DPH)	2.84	0.100	0.200	ug/L	4	4.00		71	61-120%			
Bis(2-Ethylhexyl) adipate	4.31	1.00	2.00	ug/L	4	4.00		108	63-121%			
3,3'-Dichlorobenzidine	12.7	2.00	4.00	ug/L	4	8.00		159	27-129%			Q-29, Q-52
1,2-Dinitrobenzene	3.16	1.00	2.00	ug/L	4	4.00		79	59-120%			
1,3-Dinitrobenzene	3.13	1.00	2.00	ug/L	4	4.00		78	49-128%			
1,4-Dinitrobenzene	3.12	1.00	2.00	ug/L	4	4.00		78	54-120%			
Pyridine	1.50	0.400	0.800	ug/L	4	4.00		38	10-120%			
1,2-Dichlorobenzene	0.771	0.100	0.200	ug/L	4	4.00		19	32-120%			Q-30
1,3-Dichlorobenzene	0.699	0.100	0.200	ug/L	4	4.00		17	28-120%			Q-30

4.00

Dilution: 4x

 2-Fluorobiphenyl (Surr)
 53 %
 44-120 %
 "

 Phenol-d6 (Surr)
 19 %
 10-133 %
 "

 p-Terphenyl-d14 (Surr)
 100 %
 50-134 %
 "

 2-Fluorophenol (Surr)
 35 %
 19-120 %
 "

 2,4,6-Tribromophenol (Surr)
 76 %
 43-140 %
 "

Recovery: 52 %

0.200

ug/L

Limits: 44-120 %

4

0.100

0.719

Apex Laboratories

1,4-Dichlorobenzene

Surr: Nitrobenzene-d5 (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

18

29-120%

Philip Menberg

Q-30

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0761 - EPA 3510C (Acid/Base	Neutral)					Wa	ter				
LCS Dup (23B0761-BSD1)			Prepared	: 02/21/23	06:52 Ana	yzed: 02/21/	/23 17:30					Q-19
EPA 8270E												
Acenaphthene	1.99	0.0400	0.0800	ug/L	4	4.00		50	47-122%	2	30%	
Acenaphthylene	2.19	0.0400	0.0800	ug/L	4	4.00		55	41-130%	3	30%	
Anthracene	3.14	0.0400	0.0800	ug/L	4	4.00		79	57-123%	1	30%	
Benz(a)anthracene	3.68	0.0400	0.0800	ug/L	4	4.00		92	58-125%	4	30%	
Benzo(a)pyrene	3.48	0.0600	0.120	ug/L	4	4.00		87	54-128%	0.3	30%	
Benzo(b)fluoranthene	3.64	0.0600	0.120	ug/L	4	4.00		91	53-131%	2	30%	
Benzo(k)fluoranthene	3.55	0.0600	0.120	ug/L	4	4.00		89	57-129%	0.2	30%	
Benzo(g,h,i)perylene	3.80	0.0400	0.0800	ug/L	4	4.00		95	50-134%	4	30%	
Chrysene	3.40	0.0400	0.0800	ug/L	4	4.00		85	59-123%	2	30%	
Dibenz(a,h)anthracene	3.52	0.0400	0.0800	ug/L	4	4.00		88	51-134%	3	30%	
Fluoranthene	3.32	0.0400	0.0800	ug/L	4	4.00		83	57-128%	4	30%	
Fluorene	2.59	0.0400	0.0800	ug/L	4	4.00		65	52-124%	1	30%	
Indeno(1,2,3-cd)pyrene	3.68	0.0400	0.0800	ug/L	4	4.00		92	52-134%	3	30%	
l-Methylnaphthalene	1.41	0.0800	0.160	ug/L	4	4.00		35	41-120%	4	30%	Q-3
2-Methylnaphthalene	1.39	0.0800	0.160	ug/L	4	4.00		35	40-121%	5	30%	Q-3
Naphthalene	1.39	0.0800	0.160	ug/L	4	4.00		35	40-121%	8	30%	Q-3
Phenanthrene	2.94	0.0400	0.0800	ug/L	4	4.00		73	59-120%	1	30%	
Pyrene	3.28	0.0400	0.0800	ug/L	4	4.00		82	57-126%	4	30%	
Carbazole	3.36	0.0600	0.120	ug/L	4	4.00		84	60-122%	1	30%	
Dibenzofuran	2.27	0.0400	0.0800	ug/L	4	4.00		57	53-120%	2	30%	
2-Chlorophenol	2.22	0.200	0.400	ug/L	4	4.00		55	38-120%	4	30%	
1-Chloro-3-methylphenol	2.90	0.400	0.800	ug/L	4	4.00		72	52-120%	7	30%	
2,4-Dichlorophenol	2.61	0.200	0.400	ug/L	4	4.00		65	47-121%	8	30%	
2,4-Dimethylphenol	2.52	0.200	0.400	ug/L	4	4.00		63	31-124%	6	30%	
2,4-Dinitrophenol	3.41	1.00	2.00	ug/L	4	4.00		85	23-143%	4	30%	
4,6-Dinitro-2-methylphenol	3.57	1.00	2.00	ug/L	4	4.00		89	44-137%	2	30%	
2-Methylphenol	1.99	0.100	0.200	ug/L	4	4.00		50	30-120%	4	30%	
8+4-Methylphenol(s)	1.88	0.100	0.200	ug/L	4	4.00		47	29-120%	5	30%	
-Nitrophenol	2.74	0.400	0.800	ug/L	4	4.00		68	47-123%	12	30%	

Apex Laboratories

Pentachlorophenol (PCP)

2,3,4,6-Tetrachlorophenol

4-Nitrophenol

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

34

73

24

81

10-120%

35-138%

10-120%

50-128%

30% 30%

30% 30%

3

5

Philip Memberg

1.35

2.94

0.961

3.24

0.400

0.400

0.800

0.200

0.800

0.800

0.800

0.400

ug/L

ug/L

ug/L

ug/L

4

4

4

4.00

4.00

4.00

4.00

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0761 - EPA 3510C (A	Acid/Base	Neutral)					Wa	ter				
LCS Dup (23B0761-BSD1)			Prepared	: 02/21/23	06:52 Anal	lyzed: 02/21	/23 17:30					Q-19
2,3,5,6-Tetrachlorophenol	3.20	0.200	0.400	ug/L	4	4.00		80	50-121%	4	30%	
2,4,5-Trichlorophenol	2.99	0.200	0.400	ug/L	4	4.00		75	53-123%	8	30%	
2,4,6-Trichlorophenol	2.81	0.200	0.400	ug/L	4	4.00		70	50-125%	9	30%	
Bis(2-ethylhexyl)phthalate	4.34	0.800	1.60	ug/L	4	4.00		108	55-135%	6	30%	
Butyl benzyl phthalate	4.38	0.800	1.60	ug/L	4	4.00		109	53-134%	6	30%	
Diethylphthalate	3.98	0.800	1.60	ug/L	4	4.00		99	56-125%	3	30%	
Dimethylphthalate	3.55	0.800	1.60	ug/L	4	4.00		89	45-127%	3	30%	
Di-n-butylphthalate	4.28	0.800	1.60	ug/L	4	4.00		107	59-127%	1	30%	
Di-n-octyl phthalate	4.34	0.800	1.60	ug/L	4	4.00		109	51-140%	1	30%	
N-Nitrosodimethylamine	1.65	0.100	0.200	ug/L	4	4.00		41	19-120%	7	30%	
N-Nitroso-di-n-propylamine	2.56	0.100	0.200	ug/L	4	4.00		64	49-120%	6	30%	
N-Nitrosodiphenylamine	2.79	0.100	0.200	ug/L	4	4.00		70	51-123%	5	30%	
Bis(2-Chloroethoxy) methane	2.84	0.100	0.200	ug/L	4	4.00		71	48-120%	10	30%	
Bis(2-Chloroethyl) ether	2.26	0.100	0.200	ug/L	4	4.00		57	43-120%	8	30%	
2,2'-Oxybis(1-Chloropropane)	2.08	0.100	0.200	ug/L	4	4.00		52	41-120%	8	30%	
Hexachlorobenzene	2.52	0.0400	0.0800	ug/L	4	4.00		63	53-125%	6	30%	
Hexachlorobutadiene	0.594	0.100	0.200	ug/L	4	4.00		15	22-124%	0.9	30%	Q-30
Hexachlorocyclopentadiene	0.356	0.200	0.200	ug/L	4	4.00		9	10-127%	20	30%	Q-30
Hexachloroethane	0.608	0.100	0.200	ug/L	4	4.00		15	21-120%	6	30%	Q-30
2-Chloronaphthalene	1.58	0.0400	0.0800	ug/L	4	4.00		39	40-120%	0.7	30%	Q-30
1,2,4-Trichlorobenzene	0.937	0.100	0.200	ug/L	4	4.00		23	29-120%	5	30%	Q-30
4-Bromophenyl phenyl ether	2.45	0.100	0.200	ug/L	4	4.00		61	55-124%	2	30%	
4-Chlorophenyl phenyl ether	2.22	0.100	0.200	ug/L	4	4.00		56	53-121%	3	30%	
Aniline	1.78	0.200	0.400	ug/L	4	4.00		44	10-120%	1	30%	
4-Chloroaniline	2.23	0.100	0.200	ug/L	4	4.00		56	33-120%	7	30%	Q-31
2-Nitroaniline	3.16	0.800	1.60	ug/L	4	4.00		79	55-127%	8	30%	
3-Nitroaniline	3.23	0.800	1.60	ug/L	4	4.00		81	41-128%	6	30%	
4-Nitroaniline	3.42	0.800	1.60	ug/L	4	4.00		85	25-120%	0.6	30%	
Nitrobenzene	2.17	0.400	0.800	ug/L	4	4.00		54	45-121%	8	30%	
2,4-Dinitrotoluene	3.53	0.400	0.800	ug/L	4	4.00		88	57-128%	4	30%	
2,6-Dinitrotoluene	3.24	0.400	0.800	ug/L	4	4.00		81	57-124%	7	30%	
Benzoic acid	3.88	2.00	2.00	ug/L	4	8.00		48	10-120%	3	30%	Q-31
Benzyl alcohol	2.04	0.400	0.800	ug/L	4	4.00		51	31-120%	5	30%	
Isophorone	2.81	0.100	0.200	ug/L	4	4.00		70	42-124%	8	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

Portland, OR 97232

ANALYTICAL REPORT

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006

Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0761 - EPA 3510C (Acid/Base	Neutral)					Wa	ter				
LCS Dup (23B0761-BSD1)			Prepared	1: 02/21/23	06:52 Ana	lyzed: 02/21	/23 17:30					Q-19
Azobenzene (1,2-DPH)	2.90	0.100	0.200	ug/L	4	4.00		73	61-120%	2	30%	
Bis(2-Ethylhexyl) adipate	4.74	1.00	2.00	ug/L	4	4.00		118	63-121%	9	30%	
3,3'-Dichlorobenzidine	12.0	2.00	4.00	ug/L	4	8.00		151	27-129%	5	30%	Q-29, Q-52
1,2-Dinitrobenzene	3.39	1.00	2.00	ug/L	4	4.00		85	59-120%	7	30%	
1,3-Dinitrobenzene	3.32	1.00	2.00	ug/L	4	4.00		83	49-128%	6	30%	
1,4-Dinitrobenzene	3.38	1.00	2.00	ug/L	4	4.00		85	54-120%	8	30%	
Pyridine	1.67	0.400	0.800	ug/L	4	4.00		42	10-120%	10	30%	
1,2-Dichlorobenzene	0.842	0.100	0.200	ug/L	4	4.00		21	32-120%	9	30%	Q-30
1,3-Dichlorobenzene	0.756	0.100	0.200	ug/L	4	4.00		19	28-120%	8	30%	Q-30
1,4-Dichlorobenzene	0.798	0.100	0.200	ug/L	4	4.00		20	29-120%	10	30%	Q-30
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 55 %	Limits: 44	1-120 %	Dilı	ution: 4x					
2-Fluorobiphenyl (Surr)			57 %	44	!-120 %		"					
Phenol-d6 (Surr)			21 %	10	133 %		"					
p-Terphenyl-d14 (Surr)			108 %	50	-134 %		"					
2-Fluorophenol (Surr)			38 %	19	-120 %		"					
2,4,6-Tribromophenol (Surr)			76 %	43	I-140 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

		Organopl	hosphorus	Pesticid	es (OPPs) by EPA 8	8270E (G	iC/MS)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0739 - EPA 3510C	(Neutral pl	1)					Wa	ter				
Blank (23B0739-BLK1)			Prepared	1: 02/20/23	11:30 Ana	lyzed: 02/20/	/23 18:45					
EPA 8270E OPPs												
Azinphos methyl (Guthion)	ND	0.250	0.500	ug/L	1							
Chlorpyrifos	ND	0.250	0.500	ug/L	1							
Coumaphos	ND	0.250	0.500	ug/L	1							
Demeton O	ND	0.250	0.500	ug/L	1							
Demeton S	ND	0.250	0.500	ug/L	1							
Diazinon	ND	0.250	0.500	ug/L	1							
Dichlorvos	ND	0.250	0.500	ug/L	1							
Dimethoate	ND	0.250	0.500	ug/L	1							
Disulfoton	ND	0.250	0.500	ug/L	1							
EPN	ND	0.250	0.500	ug/L	1							
Ethoprop	ND	0.250	0.500	ug/L	1							
Fensulfothion	ND	0.250	0.500	ug/L	1							
Fenthion	ND	0.250	0.500	ug/L	1							
Malathion	ND	0.250	0.500	ug/L	1							
Merphos	0.491	0.250	0.500	ug/L	1							B-02,
Methyl parathion	ND	0.250	0.500	ug/L	1							
Mevinphos (Phosdrin)	ND	0.250	0.500	ug/L	1							
Monocrotophos	ND	0.250	0.500	ug/L	1							
Naled (Dibrom)	ND	0.250	0.500	ug/L	1							
Parathion, ethyl	ND	0.250	0.500	ug/L	1							
Phorate	ND	0.250	0.500	ug/L	1							
Ronnel (Fenchlorphos)	ND	0.250	0.500	ug/L	1							
Sulfotep	ND	0.250	0.500	ug/L	1							
Sulprofos (Bolstar)	ND	0.250	0.500	ug/L	1							
TEPP	0.346	0.250	0.500	ug/L	1							B-02,
Tetrachlorvinphos (Rabon)	ND	0.250	0.500	ug/L	1							
Tokuthion (Prothiofos)	ND	0.250	0.500	ug/L	1							
Trichloronate	ND	0.250	0.500	ug/L	1							
Surr: Tributyl phosphate (Surr)		Reco	overy: 96 %	Limits: 50	6-124 %	Dilı	ution: 1x					

LCS (23B0739-BS1)

EPA 8270E OPPs

Triphenyl phosphate (Surr)

Prepared: 02/20/23 11:30 Analyzed: 02/20/23 19:20

58-121 %

100 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

		Organoph	nosphorus	Pesticid	es (OPPs) by EPA 8	8270E (G	C/MS)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0739 - EPA 3510C	(Neutral pl	⊣)					Wa	ter				
LCS (23B0739-BS1)			Prepared	1: 02/20/23	11:30 Anal	lyzed: 02/20/	/23 19:20					
Azinphos methyl (Guthion)	4.32	0.500	1.00	ug/L	2	4.00		108	43-135%			
Chlorpyrifos	3.38	0.500	1.00	ug/L	2	4.00		84	47-133%			
Coumaphos	4.16	0.500	1.00	ug/L	2	4.00		104	45-135%			
Demeton O	1.55	0.500	1.00	ug/L	2	1.84		84	10-125%			
Demeton S	1.68	0.500	1.00	ug/L	2	1.94		87	21-162%			
Diazinon	4.26	0.500	1.00	ug/L	2	4.00		107	43-129%			
Dichlorvos	4.50	0.500	1.00	ug/L	2	4.00		113	39-138%			
Dimethoate	3.35	0.500	1.00	ug/L	2	4.00		84	26-125%			
Disulfoton	3.74	0.500	1.00	ug/L	2	4.00		94	36-134%			
EPN	4.29	0.500	1.00	ug/L	2	4.00		107	47-133%			
Ethoprop	4.14	0.500	1.00	ug/L	2	4.00		104	52-125%			
Fensulfothion	4.33	0.500	1.00	ug/L	2	4.00		108	15-141%			
Fenthion	3.66	0.500	1.00	ug/L	2	4.00		92	42-137%			
Malathion	3.64	0.500	1.00	ug/L	2	4.00		91	44-132%			
Merphos	4.52	0.500	1.00	ug/L	2	4.00		113	26-133%			B-0
Methyl parathion	4.32	0.500	1.00	ug/L	2	4.00		108	49-134%			
Mevinphos (Phosdrin)	4.03	0.500	1.00	ug/L	2	4.00		101	10-196%			
Monocrotophos	0.975	0.500	0.500	ug/L	2	4.00		24	10-159%			
Naled (Dibrom)	4.24	0.500	1.00	ug/L	2	4.00		106	10-146%			
Parathion, ethyl	4.21	0.500	1.00	ug/L	2	4.00		105	52-134%			
Phorate	4.27	0.500	1.00	ug/L	2	4.00		107	23-139%			
Ronnel (Fenchlorphos)	3.47	0.500	1.00	ug/L	2	4.00		87	42-133%			
Sulfotep	3.56	0.500	1.00	ug/L	2	4.00		89	47-126%			
Sulprofos (Bolstar)	3.01	0.500	1.00	ug/L	2	4.00		75	47-135%			
TEPP	3.48	0.500	1.00	ug/L	2	4.00		87	10-208%			В-0
Tetrachlorvinphos (Rabon)	4.50	0.500	1.00	ug/L	2	4.00		112	42-125%			
Tokuthion (Prothiofos)	3.77	0.500	1.00	ug/L	2	4.00		94	43-132%			
Trichloronate	3.32	0.500	1.00	ug/L	2	4.00		83	28-137%			
Surr: Tributyl phosphate (Surr)		Recov	ery: 104 %	Limits: 50	6-124 %	Dilı	ution: 2x					_
Triphenyl phosphate (Surr)			109 %		8-121 %		"					
LCS Dup (23B0739-BSD1)			Prepared	1: 02/20/23	11:30 Anal	lyzed: 02/20	/23 19:56					Q-19
EPA 8270E OPPs												
Azinphos methyl (Guthion)	4.31	0.500	1.00	ug/L	2	4.00		108	43-135%	0.4	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0739 - EPA 3510C	(Neutral pl	H)					Wa	ter				
LCS Dup (23B0739-BSD1)			Prepared	1: 02/20/23	11:30 Anal	yzed: 02/20/	/23 19:56					Q-19
Chlorpyrifos	3.60	0.500	1.00	ug/L	2	4.00		90	47-133%	7	30%	
Coumaphos	4.14	0.500	1.00	ug/L	2	4.00		104	45-135%	0.5	30%	
Demeton O	1.45	0.500	1.00	ug/L	2	1.84		79	10-125%	7	30%	
Demeton S	1.70	0.500	1.00	ug/L	2	1.94		88	21-162%	1	30%	
Diazinon	4.29	0.500	1.00	ug/L	2	4.00		107	43-129%	0.7	30%	
Dichlorvos	4.40	0.500	1.00	ug/L	2	4.00		110	39-138%	2	30%	
Dimethoate	3.56	0.500	1.00	ug/L	2	4.00		89	26-125%	6	30%	
Disulfoton	3.74	0.500	1.00	ug/L	2	4.00		94	36-134%	0.04	30%	
EPN	4.32	0.500	1.00	ug/L	2	4.00		108	47-133%	0.7	30%	
Ethoprop	3.99	0.500	1.00	ug/L	2	4.00		100	52-125%	4	30%	
Fensulfothion	4.22	0.500	1.00	ug/L	2	4.00		105	15-141%	3	30%	
Fenthion	3.67	0.500	1.00	ug/L	2	4.00		92	42-137%	0.3	30%	
Malathion	3.64	0.500	1.00	ug/L	2	4.00		91	44-132%	0.01	30%	
Merphos	4.51	0.500	1.00	ug/L	2	4.00		113	26-133%	0.2	30%	B-02
Methyl parathion	4.39	0.500	1.00	ug/L	2	4.00		110	49-134%	2	30%	
Mevinphos (Phosdrin)	4.06	0.500	1.00	ug/L	2	4.00		101	10-196%	0.6	30%	
Monocrotophos	0.998	0.500	0.500	ug/L	2	4.00		25	10-159%	2	30%	
Naled (Dibrom)	3.97	0.500	1.00	ug/L	2	4.00		99	10-146%	7	30%	
Parathion, ethyl	4.18	0.500	1.00	ug/L	2	4.00		105	52-134%	0.5	30%	
Phorate	3.96	0.500	1.00	ug/L	2	4.00		99	23-139%	8	30%	
Ronnel (Fenchlorphos)	3.56	0.500	1.00	ug/L	2	4.00		89	42-133%	2	30%	
Sulfotep	3.34	0.500	1.00	ug/L	2	4.00		83	47-126%	6	30%	
Sulprofos (Bolstar)	3.07	0.500	1.00	ug/L	2	4.00		77	47-135%	2	30%	
TEPP	3.48	0.500	1.00	ug/L	2	4.00		87	10-208%	0.05	30%	B-02
Tetrachlorvinphos (Rabon)	4.48	0.500	1.00	ug/L	2	4.00		112	42-125%	0.4	30%	
Tokuthion (Prothiofos)	4.10	0.500	1.00	ug/L	2	4.00		103	43-132%	8	30%	
Trichloronate	3.61	0.500	1.00	ug/L	2	4.00		90	28-137%	8	30%	
Surr: Tributyl phosphate (Surr) Triphenyl phosphate (Surr)		Reco	very: 97 % 110 %	Limits: 56	5-124 % 3-121 %	Dilı	ution: 2x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0647 - EPA 3015A	Water											
Blank (23B0647-BLK1)			Prepared	: 02/16/23	15:17 Anal	yzed: 02/18/	23 04:19					
EPA 6020B												
Antimony	ND	0.500	1.00	ug/L	1							
Arsenic	ND	0.500	1.00	ug/L	1							
Barium	ND	1.00	2.00	ug/L	1							
Beryllium	ND	0.100	0.200	ug/L	1							
Cadmium	ND	0.100	0.200	ug/L	1							
Chromium	ND	1.00	2.00	ug/L	1							
Copper	ND	1.00	2.00	ug/L	1							
Lead	ND	0.110	0.200	ug/L	1							
Manganese	ND	0.500	1.00	ug/L	1							
Mercury	ND	0.0400	0.0800	ug/L	1							
Nickel	ND	1.00	2.00	ug/L	1							
Selenium	ND	0.500	1.00	ug/L	1							
Silver	ND	0.100	0.200	ug/L	1							
Гhallium	ND	0.100	0.200	ug/L	1							
Zinc	ND	2.00	4.00	ug/L	1							
I CS (22D0(47 DS1)			D 1	02/16/22	15 17 1	1 02/10	/22.04.24					
LCS (23B0647-BS1)			Prepared	: 02/16/23	15:1/ Anai	yzed: 02/18/	23 04:24					
EPA 6020B	27.2	0.500	1.00	110/I	1	27.0		98	90 1200/			
Antimony Arsenic	27.2	0.500 0.500	1.00 1.00	ug/L	1	27.8 55.6		98 102	80-120%			
Arsenic Barium	56.5 58.8			ug/L	1			102	80-120%			
		1.00 0.100	2.00 0.200	ug/L	1	55.6 27.8			80-120%			
Beryllium Cadmium	26.2			ug/L	1	27.8 55.6		94	80-120%			
	56.7	0.100	0.200	ug/L	1	55.6		102	80-120%			
Chromium	57.2	1.00	2.00	ug/L	1	55.6		103	80-120%			
Copper	59.0	1.00	2.00	ug/L	1	55.6		106	80-120%			
Lead	57.0	0.110	0.200	ug/L	1	55.6		103	80-120%			
Manganese	57.5	0.500	1.00	ug/L	1	55.6		104	80-120%			
Mercury	1.09	0.0400	0.0800	ug/L	1	1.11		98	80-120%			
Nickel	58.7	1.00	2.00	ug/L	1	55.6		106	80-120%			
Selenium	27.0	0.500	1.00	ug/L	1	27.8		97	80-120%			
Silver	27.9	0.100	0.200	ug/L	1	27.8		100	80-120%			
Γhallium	27.1	0.100	0.200	ug/L	1	27.8		98	80-120%			
Zinc	58.0	2.00	4.00	ug/L	1	55.6		104	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by	EPA 6020	B (ICPMS	3)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0647 - EPA 3015A							Wa	ter				
Duplicate (23B0647-DUP1)			Prepared	: 02/16/23	15:17 Ana	lyzed: 02/18	/23 04:35					
QC Source Sample: MW3-202302	14-GW-35 (A3B0522-01)										
EPA 6020B												
Antimony	ND	0.500	1.00	ug/L	1		ND				20%	
Arsenic	0.730	0.500	1.00	ug/L	1		0.773			6	20%	
Barium	71.3	1.00	2.00	ug/L	1		70.1			2	20%	
Beryllium	ND	0.100	0.200	ug/L	1		ND				20%	
Cadmium	ND	0.100	0.200	ug/L	1		ND				20%	
Chromium	ND	1.00	2.00	ug/L	1		ND				20%	
Copper	ND	1.00	2.00	ug/L	1		ND				20%	
Lead	ND	0.110	0.200	ug/L	1		ND				20%	
Manganese	826	0.500	1.00	ug/L	1		826			0.02	20%	
Mercury	ND	0.0400	0.0800	ug/L	1		ND				20%	
Nickel	ND	1.00	2.00	ug/L	1		1.21			***	20%	
Selenium	ND	0.500	1.00	ug/L	1		ND				20%	
Silver	ND	0.100	0.200	ug/L	1		ND				20%	
Thallium	ND	0.100	0.200	ug/L	1		ND				20%	
Zinc	ND	2.00	4.00	ug/L	1		ND				20%	
Matrix Spike (23B0647-MS1)			Prepared	: 02/16/23	15:17 Ana	lyzed: 02/18	/23 04:40					
QC Source Sample: MW3-202302	14-GW-35 (A3B0522-01)										
EPA 6020B												
Antimony	27.5	0.500	1.00	ug/L	1	27.8	ND	99	75-125%			
Arsenic	58.8	0.500	1.00	ug/L	1	55.6	0.773	104	75-125%			
Barium	133	1.00	2.00	ug/L	1	55.6	70.1	113	75-125%			
Beryllium	26.7	0.100	0.200	ug/L	1	27.8	ND	96	75-125%			
Cadmium	59.5	0.100	0.200	ug/L	1	55.6	ND	107	75-125%			
Chromium	59.1	1.00	2.00	ug/L	1	55.6	ND	106	75-125%			
Copper	60.0	1.00	2.00	ug/L	1	55.6	ND	108	75-125%			
Lead	55.5	0.110	0.200	ug/L	1	55.6	ND	100	75-125%			
Manganese	895	0.500	1.00	ug/L	1	55.6	826	125	75-125%			
Mercury	1.07	0.0400	0.0800	ug/L	1	1.11	ND	96	75-125%			
Nickel	59.9	1.00	2.00	ug/L	1	55.6	1.21	106	75-125%			
Selenium	27.3	0.500	1.00	ug/L	1	27.8	ND	98	75-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

Apex Laboratorie

Item #2.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS) Detection Reporting Spike % REC **RPD** Source Analyte Result Limit Units Dilution Amount Result % REC Limits RPD Limit Limit Notes Batch 23B0647 - EPA 3015A Water Matrix Spike (23B0647-MS1) Prepared: 02/16/23 15:17 Analyzed: 02/18/23 04:40 QC Source Sample: MW3-20230214-GW-35 (A3B0522-01) Silver 27.8 99 27.5 0.100 0.200 ug/L 1 ND 75-125% Thallium 26.5 0.1000.20027.8 95 ug/L 1 ND 75-125% Zinc 59.3 2.00 4.00 55.6 ND 107 75-125% ug/L 1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

Weck Laboratories, Inc.

QUALITY CONTROL (QC) SAMPLE RESULTS

Chlorinated Herbicides by GC/ECD												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch W3B1728 - EPA 3510C							Wa	ter				
Blank (W3B1728-BLK1)			Prepared	: 02/21/23	17:01 Ana	lyzed: 03/02	/23 04:23					
EPA 8151A												
2,4-D	ND	0.34	0.50	ug/l	1							
2,4-DB	ND	0.99	2.5	ug/l	1							
2,4,5-T	ND	0.14	0.25	ug/l	1							
2,4,5-TP (Silvex)	ND	0.14	0.25	ug/l	1							
3,5-Dichlorobenzoic acid	ND	0.28	1.2	ug/l	1							
4-Nitrophenol	ND	0.50	1.2	ug/l	1							
Acifluorfen	ND	0.24	0.50	ug/l	1							
Bentazon	ND	0.55	2.5	ug/l	1							
Dalapon	ND	0.16	0.50	ug/l	1							
Dicamba	ND	0.19	0.75	ug/l	1							
Dichloroprop	ND	0.24	1.0	ug/l	1							
Dinoseb	ND	0.090	0.50	ug/l	1							
DCPA	ND	0.20	0.25	ug/l	1							
MCPA	ND	40	100	ug/l	1							
MCPP	ND	27	100	ug/l	1							
Pentachlorophenol	ND	0.18	0.25	ug/l	1							
Picloram	ND	0.13	0.75	ug/l	1							
Surr: 2,4-DCAA		Reco	very: 60 %	Limits: 50	6-156 %	Dilı	ution: 1x					

EPA 8151A			-			lyzed: 03/02/			
2,4-D	2.47	0.34	0.50	ug/l	1	3.00	 82	56-164%	
2,4-DB	4.71	0.99	2.5	ug/l	1	6.00	 79	27-161%	
2,4,5-T	1.15	0.14	0.25	ug/l	1	1.50	 77	39-151%	
2,4,5-TP (Silvex)	1.23	0.14	0.25	ug/l	1	1.50	 82	46-142%	
3,5-Dichlorobenzoic acid	2.65	0.28	1.2	ug/l	1	3.00	 88	54-154%	
4-Nitrophenol	3.70	0.50	1.2	ug/l	1	6.00	 62	3-105%	
Acifluorfen	1.61	0.24	0.50	ug/l	1	1.50	 107	39-134%	
Bentazon	5.35	0.55	2.5	ug/l	1	6.00	 89	44-139%	
Dalapon	2.27	0.16	0.50	ug/l	1	3.00	 76	40-139%	
Dicamba	2.51	0.19	0.75	ug/l	1	3.00	 84	46-140%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

Weck Laboratories, Inc.

QUALITY CONTROL (QC) SAMPLE RESULTS Chlorinated Herbicides by GC/ECD

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch W3B1728 - EPA 3510C							Wa	ter				
LCS (W3B1728-BS1)			Prepared	: 02/21/23	17:01 Ana	lyzed: 03/02	/23 05:26					
Dichloroprop	2.52	0.24	1.0	ug/l	1	3.00		84	43-158%			
Dinoseb	1.43	0.090	0.50	ug/l	1	1.50		95	42-146%			
DCPA	1.31	0.20	0.25	ug/l	1	1.50		87	34-135%			
MCPA	242	40	100	ug/l	1	300		81	28-144%			
MCPP	214	27	100	ug/l	1	300		71	31-153%			
Pentachlorophenol	1.22	0.18	0.25	ug/l	1	1.50		82	37-136%			
Picloram	1.22	0.13	0.75	ug/l	1	1.50		82	35-138%			
Surr: 2,4-DCAA		Reco	overv: 98 %	Limits: 50	6-156 %	Dil	ution: 1x					

LCS Dup (W3B1728-BSD1)			Prepared	l: 02/21/23 17	:01 Ana	lyzed: 03/02/	23 04:54					
EPA 8151A												
2,4-D	3.07	0.34	0.50	ug/l	1	3.00		102	56-164%	22	25%	
2,4-DB	5.92	0.99	2.5	ug/l	1	6.00		99	27-161%	23	25%	
2,4,5-T	1.31	0.14	0.25	ug/l	1	1.50		87	39-151%	13	25%	
2,4,5-TP (Silvex)	1.55	0.14	0.25	ug/l	1	1.50		103	46-142%	23	25%	
3,5-Dichlorobenzoic acid	3.26	0.28	1.2	ug/l	1	3.00		109	54-154%	20	25%	
4-Nitrophenol	4.50	0.50	1.2	ug/l	1	6.00		75	3-105%	20	25%	
Acifluorfen	2.25	0.24	0.50	ug/l	1	1.50		150	39-134%	34	25%	Q-08
Bentazon	6.80	0.55	2.5	ug/l	1	6.00		113	44-139%	24	25%	
Dalapon	2.86	0.16	0.50	ug/l	1	3.00		95	40-139%	23	25%	
Dicamba	3.15	0.19	0.75	ug/l	1	3.00		105	46-140%	22	25%	
Dichloroprop	3.00	0.24	1.0	ug/l	1	3.00		100	43-158%	17	25%	
Dinoseb	1.57	0.090	0.50	ug/l	1	1.50		105	42-146%	10	25%	
DCPA	1.63	0.20	0.25	ug/l	1	1.50		109	34-135%	22	25%	
MCPA	298	40	100	ug/l	1	300		99	28-144%	21	25%	
MCPP	270	27	100	ug/l	1	300		90	31-153%	23	25%	
Pentachlorophenol	1.43	0.18	0.25	ug/l	1	1.50		95	37-136%	15	25%	
Picloram	1.56	0.13	0.75	ug/l	1	1.50		104	35-138%	24	25%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

Weck Laboratories, Inc.

QUALITY CONTROL (QC) SAMPLE RESULTS

			Hex	avalent	Chromiur	n by IC						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch W3B1784NONE (LC)							Wa	ter				
Blank (W3B1784-BLK1)			Prepared:	02/22/23	10:36 Anal	yzed: 02/22/	23 13:29					
EPA 218.6	MD	0.0070	0.020		1							
Chromium 6+	ND	0.0079	0.020	ug/l	1							
LCS (W3B1784-BS1)			Prepared:	02/22/23	10:36 Anal	yzed: 02/22/	23 15:59					
EPA 218.6	5.44	0.0079	0.020	/I	1	5.00		109	90-110%			
Chromium 6+	3.44	0.0079	0.020	ug/l	1	5.00		109	90-110%			
Matrix Spike (W3B1784-MS1)			Prepared:	02/22/23	10:36 Anal	yzed: 02/23/	23 11:59					
OC Source Sample: Non-SDG (3A190	008-01)											
EPA 218.6 Chromium 6+	4.90	0.0079	0.020	ug/l	1	5.00	0.0558	97	88-112%			
Cinomium 0	4.50	0.0077	0.020	ugi	1	3.00	0.0550		00 11270			
Matrix Spike (W3B1784-MS2)			Prepared:	02/22/23	10:36 Anal	yzed: 02/23/	23 12:23					
QC Source Sample: Non-SDG (3A190 EPA 218.6	008-03)											
Chromium 6+	5.51	0.0079	0.020	ug/l	1	5.00	0.191	106	88-112%			
Matrix Spike Dup (W3B1784-MS	D1)		Prepared:	02/22/23	10:36 Anal	yzed: 02/23/	23 12:11					
QC Source Sample: Non-SDG (3A190	008-01)											
Chromium 6+	4.91	0.0079	0.020	ug/l	1	5.00	0.0558	97	88-112%	0.2	10%	
Matrix Spike Dup (W3B1784-MS	D2)		Prepared:	02/22/23	10:36 Anal	yzed: 02/23/	23 12:35					
QC Source Sample: Non-SDG (3A190												
Chromium 6+	5.25	0.0079	0.020	ug/l	1	5.00	0.191	101	88-112%	5	10%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Menberg

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223

Item #2.

503-718-2323ORELAP ID: **OR100062**

AMENDED REPORT

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

Weck Laboratories, Inc.

QUALITY CONTROL (QC) SAMPLE RESULTS

			Hex	cavalent	Chromiu	n by IC						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch W3B2351NONE (LC)							Wat	ter				
Blank (W3B2351-BLK1)			Prepared	: 02/28/23	00:00 Ana	lyzed: 02/28	/23 16:56					
EPA 218.6 Chromium 6+	ND	0.0079	0.020	ug/l	1							
LCS (W3B2351-BS1)			Prepared	: 02/28/23	00:00 Ana	lyzed: 02/28	/23 17:28					
EPA 218.6 Chromium 6+	4.90	0.0079	0.020	ug/l	1	5.00		98	90-110%			
Matrix Spike (W3B2351-MS1)			Prepared	: 02/28/23	00:00 Ana	lyzed: 02/28	/23 18:58					
OC Source Sample: Non-SDG (3A1) EPA 218.6	9009-01)											
Chromium 6+	11.6	0.0079	0.020	ug/l	1	5.00	6.53	101	88-112%			
Matrix Spike Dup (W3B2351-M	(SD1)		Prepared	: 02/28/23	00:00 Ana	lyzed: 02/28	/23 19:10					
QC Source Sample: Non-SDG (3A1)	<u>9009-01)</u>											
Chromium 6+	11.5	0.0079	0.020	ug/l	1	5.00	6.53	99	88-112%	0.9	10%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

SAMPLE PREPARATION INFORMATION

		Diesel an	d/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3510C (F	uels/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0986							
A3B0522-01	Water	NWTPH-Dx	02/14/23 10:05	02/28/23 11:48	970mL/5mL	1000mL/5mL	1.03
A3B0522-02	Water	NWTPH-Dx	02/14/23 10:05	02/28/23 11:48	930mL/5mL	1000mL/5mL	1.08
A3B0522-03	Water	NWTPH-Dx	02/14/23 12:51	02/28/23 11:48	970mL/5mL	1000mL/5mL	1.03
A3B0522-04	Water	NWTPH-Dx	02/14/23 14:37	02/28/23 11:48	940mL/5mL	1000mL/5mL	1.06
A3B0522-05	Water	NWTPH-Dx	02/14/23 16:17	02/28/23 11:48	950mL/5mL	1000mL/5mL	1.05

Gas	soline Range Hydrocart	ons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
				Sample	Default	RL Prep
Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Water	NWTPH-Gx (MS)	02/14/23 10:05	02/22/23 11:21	5mL/5mL	5mL/5mL	1.00
Water	NWTPH-Gx (MS)	02/14/23 10:05	02/22/23 11:21	5mL/5mL	5mL/5mL	1.00
Water	NWTPH-Gx (MS)	02/14/23 12:51	02/22/23 11:21	5mL/5mL	5mL/5mL	1.00
Water	NWTPH-Gx (MS)	02/14/23 14:37	02/22/23 11:21	5mL/5mL	5mL/5mL	1.00
Water	NWTPH-Gx (MS)	02/14/23 16:17	02/22/23 11:21	5mL/5mL	5mL/5mL	1.00
	Matrix Water Water Water Water	Matrix Method Water NWTPH-Gx (MS) Water NWTPH-Gx (MS) Water NWTPH-Gx (MS) Water NWTPH-Gx (MS)	Matrix Method Sampled Water NWTPH-Gx (MS) 02/14/23 10:05 Water NWTPH-Gx (MS) 02/14/23 10:05 Water NWTPH-Gx (MS) 02/14/23 12:51 Water NWTPH-Gx (MS) 02/14/23 14:37	Matrix Method Sampled Prepared Water NWTPH-Gx (MS) 02/14/23 10:05 02/22/23 11:21 Water NWTPH-Gx (MS) 02/14/23 10:05 02/22/23 11:21 Water NWTPH-Gx (MS) 02/14/23 12:51 02/22/23 11:21 Water NWTPH-Gx (MS) 02/14/23 14:37 02/22/23 11:21	Matrix Method Sampled Prepared Initial/Final Water NWTPH-Gx (MS) 02/14/23 10:05 02/22/23 11:21 5mL/5mL Water NWTPH-Gx (MS) 02/14/23 10:05 02/22/23 11:21 5mL/5mL Water NWTPH-Gx (MS) 02/14/23 12:51 02/22/23 11:21 5mL/5mL Water NWTPH-Gx (MS) 02/14/23 14:37 02/22/23 11:21 5mL/5mL	Matrix Method Sampled Prepared Sample Initial/Final Default Initial/Final Water NWTPH-Gx (MS) 02/14/23 10:05 02/22/23 11:21 5mL/5mL 5mL/5mL Water NWTPH-Gx (MS) 02/14/23 10:05 02/22/23 11:21 5mL/5mL 5mL/5mL Water NWTPH-Gx (MS) 02/14/23 12:51 02/22/23 11:21 5mL/5mL 5mL/5mL Water NWTPH-Gx (MS) 02/14/23 14:37 02/22/23 11:21 5mL/5mL 5mL/5mL

		Volatile	Organic Compounds	by EPA 8260D			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0828							
A3B0522-01	Water	EPA 8260D	02/14/23 10:05	02/22/23 11:21	5mL/5mL	5mL/5mL	1.00
A3B0522-02	Water	EPA 8260D	02/14/23 10:05	02/22/23 11:21	5mL/5mL	5mL/5mL	1.00
A3B0522-03	Water	EPA 8260D	02/14/23 12:51	02/22/23 11:21	5mL/5mL	5mL/5mL	1.00
A3B0522-04	Water	EPA 8260D	02/14/23 14:37	02/22/23 11:21	5mL/5mL	5mL/5mL	1.00
A3B0522-05	Water	EPA 8260D	02/14/23 16:17	02/22/23 11:21	5mL/5mL	5mL/5mL	1.00
A3B0522-07	Water	EPA 8260D	02/14/23 00:00	02/22/23 11:21	5mL/5mL	5mL/5mL	1.00

		Volatile Orç	ganic Compounds b	y EPA 8260D SIM			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0743							
A3B0522-01	Water	EPA 8260D SIM	02/14/23 10:05	02/20/23 13:10	5mL/5mL	5mL/5mL	1.00
A3B0522-02	Water	EPA 8260D SIM	02/14/23 10:05	02/20/23 13:10	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

SAMPLE PREPARATION INFORMATION

		Volatile Orç	ganic Compounds b	y EPA 8260D SIM			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A3B0522-03	Water	EPA 8260D SIM	02/14/23 12:51	02/20/23 13:10	5mL/5mL	5mL/5mL	1.00
A3B0522-04	Water	EPA 8260D SIM	02/14/23 14:37	02/20/23 13:10	5mL/5mL	5mL/5mL	1.00
A3B0522-05	Water	EPA 8260D SIM	02/14/23 16:17	02/20/23 13:10	5mL/5mL	5mL/5mL	1.00
A3B0522-07	Water	EPA 8260D SIM	02/14/23 00:00	02/20/23 13:10	5mL/5mL	5mL/5mL	1.00

		Semivolat	tile Organic Compour	nds by EPA 8270E			
Prep: EPA 3510C (A	Acid/Base Neutral)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0761							
A3B0522-01	Water	EPA 8270E	02/14/23 10:05	02/21/23 06:52	1040 mL/1 mL	1000 mL/1 mL	0.96
A3B0522-02	Water	EPA 8270E	02/14/23 10:05	02/21/23 06:52	1060 mL/1 mL	1000 mL/1 mL	0.94
A3B0522-03	Water	EPA 8270E	02/14/23 12:51	02/21/23 06:52	850mL/1mL	1000 mL/1 mL	1.18
A3B0522-04	Water	EPA 8270E	02/14/23 14:37	02/21/23 06:52	810mL/1mL	1000 mL/1 mL	1.23
A3B0522-05	Water	EPA 8270E	02/14/23 16:17	02/21/23 06:52	900mL/1mL	1000 mL/1 mL	1.11

	Organophosphorus Pesticides (OPPs) by EPA 8270E (GC/MS)											
Prep: EPA 3510C (Neutral pH)					Sample	Default	RL Prep					
Lab Number	mber Matrix		Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 23B0739												
A3B0522-01	Water	EPA 8270E OPPs	02/14/23 10:05	02/20/23 11:30	1010mL/2mL	1000mL/2mL	0.99					
A3B0522-02	Water	EPA 8270E OPPs	02/14/23 10:05	02/20/23 11:30	1010mL/2mL	1000mL/2mL	0.99					
A3B0522-03	Water	EPA 8270E OPPs	02/14/23 12:51	02/20/23 11:30	910mL/2mL	1000mL/2mL	1.10					
A3B0522-04	Water	EPA 8270E OPPs	02/14/23 14:37	02/20/23 11:30	930mL/2mL	1000mL/2mL	1.08					
A3B0522-05	Water	EPA 8270E OPPs	02/14/23 16:17	02/20/23 11:30	940mL/2mL	1000mL/2mL	1.06					

	Total Metals by EPA 6020B (ICPMS)											
Prep: EPA 3015A Lab Number Matrix				Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor					
Batch: 23B0647			1	1								
A3B0522-01	Water	EPA 6020B	02/14/23 10:05	02/16/23 15:17	45mL/50mL	45mL/50mL	1.00					
A3B0522-02	Water	EPA 6020B	02/14/23 10:05	02/16/23 15:17	45mL/50mL	45mL/50mL	1.00					
A3B0522-03	Water	EPA 6020B	02/14/23 12:51	02/16/23 15:17	45mL/50mL	45mL/50mL	1.00					
A3B0522-03RE1	Water	EPA 6020B	02/14/23 12:51	02/16/23 15:17	45mL/50mL	45mL/50mL	1.00					
A3B0522-04	Water	EPA 6020B	02/14/23 14:37	02/16/23 15:17	45mL/50mL	45mL/50mL	1.00					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006Portland, OR 97232Project Manager:David Weatherby

Report ID: A3B0522 - 05 02 23 1624

SAMPLE PREPARATION INFORMATION

	Total Metals by EPA 6020B (ICPMS)										
Prep: EPA 3015A	Sample	Default	RL Prep								
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
A3B0522-04RE1	Water	EPA 6020B	02/14/23 14:37	02/16/23 15:17	45mL/50mL	45mL/50mL	1.00				
A3B0522-05	Water	EPA 6020B	02/14/23 16:17	02/16/23 15:17	45mL/50mL	45mL/50mL	1.00				
A3B0522-05RE1	Water	EPA 6020B	02/14/23 16:17	02/16/23 15:17	45mL/50mL	45mL/50mL	1.00				
A3B0522-05RE2	Water	EPA 6020B	02/14/23 16:17	02/16/23 15:17	45mL/50mL	45mL/50mL	1.00				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

Weck Laboratories, Inc.

SAMPLE PREPARATION INFORMATION

Chlorinated Herbicides by GC/ECD											
<u>Prep: EPA 3510C</u>					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: W3B1728											
A3B0522-01	Water	EPA 8151A	02/14/23 10:05	02/21/23 17:01	1051ml/10ml	1000ml/10ml	0.95				
A3B0522-02	Water	EPA 8151A	02/14/23 10:05	02/21/23 17:01	1052ml/10ml	1000ml/10ml	0.95				
A3B0522-03	Water	EPA 8151A	02/14/23 12:51	02/21/23 17:01	933ml/10ml	1000ml/10ml	1.07				
A3B0522-04	Water	EPA 8151A	02/14/23 14:37	02/21/23 17:01	1030ml/10ml	1000ml/10ml	0.97				
A3B0522-05	Water	EPA 8151A	02/14/23 16:17	02/21/23 17:01	1013ml/10ml	1000ml/10ml	0.99				

Hexavalent Chromium by IC											
Prep: NONE (LC)					Sample	Default	RL Prep				
Lab Number	umber Matrix Method		Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: W3B1784											
A3B0522-01	Water	EPA 218.6	02/14/23 10:05	02/22/23 10:36	5ml/5ml	5ml/5ml	1.00				
A3B0522-02	Water	EPA 218.6	02/14/23 10:05	02/22/23 10:36	5ml/5ml	5ml/5ml	1.00				
Batch: W3B2351											
A3B0522-03	Water	EPA 218.6	02/14/23 12:51	02/28/23 00:00	5ml/5ml	5ml/5ml	1.00				
A3B0522-04	Water	EPA 218.6	02/14/23 14:37	02/28/23 00:00	5ml/5ml	5ml/5ml	1.00				
A3B0522-05	Water	EPA 218.6	02/14/23 16:17	02/28/23 00:00	5ml/5ml	5ml/5ml	1.00				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

Apex Laboratorie

Item #2.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: 3140 NE Broadway Street Portland, OR 97232

St. Helens Lagoon Project Number: M0830.03.006 Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

AMEND	The Result, Reporting Level, Recovery and/or RPD has changed. Note: Batch QC marked as AMENDED may or may not have been issued
	prior to the change. Case Narrative included if client data is affected.

- B-02 Analyte detected in an associated blank at a level between one-half the MRL and the MRL. (See Notes and Conventions below.)
- ICV-01 Estimated Result. Initial Calibration Verification (ICV) failed high. There is no effect on non-detect results.
 - Ja Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- PRES Incomplete field preservation. Additional preservative was added to adjust the pH within the appropriate range for this analysis.
- Q-01 Spike recovery and/or RPD is outside acceptance limits.
- O-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-29 Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
- Q-30 Recovery for Lab Control Spike (LCS) is below the lower control limit. Data may be biased low.
- Q-31 Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low.
- Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
- Q-52 Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.
- O-54 Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +1%. The results are reported as Estimated Values.
- O-54a Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +10%. The results are reported as Estimated Values.
- O-54b Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -5%. The results are reported as Estimated Values.
- Q-55 Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.
- Q-56 Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260
- S-06 Surrogate recovery is outside of established control limits.

Weck Laboratories, Inc.

- M-04Due to the nature of matrix interferences, sample extract was diluted prior to analysis. The MDL and MRL were raised due to the dilution.
- M-05Due to the nature of matrix interferences, sample was diluted prior to analysis. The MDL and MRL were raised due to the dilution.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

Item #2.

Maul Foster & Alongi, INC. Project: St. Helens Lagoon 3140 NE Broadway Street Project Number: M0830.03.006 Portland, OR 97232 Project Manager: David Weatherby A3B0522 - 05 02 23 1624

Q-08 High bias in the QC sample does not affect sample result since analyte was not detected or below the reporting limit.

S-04 The surrogate recovery for this sample is outside of established control limits due to possible sample matrix effect.

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Philip Manherz

AMENDED REPORT

Apex Laboratorie

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006Report ID:Portland, OR 97232Project Manager:David WeatherbyA3B0522 - 05 02 23 1624

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

<u>Detection Limits:</u> Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"***" Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

445

6700 C W Son

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratorie

Item #2.

AMENDED REPORT

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006Portland, OR 97232Project Manager:David Weatherby

<u>Report ID:</u> A3B0522 - 05 02 23 1624

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

446

Philip Menberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

Company: Maul Foster Alongi Project Mgr. David Weatherty Phone: (971) 544-2139 Email: dweatherty@maulfoster.com, nbenzinger@maulfoster.com	Lab # #38552 Los
Phone: (971) 544-2139	Desired Mondo on one
	henrings Froject # M0830.03.006
	noenzanger (gmaunoster.com
DIONIUS/FUIGED LOS MINING PROPERTY LOS MATTER LOS M	MODISEL PASS ERA-537 PASS ER
Ch 20 X X X X X X X X X X X X X X X X X X	×
MWS-2020-04-642-40	
5hl	
MUNETBEZOLUH-GIU-UOZS V 1617 GW 20 V V V V V V V V V	> ->
T	×
ys SPECIA	
*Store a portion of each sediment sample at standard temperature (0-6 °C) until all 5 compensarie, then composite and analyze for Metals and Hg. Composite MeOH-spreserved VOAs and datalyze for NWFPH-CR, VOCS, and IL-VOCS.	received, then composite and analyze for Metals and Hg.
Store 250 mL PRAS sediment containers at 0.6 °C until all 5 components have been received, then subcontract to Bureau Vertias for compositing and analysis.	act to Bureau Veritas for compositing and analysis.
Store remainder of each sediment sample at -18 °C until all 5 components have by ***Sh. As Ba Per Cd. Cr. Cr. Dr. Ha. Mrs. Ni. Ca. A. cr. dr.	te and analyze for all remaining tests.
SAMPLES ARE HELD FOR 30 DA Received via: Detection limit report.	
Date: Signature: Date: Signature: D	HED BY: RECEIVED BY: Date: Signature: Date:
ane: Time.	Time: Printed Name: Time
Сотрану, Сотрану.	Сотрапу:

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: **OR100062**

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0522 - 05 02 23 1624

CILIE. /VINUL	Foster Along Element WO#: A3_B0522
Project/Project #: <i>SE</i>	t. Helens Lagoon 1M0830.03.006
Delivery Info:	
Date/time received: 1/15	1/23 @ 0730 By: /hb
Delivered by: ApexClien	ent KESS FedEx UPS Radio Morgan SDS Evergreen Other
Cooler Inspection Dat	te/time inspected: 1/15/13 @ 1736 By: My
Chain of Custody included	1 /
Signed/dated by client?	Yes No
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	1.9 0.3 0.3 0.4 0.9 5.4
Custody seals? (Y/N)	\mathcal{N} \longrightarrow \mathcal{N}
Received on ice? (Y/N)	<u> </u>
Temp. blanks? (Y/N)	y → y
Ice type: (Gel/Real/Other)	Pul > yeal
Condition (In/Out):	In - In
	te/time inspected: 4/15/25 @ 8/5 By:
Bottle labels/COCs agree?	Yes No Comments:
COC/container discrenanci	cies form initiated? Yes No
	ved appropriate for analysis? Yes X No Comments:
Containers/volumes receive	
Containers/volumes receive	e headspace? Yes No NA
	· — — —
Do VOA vials have visible	nd: Yes No NA pH appropriate? Yes XNo NA
Do VOA vials have visible	ed: YesNoNA pH appropriate? YesNoNA
Do VOA vials have visible Comments Water samples: pH checker	ed: YesXNoNA pH appropriate? Yes_XNoNA
Do VOA vials have visible Comments Water samples: pH checked Comments:	ed: Yes_XNo_NA_ pH appropriate? Yes_XNo_NA
Do VOA vials have visible Comments Water samples: pH checked Comments:	
Do VOA vials have visible Comments Water samples: pH checked Comments: Additional information:	(B# 3239.
Do VOA vials have visible Comments Water samples: pH checked Comments:	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Item #2.

AMENDED REPORT

Friday, April 21, 2023
David Weatherby
Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

RE: A3B0674 - St. Helens Lagoon - M0830.03.006

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3B0674, which was received by the laboratory on 2/20/2023 at 6:15:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1 5.6 degC Cooler #3 4.7 degC Cooler #2

5.4 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

449

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project:

3140 NE Broadway Street Project Number: M0830.03.006
Portland, OR 97232 Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL REPORT FOR SAMPLES

St. Helens Lagoon

	SAMPLE INFORMATION								
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received					
MW1-20230220-GW-70	A3B0674-01	Water	02/20/23 10:26	02/20/23 18:15					
MW2-20230220-GW-60	A3B0674-02	Water	02/20/23 14:41	02/20/23 18:15					
Trip Blank	A3B0674-03	Water	02/20/23 00:00	02/20/23 18:15					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

450

Philip Marenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	il Hydrocar	bons by NWTP	H-Dx			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW1-20230220-GW-70 (A3B0674-01)				Matrix: Wate	ər	Batch:	23C0083	
Diesel	ND	0.0980	0.196	mg/L	1	03/02/23 23:24	NWTPH-Dx	
Oil	ND	0.196	0.392	mg/L	1	03/02/23 23:24	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 87%	Limits: 50-150 %	6 I	03/02/23 23:24	NWTPH-Dx	
MW2-20230220-GW-60 (A3B0674-02)				Matrix: Wate	er	Batch:	23C0083	
Diesel	ND	0.111	0.222	mg/L	1	03/02/23 23:44	NWTPH-Dx	
Oil	ND	0.222	0.444	mg/L	1	03/02/23 23:44	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 87 %	Limits: 50-150 %	6 I	03/02/23 23:44	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

AMENDED REPORT

Apex Laboratories

Item #2.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

Gasolir	ne Range Hy	drocarbons	(Benzene t	hrough Naphth	alene) by	NWTPH-Gx		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW1-20230220-GW-70 (A3B0674-01)				Matrix: Wate	er	Batch:	23B0828	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	02/22/23 18:52	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 96 %	Limits: 50-150 %	5 1	02/22/23 18:52	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			104 %	50-150 %	5 1	02/22/23 18:52	NWTPH-Gx (MS)	
MW2-20230220-GW-60 (A3B0674-02)				Matrix: Wate	er	Batch:	23B0828	
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1	02/22/23 19:15	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 97 %	Limits: 50-150 %	5 1	02/22/23 19:15	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			106 %	50-150 %	5 I	02/22/23 19:15	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

			ic Compound	, = 0				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW1-20230220-GW-70 (A3B0674-01)				Matrix: Wa	ater	Batch:	23B0828	
Acetone	ND	10.0	20.0	ug/L	1	02/22/23 18:52	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	02/22/23 18:52	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	02/22/23 18:52	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	02/22/23 18:52	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	02/22/23 18:52	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	02/22/23 18:52	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	02/22/23 18:52	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	02/22/23 18:52	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 18:52	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 18:52	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 18:52	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	02/22/23 18:52	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	02/22/23 18:52	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 18:52	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	02/22/23 18:52	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	02/22/23 18:52	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/22/23 18:52	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/22/23 18:52	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	02/22/23 18:52	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	02/22/23 18:52	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 18:52	EPA 8260D	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 18:52	EPA 8260D	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 18:52	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	02/22/23 18:52	EPA 8260D	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 18:52	EPA 8260D	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 18:52	EPA 8260D	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 18:52	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	02/22/23 18:52	EPA 8260D	
-Hexanone	ND	10.0	10.0	ug/L	1	02/22/23 18:52	EPA 8260D	
sopropylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 18:52	EPA 8260D	
-Isopropyltoluene	ND	0.500	1.00	ug/L	1	02/22/23 18:52	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	02/22/23 18:52	EPA 8260D	
-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	02/22/23 18:52	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	מט			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW1-20230220-GW-70 (A3B0674-01)				Matrix: Wate	er	Batch: 23B0828		
Naphthalene	ND	2.00	2.00	ug/L	1	02/22/23 18:52	EPA 8260D	
n-Propylbenzene	ND	0.250	0.500	ug/L	1	02/22/23 18:52	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	02/22/23 18:52	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	02/22/23 18:52	EPA 8260D	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/22/23 18:52	EPA 8260D	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/22/23 18:52	EPA 8260D	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	02/22/23 18:52	EPA 8260D	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	02/22/23 18:52	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 80-120 %	I	02/22/23 18:52	EPA 8260D	
Toluene-d8 (Surr)			104 %	80-120 %		02/22/23 18:52	EPA 8260D	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	02/22/23 18:52	EPA 8260D	
MW2-20230220-GW-60 (A3B0674-02)				Matrix: Wate	er	Batch: 23B0828		
Acetone	ND	10.0	20.0	ug/L	1	02/22/23 19:15	EPA 8260D	
Acrylonitrile	ND	1.00	2.00	ug/L	1	02/22/23 19:15	EPA 8260D	
Bromobenzene	ND	0.250	0.500	ug/L	1	02/22/23 19:15	EPA 8260D	
Bromochloromethane	ND	0.500	1.00	ug/L	1	02/22/23 19:15	EPA 8260D	
Bromodichloromethane	ND	0.500	1.00	ug/L	1	02/22/23 19:15	EPA 8260D	
Bromoform	ND	0.500	1.00	ug/L	1	02/22/23 19:15	EPA 8260D	
Bromomethane	ND	5.00	5.00	ug/L	1	02/22/23 19:15	EPA 8260D	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	02/22/23 19:15	EPA 8260D	
n-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 19:15	EPA 8260D	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 19:15	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 19:15	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	02/22/23 19:15	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	02/22/23 19:15	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 19:15	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	02/22/23 19:15	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	02/22/23 19:15	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/22/23 19:15	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/22/23 19:15	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	02/22/23 19:15	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	02/22/23 19:15	EPA 8260D	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 19:15	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
MW2-20230220-GW-60 (A3B0674-02)				Matrix: Wate	r	Batch: 23B0828					
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 19:15	EPA 8260D				
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 19:15	EPA 8260D				
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	02/22/23 19:15	EPA 8260D				
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 19:15	EPA 8260D				
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 19:15	EPA 8260D				
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 19:15	EPA 8260D				
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	02/22/23 19:15	EPA 8260D				
2-Hexanone	ND	10.0	10.0	ug/L	1	02/22/23 19:15	EPA 8260D				
Isopropylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 19:15	EPA 8260D				
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1	02/22/23 19:15	EPA 8260D				
Methylene chloride	ND	5.00	10.0	ug/L	1	02/22/23 19:15	EPA 8260D				
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	02/22/23 19:15	EPA 8260D				
Naphthalene	ND	2.00	2.00	ug/L	1	02/22/23 19:15	EPA 8260D				
n-Propylbenzene	ND	0.250	0.500	ug/L	1	02/22/23 19:15	EPA 8260D				
Styrene	ND	0.500	1.00	ug/L	1	02/22/23 19:15	EPA 8260D				
1,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	02/22/23 19:15	EPA 8260D				
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/22/23 19:15	EPA 8260D				
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/22/23 19:15	EPA 8260D				
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	02/22/23 19:15	EPA 8260D				
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1	02/22/23 19:15	EPA 8260D				
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 96 %	Limits: 80-120 %	1	02/22/23 19:15	EPA 8260D				
Toluene-d8 (Surr)			106 %	80-120 %		02/22/23 19:15	EPA 8260D				
4-Bromofluorobenzene (Surr)			97 %	80-120 %	I	02/22/23 19:15	EPA 8260D				
Trip Blank (A3B0674-03)				Matrix: Wate	r	Batch: 2	23B0828				
Acetone	ND	10.0	20.0	ug/L	1	02/22/23 16:38	EPA 8260D				
Acrylonitrile	ND	1.00	2.00	ug/L	1	02/22/23 16:38	EPA 8260D				
Bromobenzene	ND	0.250	0.500	ug/L	1	02/22/23 16:38	EPA 8260D				
Bromochloromethane	ND	0.500	1.00	ug/L	1	02/22/23 16:38	EPA 8260D				
Bromodichloromethane	ND	0.500	1.00	ug/L	1	02/22/23 16:38	EPA 8260D				
Bromoform	ND	0.500	1.00	ug/L	1	02/22/23 16:38	EPA 8260D				
Bromomethane	ND	5.00	5.00	ug/L	1	02/22/23 16:38	EPA 8260D				
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1	02/22/23 16:38	EPA 8260D				
n-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 16:38	EPA 8260D				
•				-							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

			•	ds by EPA 826				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Trip Blank (A3B0674-03)				Matrix: Wate	er	Batch: 2	23B0828	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 16:38	EPA 8260D	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 16:38	EPA 8260D	
Carbon disulfide	ND	5.00	10.0	ug/L	1	02/22/23 16:38	EPA 8260D	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1	02/22/23 16:38	EPA 8260D	
Chlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 16:38	EPA 8260D	
Chloroethane	ND	5.00	5.00	ug/L	1	02/22/23 16:38	EPA 8260D	
Chloromethane	ND	2.50	5.00	ug/L	1	02/22/23 16:38	EPA 8260D	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/22/23 16:38	EPA 8260D	
4-Chlorotoluene	ND	0.500	1.00	ug/L	1	02/22/23 16:38	EPA 8260D	
Dibromochloromethane	ND	0.500	1.00	ug/L	1	02/22/23 16:38	EPA 8260D	
Dibromomethane	ND	0.500	1.00	ug/L	1	02/22/23 16:38	EPA 8260D	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 16:38	EPA 8260D	
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 16:38	EPA 8260D	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1	02/22/23 16:38	EPA 8260D	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1	02/22/23 16:38	EPA 8260D	
,3-Dichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 16:38	EPA 8260D	
,2-Dichloropropane	ND	0.500	1.00	ug/L	1	02/22/23 16:38	EPA 8260D	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1	02/22/23 16:38	EPA 8260D	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1	02/22/23 16:38	EPA 8260D	
2-Hexanone	ND	10.0	10.0	ug/L	1	02/22/23 16:38	EPA 8260D	
sopropylbenzene	ND	0.500	1.00	ug/L	1	02/22/23 16:38	EPA 8260D	
1-Isopropyltoluene	ND	0.500	1.00	ug/L	1	02/22/23 16:38	EPA 8260D	
Methylene chloride	ND	5.00	10.0	ug/L	1	02/22/23 16:38	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1	02/22/23 16:38	EPA 8260D	
Naphthalene	ND	2.00	2.00	ug/L	1	02/22/23 16:38	EPA 8260D	
-Propylbenzene	ND	0.250	0.500	ug/L	1	02/22/23 16:38	EPA 8260D	
Styrene	ND	0.500	1.00	ug/L	1	02/22/23 16:38	EPA 8260D	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1	02/22/23 16:38	EPA 8260D	
,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/22/23 16:38	EPA 8260D	
,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1	02/22/23 16:38	EPA 8260D	
,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1	02/22/23 16:38	EPA 8260D	
richlorofluoromethane	ND	1.00	2.00	ug/L	1	02/22/23 16:38	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 97 %	Limits: 80-120 %	6 I	02/22/23 16:38	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

AMENDED REPORT

6700 S.W.

Apex Laboratories
6700 S.W. Sandburg Street
Tigard, OR 97223

Item #2.

503-718-2323 ORELAP ID: **OR100062**

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilu	tion	Date Analyzed	Method Ref.	Notes
Trip Blank (A3B0674-03)				Matrix:	Water		Batch:	23B0828	
Surrogate: Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)		Recove	ery: 105 % 100 %	Limits: 80-1	120 % I	,	02/22/23 16:38 02/22/23 16:38	EPA 8260D EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

	Vol	atile Organic Co	ompound	s by EPA 8260D	SIM			
	Sample		Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW1-20230220-GW-70 (A3B0674-01)				Matrix: Wate	er	Batch:	23C0033	
Benzene	ND	0.0500	0.100	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
Toluene	ND	0.0500	0.100	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
Ethylbenzene	ND	0.0500	0.100	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
m,p-Xylene	ND	0.100	0.200	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
o-Xylene	ND	0.0500	0.100	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
1,2,4-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
1,3,5-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
Chloroform	0.0838	0.0500	0.100	ug/L	1	03/01/23 14:52	EPA 8260D SIM	Ja
1,2-Dibromo-3-chloropropane	ND	0.100	0.200	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
1,1-Dichloroethane	ND	0.0100	0.0200	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
1,2-Dichloroethane (EDC)	ND	0.0100	0.0200	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
1,1-Dichloroethene	ND	0.0100	0.0200	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
cis-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
trans-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
1,2-Dichloropropane	ND	0.0100	0.0200	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
cis-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
trans-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
Methyl tert-butyl ether (MTBE)	ND	0.0100	0.0200	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
1,1,2,2-Tetrachloroethane	ND	0.0100	0.0200	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
Tetrachloroethene (PCE)	ND	0.0100	0.0200	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
Trichloroethene (TCE)	ND	0.0100	0.0200	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
1,2,3-Trichloropropane	ND	0.0500	0.100	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
1,1,2-Trichloroethane	ND	0.0100	0.0200	ug/L	1	03/01/23 14:52	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	104 %	Limits: 80-120 %	1	03/01/23 14:52	EPA 8260D SIM	
Toluene-d8 (Surr)			99 %	80-120 %	1	03/01/23 14:52	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	03/01/23 14:52	EPA 8260D SIM	
MW2-20230220-GW-60 (A3B0674-02)				Matrix: Wate	er	Batch:	23C0033	
Benzene	0.176	0.0500	0.100	ug/L	1	03/01/23 15:46	EPA 8260D SIM	Q-42
Toluene	ND	0.0500	0.100	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
Ethylbenzene	ND	0.0500	0.100	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
m,p-Xylene	ND	0.100	0.200	ug/L	1	03/01/23 15:46	EPA 8260D SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

	Vol	atile Organic (Compound	s by EPA 8260D	SIM			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW2-20230220-GW-60 (A3B0674-02)				Matrix: Wate	Matrix: Water		23C0033	
o-Xylene	ND	0.0500	0.100	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
1,2,4-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
1,3,5-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
Chloroform	ND	0.0500	0.100	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
1,2-Dibromo-3-chloropropane	ND	0.100	0.200	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
1,1-Dichloroethane	ND	0.0100	0.0200	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
1,2-Dichloroethane (EDC)	ND	0.0100	0.0200	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
1,1-Dichloroethene	ND	0.0200	0.0200	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
cis-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
trans-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
1,2-Dichloropropane	ND	0.0100	0.0200	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
cis-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
trans-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
Methyl tert-butyl ether (MTBE)	ND	0.0100	0.0200	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
1,1,2,2-Tetrachloroethane	ND	0.0100	0.0200	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
Tetrachloroethene (PCE)	ND	0.0100	0.0200	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
Trichloroethene (TCE)	ND	0.0100	0.0200	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
1,2,3-Trichloropropane	ND	0.0500	0.100	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
1,1,2-Trichloroethane	ND	0.0100	0.0200	ug/L	1	03/01/23 15:46	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	ry: 105 %	Limits: 80-120 %	1	03/01/23 15:46	EPA 8260D SIM	
Toluene-d8 (Surr)			99 %	80-120 %	1	03/01/23 15:46	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	03/01/23 15:46	EPA 8260D SIM	
Trip Blank (A3B0674-03)				Matrix: Wate	er	Batch:	23C0033	
Benzene	ND	0.0500	0.100	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
Toluene	ND	0.0500	0.100	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
Ethylbenzene	ND	0.0500	0.100	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
m,p-Xylene	ND	0.100	0.200	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
o-Xylene	ND	0.0500	0.100	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
1,2,4-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
1,3,5-Trimethylbenzene	ND	0.0500	0.100	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
Chloroform	0.202	0.0500	0.100	ug/L	1	03/01/23 14:25	EPA 8260D SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
·	Result	Lillit	Lillit			•		Notes
Trip Blank (A3B0674-03)				Matrix: Wate	<u>er </u>	Batch:	23C0033	
1,2-Dibromo-3-chloropropane	ND	0.100	0.200	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
1,1-Dichloroethane	ND	0.0100	0.0200	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
1,2-Dichloroethane (EDC)	ND	0.0100	0.0200	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
1,1-Dichloroethene	ND	0.0200	0.0200	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
cis-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
trans-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
1,2-Dichloropropane	ND	0.0100	0.0200	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
cis-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
trans-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
Methyl tert-butyl ether (MTBE)	ND	0.0100	0.0200	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
1,1,2,2-Tetrachloroethane	ND	0.0100	0.0200	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
Tetrachloroethene (PCE)	ND	0.0100	0.0200	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
Trichloroethene (TCE)	ND	0.0100	0.0200	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
1,2,3-Trichloropropane	ND	0.0500	0.100	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
1,1,2-Trichloroethane	ND	0.0100	0.0200	ug/L	1	03/01/23 14:25	EPA 8260D SIM	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 104 %	Limits: 80-120 %	6 I	03/01/23 14:25	EPA 8260D SIM	
Toluene-d8 (Surr)			100 %	80-120 %		03/01/23 14:25	EPA 8260D SIM	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	ó I	03/01/23 14:25	EPA 8260D SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

			anic Compou					
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW1-20230220-GW-70 (A3B0674-01)				Matrix: Wa	ater	Batch:	23B0916	
Acenaphthene	ND	0.0101	0.0202	ug/L	1	02/27/23 19:39	EPA 8270E	
Acenaphthylene	ND	0.0101	0.0202	ug/L	1	02/27/23 19:39	EPA 8270E	
Anthracene	ND	0.0101	0.0202	ug/L	1	02/27/23 19:39	EPA 8270E	
Benz(a)anthracene	ND	0.0101	0.0202	ug/L	1	02/27/23 19:39	EPA 8270E	
Benzo(a)pyrene	ND	0.0152	0.0303	ug/L	1	02/27/23 19:39	EPA 8270E	
Benzo(b)fluoranthene	ND	0.0152	0.0303	ug/L	1	02/27/23 19:39	EPA 8270E	
Benzo(k)fluoranthene	ND	0.0152	0.0303	ug/L	1	02/27/23 19:39	EPA 8270E	
Benzo(g,h,i)perylene	ND	0.0101	0.0202	ug/L	1	02/27/23 19:39	EPA 8270E	
Chrysene	ND	0.0101	0.0202	ug/L	1	02/27/23 19:39	EPA 8270E	
Dibenz(a,h)anthracene	ND	0.0101	0.0202	ug/L	1	02/27/23 19:39	EPA 8270E	
Fluoranthene	ND	0.0101	0.0202	ug/L	1	02/27/23 19:39	EPA 8270E	
Fluorene	ND	0.0101	0.0202	ug/L	1	02/27/23 19:39	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	0.0101	0.0202	ug/L	1	02/27/23 19:39	EPA 8270E	
1-Methylnaphthalene	ND	0.0202	0.0404	ug/L	1	02/27/23 19:39	EPA 8270E	
2-Methylnaphthalene	ND	0.0202	0.0404	ug/L	1	02/27/23 19:39	EPA 8270E	
Naphthalene	ND	0.0202	0.0404	ug/L	1	02/27/23 19:39	EPA 8270E	
Phenanthrene	ND	0.0101	0.0202	ug/L	1	02/27/23 19:39	EPA 8270E	
Pyrene	ND	0.0101	0.0202	ug/L	1	02/27/23 19:39	EPA 8270E	
Carbazole	ND	0.0152	0.0303	ug/L	1	02/27/23 19:39	EPA 8270E	
Dibenzofuran	ND	0.0101	0.0202	ug/L	1	02/27/23 19:39	EPA 8270E	
2-Chlorophenol	ND	0.0505	0.101	ug/L	1	02/27/23 19:39	EPA 8270E	
4-Chloro-3-methylphenol	ND	0.101	0.202	ug/L	1	02/27/23 19:39	EPA 8270E	
2,4-Dichlorophenol	ND	0.0505	0.101	ug/L	1	02/27/23 19:39	EPA 8270E	
2,4-Dimethylphenol	ND	0.0505	0.101	ug/L	1	02/27/23 19:39	EPA 8270E	
2,4-Dinitrophenol	ND	0.253	0.505	ug/L	1	02/27/23 19:39	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	0.253	0.505	ug/L	1	02/27/23 19:39	EPA 8270E	
2-Methylphenol	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E	
+4-Methylphenol(s)	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E	
-Nitrophenol	ND	0.101	0.202	ug/L	1	02/27/23 19:39	EPA 8270E	
-Nitrophenol	ND	0.101	0.202	ug/L	1	02/27/23 19:39	EPA 8270E	
Pentachlorophenol (PCP)	ND	0.101	0.202	ug/L	1	02/27/23 19:39	EPA 8270E	
Phenol	ND	0.202	0.404	ug/L	1	02/27/23 19:39	EPA 8270E	
,3,4,6-Tetrachlorophenol	ND	0.0505	0.101	ug/L	1	02/27/23 19:39	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

			anic Compo	. ,		D :		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW1-20230220-GW-70 (A3B0674-01)				Matrix: W	Matrix: Water		Batch: 23B0916	
2,3,5,6-Tetrachlorophenol	ND	0.0505	0.101	ug/L	1	02/27/23 19:39	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.0505	0.101	ug/L	1	02/27/23 19:39	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.0505	0.101	ug/L	1	02/27/23 19:39	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	0.202	0.404	ug/L	1	02/27/23 19:39	EPA 8270E	
Butyl benzyl phthalate	ND	0.202	0.404	ug/L	1	02/27/23 19:39	EPA 8270E	
Diethylphthalate	ND	0.202	0.404	ug/L	1	02/27/23 19:39	EPA 8270E	
Dimethylphthalate	ND	0.202	0.404	ug/L	1	02/27/23 19:39	EPA 8270E	
Di-n-butylphthalate	ND	0.202	0.404	ug/L	1	02/27/23 19:39	EPA 8270E	
Di-n-octyl phthalate	ND	0.202	0.404	ug/L	1	02/27/23 19:39	EPA 8270E	
N-Nitrosodimethylamine	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E	
N-Nitrosodiphenylamine	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E	
Hexachlorobenzene	ND	0.0101	0.0202	ug/L	1	02/27/23 19:39	EPA 8270E	
Hexachlorobutadiene	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E	Q-30
Hexachlorocyclopentadiene	ND	0.0505	0.101	ug/L	1	02/27/23 19:39	EPA 8270E	
Hexachloroethane	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E	Q-30
2-Chloronaphthalene	ND	0.0101	0.0202	ug/L	1	02/27/23 19:39	EPA 8270E	
1,2,4-Trichlorobenzene	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E	Q-30
4-Bromophenyl phenyl ether	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E	
Aniline	ND	0.0505	0.101	ug/L	1	02/27/23 19:39	EPA 8270E	
4-Chloroaniline	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E	
2-Nitroaniline	ND	0.202	0.404	ug/L	1	02/27/23 19:39	EPA 8270E	
3-Nitroaniline	ND	0.202	0.404	ug/L	1	02/27/23 19:39	EPA 8270E	
1-Nitroaniline	ND	0.202	0.404	ug/L	1	02/27/23 19:39	EPA 8270E	
Nitrobenzene	ND	0.101	0.202	ug/L	1	02/27/23 19:39	EPA 8270E	
,4-Dinitrotoluene	ND	0.101	0.202	ug/L	1	02/27/23 19:39	EPA 8270E	
,6-Dinitrotoluene	ND	0.101	0.202	ug/L	1	02/27/23 19:39	EPA 8270E	
Benzoic acid	1.28	1.26	2.53	ug/L	1	02/27/23 19:39	EPA 8270E	Ja
Benzyl alcohol	0.264	0.101	0.202	ug/L	1	02/27/23 19:39	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
MW1-20230220-GW-70 (A3B0674-01)				Matrix: Wate	r	Batch: 23B0916				
Isophorone	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E			
Azobenzene (1,2-DPH)	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E			
Bis(2-Ethylhexyl) adipate	ND	0.253	0.505	ug/L	1	02/27/23 19:39	EPA 8270E			
3,3'-Dichlorobenzidine	ND	0.505	1.01	ug/L	1	02/27/23 19:39	EPA 8270E	Q-52		
1,2-Dinitrobenzene	ND	0.253	0.505	ug/L	1	02/27/23 19:39	EPA 8270E			
1,3-Dinitrobenzene	ND	0.253	0.505	ug/L	1	02/27/23 19:39	EPA 8270E			
1,4-Dinitrobenzene	ND	0.253	0.505	ug/L	1	02/27/23 19:39	EPA 8270E			
Pyridine	ND	0.101	0.202	ug/L	1	02/27/23 19:39	EPA 8270E			
1,2-Dichlorobenzene	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E	Q-30		
1,3-Dichlorobenzene	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E	Q-30		
1,4-Dichlorobenzene	ND	0.0253	0.0505	ug/L	1	02/27/23 19:39	EPA 8270E	Q-30		
Surrogate: Nitrobenzene-d5 (Surr)		Recover	73 %	Limits: 44-120 %	1	02/27/23 19:39	EPA 8270E	Q-41		
2-Fluorobiphenyl (Surr)		ĺ	59 %	44-120 %		02/27/23 19:39	EPA 8270E	~		
Phenol-d6 (Surr)			24 %	10-133 %	1	02/27/23 19:39	EPA 8270E			
p-Terphenyl-d14 (Surr)			83 %	50-134 %	1	02/27/23 19:39	EPA 8270E			
2-Fluorophenol (Surr)			39 %	19-120 %		02/27/23 19:39	EPA 8270E			
2,4,6-Tribromophenol (Surr)			74 %	43-140 %	1	02/27/23 19:39	EPA 8270E			
MW2-20230220-GW-60 (A3B0674-02)				Matrix: Wate	r	Batch: 2	23B0916			
Acenaphthene	ND	0.0106	0.0213	ug/L	1	02/27/23 20:14	EPA 8270E			
Acenaphthylene	ND	0.0106	0.0213	ug/L	1	02/27/23 20:14	EPA 8270E			
Anthracene	ND	0.0106	0.0213	ug/L	1	02/27/23 20:14	EPA 8270E			
Benz(a)anthracene	ND	0.0106	0.0213	ug/L	1	02/27/23 20:14	EPA 8270E			
Benzo(a)pyrene	ND	0.0160	0.0319	ug/L	1	02/27/23 20:14	EPA 8270E			
Benzo(b)fluoranthene	ND	0.0160	0.0319	ug/L	1	02/27/23 20:14	EPA 8270E			
Benzo(k)fluoranthene	ND	0.0160	0.0319	ug/L	1	02/27/23 20:14	EPA 8270E			
Benzo(g,h,i)perylene	ND	0.0106	0.0213	ug/L	1	02/27/23 20:14	EPA 8270E			
Chrysene	ND	0.0106	0.0213	ug/L	1	02/27/23 20:14	EPA 8270E			
Dibenz(a,h)anthracene	ND	0.0106	0.0213	ug/L	1	02/27/23 20:14	EPA 8270E			
Fluoranthene	ND	0.0106	0.0213	ug/L	1	02/27/23 20:14	EPA 8270E			
Fluorene	ND	0.0106	0.0213	ug/L	1	02/27/23 20:14	EPA 8270E			
Indeno(1,2,3-cd)pyrene	ND	0.0106	0.0213	ug/L	1	02/27/23 20:14	EPA 8270E			
* * * * * * * * * * * * * * * * * * *	ND	0.0213	0.0426	ug/L	1	02/27/23 20:14	EPA 8270E			
1-Methylnaphthalene	INI)	0.0713	0.0475	110/1.		02/27/25 20:14	EPA 64/UE			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

	Commit-	Datastic	Reporting			Date		
Analyte	Sample Result	Detection Limit	Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW2-20230220-GW-60 (A3B0674-02)				Matrix: Wa	ater	Batch:	23B0916	
Naphthalene	ND	0.0213	0.0426	ug/L	1	02/27/23 20:14	EPA 8270E	
Phenanthrene	ND	0.0106	0.0213	ug/L	1	02/27/23 20:14	EPA 8270E	
Pyrene	ND	0.0106	0.0213	ug/L	1	02/27/23 20:14	EPA 8270E	
Carbazole	ND	0.0160	0.0319	ug/L	1	02/27/23 20:14	EPA 8270E	
Dibenzofuran	ND	0.0106	0.0213	ug/L	1	02/27/23 20:14	EPA 8270E	
2-Chlorophenol	ND	0.0532	0.106	ug/L	1	02/27/23 20:14	EPA 8270E	
4-Chloro-3-methylphenol	ND	0.106	0.213	ug/L	1	02/27/23 20:14	EPA 8270E	
2,4-Dichlorophenol	ND	0.0532	0.106	ug/L	1	02/27/23 20:14	EPA 8270E	
2,4-Dimethylphenol	ND	0.0532	0.106	ug/L	1	02/27/23 20:14	EPA 8270E	
2,4-Dinitrophenol	ND	0.266	0.532	ug/L	1	02/27/23 20:14	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	0.266	0.532	ug/L	1	02/27/23 20:14	EPA 8270E	
2-Methylphenol	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	
3+4-Methylphenol(s)	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	
2-Nitrophenol	ND	0.106	0.213	ug/L	1	02/27/23 20:14	EPA 8270E	
4-Nitrophenol	ND	0.106	0.213	ug/L	1	02/27/23 20:14	EPA 8270E	
Pentachlorophenol (PCP)	0.107	0.106	0.213	ug/L	1	02/27/23 20:14	EPA 8270E	Ja
Phenol	ND	0.213	0.426	ug/L	1	02/27/23 20:14	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	0.0532	0.106	ug/L	1	02/27/23 20:14	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	0.0532	0.106	ug/L	1	02/27/23 20:14	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.0532	0.106	ug/L	1	02/27/23 20:14	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.0532	0.106	ug/L	1	02/27/23 20:14	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	0.213	0.426	ug/L	1	02/27/23 20:14	EPA 8270E	
Butyl benzyl phthalate	ND	0.213	0.426	ug/L	1	02/27/23 20:14	EPA 8270E	
Diethylphthalate	ND	0.213	0.426	ug/L	1	02/27/23 20:14	EPA 8270E	
Dimethylphthalate	ND	0.213	0.426	ug/L	1	02/27/23 20:14	EPA 8270E	
Di-n-butylphthalate	ND	0.213	0.426	ug/L	1	02/27/23 20:14	EPA 8270E	
Di-n-octyl phthalate	ND	0.213	0.426	ug/L	1	02/27/23 20:14	EPA 8270E	
N-Nitrosodimethylamine	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	
N-Nitrosodiphenylamine	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project: St. Helens Lagoon Project Number: M0830.03.006 Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

Analyte			Reporting			Date		
	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW2-20230220-GW-60 (A3B0674-02)				Matrix: Wate	er	Batch:	23B0916	
Hexachlorobenzene	ND	0.0106	0.0213	ug/L	1	02/27/23 20:14	EPA 8270E	
Hexachlorobutadiene	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	Q-30
Hexachlorocyclopentadiene	ND	0.0532	0.106	ug/L	1	02/27/23 20:14	EPA 8270E	
Hexachloroethane	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	Q-30
-Chloronaphthalene	ND	0.0106	0.0213	ug/L	1	02/27/23 20:14	EPA 8270E	
,2,4-Trichlorobenzene	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	Q-30
-Bromophenyl phenyl ether	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	
-Chlorophenyl phenyl ether	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	
Aniline	ND	0.0532	0.106	ug/L	1	02/27/23 20:14	EPA 8270E	
-Chloroaniline	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	
2-Nitroaniline	ND	0.213	0.426	ug/L	1	02/27/23 20:14	EPA 8270E	
3-Nitroaniline	ND	0.213	0.426	ug/L	1	02/27/23 20:14	EPA 8270E	
-Nitroaniline	ND	0.213	0.426	ug/L	1	02/27/23 20:14	EPA 8270E	
Vitrobenzene	ND	0.106	0.213	ug/L	1	02/27/23 20:14	EPA 8270E	
,4-Dinitrotoluene	ND	0.106	0.213	ug/L	1	02/27/23 20:14	EPA 8270E	
2,6-Dinitrotoluene	ND	0.106	0.213	ug/L	1	02/27/23 20:14	EPA 8270E	
Benzoic acid	ND	1.33	2.66	ug/L	1	02/27/23 20:14	EPA 8270E	
Benzyl alcohol	ND	0.106	0.213	ug/L	1	02/27/23 20:14	EPA 8270E	
sophorone	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	
Azobenzene (1,2-DPH)	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	0.266	0.532	ug/L	1	02/27/23 20:14	EPA 8270E	
3,3'-Dichlorobenzidine	ND	0.532	1.06	ug/L	1	02/27/23 20:14	EPA 8270E	Q-52
,2-Dinitrobenzene	ND	0.266	0.532	ug/L	1	02/27/23 20:14	EPA 8270E	
,3-Dinitrobenzene	ND	0.266	0.532	ug/L	1	02/27/23 20:14	EPA 8270E	
,4-Dinitrobenzene	ND	0.266	0.532	ug/L	1	02/27/23 20:14	EPA 8270E	
Pyridine	ND	0.106	0.213	ug/L	1	02/27/23 20:14	EPA 8270E	
,2-Dichlorobenzene	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	Q-30
,3-Dichlorobenzene	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	Q-30
,4-Dichlorobenzene	ND	0.0266	0.0532	ug/L	1	02/27/23 20:14	EPA 8270E	Q-30
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 63 %	Limits: 44-120 %	б I	02/27/23 20:14	EPA 8270E	Q-4
2-Fluorobiphenyl (Surr)			51 %	44-120 %	6 I	02/27/23 20:14	EPA 8270E	
Phenol-d6 (Surr)			23 %	10-133 %		02/27/23 20:14	EPA 8270E	
p-Terphenyl-d14 (Surr) 2-Fluorophenol (Surr)			77 % 36 %	50-134 % 19-120 %		02/27/23 20:14 02/27/23 20:14	EPA 8270E EPA 8270E	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MW2-20230220-GW-60 (A3B0674-02)	TOBUIL			Matrix:		Batch: 23B0916		110105	
Surrogate: 2,4,6-Tribromophenol (Surr)		Reco	very: 69 %	Limits: 43-	'40 % I	02/27/23 20:14	EPA 8270E		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

		•	•	PPs) by EPA 82	,	•		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW1-20230220-GW-70 (A3B0674-01)		Matrix: Water		er	Batch:	23B0917		
Azinphos methyl (Guthion)	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Chlorpyrifos	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Coumaphos	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Demeton O	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Demeton S	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Diazinon	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Dichlorvos	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Dimethoate	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Disulfoton	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
EPN	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Ethoprop	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Fensulfothion	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Fenthion	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Malathion	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Merphos	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Methyl parathion	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Mevinphos (Phosdrin)	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Monocrotophos	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Naled (Dibrom)	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Parathion, ethyl	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Phorate	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Ronnel (Fenchlorphos)	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Sulfotep	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Sulprofos (Bolstar)	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
ТЕРР	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Tetrachlorvinphos (Rabon)	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Tokuthion (Prothiofos)	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Trichloronate	ND	0.260	0.521	ug/L	1	02/28/23 11:21	EPA 8270E OPPs	
Surrogate: Tributyl phosphate (Surr)		Recove	ery: 100 %	Limits: 56-124 %	6 I	02/28/23 11:21	EPA 8270E OPPs	
Triphenyl phosphate (Surr)			105 %	58-121 %	6 I	02/28/23 11:21	EPA 8270E OPPs	
MW2-20230220-GW-60 (A3B0674-02)				Matrix: Wate	Matrix: Water		Batch: 23B0917	
Azinphos methyl (Guthion)	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
, /				_				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW2-20230220-GW-60 (A3B0674-02)				Matrix: Water	<u>- </u>	Batch:	: 23B0917	
Chlorpyrifos	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Coumaphos	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Demeton O	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Demeton S	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Diazinon	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Dichlorvos	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Dimethoate	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Disulfoton	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
EPN	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Ethoprop	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Fensulfothion	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Fenthion	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Malathion	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Merphos	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Methyl parathion	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Mevinphos (Phosdrin)	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Monocrotophos	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Naled (Dibrom)	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Parathion, ethyl	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Phorate	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Ronnel (Fenchlorphos)	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Sulfotep	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Sulprofos (Bolstar)	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
EPP	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
etrachlorvinphos (Rabon)	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
okuthion (Prothiofos)	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
richloronate	ND	0.260	0.521	ug/L	1	02/28/23 11:57	EPA 8270E OPPs	
Surrogate: Tributyl phosphate (Surr)		Recov	very: 98 %	Limits: 56-124 %	1	02/28/23 11:57	EPA 8270E OPPs	
Triphenyl phosphate (Surr)			102 %	58-121 %		02/28/23 11:57	EPA 8270E OPPs	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project: St. Helens Lagoon Project Number: M0830.03.006 Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS	3)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
	Result	Lillit	Lillit			Anaryzed	Wethou Ker.	INOICS
MW1-20230220-GW-70 (A3B0674-01)				Matrix: W	ater			
Batch: 23B0841								
Antimony	ND	0.500	1.00	ug/L	1	02/22/23 20:28	EPA 6020B	_
Arsenic	0.519	0.500	1.00	ug/L	1	02/22/23 20:28	EPA 6020B	Ja
Barium	64.9	1.00	2.00	ug/L	1	02/22/23 20:28	EPA 6020B	
Beryllium	ND	0.100	0.200	ug/L	1	02/22/23 20:28	EPA 6020B	
Cadmium	ND	0.100	0.200	ug/L	1	02/22/23 20:28	EPA 6020B	
Chromium	ND	1.00	2.00	ug/L	1	02/22/23 20:28	EPA 6020B	
Copper	ND	1.00	2.00	ug/L	1	02/22/23 20:28	EPA 6020B	
Lead	0.122	0.110	0.200	ug/L	1	02/22/23 20:28	EPA 6020B	Ja
Manganese	55.1	0.500	1.00	ug/L	1	02/22/23 20:28	EPA 6020B	
Mercury	ND	0.0400	0.0800	ug/L	1	02/22/23 20:28	EPA 6020B	
Nickel	ND	1.00	2.00	ug/L	1	02/22/23 20:28	EPA 6020B	
Selenium	ND	0.500	1.00	ug/L	1	02/22/23 20:28	EPA 6020B	
Silver	ND	0.100	0.200	ug/L	1	02/22/23 20:28	EPA 6020B	
Thallium	ND	0.100	0.200	ug/L	1	02/22/23 20:28	EPA 6020B	
Zinc	2.21	2.00	4.00	ug/L	1	02/22/23 20:28	EPA 6020B	Ja
MW2-20230220-GW-60 (A3B0674-02)				Matrix: W	ater			
Batch: 23B0841								
Antimony	ND	0.500	1.00	ug/L	1	02/22/23 20:33	EPA 6020B	
Arsenic	4.59	0.500	1.00	ug/L	1	02/22/23 20:33	EPA 6020B	
Barium	19.6	1.00	2.00	ug/L	1	02/22/23 20:33	EPA 6020B	
Beryllium	ND	0.100	0.200	ug/L	1	02/22/23 20:33	EPA 6020B	
Cadmium	ND	0.100	0.200	ug/L	1	02/22/23 20:33	EPA 6020B	
Chromium	ND	1.00	2.00	ug/L	1	02/22/23 20:33	EPA 6020B	
Copper	3.12	1.00	2.00	ug/L	1	02/22/23 20:33	EPA 6020B	
Lead	0.619	0.110	0.200	ug/L	1	02/22/23 20:33	EPA 6020B	
Manganese	19.0	0.500	1.00	ug/L	1	02/22/23 20:33	EPA 6020B	
Mercury	ND	0.0400	0.0800	ug/L	1	02/22/23 20:33	EPA 6020B	
Nickel	ND	1.00	2.00	ug/L	1	02/22/23 20:33	EPA 6020B	
Selenium	ND	0.500	1.00	ug/L	1	02/22/23 20:33	EPA 6020B	
Silver	ND	0.100	0.200	ug/L	1	02/22/23 20:33	EPA 6020B	
Thallium	ND	0.100	0.200	ug/L	1	02/22/23 20:33	EPA 6020B	
Zinc	2.50	2.00	4.00	ug/L	1	02/22/23 20:33	EPA 6020B	Ja

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

Apex Laboratories

Item #2.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

ANALYTICAL SAMPLE RESULTS

		Total Meta	ils by EPA 602	20B (ICPMS	5)			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

Weck Laboratories, Inc.

ANALYTICAL SAMPLE RESULTS (Subcontracted)

		Chlorinate	ed Herbicide	es by GC/ECD				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW1-20230220-GW-70 (A3B0674-01)				Matrix: Wate	er	Batch: \	W3B2223	
Batch: W3B2223								
	ND	0.34	0.50	ug/l	1	03/22/23 21:12	EPA 8151A	
2,4-DB	ND	0.99	2.5	ug/l	1	03/22/23 21:12	EPA 8151A	
2,4,5-T	ND	0.14	0.25	ug/l	1	03/22/23 21:12	EPA 8151A	
2,4,5-TP (Silvex)	ND	0.14	0.25	ug/l	1	03/22/23 21:12	EPA 8151A	
3,5-Dichlorobenzoic acid	ND	0.28	1.2	ug/l	1	03/22/23 21:12	EPA 8151A	
4-Nitrophenol	ND	0.50	1.2	ug/l	1	03/22/23 21:12	EPA 8151A	
Acifluorfen	ND	0.24	0.50	ug/l	1	03/22/23 21:12	EPA 8151A	
Bentazon	ND	0.55	2.5	ug/l	1	03/22/23 21:12	EPA 8151A	
Dalapon	ND	0.16	0.50	ug/l	1	03/22/23 21:12	EPA 8151A	
Dicamba	ND	0.19	0.75	ug/l	1	03/22/23 21:12	EPA 8151A	
Dichloroprop	ND	0.24	1.0	ug/l	1	03/22/23 21:12	EPA 8151A	
Dinoseb	ND	0.090	0.50	ug/l	1	03/22/23 21:12	EPA 8151A	
DCPA	ND	0.20	0.25	ug/l	1	03/22/23 21:12	EPA 8151A	
MCPA	ND	40	100	ug/l	1	03/22/23 21:12	EPA 8151A	
MCPP	ND	27	100	ug/l	1	03/22/23 21:12	EPA 8151A	
Pentachlorophenol	ND	0.18	0.25	ug/l	1	03/22/23 21:12	EPA 8151A	
Picloram Batch: W3B2223	ND	0.13	0.75	ug/l	1	03/22/23 21:12	EPA 8151A	
Surrogate: 2,4-DCAA		Reco	very: 91 %	Limits: 56-156 %	5 I	03/22/23 21:12	EPA 8151A	
MW2-20230220-GW-60 (A3B0674-02)				Matrix: Wate	er	Batch: \	N3B2223	
Batch: W3B2223								
2,4-D	ND	0.34	0.50	ug/l	1	03/22/23 21:43	EPA 8151A	
2,4-DB	ND	0.99	2.5	ug/l	1	03/22/23 21:43	EPA 8151A	
2,4,5-T	ND	0.14	0.25	ug/l	1	03/22/23 21:43	EPA 8151A	
2,4,5-TP (Silvex)	ND	0.14	0.25	ug/l	1	03/22/23 21:43	EPA 8151A	
3,5-Dichlorobenzoic acid	ND	0.28	1.2	ug/l	1	03/22/23 21:43	EPA 8151A	
1-Nitrophenol	ND	0.50	1.2	ug/l	1	03/22/23 21:43	EPA 8151A	

0.50

2.5

0.50

Apex Laboratories

Acifluorfen

Bentazon

Dalapon

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1

1

ug/l

ug/l

ug/l

03/22/23 21:43

03/22/23 21:43

03/22/23 21:43

EPA 8151A

EPA 8151A

EPA 8151A

Philip Memberg

ND

ND

ND

0.24

0.55

0.16

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project: St. Helens Lagoon Project Number: M0830.03.006 Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

Weck Laboratories, Inc.

ANALYTICAL SAMPLE RESULTS (Subcontracted)

		Chlorinate	ed Herbicide	es by GC/ECD				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW2-20230220-GW-60 (A3B0674-02)				Matrix: Wate	ər	Batch: \	W3B2223	
Dicamba	ND	0.19	0.75	ug/l	1	03/22/23 21:43	EPA 8151A	
Dichloroprop	ND	0.24	1.0	ug/l	1	03/22/23 21:43	EPA 8151A	
Dinoseb	ND	0.090	0.50	ug/l	1	03/22/23 21:43	EPA 8151A	
DCPA	ND	0.20	0.25	ug/l	1	03/22/23 21:43	EPA 8151A	
MCPA	ND	40	100	ug/l	1	03/22/23 21:43	EPA 8151A	
MCPP	ND	27	100	ug/l	1	03/22/23 21:43	EPA 8151A	
Pentachlorophenol	ND	0.18	0.25	ug/l	1	03/22/23 21:43	EPA 8151A	
Picloram Batch: W3B2223	ND	0.13	0.75	ug/l	1	03/22/23 21:43	EPA 8151A	
Surrogate: 2,4-DCAA		Recov	very: 91 %	Limits: 56-156 %	· 1	03/22/23 21:43	EPA 8151A	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

AMENDED REPORT

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

Weck Laboratories, Inc.

ANALYTICAL SAMPLE RESULTS (Subcontracted)

		Hexav	alent Chromi	ium by IC				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW1-20230220-GW-70 (A3B0674-01)				Matrix: W	ater	Batch: \	W3C0242	
Batch: W3C0242								
Chromium 6+	ND	0.0079	0.020	ug/l	1	03/02/23 18:52	EPA 218.6	
MW2-20230220-GW-60 (A3B0674-02)				Matrix: W	ater	Batch: \	W3C0242	
Batch: W3C0242								
Chromium 6+	ND	0.0079	0.020	ug/l	1	03/02/23 19:04	EPA 218.6	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

Apex Laboratories

Item #2.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

		esei aliu/c	л Оп пуа	i ocal boli	s by NWT	ru-nx					
Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
uels/Acid	Ext.)					Wa	ter				
		Prepared	1: 03/02/23	11:25 Anal	yzed: 03/02/	23 20:19					
ND	0.100	0.200	mg/L	1							
ND	0.200	0.400	mg/L	1							
	Reco	very: 87 %	Limits: 50	0-150 %	Dilu	tion: 1x					
		Prepared	1: 03/02/23	11:25 Anal	yzed: 03/02/	23 20:40					
0.806	0.100	0.200	mg/L	1	1.25		64	36-132%			
	Reco	very: 86 %	Limits: 50	0-150 %	Dilu	tion: 1x					
		Prepared	1: 03/02/23	11:25 Anal	yzed: 03/02/	23 21:00					Q-1
								<u> </u>			<u> </u>
0.812	0.100	0.200	mg/L	1	1.25		65	36-132%	0.7	30%	
	Reco	very: 88 %	Limits: 50)-150 %	Dilu	tion: 1x					
	ND ND ND	ND	Result Limit Limit Limit	Result Limit Limit Units uels/Acid Ext.) Prepared: 03/02/23 ND 0.100 0.200 mg/L ND 0.200 0.400 mg/L Recovery: 87 % Limits: 50 Prepared: 03/02/23 0.806 0.100 0.200 mg/L Prepared: 03/02/23 0.812 0.100 0.200 mg/L	ND	Result Limit Limit Units Dilution Amount uels/Acid Ext.) Prepared: 03/02/23 11:25 Analyzed: 03/02/2 ND 0.100 0.200 mg/L 1 ND 0.200 0.400 mg/L 1 Recovery: 87 % Limits: 50-150 % Dilu Prepared: 03/02/23 11:25 Analyzed: 03/02/2 0.806 0.100 0.200 mg/L 1 1.25 Recovery: 86 % Limits: 50-150 % Dilu Prepared: 03/02/23 11:25 Analyzed: 03/02/2 0.812 0.100 0.200 mg/L 1 1.25	Result Limit Limit Units Dilution Amount Result Uels/Acid Ext.) Wa Prepared: 03/02/23 11:25 Analyzed: 03/02/23 20:19 ND 0.100 0.200 mg/L 1 ND 0.200 0.400 mg/L 1 Recovery: 87 % Limits: 50-150 % Dilution: Ix Prepared: 03/02/23 11:25 Analyzed: 03/02/23 20:40 0.806 0.100 0.200 mg/L 1 1.25 Recovery: 86 % Limits: 50-150 % Dilution: Ix Prepared: 03/02/23 11:25 Analyzed: 03/02/23 21:00 0.812 0.100 0.200 mg/L 1 1.25	ND	ND	Result Limit Limit Units Dilution Amount Result % REC Limits RPD uels/Acid Ext.) Water Prepared: 03/02/23 11:25 Analyzed: 03/02/23 20:19 ND 0.100 0.200 mg/L 1	ND

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project: St. Helens Lagoon Project Number: M0830.03.006 Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 23B0828 - EPA 5030C							Wa	ter					
Blank (23B0828-BLK1)			Prepared	1: 02/22/23	08:30 Ana	lyzed: 02/22	/23 11:47						
NWTPH-Gx (MS)													
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1								
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 95 %	Limits: 5	0-150 %	Dilı	ution: 1x						
1,4-Difluorobenzene (Sur)			106 %	5	0-150 %		"						
LCS (23B0828-BS2)			Prepared	d: 02/22/23	08:30 Anal	lyzed: 02/22	/23 10:40						
NWTPH-Gx (MS)													
Gasoline Range Organics	0.545	0.0500	0.100	mg/L	1	0.500		109	80-120%				
Surr: 4-Bromofluorobenzene (Sur)		Recov	ery: 100 %	Limits: 5	0-150 %	Dilı	ution: 1x						
1,4-Difluorobenzene (Sur)			104 %	5	0-150 %		"						
Duplicate (23B0828-DUP1)			Prepared	d: 02/22/23	11:21 Anal	yzed: 02/22	/23 20:44						
QC Source Sample: Non-SDG (A3	B0522-02)												
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1		ND				30%		
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 99 %	Limits: 5	0-150 %	Dilı	ution: 1x						
1,4-Difluorobenzene (Sur)			105 %	5	0-150 %		"						
Duplicate (23B0828-DUP2)			Prepared	d: 02/22/23	11:21 Anal	yzed: 02/22	/23 21:06						
QC Source Sample: MW1-202302	20-GW-70 (A3B0674-01)											
NWTPH-Gx (MS)													
Gasoline Range Organics	ND	0.0500	0.100	mg/L	1		ND				30%		
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 98 %	Limits: 5	0-150 %	Dilı	ution: 1x						
1,4-Difluorobenzene (Sur)			107 %	5	0-150 %		"						

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

475

Philip Newsberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Orç	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0828 - EPA 5030C							Wa	ter				
Blank (23B0828-BLK1)			Prepared	: 02/22/23	08:30 Ana	lyzed: 02/22	/23 11:47					
EPA 8260D												
Acetone	ND	10.0	20.0	ug/L	1							
Acrylonitrile	ND	1.00	2.00	ug/L	1							
Benzene	ND	0.100	0.200	ug/L	1							
Bromobenzene	ND	0.250	0.500	ug/L	1							
Bromochloromethane	ND	0.500	1.00	ug/L	1							
Bromodichloromethane	ND	0.500	1.00	ug/L	1							
Bromoform	ND	0.500	1.00	ug/L	1							
Bromomethane	ND	5.00	5.00	ug/L	1							
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1							
n-Butylbenzene	ND	0.500	1.00	ug/L	1							
sec-Butylbenzene	ND	0.500	1.00	ug/L	1							
ert-Butylbenzene	ND	0.500	1.00	ug/L	1							
Carbon disulfide	ND	5.00	10.0	ug/L	1							
Carbon tetrachloride	ND	0.500	1.00	ug/L	1							
Chlorobenzene	ND	0.250	0.500	ug/L	1							
Chloroethane	ND	5.00	5.00	ug/L	1							
Chloroform	ND	0.500	1.00	ug/L	1							
Chloromethane	ND	2.50	5.00	ug/L	1							
2-Chlorotoluene	ND	0.500	1.00	ug/L	1							
1-Chlorotoluene	ND	0.500	1.00	ug/L	1							
Dibromochloromethane	ND	0.500	1.00	ug/L	1							
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1							
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1							
Dibromomethane	ND	0.500	1.00	ug/L	1							
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1							
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1							
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1							
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1							
,1-Dichloroethane	ND ND	0.200	0.400	ug/L ug/L	1							
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L ug/L	1					-		
1,1-Dichloroethene	ND ND	0.200	0.400	ug/L ug/L	1							
sis-1,2-Dichloroethene	ND ND	0.200	0.400		1							
· ·		0.200		ug/L	-							
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D	
	_

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0828 - EPA 5030C							Wat	ter				
Blank (23B0828-BLK1)			Prepared	: 02/22/23	08:30 Anal	yzed: 02/22	23 11:47					
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1							
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1							
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1							
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1							
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
trans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1							
Ethylbenzene	ND	0.250	0.500	ug/L	1							
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1							
2-Hexanone	ND	10.0	10.0	ug/L	1							
Isopropylbenzene	ND	0.500	1.00	ug/L	1							
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1							
Methylene chloride	ND	5.00	10.0	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1							
Naphthalene	ND	2.00	2.00	ug/L	1							
n-Propylbenzene	ND	0.250	0.500	ug/L	1							
Styrene	ND	0.500	1.00	ug/L	1							
1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1							
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1							
Toluene	ND	0.500	1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1							
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1							
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1							
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1							
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1							
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1							
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1							
Vinyl chloride	ND	0.200	0.400	ug/L	1							
m,p-Xylene	ND	0.500	1.00	ug/L	1							
o-Xylene	ND	0.250	0.500	ug/L ug/L	1							

Surr: 1,4-Difluorobenzene (Surr) Recovery: 98 % Limits: 80-120 % Dilution: 1x

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0828 - EPA 5030C							Wa	ter				
Blank (23B0828-BLK1)			Prepared	1: 02/22/23	08:30 Ana	lyzed: 02/22	/23 11:47					
Surr: Toluene-d8 (Surr)		Recon	very: 105 %	Limits: 80	0-120 %	Dilt	ution: 1x					
4-Bromofluorobenzene (Surr)			100 %	80	0-120 %		"					
LCS (23B0828-BS1)			Prepared	1: 02/22/23	08:30 Ana	lyzed: 02/22	/23 11:02					
EPA 8260D												
Acetone	34.2	10.0	20.0	ug/L	1	40.0		85	80-120%			ICV-0
Acrylonitrile	16.6	1.00	2.00	ug/L	1	20.0		83	80-120%			
Benzene	17.8	0.100	0.200	ug/L	1	20.0		89	80-120%			
Bromobenzene	17.6	0.250	0.500	ug/L	1	20.0		88	80-120%			
Bromochloromethane	20.3	0.500	1.00	ug/L	1	20.0		101	80-120%			
Bromodichloromethane	21.1	0.500	1.00	ug/L	1	20.0		106	80-120%			
Bromoform	21.8	0.500	1.00	ug/L	1	20.0		109	80-120%			
Bromomethane	26.5	5.00	5.00	ug/L	1	20.0		132	80-120%			Q-5
2-Butanone (MEK)	32.2	5.00	10.0	ug/L	1	40.0		80	80-120%			ICV-0
n-Butylbenzene	19.9	0.500	1.00	ug/L	1	20.0		99	80-120%			
sec-Butylbenzene	19.9	0.500	1.00	ug/L	1	20.0		99	80-120%			
tert-Butylbenzene	18.0	0.500	1.00	ug/L	1	20.0		90	80-120%			
Carbon disulfide	20.0	5.00	10.0	ug/L	1	20.0		100	80-120%			
Carbon tetrachloride	24.2	0.500	1.00	ug/L	1	20.0		121	80-120%			Q-5
Chlorobenzene	19.7	0.250	0.500	ug/L	1	20.0		98	80-120%			
Chloroethane	33.8	5.00	5.00	ug/L	1	20.0		169	80-120%			Q-5
Chloroform	20.0	0.500	1.00	ug/L	1	20.0		100	80-120%			
Chloromethane	18.0	2.50	5.00	ug/L	1	20.0		90	80-120%			
2-Chlorotoluene	18.8	0.500	1.00	ug/L	1	20.0		94	80-120%			
4-Chlorotoluene	17.9	0.500	1.00	ug/L	1	20.0		90	80-120%			
Dibromochloromethane	21.5	0.500	1.00	ug/L	1	20.0		107	80-120%			
1,2-Dibromo-3-chloropropane	16.8	2.50	5.00	ug/L	1	20.0		84	80-120%			
1,2-Dibromoethane (EDB)	20.0	0.250	0.500	ug/L	1	20.0		100	80-120%			
Dibromomethane	19.8	0.500	1.00	ug/L	1	20.0		99	80-120%			
1,2-Dichlorobenzene	19.7	0.250	0.500	ug/L	1	20.0		98	80-120%			
1,3-Dichlorobenzene	18.8	0.250	0.500	ug/L	1	20.0		94	80-120%			
1,4-Dichlorobenzene	18.6	0.250	0.500	ug/L	1	20.0		93	80-120%			
Dichlorodifluoromethane	24.4	0.500	1.00	ug/L	1	20.0		122	80-120%			Q-5
1,1-Dichloroethane	18.7	0.200	0.400	ug/L	1	20.0		93	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0828 - EPA 5030C							Wa	ter				
LCS (23B0828-BS1)			Prepared	: 02/22/23	08:30 Ana	lyzed: 02/22	/23 11:02					
1,2-Dichloroethane (EDC)	22.5	0.200	0.400	ug/L	1	20.0		112	80-120%			
1,1-Dichloroethene	20.6	0.200	0.400	ug/L	1	20.0		103	80-120%			
cis-1,2-Dichloroethene	18.0	0.200	0.400	ug/L	1	20.0		90	80-120%			
trans-1,2-Dichloroethene	18.3	0.200	0.400	ug/L	1	20.0		92	80-120%			
1,2-Dichloropropane	17.3	0.250	0.500	ug/L	1	20.0		87	80-120%			
1,3-Dichloropropane	18.9	0.500	1.00	ug/L	1	20.0		94	80-120%			
2,2-Dichloropropane	21.5	0.500	1.00	ug/L	1	20.0		108	80-120%			
1,1-Dichloropropene	18.6	0.500	1.00	ug/L	1	20.0		93	80-120%			
cis-1,3-Dichloropropene	19.2	0.500	1.00	ug/L	1	20.0		96	80-120%			
trans-1,3-Dichloropropene	21.7	0.500	1.00	ug/L	1	20.0		108	80-120%			
Ethylbenzene	19.5	0.250	0.500	ug/L	1	20.0		97	80-120%			
Hexachlorobutadiene	18.8	2.50	5.00	ug/L	1	20.0		94	80-120%			
2-Hexanone	31.4	10.0	10.0	ug/L	1	40.0		79	80-120%			Q-55
Isopropylbenzene	19.9	0.500	1.00	ug/L	1	20.0		99	80-120%			
4-Isopropyltoluene	19.3	0.500	1.00	ug/L	1	20.0		97	80-120%			
Methylene chloride	18.8	5.00	10.0	ug/L	1	20.0		94	80-120%			
4-Methyl-2-pentanone (MiBK)	34.3	5.00	10.0	ug/L	1	40.0		86	80-120%			
Methyl tert-butyl ether (MTBE)	17.2	0.500	1.00	ug/L	1	20.0		86	80-120%			
Naphthalene	15.0	2.00	2.00	ug/L	1	20.0		75	80-120%			Q-55
n-Propylbenzene	18.6	0.250	0.500	ug/L	1	20.0		93	80-120%			
Styrene	19.3	0.500	1.00	ug/L	1	20.0		96	80-120%			
1,1,1,2-Tetrachloroethane	19.8	0.200	0.400	ug/L	1	20.0		99	80-120%			
1,1,2,2-Tetrachloroethane	18.6	0.250	0.500	ug/L	1	20.0		93	80-120%			
Tetrachloroethene (PCE)	19.3	0.200	0.400	ug/L	1	20.0		96	80-120%			
Toluene	19.0	0.500	1.00	ug/L	1	20.0		95	80-120%			
1,2,3-Trichlorobenzene	17.6	1.00	2.00	ug/L	1	20.0		88	80-120%			
1,2,4-Trichlorobenzene	16.4	1.00	2.00	ug/L	1	20.0		82	80-120%			
1,1,1-Trichloroethane	21.6	0.200	0.400	ug/L	1	20.0		108	80-120%			
1,1,2-Trichloroethane	19.8	0.250	0.500	ug/L	1	20.0		99	80-120%			
Trichloroethene (TCE)	16.7	0.200	0.400	ug/L	1	20.0		83	80-120%			
Trichlorofluoromethane	26.0	1.00	2.00	ug/L	1	20.0		130	80-120%			Q-56
1,2,3-Trichloropropane	19.5	0.500	1.00	ug/L	1	20.0		98	80-120%			
1,2,4-Trimethylbenzene	19.6	0.500	1.00	ug/L	1	20.0		98	80-120%			
1,3,5-Trimethylbenzene	18.9	0.500	1.00	ug/L	1	20.0		94	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0828 - EPA 5030C							Wa	ter				
LCS (23B0828-BS1)			Prepared	1: 02/22/23	08:30 Anal	lyzed: 02/22	/23 11:02					
Vinyl chloride	22.3	0.200	0.400	ug/L	1	20.0		111	80-120%			
m,p-Xylene	40.9	0.500	1.00	ug/L	1	40.0		102	80-120%			
o-Xylene	18.5	0.250	0.500	ug/L	1	20.0		93	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 93 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			88 %	80	0-120 %		"					
Duplicate (23B0828-DUP1)			Prepared	1: 02/22/23	11:21 Anal	yzed: 02/22	/23 20:44					
OC Source Sample: Non-SDG (A3	B0522-02)		1			-						
Acetone	ND	10.0	20.0	ug/L	1		ND				30%	
Acrylonitrile	ND	1.00	2.00	ug/L	1		ND				30%	
Benzene	ND	0.100	0.200	ug/L	1		ND				30%	
Bromobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Bromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
Bromoform	ND	0.500	1.00	ug/L	1		ND				30%	
Bromomethane	ND	5.00	5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND	5.00	10.0	ug/L	1		ND				30%	
n-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
sec-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
tert-Butylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Carbon disulfide	ND	5.00	10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND	0.500	1.00	ug/L	1		ND				30%	
Chlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Chloroethane	ND	5.00	5.00	ug/L	1		ND				30%	
Chloroform	ND	0.500	1.00	ug/L	1		ND				30%	
Chloromethane	ND	2.50	5.00	ug/L	1		ND				30%	
2-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
1-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	
Dibromomethane	ND	0.500	1.00	ug/L	1		ND				30%	
				-								

Apex Laboratories

1,2-Dichlorobenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND

Philip Merenberg

ND

0.250

0.500

ug/L

1

30%

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260D	<u> </u>				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0828 - EPA 5030C							Wat	ter				
Duplicate (23B0828-DUP1)			Prepared	: 02/22/23	11:21 Anal	yzed: 02/22/	/23 20:44					
QC Source Sample: Non-SDG (A3	B0522-02)											
1,3-Dichlorobenzene	0.370	0.250	0.500	ug/L	1		0.440			17	30%	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1		ND				30%	
1,1-Dichloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
1,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1		ND				30%	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
1,2-Dichloropropane	ND	0.250	0.500	ug/L	1		ND				30%	
1,3-Dichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
2,2-Dichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
1,1-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
cis-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
Ethylbenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Hexachlorobutadiene	ND	2.50	5.00	ug/L	1		ND				30%	
2-Hexanone	ND	10.0	10.0	ug/L	1		ND				30%	
Isopropylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
4-Isopropyltoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Methylene chloride	ND	5.00	10.0	ug/L	1		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L ug/L	1		ND				30%	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L ug/L	1		ND				30%	
Naphthalene	ND	2.00	2.00	ug/L ug/L	1		ND				30%	
n-Propylbenzene	ND	0.250	0.500	ug/L ug/L	1		ND				30%	
**	ND ND	0.230	1.00	ug/L ug/L	1		ND ND				30%	
Styrene 1,1,1,2-Tetrachloroethane	ND ND	0.300	0.400	_	1		ND ND				30%	
1,1,2,2-Tetrachloroethane	ND ND	0.200	0.400	ug/L	1		ND ND				30%	
* * *				ug/L								
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Toluene	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Memberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	IIIpoulius	Dy LFA 0	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0828 - EPA 5030C							Wa	ter				
Duplicate (23B0828-DUP1)			Prepared	1: 02/22/23	11:21 Anal	yzed: 02/22/	/23 20:44					
QC Source Sample: Non-SDG (A3	B0522-02)											
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
n,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			104 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	0-120 %		"					
_	20-GW-70 (A3B0674-01)										
QC Source Sample: MW1-2023022	20-GW-70 ((A3B0674-01)										
EPA 8260D Acetone	ND	10.0	20.0	ug/L	1		ND				200/	
Acrylonitrile	ND	1.00	2.00	ug/L	-							
Renzene Benzene	ND				1						30%	
JCHZCHC	ND			_	1		ND				30%	
Promohanzana	ND	0.100	0.200	ug/L	1		ND ND				30% 30%	
Bromobenzene Bromochloromethane	ND	0.100 0.250	0.200 0.500	ug/L ug/L	1 1		ND ND ND	 	 		30% 30% 30%	
Bromochloromethane	ND ND	0.100 0.250 0.500	0.200 0.500 1.00	ug/L ug/L ug/L	1 1 1		ND ND ND				30% 30% 30% 30%	
Bromochloromethane Bromodichloromethane	ND ND ND	0.100 0.250 0.500 0.500	0.200 0.500 1.00 1.00	ug/L ug/L ug/L ug/L	1 1 1 1	 	ND ND ND ND	 	 	 	30% 30% 30% 30% 30%	
Bromochloromethane Bromodichloromethane Bromoform	ND ND ND ND	0.100 0.250 0.500 0.500 0.500	0.200 0.500 1.00 1.00	ug/L ug/L ug/L ug/L ug/L	1 1 1 1	 	ND ND ND ND ND		 	 	30% 30% 30% 30% 30% 30%	
Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ND ND ND ND	0.100 0.250 0.500 0.500 0.500 5.00	0.200 0.500 1.00 1.00 1.00 5.00	ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1	 	ND ND ND ND ND ND ND ND		 	 	30% 30% 30% 30% 30% 30% 30%	
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK)	ND ND ND ND ND	0.100 0.250 0.500 0.500 0.500 5.00	0.200 0.500 1.00 1.00 1.00 5.00	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1	 	ND		 	 	30% 30% 30% 30% 30% 30% 30% 30%	
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) 1-Butylbenzene	ND ND ND ND ND ND ND ND	0.100 0.250 0.500 0.500 0.500 5.00 5.00 0.500	0.200 0.500 1.00 1.00 1.00 5.00 10.0 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1	 	ND N		 	 	30% 30% 30% 30% 30% 30% 30% 30%	
Bromochloromethane Bromodichloromethane Bromoform Bromomethane -Butanone (MEK) -Butylbenzene ec-Butylbenzene	ND	0.100 0.250 0.500 0.500 0.500 5.00 5.00 0.500	0.200 0.500 1.00 1.00 5.00 10.0 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1	 	ND N	 	 	 	30% 30% 30% 30% 30% 30% 30% 30% 30%	
Bromochloromethane Bromodichloromethane Bromoform Bromomethane B-Butanone (MEK) B-Butylbenzene Be-Butylbenzene Bert-Butylbenzene	ND	0.100 0.250 0.500 0.500 0.500 5.00 5.00 0.500 0.500	0.200 0.500 1.00 1.00 1.00 5.00 10.0 1.00 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1	 	ND N	 	 	 	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	
Bromochloromethane Bromodichloromethane Bromoform Bromomethane B-Butanone (MEK) B-Butylbenzene Butylbenzene ec-Butylbenzene Carbon disulfide	ND N	0.100 0.250 0.500 0.500 0.500 5.00 5.00 0.500 0.500 0.500 5.00	0.200 0.500 1.00 1.00 1.00 5.00 10.0 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1	 	ND N	 	 	 	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	
Bromochloromethane Bromodichloromethane Bromoform Bromomethane P-Butanone (MEK) n-Butylbenzene ee-Butylbenzene ert-Butylbenzene Carbon disulfide Carbon tetrachloride	ND N	0.100 0.250 0.500 0.500 0.500 5.00 5.00 0.500 0.500 5.00	0.200 0.500 1.00 1.00 1.00 5.00 10.0 1.00 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1	 	ND N		 		30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	
Bromochloromethane Bromodichloromethane Bromoform Bromomethane P-Butanone (MEK) n-Butylbenzene sec-Butylbenzene ert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene	ND N	0.100 0.250 0.500 0.500 0.500 5.00 5.00 0.500 0.500 0.500 0.500 0.500	0.200 0.500 1.00 1.00 1.00 5.00 10.0 1.00 1.00 1.00 1.00 1.00 0.500	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1		ND N		 		30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	
Bromochloromethane Bromodichloromethane Bromoform Bromomethane B-Butanone (MEK) B-Butylbenzene ec-Butylbenzene ert-Butylbenzene Carbon disulfide Carbon tetrachloride	ND N	0.100 0.250 0.500 0.500 0.500 5.00 5.00 0.500 0.500 5.00	0.200 0.500 1.00 1.00 1.00 5.00 10.0 1.00 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1	 	ND N				30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Orç	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0828 - EPA 5030C							Wat	er				
Duplicate (23B0828-DUP2)			Prepared	: 02/22/23	11:21 Anal	yzed: 02/22/	/23 21:06					
QC Source Sample: MW1-2023022	20-GW-70	(A3B0674-01)										
2-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
I-Chlorotoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dibromo-3-chloropropane	ND	2.50	5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND	0.250	0.500	ug/L	1		ND				30%	
Dibromomethane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Dichlorodifluoromethane	ND	0.500	1.00	ug/L	1		ND				30%	
,1-Dichloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
,2-Dichloroethane (EDC)	ND	0.200	0.400	ug/L	1		ND				30%	
,1-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
is-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
rans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
,2-Dichloropropane	ND	0.250	0.500	ug/L	1		ND				30%	
,3-Dichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
,2-Dichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
,1-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
is-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
rans-1,3-Dichloropropene	ND	0.500	1.00	ug/L	1		ND				30%	
Ethylbenzene	ND	0.250	0.500	ug/L	1		ND				30%	
Iexachlorobutadiene	ND	2.50	5.00	ug/L	1		ND				30%	
-Hexanone	ND	10.0	10.0	ug/L	1		ND				30%	
sopropylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
-Isopropyltoluene	ND	0.500	1.00	ug/L	1		ND				30%	
Methylene chloride	ND	5.00	10.0	ug/L	1		ND				30%	
-Methyl-2-pentanone (MiBK)	ND	5.00	10.0	ug/L	1		ND				30%	
Methyl tert-butyl ether (MTBE)	ND	0.500	1.00	ug/L	1		ND				30%	
Vaphthalene	ND	2.00	2.00	ug/L	1		ND				30%	
-Propylbenzene	ND	0.250	0.500	ug/L	1		ND				30%	
tyrene	ND	0.500	1.00	ug/L	1		ND				30%	
,1,1,2-Tetrachloroethane	ND	0.200	0.400	ug/L	1		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0828 - EPA 5030C							Wa	ter				
Duplicate (23B0828-DUP2)			Prepared	1: 02/22/23	11:21 Anal	lyzed: 02/22/	/23 21:06					
QC Source Sample: MW1-2023022	20-GW-70 ((A3B0674-01)										
1,1,2,2-Tetrachloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Toluene	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,3-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,4-Trichlorobenzene	ND	1.00	2.00	ug/L	1		ND				30%	
1,1,1-Trichloroethane	ND	0.200	0.400	ug/L	1		ND				30%	
1,1,2-Trichloroethane	ND	0.250	0.500	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND	1.00	2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.500	1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.500	1.00	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
m,p-Xylene	ND	0.500	1.00	ug/L	1		ND				30%	
o-Xylene	ND	0.250	0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 98 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			104 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	0-120 %		"					
Matrix Spike (23B0828-MS1)			Prepared	l: 02/22/23	11:21 Anal	lyzed: 02/22/	/23 21:28					
QC Source Sample: Non-SDG (A3	B0730-01)											
EPA 8260D												
Acetone	41.6	10.0	20.0	ug/L	1	40.0	ND	104	39-160%			ICV-
Acrylonitrile	16.8	1.00	2.00	ug/L	1	20.0	ND	84	63-135%			
Benzene	19.6	0.100	0.200	ug/L	1	20.0	ND	98	79-120%			
Bromobenzene	16.9	0.250	0.500	ug/L	1	20.0	ND	85	80-120%			
Bromochloromethane	20.8	0.500	1.00	ug/L	1	20.0	ND	104	78-123%			
Bromodichloromethane	22.8	0.500	1.00	ug/L	1	20.0	ND	114	79-125%			
Bromoform	23.0	0.500	1.00	ug/L	1	20.0	ND	115	66-130%			
				<i>5</i> –								

Apex Laboratories

Bromomethane

n-Butylbenzene

sec-Butylbenzene

2-Butanone (MEK)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

155

87

62

70

53-141%

56-143%

75-128%

77-126%

Philip Merenberg

30.9

34.8

12.4

14.0

5.00

5.00

0.500

0.500

5.00

10.0

1.00

1.00

ug/L

ug/L

ug/L

ug/L

1

1

1

1

20.0

40.0

20.0

20.0

ND

ND

ND

ND

Q-01

Q-01

Q-01

ICV-01

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

RPD Detection Reporting Spike Source % REC % REC Result Units Dilution RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 23B0828 - EPA 5030C Water Matrix Spike (23B0828-MS1) Prepared: 02/22/23 11:21 Analyzed: 02/22/23 21:28 QC Source Sample: Non-SDG (A3B0730-01) tert-Butylbenzene 13.8 0.500 1.00 1 20.0 ND 69 Q-01 ug/L 78-124% 10.0 20.0 Carbon disulfide 22.2 5.00 ug/L 1 ND 111 64-133% Carbon tetrachloride 26.1 0.500 1.00 ug/L 1 20.0 ND 130 72-136% Q-54 Chlorobenzene 19.4 0.250 0.500 ug/L 1 20.0 ND 97 80-120% Chloroethane 41.1 5.00 5.00 1 20.0 ND 205 60-138% Q-42 ug/L ---20.0 Chloroform 22.4 0.500 1.00 ug/L 1 0.880 107 79-124% Chloromethane 19.4 2.50 5.00 1 20.0 ND 97 50-139% ug/L 20.0 2-Chlorotoluene 16.8 0.500 1.00 ug/L 1 ND 84 79-122% 4-Chlorotoluene 15.8 0.500 1.00 ug/L 1 20.0 ND 79 78-122% Dibromochloromethane 21.8 0.500 1.00 ug/L 1 20.0 ND 109 74-126% 1,2-Dibromo-3-chloropropane 15.9 2.50 5.00 ug/L 1 20.0 ND 80 62-128% 1,2-Dibromoethane (EDB) 0.250 0.500 20.0 77-121% 19.6 ug/L 1 ND 98 20.0 Dibromomethane 21.4 0.500 1.00 ug/L 1 ND 107 79-123% 17.7 0.250 0.500 20.0 1,2-Dichlorobenzene ug/L 1 ND 88 80-120% 1,3-Dichlorobenzene 16.9 0.250 0.500 ug/L 1 20.0 ND 84 80-120% 1.4-Dichlorobenzene 17.0 0.250 0.500 ug/L 1 20.0 ND 85 79-120% ___ Dichlorodifluoromethane 26.8 0.500 1.00 ug/L 1 20.0 ND 134 32-152% 20.6 20.0 1,1-Dichloroethane 0.200 0.400ND 103 77-125% ug/L 1 20.0 73-128% 1,2-Dichloroethane (EDC) 23.4 0.200 0.400ug/L 1 ND 117 0.200 0.400 1,1-Dichloroethene 20.0 ND 71-131% 23.6 ug/L 1 118 20.0 90 78-123% cis-1,2-Dichloroethene 18.1 0.200 0.400 ug/L 1 ND trans-1,2-Dichloroethene 19.0 0.200 0.400 ug/L 1 20.0 ND 95 75-124% 1,2-Dichloropropane 18.6 0.250 0.500 ug/L 1 20.0 ND 93 78-122% 20.0 95 1,3-Dichloropropane 18.9 0.500 1.00 ND 80-120% ug/L 1 0.500 20.0 60-139% 2,2-Dichloropropane 20.6 1.00 ug/L 1 ND 103 19.9 20.0 0.500 1.00 ug/L ND 100 79-125% 1,1-Dichloropropene 1 19.1 0.500 1.00 20.0 ND 95 75-124% cis-1,3-Dichloropropene ug/L 1 20.0 73-127% trans-1,3-Dichloropropene 21.0 0.500 1.00 ug/L 1 ND 105

Apex Laboratories

Ethylbenzene

2-Hexanone

Hexachlorobutadiene

Isopropylbenzene

4-Isopropyltoluene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

98

54

73

89

68

79-121%

66-134%

57-139%

72-131%

77-127%

Philip Meinberg

19.5

10.7

29.2

17.7

13.5

0.250

2.50

10.0

0.500

0.500

0.500

5.00

10.0

1.00

1.00

ug/L

ug/L

ug/L

ug/L

ug/L

1

1

1

1

1

20.0

20.0

40.0

20.0

20.0

ND

ND

ND

ND

ND

Q-01

Q-01

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Result Units Dilution % REC RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 23B0828 - EPA 5030C Water Matrix Spike (23B0828-MS1) Prepared: 02/22/23 11:21 Analyzed: 02/22/23 21:28 QC Source Sample: Non-SDG (A3B0730-01) Methylene chloride 19.1 5.00 10.0 1 20.0 ND 95 74-124% ug/L 10.0 40.0 4-Methyl-2-pentanone (MiBK) 34.6 5.00 ug/L 1 ND 87 67-130% ug/L Methyl tert-butyl ether (MTBE) 17.3 0.500 1.00 1 20.0 ND 87 71-124% Q-54c Naphthalene 13.4 2.00 2.00 ug/L 1 20.0 ND 67 61-128% 16.3 0.250 0.500 1 20.0 ND 82 76-126% n-Propylbenzene ug/L 20.0 93 Styrene 18.6 0.500 1.00 ug/L 1 ND 78-123% ug/L 1,1,1,2-Tetrachloroethane 19.4 0.200 0.4001 20.0 ND 97 78-124% 1,1,2,2-Tetrachloroethane 14.2 0.500 20.0 71 0.250 ug/L 1 ND 71-121% Tetrachloroethene (PCE) 19.0 0.200 0.400 ug/L 1 20.0 ND 95 74-129% Toluene 20.0 0.500 1.00 ug/L 1 20.0 0.500 97 80-121% 1,2,3-Trichlorobenzene 12.6 1.00 2.00 ug/L 1 20.0 ND 63 69-129% Q-01 Q-01 1.00 2.00 20.0 69-130% 1,2,4-Trichlorobenzene 10.8 ug/L 1 ND 54 20.0 1,1,1-Trichloroethane 23.9 0.200 0.400ug/L 1 ND 120 74-131% 1,1,2-Trichloroethane 19.0 0.250 0.500 20.0 95 ug/L 1 ND 80-120% ug/L Trichloroethene (TCE) 21.5 0.200 0.400 1 20.0 ND 107 79-123% Trichlorofluoromethane 30.1 1.00 2.00 ug/L 1 20.0 ND 151 65-141% ___ O-54a 1,2,3-Trichloropropane 19.1 0.500 1.00 ug/L 1 20.0 ND 95 73-122% 18.0 20.0 87 1,2,4-Trimethylbenzene 0.500 1.00 0.580 76-124% ug/L 1 1,3,5-Trimethylbenzene 20.0 82 75-124% 16.3 0.500 1.00 ug/L 1 ND 0.200 0.400 Vinyl chloride 24.1 20.0 ND 121 58-137% ug/L 1 39.7 0.500 1.00 40.0 0.820 97 80-121% m,p-Xylene ug/L 1 0.250 o-Xylene 17.8 0.500 ug/L 1 20.0 0.280 88 78-122% 97% 1x Surr: 1,4-Difluorobenzene (Surr) Recovery: Limits: 80-120 % Dilution:

80-120 %

80-120 %

98 %

89 %

Apex Laboratories

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vo	latile Orga	nic Com	pounas b	y EPA 826	OUD SIM					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23C0033 - EPA 5030C							Wa	ter				
Blank (23C0033-BLK1)			Prepared	: 03/01/23	11:36 Anal	yzed: 03/01/	/23 13:58					
EPA 8260D SIM												
Benzene	ND	0.0500	0.100	ug/L	1							
Toluene	ND	0.0500	0.100	ug/L	1							
Ethylbenzene	ND	0.0500	0.100	ug/L	1							
m,p-Xylene	ND	0.100	0.200	ug/L	1							
o-Xylene	ND	0.0500	0.100	ug/L	1							
1,2,4-Trimethylbenzene	ND	0.0500	0.100	ug/L	1							
1,3,5-Trimethylbenzene	ND	0.0500	0.100	ug/L	1							
Chloroform	ND	0.0500	0.100	ug/L	1							
1,2-Dibromo-3-chloropropane	ND	0.100	0.200	ug/L	1							
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1							
1,1-Dichloroethane	ND	0.0100	0.0200	ug/L	1							
1,2-Dichloroethane (EDC)	ND	0.0100	0.0200	ug/L	1							
1,1-Dichloroethene	ND	0.0100	0.0200	ug/L	1							
cis-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1							
trans-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1							
1,2-Dichloropropane	ND	0.0100	0.0200	ug/L	1							
cis-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1							
trans-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND	0.0100	0.0200	ug/L	1							
1,1,2,2-Tetrachloroethane	ND	0.0100	0.0200	ug/L	1							
Tetrachloroethene (PCE)	ND	0.0100	0.0200	ug/L	1							
Trichloroethene (TCE)	ND	0.0100	0.0200	ug/L	1							
1,2,3-Trichloropropane	ND	0.0500	0.100	ug/L	1							
Vinyl chloride	ND	0.0100	0.0200	ug/L	1							
1,1,2-Trichloroethane	ND	0.0100	0.0200	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)	1.2	Recov		Limits: 80		Dila	ıtion: 1x					
Toluene-d8 (Surr)		RELOV	100 %)-120 %)-120 %	טווו	uton. 1x					
4-Bromofluorobenzene (Surr)			98 %)-120 %)-120 %		"					
4-bromojiuorovenzene (Surr)			90 70	80	-120 70							
LCS (23C0033-BS1)			Prepared	: 03/01/23	11:36 Anal	yzed: 03/01/	/23 13:04					
EPA 8260D SIM												
Benzene	0.215	0.0500	0.100	ug/L	1	0.200		108	80-120%			
Toluene	0.187	0.0500	0.100	ug/L	1	0.200		94	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Orga	nic Com	pounds b	y EPA 826	SOD SIM					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23C0033 - EPA 5030C							Wa	ter				
LCS (23C0033-BS1)			Prepared	: 03/01/23	11:36 Ana	lyzed: 03/01	/23 13:04					
Ethylbenzene	0.184	0.0500	0.100	ug/L	1	0.200		92	80-120%			
m,p-Xylene	0.350	0.100	0.200	ug/L	1	0.400		88	80-120%			
o-Xylene	0.177	0.0500	0.100	ug/L	1	0.200		88	80-120%			
1,2,4-Trimethylbenzene	0.171	0.0500	0.100	ug/L	1	0.200		86	80-120%			
1,3,5-Trimethylbenzene	0.171	0.0500	0.100	ug/L	1	0.200		86	80-120%			
Chloroform	0.213	0.0500	0.100	ug/L	1	0.200		107	80-120%			
1,2-Dibromo-3-chloropropane	0.219	0.100	0.200	ug/L	1	0.200		110	80-120%			
1,2-Dibromoethane (EDB)	0.186	0.0100	0.0200	ug/L	1	0.200		93	80-120%			
1,1-Dichloroethane	0.215	0.0100	0.0200	ug/L	1	0.200		107	80-120%			
1,2-Dichloroethane (EDC)	0.210	0.0100	0.0200	ug/L	1	0.200		105	80-120%			
1,1-Dichloroethene	0.220	0.0100	0.0200	ug/L	1	0.200		110	80-120%			
cis-1,2-Dichloroethene	0.214	0.0100	0.0200	ug/L	1	0.200		107	80-120%			
trans-1,2-Dichloroethene	0.218	0.0100	0.0200	ug/L	1	0.200		109	80-120%			
1,2-Dichloropropane	0.214	0.0100	0.0200	ug/L	1	0.200		107	80-120%			
cis-1,3-Dichloropropene	0.193	0.0100	0.0200	ug/L	1	0.200		97	80-120%			
trans-1,3-Dichloropropene	0.194	0.0100	0.0200	ug/L	1	0.200		97	80-120%			
Methyl tert-butyl ether (MTBE)	0.191	0.0100	0.0200	ug/L	1	0.200		96	80-120%			
1,1,2,2-Tetrachloroethane	0.252	0.0100	0.0200	ug/L	1	0.200		126	80-120%			Q-5
Tetrachloroethene (PCE)	0.190	0.0100	0.0200	ug/L	1	0.200		95	80-120%			
Trichloroethene (TCE)	0.198	0.0100	0.0200	ug/L	1	0.200		99	80-120%			
1,2,3-Trichloropropane	0.211	0.0500	0.100	ug/L	1	0.200		106	80-120%			
Vinyl chloride	0.233	0.0100	0.0200	ug/L	1	0.200		117	80-120%			
1,1,2-Trichloroethane	0.194	0.0100	0.0200	ug/L	1	0.200		97	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recove	ery: 102 %	Limits: 80	0-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	0-120 %		"					
Duplicate (23C0033-DUP1)			Prepared	: 03/01/23	11:36 Ana	lyzed: 03/01	/23 15:19					
OC Source Sample: MW1-2023022	20-GW-70 (A3B0674-01)										
EPA 8260D SIM												
Benzene	ND	0.0500	0.100	ug/L	1		ND				30%	
Toluene	ND	0.0500	0.100	ug/L	1		ND				30%	
Ethylbenzene	ND	0.0500	0.100	ug/L	1		ND				30%	
m,p-Xylene	ND	0.100	0.200	ug/L	1		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Orga	nic Com	pounds b	y EPA 826	OD SIM					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23C0033 - EPA 5030C							Wa	ter				
Duplicate (23C0033-DUP1)			Prepared	1: 03/01/23	11:36 Anal	yzed: 03/01/	/23 15:19					
QC Source Sample: MW1-2023022	20-GW-70 (A	3B0674-01)										
o-Xylene	ND	0.0500	0.100	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND	0.0500	0.100	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND	0.0500	0.100	ug/L	1		ND				30%	
Chloroform	0.0780	0.0500	0.100	ug/L	1		0.0838			7	30%	I
1,2-Dibromo-3-chloropropane	ND	0.100	0.200	ug/L	1		ND				30%	
1,2-Dibromoethane (EDB)	ND	0.0100	0.0200	ug/L	1		ND				30%	
1,1-Dichloroethane	ND	0.0200	0.0200	ug/L	1		ND				30%	
1,2-Dichloroethane (EDC)	ND	0.0200	0.0200	ug/L	1		ND				30%	
1,1-Dichloroethene	ND	0.0100	0.0200	ug/L	1		ND				30%	
eis-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1		ND				30%	
rans-1,2-Dichloroethene	ND	0.0100	0.0200	ug/L	1		ND				30%	
,2-Dichloropropane	ND	0.0100	0.0200	ug/L	1		ND				30%	
cis-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1		ND				30%	
rans-1,3-Dichloropropene	ND	0.0100	0.0200	ug/L	1		ND				30%	
Methyl tert-butyl ether (MTBE)	ND	0.0100	0.0200	ug/L	1		ND				30%	
1,1,2,2-Tetrachloroethane	ND	0.0100	0.0200	ug/L	1		ND				30%	
Tetrachloroethene (PCE)	ND	0.0100	0.0200	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND	0.0100	0.0200	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND	0.0500	0.100	ug/L	1		ND				30%	
Vinyl chloride	ND	0.0100	0.0200	ug/L	1		ND				30%	
,1,2-Trichloroethane	ND	0.0100	0.0200	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recove	ry: 105 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80	0-120 %		"					
Matrix Spike (23C0033-MS1)			Prepared	1: 03/01/23	11:36 Anal	yzed: 03/01/	/23 16:13					
QC Source Sample: MW2-2023022	20-GW-60 (A	3B0674-02)										
EPA 8260D SIM												
Benzene	0.446	0.0500	0.100	ug/L	1	0.200	0.176	135	79-120%			Q-0
Toluene	0.241	0.0500	0.100	ug/L	1	0.200	ND	121	80-121%			
Ethylbenzene	0.206	0.0500	0.100	ug/L	1	0.200	ND	103	79-121%			
n,p-Xylene	0.387	0.100	0.200	ug/L	1	0.400	ND	97	80-121%			
o-Xylene	0.190	0.0500	0.100	ug/L	1	0.200	ND	95	78-122%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D SIM

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23C0033 - EPA 5030C							Wa	ter				
Matrix Spike (23C0033-MS1)			Prepared	: 03/01/23	11:36 Anal	lyzed: 03/01/	/23 16:13					
QC Source Sample: MW2-2023022	20-GW-60 (A3B0674-02)										
1,2,4-Trimethylbenzene	0.172	0.0500	0.100	ug/L	1	0.200	ND	86	76-124%			
1,3,5-Trimethylbenzene	0.179	0.0500	0.100	ug/L	1	0.200	ND	90	75-124%			
Chloroform	0.271	0.0500	0.100	ug/L	1	0.200	ND	136	79-124%			Q-01
1,2-Dibromo-3-chloropropane	0.184	0.100	0.200	ug/L	1	0.200	ND	92	62-128%			Ja
1,2-Dibromoethane (EDB)	0.209	0.0100	0.0200	ug/L	1	0.200	ND	104	77-121%			
1,1-Dichloroethane	0.273	0.0100	0.0200	ug/L	1	0.200	ND	136	77-125%			Q-01
1,2-Dichloroethane (EDC)	0.241	0.0100	0.0200	ug/L	1	0.200	ND	121	73-128%			
1,1-Dichloroethene	0.283	0.0100	0.0200	ug/L	1	0.200	ND	134	71-131%			Q-01
cis-1,2-Dichloroethene	0.259	0.0100	0.0200	ug/L	1	0.200	ND	129	78-123%			Q-01
trans-1,2-Dichloroethene	0.267	0.0100	0.0200	ug/L	1	0.200	ND	134	75-124%			Q-01
1,2-Dichloropropane	0.256	0.0100	0.0200	ug/L	1	0.200	ND	128	78-122%			Q-01
cis-1,3-Dichloropropene	0.217	0.0100	0.0200	ug/L	1	0.200	ND	108	75-124%			
trans-1,3-Dichloropropene	0.216	0.0100	0.0200	ug/L	1	0.200	ND	108	73-127%			
Methyl tert-butyl ether (MTBE)	0.214	0.0100	0.0200	ug/L	1	0.200	ND	107	71-124%			
1,1,2,2-Tetrachloroethane	0.228	0.0100	0.0200	ug/L	1	0.200	ND	114	71-121%			Q-54b
Tetrachloroethene (PCE)	0.227	0.0100	0.0200	ug/L	1	0.200	ND	113	74-129%			
Trichloroethene (TCE)	0.241	0.0100	0.0200	ug/L	1	0.200	ND	121	79-123%			
1,2,3-Trichloropropane	0.208	0.0500	0.100	ug/L	1	0.200	ND	104	73-122%			
Vinyl chloride	0.326	0.0100	0.0200	ug/L	1	0.200	ND	163	58-137%			Q-01
1,1,2-Trichloroethane	0.212	0.0100	0.0200	ug/L	1	0.200	ND	106	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recove	ery: 105 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	0-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units % REC RPD Limit Amount Result Limits Limit Notes Batch 23B0916 - EPA 3510C (Acid/Base Neutral) Water Blank (23B0916-BLK1) Prepared: 02/27/23 07:33 Analyzed: 02/27/23 17:55 EPA 8270E Acenaphthene ND 0.0100 0.0200 ug/L ND 0.0100 0.0200 Acenaphthylene ug/L 1 Anthracene ND 0.0100 0.0200 ug/L 1 ND 0.0100 0.0200 Benz(a)anthracene ug/L 1 ND 0.0150 0.0300 Benzo(a)pyrene ug/L 1 ug/L 0.0150 Benzo(b)fluoranthene ND 0.0300 1 ---Benzo(k)fluoranthene ND 0.0150 0.0300 ug/L 1 0.0100 0.0200 ND Benzo(g,h,i)perylene ug/L 1 Chrysene ND 0.0100 0.0200 ug/L 1 Dibenz(a,h)anthracene ND 0.0100 0.0200 1 ug/L Fluoranthene ND 0.0100 0.0200ug/L 1 ND 0.0100 Fluorene 0.0200 1 ug/L ---0.0100 Indeno(1,2,3-cd)pyrene ND 0.0200 ug/L 1 ND 0.0200 0.0400 1-Methylnaphthalene ug/L 1 2-Methylnaphthalene ND 0.02000.0400ug/L 1 Naphthalene ND 0.0200 0.0400 ug/L 1 ------Phenanthrene ND 0.01000.0200ug/L 1 ND 0.0100 0.0200 Pyrene 1 ug/L ------Carbazole ND 0.0150 0.0300 ug/L 1 Dibenzofuran ND 0.0100 0.0200 ug/L 1 2-Chlorophenol ND 0.05000.100 ug/L 1 4-Chloro-3-methylphenol ND 0.100 0.200 ug/L 1 0.05002,4-Dichlorophenol ND 0.100 ug/L 1 2,4-Dimethylphenol ND 0.0500 0.100 ug/L 1 0.250 0.500 2,4-Dinitrophenol ND ug/L 1 4,6-Dinitro-2-methylphenol ND 0.250 0.500 ug/L 1 2-Methylphenol ND 0.02500.0500 ug/L 1 3+4-Methylphenol(s) ND 0.0250 0.0500 ug/L 1 ------ND 0.1000.200 2-Nitrophenol ug/L 1 4-Nitrophenol ND 0.1000.200 ug/L 1

Apex Laboratories

Pentachlorophenol (PCP)

2,3,4,6-Tetrachlorophenol

Phenol

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

ND

ND

ND

0.100

0.200

0.0500

0.200

0.400

0.100

ug/L

ug/L

ug/L

1

1

1

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: 3140 NE Broadway Street Project Number: M0830.03.006 Portland, OR 97232 Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS Semivolatile Organic Compounds by EPA 8270E

St. Helens Lagoon

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes

Batch 23B0916 - EPA 3510C (A	Acid/Base N	eutral)					Wa	ater		
Blank (23B0916-BLK1)			Prepared: (02/27/23 07	:33 Anal	yzed: 02/27	/23 17:55			
2,3,5,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1				 	
2,4,5-Trichlorophenol	ND	0.0500	0.100	ug/L	1				 	
2,4,6-Trichlorophenol	ND	0.0500	0.100	ug/L	1				 	
Bis(2-ethylhexyl)phthalate	ND	0.200	0.400	ug/L	1				 	
Butyl benzyl phthalate	ND	0.200	0.400	ug/L	1				 	
Diethylphthalate	ND	0.200	0.400	ug/L	1				 	
Dimethylphthalate	ND	0.200	0.400	ug/L	1				 	
Di-n-butylphthalate	ND	0.200	0.400	ug/L	1				 	
Di-n-octyl phthalate	ND	0.200	0.400	ug/L	1				 	
N-Nitrosodimethylamine	ND	0.0250	0.0500	ug/L	1				 	
N-Nitroso-di-n-propylamine	ND	0.0250	0.0500	ug/L	1				 	
N-Nitrosodiphenylamine	ND	0.0250	0.0500	ug/L	1				 	
Bis(2-Chloroethoxy) methane	ND	0.0250	0.0500	ug/L	1				 	
Bis(2-Chloroethyl) ether	ND	0.0250	0.0500	ug/L	1				 	
2,2'-Oxybis(1-Chloropropane)	ND	0.0250	0.0500	ug/L	1				 	
Hexachlorobenzene	ND	0.0100	0.0200	ug/L	1				 	
Hexachlorobutadiene	ND	0.0250	0.0500	ug/L	1				 	 Q-30
Hexachlorocyclopentadiene	ND	0.0500	0.100	ug/L	1				 	
Hexachloroethane	ND	0.0250	0.0500	ug/L	1				 	 Q-30
2-Chloronaphthalene	ND	0.0100	0.0200	ug/L	1				 	
1,2,4-Trichlorobenzene	ND	0.0250	0.0500	ug/L	1				 	 Q-30
4-Bromophenyl phenyl ether	ND	0.0250	0.0500	ug/L	1				 	
4-Chlorophenyl phenyl ether	ND	0.0250	0.0500	ug/L	1				 	
Aniline	ND	0.0500	0.100	ug/L	1				 	
4-Chloroaniline	ND	0.0250	0.0500	ug/L	1				 	
2-Nitroaniline	ND	0.200	0.400	ug/L	1				 	
3-Nitroaniline	ND	0.200	0.400	ug/L	1				 	
4-Nitroaniline	ND	0.200	0.400	ug/L	1				 	
Nitrobenzene	ND	0.100	0.200	ug/L	1				 	
2,4-Dinitrotoluene	ND	0.100	0.200	ug/L	1				 	
2,6-Dinitrotoluene	ND	0.100	0.200	ug/L	1				 	
Benzoic acid	ND	1.25	2.50	ug/L	1				 	
Benzyl alcohol	ND	0.100	0.200	ug/L	1				 	
Isophorone	ND	0.0250	0.0500	ug/L	1				 	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

		Sei	mivolatile	Organic	Compour	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0916 - EPA 3510C (A	Acid/Base	Neutral)					Wa	ter				
Blank (23B0916-BLK1)			Prepared	1: 02/27/23	07:33 Ana	lyzed: 02/27	/23 17:55					
Azobenzene (1,2-DPH)	ND	0.0250	0.0500	ug/L	1							
Bis(2-Ethylhexyl) adipate	ND	0.250	0.500	ug/L	1							
3,3'-Dichlorobenzidine	ND	0.500	1.00	ug/L	1							Q-5
1,2-Dinitrobenzene	ND	0.250	0.500	ug/L	1							
1,3-Dinitrobenzene	ND	0.250	0.500	ug/L	1							
1,4-Dinitrobenzene	ND	0.250	0.500	ug/L	1							
Pyridine	ND	0.100	0.200	ug/L	1							
1,2-Dichlorobenzene	ND	0.0250	0.0500	ug/L	1							Q-3
1,3-Dichlorobenzene	ND	0.0250	0.0500	ug/L	1							Q-3
1,4-Dichlorobenzene	ND	0.0250	0.0500	ug/L	1							Q-3
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 66 %	Limits: 4	4-120 %	Dilı	ution: 1x					Q-41
2-Fluorobiphenyl (Surr)			48 %	44	4-120 %		"					
Phenol-d6 (Surr)			22 %	10	0-133 %		"					
p-Terphenyl-d14 (Surr)			84 %	50	0-134 %		"					
2-Fluorophenol (Surr)			35 %	19	0-120 %		"					
2,4,6-Tribromophenol (Surr)			67 %	43	3-140 %		"					
LCS (23B0916-BS1)			Prepared	1: 02/27/23	07:33 Anal	lyzed: 02/27	/23 18:30					
EPA 8270E												
Acenaphthene	2.53	0.0400	0.0800	ug/L	4	4.00		63	47-122%			
Acenaphthylene	2.85	0.0400	0.0800	ug/L	4	4.00		71	41-130%			
Anthracene	3.54	0.0400	0.0800	ug/L	4	4.00		88	57-123%			
Benz(a)anthracene	3.80	0.0400	0.0800	ug/L	4	4.00		95	58-125%			
Benzo(a)pyrene	3.86	0.0600	0.120	ug/L	4	4.00		97	54-128%			
Benzo(b)fluoranthene	3.94	0.0600	0.120	ug/L	4	4.00		99	53-131%			
Benzo(k)fluoranthene	3.96	0.0600	0.120	ug/L	4	4.00		99	57-129%			
Benzo(g,h,i)perylene	3.63	0.0400	0.0800	ug/L	4	4.00		91	50-134%			
Chrysene	3.65	0.0400	0.0800	ug/L	4	4.00		91	59-123%			
Dibenz(a,h)anthracene	3.80	0.0400	0.0800	ug/L	4	4.00		95	51-134%			
Fluoranthene	3.87	0.0400	0.0800	ug/L	4	4.00		97	57-128%			
Fluorene	3.09	0.0400	0.0800	ug/L	4	4.00		77	52-124%			
Indeno(1,2,3-cd)pyrene	3.83	0.0400	0.0800	ug/L	4	4.00		96	52-134%			
1-Methylnaphthalene	2.00	0.0800	0.160	ug/L	4	4.00		50	41-120%			
2-Methylnaphthalene	2.00	0.0800	0.160	ug/L	4	4.00		50	40-121%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0916 - EPA 3510C (Acid/Base	Neutral)					Wa	ter				
LCS (23B0916-BS1)			Prepared	: 02/27/23	07:33 Anal	yzed: 02/27/	/23 18:30					
Naphthalene	1.93	0.0800	0.160	ug/L	4	4.00		48	40-121%			
Phenanthrene	3.28	0.0400	0.0800	ug/L	4	4.00		82	59-120%			
Pyrene	3.82	0.0400	0.0800	ug/L	4	4.00		95	57-126%			
Carbazole	3.99	0.0600	0.120	ug/L	4	4.00		100	60-122%			
Dibenzofuran	2.88	0.0400	0.0800	ug/L	4	4.00		72	53-120%			
2-Chlorophenol	2.92	0.200	0.400	ug/L	4	4.00		73	38-120%			
4-Chloro-3-methylphenol	3.55	0.400	0.800	ug/L	4	4.00		89	52-120%			
2,4-Dichlorophenol	3.33	0.200	0.400	ug/L	4	4.00		83	47-121%			
2,4-Dimethylphenol	3.04	0.200	0.400	ug/L	4	4.00		76	31-124%			
2,4-Dinitrophenol	3.81	1.00	2.00	ug/L	4	4.00		95	23-143%			Q-41
4,6-Dinitro-2-methylphenol	3.83	1.00	2.00	ug/L	4	4.00		96	44-137%			Q-41
2-Methylphenol	2.76	0.100	0.200	ug/L	4	4.00		69	30-120%			
3+4-Methylphenol(s)	2.60	0.100	0.200	ug/L	4	4.00		65	29-120%			
2-Nitrophenol	3.75	0.400	0.800	ug/L	4	4.00		94	47-123%			
4-Nitrophenol	1.65	0.400	0.800	ug/L	4	4.00		41	10-120%			
Pentachlorophenol (PCP)	2.56	0.400	0.800	ug/L	4	4.00		64	35-138%			
Phenol	1.54	0.800	0.0800	ug/L	4	4.00		38	10-120%			Q-41
2,3,4,6-Tetrachlorophenol	3.27	0.200	0.400	ug/L	4	4.00		82	50-128%			
2,3,5,6-Tetrachlorophenol	3.21	0.200	0.400	ug/L	4	4.00		80	50-121%			
2,4,5-Trichlorophenol	3.60	0.200	0.400	ug/L	4	4.00		90	53-123%			
2,4,6-Trichlorophenol	3.38	0.200	0.400	ug/L	4	4.00		85	50-125%			
Bis(2-ethylhexyl)phthalate	3.97	0.800	1.60	ug/L	4	4.00		99	55-135%			
Butyl benzyl phthalate	4.14	0.800	1.60	ug/L	4	4.00		104	53-134%			
Diethylphthalate	3.79	0.800	1.60	ug/L	4	4.00		95	56-125%			
Dimethylphthalate	3.64	0.800	1.60	ug/L	4	4.00		91	45-127%			
Di-n-butylphthalate	4.34	0.800	1.60	ug/L	4	4.00		109	59-127%			
Di-n-octyl phthalate	4.88	0.800	1.60	ug/L	4	4.00		122	51-140%			
N-Nitrosodimethylamine	1.20	0.100	0.200	ug/L	4	4.00		30	19-120%			
N-Nitroso-di-n-propylamine	3.58	0.100	0.200	ug/L	4	4.00		89	49-120%			Q-41
N-Nitrosodiphenylamine	3.35	0.100	0.200	ug/L	4	4.00		84	51-123%			
Bis(2-Chloroethoxy) methane	3.33	0.100	0.200	ug/L	4	4.00		83	48-120%			
Bis(2-Chloroethyl) ether	3.07	0.100	0.200	ug/L	4	4.00		77	43-120%			
2,2'-Oxybis(1-Chloropropane)	2.76	0.100	0.200	ug/L	4	4.00		69	41-120%			
Hexachlorobenzene	2.72	0.0400	0.0800	ug/L	4	4.00		68	53-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic (Compoun	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0916 - EPA 3510C (Acid/Base	Neutral)					Wa	ter				
LCS (23B0916-BS1)			Prepared	: 02/27/23	07:33 Anal	lyzed: 02/27/	/23 18:30					
Hexachlorobutadiene	0.875	0.100	0.200	ug/L	4	4.00		22	22-124%			
Hexachlorocyclopentadiene	0.818	0.200	0.400	ug/L	4	4.00		20	10-127%			
Hexachloroethane	0.970	0.100	0.200	ug/L	4	4.00		24	21-120%			
2-Chloronaphthalene	2.22	0.0400	0.0800	ug/L	4	4.00		56	40-120%			
1,2,4-Trichlorobenzene	1.36	0.100	0.200	ug/L	4	4.00		34	29-120%			
4-Bromophenyl phenyl ether	2.86	0.100	0.200	ug/L	4	4.00		72	55-124%			
4-Chlorophenyl phenyl ether	2.76	0.100	0.200	ug/L	4	4.00		69	53-121%			
Aniline	2.51	0.200	0.400	ug/L	4	4.00		63	10-120%			
4-Chloroaniline	3.17	0.100	0.200	ug/L	4	4.00		79	33-120%			Q
2-Nitroaniline	4.04	0.800	1.60	ug/L	4	4.00		101	55-127%			
3-Nitroaniline	3.79	0.800	1.60	ug/L	4	4.00		95	41-128%			
4-Nitroaniline	3.77	0.800	1.60	ug/L	4	4.00		94	25-120%			
Nitrobenzene	3.30	0.400	0.800	ug/L	4	4.00		83	45-121%			
2,4-Dinitrotoluene	3.75	0.400	0.800	ug/L	4	4.00		94	57-128%			
2,6-Dinitrotoluene	3.41	0.400	0.800	ug/L	4	4.00		85	57-124%			
Benzoic acid	5.37	5.00	5.00	ug/L	4	8.00		67	10-120%			
Benzyl alcohol	2.67	0.400	0.800	ug/L	4	4.00		67	31-120%			
Isophorone	3.35	0.100	0.200	ug/L	4	4.00		84	42-124%			
Azobenzene (1,2-DPH)	3.40	0.100	0.200	ug/L	4	4.00		85	61-120%			
Bis(2-Ethylhexyl) adipate	4.27	1.00	2.00	ug/L	4	4.00		107	63-121%			
3,3'-Dichlorobenzidine	15.0	2.00	4.00	ug/L	4	8.00		187	27-129%			Q-29, Q
1,2-Dinitrobenzene	3.62	1.00	2.00	ug/L	4	4.00		91	59-120%			
1,3-Dinitrobenzene	3.66	1.00	2.00	ug/L	4	4.00		92	49-128%			
1,4-Dinitrobenzene	3.88	1.00	2.00	ug/L	4	4.00		97	54-120%			
Pyridine	1.48	0.400	0.800	ug/L	4	4.00		37	10-120%			
1,2-Dichlorobenzene	1.27	0.100	0.200	ug/L	4	4.00		32	32-120%			
1.3-Dichlorobenzene	1.15	0.100	0.200	ug/L	4	4.00		29	28-120%			
1.4-Dichlorobenzene	1.19	0.100	0.200	ug/L	4	4.00		30	29-120%			
Surr: Nitrobenzene-d5 (Surr)			very: 87%	Limits: 44			ution: 4x					O-41
2-Fluorobiphenyl (Surr)		neco	68 %		-120 % -120 %	Diii	1110n. 4x					V-41
Phenol-d6 (Surr)			30 %)-133 %		"					
p-Terphenyl-d14 (Surr)			96 %)-134 %		,,					
2-Fluorophenol (Surr)			90 % 29 %		0-134 % 0-120 %		,,					
2-r tuoropnenot (Surr) 2,4,6-Tribromophenol (Surr)			29 % 81 %		7-120 % B-140 %		,,					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (Organic (Compoun	ids by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0916 - EPA 3510C (Acid/Base	Neutral)					Wa	ter				
LCS Dup (23B0916-BSD1)			Prepared	: 02/27/23	07:33 Anal	lyzed: 02/27/	/23 19:05					Q-19
EPA 8270E												
Acenaphthene	2.26	0.0400	0.0800	ug/L	4	4.00		57	47-122%	11	30%	
Acenaphthylene	2.60	0.0400	0.0800	ug/L	4	4.00		65	41-130%	9	30%	
Anthracene	3.32	0.0400	0.0800	ug/L	4	4.00		83	57-123%	6	30%	
Benz(a)anthracene	3.69	0.0400	0.0800	ug/L	4	4.00		92	58-125%	3	30%	
Benzo(a)pyrene	3.68	0.0600	0.120	ug/L	4	4.00		92	54-128%	5	30%	
Benzo(b)fluoranthene	3.91	0.0600	0.120	ug/L	4	4.00		98	53-131%	0.9	30%	
Benzo(k)fluoranthene	3.75	0.0600	0.120	ug/L	4	4.00		94	57-129%	5	30%	
Benzo(g,h,i)perylene	3.51	0.0400	0.0800	ug/L	4	4.00		88	50-134%	4	30%	
Chrysene	3.55	0.0400	0.0800	ug/L	4	4.00		89	59-123%	3	30%	
Dibenz(a,h)anthracene	3.58	0.0400	0.0800	ug/L	4	4.00		89	51-134%	6	30%	
Fluoranthene	3.71	0.0400	0.0800	ug/L	4	4.00		93	57-128%	4	30%	
Fluorene	2.83	0.0400	0.0800	ug/L	4	4.00		71	52-124%	9	30%	
Indeno(1,2,3-cd)pyrene	3.67	0.0400	0.0800	ug/L	4	4.00		92	52-134%	4	30%	
l-Methylnaphthalene	1.73	0.0800	0.160	ug/L	4	4.00		43	41-120%	14	30%	
2-Methylnaphthalene	1.70	0.0800	0.160	ug/L	4	4.00		43	40-121%	16	30%	
Naphthalene	1.70	0.0800	0.160	ug/L	4	4.00		42	40-121%	13	30%	
Phenanthrene	3.07	0.0400	0.0800	ug/L	4	4.00		77	59-120%	6	30%	
Pyrene	3.64	0.0400	0.0800	ug/L	4	4.00		91	57-126%	5	30%	
Carbazole	3.85	0.0600	0.120	ug/L	4	4.00		96	60-122%	4	30%	
Dibenzofuran	2.63	0.0400	0.0800	ug/L	4	4.00		66	53-120%	9	30%	
2-Chlorophenol	2.94	0.200	0.400	ug/L	4	4.00		73	38-120%	0.5	30%	
4-Chloro-3-methylphenol	3.49	0.400	0.800	ug/L	4	4.00		87	52-120%	2	30%	
2,4-Dichlorophenol	3.34	0.200	0.400	ug/L	4	4.00		83	47-121%	0.2	30%	
2,4-Dimethylphenol	2.92	0.200	0.400	ug/L	4	4.00		73	31-124%	4	30%	
2,4-Dinitrophenol	3.65	1.00	2.00	ug/L	4	4.00		91	23-143%		30%	Q-
4,6-Dinitro-2-methylphenol	3.65	1.00	2.00	ug/L	4	4.00		91	44-137%	5	30%	Q-
2-Methylphenol	2.73	0.100	0.200	ug/L	4	4.00		68	30-120%	1	30%	
3+4-Methylphenol(s)	2.58	0.100	0.200	ug/L	4	4.00		64	29-120%	0.9	30%	
2-Nitrophenol	3.78	0.400	0.800	ug/L	4	4.00		95	47-123%	0.7	30%	
4-Nitrophenol	1.78	0.400	0.800	ug/L	4	4.00		44	10-120%	7	30%	
Pentachlorophenol (PCP)	2.40	0.400	0.800	ug/L	4	4.00		60	35-138%		30%	
Phenol	1.64	0.800	1.60	ug/L	4	4.00		41	10-120%		30%	Q-
				<i>5</i> –						-		•

4

ug/L

4.00

Apex Laboratories

2,3,4,6-Tetrachlorophenol

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

50-128%

2

30%

80

Philip Menberg

3.20

0.200

0.400

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0916 - EPA 3510C (Acid/Base	Neutral)					Wa	ter				
LCS Dup (23B0916-BSD1)			Prepared	: 02/27/23	07:33 Ana	yzed: 02/27	/23 19:05					Q-19
2,3,5,6-Tetrachlorophenol	3.05	0.200	0.400	ug/L	4	4.00		76	50-121%	5	30%	
2,4,5-Trichlorophenol	3.54	0.200	0.400	ug/L	4	4.00		89	53-123%	2	30%	
2,4,6-Trichlorophenol	3.29	0.200	0.400	ug/L	4	4.00		82	50-125%	3	30%	
Bis(2-ethylhexyl)phthalate	3.88	0.800	1.60	ug/L	4	4.00		97	55-135%	2	30%	
Butyl benzyl phthalate	4.02	0.800	1.60	ug/L	4	4.00		100	53-134%	3	30%	
Diethylphthalate	3.62	0.800	1.60	ug/L	4	4.00		90	56-125%	5	30%	
Dimethylphthalate	3.50	0.800	1.60	ug/L	4	4.00		87	45-127%	4	30%	
Di-n-butylphthalate	4.07	0.800	1.60	ug/L	4	4.00		102	59-127%	6	30%	
Di-n-octyl phthalate	4.69	0.800	1.60	ug/L	4	4.00		117	51-140%	4	30%	
N-Nitrosodimethylamine	2.11	0.100	0.200	ug/L	4	4.00		53	19-120%	55	30%	Q-24
N-Nitroso-di-n-propylamine	3.48	0.100	0.200	ug/L	4	4.00		87	49-120%	3	30%	Q-41
N-Nitrosodiphenylamine	3.23	0.100	0.200	ug/L	4	4.00		81	51-123%	4	30%	
Bis(2-Chloroethoxy) methane	3.30	0.100	0.200	ug/L	4	4.00		82	48-120%	0.9	30%	
Bis(2-Chloroethyl) ether	2.96	0.100	0.200	ug/L	4	4.00		74	43-120%	4	30%	
2,2'-Oxybis(1-Chloropropane)	2.62	0.100	0.200	ug/L	4	4.00		65	41-120%	5	30%	
Hexachlorobenzene	2.40	0.0400	0.0800	ug/L	4	4.00		60	53-125%	13	30%	
Hexachlorobutadiene	0.675	0.100	0.200	ug/L	4	4.00		17	22-124%	26	30%	Q-30
Hexachlorocyclopentadiene	0.638	0.200	0.400	ug/L	4	4.00		16	10-127%	25	30%	
Hexachloroethane	0.734	0.100	0.200	ug/L	4	4.00		18	21-120%	28	30%	Q-30
2-Chloronaphthalene	1.93	0.0400	0.0800	ug/L	4	4.00		48	40-120%	14	30%	
1,2,4-Trichlorobenzene	1.11	0.100	0.200	ug/L	4	4.00		28	29-120%	20	30%	Q-30
4-Bromophenyl phenyl ether	2.54	0.100	0.200	ug/L	4	4.00		64	55-124%	12	30%	
4-Chlorophenyl phenyl ether	2.40	0.100	0.200	ug/L	4	4.00		60	53-121%	14	30%	
Aniline	2.56	0.200	0.400	ug/L	4	4.00		64	10-120%	2	30%	
4-Chloroaniline	3.17	0.100	0.200	ug/L	4	4.00		79	33-120%	0.2	30%	Q-41
2-Nitroaniline	3.89	0.800	1.60	ug/L	4	4.00		97	55-127%	4	30%	
3-Nitroaniline	3.69	0.800	1.60	ug/L	4	4.00		92	41-128%	3	30%	
4-Nitroaniline	3.78	0.800	1.60	ug/L	4	4.00		95	25-120%	0.3	30%	
Nitrobenzene	3.16	0.400	0.800	ug/L	4	4.00		79	45-121%	4	30%	
2,4-Dinitrotoluene	3.65	0.400	0.800	ug/L	4	4.00		91	57-128%	3	30%	
2,6-Dinitrotoluene	3.34	0.400	0.800	ug/L	4	4.00		83	57-124%	2	30%	
Benzoic acid	4.91	2.00	2.00	ug/L	4	8.00		61	10-120%	9	30%	
Benzyl alcohol	2.63	0.400	0.800	ug/L	4	4.00		66	31-120%	1	30%	
Isophorone	3.24	0.100	0.200	ug/L	4	4.00		81	42-124%	3	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0916 - EPA 3510C (A	Acid/Base	Neutral)					Wa	ter				
LCS Dup (23B0916-BSD1)			Prepared	d: 02/27/23	07:33 Ana	lyzed: 02/27	/23 19:05					Q-19
Azobenzene (1,2-DPH)	3.24	0.100	0.200	ug/L	4	4.00		81	61-120%	5	30%	
Bis(2-Ethylhexyl) adipate	4.11	1.00	2.00	ug/L	4	4.00		103	63-121%	4	30%	
3,3'-Dichlorobenzidine	15.0	2.00	4.00	ug/L	4	8.00		188	27-129%	0.3	30%	Q-52, Q-29
1,2-Dinitrobenzene	3.53	1.00	2.00	ug/L	4	4.00		88	59-120%	3	30%	
1,3-Dinitrobenzene	3.57	1.00	2.00	ug/L	4	4.00		89	49-128%	3	30%	
1,4-Dinitrobenzene	3.79	1.00	2.00	ug/L	4	4.00		95	54-120%	2	30%	
Pyridine	2.24	0.400	0.800	ug/L	4	4.00		56	10-120%	41	30%	Q-24
1,2-Dichlorobenzene	1.04	0.100	0.200	ug/L	4	4.00		26	32-120%	20	30%	Q-30
1,3-Dichlorobenzene	0.893	0.100	0.200	ug/L	4	4.00		22	28-120%	25	30%	Q-30
1,4-Dichlorobenzene	0.949	0.100	0.200	ug/L	4	4.00		24	29-120%	22	30%	Q-30
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 84 %	Limits: 4	4-120 %	Dilt	ution: 4x					Q-41
2-Fluorobiphenyl (Surr)			68 %	44	4-120 %		"					
Phenol-d6 (Surr)			32 %	10	0-133 %		"					
p-Terphenyl-d14 (Surr)			93 %	50	0-134 %		"					
2-Fluorophenol (Surr)			48 %	19	0-120 %		"					
2,4,6-Tribromophenol (Surr)			76 %	43	3-140 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS Organophosphorus Pesticides (OPPs) by EPA 8270E (GC/MS)

		<u> </u>			•	<u>, , , </u>	•					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0917 - EPA 3510C	(Neutral pl	H)					Wat	ter				
Blank (23B0917-BLK1)			Prepared	: 02/27/23	07:35 Anal	lyzed: 02/28	/23 09:35					
EPA 8270E OPPs												
Azinphos methyl (Guthion)	ND	0.250	0.500	ug/L	1							
Chlorpyrifos	ND	0.250	0.500	ug/L	1							
Coumaphos	ND	0.250	0.500	ug/L	1							
Demeton O	ND	0.250	0.500	ug/L	1							
Demeton S	ND	0.250	0.500	ug/L	1							
Diazinon	ND	0.250	0.500	ug/L	1							
Dichlorvos	ND	0.250	0.500	ug/L	1							
Dimethoate	ND	0.250	0.500	ug/L	1							
Disulfoton	ND	0.250	0.500	ug/L	1							
EPN	ND	0.250	0.500	ug/L	1							
Ethoprop	ND	0.250	0.500	ug/L	1							
Fensulfothion	ND	0.250	0.500	ug/L	1							
Fenthion	ND	0.250	0.500	ug/L	1							
Malathion	ND	0.250	0.500	ug/L	1							
Merphos	ND	0.250	0.500	ug/L	1							

Fensulfothion	ND	0.250	0.500	ug/L	1			 	
Fenthion	ND	0.250	0.500	ug/L	1			 	
Malathion	ND	0.250	0.500	ug/L	1			 	
Merphos	ND	0.250	0.500	ug/L	1			 	
Methyl parathion	ND	0.250	0.500	ug/L	1			 	
Mevinphos (Phosdrin)	ND	0.250	0.500	ug/L	1			 	
Monocrotophos	ND	0.250	0.500	ug/L	1			 	
Naled (Dibrom)	ND	0.250	0.500	ug/L	1			 	
Parathion, ethyl	ND	0.250	0.500	ug/L	1			 	
Phorate	ND	0.250	0.500	ug/L	1			 	
Ronnel (Fenchlorphos)	ND	0.250	0.500	ug/L	1			 	
Sulfotep	ND	0.250	0.500	ug/L	1			 	
Sulprofos (Bolstar)	ND	0.250	0.500	ug/L	1			 	
TEPP	ND	0.250	0.500	ug/L	1			 	
Tetrachlorvinphos (Rabon)	ND	0.250	0.500	ug/L	1			 	
Tokuthion (Prothiofos)	ND	0.250	0.500	ug/L	1			 	
Trichloronate	ND	0.250	0.500	ug/L	1			 	
Surr: Tributyl phosphate (Surr)		Recover	y: 85 %	Limits: 56-12	24 %	Diluti	on: 1x		

92 %

LCS (23B0917-BS1)

Triphenyl phosphate (Surr)

Prepared: 02/27/23 07:35 Analyzed: 02/28/23 10:10

58-121 %

EPA 8270E OPPs

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0917 - EPA 3510C	(Neutral pl	H)					Wa	ter				
LCS (23B0917-BS1)			Prepared	: 02/27/23	07:35 Anal	yzed: 02/28	/23 10:10					
Azinphos methyl (Guthion)	4.06	0.500	1.00	ug/L	2	4.00		102	43-135%			
Chlorpyrifos	2.85	0.500	1.00	ug/L	2	4.00		71	47-133%			
Coumaphos	3.74	0.500	1.00	ug/L	2	4.00		93	45-135%			
Demeton O	1.38	0.500	1.00	ug/L	2	1.84		75	10-125%			
Demeton S	1.47	0.500	1.00	ug/L	2	1.94		76	21-162%			
Diazinon	3.71	0.500	1.00	ug/L	2	4.00		93	43-129%			
Dichlorvos	3.86	0.500	1.00	ug/L	2	4.00		97	39-138%			
Dimethoate	3.23	0.500	1.00	ug/L	2	4.00		81	26-125%			
Disulfoton	3.39	0.500	1.00	ug/L	2	4.00		85	36-134%			
EPN	3.71	0.500	1.00	ug/L	2	4.00		93	47-133%			
Ethoprop	3.65	0.500	1.00	ug/L	2	4.00		91	52-125%			
Fensulfothion	4.16	0.500	1.00	ug/L	2	4.00		104	15-141%			
Fenthion	3.39	0.500	1.00	ug/L	2	4.00		85	42-137%			
Malathion	3.17	0.500	1.00	ug/L	2	4.00		79	44-132%			
Merphos	3.80	0.500	1.00	ug/L	2	4.00		95	26-133%			
Methyl parathion	3.92	0.500	1.00	ug/L	2	4.00		98	49-134%			
Mevinphos (Phosdrin)	3.73	0.500	1.00	ug/L	2	4.00		93	10-196%			
Monocrotophos	0.937	0.500	0.500	ug/L	2	4.00		23	10-159%			
Naled (Dibrom)	3.78	0.500	1.00	ug/L	2	4.00		95	10-146%			
Parathion, ethyl	3.68	0.500	1.00	ug/L	2	4.00		92	52-134%			
Phorate	3.75	0.500	1.00	ug/L	2	4.00		94	23-139%			Q-
Ronnel (Fenchlorphos)	3.10	0.500	1.00	ug/L	2	4.00		77	42-133%			
Sulfotep	3.24	0.500	1.00	ug/L	2	4.00		81	47-126%			
Sulprofos (Bolstar)	2.73	0.500	1.00	ug/L	2	4.00		68	47-135%			
ГЕРР	3.61	0.500	1.00	ug/L	2	4.00		90	10-208%			
Tetrachlorvinphos (Rabon)	4.00	0.500	1.00	ug/L	2	4.00		100	42-125%			
Tokuthion (Prothiofos)	2.96	0.500	1.00	ug/L	2	4.00		74	43-132%			
Trichloronate	2.70	0.500	1.00	ug/L	2	4.00		68	28-137%			
Surr: Tributyl phosphate (Surr)		Reco	overy: 84 %		5-124 %	Dilı	ution: 2x					
Triphenyl phosphate (Surr)			94 %		R-121 %		"					
LCS Dup (23B0917-BSD1)			Prepared	: 02/27/23	07:35 Anal	yzed: 02/28	/23 10:46					Q-19
EPA 8270E OPPs			-1	=9		,						
Azinphos methyl (Guthion)	4.44	0.500	1.00	ug/L	2	4.00		111	43-135%	9	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

Organophosphorus Pesticides (OPPs) by EPA 8270E (GC/MS)

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0917 - EPA 3510C	(Neutral pl	- I)					Wa	iter				
LCS Dup (23B0917-BSD1)			Prepared	1: 02/27/23	07:35 Ana	lyzed: 02/28	/23 10:46					Q-19
Chlorpyrifos	3.33	0.500	1.00	ug/L	2	4.00		83	47-133%	15	30%	
Coumaphos	4.14	0.500	1.00	ug/L	2	4.00		104	45-135%	10	30%	
Demeton O	1.66	0.500	1.00	ug/L	2	1.84		90	10-125%	18	30%	
Demeton S	1.62	0.500	1.00	ug/L	2	1.94		83	21-162%	10	30%	
Diazinon	4.07	0.500	1.00	ug/L	2	4.00		102	43-129%	9	30%	
Dichlorvos	4.19	0.500	1.00	ug/L	2	4.00		105	39-138%	8	30%	
Dimethoate	3.56	0.500	1.00	ug/L	2	4.00		89	26-125%	10	30%	
Disulfoton	3.78	0.500	1.00	ug/L	2	4.00		94	36-134%	11	30%	
EPN	4.30	0.500	1.00	ug/L	2	4.00		108	47-133%	15	30%	
Ethoprop	4.05	0.500	1.00	ug/L	2	4.00		101	52-125%	10	30%	
Fensulfothion	4.74	0.500	1.00	ug/L	2	4.00		119	15-141%	13	30%	
Fenthion	3.72	0.500	1.00	ug/L	2	4.00		93	42-137%	9	30%	
Malathion	3.52	0.500	1.00	ug/L	2	4.00		88	44-132%	10	30%	
Merphos	4.35	0.500	1.00	ug/L	2	4.00		109	26-133%	14	30%	
Methyl parathion	4.31	0.500	1.00	ug/L	2	4.00		108	49-134%	9	30%	
Mevinphos (Phosdrin)	4.12	0.500	1.00	ug/L	2	4.00		103	10-196%	10	30%	
Monocrotophos	1.11	0.500	1.00	ug/L	2	4.00		28	10-159%	17	30%	
Naled (Dibrom)	4.34	0.500	1.00	ug/L	2	4.00		109	10-146%	14	30%	
Parathion, ethyl	4.07	0.500	1.00	ug/L	2	4.00		102	52-134%	10	30%	
Phorate	4.24	0.500	1.00	ug/L	2	4.00		106	23-139%	12	30%	Q-41
Ronnel (Fenchlorphos)	3.45	0.500	1.00	ug/L	2	4.00		86	42-133%	11	30%	
Sulfotep	3.68	0.500	1.00	ug/L	2	4.00		92	47-126%	13	30%	
Sulprofos (Bolstar)	3.20	0.500	1.00	ug/L	2	4.00		80	47-135%	16	30%	
TEPP	4.25	0.500	1.00	ug/L	2	4.00		106	10-208%	16	30%	
Tetrachlorvinphos (Rabon)	4.45	0.500	1.00	ug/L	2	4.00		111	42-125%	11	30%	
Tokuthion (Prothiofos)	3.56	0.500	1.00	ug/L	2	4.00		89	43-132%	18	30%	
Trichloronate	3.18	0.500	1.00	ug/L	2	4.00		80	28-137%	16	30%	
Surr: Tributyl phosphate (Surr)		Reco	very: 93 %	Limits: 50	6-124 %	Dilı	ution: 2x					
Triphenyl phosphate (Surr)			96 %	58	8-121 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	B (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0841 - EPA 3015A							Wa	ter				
Blank (23B0841-BLK1)			Prepared	02/22/23	10:27 Anal	yzed: 02/22/	/23 19:09					
EPA 6020B												
Antimony	ND	0.500	1.00	ug/L	1							
Arsenic	ND	0.500	1.00	ug/L	1							
Barium	ND	1.00	2.00	ug/L	1							
Beryllium	ND	0.100	0.200	ug/L	1							
Cadmium	ND	0.100	0.200	ug/L	1							
Chromium	ND	1.00	2.00	ug/L	1							
Copper	ND	1.00	2.00	ug/L	1							
Lead	ND	0.110	0.200	ug/L	1							
Manganese	ND	0.500	1.00	ug/L	1							
Mercury	ND	0.0400	0.0800	ug/L	1							
Nickel	ND	1.00	2.00	ug/L	1							
Selenium	ND	0.500	1.00	ug/L	1							
Silver	ND	0.100	0.200	ug/L	1							
Гhallium	ND	0.100	0.200	ug/L	1							
Zinc	ND	2.00	4.00	ug/L	1							
LCS (23B0841-BS1)			Prepared:	: 02/22/23	10:27 Anal	yzed: 02/22/	/23 19:25					
EPA 6020B												
Antimony	27.2	0.500	1.00	ug/L	1	27.8		98	80-120%			
Arsenic	53.0	0.500	1.00	ug/L	1	55.6		95	80-120%			
Barium	58.5	1.00	2.00	ug/L	1	55.6		105	80-120%			
Beryllium	28.2	0.100	0.200	ug/L	1	27.8		101	80-120%			
Cadmium	52.9	0.100	0.200	ug/L	1	55.6		95	80-120%			
Chromium	55.2	1.00	2.00	ug/L	1	55.6		99	80-120%			
Copper	54.1	1.00	2.00	ug/L	1	55.6		97	80-120%			
Lead	53.2	0.110	0.200	ug/L	1	55.6		96	80-120%			
Manganese	54.8	0.500	1.00	ug/L	1	55.6		99	80-120%			
Mercury	1.03	0.0400	0.0800	ug/L	1	1.11		93	80-120%			
Nickel	56.0	1.00	2.00	ug/L	1	55.6		101	80-120%			
Selenium	27.4	0.500	1.00	ug/L	1	27.8		99	80-120%			
Silver	27.3	0.100	0.200	ug/L	1	27.8		98	80-120%			
Гhallium	26.9	0.100	0.200	ug/L	1	27.8		97	80-120%			
Zinc	55.2	2.00	4.00	ug/L	1	55.6		99	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23B0841 - EPA 3015A							Wa	ter				
Duplicate (23B0841-DUP1)			Prepared	: 02/22/23	10:27 Anal	lyzed: 02/22	/23 19:36					
QC Source Sample: Non-SDG (A3	3B0520-02)											
Antimony	ND	0.500	1.00	ug/L	1		ND				20%	
Barium	49.5	1.00	2.00	ug/L	1		48.4			2	20%	
Beryllium	ND	0.100	0.200	ug/L	1		ND				20%	
Cadmium	ND	0.100	0.200	ug/L	1		ND				20%	
Lead	0.427	0.110	0.200	ug/L	1		0.426			0.3	20%	
Mercury	ND	0.0400	0.0800	ug/L	1		ND				20%	
Selenium	ND	0.500	1.00	ug/L	1		ND				20%	
Silver	ND	0.100	0.200	ug/L	1		ND				20%	
Thallium	ND	0.100	0.200	ug/L	1		ND				20%	
Duplicate (23B0841-DUP2)			Prepared	: 02/22/23	10:27 Anal	yzed: 02/25	/23 21:03					
QC Source Sample: Non-SDG (A3	3B0520-02)											
Arsenic	8.96	0.500	1.00	ug/L	1		8.42			6	20%	Q-1
Chromium	ND	1.00	2.00	ug/L	1		ND				20%	Q-1
Copper	ND	1.00	2.00	ug/L	1		ND				20%	Q-1
Nickel	ND	1.00	2.00	ug/L	1		ND				20%	Q-1
Zinc	16.0	2.00	4.00	ug/L	1		15.3			5	20%	Q-1
Duplicate (23B0841-DUP3)			Prepared	: 02/22/23	10:27 Anal	yzed: 02/25	/23 21:14					
QC Source Sample: Non-SDG (A3	3B0520-02R1	E1)										
Manganese	4690	25.0	50.0	ug/L	50		4450			5	20%	Q-1
Matrix Spike (23B0841-MS1)			Prepared	: 02/22/23	10:27 Anal	lyzed: 02/22	/23 19:41					
QC Source Sample: Non-SDG (A3	3B0520-02)											
EPA 6020B												
Antimony	27.4	0.500	1.00	ug/L	1	27.8	ND	99	75-125%			
Arsenic	62.5	0.500	1.00	ug/L	1	55.6	8.42	97	75-125%			
Barium	107	1.00	2.00	ug/L	1	55.6	48.4	106	75-125%			
Beryllium	27.5	0.100	0.200	ug/L	1	27.8	ND	99	75-125%			
Cadmium	52.6	0.100	0.200	ug/L	1	55.6	ND	95	75-125%			
Chromium	56.1	1.00	2.00	ug/L	1	55.6	ND	101	75-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

Apex Laboratorie

Item #2.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project:

25.3

70.9

0.100

2.00

0.200

4.00

3140 NE Broadway Street Project Number: M0830.03.006
Portland, OR 97232 Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

QUALITY CONTROL (QC) SAMPLE RESULTS

St. Helens Lagoon

27.8

55.6

ND

15.3

91

100

75-125%

75-125%

Total Metals by EPA 6020B (ICPMS) Detection Reporting Spike % REC **RPD** Source Limits RPD Analyte Result Limit Units Dilution Result % REC Limit Amount Limit Notes Batch 23B0841 - EPA 3015A Water Prepared: 02/22/23 10:27 Analyzed: 02/22/23 19:41 Matrix Spike (23B0841-MS1) QC Source Sample: Non-SDG (A3B0520-02) 54.6 1.00 2.00 ug/L 1 55.6 ND 98 75-125% Copper 0.110 0.200 55.6 92 Lead 51.3 ug/L 1 0.426 75-125% 4750 55.6 E, Q-65 Manganese 0.500 1.00 ug/L 1 4430 578 75-125% Mercury 1.01 0.0400 0.0800ug/L 1 1.11 ND 91 75-125% Nickel 55.6 1.00 2.00 ug/L 1 55.6 ND 100 75-125% 27.8 27.4 0.5001.00 99 Selenium ug/L 1 ND 75-125% Silver 27.2 0.1000.200 27.8 ug/L 1 ND 98 75-125%

1

1

ug/L

ug/L

Apex Laboratories

Thallium

Zinc

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

504

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

Weck Laboratories, Inc.

QUALITY CONTROL (QC) SAMPLE RESULTS

			Chlorin	nated He	rbicides k	y GC/EC	<u> </u>					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch W3B2223 - EPA 3510C							Wat	er				
Blank (W3B2223-BLK1)			Prepared	: 02/27/23	16:15 Anal	lyzed: 03/22	/23 19:38					
EPA 8151A												
2,4-D	ND	0.34	0.50	ug/l	1							
2,4-DB	ND	0.99	2.5	ug/l	1							
2,4,5-T	ND	0.14	0.25	ug/l	1							
2,4,5-TP (Silvex)	ND	0.14	0.25	ug/l	1							
3,5-Dichlorobenzoic acid	ND	0.28	1.2	ug/l	1							
4-Nitrophenol	ND	0.50	1.2	ug/l	1							
Acifluorfen	ND	0.24	0.50	ug/l	1							
Bentazon	ND	0.55	2.5	ug/l	1							
Dalapon	ND	0.16	0.50	ug/l	1							
Dicamba	ND	0.19	0.75	ug/l	1							
Dichloroprop	ND	0.24	1.0	ug/l	1							
Dinoseb	ND	0.090	0.50	ug/l	1							
DCPA	ND	0.20	0.25	ug/l	1							
MCPA	ND	40	100	ug/l	1							
MCPP	ND	27	100	ug/l	1							
Pentachlorophenol	ND	0.18	0.25	ug/l	1							
Picloram	ND	0.13	0.75	ug/l	1							
Surr: 2,4-DCAA		Reco	overy: 74 %	Limits: 50	6-156 %	Dilı	ution: 1x					

LCS (W3B2223-BS1)			Prepared:	02/27/23 16	:15 Ana	lyzed: 03/22/	23 20:10			
EPA 8151A										
2,4-D	2.71	0.34	0.50	ug/l	1	3.00		90	56-164%	
2,4-DB	3.74	0.99	2.5	ug/l	1	6.00		62	27-161%	
2,4,5-T	1.52	0.14	0.25	ug/l	1	1.50		102	39-151%	
2,4,5-TP (Silvex)	1.36	0.14	0.25	ug/l	1	1.50		91	46-142%	
3,5-Dichlorobenzoic acid	2.72	0.28	1.2	ug/l	1	3.00		91	54-154%	
4-Nitrophenol	2.34	0.50	1.2	ug/l	1	6.00		39	3-105%	
Acifluorfen	1.74	0.24	0.50	ug/l	1	1.50		116	39-134%	
Bentazon	5.61	0.55	2.5	ug/l	1	6.00		94	44-139%	
Dalapon	2.48	0.16	0.50	ug/l	1	3.00		83	40-139%	
Dicamba	2.69	0.19	0.75	ug/l	1	3.00		90	46-140%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

Weck Laboratories, Inc.

QUALITY CONTROL (QC) SAMPLE RESULTS

			Chlori	nated He	rbicides k	y GC/ECI	D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch W3B2223 - EPA 3510C							Wa	ter				
LCS (W3B2223-BS1)			Prepared	1: 02/27/23	16:15 Anal	yzed: 03/22/	/23 20:10					
Dichloroprop	2.73	0.24	1.0	ug/l	1	3.00		91	43-158%			
Dinoseb	1.28	0.090	0.50	ug/l	1	1.50		85	42-146%			
OCPA	1.55	0.20	0.25	ug/l	1	1.50		103	34-135%			
MCPA	260	40	100	ug/l	1	300		87	28-144%			
MCPP	219	27	100	ug/l	1	300		73	31-153%			
Pentachlorophenol	1.30	0.18	0.25	ug/l	1	1.50		86	37-136%			
Picloram	1.30	0.13	0.75	ug/l	1	1.50		87	35-138%			
Surr: 2,4-DCAA		Reco	overy: 92 %	Limits: 50	5-156 %	Dilı	tion: 1x					
LCS Dup (W3B2223-BSD1) EPA 8151A				1. 02/2//23	10.13 Anai	yzed: 03/22/	23 20:41					
2,4-D	2.64	0.34	0.50	ug/l	1	3.00		88	56-164%	3	25%	
2,4-DB	4.49	0.99	2.5	ug/l	1	6.00		75	27-161%	18	25%	
2,4,5-T	1.48	0.14	0.25	ug/l	1	1.50		99	39-151%	3	25%	
2,4,5-TP (Silvex)	1.32	0.14	0.25	ug/l	1	1.50		88	46-142%	4	25%	
3,5-Dichlorobenzoic acid	2.65	0.28	1.2	ug/l	1	3.00		88	54-154%	3	25%	
1-Nitrophenol	2.93	0.50	1.2	ug/l	1	6.00		49	3-105%	22	25%	
Acifluorfen	1.69	0.24	0.50	ug/l	1	1.50		112	39-134%	3	25%	
Bentazon	5.53	0.55	2.5	ug/l	1	6.00		92	44-139%	2	25%	
Dalapon	2.50	0.16	0.50	ug/l	1	3.00		83	40-139%	0.7	25%	
Dicamba	2.59	0.19	0.75	ug/l	1	3.00		86	46-140%	3	25%	
Dichloroprop	2.64	0.24	1.0	ug/l	1	3.00		88	43-158%	3	25%	
Dinoseb	1.16	0.090	0.50	ug/l	1	1.50		77	42-146%	10	25%	
OCPA	1.51	0.20	0.25	ug/l	1	1.50		101	34-135%	2	25%	
MCPA	218	40	100	ug/l	1	300		73	28-144%	18	25%	
MCPP	210	27	100	ug/l	1	300		70	31-153%	4	25%	
Pentachlorophenol	1.18	0.18	0.25	ug/l	1	1.50		79	37-136%	9	25%	

1

ug/l

Limits: 56-156 %

1.50

Dilution: 1x

Apex Laboratories

Picloram

Surr: 2,4-DCAA

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

88

35-138%

0.7

25%

Philip Memberg

1.31

0.13

0.75

Recovery: 93 %

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

Weck Laboratories, Inc.

QUALITY CONTROL (QC) SAMPLE RESULTS

			Hex	avalent	Chromiur	n by IC						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch W3C0242NONE (LC)							Wa	ter				
Blank (W3C0242-BLK1)			Prepared:	03/02/23	00:00 Anal	yzed: 03/02/	23 11:51					
EPA 218.6												
Chromium 6+	ND	0.0079	0.020	ug/l	1							
LCS (W3C0242-BS1)			Prepared:	03/02/23	00:00 Anal	yzed: 03/02/	23 12:03					
EPA 218.6												
Chromium 6+	5.22	0.0079	0.020	ug/l	1	5.00		104	90-110%			
Matrix Spike (W3C0242-MS1)			Prepared:	03/02/23	00:00 Anal	yzed: 03/02/	23 16:43					
OC Source Sample: Non-SDG (3A19)	163-03)											
EPA 218.6												
Chromium 6+	5.27	0.0079	0.020	ug/l	1	5.00	0.100	103	88-112%			
Matrix Spike (W3C0242-MS2)			Prepared:	03/02/23	00:00 Anal	yzed: 03/02/	23 17:06					
QC Source Sample: Non-SDG (3A19) EPA 218.6	<u>163-04)</u>											
Chromium 6+	5.16	0.0079	0.020	ug/l	1	5.00	0.146	100	88-112%			
Matrix Spike Dup (W3C0242-MS	SD1)		Prepared:	03/02/23	00:00 Anal	yzed: 03/02/	23 16:55					
QC Source Sample: Non-SDG (3A19)	163-03)											
Chromium 6+	5.22	0.0079	0.020	ug/l	1	5.00	0.100	102	88-112%	0.8	10%	
Matrix Spike Dup (W3C0242-MS	SD2)		Prepared:	03/02/23	00:00 Anal	yzed: 03/02/	23 17:18					
QC Source Sample: Non-SDG (3A19	163-04)											
Chromium 6+	5.29	0.0079	0.020	ug/l	1	5.00	0.146	103	88-112%	2	10%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Meinberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

SAMPLE PREPARATION INFORMATION

		SAMPLE	PREPARATION I	NFORMATION			
		Diesel and	d/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3510C (Fu	els/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23C0083							
A3B0674-01	Water	NWTPH-Dx	02/20/23 10:26	03/02/23 11:25	1020mL/5mL	1000 mL/5 mL	0.98
A3B0674-02	Water	NWTPH-Dx	02/20/23 14:41	03/02/23 11:25	900mL/5mL	1000mL/5mL	1.11
	Gaso	oline Range Hydrocart	bons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0828			-	-			
A3B0674-01	Water	NWTPH-Gx (MS)	02/20/23 10:26	02/22/23 11:21	5mL/5mL	5mL/5mL	1.00
A3B0674-02	Water	NWTPH-Gx (MS)	02/20/23 14:41	02/22/23 11:21	5mL/5mL	5mL/5mL	1.00
		Volatile (Organic Compounds	by EPA 8260D			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0828			1	1			
A3B0674-01	Water	EPA 8260D	02/20/23 10:26	02/22/23 11:21	5mL/5mL	5mL/5mL	1.00
A3B0674-02	Water	EPA 8260D	02/20/23 14:41	02/22/23 11:21	5mL/5mL	5mL/5mL	1.00
A3B0674-03	Water	EPA 8260D	02/20/23 00:00	02/22/23 11:21	5mL/5mL	5mL/5mL	1.00
		Volatile Org	ganic Compounds b	y EPA 8260D SIM			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23C0033			•				
A3B0674-01	Water	EPA 8260D SIM	02/20/23 10:26	03/01/23 11:36	5mL/5mL	5mL/5mL	1.00
A3B0674-02	Water	EPA 8260D SIM	02/20/23 14:41	03/01/23 11:36	5mL/5mL	5mL/5mL	1.00
A3B0674-03	Water	EPA 8260D SIM	02/20/23 00:00	03/01/23 11:36	5mL/5mL	5mL/5mL	1.00
		Semivolatil	e Organic Compour	nds by EPA 8270E			
Prep: EPA 3510C (Ac	id/Base Neutral)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0916							
A3B0674-01	Water	EPA 8270E	02/20/23 10:26	02/27/23 07:33	990mL/1mL	1000 mL/1 mL	1.01
A3B0674-02	Water	EPA 8270E	02/20/23 14:41	02/27/23 07:33	940mL/1mL	1000mL/1mL	1.06

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Namberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

SAMPLE PREPARATION INFORMATION

		Semivolatil	le Organic Compour	nds by EPA 8270E			
Prep: EPA 3510C (A	cid/Base Neutral)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
		Organophosphoru	ıs Pesticides (OPPs) by EPA 8270E (GC	C/MS)		
Prep: EPA 3510C (I	Neutral pH)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0917							
A3B0674-01	Water	EPA 8270E OPPs	02/20/23 10:26	02/27/23 07:35	960mL/2mL	1000mL/2mL	1.04
A3B0674-02	Water	EPA 8270E OPPs	02/20/23 14:41	02/27/23 07:35	960mL/2mL	1000mL/2mL	1.04
		Total	Metals by EPA 602	0B (ICPMS)			
Prep: EPA 3015A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23B0841			-	-			
A3B0674-01	Water	EPA 6020B	02/20/23 10:26	02/22/23 10:27	45mL/50mL	45mL/50mL	1.00
A3B0674-02	Water	EPA 6020B	02/20/23 14:41	02/22/23 10:27	45mL/50mL	45mL/50mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

Weck Laboratories, Inc.

SAMPLE PREPARATION INFORMATION

		Chl	orinated Herbicides I	oy GC/ECD			
Prep: EPA 3510C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: W3B2223							
A3B0674-01	Water	EPA 8151A	02/20/23 10:26	02/27/23 16:15	988ml/10ml	1000ml/10ml	1.01
A3B0674-02	Water	EPA 8151A	02/20/23 14:41	02/27/23 16:15	1034ml/10ml	1000ml/10ml	0.97

			Hexavalent Chromiu	m by IC			
Prep: NONE (LC)					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: W3C0242							
A3B0674-01	Water	EPA 218.6	02/20/23 10:26	03/02/23 00:00	5ml/5ml	5ml/5ml	1.00
A3B0674-02	Water	EPA 218.6	02/20/23 14:41	03/02/23 00:00	5ml/5ml	5ml/5ml	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Item #2.

AMENDED REPORT

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006Portland, OR 97232Project Manager:David Weatherby

<u>Report ID:</u> A3B0674 - 04 21 23 1031

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

ex Laborato	<u>ories</u>
E	Estimated Value. The result is above the calibration range of the instrument.
ICV-01	Estimated Result. Initial Calibration Verification (ICV) failed high. There is no effect on non-detect results.
Ja	Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-16	Reanalysis of an original Batch QC sample.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
Q-24	The RPD for this spike and spike duplicate is above established control limits. Recoveries for both the spike and spike duplicate are within control limits.
Q-29	Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
Q-30	Recovery for Lab Control Spike (LCS) is below the lower control limit. Data may be biased low.
Q-41	Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
Q-42	Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
Q-52	Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +1%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the \pm 20% criteria listed in EPA method 8260/8270 by \pm 10%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +6%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -5%. The results are reported as Estimated Values.
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260

Spike recovery is estimated due to the high analyte concentration of the source sample.

Apex Laboratories

Q-65

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

511

Philip Manherg

AMENDED REPORT

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.Project:St. Helens Lagoon3140 NE Broadway StreetProject Number:M0830.03.006Portland, OR 97232Project Manager:David Weatherby

Report ID: A3B0674 - 04 21 23 1031

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " "(blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

512

Philip Nevenberg

AMENDED REPORT

Apex Laboratorie

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Item #2.

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

513

Philip Nevenberg

AMENDED REPORT

6700 S

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Item #2.

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

<u>Report ID:</u> A3B0674 - 04 21 23 1031

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

514

Philip Menberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: St. Helens Lagoon
Project Number: M0830.03.006
Project Manager: David Weatherby

Report ID: A3B0674 - 04 21 23 1031

CHA (CHA) (CHA) (CHA) (CHA) (CHA) (CHA) (CHA) (CHA) (2232 S.W. Garden Place, Tigard, OR 97223 Phr. 503-718-2323 Fax: 503-718-0333	13-718-2323 Fax: 503-718-0333			Lab # A3CO674		
Company: Maul Foster Alongi Address: 3140 NE Broadway St. Portland, OR 97232 Sampled by: Call Sampled	Project Mgr. David Weatherby Phone. (971) 544-2139	Pr	Project Name: St. Helens Lagoon Email: dweatherby@maulfoster.com, m ANALYSIS REQUEST	oject Name: St. Helens Lagoon Email. dweatherby@maulfoster.com, mberzinger@maulfoster.com ANALYSIS REQUEST	Project # M0830.03.006 oster.com	
Site Location: OR WA Other. CAAMPIFIED CAAMP	MATRIX OF CONTAINERS Containers Name Name	NWTPH-Gx NWTPH-Gx NWTPH-Gx	SAOCS 8570E	MODIFICATION PROSENTIAL PROS		
25-Will	1026 GND 7		X X	\(\times\)		
No Gent (CAT) = 5-10 Business Days	SPECIAL INSTRUCTIONS	X				
TAT Requested: STANDARD SAMPLES ARE HELD FOR 30 DA Received via:		s and analyze for NWTPH-Gx, VO s and analyze for NWTPH-Gx, VO ainers at 0-6 °C until all 5 compone sample at -18 °C until all 5 compon , Hg, Mn, Ni, Se, Ag, Ti, Zn	6 °C) until all 5 compene OCs, and LL-VOCs. ents have been received, rents have been received,	nts have been received, then comp then subcontract to Bureau Veritas then composite and analyze for all	site and analyze for Nexas; and Hg. for compositing and analysis. remaining texts.	
RELINQUISHED BY: RECEIVED BY: Spending Colds R Spending C	Date:	RECEIVED BY: Date: Signature:	4	RELINQUISHED BY: Signature: Date:	RECEIVED BY: Signature:	Date:
Company. Company. Company. Company.	Time: Printed Name: R. I.F. Company:	Time: Printed Name: Company:	Тіте.	Printed Name: Time: Company:	Printed Name. Company:	Time:

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: St. Helens Lagoon
Project Number: M0830.03.006

Project Manager: David Weatherby A3B0674 - 04 21 23 1031

<u>A</u>	PEX LABS COOLER REC	EIPT FORM
Client: May Foster A	10291	Element WO#: A3B0674
Project/Project #: St. HelmS		
Delivery Info:		
Date/time received: 2/20/23 @	18:15 By: ZAN	7
Delivered by: Apex_Clientx_ESS	FedExUPSRadio	MorganSDS _ EvergreenOther
Cooler Inspection Date/time in	spected: <u>[120123 @ 18]</u>	15 By: 2pm
	× No	
Signed/dated by client? Yes	✓ No	
Cooler	#1 Cooler #2 Cooler #3 C	Cooler #4 Cooler #5 Cooler #6 Cooler #
Temperature (°C)	0 5.4 4.7	
Custody seals? (Y/N) 2/20/234	O 700 YW)	
Received on ice? (Y/N)	<u> </u>	
Temp. blanks? (Y/N)		
Ice type: (Gel/Real/Other)	Peul Peul	
Condition (In/Out):	<u> </u>	
All samples intact? Yes 🔀 No _		T .
Bottle labels/COCs agree? Yes		
COC/container discrepancies form i	nitiated? Yes No X	
	W 605000	No Comments:
Oo VOA vials have visible headspa	ce? Yes No X NA	
Comments		
Water samples: pH checked: Yes	NoNA pH appropriat	e? Yes No NA
Comments:		
	239	
Additional information: TB# 3.		
Additional information: 78# 3.		
Additional information: TB# 3.	Witness:	Cooler Inspected by:
	Witness:	Cooler Inspected by:

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

SUBCONTRACT ORDER

Apex Laboratories 9B817/12 A2H0382

SENDING LABORATORY:

Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223 Phone: (503) 718-2323

Fax: (503) 336-0745

Project Manager: Philip Nerenberg

RECEIVING LABORATORY:

BV Labs / Maxxam /

C/O FEDEX DEPOT 299 Cayuga Rd

Cheektowaga, NY 14225

Phone:(800) 668-0639

Fax: (905) 332-9169

Atter	Processing

Sample Name: DU1-20220810-ISM-C	OMP-1	Sediment	Sampled:	08/10/22 09:15	(A2H0382-02)
Analysis	Due	Expires	C	omments	
1613B Dioxins and Furans (SUB) 1668C PCB Congeners (SUB) 1699 Insecticides/Pesticides (SUB)	08/24/22 17:00 08/24/22 17:00 08/24/22 17:00	08/10/23 09:15 08/10/23 09:15 08/24/22 09:15			
Containers Supplied: Cox oz Glass Jar (D) 250 mL Poly (WM) - Non Preserved	98/24/22 17:00 916/22 91247	02/06/23 09:15	P	FAS EPA-1633	

Standard TAT

International Solid Sample Heat Treat Required

High Risk material Controlled Storage and Disposal

23-Aug-22 12:11

Lori Dufour

C200154

KTN ENV-624

Fed Ex (Shipper)

Released By

Fed Ex (Shipper)

Nocustady

Released By

Date

Received By

Page 1 of 2

Temperaturo blank 4.3 | 3.9 Page 1 of 1

SUBCONTRACT ORDER

Additional

Apex Laboratories A2H0382

AUX alm122

SENDING LABORATORY:

Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223 Phone: (503) 718-2323

Fax: (503) 336-0745

Project Manager: Philip Nerenberg

RECEIVING LABORATORY:

BV Labs / Maxxam C/O FEDEX DEPOT 299 Cayuga Rd

Cheektowaga, NY 14225 Phone :(800) 668-0639

Fax: (905) 332-9169

Sample Name: DU1-20220810-ISM-CO	OMP	Sediment	After Processing Sampled: 08/10/22 09:15	(A2H0382-02)
Analysis	Due	Expires	Comments	
1668C PCB Congeners (SUB) Containers Supplied: (G)2 oz Glass Jar	08/24/22 17:00	08/10/23 09:15		

* Additional volume requested for PCBs *

23-Aug-22 12:11 Lori Dufour

KTN EN

ENV-624

Released By Date Received By Date

Received By Date

Received By Date

Received By Date

Received By Date

Received By Date

Received By Date

Received By Date

Received By Date

Page 1 of 1

Your P.O. #: A2H0382 Your Project #: A2H0382 Your C.O.C. #: n/a

Attention: Philip Nerenberg

Apex Laboratories 6700 SW Sandburg St. Tigard, OR USA 97223

Report Date: 2022/12/08

Report #: R7422015 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C200154 Received: 2022/08/23, 12:11

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Dioxins/Furans in Soil (1613B) (1)	1	2022/09/03	2022/09/11	BRL SOP-00410	EPA 1613B m
2378TCDF Confirmation (M8290A/M1613)	1	2022/09/03	2022/09/20	BRL SOP-00406	EPA M8290Am/ M1613Bm
				BRL SOP-00410	
Moisture	1	N/A	2022/08/25	CAM SOP-00445	Carter 2nd ed 51.2 m
PCB Congeners in Soil (1668C) (2)	1	2022/09/22	2022/09/30	BRL SOP-00408	EPA 1668C m
PFAS in soil by SPE/LCMS (3)	1	2022/09/06	2022/09/08	CAM SOP-00894	ASTM D7968-17a m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Soils are reported on a dry weight basis unless otherwise specified.

Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.

- (2) Soils are reported on a dry weight basis unless otherwise specified.
- (3) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.
- U = Undetected at the limit of quantitation.
- J = Estimated concentration between the EDL & RDL.
- B = Blank Contamination.
- Q = One or more quality control criteria failed.
- E = Analyte concentration exceeds the maximum concentration level.
- K = Estimated maximum possible concentration due to ion abundance ratio failure.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to:

Lori Dufour, Project Manager

Email: Lori. Du four @bureauver it as. com

Phone# (905) 817-5700

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Total Cover Pages : 1 Page 1 of 36

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		TNI532								
Sampling Date		2022/08/10 09:15								
COC Number		n/a								
	UNITS	DU1-20220810-ISM-COMP	RDL	MDL	QC Batch					
Moisture	%	5.5	1.0	0.50	8186897					
RDL = Reportable Detection Limit										

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

PERFLUOROALKYL SUBSTANCES (SOIL)

/kg /kg /kg /kg /kg /kg /kg /kg	2022/08/10 09:15 n/a DU1-20220810-ISM-COMP 0.24 U 0.23 U 2.3 1.2 2.2 2.9	RDL 1.0 1.0 1.0	MDL 0.24 0.23 0.16	QC Batch 8208220
/kg /kg /kg /kg /kg /kg /kg	n/a DU1-20220810-ISM-COMP 0.24 U 0.23 U 2.3 1.2 2.2	1.0 1.0 1.0 1.0	0.24	_
/kg /kg /kg /kg /kg /kg /kg	0.24 U 0.23 U 2.3 1.2 2.2	1.0 1.0 1.0 1.0	0.24	_
/kg /kg /kg /kg /kg /kg /kg	0.24 U 0.23 U 2.3 1.2 2.2	1.0 1.0 1.0 1.0	0.24	-
/kg /kg /kg /kg /kg /kg	0.23 U 2.3 1.2 2.2	1.0 1.0 1.0	0.23	8208220
/kg /kg /kg /kg /kg	2.3 1.2 2.2	1.0 1.0		3230220
/kg /kg /kg /kg	1.2 2.2	1.0	0.16	8208220
/kg /kg /kg /kg	2.2	-	0.10	8208220
/kg /kg /kg			0.17	8208220
/kg /kg	2.9	1.0	0.20	8208220
/kg		1.0	0.27	8208220
	3.9	1.0	0.24	8208220
⁄kg	6.8	1.0	0.25	8208220
	5.5	1.0	0.19	8208220
/kg	3.9	1.0	0.22	8213841
/kg	2.2	1.0	0.30	8213841
/kg	0.17 U	1.0	0.17	8208220
/kg	0.26 U	1.0	0.26	8208220
/kg	3.5 (1)	1.0	0.30	8208220
/kg	0.17 U	1.0	0.17	8208220
/kg	2.4	1.0	0.27	8208220
/kg	0.24 U	1.0	0.24	8208220
/kg	1.8	1.0	0.27	8208220
/kg	0.20 U	1.0	0.20	8213841
/kg	0.31 U	1.0	0.31	8213841
/kg	0.39 U	1.0	0.39	8213841
/kg	1.7	1.0	0.29	8213841
/kg	3.6	1.0	0.22	8213841
/kg	8.8	1.0	0.40	8208220
/kg	10	1.0	0.32	8208220
/kg	0.25 U	1.0	0.25	8208220
/kg	0.46 J	1.0	0.30	8208220
/kg	1.5	1.0	0.30	8208220
/kg	0.19 U	1.0	0.19	8208220
	0.28 U	1.0	0.28	8208220
⁄kg	0.21 U	1.0	0.21	8208220
	0.22 U	1.0	0.22	8208220
/kg	•		•	
/kg			N/A	8208220
	/kg /kg /kg	/kg 0.21 U /kg 0.22 U	/kg 0.21 U 1.0 /kg 0.22 U 1.0	/kg 0.21 U 1.0 0.21

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Result is estimated as analyte confirmation criteria were not met.

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

PERFLUOROALKYL SUBSTANCES (SOIL)

	TNI532			
	2022/08/10 09:15			
	n/a			
UNITS	DU1-20220810-ISM-COMP	RDL	MDL	QC Batch
%	90	N/A	N/A	8208220
%	76	N/A	N/A	8208220
%	74	N/A	N/A	8208220
%	62	N/A	N/A	8208220
%	76	N/A	N/A	8208220
%	38 (1)	N/A	N/A	8213841
%	61	N/A	N/A	8208220
%	78	N/A	N/A	8208220
%	90	N/A	N/A	8208220
%	91	N/A	N/A	8208220
%	83	N/A	N/A	8208220
%	77	N/A	N/A	8208220
%	80	N/A	N/A	8208220
%	62	N/A	N/A	8208220
%	87	N/A	N/A	8208220
%	27 (2)	N/A	N/A	8213841
%	86	N/A	N/A	8208220
%	23 (3)	N/A	N/A	8213841
%	56	N/A	N/A	8208220
%	18 (4)	N/A	N/A	8213841
	% % % % % % % % % % % % % % % % % % %	2022/08/10 09:15 n/a UNITS DU1-20220810-ISM-COMP % 90 % 76 % 74 % 62 % 76 % 38 (1) % 61 % 78 % 90 % 91 % 83 % 77 % 80 % 62 % 87 % 27 (2) % 86 % 23 (3) % 56	2022/08/10 09:15 n/a UNITS DU1-20220810-ISM-COMP RDL % 90 N/A % 76 N/A % 74 N/A % 62 N/A % 76 N/A % 38 (1) N/A % 61 N/A % 90 N/A % 91 N/A % 91 N/A % 83 N/A % 91 N/A % 83 N/A % 91 N/A % 83 N/A % 91 N/A % 85 N/A % 77 N/A % 80 N/A % 87 N/A % 86 N/A % 23 (3) N/A	2022/08/10 09:15 n/a n/a mode UNITS DU1-20220810-ISM-COMP RDL MDL % 90 N/A N/A % 76 N/A N/A % 62 N/A N/A % 76 N/A N/A % 76 N/A N/A % 38 (1) N/A N/A % 61 N/A N/A % 78 N/A N/A % 90 N/A N/A % 91 N/A N/A % 83 N/A N/A % 83 N/A N/A % 80 N/A N/A % 80 N/A N/A % 87 N/A N/A % 86 N/A N/A % 27 (2) N/A N/A %

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

- (1) Extracted internal standard analyte recovery was below the defined lower control limit (LCL). Laboratory spiked soil resulted in satisfactory recovery of the extracted internal standard analyte. When considered together, these QC data suggest that matrix interferences may be increasing the variability of the associated native analyte result (PFTeDA, PFTrDA). Results were confirmed through re-analysis.
- (2) Extracted internal standard analyte recovery was below the defined lower control limit (LCL). Laboratory spiked soil resulted in satisfactory recovery of the extracted internal standard analyte. When considered together, these QC data suggest that matrix interferences may be increasing the variability of the associated native analyte result (PFOSA). Results were confirmed through reanalysis.
- (3) Extracted internal standard analyte recovery was below the defined lower control limit (LCL). Laboratory spiked soil resulted in satisfactory recovery of the extracted internal standard analyte. When considered together, these QC data suggest that matrix interferences may be increasing the variability of the associated native analyte result (MeFOSA). Results were confirmed through reanalysis.
- (4) Extracted internal standard analyte recovery was below the defined lower control limit (LCL). Laboratory spiked soil resulted in satisfactory recovery of the extracted internal standard analyte. When considered together, these QC data suggest that matrix interferences may be increasing the variability of the associated native analyte result (EtFOSA). Results were confirmed through reanalysis.

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

PERFLUOROALKYL SUBSTANCES (SOIL)

Bureau Veritas ID		TNI532			
Sampling Date		2022/08/10 09:15			
COC Number		n/a			
	UNITS	DU1-20220810-ISM-COMP	RDL	MDL	QC Batch
D5-EtFOSAA	%	56	RDL N/A		QC Batch 8208220
D5-EtFOSAA D7-MeFOSE				N/A	,

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Extracted internal standard analyte recovery was below the defined lower control limit (LCL). Laboratory spiked soil resulted in satisfactory recovery of the extracted internal standard analyte. When considered together, these QC data suggest that matrix interferences may be increasing the variability of the associated native analyte result (EtFOSE). Results were confirmed through reanalysis.

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

DIOXINS AND FURANS BY HRMS (SOIL)

Bureau Veritas ID		TNI532							
Sampling Date		2022/08/10							
Sampling Date		09:15							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	DU1-20220810-ISM-COMP	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg/g	10.2	0.232	1.00	0.400	1.00	10.2	1	8212445
1,2,3,7,8-Penta CDD *	pg/g	5.59	0.235	5.00	0.400	1.00	5.59	1	8212445
1,2,3,4,7,8-Hexa CDD *	pg/g	2.77 J	0.198	5.00	0.400	0.100	0.277	1	8212445
1,2,3,6,7,8-Hexa CDD *	pg/g	43.8	0.194	5.00	0.400	0.100	4.38	1	8212445
1,2,3,7,8,9-Hexa CDD *	pg/g	30.2	0.205	5.00	0.400	0.100	3.02	1	8212445
1,2,3,4,6,7,8-Hepta CDD *	pg/g	259	0.216	5.00	0.400	0.0100	2.59	1	8212445
Octa CDD *	pg/g	2460	0.197	10.0	0.800	0.000300	0.738	1	8212445
Total Tetra CDD *	pg/g	135	0.232	1.00	0.400	N/A	N/A	10	8212445
Total Penta CDD *	pg/g	38.7	0.235	5.00	0.400	N/A	N/A	9	8212445
Total Hexa CDD *	pg/g	281	0.199	5.00	0.400	N/A	N/A	6	8212445
Total Hepta CDD *	pg/g	492	0.216	5.00	0.400	N/A	N/A	2	8212445
2,3,7,8-Tetra CDF **	pg/g	58.3	0.174	1.00	0.400	0.100	5.83	1	8212445
1,2,3,7,8-Penta CDF **	pg/g	4.38 J	0.238	5.00	0.400	0.0300	0.131	1	8212445
2,3,4,7,8-Penta CDF **	pg/g	3.01 J	0.210	5.00	0.400	0.300	0.903	1	8212445
1,2,3,4,7,8-Hexa CDF **	pg/g	4.87 J	0.146	5.00	0.400	0.100	0.487	1	8212445
1,2,3,6,7,8-Hexa CDF **	pg/g	2.71 J	0.142	5.00	0.400	0.100	0.271	1	8212445
2,3,4,6,7,8-Hexa CDF **	pg/g	1.86 J	0.128	5.00	0.400	0.100	0.186	1	8212445
1,2,3,7,8,9-Hexa CDF **	pg/g	0.386 U	0.386	5.00	0.400	0.100	0.0386	0	8212445
1,2,3,4,6,7,8-Hepta CDF **	pg/g	56.5	0.161	5.00	0.400	0.0100	0.565	1	8212445
1,2,3,4,7,8,9-Hepta CDF **	pg/g	2.94 J	0.189	5.00	0.400	0.0100	0.0294	1	8212445
Octa CDF **	pg/g	100	0.225	10.0	0.800	0.000300	0.0300	1	8212445
Total Tetra CDF **	pg/g	191	0.174	1.00	0.400	N/A	N/A	15	8212445
Total Penta CDF **	pg/g	54.1	0.223	5.00	0.400	N/A	N/A	13	8212445
Total Hexa CDF **	pg/g	51.1	0.143	5.00	0.400	N/A	N/A	8	8212445
Total Hepta CDF **	pg/g	124	0.174	5.00	0.400	N/A	N/A	3	8212445
Confirmation 2,3,7,8-Tetra CDF **	pg/g	59.5	N/A	1.0	0.90	0.100	5.95	N/A	8237702
TOTAL TOXIC EQUIVALENCY	pg/g	N/A	N/A	N/A	N/A	N/A	35.4	N/A	N/A

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

** CDF = Chloro Dibenzo-p-Furan

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

DIOXINS AND FURANS BY HRMS (SOIL)

Bureau Veritas ID		TNI532							
Sampling Date		2022/08/10 09:15							
COC Number		n/a				TOXIC EQU	IIVALENCY	# of	
	UNITS	DU1-20220810-ISM-COMP	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Surrogate Recovery (%)									
37CL4 2378 Tetra CDD *	%	90	N/A	N/A	N/A	N/A	N/A	N/A	8212445
C13-1234678 HeptaCDD *	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8212445
C13-1234678 HeptaCDF **	%	74	N/A	N/A	N/A	N/A	N/A	N/A	8212445
C13-123478 HexaCDD *	%	88	N/A	N/A	N/A	N/A	N/A	N/A	8212445
C13-123478 HexaCDF **	%	82	N/A	N/A	N/A	N/A	N/A	N/A	8212445
C13-1234789 HeptaCDF **	%	80	N/A	N/A	N/A	N/A	N/A	N/A	8212445
C13-123678 HexaCDD *	%	81	N/A	N/A	N/A	N/A	N/A	N/A	8212445
C13-123678 HexaCDF **	%	74	N/A	N/A	N/A	N/A	N/A	N/A	8212445
C13-12378 PentaCDD *	%	98	N/A	N/A	N/A	N/A	N/A	N/A	8212445
C13-12378 PentaCDF **	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8212445
C13-123789 HexaCDF **	%	85	N/A	N/A	N/A	N/A	N/A	N/A	8212445
C13-234678 HexaCDF **	%	92	N/A	N/A	N/A	N/A	N/A	N/A	8212445
C13-23478 PentaCDF **	%	97	N/A	N/A	N/A	N/A	N/A	N/A	8212445
C13-2378 TetraCDD *	%	87	N/A	N/A	N/A	N/A	N/A	N/A	8212445
C13-2378 TetraCDF **	%	80	N/A	N/A	N/A	N/A	N/A	N/A	8212445
C13-OCDD *	%	84	N/A	N/A	N/A	N/A	N/A	N/A	8212445
Confirmation C13-2378 TetraCDF **	%	89	N/A	N/A	N/A	N/A	N/A	N/A	8237702

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

** CDF = Chloro Dibenzo-p-Furan

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

SEMI-VOLATILE ORGANICS BY HRMS (SOIL)

Bureau Veritas ID		TNI532							
Carragilla a Data		2022/08/10							
Sampling Date		09:15							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	DU1-20220810-ISM-COMP	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2-MonoCB-(1)	ng/g	0.163	0.069	0.099	0.0026	N/A	N/A	N/A	8239765
3-MonoCB-(2)	ng/g	0.092 J	0.060	0.099	0.0038	N/A	N/A	N/A	8239765
4-MonoCB-(3)	ng/g	0.179 J	0.068	0.25	0.0035	N/A	N/A	N/A	8239765
22'-DiCB-(4)	ng/g	0.36	0.17	0.25	0.0040	N/A	N/A	N/A	8239765
2,3-DiCB-(5)	ng/g	0.082 U	0.082	0.25	0.015	N/A	N/A	N/A	8239765
2,3'-DiCB-(6)	ng/g	0.267	0.086	0.099	0.0034	N/A	N/A	N/A	8239765
2,4-DiCB-(7)	ng/g	0.083 U	0.083	0.099	0.0064	N/A	N/A	N/A	8239765
2,4'-DiCB-(8)	ng/g	0.455	0.085	0.25	0.016	N/A	N/A	N/A	8239765
2,5-DiCB-(9)	ng/g	0.093 J	0.085	0.099	0.0019	N/A	N/A	N/A	8239765
2,6-DiCB-(10)	ng/g	0.14 U	0.14	0.25	0.0042	N/A	N/A	N/A	8239765
3,3'-DiCB-(11)	ng/g	7.10	0.086	0.50	0.034	N/A	N/A	N/A	8239765
DiCB-(12)+(13)	ng/g	0.221 J	0.084	0.25	0.011	N/A	N/A	N/A	8239765
3,5-DiCB-(14)	ng/g	0.085 U	0.085	0.099	0.0033	N/A	N/A	N/A	8239765
4,4'-DiCB-(15)	ng/g	0.81	0.11	0.25	0.0039	N/A	N/A	N/A	8239765
22'3-TriCB-(16)	ng/g	0.51	0.23	0.25	0.013	N/A	N/A	N/A	8239765
22'4-TriCB-(17)	ng/g	0.69	0.20	0.099	0.0040	N/A	N/A	N/A	8239765
TriCB-(18)+(30)	ng/g	1.10	0.16	0.25	0.0052	N/A	N/A	N/A	8239765
22'6-TriCB-(19)	ng/g	0.41	0.20	0.099	0.0052	N/A	N/A	N/A	8239765
TriCB-(20) + (28)	ng/g	2.30	0.12	0.25	0.0090	N/A	N/A	N/A	8239765
TriCB-(21)+(33)	ng/g	0.61	0.11	0.25	0.011	N/A	N/A	N/A	8239765
234'-TriCB-(22)	ng/g	0.84	0.13	0.099	0.0049	N/A	N/A	N/A	8239765
235-TriCB-(23)	ng/g	0.12 U	0.12	0.099	0.0046	N/A	N/A	N/A	8239765
236-TriCB-(24)	ng/g	0.14 U	0.14	0.099	0.0090	N/A	N/A	N/A	8239765
23'4-TriCB-(25)	ng/g	0.53	0.12	0.099	0.0064	N/A	N/A	N/A	8239765
TriCB-(26)+(29)	ng/g	0.58	0.12	0.25	0.0087	N/A	N/A	N/A	8239765
23'6-TriCB-(27)	ng/g	0.14 U	0.14	0.099	0.0065	N/A	N/A	N/A	8239765
24'5-TriCB-(31)	ng/g	2.20	0.12	0.25	0.0038	N/A	N/A	N/A	8239765
24'6-TriCB-(32)	ng/g	0.44	0.13	0.099	0.0024	N/A	N/A	N/A	8239765
23'5'-TriCB-(34)	ng/g	0.13 U	0.13	0.099	0.0060	N/A	N/A	N/A	8239765
33'4-TriCB-(35)	ng/g	0.26	0.12	0.099	0.0042	N/A	N/A	N/A	8239765

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

SEMI-VOLATILE ORGANICS BY HRMS (SOIL)

Bureau Veritas ID		TNI532							
		2022/08/10							
Sampling Date		09:15							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	DU1-20220810-ISM-COMP	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
33'5-TriCB-(36)	ng/g	0.11 U	0.11	0.099	0.0029	N/A	N/A	N/A	8239765
344'-TriCB-(37)	ng/g	0.79	0.16	0.099	0.0029	N/A	N/A	N/A	8239765
345-TriCB-(38)	ng/g	0.12 U	0.12	0.099	0.0038	N/A	N/A	N/A	8239765
34'5-TriCB-(39)	ng/g	0.11 U	0.11	0.099	0.0052	N/A	N/A	N/A	8239765
TetraCB-(40)+(41)+(71)	ng/g	1.45	0.27	0.50	0.016	N/A	N/A	N/A	8239765
22'34'-TetraCB-(42)	ng/g	0.91	0.32	0.25	0.014	N/A	N/A	N/A	8239765
22'35-TetraCB-(43)	ng/g	0.38 U	0.38	0.25	0.019	N/A	N/A	N/A	8239765
TetraCB-(44)+(47)+(65)	ng/g	3.77	0.26	0.50	0.041	N/A	N/A	N/A	8239765
TetraCB-(45)+(51)	ng/g	0.52	0.30	0.25	0.018	N/A	N/A	N/A	8239765
22'36'-TetraCB-(46)	ng/g	0.32 U	0.32	0.099	0.0090	N/A	N/A	N/A	8239765
22'45-TetraCB-(48)	ng/g	0.60	0.29	0.25	0.0042	N/A	N/A	N/A	8239765
TetraCB-(49)+TetraCB-(69)	ng/g	2.56	0.24	0.50	0.010	N/A	N/A	N/A	8239765
TetraCB-(50)+(53)	ng/g	0.48 J	0.30	0.50	0.013	N/A	N/A	N/A	8239765
22'55'-TetraCB-(52)	ng/g	7.65	0.29	0.25	0.016	N/A	N/A	N/A	8239765
22'66'-TetraCB-(54)	ng/g	0.22 U	0.22	0.25	0.0096	N/A	N/A	N/A	8239765
233'4-TetraCB-(55)	ng/g	0.27 U	0.27	0.25	0.011	N/A	N/A	N/A	8239765
233'4'-Tetra CB(56)	ng/g	1.25	0.25	0.25	0.0051	N/A	N/A	N/A	8239765
233'5-TetraCB-(57)	ng/g	0.24 U	0.24	0.25	0.0056	N/A	N/A	N/A	8239765
233'5'-TetraCB-(58)	ng/g	0.26 U	0.26	0.25	0.011	N/A	N/A	N/A	8239765
TetraCB-(59)+(62)+(75)	ng/g	0.22 J	0.21	0.50	0.014	N/A	N/A	N/A	8239765
2344'-TetraCB -(60)	ng/g	0.54	0.23	0.25	0.0053	N/A	N/A	N/A	8239765
TetraCB-(61)+(70)+(74)+(76)	ng/g	6.91	0.23	0.99	0.022	N/A	N/A	N/A	8239765
234'5-TetraCB-(63)	ng/g	0.23 U	0.23	0.25	0.0071	N/A	N/A	N/A	8239765
234'6-TetraCB-(64)	ng/g	1.40	0.23	0.25	0.0047	N/A	N/A	N/A	8239765
23'44'-TetraCB-(66)	ng/g	2.53	0.23	0.25	0.099	N/A	N/A	N/A	8239765
23'45-TetraCB-(67)	ng/g	0.23 J	0.21	0.25	0.011	N/A	N/A	N/A	8239765
23'45'-TetraCB-(68)	ng/g	0.23 U	0.23	0.25	0.0088	N/A	N/A	N/A	8239765
23'55'-TetraCB-(72)	ng/g	0.23 U	0.23	0.25	0.0086	N/A	N/A	N/A	8239765
23'5'6-TetraCB-(73)	ng/g	0.20 U	0.20	0.25	0.019	N/A	N/A	N/A	8239765
33'44'-TetraCB-(77)	ng/g	0.57	0.27	0.25	0.0063	0.000100	0.0000570	N/A	8239765

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

SEMI-VOLATILE ORGANICS BY HRMS (SOIL)

Bureau Veritas ID		TNI532							
Sampling Date		2022/08/10							
Sampling Date		09:15							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	DU1-20220810-ISM-COMP	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
33'45-TetraCB-(78)	ng/g	0.24 U	0.24	0.25	0.0065	N/A	N/A	N/A	8239765
33'45'-TetraCB(79)	ng/g	0.21 U	0.21	0.25	0.0058	N/A	N/A	N/A	8239765
33'55'-TetraCB-(80)	ng/g	0.21 U	0.21	0.25	0.0061	N/A	N/A	N/A	8239765
344'5-TetraCB-(81)	ng/g	0.26 U	0.26	0.25	0.0058	0.000300	0.0000780	N/A	8239765
22'33'4-PentaCB-(82)	ng/g	1.00	0.32	0.25	0.0048	N/A	N/A	N/A	8239765
PentaCB-(83)+(99)	ng/g	5.07	0.31	0.50	0.016	N/A	N/A	N/A	8239765
22'33'6-PentaCB-(84)	ng/g	2.26	0.30	0.099	0.0077	N/A	N/A	N/A	8239765
PentaCB-(85)+(116)+(117)	ng/g	1.23	0.21	0.50	0.027	N/A	N/A	N/A	8239765
PentaCB-(86)(87)(97)(109)(119)(125)	ng/g	6.08	0.24	0.99	0.029	N/A	N/A	N/A	8239765
PentaCB-(88)+(91)	ng/g	1.21	0.29	0.25	0.013	N/A	N/A	N/A	8239765
22'346'-PentaCB-(89)	ng/g	0.31 U	0.31	0.25	0.0080	N/A	N/A	N/A	8239765
PentaCB-(90)+(101)+(113)	ng/g	9.38	0.24	0.99	0.011	N/A	N/A	N/A	8239765
22'355'-PentaCB-(92)	ng/g	1.76	0.30	0.25	0.0044	N/A	N/A	N/A	8239765
PentaCB-(93)+(98)+(100)+(102)	ng/g	0.29 U	0.29	0.99	0.024	N/A	N/A	N/A	8239765
22'356'-PentaCB-(94)	ng/g	0.30 U	0.30	0.25	0.0063	N/A	N/A	N/A	8239765
22'35'6-PentaCB-(95)	ng/g	6.31	0.28	0.25	0.0088	N/A	N/A	N/A	8239765
22'366'-PentaCB-(96)	ng/g	0.14 U	0.14	0.25	0.010	N/A	N/A	N/A	8239765
22'45'6-PentaCB-(103)	ng/g	0.27 U	0.27	0.25	0.0061	N/A	N/A	N/A	8239765
22'466'-PentaCB-(104)	ng/g	0.16 U	0.16	0.25	0.0056	N/A	N/A	N/A	8239765
233'44'-PentaCB-(105)	ng/g	3.88	0.24	0.25	0.0044	0.0000300	0.000116	N/A	8239765
233'45-PentaCB-(106)	ng/g	0.21 U	0.21	0.25	0.0036	N/A	N/A	N/A	8239765
233'4'5-PentaCB-(107)	ng/g	0.58	0.20	0.25	0.017	N/A	N/A	N/A	8239765
PentaCB-(108)+(124)	ng/g	0.37 J	0.21	0.50	0.011	N/A	N/A	N/A	8239765
PentaCB-(110)+(115)	ng/g	12.5	0.25	0.50	0.012	N/A	N/A	N/A	8239765
233'55'-PentaCB-(111)	ng/g	0.21 U	0.21	0.25	0.0056	N/A	N/A	N/A	8239765
233'56-PentaCB-(112)	ng/g	0.19 U	0.19	0.25	0.0078	N/A	N/A	N/A	8239765
2344'5-PentaCB-(114)	ng/g	0.38	0.24	0.25	0.0042	0.0000300	0.0000114	N/A	8239765
23'44'5-PentaCB-(118)	ng/g	10.1	0.23	0.50	0.0066	0.0000300	0.000303	N/A	8239765
23'455'-PentaCB-(120)	ng/g	0.20 U	0.20	0.25	0.0064	N/A	N/A	N/A	8239765
23'45'6-PentaCB-(121)	ng/g	0.21 U	0.21	0.25	0.0063	N/A	N/A	N/A	8239765

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

SEMI-VOLATILE ORGANICS BY HRMS (SOIL)

Bureau Veritas ID		TNI532							
		2022/08/10							
Sampling Date		09:15							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	DU1-20220810-ISM-COMP	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
233'4'5'-PentaCB-(122)	ng/g	0.24 U	0.24	0.25	0.0066	N/A	N/A	N/A	8239765
23'44'5'-PentaCB-(123)	ng/g	0.28	0.26	0.25	0.014	0.0000300	0.00000840	N/A	8239765
33'44'5-PentaCB-(126)	ng/g	0.23 U	0.23	0.25	0.0030	0.100	0.0230	N/A	8239765
33'455'-PentaCB-(127)	ng/g	0.24 U	0.24	0.25	0.0032	N/A	N/A	N/A	8239765
HexaCB-(128)+(166)	ng/g	1.84	0.43	0.50	0.021	N/A	N/A	N/A	8239765
HexaCB-(129)+(138)+(163)	ng/g	11.0	0.42	0.99	0.037	N/A	N/A	N/A	8239765
22'33'45'-HexaCB-(130)	ng/g	0.68	0.49	0.25	0.0051	N/A	N/A	N/A	8239765
22'33'46-HexaCB-(131)	ng/g	0.47 U	0.47	0.25	0.0099	N/A	N/A	N/A	8239765
22'33'46'-HexaCB-(132)	ng/g	3.15	0.44	0.25	0.0087	N/A	N/A	N/A	8239765
22'33'55'-HexaCB-(133)	ng/g	0.43 U	0.43	0.25	0.010	N/A	N/A	N/A	8239765
HexaCB-(134)+(143)	ng/g	0.53	0.49	0.50	0.017	N/A	N/A	N/A	8239765
HexaCB-(135)+(151)	ng/g	1.98	0.19	0.99	0.014	N/A	N/A	N/A	8239765
22'33'66'-HexaCB-(136)	ng/g	0.93	0.14	0.25	0.0083	N/A	N/A	N/A	8239765
22'344'5-HexaCB-(137)	ng/g	0.49 J	0.49	0.50	0.030	N/A	N/A	N/A	8239765
HexaCB-(139)+(140)	ng/g	0.37 U	0.37	0.50	0.016	N/A	N/A	N/A	8239765
22'3455'-HexaCB-(141)	ng/g	1.50	0.38	0.25	0.012	N/A	N/A	N/A	8239765
22'3456-HexaCB-(142)	ng/g	0.42 U	0.42	0.25	0.0088	N/A	N/A	N/A	8239765
22'345'6-HexaCB-(144)	ng/g	0.21 U	0.21	0.25	0.0072	N/A	N/A	N/A	8239765
22'3466'-HexaCB-(145)	ng/g	0.15 U	0.15	0.25	0.0082	N/A	N/A	N/A	8239765
22'34'55'-HexaCB-(146)	ng/g	1.09	0.36	0.25	0.010	N/A	N/A	N/A	8239765
HexaCB-(147)+(149)	ng/g	5.83	0.38	0.50	0.019	N/A	N/A	N/A	8239765
22'34'56'-HexaCB-(148)	ng/g	0.19 U	0.19	0.25	0.0084	N/A	N/A	N/A	8239765
22'34'66'-HexaCB-(150)	ng/g	0.13 U	0.13	0.25	0.0061	N/A	N/A	N/A	8239765
22'3566'-HexaCB-(152)	ng/g	0.15 U	0.15	0.25	0.013	N/A	N/A	N/A	8239765
HexaCB-(153)+(168)	ng/g	6.59	0.33	0.50	0.013	N/A	N/A	N/A	8239765
22'44'56'-HexaCB-(154)	ng/g	0.15 U	0.15	0.25	0.012	N/A	N/A	N/A	8239765
22'44'66'-HexaCB-(155)	ng/g	0.22 J	0.20	0.25	0.0087	N/A	N/A	N/A	8239765
HexaCB-(156)+(157)	ng/g	1.99	0.36	0.50	0.0086	0.0000300	0.0000597	N/A	8239765
233'44'6-HexaCB-(158)	ng/g	1.04	0.31	0.25	0.0072	N/A	N/A	N/A	8239765
233'455'-HexaCB-(159)	ng/g	0.43 U	0.43	0.25	0.0082	N/A	N/A	N/A	8239765

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

SEMI-VOLATILE ORGANICS BY HRMS (SOIL)

Bureau Veritas ID		TNI532							
Sampling Date		2022/08/10							
Samping Date		09:15							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	DU1-20220810-ISM-COMP	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
233'456-HexaCB-(160)	ng/g	0.35 U	0.35	0.25	0.017	N/A	N/A	N/A	8239765
233'45'6-HexaCB-(161)	ng/g	0.30 U	0.30	0.25	0.011	N/A	N/A	N/A	8239765
233'4'55'-HexaCB-(162)	ng/g	0.39 U	0.39	0.25	0.0083	N/A	N/A	N/A	8239765
233'4'5'6-HexaCB-(164)	ng/g	0.86	0.27	0.25	0.017	N/A	N/A	N/A	8239765
233'55'6-HexaCB-(165)	ng/g	0.34 U	0.34	0.25	0.010	N/A	N/A	N/A	8239765
23'44'55'-HexaCB-(167)	ng/g	0.73	0.36	0.25	0.0056	0.0000300	0.0000219	N/A	8239765
33'44'55'-HexaCB-(169)	ng/g	0.36 U	0.36	0.25	0.024	0.0300	0.0108	N/A	8239765
22'33'44'5-HeptaCB-(170)	ng/g	1.85	0.39	0.25	0.0042	N/A	N/A	N/A	8239765
HeptaCB-(171)+(173)	ng/g	0.57 U	0.57	0.50	0.011	N/A	N/A	N/A	8239765
22'33'455'-HeptaCB-(172)	ng/g	0.60 U	0.60	0.25	0.0080	N/A	N/A	N/A	8239765
22'33'456'-HeptaCB-(174)	ng/g	1.47	0.55	0.25	0.014	N/A	N/A	N/A	8239765
22'33'45'6-HeptaCB-(175)	ng/g	0.31 U	0.31	0.25	0.0092	N/A	N/A	N/A	8239765
22'33'466'-HeptaCB-(176)	ng/g	0.19 U	0.19	0.25	0.0098	N/A	N/A	N/A	8239765
22'33'45'6'-HeptaCB-(177)	ng/g	0.92	0.64	0.25	0.0078	N/A	N/A	N/A	8239765
22'33'55'6-HeptaCB-(178)	ng/g	0.30 U	0.30	0.25	0.010	N/A	N/A	N/A	8239765
22'33'566'-HeptaCB-(179)	ng/g	0.48	0.19	0.25	0.0086	N/A	N/A	N/A	8239765
HeptaCB-(180)+(193)	ng/g	3.27	0.40	0.50	0.0085	N/A	N/A	N/A	8239765
22'344'56-HeptaCB-(181)	ng/g	0.56 U	0.56	0.25	0.0080	N/A	N/A	N/A	8239765
22'344'56'-HeptaCB-(182)	ng/g	0.34 U	0.34	0.25	0.0092	N/A	N/A	N/A	8239765
22'344'5'6-HeptaCB-(183)	ng/g	1.00	0.52	0.25	0.028	N/A	N/A	N/A	8239765
22'344'66'-HeptaCB-(184)	ng/g	0.18 U	0.18	0.25	0.010	N/A	N/A	N/A	8239765
22'3455'6-HeptaCB-(185)	ng/g	0.60 U	0.60	0.25	0.022	N/A	N/A	N/A	8239765
22'34566'-HeptaCB-(186)	ng/g	0.20 U	0.20	0.25	0.0086	N/A	N/A	N/A	8239765
22'34'55'6-HeptaCB-(187)	ng/g	1.95	0.33	0.25	0.011	N/A	N/A	N/A	8239765
22'34'566'-HeptaCB-(188)	ng/g	0.30 U	0.30	0.25	0.0047	N/A	N/A	N/A	8239765
233'44'55'-HeptaCB-(189)	ng/g	0.62 U	0.62	0.25	0.0041	0.0000300	0.0000186	N/A	8239765
233'44'56-HeptaCB-(190)	ng/g	0.43 U	0.43	0.25	0.0041	N/A	N/A	N/A	8239765
233'44'5'6-HeptaCB-(191)	ng/g	0.42 U	0.42	0.25	0.0045	N/A	N/A	N/A	8239765
233'455'6-HeptaCB-(192)	ng/g	0.46 U	0.46	0.25	0.0090	N/A	N/A	N/A	8239765
22'33'44'55'-OctaCB-(194)	ng/g	0.66 U	0.66	0.25	0.0095	N/A	N/A	N/A	8239765

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

SEMI-VOLATILE ORGANICS BY HRMS (SOIL)

Bureau Veritas ID		TNI532							
Sampling Date		2022/08/10							
Sampling Date		09:15							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	DU1-20220810-ISM-COMP	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'44'56-OctaCB-(195)	ng/g	0.75 U	0.75	0.25	0.0094	N/A	N/A	N/A	8239765
22'33'44'56'-OctaCB-(196)	ng/g	0.55 U	0.55	0.25	0.016	N/A	N/A	N/A	8239765
22'33'44'66'OctaCB-(197)	ng/g	0.43 U	0.43	0.25	0.044	N/A	N/A	N/A	8239765
OctaCB-(198)+(199)	ng/g	0.83	0.51	0.50	0.014	N/A	N/A	N/A	8239765
22'33'4566'-OctaCB-(200)	ng/g	0.37 U	0.37	0.25	0.032	N/A	N/A	N/A	8239765
22'33'45'66'-OctaCB-(201)	ng/g	0.38 U	0.38	0.25	0.017	N/A	N/A	N/A	8239765
22'33'55'66'-OctaCB-(202)	ng/g	0.47 U	0.47	0.25	0.0081	N/A	N/A	N/A	8239765
22'344'55'6-OctaCB-(203)	ng/g	0.50 U	0.50	0.25	0.011	N/A	N/A	N/A	8239765
22'344'566'-OctaCB-(204)	ng/g	0.41 U	0.41	0.25	0.021	N/A	N/A	N/A	8239765
233'44'55'6-OctaCB-(205)	ng/g	0.53 U	0.53	0.25	0.0096	N/A	N/A	N/A	8239765
22'33'44'55'6-NonaCB-(206)	ng/g	0.71 U	0.71	0.25	0.0077	N/A	N/A	N/A	8239765
22'33'44'566'-NonaCB-(207)	ng/g	0.63 U	0.63	0.25	0.0081	N/A	N/A	N/A	8239765
22'33'455'66'-NonaCB-(208)	ng/g	0.73 U	0.73	0.25	0.0073	N/A	N/A	N/A	8239765
DecaCB-(209)	ng/g	0.72 U	0.72	0.25	0.012	N/A	N/A	N/A	8239765
Total PCB	ng/g	229	2.8	N/A	N/A	N/A	N/A	N/A	8239765
TOTAL TOXIC EQUIVALENCY	ng/g	N/A	N/A	N/A	N/A	N/A	0.0345	N/A	N/A
Surrogate Recovery (%)									
C13-2,44'-TriCB-(28)	%	96	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-22'33'44'55'6-NonaCB-(206)	%	82	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-22'33'44'5-HeptaCB-(170)	%	97	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-22'33'455'66'-NonaCB-(208)	%	91	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-22'33'55'66'-OctaCB-(202)	%	88	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-22'33'55'6-HeptaCB-(178)	%	86	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-22'344'55'-HeptaCB-(180)	%	101	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-22'34'566'-HeptaCB-(188)	%	85	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-22'44'66'-HexaCB-(155)	%	92	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-22'466'-PentaCB-(104)	%	91	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-22'66'-TetraCB-(54)	%	74	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-22'6-TriCB-(19)	%	77	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-22'-DiCB-(4)	%	69	N/A	N/A	N/A	N/A	N/A	N/A	8239765

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

SEMI-VOLATILE ORGANICS BY HRMS (SOIL)

Bureau Veritas ID		TNI532							
Sampling Date		2022/08/10 09:15							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	DU1-20220810-ISM-COMP	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-233'44'55'6-OctaCB-(205)	%	92	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-233'44'55'-HeptaCB-(189)	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-233'44'-PentaCB-(105)	%	100	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-233'55'-PentaCB-(111)	%	82	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-23'44'55'-HexaCB-(167)	%	107	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-2344'5-PentaCB-(114)	%	92	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-23'44'5-PentaCB-(118)	%	99	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-2'344'5-PentaCB-(123)	%	101	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-2-MonoCB-(1)	%	79	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-33'44'55'-HexaCB-(169)	%	96	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-33'44'5-PentaCB-(126)	%	99	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-33'44'-TetraCB-(77)	%	83	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-344'5-TetraCB-(81)	%	85	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-344'-TriCB-(37)	%	102	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-44'-DiCB-(15)	%	84	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-4-MonoCB-(3)	%	78	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-DecaCB-(209)	%	80	N/A	N/A	N/A	N/A	N/A	N/A	8239765
C13-HexaCB-(156)+(157)	%	104	N/A	N/A	N/A	N/A	N/A	N/A	8239765

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

TEST SUMMARY

Bureau Veritas ID: TNI532

Sample ID: DU1-20220810-ISM-COMP

Matrix: Soil

Collected: Shipped:

Collected: 2022/08/10

Received: 2022/08/23

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dioxins/Furans in Soil (1613B)	HRMS/MS	8212445	2022/09/03	2022/09/11	Angel Guerrero
2378TCDF Confirmation (M8290A/M1613)	HRMS/MS	8237702	2022/09/03	2022/09/20	Angel Guerrero
Moisture	BAL	8186897	N/A	2022/08/25	Mathew Bowles
PCB Congeners in Soil (1668C)	HRMS/MS	8239765	2022/09/22	2022/09/30	Cathy Xu
PFAS in soil by SPE/LCMS	LCMS	8208220	2022/09/06	2022/09/08	Thanh Tam Tran

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	10.5°C
Package 2	15.2°C

Revised Report (2022/12/08): Removed comments regarding OCTQ-S analysis and updated hold time comments for PFAS.

Revised Report (2022/11/16): Updated sample ID as per client request.

Samples were received with an elevated average temperature of 10.5C on ice. A temperature blank was present and the measured temperatures were 4.3C, 3.9C, and 4.1C. Client consented to proceed with analysis.

Sample TNI532 [DU1-20220810-ISM-COMP]: Per- and polyfluoroalkyl substances (PFAS): Initial analyses of the sample was performed within the method defined hold time with batch 8208220. The sample was reanalysed outside the method defined hold time (28 days) for QC purposes with batch 8213841. Due to their chemical structure, PFAS are chemically and biologically stable in the environment and resist typical environmental degradation processes. Reanalyses outside the method defined hold time should not have a significant impact on the data.

PCB1668C-S analysis: sample was re-extracted using a smaller portion due to matrix interference (see Bench Level Planned DeviationForm). Result reported is based on 10x run. Detection limits were adjusted accordingly

Sample TNI532, PFAS in soil by SPE/LCMS: Test repeated.

Results relate only to the items tested.

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
8186897	MBW	RPD - Sample/Sample Dup	Moisture	2022/08/25	0		%	20
8208220	TTM	Matrix Spike	13C2-4:2-Fluorotelomersulfonic Acid	2022/09/08		91	%	50 - 150
		,	13C2-6:2-Fluorotelomersulfonic Acid	2022/09/08		95	%	50 - 150
			13C2-8:2-Fluorotelomersulfonic Acid	2022/09/08		97	%	50 - 150
			13C2-Perfluorodecanoic acid	2022/09/08		93	%	50 - 150
			13C2-Perfluorododecanoic acid	2022/09/08		90	%	50 - 150
			13C2-Perfluorohexanoic acid	2022/09/08		95	%	50 - 150
			13C2-Perfluoroundecanoic acid	2022/09/08		94	%	50 - 150
			13C3-HFPO-DA	2022/09/08		92	%	50 - 150
			13C3-Perfluorobutanesulfonic acid	2022/09/08		91	%	50 - 150
			13C4-Perfluorobutanoic acid	2022/09/08		95	%	50 - 150
			13C4-Perfluoroheptanoic acid	2022/09/08		94	%	50 - 150
			13C4-Perfluorooctanesulfonic acid	2022/09/08		90	%	50 - 150
			13C4-Perfluorooctanoic acid	2022/09/08		95	%	50 - 150
			13C5-Perfluorononanoic acid	2022/09/08		89	%	50 - 150
			13C5-Perfluoropentanoic acid	2022/09/08		92	%	50 - 150
			1802-Perfluorohexanesulfonic acid	2022/09/08		89	%	50 - 150
			D3-MeFOSAA	2022/09/08		93	%	50 - 150
			D5-EtFOSAA	2022/09/08		95	%	50 - 150
			Perfluorobutanoic acid (PFBA)	2022/09/08		97	%	70 - 130
			Perfluoropentanoic acid (PFPeA)	2022/09/08		98	%	70 - 130
			Perfluorohexanoic acid (PFHxA)	2022/09/08		95	%	70 - 130
			Perfluoroheptanoic acid (PFHpA)	2022/09/08		96	%	70 - 130
			Perfluorooctanoic acid (PFOA)	2022/09/08		99	%	70 - 130
			Perfluorononanoic acid (PFNA)	2022/09/08		99	%	70 - 130
			Perfluorodecanoic acid (PFDA)	2022/09/08		95	%	70 - 130
			Perfluoroundecanoic acid (PFUnA)	2022/09/08		95	%	70 - 130
			Perfluorododecanoic acid (PFDoA)	2022/09/08		96	%	70 - 130
			Perfluorobutanesulfonic acid (PFBS)	2022/09/08		96	%	70 - 130
			Perfluoropentanesulfonic acid PFPes	2022/09/08		97	%	70 - 130
			Perfluorohexanesulfonic acid(PFHxS)	2022/09/08		97	%	70 - 130
			Perfluoroheptanesulfonic acid PFHpS	2022/09/08		91	%	70 - 130
			Perfluorooctanesulfonic acid (PFOS)	2022/09/08		97	%	70 - 130
			Perfluorononanesulfonic acid (PFNS)	2022/09/08		92	%	70 - 130
			Perfluorodecanesulfonic acid (PFDS)	2022/09/08		92	%	70 - 130
			EtFOSAA	2022/09/08		94	%	70 - 130
			MeFOSAA	2022/09/08		98	%	70 - 130
			4:2 Fluorotelomer sulfonic acid	2022/09/08		95	%	70 - 130
			6:2 Fluorotelomer sulfonic acid	2022/09/08		94	%	70 - 130
			8:2 Fluorotelomer sulfonic acid	2022/09/08		98	%	70 - 130
			Hexafluoropropyleneoxide dimer acid	2022/09/08		92	%	70 - 130
			4,8-Dioxa-3H-perfluorononanoic acid	2022/09/08		95	%	70 - 130
			9Cl-PF3ONS (F-53B Major)	2022/09/08		96	%	70 - 130
			11Cl-PF3OUdS (F-53B Minor)	2022/09/08		91	%	70 - 130
8208220	TTM	Spiked Blank	13C2-4:2-Fluorotelomersulfonic Acid	2022/09/08		84	%	50 - 150
			13C2-6:2-Fluorotelomersulfonic Acid	2022/09/08		87	%	50 - 150
			13C2-8:2-Fluorotelomersulfonic Acid	2022/09/08		84	%	50 - 150
			13C2-Perfluorodecanoic acid	2022/09/08		84	%	50 - 150
			13C2-Perfluorododecanoic acid	2022/09/08		79	%	50 - 150
			13C2-Perfluorohexanoic acid	2022/09/08		86	%	50 - 150
			13C2-Perfluoroundecanoic acid	2022/09/08		83	%	50 - 150
			13C3-HFPO-DA	2022/09/08		76	%	50 - 150

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			13C3-Perfluorobutanesulfonic acid	2022/09/08		84	%	50 - 150
			13C4-Perfluorobutanoic acid	2022/09/08		86	%	50 - 150
			13C4-Perfluoroheptanoic acid	2022/09/08		85	%	50 - 150
			13C4-Perfluorooctanesulfonic acid	2022/09/08		82	%	50 - 150
			13C4-Perfluorooctanoic acid	2022/09/08		85	%	50 - 150
			13C5-Perfluorononanoic acid	2022/09/08		84	%	50 - 150
			13C5-Perfluoropentanoic acid	2022/09/08		83	%	50 - 150
			1802-Perfluorohexanesulfonic acid	2022/09/08		82	%	50 - 150
			D3-MeFOSAA	2022/09/08		84	%	50 - 150
			D5-EtFOSAA	2022/09/08		80	%	50 - 150
			Perfluorobutanoic acid (PFBA)	2022/09/08		99	%	70 - 130
			Perfluoropentanoic acid (PFPeA)	2022/09/08		101	%	70 - 130
			Perfluorohexanoic acid (PFHxA)	2022/09/08		99	%	70 - 130
			Perfluoroheptanoic acid (PFHpA)	2022/09/08		99	%	70 - 130
			Perfluorooctanoic acid (PFOA)	2022/09/08		104	%	70 - 130
			Perfluorononanoic acid (PFNA)	2022/09/08		100	%	70 - 130
			Perfluorodecanoic acid (PFDA)	2022/09/08		98	%	70 - 130
			Perfluoroundecanoic acid (PFUnA)	2022/09/08		99	%	70 - 130
			Perfluorododecanoic acid (PFDoA)	2022/09/08		99	%	70 - 130
			Perfluorobutanesulfonic acid (PFBS)	2022/09/08		99	%	70 - 130
			Perfluoropentanesulfonic acid PFPes	2022/09/08		98	%	70 - 130
			Perfluorohexanesulfonic acid(PFHxS)	2022/09/08		100	%	70 - 130
			Perfluoroheptanesulfonic acid PFHpS	2022/09/08		95	%	70 - 130
			Perfluorooctanesulfonic acid (PFOS)	2022/09/08		100	%	70 - 130
			Perfluorononanesulfonic acid (PFNS)	2022/09/08		89	%	70 - 130
			Perfluorodecanesulfonic acid (PFDS)	2022/09/08		94	%	70 - 130
			EtFOSAA	2022/09/08		103	%	70 - 130
			MeFOSAA	2022/09/08		97	%	70 - 130
			4:2 Fluorotelomer sulfonic acid	2022/09/08		98	%	70 - 130
			6:2 Fluorotelomer sulfonic acid	2022/09/08		99	%	70 - 130
			8:2 Fluorotelomer sulfonic acid	2022/09/08		99	%	70 - 130
			Hexafluoropropyleneoxide dimer acid	2022/09/08		104	%	70 - 130
			4,8-Dioxa-3H-perfluorononanoic acid	2022/09/08		100	%	70 - 130
			9Cl-PF3ONS (F-53B Major)	2022/09/08		97	%	70 - 130
			11Cl-PF3OUdS (F-53B Minor)	2022/09/08		95	%	70 - 130
8208220	TTM	Method Blank	13C2-4:2-Fluorotelomersulfonic Acid	2022/09/08		98	%	50 - 150
			13C2-6:2-Fluorotelomersulfonic Acid	2022/09/08		97	%	50 - 150
			13C2-8:2-Fluorotelomersulfonic Acid	2022/09/08		95	%	50 - 150
			13C2-Perfluorodecanoic acid	2022/09/08		90	%	50 - 150
			13C2-Perfluorododecanoic acid	2022/09/08		85	%	50 - 150
			13C2-Perfluorohexanoic acid	2022/09/08		93	%	50 - 150
			13C2-Perfluoroundecanoic acid	2022/09/08		92	%	50 - 150
			13C3-HFPO-DA	2022/09/08		78	%	50 - 150
			13C3-Perfluorobutanesulfonic acid	2022/09/08		91	%	50 - 150
			13C4-Perfluorobutanoic acid	2022/09/08		93	%	50 - 150
			13C4-Perfluoroheptanoic acid	2022/09/08		97	%	50 - 150
			13C4-Perfluorooctanesulfonic acid	2022/09/08		90	%	50 - 150
			13C4-Perfluorooctanoic acid	2022/09/08		94	%	50 - 150
			13C5-Perfluorononanoic acid	2022/09/08		95	%	50 - 150
			13C5-Perfluoropentanoic acid	2022/09/08		91	%	50 - 150
			1802-Perfluorohexanesulfonic acid	2022/09/08		89	%	50 - 150
			D3-MeFOSAA	2022/09/08		89	%	50 - 150

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			D5-EtFOSAA	2022/09/08	0.2444	91	%	50 - 150
			Perfluorobutanoic acid (PFBA)	2022/09/08	0.24 U, MDL=0.24		ug/kg	
			Perfluoropentanoic acid (PFPeA)	2022/09/08	0.23 U, MDL=0.23		ug/kg	
			Perfluorohexanoic acid (PFHxA)	2022/09/08	0.16 U, MDL=0.16		ug/kg	
			Perfluoroheptanoic acid (PFHpA)	2022/09/08	0.17 U, MDL=0.17		ug/kg	
			Perfluorooctanoic acid (PFOA)	2022/09/08	0.20 U, MDL=0.20		ug/kg	
			Perfluorononanoic acid (PFNA)	2022/09/08	0.27 U, MDL=0.27		ug/kg	
			Perfluorodecanoic acid (PFDA)	2022/09/08	0.24 U, MDL=0.24		ug/kg	
			Perfluoroundecanoic acid (PFUnA)	2022/09/08	0.25 U, MDL=0.25		ug/kg	
			Perfluorododecanoic acid (PFDoA)	2022/09/08	0.19 U, MDL=0.19		ug/kg	
			Perfluorobutanesulfonic acid (PFBS)	2022/09/08	0.17 U, MDL=0.17		ug/kg	
			Perfluoropentanesulfonic acid PFPes	2022/09/08	0.26 U, MDL=0.26		ug/kg	
			Perfluorohexanesulfonic acid(PFHxS)	2022/09/08	0.30 U, MDL=0.30		ug/kg	
			Perfluoroheptanesulfonic acid PFHpS	2022/09/08	0.17 U, MDL=0.17		ug/kg	
			Perfluorooctanesulfonic acid (PFOS)	2022/09/08	0.27 U, MDL=0.27		ug/kg	
			Perfluorononanesulfonic acid (PFNS)	2022/09/08	0.24 U, MDL=0.24		ug/kg	
			Perfluorodecanesulfonic acid (PFDS)	2022/09/08	0.27 U, MDL=0.27		ug/kg	
			EtFOSAA	2022/09/08	0.40 U, MDL=0.40		ug/kg	
			MeFOSAA	2022/09/08	0.32 U, MDL=0.32		ug/kg	
			4:2 Fluorotelomer sulfonic acid	2022/09/08	0.25 U, MDL=0.25		ug/kg	
			6:2 Fluorotelomer sulfonic acid	2022/09/08	0.30 U, MDL=0.30		ug/kg	
			8:2 Fluorotelomer sulfonic acid	2022/09/08	0.30 U, MDL=0.30		ug/kg	
			Hexafluoropropyleneoxide dimer acid	2022/09/08	0.19 U, MDL=0.19		ug/kg	
			4,8-Dioxa-3H-perfluorononanoic acid	2022/09/08	0.28 U, MDL=0.28		ug/kg	
			9Cl-PF3ONS (F-53B Major)	2022/09/08	0.21 U, MDL=0.21		ug/kg	
			11Cl-PF3OUdS (F-53B Minor)	2022/09/08	0.22 U, MDL=0.22		ug/kg	
8208220	TTM	RPD - Sample/Sample Dup	Perfluorobutanoic acid (PFBA)	2022/09/08	NC		%	30
3230220		5 Sample/Sample Dap	Perfluoropentanoic acid (PFPeA)	2022/09/08	NC		%	30

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

04/06								
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
Daten		QC Type	Perfluoroheptanoic acid (PFHpA)	2022/09/08	NC	70 Necovery	%	30
			Perfluorooctanoic acid (PFOA)	2022/09/08	NC		%	30
			Perfluorononanoic acid (PFNA)	2022/09/08	NC		%	30
			Perfluorodecanoic acid (PFDA)	2022/09/08	NC		%	30
			Perfluoroundecanoic acid (PFUnA)	2022/09/08	NC		%	30
			Perfluorododecanoic acid (PFDoA)	2022/09/08	NC		%	30
			Perfluorobutanesulfonic acid (PFBS)	2022/09/08	NC		%	30
			Perfluoropentanesulfonic acid PFPes	2022/09/08	NC		%	30
			Perfluorohexanesulfonic acid(PFHxS)	2022/09/08	NC		%	30
			Perfluoroheptanesulfonic acid PFHpS	2022/09/08	NC		%	30
			Perfluorooctanesulfonic acid (PFOS)	2022/09/08	NC		%	30
			Perfluorononanesulfonic acid (PFNS)	2022/09/08	NC		%	30
			Perfluorodecanesulfonic acid (PFDS)	2022/09/08	NC		%	30
			EtFOSAA	2022/09/08	NC		%	30
			MeFOSAA	2022/09/08	NC		%	30
			4:2 Fluorotelomer sulfonic acid	2022/09/08	NC		%	30
			6:2 Fluorotelomer sulfonic acid	2022/09/08	NC		%	30
			8:2 Fluorotelomer sulfonic acid	2022/09/08	NC		%	30
			Hexafluoropropyleneoxide dimer acid	2022/09/08	NC		%	30
			4,8-Dioxa-3H-perfluorononanoic acid	2022/09/08	NC		%	30
			9CI-PF3ONS (F-53B Major)	2022/09/08	NC		%	30
			11Cl-PF3OUdS (F-53B Minor)	2022/09/08	NC		%	30
8212445	AGU	Matrix Spike	37CL4 2378 Tetra CDD	2022/09/08	NC	77	%	35 - 197
0212443	AGO	Wati ix Spike	C13-1234678 HeptaCDD	2022/09/08		77 78	%	23 - 140
			C13-1234078 HeptaCDF	2022/09/08		84	%	28 - 143
			C13-1234078 HexaCDD	2022/09/08		97	%	32 - 141
			C13-123478 HexaCDF	2022/09/08		76	% %	26 - 152
			C13-123478 HexacDF	2022/09/08		76 77	%	26 - 138
			C13-1234789 HeptaCDI C13-123678 HexaCDD	2022/09/08		107	%	28 - 130
			C13-123678 HexaCDF	2022/09/08		76	% %	26 - 123
			C13-123078 REXACDF	2022/09/08		76 71	% %	25 - 181
			C13-12378 PentaCDF	2022/09/08		70	%	24 - 185
			C13-123789 HexaCDF	2022/09/08		98	% %	29 - 147
			C13-234678 HexaCDF	2022/09/08		99	% %	28 - 136
			C13-234078 REXACDF	2022/09/08		74	% %	21 - 178
			C13-23478 FettaCDD	2022/09/08		80	% %	25 - 164
			C13-2378 TetraCDF	2022/09/08		80	% %	24 - 169
			C13-OCDD	2022/09/08		52		17 - 157
							%	
			2,3,7,8-Tetra CDD	2022/09/08		99	%	67 - 158
			1,2,3,7,8-Penta CDD	2022/09/08		99	%	25 - 181
			1,2,3,4,7,8-Hexa CDD	2022/09/08		97	%	70 - 164
			1,2,3,6,7,8-Hexa CDD	2022/09/08		108	%	76 - 134
			1,2,3,7,8,9-Hexa CDD	2022/09/08		101	%	64 - 162
			1,2,3,4,6,7,8-Hepta CDD	2022/09/08		94	%	70 - 140
			Octa CDD	2022/09/08		105	%	78 - 144
			Total Tetra CDD	2022/09/08		N/A*****	%	N/A
			Total Have CDD	2022/09/08		N/A*****	%	N/A
			Total Hexa CDD	2022/09/08		N/A*****	%	N/A
			Total Hepta CDD	2022/09/08		N/A*****	%	N/A
			2,3,7,8-Tetra CDF	2022/09/08		100	%	75 - 158
			1,2,3,7,8-Penta CDF	2022/09/08		101	%	80 - 134
			2,3,4,7,8-Penta CDF	2022/09/08		100	%	68 - 160

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed Value	e % Recovery	UNITS	QC Limits
		• •	1,2,3,4,7,8-Hexa CDF	2022/09/08	98	%	72 - 134
			1,2,3,6,7,8-Hexa CDF	2022/09/08	101	%	84 - 130
			2,3,4,6,7,8-Hexa CDF	2022/09/08	95	%	70 - 156
			1,2,3,7,8,9-Hexa CDF	2022/09/08	99	%	78 - 130
			1,2,3,4,6,7,8-Hepta CDF	2022/09/08	98	%	82 - 122
			1,2,3,4,7,8,9-Hepta CDF	2022/09/08	98	%	78 - 138
			Octa CDF	2022/09/08	102	%	63 - 170
			Total Tetra CDF	2022/09/08	N/A*****	%	N/A
			Total Penta CDF	2022/09/08	N/A*****	%	N/A
			Total Hexa CDF	2022/09/08	N/A*****	%	N/A
			Total Hepta CDF	2022/09/08	N/A*****	%	N/A
8212445	AGU	Spiked Blank	37CL4 2378 Tetra CDD	2022/09/08	90	%	35 - 197
			C13-1234678 HeptaCDD	2022/09/08	76	%	23 - 140
			C13-1234678 HeptaCDF	2022/09/08	85	%	28 - 143
			C13-123478 HexaCDD	2022/09/08	92	%	32 - 141
			C13-123478 HexaCDF	2022/09/08	75	%	26 - 152
			C13-1234789 HeptaCDF	2022/09/08	74	%	26 - 138
			C13-123678 HexaCDD	2022/09/08	104	%	28 - 130
			C13-123678 HexaCDF	2022/09/08	72	%	26 - 123
			C13-12378 PentaCDD	2022/09/08	75	%	25 - 181
			C13-12378 PentaCDF	2022/09/08	78	%	24 - 185
			C13-123789 HexaCDF	2022/09/08	89	%	29 - 147
			C13-234678 HexaCDF	2022/09/08	94	%	28 - 136
			C13-23478 PentaCDF	2022/09/08	77	%	21 - 178
			C13-2378 TetraCDD	2022/09/08	84	%	25 - 164
			C13-2378 TetraCDF	2022/09/08	85	%	24 - 169
			C13-OCDD	2022/09/08	51	%	17 - 157
			2,3,7,8-Tetra CDD	2022/09/08	102	%	67 - 158
			1,2,3,7,8-Penta CDD	2022/09/08	102	%	25 - 181
			1,2,3,4,7,8-Hexa CDD	2022/09/08	102	%	70 - 164
			1,2,3,6,7,8-Hexa CDD	2022/09/08	106	%	76 - 134
			1,2,3,7,8,9-Hexa CDD	2022/09/08	109	%	64 - 162
			1,2,3,4,6,7,8-Hepta CDD	2022/09/08	100	%	70 - 140
			Octa CDD	2022/09/08	101	%	78 - 144
			2,3,7,8-Tetra CDF	2022/09/08	100	%	75 - 158
			1,2,3,7,8-Penta CDF	2022/09/08	97	%	80 - 134
			2,3,4,7,8-Penta CDF	2022/09/08	101	%	68 - 160
			1,2,3,4,7,8-Hexa CDF	2022/09/08	99	%	72 - 134
			1,2,3,6,7,8-Hexa CDF	2022/09/08	105	%	84 - 130
			2,3,4,6,7,8-Hexa CDF	2022/09/08	93	%	70 - 156
			1,2,3,7,8,9-Hexa CDF	2022/09/08	104	%	78 - 130
			1,2,3,4,6,7,8-Hepta CDF	2022/09/08	99	%	82 - 122
			1,2,3,4,7,8,9-Hepta CDF	2022/09/08	105	%	78 - 138
			Octa CDF	2022/09/08	101	%	63 - 170
8212445	AGU	Method Blank	37CL4 2378 Tetra CDD	2022/09/08	86	%	35 - 197
			C13-1234678 HeptaCDD	2022/09/08	75	%	23 - 140
			C13-1234678 HeptaCDF	2022/09/08	92	%	28 - 143
			C13-123478 HexaCDD	2022/09/08	100	%	32 - 141
			C13-123478 HexaCDF	2022/09/08	76	%	26 - 152
			C13-1234789 HeptaCDF	2022/09/08	74	%	26 - 138
			C13-123678 HexaCDD	2022/09/08	109	%	28 - 130
			C13-123678 HexaCDF	2022/09/08	76	%	26 - 123

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			C13-12378 PentaCDD	2022/09/08		68	%	25 - 181
			C13-12378 PentaCDF	2022/09/08		71	%	24 - 185
			C13-123789 HexaCDF	2022/09/08		102	%	29 - 147
			C13-234678 HexaCDF	2022/09/08		116	%	28 - 136
			C13-23478 PentaCDF	2022/09/08		72	%	21 - 178
			C13-2378 TetraCDD	2022/09/08		81	%	25 - 164
			C13-2378 TetraCDF	2022/09/08		79	%	24 - 169
			C13-OCDD	2022/09/08		50	%	17 - 157
			2,3,7,8-Tetra CDD	2022/09/08	0.120 U, EDL=0.120		pg/g	
			1,2,3,7,8-Penta CDD	2022/09/08	0.149 U, EDL=0.149		pg/g	
			1,2,3,4,7,8-Hexa CDD	2022/09/08	0.159 U, EDL=0.159		pg/g	
			1,2,3,6,7,8-Hexa CDD	2022/09/08	0.164 U, EDL=0.164		pg/g	
			1,2,3,7,8,9-Hexa CDD	2022/09/08	0.178 U, EDL=0.178		pg/g	
			1,2,3,4,6,7,8-Hepta CDD	2022/09/08	0.144 U, EDL=0.144		pg/g	
			Octa CDD	2022/09/08	0.132 U, EDL=0.132		pg/g	
			Total Tetra CDD	2022/09/08	0.120 U, EDL=0.120		pg/g	
			Total Penta CDD	2022/09/08	0.149 U, EDL=0.149		pg/g	
			Total Hexa CDD	2022/09/08	0.424 U, EDL=0.424 (1)		pg/g	
			Total Hepta CDD	2022/09/08	0.144 U, EDL=0.144		pg/g	
			2,3,7,8-Tetra CDF	2022/09/08	0.104 U, EDL=0.104		pg/g	
			1,2,3,7,8-Penta CDF	2022/09/08	0.151 U, EDL=0.151		pg/g	
			2,3,4,7,8-Penta CDF	2022/09/08	0.135 U, EDL=0.135		pg/g	
			1,2,3,4,7,8-Hexa CDF	2022/09/08	0.162 U, EDL=0.162		pg/g	
			1,2,3,6,7,8-Hexa CDF	2022/09/08	0.176 U, EDL=0.176		pg/g	
			2,3,4,6,7,8-Hexa CDF	2022/09/08	0.162 U, EDL=0.162		pg/g	
			1,2,3,7,8,9-Hexa CDF	2022/09/08	0.175 U, EDL=0.175		pg/g	
			1,2,3,4,6,7,8-Hepta CDF	2022/09/08	0.153 U, EDL=0.153		pg/g	
			1,2,3,4,7,8,9-Hepta CDF	2022/09/08	0.158 U, EDL=0.158		pg/g	
			Octa CDF	2022/09/08	0.137 U, EDL=0.137		pg/g	
			Total Tetra CDF	2022/09/08	0.104 U, EDL=0.104		pg/g	

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		- No.	Total Penta CDF	2022/09/08	0.142 U,	,	pg/g	
					EDL=0.142		, 6. 6	
			Total Hexa CDF	2022/09/08	0.169 U,		pg/g	
					EDL=0.169			
			Total Hepta CDF	2022/09/08	0.156 U,		pg/g	
					EDL=0.156			
8212445	AGU	RPD - Sample/Sample Dup	2,3,7,8-Tetra CDD	2022/09/08	NC		%	25
			1,2,3,7,8-Penta CDD	2022/09/08	NC		%	25
			1,2,3,4,7,8-Hexa CDD	2022/09/08	NC		%	25
			1,2,3,6,7,8-Hexa CDD	2022/09/08	NC		%	25
			1,2,3,7,8,9-Hexa CDD	2022/09/08	NC (1)		%	25
			1,2,3,4,6,7,8-Hepta CDD	2022/09/08	NC		%	25
			Octa CDD	2022/09/08	8.4		%	25
			Total Tetra CDD	2022/09/08	4.1		%	25
			Total Penta CDD	2022/09/08	NC		%	25
			Total Hexa CDD	2022/09/08	NC		%	25
			Total Hepta CDD	2022/09/08	NC		%	25
			2,3,7,8-Tetra CDF	2022/09/08	NC		%	25
			1,2,3,7,8-Penta CDF	2022/09/08	NC		%	25
			2,3,4,7,8-Penta CDF	2022/09/08	NC		%	25
			1,2,3,4,7,8-Hexa CDF	2022/09/08	NC		%	25
			1,2,3,6,7,8-Hexa CDF	2022/09/08	NC		%	25
			2,3,4,6,7,8-Hexa CDF	2022/09/08	NC		%	25
			1,2,3,7,8,9-Hexa CDF	2022/09/08	NC		%	25
			1,2,3,4,6,7,8-Hepta CDF	2022/09/08	NC		%	25
			1,2,3,4,7,8,9-Hepta CDF	2022/09/08	NC		%	25
			Octa CDF	2022/09/08	NC		%	25
			Total Tetra CDF	2022/09/08	NC		%	25
			Total Penta CDF	2022/09/08	NC		%	25
			Total Hexa CDF	2022/09/08	NC		%	25
			Total Hepta CDF	2022/09/08	NC		%	25
8213841	XIN	Matrix Spike	13C2-perfluorotetradecanoic acid	2022/09/09		121	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2022/09/09		98	%	50 - 150
			D3-MeFOSA	2022/09/09		78	%	25 - 150
			D5-EtFOSA	2022/09/09		71	%	25 - 150
			D7-MeFOSE	2022/09/09		80	%	25 - 150
			D9-EtFOSE	2022/09/09		70	%	25 - 150
			Perfluorotridecanoic acid (PFTRDA)	2022/09/09		93	%	70 - 130
			Perfluorotetradecanoic acid(PFTEDA)	2022/09/09		96	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2022/09/09		93	%	70 - 130
			EtFOSA	2022/09/09		100	%	70 - 130
			MeFOSA	2022/09/09		96	%	70 - 130
			EtFOSE	2022/09/09		102	%	70 - 130
			MeFOSE	2022/09/09		103	%	70 - 130
8213841	XIN	Spiked Blank	13C2-perfluorotetradecanoic acid	2022/09/09		84	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2022/09/09		95	%	50 - 150
			D3-MeFOSA	2022/09/09		61	%	25 - 150
			D5-EtFOSA	2022/09/09		56	%	25 - 150
			D7-MeFOSE	2022/09/09		76	%	25 - 150
			D9-EtFOSE	2022/09/09		68	%	25 - 150
			Perfluorotridecanoic acid (PFTRDA)	2022/09/09		112	%	70 - 130
			Perfluorotetradecanoic acid(PFTEDA)	2022/09/09		100	%	70 - 130

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		• •	Perfluorooctane Sulfonamide (PFOSA)	2022/09/09		93	%	70 - 130
			EtFOSA	2022/09/09		98	%	70 - 130
			MeFOSA	2022/09/09		93	%	70 - 130
			EtFOSE	2022/09/09		97	%	70 - 130
			MeFOSE	2022/09/09		100	%	70 - 130
213841	XIN	Method Blank	13C2-perfluorotetradecanoic acid	2022/09/09		90	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2022/09/09		92	%	50 - 150
			D3-MeFOSA	2022/09/09		77	%	25 - 150
			D5-EtFOSA	2022/09/09		71	%	25 - 150
			D7-MeFOSE	2022/09/09		86	%	25 - 150
			D9-EtFOSE	2022/09/09		75	%	25 - 150
			Perfluorotridecanoic acid (PFTRDA)	2022/09/09	0.22 U,		ug/kg	
					MDL=0.22			
			Perfluorotetradecanoic acid(PFTEDA)	2022/09/09	0.30 U, MDL=0.30		ug/kg	
			Perfluorooctane Sulfonamide (PFOSA)	2022/09/09	0.20 U, MDL=0.20		ug/kg	
			EtFOSA	2022/09/09	0.31 U, MDL=0.31		ug/kg	
			MeFOSA	2022/09/09	0.39 U, MDL=0.39		ug/kg	
			EtFOSE	2022/09/09	0.29 U, MDL=0.29		ug/kg	
			MeFOSE	2022/09/09	0.22 U, MDL=0.22		ug/kg	
213841	XIN	RPD - Sample/Sample Dup	Perfluorotridecanoic acid (PFTRDA)	2022/09/09	NC		%	30
		. ,	Perfluorotetradecanoic acid(PFTEDA)	2022/09/09	NC		%	30
			Perfluorooctane Sulfonamide (PFOSA)	2022/09/09	NC		%	30
			EtFOSA	2022/09/09	NC		%	30
			MeFOSA	2022/09/09	NC		%	30
			EtFOSE	2022/09/09	NC		%	30
			MeFOSE	2022/09/09	NC		%	30
237702	AGU	Method Blank	Confirmation 2,3,7,8-Tetra CDF	2022/09/20	0.12 U, EDL=0.12		pg/g	30
			Confirmation C13-2378 TetraCDF	2022/09/20	LDL-0.12	75	%	40 - 135
239765	CXU	Matrix Spike(TNI532)	C13-2,44'-TriCB-(28)	2022/09/20		110	% %	40 - 133 15 - 145
239703	CAU	Matrix Spike(TNISS2)	C13-22'33'44'55'6-NonaCB-(206)			76	% %	40 - 145
			` '	2022/09/30		76 89	% %	
			C13-22'33'44'5-HeptaCB-(170)	2022/09/30				40 - 145
			C13-22'33'455'66'-NonaCB-(208)	2022/09/30		82	%	40 - 145
			C13-22'33'55'66'-OctaCB-(202)	2022/09/30		77	%	40 - 145
			C13-22'33'55'6-HeptaCB-(178)	2022/09/30		71	%	40 - 145
			C13-22'344'55'-HeptaCB-(180)	2022/09/30		85	%	40 - 145
			C13-22'34'566'-HeptaCB-(188)	2022/09/30		66	%	40 - 145
			C13-22'44'66'-HexaCB-(155)	2022/09/30		74	%	40 - 145
			C13-22'466'-PentaCB-(104)	2022/09/30		76	%	40 - 145
			C13-22'66'-TetraCB-(54)	2022/09/30		70	%	15 - 145
			C13-22'6-TriCB-(19)	2022/09/30		68	%	15 - 145
			C13-22'-DiCB-(4)	2022/09/30		61	%	15 - 145
			C13-233'44'55'6-OctaCB-(205)	2022/09/30		73	%	40 - 145
			C13-233'44'55'-HeptaCB-(189)	2022/09/30		79	%	40 - 145
			C13-233'44'-PentaCB-(105)	2022/09/30		94	%	40 - 145
			C13-233'55'-PentaCB-(111)	2022/09/30		79	%	40 - 145
			C13-23'44'55'-HexaCB-(167)	2022/09/30		87	%	40 - 145

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

Batch Ini	it QC Type	Parameter C13-2344'5-PentaCB-(114) C13-23'44'5-PentaCB-(118) C13-2'344'5-PentaCB-(123) C13-2-MonoCB-(1) C13-33'44'55'-HexaCB-(169) C13-33'44'5-PentaCB-(126) C13-33'44'-TetraCB-(77) C13-344'5-TetraCB-(81) C13-344'-TriCB-(37) C13-44'-DiCB-(15) C13-4-MonoCB-(3) C13-DecaCB-(209) C13-HexaCB-(156)+(157) 2-MonoCB-(1)	Date Analyzed Value 2022/09/30	89 97 98 77 75 91 86 89 95 76 74	% % % % % % % % % % % %	QC Limits 40 - 145 40 - 145 15 - 145 40 - 145 40 - 145 40 - 145 40 - 145 40 - 145 15 - 145
		C13-23'44'5-PentaCB-(118) C13-2'344'5-PentaCB-(123) C13-2-MonoCB-(1) C13-33'44'55'-HexaCB-(169) C13-33'44'5-PentaCB-(126) C13-33'44'-TetraCB-(77) C13-344'5-TetraCB-(81) C13-344'-TriCB-(37) C13-44'-DiCB-(15) C13-4-MonoCB-(3) C13-DecaCB-(209) C13-HexaCB-(156)+(157)	2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30	97 98 77 75 91 86 89 95 76	% % % % % %	40 - 145 40 - 145 15 - 145 40 - 145 40 - 145 40 - 145 40 - 145 15 - 145
		C13-2'344'5-PentaCB-(123) C13-2-MonoCB-(1) C13-33'44'55'-HexaCB-(169) C13-33'44'5-PentaCB-(126) C13-33'44'-TetraCB-(77) C13-344'-TetraCB-(81) C13-344'-TriCB-(37) C13-44'-DiCB-(15) C13-4-MonoCB-(3) C13-DecaCB-(209) C13-HexaCB-(156)+(157)	2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30	98 77 75 91 86 89 95 76	% % % % % %	40 - 145 15 - 145 40 - 145 40 - 145 40 - 145 40 - 145 15 - 145
		C13-2-MonoCB-(1) C13-33'44'55'-HexaCB-(169) C13-33'44'5-PentaCB-(126) C13-33'44'-TetraCB-(77) C13-344'5-TetraCB-(81) C13-344'-TriCB-(37) C13-44'-DiCB-(15) C13-4-MonoCB-(3) C13-DecaCB-(209) C13-HexaCB-(156)+(157)	2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30	77 75 91 86 89 95 76	% % % % %	15 - 145 40 - 145 40 - 145 40 - 145 40 - 145 15 - 145 15 - 145
		C13-33'44'55'-HexaCB-(169) C13-33'44'5-PentaCB-(126) C13-33'44'-TetraCB-(77) C13-344'5-TetraCB-(81) C13-344'-TriCB-(37) C13-44'-DiCB-(15) C13-4-MonoCB-(3) C13-DecaCB-(209) C13-HexaCB-(156)+(157)	2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30	75 91 86 89 95 76 74	% % % % %	40 - 145 40 - 145 40 - 145 40 - 145 15 - 145 15 - 145
		C13-33'44'5-PentaCB-(126) C13-33'44'-TetraCB-(77) C13-344'5-TetraCB-(81) C13-344'-TriCB-(37) C13-44'-DiCB-(15) C13-4-MonoCB-(3) C13-DecaCB-(209) C13-HexaCB-(156)+(157)	2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30	91 86 89 95 76 74	% % % %	40 - 145 40 - 145 40 - 145 15 - 145 15 - 145
		C13-33'44'-TetraCB-(77) C13-344'5-TetraCB-(81) C13-344'-TriCB-(37) C13-44'-DiCB-(15) C13-4-MonoCB-(3) C13-DecaCB-(209) C13-HexaCB-(156)+(157)	2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30	86 89 95 76 74	% % %	40 - 145 40 - 145 15 - 145 15 - 145
		C13-344'5-TetraCB-(81) C13-344'-TriCB-(37) C13-44'-DiCB-(15) C13-4-MonoCB-(3) C13-DecaCB-(209) C13-HexaCB-(156)+(157)	2022/09/30 2022/09/30 2022/09/30 2022/09/30 2022/09/30	89 95 76 74	% % %	40 - 145 15 - 145 15 - 145
		C13-344'-TriCB-(37) C13-44'-DiCB-(15) C13-4-MonoCB-(3) C13-DecaCB-(209) C13-HexaCB-(156)+(157)	2022/09/30 2022/09/30 2022/09/30 2022/09/30	95 76 74	% %	15 - 145 15 - 145
		C13-44'-DiCB-(15) C13-4-MonoCB-(3) C13-DecaCB-(209) C13-HexaCB-(156)+(157)	2022/09/30 2022/09/30 2022/09/30	76 74	%	15 - 145
		C13-4-MonoCB-(3) C13-DecaCB-(209) C13-HexaCB-(156)+(157)	2022/09/30 2022/09/30	74		
		C13-DecaCB-(209) C13-HexaCB-(156)+(157)	2022/09/30		%	
		C13-HexaCB-(156)+(157)		7/		15 - 145
			2022/00/20		%	40 - 145
		2-MonoCB-(1)	• •	85	%	40 - 145
			2022/09/30	109	%	60 - 145
		22'-DiCB-(4)	2022/09/30	114	%	60 - 145
		4,4'-DiCB-(15)	2022/09/30	114	%	60 - 145
		22'6-TriCB-(19)	2022/09/30	107	%	60 - 145
		344'-TriCB-(37)	2022/09/30	100	%	60 - 145
		22'66'-TetraCB-(54)	2022/09/30	101	%	60 - 145
		33'44'-TetraCB-(77)	2022/09/30	104	%	60 - 145
		344'5-TetraCB-(81)	2022/09/30	115	%	60 - 145
		22'466'-PentaCB-(104)	2022/09/30	111	%	60 - 145
		233'44'-PentaCB-(105)	2022/09/30	104	%	60 - 145
		2344'5-PentaCB-(114)	2022/09/30	105	%	60 - 145
		23'44'5-PentaCB-(118)	2022/09/30	104	%	60 - 145
		23'44'5'-PentaCB-(123)	2022/09/30	122	%	60 - 145
		33'44'5-PentaCB-(126)	2022/09/30	109	%	60 - 145
		22'44'66'-HexaCB-(155)	2022/09/30	106	%	60 - 145
		HexaCB-(156)+(157)	2022/09/30	97	%	N/A
		23'44'55'-HexaCB-(167)	2022/09/30	94	%	60 - 145
		33'44'55'-HexaCB-(169)	2022/09/30	113	%	60 - 145
		22'33'44'5-HeptaCB-(170)	2022/09/30	95	%	60 - 145
		HeptaCB-(180)+(193)	2022/09/30	90	%	N/A
		22'34'566'-HeptaCB-(188)	2022/09/30	116	%	60 - 145
		233'44'55'-HeptaCB-(189)	2022/09/30	116	%	60 - 145
		22'33'55'66'-OctaCB-(202)	2022/09/30	123	%	60 - 145
		233'44'55'6-OctaCB-(205)	2022/09/30	119	%	60 - 145
		22'33'44'55'6-NonaCB-(206)	2022/09/30	125	%	60 - 145
		22'33'455'66'-NonaCB-(208)	2022/09/30	120	%	60 - 145
		DecaCB-(209)	2022/09/30	111	%	60 - 145
8239765 CX	U Spiked Blank	C13-2,44'-TriCB-(28)	2022/10/03	55	%	15 - 145
0203700 07	o opinea siaini	C13-22'33'44'55'6-NonaCB-(206)	2022/10/03	79	%	40 - 145
		C13-22'33'44'5-HeptaCB-(170)	2022/10/03	70	%	40 - 145
		C13-22'33'455'66'-NonaCB-(208)	2022/10/03	75 75	%	40 - 145
		C13-22'33'55'66'-OctaCB-(202)	2022/10/03	52	%	40 - 145
		C13-22'33'55'6-HeptaCB-(178)	2022/10/03	60	%	40 - 145
		C13-22'344'55'-HeptaCB-(180)	2022/10/03	60	%	40 - 145
		C13-22'34'556'-HeptaCB-(188)	2022/10/03	62	% %	40 - 145
		C13-22'44'66'-HexaCB-(185)	2022/10/03	66	%	40 - 145
		C13-22'466'-PentaCB-(104)	2022/10/03		% %	40 - 145
				61 50		
		C13-22'66'-TetraCB-(54) C13-22'6-TriCB-(19)	2022/10/03 2022/10/03	47	% %	15 - 145 15 - 145

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

Batch	Init OC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limit
Dattil	Init QC Type	C13-22'-DiCB-(4)	2022/10/03	value	% Recovery	%	15 - 145
		C13-223'44'55'6-OctaCB-(205)	2022/10/03		83	% %	40 - 145
		C13-233'44'55'-HeptaCB-(189)	2022/10/03		76	%	40 - 145
		C13-233'44'-PentaCB-(105)	2022/10/03		70 72	%	40 - 145
		C13-233'55'-PentaCB-(111)	2022/10/03		50	%	40 - 145
		C13-233 35 - I CHIACB-(1117)	2022/10/03		90	%	40 - 145
		C13-2344'5-PentaCB-(114)	2022/10/03		66	%	40 - 145
		C13-23'44'5-PentaCB-(114)	2022/10/03		66	%	40 - 145
		C13-2/344/5-PentaCB-(110)	2022/10/03		65	%	40 - 14
		C13-2-MonoCB-(1)	2022/10/03		44	%	15 - 14
		C13-33'44'55'-HexaCB-(169)	2022/10/03		102	%	40 - 14
		C13-33'44'5-PentaCB-(126)	2022/10/03		80	%	40 - 14
		C13-33'44'-TetraCB-(120)	2022/10/03		54	%	40 - 14
		C13-33 44 - TetraCB-(77)	2022/10/03		55	%	40 - 14
		C13-344 5-Tettac5-(81)	2022/10/03		61	%	15 - 14
		C13-344 - ITICB-(37)	2022/10/03		52	% %	15 - 14 15 - 14
		C13-44 -DICB-(13) C13-4-MonoCB-(3)	2022/10/03		40	% %	15 - 14 15 - 14
		C13-4-WorlocB-(3)	2022/10/03		84	%	40 - 14
		C13-DecaCB-(203) C13-HexaCB-(156)+(157)	2022/10/03		99	%	40 - 14
		2-MonoCB-(1)	2022/10/03		111	%	60 - 14
		4-MonoCB-(1)	2022/10/03		117	%	60 - 14
		22'-DiCB-(4)	2022/10/03		109	% %	60 - 14
		4,4'-DiCB-(15)	2022/10/03		110	% %	60 - 14
		22'6-TriCB-(19)	2022/10/03		109	% %	60 - 14
		344'-TriCB-(37)	2022/10/03		105	% %	60 - 14
		22'66'-TetraCB-(54)	2022/10/03		110	%	60 - 14
		33'44'-TetraCB-(77)	2022/10/03		115	% %	60 - 14
		33 44 - Tetracb-(77) 344'5-TetraCB-(81)	2022/10/03		112	%	60 - 1
		22'466'-PentaCB-(104)	2022/10/03		112	% %	60 - 14
		22 400 -PentaCB-(104) 233'44'-PentaCB-(105)	2022/10/03		109	% %	60 - 14
		2344'5-PentaCB-(103)	2022/10/03		111	% %	60 - 14
		23'44'5-PentaCB-(114)	2022/10/03		108	%	60 - 14
		23'44'5'-PentaCB-(123)	2022/10/03		111	% %	60 - 14
		33'44'5-PentaCB-(126)	2022/10/03		110	% %	60 - 14
		22'44'66'-HexaCB-(155)	2022/10/03		111	% %	60 - 1
		HexaCB-(156)+(157)	2022/10/03		108	% %	N/A
		23'44'55'-HexaCB-(167)	2022/10/03		103	% %	60 - 14
		33'44'55'-HexaCB-(169)	2022/10/03		103		60 - 14
						%	
		22'33'44'5-HeptaCB-(170)	2022/10/03 2022/10/03		106	%	60 - 14
		HeptaCB-(180)+(193)	• •		85	%	N/A
		22'34'566'-HeptaCB-(188)	2022/10/03		110	%	60 - 14
		233'44'55'-HeptaCB-(189)	2022/10/03		106	%	60 - 14
		22'33'55'66'-OctaCB-(202)	2022/10/03		106	%	60 - 14
		233'44'55'6-OctaCB-(205)	2022/10/03		102	%	60 - 14
		22'33'44'55'6-NonaCB-(206)	2022/10/03		100	%	60 - 14
		22'33'455'66'-NonaCB-(208)	2022/10/03		105	%	60 - 14
220765	CVII Cutter I Die 1	DecaCB-(209)	2022/10/03		99	%	60 - 14
239765	CXU Spiked Blank	• • •	2022/10/03		60	%	15 - 14
		C13-22'33'44'55'6-NonaCB-(206)	2022/10/03		77	%	40 - 14
		C13-22'33'44'5-HeptaCB-(170)	2022/10/03		70	%	40 - 14
		C13-22'33'455'66'-NonaCB-(208)	2022/10/03		70	%	40 - 14

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

QA/QC					
Batch Init QC Type	Parameter	Date Analyzed Value	% Recovery	UNITS	QC Lim
	C13-22'33'55'6-HeptaCB-(178)	2022/10/03	75	%	40 - 14
	C13-22'344'55'-HeptaCB-(180)	2022/10/03	65	%	40 - 14
	C13-22'34'566'-HeptaCB-(188)	2022/10/03	75	%	40 - 14
	C13-22'44'66'-HexaCB-(155)	2022/10/03	80	%	40 - 14
	C13-22'466'-PentaCB-(104)	2022/10/03	60	%	40 - 14
	C13-22'66'-TetraCB-(54)	2022/10/03	51	%	15 - 1
	C13-22'6-TriCB-(19)	2022/10/03	50	%	15 - 1
	C13-22'-DiCB-(4)	2022/10/03	34	%	15 - 1
	C13-233'44'55'6-OctaCB-(205)	2022/10/03	85	%	40 - 1
	C13-233'44'55'-HeptaCB-(189)	2022/10/03	70	%	40 - 1
	C13-233'44'-PentaCB-(105)	2022/10/03	66	%	40 - 3
	C13-233'55'-PentaCB-(111)	2022/10/03	60	%	40 - 1
	C13-23'44'55'-HexaCB-(167)	2022/10/03	86	%	40 - 1
	C13-2344'5-PentaCB-(114)	2022/10/03	65	%	40 - 3
	C13-23'44'5-PentaCB-(118)	2022/10/03	66	%	40 - 3
	C13-2'344'5-PentaCB-(123)	2022/10/03	66	%	40 -
	C13-2-MonoCB-(1)	2022/10/03	41	%	15 -
	C13-33'44'55'-HexaCB-(169)	2022/10/03	84	%	40 -
	C13-33'44'5-PentaCB-(126)	2022/10/03	68	%	40 -
	C13-33'44'-TetraCB-(77)	2022/10/03	62	%	40 -
	C13-344'5-TetraCB-(81)	2022/10/03	62	%	40 -
	C13-344'-TriCB-(37)	2022/10/03	63	%	15 -
	C13-44'-DiCB-(15)	2022/10/03	57	%	15 -
	C13-4-MonoCB-(3)	2022/10/03	25	%	15 -
	C13-DecaCB-(209)	2022/10/03	81	%	40 -
	C13-BecaCB-(203)	2022/10/03	100	%	40 -
	2-MonoCB-(1)	2022/10/03	108	%	60 -
	4-MonoCB-(1)	2022/10/03	118	%	60 -
			104		60 -
	22'-DiCB-(4)	2022/10/03		%	
	4,4'-DiCB-(15)	2022/10/03	109	%	60 -
	22'6-TriCB-(19)	2022/10/03	108	%	60 -
	344'-TriCB-(37)	2022/10/03	104	%	60 -
	22'66'-TetraCB-(54)	2022/10/03	106	%	60 -
	33'44'-TetraCB-(77)	2022/10/03	112	%	60 -
	344'5-TetraCB-(81)	2022/10/03	109	%	60 -
	22'466'-PentaCB-(104)	2022/10/03	110	%	60 -
	233'44'-PentaCB-(105)	2022/10/03	105	%	60 -
	2344'5-PentaCB-(114)	2022/10/03	108	%	60 -
	23'44'5-PentaCB-(118)	2022/10/03	105	%	60 -
	23'44'5'-PentaCB-(123)	2022/10/03	108	%	60 -
	33'44'5-PentaCB-(126)	2022/10/03	109	%	60 -
	22'44'66'-HexaCB-(155)	2022/10/03	107	%	60 -
	HexaCB-(156)+(157)	2022/10/03	107	%	N/
	23'44'55'-HexaCB-(167)	2022/10/03	102	%	60 -
	33'44'55'-HexaCB-(169)	2022/10/03	104	%	60 - 1
	22'33'44'5-HeptaCB-(170)	2022/10/03	103	%	60 - :
	HeptaCB-(180)+(193)	2022/10/03	83	%	N/
	22'34'566'-HeptaCB-(188)	2022/10/03	106	%	60 - :
	233'44'55'-HeptaCB-(189)	2022/10/03	105	%	60 - :
	22'33'55'66'-OctaCB-(202)	2022/10/03	104	%	60 -
	233'44'55'6-OctaCB-(205)	2022/10/03	98	%	60 -
	22'33'44'55'6-NonaCB-(206)	2022/10/03	98	%	60 - 3

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		Δο 1/μο	22'33'455'66'-NonaCB-(208)	2022/10/03		104	%	60 - 145
			DecaCB-(209)	2022/10/03		95	%	60 - 145
8239765	CXU	RPD	2-MonoCB-(1)	2022/10/03	2.7		%	30
			4-MonoCB-(3)	2022/10/03	0.85		%	30
			22'-DiCB-(4)	2022/10/03	4.7		%	30
			4,4'-DiCB-(15)	2022/10/03	0.91		%	30
			22'6-TriCB-(19)	2022/10/03	0.92		%	30
			344'-TriCB-(37)	2022/10/03	0.96		%	30
			22'66'-TetraCB-(54)	2022/10/03	3.7		%	30
			33'44'-TetraCB-(77)	2022/10/03	2.6		%	30
			344'5-TetraCB-(81)	2022/10/03	2.7		%	30
			22'466'-PentaCB-(104)	2022/10/03	3.6		%	30
			233'44'-PentaCB-(105)	2022/10/03	3.7		%	30
			2344'5-PentaCB-(114)	2022/10/03	2.7		%	30
			23'44'5-PentaCB-(118)	2022/10/03	2.8		%	30
			23'44'5'-PentaCB-(123)	2022/10/03	2.7		%	30
			33'44'5-PentaCB-(126)	2022/10/03	0.91		%	30
			22'44'66'-HexaCB-(155)	2022/10/03	3.7		%	30
			HexaCB-(156)+(157)	2022/10/03	0.93		%	30
			23'44'55'-HexaCB-(167)	2022/10/03	0.98		%	30
			33'44'55'-HexaCB-(169)	2022/10/03	1.9		%	30
			22'33'44'5-HeptaCB-(170)	2022/10/03	2.9		%	30
			HeptaCB-(180)+(193)	2022/10/03	2.4		%	30
			22'34'566'-HeptaCB-(188)	2022/10/03	3.7		%	30
			233'44'55'-HeptaCB-(189)	2022/10/03	0.95		%	30
			22'33'55'66'-OctaCB-(202)	2022/10/03	1.9		%	30
			233'44'55'6-OctaCB-(205)	2022/10/03	4.0		%	30
			22'33'44'55'6-NonaCB-(206)	2022/10/03	2.0		%	30
			22'33'455'66'-NonaCB-(208)	2022/10/03	0.96		%	30
			DecaCB-(209)	2022/10/03	4.1		%	30
8239765	CXU	Method Blank	C13-2,44'-TriCB-(28)	2022/09/30		39	%	15 - 145
			C13-22'33'44'55'6-NonaCB-(206)	2022/09/30		76	%	40 - 145
			C13-22'33'44'5-HeptaCB-(170)	2022/09/30		105	%	40 - 145
			C13-22'33'455'66'-NonaCB-(208)	2022/09/30		87	%	40 - 145
			C13-22'33'55'66'-OctaCB-(202)	2022/09/30		86	%	40 - 145
			C13-22'33'55'6-HeptaCB-(178)	2022/09/30		66	%	40 - 145
			C13-22'344'55'-HeptaCB-(180)	2022/09/30		97	%	40 - 145
			C13-22'34'566'-HeptaCB-(188)	2022/09/30		58	%	40 - 145
			C13-22'44'66'-HexaCB-(155)	2022/09/30		43	%	40 - 145
			C13-22'466'-PentaCB-(104)	2022/09/30		35	%	40 - 145
			C13-22'66'-TetraCB-(54)	2022/09/30		24 (2)	%	15 - 145
			C13-22'6-TriCB-(19)	2022/09/30		30	%	15 - 145
			C13-22'-DiCB-(4)	2022/09/30		21 (2)	%	15 - 145
			C13-233'44'55'6-OctaCB-(205)	2022/09/30		77	%	40 - 145
			C13-233'44'55'-HeptaCB-(189)	2022/09/30		88	%	40 - 145
			C13-233'44'-PentaCB-(105)	2022/09/30		86	%	40 - 145
			C13-233'55'-PentaCB-(111)	2022/09/30		58	%	40 - 145
			C13-23'44'55'-HexaCB-(167)	2022/09/30		84	%	40 - 145
			C13-2344'5-PentaCB-(114)	2022/09/30		72	%	40 - 145
			C13-23'44'5-PentaCB-(118)	2022/09/30		78	%	40 - 145
			C13-2'344'5-PentaCB-(123)	2022/09/30		77	%	40 - 145
			C13-2-MonoCB-(1)	2022/09/30		22	%	15 - 145

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

QA/QC Batch	Init QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
	,	C13-33'44'55'-HexaCB-(169)	2022/09/30		77	%	40 - 145
		C13-33'44'5-PentaCB-(126)	2022/09/30		91	%	40 - 145
		C13-33'44'-TetraCB-(77)	2022/09/30		78	%	40 - 145
		C13-344'5-TetraCB-(81)	2022/09/30		73	%	40 - 145
		C13-344'-TriCB-(37)	2022/09/30		54	%	15 - 145
		C13-44'-DiCB-(15)	2022/09/30		36	%	15 - 145
		C13-4-MonoCB-(3)	2022/09/30		21	%	15 - 145
		C13-DecaCB-(209)	2022/09/30		74	%	40 - 145
		C13-HexaCB-(156)+(157)	2022/09/30		85	%	40 - 145
		2-MonoCB-(1)	2022/09/30	0.00032 U, EDL=0.00032		ng/g	
		3-MonoCB-(2)	2022/09/30	0.00028 U, EDL=0.00028		ng/g	
		4-MonoCB-(3)	2022/09/30	0.00032 U, EDL=0.00032		ng/g	
		22'-DiCB-(4)	2022/09/30	0.00056 U, EDL=0.00056		ng/g	
		2,3-DiCB-(5)	2022/09/30	0.00019 U, EDL=0.00019		ng/g	
		2,3'-DiCB-(6)	2022/09/30	0.00019 U, EDL=0.00019		ng/g	
		2,4-DiCB-(7)	2022/09/30	0.00019 U, EDL=0.00019		ng/g	
		2,4'-DiCB-(8)	2022/09/30	0.00019 U, EDL=0.00019		ng/g	
		2,5-DiCB-(9)	2022/09/30	0.00019 U, EDL=0.00019		ng/g	
		2,6-DiCB-(10)	2022/09/30	0.00046 U, EDL=0.00046		ng/g	
		3,3'-DiCB-(11)	2022/09/30	0.00323 J, EDL=0.00020		ng/g	
		DiCB-(12)+(13)	2022/09/30	0.00019 U, EDL=0.00019		ng/g	
		3,5-DiCB-(14)	2022/09/30	0.00019 U, EDL=0.00019		ng/g	
		4,4'-DiCB-(15)	2022/09/30	0.00026 U, EDL=0.00026		ng/g	
		22'3-TriCB-(16)	2022/09/30	0.00052 U, EDL=0.00052		ng/g	
		22'4-TriCB-(17)	2022/09/30	0.00044 U, EDL=0.00044		ng/g	
		TriCB-(18)+(30)	2022/09/30	0.00037 U, EDL=0.00037		ng/g	
		22'6-TriCB-(19)	2022/09/30	0.00045 U, EDL=0.00045		ng/g	
		TriCB-(20) + (28)	2022/09/30	0.00027 J, EDL=0.00023		ng/g	
		TriCB-(21)+(33)	2022/09/30	0.00022 U, EDL=0.00022		ng/g	
		234'-TriCB-(22)	2022/09/30	0.00025 U, EDL=0.00025		ng/g	
		235-TriCB-(23)	2022/09/30	0.00024 U, EDL=0.00024		ng/g	

Report Date: 2022/12/08

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

QA/QC Batch Init QC Type	Parameter	Date Analyzed	Value	% Recovery UNITS	QC Limits
<i>.</i> .	236-TriCB-(24)	2022/09/30	0.00030 U, EDL=0.00030	ng/g	
	23'4-TriCB-(25)	2022/09/30	0.00023 U, EDL=0.00023	ng/g	
	TriCB-(26)+(29)	2022/09/30	0.00023 U, EDL=0.00023	ng/g	
	23'6-TriCB-(27)	2022/09/30	0.00031 U, EDL=0.00031	ng/g	
	24'5-TriCB-(31)	2022/09/30	0.00023 U, EDL=0.00023	ng/g	
	24'6-TriCB-(32)	2022/09/30	0.00030 U, EDL=0.00030	ng/g	
	23'5'-TriCB-(34)	2022/09/30	0.00026 U, EDL=0.00026	ng/g	
	33'4-TriCB-(35)	2022/09/30	0.00024 U, EDL=0.00024	ng/g	
	33'5-TriCB-(36)	2022/09/30	0.00022 U, EDL=0.00022	ng/g	
	344'-TriCB-(37)	2022/09/30	0.00032 U, EDL=0.00032	ng/g	
	345-TriCB-(38)	2022/09/30	0.00025 U, EDL=0.00025	ng/g	
	34'5-TriCB-(39)	2022/09/30	0.00022 U, EDL=0.00022	ng/g	
	TetraCB-(40)+(41)+(71)	2022/09/30	0.00034 U, EDL=0.00034	ng/g	
	22'34'-TetraCB-(42)	2022/09/30	0.00040 U, EDL=0.00040	ng/g	
	22'35-TetraCB-(43)	2022/09/30	0.00048 U, EDL=0.00048	ng/g	
	TetraCB-(44)+(47)+(65)	2022/09/30	0.00045 J, EDL=0.00032	ng/g	
	TetraCB-(45)+(51)	2022/09/30	0.00038 U, EDL=0.00038	ng/g	
	22'36'-TetraCB-(46)	2022/09/30	0.00041 U, EDL=0.00041	ng/g	
	22'45-TetraCB-(48)	2022/09/30	0.00037 U, EDL=0.00037	ng/g	
	TetraCB-(49)+TetraCB-(69)	2022/09/30	0.00030 U, EDL=0.00030	ng/g	
	TetraCB-(50)+(53)	2022/09/30	0.00037 U, EDL=0.00037	ng/g	
	22'55'-TetraCB-(52)	2022/09/30	0.00036 U, EDL=0.00036	ng/g	
	22'66'-TetraCB-(54)	2022/09/30	0.00055 U, EDL=0.00055	ng/g	
	233'4-TetraCB-(55)	2022/09/30	0.00029 U, EDL=0.00029	ng/g	
	233'4'-Tetra CB(56)	2022/09/30	0.00027 U, EDL=0.00027	ng/g	
	233'5-TetraCB-(57)	2022/09/30	0.00026 U, EDL=0.00026	ng/g	
	233'5'-TetraCB-(58)	2022/09/30	0.00028 U, EDL=0.00028	ng/g	

Report Date: 2022/12/08

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

QA/QC Batch Init QC Type	Parameter	Date Analyzed	Value	% Recovery U	NITS	QC Limit
	TetraCB-(59)+(62)+(75)	2022/09/30	0.00026 U, EDL=0.00026	•	ng/g	-
	2344'-TetraCB -(60)	2022/09/30	0.00025 U, EDL=0.00025	r	ng/g	
	TetraCB-(61)+(70)+(74)+(76)	2022/09/30	0.00025 U, EDL=0.00025	r	ng/g	
	234'5-TetraCB-(63)	2022/09/30	0.00025 U, EDL=0.00025	r	ng/g	
	234'6-TetraCB-(64)	2022/09/30	0.00028 U, EDL=0.00028	r	ng/g	
	23'44'-TetraCB-(66)	2022/09/30	0.00025 U, EDL=0.00025	r	ng/g	
	23'45-TetraCB-(67)	2022/09/30	0.00022 U, EDL=0.00022	r	ng/g	
	23'45'-TetraCB-(68)	2022/09/30	0.00025 U, EDL=0.00025	r	ng/g	
	23'55'-TetraCB-(72)	2022/09/30	0.00025 U, EDL=0.00025	r	ng/g	
	23'5'6-TetraCB-(73)	2022/09/30	0.00025 U, EDL=0.00025	r	ng/g	
	33'44'-TetraCB-(77)	2022/09/30	0.00029 U, EDL=0.00029	r	ng/g	
	33'45-TetraCB-(78)	2022/09/30	0.00026 U, EDL=0.00026	r	ng/g	
	33'45'-TetraCB(79)	2022/09/30	0.00023 U, EDL=0.00023	r	ng/g	
	33'55'-TetraCB-(80)	2022/09/30	0.00022 U, EDL=0.00022	r	ng/g	
	344'5-TetraCB-(81)	2022/09/30	0.00027 U, EDL=0.00027	r	ng/g	
	22'33'4-PentaCB-(82)	2022/09/30	0.00031 U, EDL=0.00031	r	ng/g	
	PentaCB-(83)+(99)	2022/09/30	0.00030 U, EDL=0.00030	r	ng/g	
	22'33'6-PentaCB-(84)	2022/09/30	0.00029 U,	r	ng/g	
	PentaCB-(85)+(116)+(117)	2022/09/30	EDL=0.00029 0.00020 U,	r	ng/g	
	PentaCB-(86)(87)(97)(109)(119)(125)	2022/09/30	EDL=0.00020 0.00023 U, EDL=0.00023	r	ng/g	
	PentaCB-(88)+(91)	2022/09/30	0.00028 U, EDL=0.00028	r	ng/g	
	22'346'-PentaCB-(89)	2022/09/30	0.00029 U, EDL=0.00029	r	ng/g	
	PentaCB-(90)+(101)+(113)	2022/09/30	0.00039 J, EDL=0.00023	r	ng/g	
	22'355'-PentaCB-(92)	2022/09/30	0.00029 U, EDL=0.00029	r	ng/g	
	PentaCB-(93)+(98)+(100)+(102)	2022/09/30	0.00028 U, EDL=0.00028	r	ng/g	
	22'356'-PentaCB-(94)	2022/09/30	0.00029 U, EDL=0.00029	r	ng/g	
	22'35'6-PentaCB-(95)	2022/09/30	0.00026 U, EDL=0.00026	r	ng/g	

Report Date: 2022/12/08

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

QA/QC Batch Init QC	Туре	Parameter	Date Analyzed	Value	% Recovery UN	TS QC Limit
		22'366'-PentaCB-(96)	2022/09/30	0.00026 U, EDL=0.00026	ng	
		22'45'6-PentaCB-(103)	2022/09/30	0.00026 U, EDL=0.00026	ng	/g
		22'466'-PentaCB-(104)	2022/09/30	0.00029 U, EDL=0.00029	ng	/g
		233'44'-PentaCB-(105)	2022/09/30	0.00022 U, EDL=0.00022	ng	/g
		233'45-PentaCB-(106)	2022/09/30	0.00019 U, EDL=0.00019	ng	/g
		233'4'5-PentaCB-(107)	2022/09/30	0.00018 U, EDL=0.00018	ng	/g
		PentaCB-(108)+(124)	2022/09/30	0.00020 U, EDL=0.00020	ng	/g
		PentaCB-(110)+(115)	2022/09/30	0.00032 J, EDL=0.00023	ng	/g
		233'55'-PentaCB-(111)	2022/09/30	0.00020 U, EDL=0.00020	ng	/g
		233'56-PentaCB-(112)	2022/09/30	0.00018 U, EDL=0.00018	ng	/g
		2344'5-PentaCB-(114)	2022/09/30	0.00022 U, EDL=0.00022	ng	/g
		23'44'5-PentaCB-(118)	2022/09/30	0.00033 J, EDL=0.00021	ng	/g
		23'455'-PentaCB-(120)	2022/09/30	0.00019 U, EDL=0.00019	ng	/g
		23'45'6-PentaCB-(121)	2022/09/30	0.00020 U, EDL=0.00020	ng	/g
		233'4'5'-PentaCB-(122)	2022/09/30	0.00022 U, EDL=0.00022	ng	/g
		23'44'5'-PentaCB-(123)	2022/09/30	0.00024 U, EDL=0.00024	ng	/g
		33'44'5-PentaCB-(126)	2022/09/30	0.00021 U, EDL=0.00021	ng	/g
		33'455'-PentaCB-(127)	2022/09/30	0.00022 U, EDL=0.00022	ng	/g
		HexaCB-(128)+(166)	2022/09/30	0.00032 U, EDL=0.00032	ng	/g
		HexaCB-(129)+(138)+(163)	2022/09/30	0.00053 J, EDL=0.00031	ng	/g
		22'33'45'-HexaCB-(130)	2022/09/30	0.00036 U, EDL=0.00036	ng	/g
		22'33'46-HexaCB-(131)	2022/09/30	0.00034 U, EDL=0.00034	ng	/g
		22'33'46'-HexaCB-(132)	2022/09/30	0.00033 U, EDL=0.00033	ng	/g
		22'33'55'-HexaCB-(133)	2022/09/30	0.00032 U, EDL=0.00032	ng	/g
		HexaCB-(134)+(143)	2022/09/30	0.00036 U, EDL=0.00036	ng	/g
		HexaCB-(135)+(151)	2022/09/30	0.00026 U, EDL=0.00026	ng	/g
		22'33'66'-HexaCB-(136)	2022/09/30	0.00020 U, EDL=0.00020	ng	/g

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

QA/QC Batch Init QC Type	Parameter	Date Analyzed	Value	% Recovery UNITS	QC Limit
	22'344'5-HexaCB-(137)	2022/09/30	0.00036 U, EDL=0.00036	ng/g	
	HexaCB-(139)+(140)	2022/09/30	0.00028 U, EDL=0.00028	ng/g	
	22'3455'-HexaCB-(141)	2022/09/30	0.00028 U, EDL=0.00028	ng/g	
	22'3456-HexaCB-(142)	2022/09/30	0.00031 U, EDL=0.00031	ng/g	
	22'345'6-HexaCB-(144)	2022/09/30	0.00028 U, EDL=0.00028	ng/g	
	22'3466'-HexaCB-(145)	2022/09/30	0.00020 U, EDL=0.00020	ng/g	
	22'34'55'-HexaCB-(146)	2022/09/30	0.00027 U, EDL=0.00027	ng/g	
	HexaCB-(147)+(149)	2022/09/30	0.00031 J, EDL=0.00028	ng/g	
	22'34'56'-HexaCB-(148)	2022/09/30	0.00026 U, EDL=0.00026	ng/g	
	22'34'66'-HexaCB-(150)	2022/09/30	0.00018 U, EDL=0.00018	ng/g	
	22'3566'-HexaCB-(152)	2022/09/30	0.00020 U, EDL=0.00020	ng/g	
	HexaCB-(153)+(168)	2022/09/30	0.00040 J, EDL=0.00025	ng/g	
	22'44'56'-HexaCB-(154)	2022/09/30	0.00021 U, EDL=0.00021	ng/g	
	22'44'66'-HexaCB-(155)	2022/09/30	0.00027 U, EDL=0.00027	ng/g	
	HexaCB-(156)+(157)	2022/09/30	0.00027 U, EDL=0.00027	ng/g	
	233'44'6-HexaCB-(158)	2022/09/30	0.00023 U, EDL=0.00023	ng/g	
	233'455'-HexaCB-(159)	2022/09/30	0.00032 U, EDL=0.00032	ng/g	
	233'456-HexaCB-(160)	2022/09/30	0.00026 U, EDL=0.00026	ng/g	
	233'45'6-HexaCB-(161)	2022/09/30	0.00022 U, EDL=0.00022	ng/g	
	233'4'55'-HexaCB-(162)	2022/09/30	0.00029 U, EDL=0.00029	ng/g	
	233'4'5'6-HexaCB-(164)	2022/09/30	0.00020 U, EDL=0.00020	ng/g	
	233'55'6-HexaCB-(165)	2022/09/30	0.00025 U, EDL=0.00025	ng/g	
	23'44'55'-HexaCB-(167)	2022/09/30	0.00027 U, EDL=0.00027	ng/g	
	33'44'55'-HexaCB-(169)	2022/09/30	0.00027 U, EDL=0.00027	ng/g	
	22'33'44'5-HeptaCB-(170)	2022/09/30	0.00032 U, EDL=0.00032	ng/g	
	HeptaCB-(171)+(173)	2022/09/30	0.00046 U, EDL=0.00046	ng/g	
	22'33'455'-HeptaCB-(172)	2022/09/30	0.00049 U, EDL=0.00049	ng/g	

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

QA/QC Batch Init QC Type	Parameter	Date Analyzed	Value	% Recovery UNITS	QC Limit
. 7	22'33'456'-HeptaCB-(174)	2022/09/30	0.00045 U, EDL=0.00045	ng/g	<u> </u>
	22'33'45'6-HeptaCB-(175)	2022/09/30	0.00030 U, EDL=0.00030	ng/g	
	22'33'466'-HeptaCB-(176)	2022/09/30	0.00019 U, EDL=0.00019	ng/g	
	22'33'45'6'-HeptaCB-(177)	2022/09/30	0.00052 U, EDL=0.00052	ng/g	
	22'33'55'6-HeptaCB-(178)	2022/09/30	0.00029 U, EDL=0.00029	ng/g	
	22'33'566'-HeptaCB-(179)	2022/09/30	0.00018 U, EDL=0.00018	ng/g	
	HeptaCB-(180)+(193)	2022/09/30	0.00032 U, EDL=0.00032	ng/g	
	22'344'56-HeptaCB-(181)	2022/09/30	0.00046 U, EDL=0.00046	ng/g	
	22'344'56'-HeptaCB-(182)	2022/09/30	0.00034 U, EDL=0.00034	ng/g	
	22'344'5'6-HeptaCB-(183)	2022/09/30	0.00042 U, EDL=0.00042	ng/g	
	22'344'66'-HeptaCB-(184)	2022/09/30	0.00018 U, EDL=0.00018	ng/g	
	22'3455'6-HeptaCB-(185)	2022/09/30	0.00049 U, EDL=0.00049	ng/g	
	22'34566'-HeptaCB-(186)	2022/09/30	0.00020 U, EDL=0.00020	ng/g	
	22'34'55'6-HeptaCB-(187)	2022/09/30	0.00032 U, EDL=0.00032	ng/g	
	22'34'566'-HeptaCB-(188)	2022/09/30	0.00029 U, EDL=0.00029	ng/g	
	233'44'55'-HeptaCB-(189)	2022/09/30	0.00038 U, EDL=0.00038	ng/g	
	233'44'56-HeptaCB-(190)	2022/09/30	0.00035 U, EDL=0.00035	ng/g	
	233'44'5'6-HeptaCB-(191)	2022/09/30	0.00034 U, EDL=0.00034	ng/g	
	233'455'6-HeptaCB-(192)	2022/09/30	0.00038 U, EDL=0.00038	ng/g	
	22'33'44'55'-OctaCB-(194)	2022/09/30	0.00051 U, EDL=0.00051	ng/g	
	22'33'44'56-OctaCB-(195)	2022/09/30	0.00058 U, EDL=0.00058	ng/g	
	22'33'44'56'-OctaCB-(196)	2022/09/30	0.00039 U, EDL=0.00039	ng/g	
	22'33'44'66'OctaCB-(197)	2022/09/30	0.00030 U, EDL=0.00030	ng/g	
	OctaCB-(198)+(199)	2022/09/30	0.00037 U, EDL=0.00037	ng/g	
	22'33'4566'-OctaCB-(200)	2022/09/30	0.00026 U, EDL=0.00026	ng/g	
	22'33'45'66'-OctaCB-(201)	2022/09/30	0.00027 U, EDL=0.00027	ng/g	
	22'33'55'66'-OctaCB-(202)	2022/09/30	0.00033 U, EDL=0.00033	ng/g	

Bureau Veritas Job #: C200154 Apex Laboratories
Report Date: 2022/12/08 Client Project #: A2H0382
Your P.O. #: A2H0382

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			22'344'55'6-OctaCB-(203)	2022/09/30	0.00035 U, EDL=0.00035		ng/g	
			22'344'566'-OctaCB-(204)	2022/09/30	0.00029 U, EDL=0.00029		ng/g	
			233'44'55'6-OctaCB-(205)	2022/09/30	0.00041 U, EDL=0.00041		ng/g	
			22'33'44'55'6-NonaCB-(206)	2022/09/30	0.00050 U, EDL=0.00050		ng/g	
			22'33'44'566'-NonaCB-(207)	2022/09/30	0.00045 U, EDL=0.00045		ng/g	
			22'33'455'66'-NonaCB-(208)	2022/09/30	0.00052 U, EDL=0.00052		ng/g	
			DecaCB-(209)	2022/09/30	0.00054 U, EDL=0.00054		ng/g	
			Total PCB	2022/09/30	2.8 U, EDL=2.8		ng/g	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) EMPC / NDR Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.
- (2) within method criteria.

Item #2.

Report Date: 2022/12/08

Apex Laboratories Client Project #: A2H0382 Your P.O. #: A2H0382

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by: Angel Guerrero, Supervisor, Ultra Trace Analysis, HRMS Colm McNamara, Senior Analyst, Liquid Chromatography Cristina Carrière Cristina Carriere, Senior Scientific Specialist Cathy Xu, Scientific Specialist, Ultra Trace Analysis, HRMS

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Your Project #: A3B0217

Attention: Philip Nerenberg

Apex Laboratories 6700 SW Sandburg St. Tigard, OR USA 97223

Report Date: 2023/04/24

Report #: R7599894 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C338911 Received: 2023/02/09, 12:55

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Dioxins/Furans in Water (1613B) (1)	1	2023/02/12	2023/02/21	BRL SOP-00410	EPA 1613B m
2378TCDF Confirmation (M8290A/M1613)	1	2023/02/12	2023/03/02	BRL SOP-00406	EPA M8290Am/ M1613Bm
				BRL SOP-00410	
OC Pesticides in Water by GCTQ	1	2023/02/14	2023/02/17	BRL SOP-00014	EPA Method 1699m
PCB Congeners in Water (1668C)	1	2023/02/23	2023/03/06	BRL SOP-00408	EPA 1668C m
PFAS in water by SPE/LCMS (2)	2	2023/02/21	2023/02/22	CAM SOP-00894	EPA 537.1 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.
- (2) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.
- U = Undetected at the limit of quantitation.
- J = Estimated concentration between the EDL & RDL.
- B = Blank Contamination.
- Q = One or more quality control criteria failed.
- $\label{eq:energy} {\sf E} = {\sf Analyte} \ {\sf concentration} \ {\sf exceeds} \ {\sf the} \ {\sf maximum} \ {\sf concentration} \ {\sf level}.$
- K = Estimated maximum possible concentration due to ion abundance ratio failure.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Lori Dufour, Project Manager Email: Lori.Dufour@bureauveritas.com

Phone# (905) 817-5700

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Total Cover Pages : 1 Page 1 of 45

Report Date: 2023/04/24

Apex Laboratories Client Project #: A3B0217

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VAE871			
Sampling Data		2023/02/07			
Sampling Date		08:30			
	UNITS	MFA-B3A-20230207- GW-36.0	RDL	MDL	QC Batch
Aldrin	ng/L	0.19 U (1)	1.8	0.19	8503096
alpha-BHC	ng/L	0.073 J	0.20	0.024	8503096
delta-BHC	ng/L	0.147 J	0.20	0.029	8503096
beta-BHC	ng/L	0.13 U (1)	1.8	0.13	8503096
Lindane	ng/L	0.20	0.20	0.033	8503096
a-Chlordane	ng/L	0.103 J	0.20	0.029	8503096
g-Chlordane	ng/L	0.119 J	0.20	0.029	8503096
Oxychlordane	ng/L	0.028 U	0.20	0.028	8503096
o,p-DDD	ng/L	0.77	0.20	0.020	8503096
p,p-DDD	ng/L	1.96	0.20	0.014	8503096
o,p-DDE	ng/L	0.197 J	0.20	0.016	8503096
p,p-DDE	ng/L	1.08	0.20	0.012	8503096
o,p-DDT	ng/L	1.56	0.20	0.040	8503096
p,p-DDT	ng/L	5.71	0.20	0.050	8503096
Dieldrin	ng/L	0.090 U (1)	0.36	0.090	8503096
Endosulfan I	ng/L	2.44	0.40	0.067	8503096
Endosulfan II	ng/L	0.296 J	0.40	0.074	8503096
Endosulfan sulfate	ng/L	0.091 U (1)	0.26	0.091	8503096
Endrin	ng/L	1.93	0.20	0.045	8503096
Endrin aldehyde	ng/L	0.157 J	0.20	0.071	8503096
Endrin ketone	ng/L	0.041 J	0.20	0.034	8503096
Heptachlor	ng/L	0.029 U	0.20	0.029	8503096
Heptachlor epoxide	ng/L	0.019 J	0.20	0.015	8503096
Hexachlorobenzene	ng/L	0.10 U	0.20	0.10	8503096
Methoxychlor	ng/L	1.8 U (1)	8.9	1.8	8503096
Mirex	ng/L	0.056 J	0.20	0.021	8503096
cis-Nonachlor	ng/L	0.037 U	0.20	0.037	8503096
trans-Nonachlor	ng/L	0.055 J	0.20	0.044	8503096
Surrogate Recovery (%)			•		
13C10-cis Nonachlor	%	61	N/A	N/A	8503096
13C10-Heptachlor	%	113	N/A	N/A	8503096
13C10-Heptachlor Epoxide	%	81	N/A	N/A	8503096
13C10-Oxychlordane	%	84	N/A	N/A	8503096
13C10-trans Nonachlor	%	66	N/A	N/A	8503096

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Report Date: 2023/04/24

Apex Laboratories Client Project #: A3B0217

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VAE871			
Sampling Date		2023/02/07 08:30			
	UNITS	MFA-B3A-20230207- GW-36.0	RDL	MDL	QC Batch
13C12-Endrin Ketone	%	75	N/A	N/A	8503096
13C6-beta BHC	%	58	N/A	N/A	8503096
13C6-d6-gamma BHC (Lindane)	%	85	N/A	N/A	8503096
13C-Methoxychlor	%	119	N/A	N/A	8503096
13C-pp-DDD	%	110	N/A	N/A	8503096
13C-pp-DDE	%	56	N/A	N/A	8503096
13C-pp-DDT	%	79	N/A	N/A	8503096
C13-Hexachlorobenzene	%	52	N/A	N/A	8503096

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Report Date: 2023/04/24

Apex Laboratories Client Project #: A3B0217

PERFLUOROALKYL SUBSTANCES (WATER)

Bureau Veritas ID		VAE871	VAE872			
Sampling Date		2023/02/07	2023/02/07			
		08:30	08:20			
	UNITS	MFA-B3A-20230207- GW-36.0	FIELD BLANK	RDL	MDL	QC Batch
Perfluorobutanoic acid (PFBA)	ug/L	0.017 J	0.0015 U	0.020	0.0015	8514543
Perfluoropentanoic acid (PFPeA)	ug/L	0.0061 J	0.0025 U	0.020	0.0025	8514543
Perfluorohexanoic acid (PFHxA)	ug/L	0.0086 J	0.0038 U	0.020	0.0038	8514543
Perfluoroheptanoic acid (PFHpA)	ug/L	0.0036 J	0.0018 U	0.020	0.0018	8514543
Perfluorooctanoic acid (PFOA)	ug/L	0.0082 J	0.0030 U	0.020	0.0030	8514543
Perfluorononanoic acid (PFNA)	ug/L	0.0021 U	0.0021 U	0.020	0.0021	8514543
Perfluorodecanoic acid (PFDA)	ug/L	0.0016 U	0.0016 U	0.020	0.0016	8514543
Perfluoroundecanoic acid (PFUnA)	ug/L	0.0024 U	0.0024 U	0.020	0.0024	8514543
Perfluorododecanoic acid (PFDoA)	ug/L	0.0029 U	0.0029 U	0.020	0.0029	8514543
Perfluorotridecanoic acid (PFTRDA)	ug/L	0.0026 U	0.0026 U	0.020	0.0026	8514543
Perfluorotetradecanoic acid(PFTEDA)	ug/L	0.0016 U	0.0016 U	0.020	0.0016	8514543
Perfluorobutanesulfonic acid (PFBS)	ug/L	0.0021 U	0.0021 U	0.020	0.0021	8514543
Perfluoropentanesulfonic acid PFPes	ug/L	0.0023 U	0.0023 U	0.020	0.0023	8514543
Perfluorohexanesulfonic acid(PFHxS)	ug/L	0.0022 J	0.0022 U	0.020	0.0022	8514543
Perfluoroheptanesulfonic acid PFHpS	ug/L	0.0039 U	0.0039 U	0.020	0.0039	8514543
Perfluorooctanesulfonic acid (PFOS)	ug/L	0.0066 J	0.0035 U	0.020	0.0035	8514543
Perfluorononanesulfonic acid (PFNS)	ug/L	0.0037 U	0.0037 U	0.020	0.0037	8514543
Perfluorodecanesulfonic acid (PFDS)	ug/L	0.0048 U	0.0048 U	0.020	0.0048	8514543
Perfluorooctane Sulfonamide (PFOSA)	ug/L	0.0034 U	0.0034 U	0.020	0.0034	8514543
EtFOSA	ug/L	0.0095 U	0.0095 U	0.020	0.0095	8514543
MeFOSA	ug/L	0.0084 U	0.0084 U	0.020	0.0084	8514543
EtFOSE	ug/L	0.0070 U	0.0070 U	0.020	0.0070	8514543
MeFOSE	ug/L	0.0073 U	0.0073 U	0.020	0.0073	8514543
EtFOSAA	ug/L	0.0046 U	0.0046 U	0.020	0.0046	8514543
MeFOSAA	ug/L	0.0045 U	0.0045 U	0.020	0.0045	8514543
4:2 Fluorotelomer sulfonic acid	ug/L	0.0033 U	0.0033 U	0.020	0.0033	8514543
6:2 Fluorotelomer sulfonic acid	ug/L	0.0015 U	0.0015 U	0.020	0.0015	8514543
8:2 Fluorotelomer sulfonic acid	ug/L	0.0031 U	0.0031 U	0.020	0.0031	8514543
Hexafluoropropyleneoxide dimer acid	ug/L	0.0052 U	0.0052 U	0.020	0.0052	8514543
4,8-Dioxa-3H-perfluorononanoic acid	ug/L	0.0027 U	0.0027 U	0.020	0.0027	8514543
9CI-PF3ONS (F-53B Major)	ug/L	0.0043 U	0.0043 U	0.020	0.0043	8514543
11Cl-PF3OUdS (F-53B Minor)	ug/L	0.0035 U	0.0035 U	0.020	0.0035	8514543
Surrogate Recovery (%)			•			
13C2-4:2-Fluorotelomersulfonic Acid	%	105	102	N/A	N/A	851454
13C2-6:2-Fluorotelomersulfonic Acid	%	108	103	N/A	N/A	851454
13C2-8:2-Fluorotelomersulfonic Acid	%	95	99	N/A	N/A	851454
RDL = Reportable Detection Limit	1		!			<u>J</u>
QC Batch = Quality Control Batch						

Apex Laboratories Client Project #: A3B0217

PERFLUOROALKYL SUBSTANCES (WATER)

	VAE871	VAE872			
	2023/02/07	2023/02/07			
	08:30	08:20			
UNITS	MFA-B3A-20230207- GW-36.0	FIELD BLANK	RDL	MDL	QC Batch
%	85	91	N/A	N/A	8514543
%	71	83	N/A	N/A	8514543
%	96	97	N/A	N/A	8514543
%	46 (1)	65	N/A	N/A	8514543
%	80	87	N/A	N/A	8514543
%	94	99	N/A	N/A	8514543
%	92	94	N/A	N/A	8514543
%	95	97	N/A	N/A	8514543
%	97	100	N/A	N/A	8514543
%	88	92	N/A	N/A	8514543
%	94	96	N/A	N/A	8514543
%	94	96	N/A	N/A	8514543
%	94	96	N/A	N/A	8514543
%	73	84	N/A	N/A	8514543
%	94	94	N/A	N/A	8514543
%	59	60	N/A	N/A	8514543
%	80	83	N/A	N/A	8514543
%	53	54	N/A	N/A	8514543
%	77	81	N/A	N/A	8514543
%	62	78	N/A	N/A	8514543
%	59	74	N/A	N/A	8514543
	% % % % % % % % % % % % % % % % % % %	2023/02/07 08:30 UNITS MFA-B3A-20230207- GW-36.0 % 85 % 71 % 96 % 46 (1) % 80 % 94 % 92 % 95 % 97 % 88 % 94 % 94 % 94 % 94 % 94 % 94 % 94 % 94 % 94 % 95 % 88 % 94 % 94 % 73 % 94 % 59 % 80 % 53 % 77	2023/02/07 08:30 2023/02/07 08:20 UNITS MFA-B3A-20230207- GW-36.0 FIELD BLANK % 85 91 % 71 83 % 96 97 % 46 (1) 65 % 80 87 % 94 99 % 92 94 % 97 100 % 88 92 % 94 96 % 94 96 % 94 96 % 94 96 % 94 96 % 94 96 % 94 96 % 94 96 % 94 96 % 94 96 % 94 96 % 94 94 % 95 60 % 80 83 % 53 </td <td>UNITS MFA-B3A-20230207-GW-36.0 FIELD BLANK RDL % 85 91 N/A % 71 83 N/A % 96 97 N/A % 80 87 N/A % 94 99 N/A % 92 94 N/A % 97 100 N/A % 97 100 N/A % 97 100 N/A % 94 96 N/A % 94 94 N/A % 99 96 N/A %<td>UNITS MFA-B3A-20230207-GW-36.0 FIELD BLANK RDL MDL % 85 91 N/A N/A % 96 97 N/A N/A % 46 (1) 65 N/A N/A % 94 99 N/A N/A % 95 97 N/A N/A % 94 99 N/A N/A % 95 97 N/A N/A % 97 100 N/A N/A % 97 100 N/A N/A % 94 96 N/A</td></td>	UNITS MFA-B3A-20230207-GW-36.0 FIELD BLANK RDL % 85 91 N/A % 71 83 N/A % 96 97 N/A % 80 87 N/A % 94 99 N/A % 92 94 N/A % 97 100 N/A % 97 100 N/A % 97 100 N/A % 94 96 N/A % 94 94 N/A % 99 96 N/A % <td>UNITS MFA-B3A-20230207-GW-36.0 FIELD BLANK RDL MDL % 85 91 N/A N/A % 96 97 N/A N/A % 46 (1) 65 N/A N/A % 94 99 N/A N/A % 95 97 N/A N/A % 94 99 N/A N/A % 95 97 N/A N/A % 97 100 N/A N/A % 97 100 N/A N/A % 94 96 N/A</td>	UNITS MFA-B3A-20230207-GW-36.0 FIELD BLANK RDL MDL % 85 91 N/A N/A % 96 97 N/A N/A % 46 (1) 65 N/A N/A % 94 99 N/A N/A % 95 97 N/A N/A % 94 99 N/A N/A % 95 97 N/A N/A % 97 100 N/A N/A % 97 100 N/A N/A % 94 96 N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Extracted internal standard analyte recovery was below the defined lower control limit (LCL) which may result in increased variability of the associated native analyte result (PFTeDA, PFTrDA).

Apex Laboratories
Client Project #: A3B0217

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		VAE871							
Samulina Data		2023/02/07				TOYIC FOLL	UVALENCY	# of	
Sampling Date		08:30				TOXIC EQU	IVALENCY	# 01	
	UNITS	MFA-B3A-20230207- GW-36.0	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg/L	7.79 J	1.16	10.3	1.45	1.00	7.79	1	8511386
1,2,3,7,8-Penta CDD *	pg/L	4.31 J	1.23	51.5	1.86	1.00	4.31	1	8511386
1,2,3,4,7,8-Hexa CDD *	pg/L	1.55 U	1.55	51.5	2.25	0.100	0.155	0	8511386
1,2,3,6,7,8-Hexa CDD *	pg/L	69.9	1.49	51.5	1.40	0.100	6.99	1	8511386
1,2,3,7,8,9-Hexa CDD *	pg/L	40.4 J	1.43	51.5	1.13	0.100	4.04	1	8511386
1,2,3,4,6,7,8-Hepta CDD *	pg/L	79.0	1.71	51.5	1.90	0.0100	0.790	1	8511386
Octa CDD *	pg/L	545	1.42	103	3.13	0.000300	0.164	1	8511386
Total Tetra CDD *	pg/L	11.9	1.16	10.3	4.00	N/A	N/A	2	8511386
Total Penta CDD *	pg/L	31.0 J	1.23	51.5	4.00	N/A	N/A	5	8511386
Total Hexa CDD *	pg/L	436	1.49	51.5	4.00	N/A	N/A	4	8511386
Total Hepta CDD *	pg/L	142	1.71	51.5	4.00	N/A	N/A	2	8511386
2,3,7,8-Tetra CDF **	pg/L	48.6	1.02	10.3	1.68	0.100	4.86	1	8511386
1,2,3,7,8-Penta CDF **	pg/L	1.76 U	1.76	51.5	1.33	0.0300	0.0528	0	8511386
2,3,4,7,8-Penta CDF **	pg/L	1.49 U	1.49	51.5	1.23	0.300	0.447	0	8511386
1,2,3,4,7,8-Hexa CDF **	pg/L	1.05 U	1.05	51.5	1.85	0.100	0.105	0	8511386
1,2,3,6,7,8-Hexa CDF **	pg/L	1.27 U	1.27	51.5	1.52	0.100	0.127	0	8511386
2,3,4,6,7,8-Hexa CDF **	pg/L	0.948 U	0.948	51.5	1.97	0.100	0.0948	0	8511386
1,2,3,7,8,9-Hexa CDF **	pg/L	1.15 U	1.15	51.5	1.66	0.100	0.115	0	8511386
1,2,3,4,6,7,8-Hepta CDF **	pg/L	7.90 U	7.90	51.5	2.00	0.0100	0.0790	0	8511386
1,2,3,4,7,8,9-Hepta CDF **	pg/L	1.37 U	1.37	51.5	1.87	0.0100	0.0137	0	8511386
Octa CDF **	pg/L	17.7 J	1.58	103	3.99	0.000300	0.00531	1	8511386
Total Tetra CDF **	pg/L	98.3	1.02	10.3	4.00	N/A	N/A	8	8511386
Total Penta CDF **	pg/L	9.86 J	1.62	51.5	4.00	N/A	N/A	2	8511386
Total Hexa CDF **	pg/L	3.98 J	1.03	51.5	4.00	N/A	N/A	1	8511386
Total Hepta CDF **	pg/L	11.7 J	1.11	51.5	4.00	N/A	N/A	1	8511386
Confirmation 2,3,7,8-Tetra CDF **	pg/L	51.5	2.0	10	N/A	0.100	5.15	N/A	8531877
TOTAL TOXIC EQUIVALENCY	pg/L	N/A	N/A	N/A	N/A	N/A	30.4	N/A	N/A
Surrogate Recovery (%)	•		•	•	•	-		•	
37CL4 2378 Tetra CDD *	%	101	N/A	N/A	N/A	N/A	N/A	N/A	8511386
C13-1234678 HeptaCDD *	%	89	N/A	N/A	N/A	N/A	N/A	N/A	8511386

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

** CDF = Chloro Dibenzo-p-Furan

Apex Laboratories Client Project #: A3B0217

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		VAE871							
Sampling Date		2023/02/07 08:30				TOXIC EQU	JIVALENCY	# of	
	UNITS	MFA-B3A-20230207- GW-36.0	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-1234678 HeptaCDF **	%	85	N/A	N/A	N/A	N/A	N/A	N/A	8511386
C13-123478 HexaCDD *	%	98	N/A	N/A	N/A	N/A	N/A	N/A	8511386
C13-123478 HexaCDF **	%	95	N/A	N/A	N/A	N/A	N/A	N/A	8511386
C13-1234789 HeptaCDF **	%	84	N/A	N/A	N/A	N/A	N/A	N/A	8511386
C13-123678 HexaCDD *	%	101	N/A	N/A	N/A	N/A	N/A	N/A	8511386
C13-123678 HexaCDF **	%	96	N/A	N/A	N/A	N/A	N/A	N/A	8511386
C13-12378 PentaCDD *	%	117	N/A	N/A	N/A	N/A	N/A	N/A	8511386
C13-12378 PentaCDF **	%	107	N/A	N/A	N/A	N/A	N/A	N/A	8511386
C13-123789 HexaCDF **	%	95	N/A	N/A	N/A	N/A	N/A	N/A	8511386
C13-234678 HexaCDF **	%	101	N/A	N/A	N/A	N/A	N/A	N/A	8511386
C13-23478 PentaCDF **	%	117	N/A	N/A	N/A	N/A	N/A	N/A	8511386
C13-2378 TetraCDD *	%	98	N/A	N/A	N/A	N/A	N/A	N/A	8511386
C13-2378 TetraCDF **	%	105	N/A	N/A	N/A	N/A	N/A	N/A	8511386
C13-OCDD *	%	75	N/A	N/A	N/A	N/A	N/A	N/A	8511386
Confirmation C13-2378 TetraCDF **	%	72	N/A	N/A	N/A	N/A	N/A	N/A	8531877

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

N/A = Not Applicable

* CDD = Chloro Dibenzo-p-Dioxin

Apex Laboratories Client Project #: A3B0217

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VAE871							
Sampling Date		2023/02/07				TOXIC EQU	IIVAI ENCV	# of	
Sampling Date		08:30				TOXICEQU	IVALENCI	# 01	
	UNITS	MFA-B3A-20230207- GW-36.0	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2-MonoCB-(1)	ng/L	0.12 U	0.12	0.25	0.0098	N/A	N/A	1	8533813
3-MonoCB-(2)	ng/L	0.26 U	0.26	0.25	0.0079	N/A	N/A	1	8533813
4-MonoCB-(3)	ng/L	0.094 U	0.094	0.63	0.0071	N/A	N/A	1	8533813
22'-DiCB-(4)	ng/L	0.21 U	0.21	0.63	0.017	N/A	N/A	1	8533813
2,3-DiCB-(5)	ng/L	0.13 U	0.13	0.63	0.012	N/A	N/A	1	8533813
2,3'-DiCB-(6)	ng/L	0.25 U	0.25	0.25	0.0053	N/A	N/A	1	8533813
2,4-DiCB-(7)	ng/L	0.13 U	0.13	0.25	0.0056	N/A	N/A	1	8533813
2,4'-DiCB-(8)	ng/L	0.38 U	0.38	0.63	0.017	N/A	N/A	1	8533813
2,5-DiCB-(9)	ng/L	0.13 U	0.13	0.25	0.0044	N/A	N/A	1	8533813
2,6-DiCB-(10)	ng/L	0.18 U	0.18	0.63	0.0052	N/A	N/A	1	8533813
3,3'-DiCB-(11)	ng/L	0.78 J	0.37	2.5	0.0090	N/A	N/A	1	8533813
DiCB-(12)+(13)	ng/L	0.23 U	0.23	0.63	0.015	N/A	N/A	1	8533813
3,5-DiCB-(14)	ng/L	0.13 U	0.13	0.25	0.0082	N/A	N/A	1	8533813
4,4'-DiCB-(15)	ng/L	0.25 U	0.25	0.63	0.011	N/A	N/A	1	8533813
22'3-TriCB-(16)	ng/L	0.082 U	0.082	0.63	0.0060	N/A	N/A	1	8533813
22'4-TriCB-(17)	ng/L	0.19 U	0.19	0.25	0.0091	N/A	N/A	1	8533813
TriCB-(18)+(30)	ng/L	0.17 U	0.17	0.63	0.017	N/A	N/A	1	8533813
22'6-TriCB-(19)	ng/L	0.27 U	0.27	0.25	0.0061	N/A	N/A	1	8533813
TriCB-(20) + (28)	ng/L	0.10 U	0.10	0.63	0.13	N/A	N/A	N/A	8533813
TriCB-(21)+(33)	ng/L	0.11 U	0.11	0.63	0.011	N/A	N/A	1	8533813
234'-TriCB-(22)	ng/L	0.11 U	0.11	0.25	0.0065	N/A	N/A	1	8533813
235-TriCB-(23)	ng/L	0.037 U	0.037	0.25	0.0072	N/A	N/A	1	8533813
236-TriCB-(24)	ng/L	0.052 U	0.052	0.25	0.0043	N/A	N/A	1	8533813
23'4-TriCB-(25)	ng/L	0.11 U	0.11	0.25	0.0054	N/A	N/A	1	8533813
TriCB-(26)+(29)	ng/L	0.10 U	0.10	0.63	0.013	N/A	N/A	1	8533813
23'6-TriCB-(27)	ng/L	0.14 U	0.14	0.25	0.0082	N/A	N/A	1	8533813
24'5-TriCB-(31)	ng/L	0.098 U	0.098	0.63	0.0078	N/A	N/A	1	8533813
24'6-TriCB-(32)	ng/L	0.14 U	0.14	0.25	0.0087	N/A	N/A	1	8533813
23'5'-TriCB-(34)	ng/L	0.037 U	0.037	0.25	0.0061	N/A	N/A	1	8533813
33'4-TriCB-(35)	ng/L	0.11 U	0.11	0.25	0.0042	N/A	N/A	1	8533813
33'5-TriCB-(36)	ng/L	0.031 U	0.031	0.25	0.0052	N/A	N/A	1	8533813
344'-TriCB-(37)	ng/L	0.042 U	0.042	0.25	0.0041	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0217

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VAE871							
Samulias Bata		2023/02/07				TOYIC FOL	UNITAL ENICY	# - £	
Sampling Date		08:30				TOXIC EQU	IIVALENCY	# of	
	UNITS	MFA-B3A-20230207- GW-36.0	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
345-TriCB-(38)	ng/L	0.035 U	0.035	0.25	0.0047	N/A	N/A	1	8533813
34'5-TriCB-(39)	ng/L	0.073 U	0.073	0.25	0.0059	N/A	N/A	1	8533813
TetraCB-(40)+(41)+(71)	ng/L	0.33 U	0.33	1.3	0.035	N/A	N/A	1	8533813
22'34'-TetraCB-(42)	ng/L	0.66 U	0.66	0.63	0.011	N/A	N/A	1	8533813
22'35-TetraCB-(43)	ng/L	0.46 U	0.46	0.63	0.015	N/A	N/A	1	8533813
TetraCB-(44)+(47)+(65)	ng/L	0.32 U	0.32	1.3	0.029	N/A	N/A	1	8533813
TetraCB-(45)+(51)	ng/L	0.35 U	0.35	0.63	0.011	N/A	N/A	1	8533813
22'36'-TetraCB-(46)	ng/L	0.59 U	0.59	0.25	0.014	N/A	N/A	1	8533813
22'45-TetraCB-(48)	ng/L	0.51 U	0.51	0.63	0.017	N/A	N/A	1	8533813
TetraCB-(49)+TetraCB-(69)	ng/L	0.30 U	0.30	1.3	0.023	N/A	N/A	1	8533813
TetraCB-(50)+(53)	ng/L	0.52 U	0.52	1.3	0.027	N/A	N/A	1	8533813
22'55'-TetraCB-(52)	ng/L	0.51 U	0.51	0.63	0.019	N/A	N/A	1	8533813
22'66'-TetraCB-(54)	ng/L	0.30 U	0.30	0.63	0.020	N/A	N/A	1	8533813
233'4-TetraCB-(55)	ng/L	0.12 U	0.12	0.63	0.015	N/A	N/A	1	8533813
233'4'-Tetra CB(56)	ng/L	0.35 U	0.35	0.63	0.018	N/A	N/A	1	8533813
233'5-TetraCB-(57)	ng/L	0.11 U	0.11	0.63	0.0097	N/A	N/A	1	8533813
233'5'-TetraCB-(58)	ng/L	0.11 U	0.11	0.63	0.020	N/A	N/A	1	8533813
TetraCB-(59)+(62)+(75)	ng/L	0.37 U	0.37	1.3	0.038	N/A	N/A	1	8533813
2344'-TetraCB -(60)	ng/L	0.34 U	0.34	0.63	0.011	N/A	N/A	1	8533813
TetraCB-(61)+(70)+(74)+(76)	ng/L	0.35 U	0.35	2.5	0.035	N/A	N/A	1	8533813
234'5-TetraCB-(63)	ng/L	0.33 U	0.33	0.63	0.0080	N/A	N/A	1	8533813
234'6-TetraCB-(64)	ng/L	0.29 U	0.29	0.63	0.0089	N/A	N/A	1	8533813
23'44'-TetraCB-(66)	ng/L	0.33 U	0.33	0.63	0.0084	N/A	N/A	1	8533813
23'45-TetraCB-(67)	ng/L	0.19 U	0.19	0.63	0.0040	N/A	N/A	1	8533813
23'45'-TetraCB-(68)	ng/L	0.11 U	0.11	0.63	0.014	N/A	N/A	1	8533813
23'55'-TetraCB-(72)	ng/L	0.11 U	0.11	0.63	0.0082	N/A	N/A	1	8533813
23'5'6-TetraCB-(73)	ng/L	0.12 U	0.12	0.63	0.023	N/A	N/A	1	8533813
33'44'-TetraCB-(77)	ng/L	0.13 U	0.13	0.63	0.011	0.000100	0.0000130	1	8533813
33'45-TetraCB-(78)	ng/L	0.12 U	0.12	0.63	0.013	N/A	N/A	1	8533813
33'45'-TetraCB(79)	ng/L	0.20 U	0.20	0.63	0.0088	N/A	N/A	1	8533813
33'55'-TetraCB-(80)	ng/L	0.19 U	0.19	0.63	0.0087	N/A	N/A	1	8533813
344'5-TetraCB-(81)	ng/L	0.11 U	0.11	0.63	0.0079	0.000300	0.0000330	1	8533813
1									

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0217

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VAE871							
Samulina Data		2023/02/07				TOYIC FOL	IIVALENCY	# of	
Sampling Date		08:30				TOXIC EQU	IIVALENCY	# of	
	UNITS	MFA-B3A-20230207- GW-36.0	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'4-PentaCB-(82)	ng/L	0.31 U	0.31	0.63	0.014	N/A	N/A	1	8533813
PentaCB-(83)+(99)	ng/L	0.38 U	0.38	1.3	0.033	N/A	N/A	1	8533813
22'33'6-PentaCB-(84)	ng/L	0.41 U	0.41	0.25	0.0088	N/A	N/A	1	8533813
PentaCB-(85)+(116)+(117)	ng/L	0.30 U	0.30	1.3	0.040	N/A	N/A	1	8533813
PentaCB-(86)(87)(97)(109)(119)(125)	ng/L	0.31 U	0.31	2.5	0.080	N/A	N/A	1	8533813
PentaCB-(88)+(91)	ng/L	0.40 U	0.40	0.63	0.025	N/A	N/A	1	8533813
22'346'-PentaCB-(89)	ng/L	0.31 U	0.31	0.63	0.0040	N/A	N/A	1	8533813
PentaCB-(90)+(101)+(113)	ng/L	0.43 J	0.32	2.5	0.0080	N/A	N/A	1	8533813
22'355'-PentaCB-(92)	ng/L	0.43 U	0.43	0.63	0.010	N/A	N/A	1	8533813
PentaCB-(93)+(98)+(100)+(102)	ng/L	0.38 U	0.38	2.5	0.051	N/A	N/A	1	8533813
22'356'-PentaCB-(94)	ng/L	0.28 U	0.28	0.63	0.017	N/A	N/A	1	8533813
22'35'6-PentaCB-(95)	ng/L	0.42 U	0.42	0.63	0.011	N/A	N/A	1	8533813
22'366'-PentaCB-(96)	ng/L	0.22 U	0.22	0.63	0.014	N/A	N/A	1	8533813
22'45'6-PentaCB-(103)	ng/L	0.38 U	0.38	0.63	0.012	N/A	N/A	1	8533813
22'466'-PentaCB-(104)	ng/L	0.089 U	0.089	0.63	0.022	N/A	N/A	1	8533813
233'44'-PentaCB-(105)	ng/L	0.093 U	0.093	0.63	0.0052	0.0000300	0.00000279	1	8533813
233'45-PentaCB-(106)	ng/L	0.077 U	0.077	0.63	0.018	N/A	N/A	1	8533813
233'4'5-PentaCB-(107)	ng/L	0.19 U	0.19	0.63	0.014	N/A	N/A	1	8533813
PentaCB-(108)+(124)	ng/L	0.15 U	0.15	1.3	0.023	N/A	N/A	1	8533813
PentaCB-(110)+(115)	ng/L	0.49 J	0.30	1.3	0.022	N/A	N/A	1	8533813
233'55'-PentaCB-(111)	ng/L	0.085 U	0.085	0.63	0.012	N/A	N/A	1	8533813
233'56-PentaCB-(112)	ng/L	0.083 U	0.083	0.63	0.018	N/A	N/A	1	8533813
2344'5-PentaCB-(114)	ng/L	0.10 U	0.10	0.63	0.0084	0.0000300	0.00000300	1	8533813
23'44'5-PentaCB-(118)	ng/L	0.127 J	0.095	1.3	0.0071	0.0000300	0.00000381	1	8533813
23'455'-PentaCB-(120)	ng/L	0.090 U	0.090	0.63	0.014	N/A	N/A	1	8533813
23'45'6-PentaCB-(121)	ng/L	0.088 U	0.088	0.63	0.0040	N/A	N/A	1	8533813
233'4'5'-PentaCB-(122)	ng/L	0.29 U	0.29	0.63	0.011	N/A	N/A	1	8533813
23'44'5'-PentaCB-(123)	ng/L	0.11 U	0.11	0.63	0.014	0.0000300	0.00000330	1	8533813
33'44'5-PentaCB-(126)	ng/L	0.078 U	0.078	0.63	0.0061	0.100	0.00780	1	8533813
33'455'-PentaCB-(127)	ng/L	0.072 U	0.072	0.63	0.017	N/A	N/A	1	8533813
HexaCB-(128)+(166)	ng/L	0.33 U	0.33	1.3	0.026	N/A	N/A	1	8533813
HexaCB-(129)+(138)+(163)	ng/L	0.52 J	0.39	2.5	0.014	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0217

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VAE871							
Sampling Date		2023/02/07				TOXIC EQU	IIVAI ENCV	# of	
Sampling Date		08:30				TOXICEQU	OVALLINCI	# 01	
	UNITS	MFA-B3A-20230207- GW-36.0	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'45'-HexaCB-(130)	ng/L	0.42 U	0.42	0.63	0.020	N/A	N/A	1	8533813
22'33'46-HexaCB-(131)	ng/L	0.53 U	0.53	0.63	0.019	N/A	N/A	1	8533813
22'33'46'-HexaCB-(132)	ng/L	0.44 U	0.44	0.63	0.019	N/A	N/A	1	8533813
22'33'55'-HexaCB-(133)	ng/L	0.44 U	0.44	0.63	0.017	N/A	N/A	1	8533813
HexaCB-(134)+(143)	ng/L	0.33 U	0.33	1.3	0.028	N/A	N/A	1	8533813
HexaCB-(135)+(151)	ng/L	0.51 U	0.51	1.3	0.038	N/A	N/A	1	8533813
22'33'66'-HexaCB-(136)	ng/L	0.37 U	0.37	0.63	0.014	N/A	N/A	1	8533813
22'344'5-HexaCB-(137)	ng/L	0.41 U	0.41	1.3	0.014	N/A	N/A	1	8533813
HexaCB-(139)+(140)	ng/L	0.37 U	0.37	1.3	0.032	N/A	N/A	1	8533813
22'3455'-HexaCB-(141)	ng/L	0.38 U	0.38	0.63	0.018	N/A	N/A	1	8533813
22'3456-HexaCB-(142)	ng/L	0.16 U	0.16	0.63	0.018	N/A	N/A	1	8533813
22'345'6-HexaCB-(144)	ng/L	0.50 U	0.50	0.63	0.011	N/A	N/A	1	8533813
22'3466'-HexaCB-(145)	ng/L	0.12 U	0.12	0.63	0.022	N/A	N/A	1	8533813
22'34'55'-HexaCB-(146)	ng/L	0.34 U	0.34	0.63	0.014	N/A	N/A	1	8533813
HexaCB-(147)+(149)	ng/L	0.36 U	0.36	1.3	0.027	N/A	N/A	1	8533813
22'34'56'-HexaCB-(148)	ng/L	0.17 U	0.17	0.63	0.013	N/A	N/A	1	8533813
22'34'66'-HexaCB-(150)	ng/L	0.12 U	0.12	0.63	0.022	N/A	N/A	1	8533813
22'3566'-HexaCB-(152)	ng/L	0.12 U	0.12	0.63	0.020	N/A	N/A	1	8533813
HexaCB-(153)+(168)	ng/L	0.32 J	0.31	1.3	0.028	N/A	N/A	1	8533813
22'44'56'-HexaCB-(154)	ng/L	0.39 U	0.39	0.63	0.014	N/A	N/A	1	8533813
22'44'66'-HexaCB-(155)	ng/L	0.093 U	0.093	0.63	0.013	N/A	N/A	1	8533813
HexaCB-(156)+(157)	ng/L	0.10 U	0.10	1.3	0.015	0.0000300	0.00000300	1	8533813
233'44'6-HexaCB-(158)	ng/L	0.25 U	0.25	0.63	0.017	N/A	N/A	1	8533813
233'455'-HexaCB-(159)	ng/L	0.14 U	0.14	0.63	0.015	N/A	N/A	1	8533813
233'456-HexaCB-(160)	ng/L	0.11 U	0.11	0.63	0.013	N/A	N/A	1	8533813
233'45'6-HexaCB-(161)	ng/L	0.10 U	0.10	0.63	0.022	N/A	N/A	1	8533813
233'4'55'-HexaCB-(162)	ng/L	0.14 U	0.14	0.63	0.016	N/A	N/A	1	8533813
233'4'5'6-HexaCB-(164)	ng/L	0.27 U	0.27	0.63	0.020	N/A	N/A	1	8533813
233'55'6-HexaCB-(165)	ng/L	0.11 U	0.11	0.63	0.022	N/A	N/A	1	8533813
23'44'55'-HexaCB-(167)	ng/L	0.095 U	0.095	0.63	0.0096	0.0000300	0.00000285	1	8533813
33'44'55'-HexaCB-(169)	ng/L	0.070 U	0.070	0.63	0.0092	0.0300	0.00210	1	8533813
22'33'44'5-HeptaCB-(170)	ng/L	0.095 U	0.095	0.63	0.011	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories
Client Project #: A3B0217

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VAE871							
Sampling Date		2023/02/07 08:30				TOXIC EQU	IIVALENCY	# of	
	UNITS	MFA-B3A-20230207- GW-36.0	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
HeptaCB-(171)+(173)	ng/L	0.20 U	0.20	1.3	0.027	N/A	N/A	1	8533813
22'33'455'-HeptaCB-(172)	ng/L	0.24 U	0.24	0.63	0.012	N/A	N/A	1	8533813
22'33'456'-HeptaCB-(174)	ng/L	0.22 U	0.22	0.63	0.017	N/A	N/A	1	8533813
22'33'45'6-HeptaCB-(175)	ng/L	0.29 U	0.29	0.63	0.0064	N/A	N/A	1	8533813
22'33'466'-HeptaCB-(176)	ng/L	0.21 U	0.21	0.63	0.0079	N/A	N/A	1	8533813
22'33'45'6'-HeptaCB-(177)	ng/L	0.24 U	0.24	0.63	0.013	N/A	N/A	1	8533813
22'33'55'6-HeptaCB-(178)	ng/L	0.30 U	0.30	0.63	0.0071	N/A	N/A	1	8533813
22'33'566'-HeptaCB-(179)	ng/L	0.21 U	0.21	0.63	0.010	N/A	N/A	1	8533813
HeptaCB-(180)+(193)	ng/L	0.12 U	0.12	1.3	0.018	N/A	N/A	1	8533813
22'344'56-HeptaCB-(181)	ng/L	0.13 U	0.13	0.63	0.015	N/A	N/A	1	8533813
22'344'56'-HeptaCB-(182)	ng/L	0.088 U	0.088	0.63	0.0066	N/A	N/A	1	8533813
22'344'5'6-HeptaCB-(183)	ng/L	0.20 U	0.20	0.63	0.017	N/A	N/A	1	8533813
22'344'66'-HeptaCB-(184)	ng/L	0.067 U	0.067	0.63	0.0065	N/A	N/A	1	8533813
22'3455'6-HeptaCB-(185)	ng/L	0.089 U	0.089	0.63	0.017	N/A	N/A	1	8533813
22'34566'-HeptaCB-(186)	ng/L	0.073 U	0.073	0.63	0.0095	N/A	N/A	1	8533813
22'34'55'6-HeptaCB-(187)	ng/L	0.27 U	0.27	0.63	0.0047	N/A	N/A	1	8533813
22'34'566'-HeptaCB-(188)	ng/L	0.066 U	0.066	0.63	0.015	N/A	N/A	1	8533813
233'44'55'-HeptaCB-(189)	ng/L	0.079 U	0.079	0.63	0.014	0.0000300	0.00000237	1	8533813
233'44'56-HeptaCB-(190)	ng/L	0.17 U	0.17	0.63	0.016	N/A	N/A	1	8533813
233'44'5'6-HeptaCB-(191)	ng/L	0.11 U	0.11	0.63	0.014	N/A	N/A	1	8533813
233'455'6-HeptaCB-(192)	ng/L	0.063 U	0.063	0.63	0.0088	N/A	N/A	1	8533813
22'33'44'55'-OctaCB-(194)	ng/L	0.21 U	0.21	0.63	0.024	N/A	N/A	1	8533813
22'33'44'56-OctaCB-(195)	ng/L	0.23 U	0.23	0.63	0.019	N/A	N/A	1	8533813
22'33'44'56'-OctaCB-(196)	ng/L	0.25 U	0.25	0.63	0.017	N/A	N/A	1	8533813
22'33'44'66'OctaCB-(197)	ng/L	0.054 U	0.054	0.63	0.033	N/A	N/A	1	8533813
OctaCB-(198)+(199)	ng/L	0.26 U	0.26	1.3	0.028	N/A	N/A	1	8533813
22'33'4566'-OctaCB-(200)	ng/L	0.12 U	0.12	0.63	0.031	N/A	N/A	1	8533813
22'33'45'66'-OctaCB-(201)	ng/L	0.13 U	0.13	0.63	0.014	N/A	N/A	1	8533813
22'33'55'66'-OctaCB-(202)	ng/L	0.076 U	0.076	0.63	0.013	N/A	N/A	1	8533813
22'344'55'6-OctaCB-(203)	ng/L	0.24 U	0.24	0.63	0.021	N/A	N/A	1	8533813
22'344'566'-OctaCB-(204)	ng/L	0.045 U	0.045	0.63	0.018	N/A	N/A	1	8533813
233'44'55'6-OctaCB-(205)	ng/L	0.053 U	0.053	0.63	0.014	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0217

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VAE871							
Sampling Date		2023/02/07				TOXIC EQU	IIVAI ENCV	# of	
Sampling Date		08:30				TOXICEQU	IVALLINCI	# 01	
	UNITS	MFA-B3A-20230207- GW-36.0	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'44'55'6-NonaCB-(206)	ng/L	0.075 U	0.075	0.63	0.020	N/A	N/A	1	8533813
22'33'44'566'-NonaCB-(207)	ng/L	0.044 U	0.044	0.63	0.018	N/A	N/A	1	8533813
22'33'455'66'-NonaCB-(208)	ng/L	0.042 U	0.042	0.63	0.021	N/A	N/A	1	8533813
DecaCB-(209)	ng/L	0.047 U	0.047	0.63	0.015	N/A	N/A	1	8533813
TOTAL TOXIC EQUIVALENCY	ng/L	N/A	N/A	N/A	N/A	N/A	0.00997	N/A	N/A
Surrogate Recovery (%)								•	
C13-2,44'-TriCB-(28)	%	97	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'44'55'6-NonaCB-(206)	%	112	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'44'5-HeptaCB-(170)	%	103	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'455'66'-NonaCB-(208)	%	109	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'55'66'-OctaCB-(202)	%	113	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'55'6-HeptaCB-(178)	%	103	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'344'55'-HeptaCB-(180)	%	98	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'34'566'-HeptaCB-(188)	%	85	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'44'66'-HexaCB-(155)	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'466'-PentaCB-(104)	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'66'-TetraCB-(54)	%	41	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'6-TriCB-(19)	%	56	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'-DiCB-(4)	%	142	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'55'6-OctaCB-(205)	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'55'-HeptaCB-(189)	%	88	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'-PentaCB-(105)	%	82	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'55'-PentaCB-(111)	%	100	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-23'44'55'-HexaCB-(167)	%	75	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2344'5-PentaCB-(114)	%	73	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-23'44'5-PentaCB-(118)	%	74	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2'344'5-PentaCB-(123)	%	70	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2-MonoCB-(1)	%	107	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'55'-HexaCB-(169)	%	83	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'5-PentaCB-(126)	%	74	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'-TetraCB-(77)	%	76	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-344'5-TetraCB-(81)	%	81	N/A	N/A	N/A	N/A	N/A	N/A	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0217

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VAE871							
Sampling Date		2023/02/07 08:30				TOXIC EQU	IIVALENCY	# of	
	UNITS	MFA-B3A-20230207- GW-36.0	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-344'-TriCB-(37)	%	77	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-44'-DiCB-(15)	%	54	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-4-MonoCB-(3)	%	138	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-DecaCB-(209)	%	120	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-HexaCB-(156)+(157)	%	72	N/A	N/A	N/A	N/A	N/A	N/A	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0217

TEST SUMMARY

Bureau Veritas ID: VAE871

Sample ID: MFA-B3A-20230207-GW-36.0

Matrix: Water

Collected: 2023/02/07

Shipped:

Received: 2023/02/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dioxins/Furans in Water (1613B)	HRMS/MS	8511386	2023/02/12	2023/02/21	Ravneet Kaur
2378TCDF Confirmation (M8290A/M1613)	HRMS/MS	8531877	2023/02/12	2023/03/02	Angel Guerrero
OC Pesticides in Water by GCTQ	GCTQ/MS	8503096	2023/02/14	2023/02/17	Chau Ting (Ruth) Chan
PCB Congeners in Water (1668C)	HRMS/MS	8533813	2023/02/23	2023/03/06	Cathy Xu
PFAS in water by SPE/LCMS	LCMS	8514543	2023/02/21	2023/02/22	Tonghui (Jenny) Chen

Bureau Veritas ID: VAE872 Sample ID: FIELD BLANK

Matrix: Water

Collected: 2023/02/07

Shipped:

Received: 2023/02/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
PFAS in water by SPE/LCMS	LCMS	8514543	2023/02/21	2023/02/22	Tonghui (Jenny) Chen

Apex Laboratories Client Project #: A3B0217

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	1.8°C
Package 2	5.6°C
Package 3	3.9°C

Sample VAE871 [MFA-B3A-20230207-GW-36.0] : all results are taken from 10x dilution due to matrix interferences, RDL is adjusted accordingly SEMI-VOLATILE ORGANICS BY HRMS (WATER)

PCB Congeners in Water (1668C): Worksheet Blank contains some traces of PCB congeners natives that are above the RDL. However, all samples in worksheet (8533813) shows trace concentration levels below RDL. Results should be reviewed with caution.

Results relate only to the items tested.

570

Apex Laboratories Client Project #: A3B0217

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
8503096	CTC	Spiked Blank	13C10-cis Nonachlor	2023/02/16		74	%	36 - 139
			13C10-Heptachlor	2023/02/16		56	%	5 - 120
			13C10-Heptachlor Epoxide	2023/02/16		75	%	27 - 137
			13C10-Oxychlordane	2023/02/16		70	%	23 - 135
			13C10-trans Nonachlor	2023/02/16		73	%	14 - 136
			13C12-Endrin	2023/02/16		70	%	35 - 155
			13C12-Endrin Ketone	2023/02/16		72	%	35 - 155
			13C6-beta BHC	2023/02/16		54	%	32 - 130
			13C6-d6-gamma BHC (Lindane)	2023/02/16		65	%	11 - 120
			13C-Methoxychlor	2023/02/16		78	%	5 - 120
			13C-pp-DDD	2023/02/16		67	%	5 - 120
			13C-pp-DDE	2023/02/16		83	%	47 - 160
			13C-pp-DDT	2023/02/16		78	%	5 - 120
			C13-Hexachlorobenzene	2023/02/16		64	%	5 - 120
			Aldrin	2023/02/16		127	%	50 - 200
			alpha-BHC	2023/02/16		121	%	50 - 200
			delta-BHC	2023/02/16		138	%	50 - 200
			beta-BHC	2023/02/16		121	%	50 - 200
			Lindane	2023/02/16		119	%	50 - 200
			a-Chlordane	2023/02/16		108	%	50 - 200
			g-Chlordane	2023/02/16		106	%	50 - 200
			Oxychlordane	2023/02/16		100	%	50 - 200
			o,p-DDD	2023/02/16		112	%	50 - 200
			p,p-DDD	2023/02/16		122	%	50 - 200
			o,p-DDE	2023/02/16		101	%	50 - 200
			p,p-DDE	2023/02/16		116	%	50 - 200
			o,p-DDT	2023/02/16		107	%	50 - 200
			p,p-DDT	2023/02/16		105	%	50 - 200
			Dieldrin	2023/02/16		122	%	50 - 200
			Endosulfan I	2023/02/16		113	%	50 - 200
			Endosulfan II	2023/02/16		119	%	50 - 200
			Endosulfan sulfate	2023/02/16		110	%	50 - 200
			Endrin	2023/02/16		116	%	50 - 200
			Endrin aldehyde	2023/02/16		111	%	50 - 200
			Endrin ketone	2023/02/16		120	%	50 - 200
			Heptachlor	2023/02/16		129	%	50 - 200
			Heptachlor epoxide	2023/02/16		117	%	50 - 200
			Hexachlorobenzene	2023/02/16		110	%	50 - 200
			Methoxychlor	2023/02/16		119	%	50 - 200
			Mirex	2023/02/16		101	%	50 - 200
			cis-Nonachlor	2023/02/16		126	%	50 - 200
			trans-Nonachlor	2023/02/16		115	%	50 - 200
8503096	CTC	Spiked Blank DUP	13C10-cis Nonachlor	2023/02/16		76	%	36 - 139
0303030	CTC	Spired Dialik DUP	13C10-tis Norlactilor 13C10-Heptachlor	2023/02/16		76 57	%	5 - 120
			13C10-Heptachlor 13C10-Heptachlor Epoxide	2023/02/16		57 73	% %	5 - 120 27 - 137
			13C10-neptaction epoxide 13C10-Oxychlordane	2023/02/16		73 72	%	23 - 135
						72 73		
			13C10-trans Nonachlor	2023/02/16			%	14 - 136 25 - 155
			13C12-Endrin	2023/02/16		75 64	%	35 - 155
			13C12-Endrin Ketone	2023/02/16		64	%	35 - 155
			13C6-beta BHC	2023/02/16		62 75	%	32 - 130
			13C6-d6-gamma BHC (Lindane)	2023/02/16		75 76	%	11 - 120
			13C-Methoxychlor	2023/02/16		76 66	%	5 - 120
			13C-pp-DDD	2023/02/16		66	%	5 - 120

Apex Laboratories Client Project #: A3B0217

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			13C-pp-DDE	2023/02/16		82	%	47 - 160
			13C-pp-DDT	2023/02/16		79	%	5 - 120
			C13-Hexachlorobenzene	2023/02/16		62	%	5 - 120
			Aldrin	2023/02/16		133	%	50 - 200
			alpha-BHC	2023/02/16		121	%	50 - 200
			delta-BHC	2023/02/16		138	%	50 - 200
			beta-BHC	2023/02/16		120	%	50 - 200
			Lindane	2023/02/16		119	%	50 - 200
			a-Chlordane	2023/02/16		109	%	50 - 200
			g-Chlordane	2023/02/16		105	%	50 - 200
			Oxychlordane	2023/02/16		96	%	50 - 200
			o,p-DDD	2023/02/16		112	%	50 - 200
			p,p-DDD	2023/02/16		123	%	50 - 200
			o,p-DDE	2023/02/16		102	%	50 - 200
			p,p-DDE	2023/02/16		116	%	50 - 200
			o,p-DDT	2023/02/16		102	%	50 - 200
			p,p-DDT	2023/02/16		104	%	50 - 200
			Dieldrin	2023/02/16		132	%	50 - 200
			Endosulfan I	2023/02/16		119	%	50 - 200
			Endosulfan II	2023/02/16		119	%	50 - 200
			Endosulfan sulfate	2023/02/16		122	%	50 - 200
			Endrin	2023/02/16		106	%	50 - 200
			Endrin aldehyde	2023/02/16		120	%	50 - 200
			Endrin ketone	2023/02/16		129	%	50 - 200
			Heptachlor	2023/02/16		120	%	50 - 200
			Heptachlor epoxide	2023/02/16		117	%	50 - 200
			Hexachlorobenzene	2023/02/16		112	%	50 - 200
			Methoxychlor	2023/02/16		124	%	50 - 200
			Mirex	2023/02/16		109	%	50 - 200
			cis-Nonachlor	2023/02/16		118	%	50 - 200
			trans-Nonachlor	2023/02/16		114	%	50 - 200
8503096	CTC	RPD	Aldrin	2023/02/16	4.8		%	25
			alpha-BHC	2023/02/16	0.031		%	25
			delta-BHC	2023/02/16	0.18		%	25
			beta-BHC	2023/02/16	0.27		%	25
			Lindane	2023/02/16	0.13		%	25
			a-Chlordane	2023/02/16	0.59		%	25
			g-Chlordane	2023/02/16	1.3		%	25
			Oxychlordane	2023/02/16	3.8		%	25
			o,p-DDD	2023/02/16	0.085		%	25
			p,p-DDD	2023/02/16	0.81		%	25
			o,p-DDE	2023/02/16	1.2		%	25
			p,p-DDE	2023/02/16	0.052		%	25
			o,p-DDT	2023/02/16	4.6		%	25
			p,p-DDT	2023/02/16	0.38		%	25
			Dieldrin	2023/02/16	7.7		%	25
			Endosulfan I	2023/02/16	5.1		%	25
			Endosulfan II	2023/02/16	0.095		%	25
			Endosulfan sulfate	2023/02/16	10		%	25
			Endosulian sunate	2023/02/16	8.3		% %	25 25
			Endrin Endrin aldehyde	2023/02/16	8.1		% %	
			•					25 25
			Endrin ketone	2023/02/16	7.1		%	25 25
			Heptachlor	2023/02/16	7.2		%	25

Page 18 of 45

Apex Laboratories Client Project #: A3B0217

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Heptachlor epoxide	2023/02/16	0.36	· ·	%	25
			Hexachlorobenzene	2023/02/16	2.3		%	25
			Methoxychlor	2023/02/16	4.0		%	25
			Mirex	2023/02/16	7.7		%	25
			cis-Nonachlor	2023/02/16	6.3		%	25
			trans-Nonachlor	2023/02/16	1.0		%	25
8503096	CTC	Method Blank	13C10-cis Nonachlor	2023/02/16		63	%	36 - 139
			13C10-Heptachlor	2023/02/16		64	%	5 - 120
			13C10-Heptachlor Epoxide	2023/02/16		68	%	27 - 137
			13C10-Oxychlordane	2023/02/16		64	%	23 - 135
			13C10-trans Nonachlor	2023/02/16		63	%	14 - 136
			13C12-Endrin	2023/02/16		74	%	35 - 155
			13C12-Endrin Ketone	2023/02/16		67	%	35 - 155
			13C6-beta BHC	2023/02/16		63	%	32 - 130
			13C6-d6-gamma BHC (Lindane)	2023/02/16		77	%	11 - 120
			13C-Methoxychlor	2023/02/16		73	%	5 - 120
			13C-pp-DDD	2023/02/16		56	%	5 - 120
			13C-pp-DDE	2023/02/16		82	%	47 - 160
			13C-pp-DDT	2023/02/16		75	%	5 - 120
			C13-Hexachlorobenzene	2023/02/16		62	%	5 - 120
			Aldrin	2023/02/16	0.021 U,		ng/L	
					MDL=0.021			
			alpha-BHC	2023/02/16	0.024 U, MDL=0.024		ng/L	
			delta-BHC	2023/02/16	0.029 U, MDL=0.029		ng/L	
			beta-BHC	2023/02/16	0.014 U, MDL=0.014		ng/L	
			Lindane	2023/02/16	0.033 U, MDL=0.033		ng/L	
			a-Chlordane	2023/02/16	0.029 U, MDL=0.029		ng/L	
			g-Chlordane	2023/02/16	0.029 U, MDL=0.029		ng/L	
			Oxychlordane	2023/02/16	0.028 U, MDL=0.028		ng/L	
			o,p-DDD	2023/02/16	0.020 U, MDL=0.020		ng/L	
			p,p-DDD	2023/02/16	0.014 U, MDL=0.014		ng/L	
			o,p-DDE	2023/02/16	0.016 U,		ng/L	
			p,p-DDE	2023/02/16	MDL=0.016 0.012 U,		ng/L	
			o,p-DDT	2023/02/16	MDL=0.012 0.040 U,		ng/L	
			p,p-DDT	2023/02/16	MDL=0.040 0.050 U,		ng/L	
			Dieldrin	2023/02/16	MDL=0.050 0.050 U,		ng/L	
					MDL=0.050			
			Endosulfan I	2023/02/16	0.067 U, MDL=0.067		ng/L	
			Endosulfan II	2023/02/16	0.074 U, MDL=0.074		ng/L	

Apex Laboratories Client Project #: A3B0217

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Endosulfan sulfate	2023/02/16	0.070 U, MDL=0.070		ng/L	
			Endrin	2023/02/16	0.061 J, MDL=0.045		ng/L	
			Endrin aldehyde	2023/02/16	0.071 U, MDL=0.071		ng/L	
			Endrin ketone	2023/02/16	0.034 U, MDL=0.034		ng/L	
			Heptachlor	2023/02/16	0.029 U, MDL=0.029		ng/L	
			Heptachlor epoxide	2023/02/16	0.015 U, MDL=0.015		ng/L	
			Hexachlorobenzene	2023/02/16	0.10 U, MDL=0.10		ng/L	
			Methoxychlor	2023/02/16	0.040 U, MDL=0.040		ng/L	
			Mirex	2023/02/16	0.021 U, MDL=0.021		ng/L	
			cis-Nonachlor	2023/02/16	0.037 U, MDL=0.037		ng/L	
			trans-Nonachlor	2023/02/16	0.044 U, MDL=0.044		ng/L	
8511386	RAK	Spiked Blank	37CL4 2378 Tetra CDD	2023/02/21		75	%	35 - 197
			C13-1234678 HeptaCDD	2023/02/21		91	%	23 - 140
			C13-1234678 HeptaCDF	2023/02/21		81	%	28 - 143
			C13-123478 HexaCDD	2023/02/21		88	%	32 - 141
			C13-123478 HexaCDF	2023/02/21		83	%	26 - 152
			C13-1234789 HeptaCDF	2023/02/21		86	%	28 - 138
			C13-123678 HexaCDD	2023/02/21		89	%	28 - 130
			C13-123678 HexaCDF	2023/02/21		84	%	26 - 123
			C13-12378 PentaCDD	2023/02/21		82	%	25 - 181
			C13-12378 PentaCDF	2023/02/21		79	%	24 - 185
			C13-123789 HexaCDF	2023/02/21		86	%	29 - 147
			C13-234678 HexaCDF	2023/02/21		89	%	28 - 136
			C13-23478 PentaCDF	2023/02/21		83	%	21 - 178
			C13-2378 TetraCDD	2023/02/21		74	%	25 - 164
			C13-2378 TetraCDF	2023/02/21		83	%	24 - 169
			C13-OCDD	2023/02/21		83	%	17 - 157
			2,3,7,8-Tetra CDD	2023/02/21		116	%	67 - 158
			1,2,3,7,8-Penta CDD	2023/02/21		107	%	25 - 181
			1,2,3,4,7,8-Hexa CDD	2023/02/21		108	%	70 - 164
			1,2,3,6,7,8-Hexa CDD	2023/02/21		109	%	76 - 134
			1,2,3,7,8,9-Hexa CDD	2023/02/21		106	%	64 - 162
			1,2,3,4,6,7,8-Hepta CDD	2023/02/21		107	%	70 - 140
			Octa CDD	2023/02/21		117	%	78 - 144
			2,3,7,8-Tetra CDF	2023/02/21		101	%	75 - 158
			1,2,3,7,8-Penta CDF	2023/02/21		108	%	80 - 134
			2,3,4,7,8-Penta CDF	2023/02/21		107	%	68 - 160
			1,2,3,4,7,8-Hexa CDF	2023/02/21		110	%	72 - 134
			1,2,3,6,7,8-Hexa CDF	2023/02/21		106	%	84 - 130
			2,3,4,6,7,8-Hexa CDF	2023/02/21		100	%	70 - 156
			1,2,3,7,8,9-Hexa CDF	2023/02/21		107	%	78 - 130
			1,2,3,4,6,7,8-Hepta CDF	2023/02/21		111	%	82 - 122
			1,2,3,4,7,8,9-Hepta CDF	2023/02/21		108	%	78 - 138

Apex Laboratories Client Project #: A3B0217

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Octa CDF	2023/02/21		118	%	63 - 170
8511386	RAK	Spiked Blank DUP	37CL4 2378 Tetra CDD	2023/02/21		91	%	35 - 197
			C13-1234678 HeptaCDD	2023/02/21		99	%	23 - 140
			C13-1234678 HeptaCDF	2023/02/21		90	%	28 - 143
			C13-123478 HexaCDD	2023/02/21		95	%	32 - 141
			C13-123478 HexaCDF	2023/02/21		87	%	26 - 152
			C13-1234789 HeptaCDF	2023/02/21		99	%	28 - 138
			C13-123678 HexaCDD	2023/02/21		104	%	28 - 130
			C13-123678 HexaCDF	2023/02/21		90	%	26 - 123
			C13-12378 PentaCDD	2023/02/21		93	%	25 - 181
			C13-12378 PentaCDF	2023/02/21		90	%	24 - 185
			C13-123789 HexaCDF	2023/02/21		98	%	29 - 147
			C13-234678 HexaCDF	2023/02/21		99	%	28 - 136
			C13-23478 PentaCDF	2023/02/21		99	%	21 - 178
			C13-2378 TetraCDD	2023/02/21		80	%	25 - 164
			C13-2378 TetraCDF	2023/02/21		88	%	24 - 169
			C13-OCDD	2023/02/21		95	%	17 - 157
			2,3,7,8-Tetra CDD	2023/02/21		113	%	67 - 158
			1,2,3,7,8-Penta CDD	2023/02/21		107	%	25 - 181
			1,2,3,4,7,8-Hexa CDD	2023/02/21		106	%	70 - 164
			1,2,3,6,7,8-Hexa CDD	2023/02/21		104	%	76 - 134
			1,2,3,7,8,9-Hexa CDD	2023/02/21		104	%	64 - 162
			1,2,3,4,6,7,8-Hepta CDD	2023/02/21		107	%	70 - 140
			Octa CDD	2023/02/21		115	%	78 - 144
			2,3,7,8-Tetra CDF	2023/02/21		99	%	75 - 158
			1,2,3,7,8-Penta CDF	2023/02/21		107	%	80 - 134
			2,3,4,7,8-Penta CDF	2023/02/21		104	%	68 - 160
			1,2,3,4,7,8-Hexa CDF	2023/02/21		110	%	72 - 134
			1,2,3,6,7,8-Hexa CDF	2023/02/21		107	%	84 - 130
			2,3,4,6,7,8-Hexa CDF	2023/02/21		100	%	70 - 156
			1,2,3,7,8,9-Hexa CDF	2023/02/21		104	%	78 - 130
			1,2,3,4,6,7,8-Hepta CDF	2023/02/21		109	%	82 - 122
			1,2,3,4,7,8,9-Hepta CDF	2023/02/21		104	%	78 - 138
			Octa CDF	2023/02/21		114	%	63 - 170
8511386	RAK	RPD	2,3,7,8-Tetra CDD	2023/02/21	2.6		%	25
			1,2,3,7,8-Penta CDD	2023/02/21	0		%	25
			1,2,3,4,7,8-Hexa CDD	2023/02/21	1.9		%	25
			1,2,3,6,7,8-Hexa CDD	2023/02/21	4.7		%	25
			1,2,3,7,8,9-Hexa CDD	2023/02/21	1.9		%	25
			1,2,3,4,6,7,8-Hepta CDD	2023/02/21	0		%	25
			Octa CDD	2023/02/21	1.7		%	25
			2,3,7,8-Tetra CDF	2023/02/21	2.0		%	25
			1,2,3,7,8-Penta CDF	2023/02/21	0.93		%	25
			2,3,4,7,8-Penta CDF	2023/02/21	2.8		%	25
			1,2,3,4,7,8-Hexa CDF	2023/02/21	0		%	25
			1,2,3,6,7,8-Hexa CDF	2023/02/21	0.94		%	25
			2,3,4,6,7,8-Hexa CDF	2023/02/21	0		%	25
			1,2,3,7,8,9-Hexa CDF	2023/02/21	2.8		%	25
			1,2,3,4,6,7,8-Hepta CDF	2023/02/21	1.8		%	25
			1,2,3,4,7,8,9-Hepta CDF	2023/02/21	3.8		%	25
			Octa CDF	2023/02/21	3.4		%	25
8511386	RAK	Method Blank	37CL4 2378 Tetra CDD	2023/02/20	- *	93	%	35 - 1 97
			C13-1234678 HeptaCDD	2023/02/20		77	%	23 - 140

Apex Laboratories Client Project #: A3B0217

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			C13-1234678 HeptaCDF	2023/02/20		74	%	28 - 143
			C13-123478 HexaCDD	2023/02/20		81	%	32 - 141
			C13-123478 HexaCDF	2023/02/20		80	%	26 - 152
			C13-1234789 HeptaCDF	2023/02/20		75	%	28 - 138
			C13-123678 HexaCDD	2023/02/20		88	%	28 - 130
			C13-123678 HexaCDF	2023/02/20		82	%	26 - 123
			C13-12378 PentaCDD	2023/02/20		83	%	25 - 181
			C13-12378 PentaCDF	2023/02/20		83	%	24 - 185
			C13-123789 HexaCDF	2023/02/20		85	%	29 - 147
			C13-234678 HexaCDF	2023/02/20		87	%	28 - 136
			C13-23478 PentaCDF	2023/02/20		89	%	21 - 178
			C13-2378 TetraCDD	2023/02/20		74	%	25 - 164
			C13-2378 TetraCDF	2023/02/20		81	%	24 - 169
			C13-OCDD	2023/02/20		69	%	17 - 157
			2,3,7,8-Tetra CDD	2023/02/20	1.24 U, EDL=1.24		pg/L	
			1,2,3,7,8-Penta CDD	2023/02/20	1.43 U, EDL=1.43		pg/L	
			1,2,3,4,7,8-Hexa CDD	2023/02/20	1.63 U, EDL=1.63		pg/L	
			1,2,3,6,7,8-Hexa CDD	2023/02/20	1.50 U, EDL=1.50		pg/L	
			1,2,3,7,8,9-Hexa CDD	2023/02/20	1.47 U, EDL=1.47		pg/L	
			1,2,3,4,6,7,8-Hepta CDD	2023/02/20	1.81 U, EDL=1.81		pg/L	
			Octa CDD	2023/02/20	3.93 U, EDL=3.93		pg/L	
			Total Tetra CDD	2023/02/20	1.24 U, EDL=1.24		pg/L	
			Total Penta CDD	2023/02/20	1.71 U, EDL=1.71		pg/L	
			Total Hexa CDD	2023/02/20	1.53 U, EDL=1.53		pg/L	
			Total Hepta CDD	2023/02/20	1.81 U, EDL=1.81		pg/L	
			2,3,7,8-Tetra CDF	2023/02/20	1.05 U, EDL=1.05		pg/L	
			1,2,3,7,8-Penta CDF	2023/02/20	1.80 U, EDL=1.80		pg/L	
			2,3,4,7,8-Penta CDF	2023/02/20	1.55 U, EDL=1.55		pg/L	
			1,2,3,4,7,8-Hexa CDF	2023/02/20	1.08 U, EDL=1.08		pg/L	
			1,2,3,6,7,8-Hexa CDF	2023/02/20	1.04 U, EDL=1.04		pg/L	
			2,3,4,6,7,8-Hexa CDF	2023/02/20	0.965 U, EDL=0.965		pg/L	
			1,2,3,7,8,9-Hexa CDF	2023/02/20	1.13 U, EDL=1.13		pg/L	
			1,2,3,4,6,7,8-Hepta CDF	2023/02/20	1.08 U, EDL=1.08		pg/L	
			1,2,3,4,7,8,9-Hepta CDF	2023/02/20	1.22 U, EDL=1.22		pg/L	

Apex Laboratories Client Project #: A3B0217

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Octa CDF	2023/02/20	0.965 U, EDL=0.965		pg/L	
			Total Tetra CDF	2023/02/20	1.05 U, EDL=1.05		pg/L	
			Total Penta CDF	2023/02/20	1.66 U, EDL=1.66		pg/L	
			Total Hexa CDF	2023/02/20	1.05 U, EDL=1.05		pg/L	
			Total Hepta CDF	2023/02/20	1.14 U, EDL=1.14		pg/L	
8514543	TJC	Spiked Blank	13C2-4:2-Fluorotelomersulfonic Acid	2023/02/22	202 2.2.	100	%	50 - 150
031 13 13	130	эртса Батк	13C2-6:2-Fluorotelomersulfonic Acid	2023/02/22		98	%	50 - 150
			13C2-8:2-Fluorotelomersulfonic Acid	2023/02/22		96	%	50 - 150
			13C2-Perfluorodecanoic acid	2023/02/22		98	%	50 - 150
			13C2-Perfluorododecanoic acid	2023/02/22		93	%	50 - 150
			13C2-Perfluorohexanoic acid	2023/02/22		101	%	50 - 150
			13C2-perfluorotetradecanoic acid	2023/02/22		88	%	50 - 150
			13C2-Perfluoroundecanoic acid	2023/02/22		93	%	50 - 150
			13C3-HFPO-DA	2023/02/22		101	%	50 - 150
			13C3-Perfluorobutanesulfonic acid	2023/02/22		99	%	50 - 150
			13C4-Perfluorobutanoic acid	2023/02/22		100	%	50 - 150
			13C4-Perfluoroheptanoic acid	2023/02/22		101	%	50 - 150
			13C4-Perfluorooctanesulfonic acid	2023/02/22		100	%	50 - 150
			13C4-Perfluorooctanesunonic acid	2023/02/22		100	% %	50 - 150 50 - 150
			13C5-Perfluorononanoic acid	• •		102	% %	
				2023/02/22		99	% %	50 - 150
			13C5-Perfluoropentanoic acid 13C8-Perfluorooctane Sulfonamide	2023/02/22 2023/02/22		99		50 - 150
							%	50 - 150
			1802-Perfluorohexanesulfonic acid	2023/02/22		99	%	50 - 150
			D3-MeFOSA	2023/02/22		73	%	50 - 150
			D3-MeFOSAA	2023/02/22		88	%	50 - 150
			D5-EtFOSA	2023/02/22		67	%	50 - 150
			D5-EtFOSAA	2023/02/22		86	%	50 - 150
			D7-MeFOSE	2023/02/22		83	%	50 - 150
			D9-EtFOSE	2023/02/22		79	%	50 - 150
			Perfluorobutanoic acid (PFBA)	2023/02/22		100	%	70 - 130
			Perfluoropentanoic acid (PFPeA)	2023/02/22		101	%	70 - 130
			Perfluorohexanoic acid (PFHxA)	2023/02/22		100	%	70 - 130
			Perfluoroheptanoic acid (PFHpA)	2023/02/22		100	%	70 - 130
			Perfluorooctanoic acid (PFOA)	2023/02/22		101	%	70 - 130
			Perfluorononanoic acid (PFNA)	2023/02/22		102	%	70 - 130
			Perfluorodecanoic acid (PFDA)	2023/02/22		103	%	70 - 130
			Perfluoroundecanoic acid (PFUnA)	2023/02/22		99	%	70 - 130
			Perfluorododecanoic acid (PFDoA)	2023/02/22		99	%	70 - 130
			Perfluorotridecanoic acid (PFTRDA)	2023/02/22		103	%	70 - 130
			Perfluorotetradecanoic acid(PFTEDA)	2023/02/22		103	%	70 - 130
			Perfluorobutanesulfonic acid (PFBS)	2023/02/22		99	%	70 - 130
			Perfluoropentanesulfonic acid PFPes	2023/02/22		98	%	70 - 130
			Perfluorohexanesulfonic acid(PFHxS)	2023/02/22		101	%	70 - 130
			Perfluoroheptanesulfonic acid PFHpS	2023/02/22		97	%	70 - 130
			Perfluorooctanesulfonic acid (PFOS)	2023/02/22		101	%	70 - 130
			Perfluorononanesulfonic acid (PFNS)	2023/02/22		94	%	70 - 130
			Perfluorodecanesulfonic acid (PFDS)	2023/02/22		95	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2023/02/22		100	%	70 - 130

Apex Laboratories Client Project #: A3B0217

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			EtFOSA	2023/02/22		107	%	70 - 130
			MeFOSA	2023/02/22		104	%	70 - 130
			EtFOSE	2023/02/22		104	%	70 - 130
			MeFOSE	2023/02/22		101	%	70 - 130
			EtFOSAA	2023/02/22		102	%	70 - 130
			MeFOSAA	2023/02/22		101	%	70 - 130
			4:2 Fluorotelomer sulfonic acid	2023/02/22		102	%	70 - 130
			6:2 Fluorotelomer sulfonic acid	2023/02/22		100	%	70 - 130
			8:2 Fluorotelomer sulfonic acid	2023/02/22		104	%	70 - 130
			Hexafluoropropyleneoxide dimer acid	2023/02/22		103	%	70 - 130
			4,8-Dioxa-3H-perfluorononanoic acid	2023/02/22		99	%	70 - 130
			9Cl-PF3ONS (F-53B Major)	2023/02/22		97	%	70 - 130
			11Cl-PF3OUdS (F-53B Minor)	2023/02/22		94	%	70 - 130
8514543	TJC	Spiked Blank DUP	13C2-4:2-Fluorotelomersulfonic Acid	2023/02/22		97	%	50 - 150
		·	13C2-6:2-Fluorotelomersulfonic Acid	2023/02/22		97	%	50 - 150
			13C2-8:2-Fluorotelomersulfonic Acid	2023/02/22		95	%	50 - 150
			13C2-Perfluorodecanoic acid	2023/02/22		96	%	50 - 150
			13C2-Perfluorododecanoic acid	2023/02/22		86	%	50 - 150
			13C2-Perfluorohexanoic acid	2023/02/22		99	%	50 - 150
			13C2-perfluorotetradecanoic acid	2023/02/22		84	%	50 - 150
			13C2-Perfluoroundecanoic acid	2023/02/22		90	%	50 - 150
			13C3-HFPO-DA	2023/02/22		100	%	50 - 150
			13C3-Perfluorobutanesulfonic acid	2023/02/22		98	%	50 - 150
			13C4-Perfluorobutanoic acid	2023/02/22		99	%	50 - 150
			13C4-Perfluoroheptanoic acid	2023/02/22		99	%	50 - 150
			13C4-Perfluorooctanesulfonic acid	2023/02/22		97	%	50 - 150
			13C4-Perfluorooctanoic acid	2023/02/22		100	%	50 - 150
			13C5-Perfluorononanoic acid	2023/02/22		98	%	50 - 150
			13C5-Perfluoropentanoic acid	2023/02/22		98	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2023/02/22		82	%	50 - 150
			1802-Perfluorohexanesulfonic acid	2023/02/22		96	%	50 - 150
			D3-MeFOSA	2023/02/22		69	%	50 - 150
			D3-MeFOSAA	2023/02/22		85	%	50 - 150
			D5-EtFOSA	2023/02/22		65	%	50 - 150
			D5-EtFOSAA	2023/02/22		82	%	50 - 150
			D7-MeFOSE	2023/02/22		78	%	50 - 150
			D9-EtFOSE	2023/02/22		78	%	50 - 150
			Perfluorobutanoic acid (PFBA)	2023/02/22		101	%	70 - 130
			Perfluoropentanoic acid (PFPeA)	2023/02/22		100	%	70 - 130
			Perfluorohexanoic acid (PFHxA)	2023/02/22		103	%	70 - 130
			Perfluoroheptanoic acid (PFHpA)	2023/02/22		102	%	70 - 130
			Perfluorooctanoic acid (PFOA)	2023/02/22		100	%	70 - 130
			Perfluorononanoic acid (PFNA)	2023/02/22		104	%	70 - 130
			Perfluorodecanoic acid (PFDA)	2023/02/22		99	%	70 - 130
			Perfluoroundecanoic acid (PFUnA)	2023/02/22		100	%	70 - 130
			Perfluorododecanoic acid (PFDoA)	2023/02/22		102	%	70 - 130
			Perfluorotridecanoic acid (PFTRDA)	2023/02/22		103	%	70 - 130
			Perfluorotetradecanoic acid (PFTEDA)	2023/02/22		103	%	70 - 130
			Perfluorobutanesulfonic acid (PFBS)	2023/02/22		100	% %	70 - 130
			Perfluoropentanesulfonic acid (PFPes	2023/02/22		98	% %	70 - 130 70 - 130
			Perfluoropentanesulfonic acid (PFHxS)	2023/02/22		98 104	% %	70 - 130 70 - 130
			Perfluoroheptanesulfonic acid PFHpS	2023/02/22		96 103	%	70 - 130
			Perfluorooctanesulfonic acid (PFOS)	2023/02/22		103	%	70 - 130

Apex Laboratories Client Project #: A3B0217

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Perfluorononanesulfonic acid (PFNS)	2023/02/22		93	%	70 - 130
			Perfluorodecanesulfonic acid (PFDS)	2023/02/22		92	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2023/02/22		105	%	70 - 130
			EtFOSA	2023/02/22		111	%	70 - 130
			MeFOSA	2023/02/22		107	%	70 - 130
			EtFOSE	2023/02/22		101	%	70 - 130
			MeFOSE	2023/02/22		100	%	70 - 130
			EtFOSAA	2023/02/22		103	%	70 - 130
			MeFOSAA	2023/02/22		99	%	70 - 130
			4:2 Fluorotelomer sulfonic acid	2023/02/22		104	%	70 - 130
			6:2 Fluorotelomer sulfonic acid	2023/02/22		102	%	70 - 130
			8:2 Fluorotelomer sulfonic acid	2023/02/22		101	%	70 - 130
			Hexafluoropropyleneoxide dimer acid	2023/02/22		99	%	70 - 130
			4,8-Dioxa-3H-perfluorononanoic acid	2023/02/22		100	%	70 - 130
			9CI-PF3ONS (F-53B Major)	2023/02/22		96	%	70 - 130
			11Cl-PF3OUdS (F-53B Minor)	2023/02/22		94	%	70 - 130
8514543	TJC	RPD	Perfluorobutanoic acid (PFBA)	2023/02/22	1.2		%	30
			Perfluoropentanoic acid (PFPeA)	2023/02/22	0.82		%	30
			Perfluorohexanoic acid (PFHxA)	2023/02/22	3.2		%	30
			Perfluoroheptanoic acid (PFHpA)	2023/02/22	1.2		%	30
			Perfluorooctanoic acid (PFOA)	2023/02/22	1.0		%	30
			Perfluorononanoic acid (PFNA)	2023/02/22	1.7		%	30
			Perfluorodecanoic acid (PFDA)	2023/02/22	3.0		%	30
			Perfluoroundecanoic acid (PFUnA)	2023/02/22	0.36		%	30
			Perfluorododecanoic acid (PFDoA)	2023/02/22	3.7		%	30
			Perfluorotridecanoic acid (PFTRDA)	2023/02/22	0.86		%	30
			Perfluorotetradecanoic acid(PFTEDA)	2023/02/22	4.3		%	30
			Perfluorobutanesulfonic acid (PFBS)	2023/02/22	1.1		%	30
			Perfluoropentanesulfonic acid PFPes	2023/02/22	0.11		%	30
			Perfluorohexanesulfonic acid(PFHxS)	2023/02/22	2.5		%	30
			Perfluoroheptanesulfonic acid PFHpS	2023/02/22	0.48		%	30
			Perfluorooctanesulfonic acid (PFOS)	2023/02/22	1.9		%	30
			Perfluorononanesulfonic acid (PFNS)	2023/02/22	1.0		%	30
			Perfluorodecanesulfonic acid (PFDS)	2023/02/22	3.3		%	30
			Perfluorooctane Sulfonamide (PFOSA)	2023/02/22	5.4		%	30
			EtFOSA	2023/02/22	3.3		%	30
			MeFOSA	2023/02/22	2.8		%	30
			EtFOSE	2023/02/22	3.4		%	30
			MeFOSE	2023/02/22	1.0		%	30
			EtFOSAA	2023/02/22	1.2		%	30
			MeFOSAA	2023/02/22	1.1		%	30
			4:2 Fluorotelomer sulfonic acid	2023/02/22	1.7		%	30
			6:2 Fluorotelomer sulfonic acid	2023/02/22	1.4		%	30
			8:2 Fluorotelomer sulfonic acid	2023/02/22	3.2		%	30
			Hexafluoropropyleneoxide dimer acid	2023/02/22	3.5		%	30
			4,8-Dioxa-3H-perfluorononanoic acid	2023/02/22	1.2		%	30
			9CI-PF3ONS (F-53B Major)	2023/02/22	0.28		%	30
			11Cl-PF3OUdS (F-53B Minor)	2023/02/22	0.48		%	30
8514543	TJC	Method Blank	13C2-4:2-Fluorotelomersulfonic Acid	2023/02/22	5.10	107	%	50 - 150
551 1545	.,,	caroa blank	13C2-6:2-Fluorotelomersulfonic Acid	2023/02/22		105	%	50 - 150
			13C2-8:2-Fluorotelomersulfonic Acid	2023/02/22		99	%	50 - 150
			13C2-Perfluorodecanoic acid	2023/02/22		93	%	50 - 150
			13C2-Perfluorododecanoic acid	2023/02/22		87	%	50 - 150

Apex Laboratories Client Project #: A3B0217

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limit
			13C2-Perfluorohexanoic acid	2023/02/22		99	%	50 - 150
			13C2-perfluorotetradecanoic acid	2023/02/22		80	%	50 - 150
			13C2-Perfluoroundecanoic acid	2023/02/22		88	%	50 - 150
			13C3-HFPO-DA	2023/02/22		99	%	50 - 150
			13C3-Perfluorobutanesulfonic acid	2023/02/22		97	%	50 - 150
			13C4-Perfluorobutanoic acid	2023/02/22		99	%	50 - 150
			13C4-Perfluoroheptanoic acid	2023/02/22		102	%	50 - 150
			13C4-Perfluorooctanesulfonic acid	2023/02/22		96	%	50 - 15
			13C4-Perfluorooctanoic acid	2023/02/22		101	%	50 - 15
			13C5-Perfluorononanoic acid	2023/02/22		98	%	50 - 15
			13C5-Perfluoropentanoic acid	2023/02/22		99	%	50 - 15
			13C8-Perfluorooctane Sulfonamide	2023/02/22		89	%	50 - 15
			1802-Perfluorohexanesulfonic acid	2023/02/22		99	%	50 - 15
			D3-MeFOSA	2023/02/22		72	%	50 - 15
			D3-MeFOSAA	2023/02/22		84	%	50 - 15
			D5-EtFOSA	2023/02/22		66	%	50 - 15
			D5-EtFOSAA	2023/02/22		85	%	50 - 15
			D7-MeFOSE	2023/02/22		80	%	50 - 15
			D9-EtFOSE	2023/02/22		77	%	50 - 15
			Perfluorobutanoic acid (PFBA)	2023/02/22	0.0015 U, MDL=0.0015		ug/L	
			Perfluoropentanoic acid (PFPeA)	2023/02/22	0.0025 U, MDL=0.0025		ug/L	
			Perfluorohexanoic acid (PFHxA)	2023/02/22	0.0038 U, MDL=0.0038		ug/L	
			Perfluoroheptanoic acid (PFHpA)	2023/02/22	0.0018 U, MDL=0.0018		ug/L	
			Perfluorooctanoic acid (PFOA)	2023/02/22	0.0030 U, MDL=0.0030		ug/L	
			Perfluorononanoic acid (PFNA)	2023/02/22	0.0021 U, MDL=0.0021		ug/L	
			Perfluorodecanoic acid (PFDA)	2023/02/22	0.0016 U, MDL=0.0016		ug/L	
			Perfluoroundecanoic acid (PFUnA)	2023/02/22	0.0024 U, MDL=0.0024		ug/L	
			Perfluorododecanoic acid (PFDoA)	2023/02/22	0.0029 U, MDL=0.0029		ug/L	
			Perfluorotridecanoic acid (PFTRDA)	2023/02/22	0.0026 U, MDL=0.0026		ug/L	
			Perfluorotetradecanoic acid(PFTEDA)	2023/02/22	0.0016 U, MDL=0.0016		ug/L	
			Perfluorobutanesulfonic acid (PFBS)	2023/02/22	0.0021 U, MDL=0.0021		ug/L	
			Perfluoropentanesulfonic acid PFPes	2023/02/22	0.0023 U, MDL=0.0023		ug/L	
			Perfluorohexanesulfonic acid(PFHxS)	2023/02/22	0.0022 U, MDL=0.0022		ug/L	
			Perfluoroheptanesulfonic acid PFHpS	2023/02/22	0.0039 U, MDL=0.0039		ug/L	
			Perfluorooctanesulfonic acid (PFOS)	2023/02/22	0.0035 U, MDL=0.0035		ug/L	
			Perfluorononanesulfonic acid (PFNS)	2023/02/22	0.0037 U, MDL=0.0037		ug/L	

Apex Laboratories Client Project #: A3B0217

_								
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Perfluorodecanesulfonic acid (PFDS)	2023/02/22	0.0048 U, MDL=0.0048		ug/L	
			Perfluorooctane Sulfonamide (PFOSA)	2023/02/22	0.0034 U, MDL=0.0034		ug/L	
			EtFOSA	2023/02/22	0.0095 U, MDL=0.0095		ug/L	
			MeFOSA	2023/02/22	0.0084 U, MDL=0.0084		ug/L	
			EtFOSE	2023/02/22	0.0070 U, MDL=0.0070		ug/L	
			MeFOSE	2023/02/22	0.0073 U, MDL=0.0073		ug/L	
			EtFOSAA	2023/02/22	0.0046 U, MDL=0.0046		ug/L	
			MeFOSAA	2023/02/22	0.0045 U, MDL=0.0045		ug/L	
			4:2 Fluorotelomer sulfonic acid	2023/02/22	0.0033 U, MDL=0.0033		ug/L	
			6:2 Fluorotelomer sulfonic acid	2023/02/22	0.0015 U, MDL=0.0015		ug/L	
			8:2 Fluorotelomer sulfonic acid	2023/02/22	0.0031 U, MDL=0.0031		ug/L	
			Hexafluoropropyleneoxide dimer acid	2023/02/22	0.0052 U, MDL=0.0052		ug/L	
			4,8-Dioxa-3H-perfluorononanoic acid	2023/02/22	0.0027 U, MDL=0.0027		ug/L	
			9Cl-PF3ONS (F-53B Major)	2023/02/22	0.0043 U, MDL=0.0043		ug/L	
			11Cl-PF3OUdS (F-53B Minor)	2023/02/22	0.0035 U, MDL=0.0035		ug/L	
8531877	AGU	Method Blank	Confirmation 2,3,7,8-Tetra CDF	2023/03/02	1.6 U, EDL=1.6		pg/L	
			Confirmation C13-2378 TetraCDF	2023/03/02		45	%	40 - 135
8533813	CXU	Spiked Blank	C13-2,44'-TriCB-(28)	2023/04/04		80 (1)	%	30 - 170
			C13-22'33'44'55'6-NonaCB-(206)	2023/04/04		108	%	40 - 145
			C13-22'33'44'5-HeptaCB-(170)	2023/04/04		116	%	40 - 145
			C13-22'33'455'66'-NonaCB-(208)	2023/04/04		107	%	40 - 145
			C13-22'33'55'66'-OctaCB-(202)	2023/04/04		98	%	40 - 145
			C13-22'33'55'6-HeptaCB-(178)	2023/04/04		85	%	40 - 145
			C13-22'344'55'-HeptaCB-(180)	2023/04/04		111	%	40 - 145
			C13-22'34'566'-HeptaCB-(188)	2023/04/04		77	%	40 - 145
			C13-22'44'66'-HexaCB-(155)	2023/04/04		60	%	40 - 145
			C13-22'466'-PentaCB-(104) C13-22'66'-TetraCB-(54)	2023/04/04 2023/04/04		66 40	% %	40 - 145 15 - 145
			C13-22'6-TriCB-(19)	2023/04/04		50	%	40 - 145
			C13-22'-DiCB-(13)	2023/04/04		33	%	15 - 145
			C13-223-blcb-(4) C13-233'44'55'6-OctaCB-(205)	2023/04/04		115	%	40 - 145
			C13-233'44'55'-HeptaCB-(189)	2023/04/04		123	%	40 - 145
			C13-233'44'-PentaCB-(105)	2023/04/04		132 (1)	%	40 - 145
			C13-233'55'-PentaCB-(111)	2023/04/04		94	%	30 - 170
			C13-23'44'55'-HexaCB-(167)	2023/04/04		109	%	40 - 145
			C13-2344'5-PentaCB-(114)	2023/04/04		121	%	40 - 145
			C13-23'44'5-PentaCB-(118)	2023/04/04		126 (1)	%	40 - 145
			C13-2'344'5-PentaCB-(123)	2023/04/04		127 (1)	%	40 - 145

Page 27 of 45

Apex Laboratories Client Project #: A3B0217

QA/QC Batch Ir	nit QC Type	Parameter	Date Analyzed \	/alue % Recov	ery UNITS	QC Limits
Suton II	40.190	C13-2-MonoCB-(1)	2023/04/04	35	%	15 - 145
		C13-33'44'55'-HexaCB-(169)	2023/04/04	121	%	40 - 145
		C13-33'44'5-PentaCB-(126)	2023/04/04	144 (1		40 - 145
		C13-33'44'-TetraCB-(77)	2023/04/04	120	%	40 - 145
		C13-344'5-TetraCB-(81)	2023/04/04	115	%	40 - 145
		C13-344'-TriCB-(37)	2023/04/04	98 (1		40 - 145
		C13-44'-DiCB-(15)	2023/04/04	73	%	15 - 145
		C13-4-MonoCB-(3)	2023/04/04	44	%	15 - 145
		C13-DecaCB-(209)	2023/04/04	96	%	40 - 145
		C13-HexaCB-(156)+(157)	2023/04/04	114	%	40 - 145
		2-MonoCB-(1)	2023/04/04	108	%	60 - 145
		3-MonoCB-(2)	2023/04/04	118	%	N/A
		4-MonoCB-(3)	2023/04/04	107	%	60 - 145
		22'-DiCB-(4)	2023/04/04	114	%	60 - 145
		2,3-DiCB-(5)	2023/04/04	92	%	N/A
		2,3'-DiCB-(6)	2023/04/04	95	%	N/A
		2,4-DiCB-(7)	2023/04/04	89	%	N/A
		2,4'-DiCB-(8)	2023/04/04	53	%	N/A
		2,5-DiCB-(9)	2023/04/04	92	%	N/A
		2,6-DiCB-(10)	2023/04/04	71	%	N/A
		3,3'-DiCB-(11)	2023/04/04	126	%	N/A
		DiCB-(12)+(13)	2023/04/04	102	%	N/A
		3,5-DiCB-(14)	2023/04/04	106	%	N/A
		4,4'-DiCB-(15)	2023/04/04	112	%	60 - 145
		22'3-TriCB-(16)	2023/04/04	70	%	N/A
		22'4-TriCB-(17)	2023/04/04	68	%	N/A
		TriCB-(18)+(30)	2023/04/04	59	%	N/A
		22'6-TriCB-(19)	2023/04/04	105	%	60 - 145
		TriCB-(20) + (28)	2023/04/04	92	%	N/A
		TriCB-(21)+(33)	2023/04/04	100	%	N/A
		234'-TriCB-(22)	2023/04/04	101	%	N/A
		235-TriCB-(23)	2023/04/04	90	%	N/A
		236-TriCB-(24)	2023/04/04	81	%	N/A
		23'4-TriCB-(25)	2023/04/04	102	%	N/A
		TriCB-(26)+(29)	2023/04/04	91	%	N/A
		23'6-TriCB-(27)	2023/04/04	60	%	N/A
		24'5-TriCB-(31)	2023/04/04	94	%	N/A
		24'6-TriCB-(32)	2023/04/04	72	%	N/A
		23'5'-TriCB-(34)	2023/04/04	89	%	N/A
		33'4-TriCB-(35)	2023/04/04	115	%	N/A
		33'5-TriCB-(36)	2023/04/04	106	%	N/A
		344'-TriCB-(37)	2023/04/04	107	%	60 - 145
		345-TriCB-(38)	2023/04/04	109	%	N/A
		34'5-TriCB-(39)	2023/04/04	119	%	N/A
		TetraCB-(40)+(41)+(71)	2023/04/04	83	%	N/A
		22'34'-TetraCB-(42)	2023/04/04	94	%	N/A
		22'35-TetraCB-(43)	2023/04/04	84	%	N/A
		TetraCB-(44)+(47)+(65)	2023/04/04	83	%	N/A
		TetraCB-(45)+(51)	2023/04/04	69	%	N/A
		22'36'-TetraCB-(46)	2023/04/04	71	%	N/A
		22'45-TetraCB-(48)	2023/04/04	78	%	N/A
		TetraCB-(49)+TetraCB-(69)	2023/04/04	77	%	N/A
		TetraCB-(50)+(53)	2023/04/04	68	%	N/A

Apex Laboratories Client Project #: A3B0217

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
<u> </u>		ασ., γρο	22'55'-TetraCB-(52)	2023/04/04	74.40	80	%	N/A
			22'66'-TetraCB-(54)	2023/04/04		115	%	60 - 145
			233'4-TetraCB-(55)	2023/04/04		94	%	N/A
			233'4'-Tetra CB(56)	2023/04/04		97	%	N/A
			233'5-TetraCB-(57)	2023/04/04		86	%	N/A
			233'5'-TetraCB-(58)	2023/04/04		88	%	N/A
			TetraCB-(59)+(62)+(75)	2023/04/04		78	%	N/A
			2344'-TetraCB -(60)	2023/04/04		95	%	N/A
			TetraCB-(61)+(70)+(74)+(76)	2023/04/04		95	%	N/A
			234'5-TetraCB-(63)	2023/04/04		92	%	N/A
			234'6-TetraCB-(64)	2023/04/04		92	%	N/A
			23'44'-TetraCB-(66)	2023/04/04		96	%	N/A
			23'45-TetraCB-(67)	2023/04/04		89	%	N/A
			23'45'-TetraCB-(68)	2023/04/04		89	%	N/A
			23'55'-TetraCB-(72)	2023/04/04		84	%	N/A
			23'5'6-TetraCB-(73)	2023/04/04		69	%	N/A
			33'44'-TetraCB-(77)	2023/04/04		94	%	60 - 145
			33'45-TetraCB-(78)	2023/04/04		114	%	N/A
			33'45'-TetraCB(79)	2023/04/04		103	%	N/A
			33'55'-TetraCB-(80)	2023/04/04		92	%	N/A
			344'5-TetraCB-(81)	2023/04/04		99	%	60 - 145
			22'33'4-PentaCB-(82)	2023/04/04		104	%	N/A
			PentaCB-(83)+(99)	2023/04/04		91	%	N/A
			22'33'6-PentaCB-(84)	2023/04/04		83	%	N/A
			PentaCB-(85)+(116)+(117)	2023/04/04		88	%	N/A
			PentaCB-(86)(87)(97)(109)(119)(125)	2023/04/04		87	%	N/A
			PentaCB-(88)+(91)	2023/04/04		84	%	N/A
			22'346'-PentaCB-(89)	2023/04/04		98	%	N/A
			PentaCB-(90)+(101)+(113)	2023/04/04		88	%	N/A
			22'355'-PentaCB-(92)	2023/04/04		97	%	N/A
			PentaCB-(93)+(98)+(100)+(102)	2023/04/04		78	%	N/A
			22'356'-PentaCB-(94)	2023/04/04		77	%	N/A
			22'35'6-PentaCB-(95)	2023/04/04		94	%	N/A
			22'366'-PentaCB-(96)	2023/04/04		83	%	N/A
			22'45'6-PentaCB-(103)	2023/04/04		84	%	N/A
			22'466'-PentaCB-(104)	2023/04/04		100	%	60 - 145
			233'44'-PentaCB-(105)	2023/04/04		106	%	60 - 145
			233'45-PentaCB-(106)	2023/04/04		111	%	N/A
			233'4'5-PentaCB-(107)	2023/04/04		91	%	N/A
			PentaCB-(108)+(124)	2023/04/04		98	%	N/A
			PentaCB-(110)+(115)	2023/04/04		99	%	N/A
			233'55'-PentaCB-(111)	2023/04/04		92	%	N/A
			233'56-PentaCB-(112)	2023/04/04		94	%	N/A
			2344'5-PentaCB-(114)	2023/04/04		104	%	60 - 145
			23'44'5-PentaCB-(114)	2023/04/04		97	% %	60 - 145
			23'455'-PentaCB-(120)	2023/04/04		100	% %	N/A
			23'45'6-PentaCB-(121)	2023/04/04		83	% %	N/A N/A
			233'4'5'-PentaCB-(122)	2023/04/04		125	% %	N/A N/A
			23'44'5'-PentaCB-(122)	2023/04/04		101	% %	60 - 145
			, ,					60 - 145
			33'44'5-PentaCB-(126)	2023/04/04		98 107	% %	
			33'455'-PentaCB-(127)	2023/04/04		107	%	N/A
			HexaCB-(128)+(166)	2023/04/04		92	%	N/A
			HexaCB-(129)+(138)+(163)	2023/04/04		98	%	N/A

Apex Laboratories Client Project #: A3B0217

QA/QC							
Batch	Init QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		22'33'45'-HexaCB-(130)	2023/04/04		91	%	N/A
		22'33'46-HexaCB-(131)	2023/04/04		105	%	N/A
		22'33'46'-HexaCB-(132)	2023/04/04		89	%	N/A
		22'33'55'-HexaCB-(133)	2023/04/04		93	%	N/A
		HexaCB-(134)+(143)	2023/04/04		94	%	N/A
		HexaCB-(135)+(151)	2023/04/04		89	%	N/A
		22'33'66'-HexaCB-(136)	2023/04/04		84	%	N/A
		22'344'5-HexaCB-(137)	2023/04/04		86	%	N/A
		HexaCB-(139)+(140)	2023/04/04		86	%	N/A
		22'3455'-HexaCB-(141)	2023/04/04		94	%	N/A
		22'3456-HexaCB-(142)	2023/04/04		94	%	N/A
		22'345'6-HexaCB-(144)	2023/04/04		96	%	N/A
		22'3466'-HexaCB-(145)	2023/04/04		82	%	N/A
		22'34'55'-HexaCB-(146)	2023/04/04		90	%	N/A
		HexaCB-(147)+(149)	2023/04/04		87	%	N/A
		22'34'56'-HexaCB-(148)	2023/04/04		86	%	N/A
		22'34'66'-HexaCB-(150)	2023/04/04		80	%	N/A
		22'3566'-HexaCB-(152)	2023/04/04		82	%	N/A
		HexaCB-(153)+(168)	2023/04/04		87	%	N/A
		22'44'56'-HexaCB-(154)	2023/04/04		85	%	N/A
		22'44'66'-HexaCB-(155)	2023/04/04		98	%	60 - 145
		HexaCB-(156)+(157)	2023/04/04		101	%	N/A
		233'44'6-HexaCB-(158)	2023/04/04		93	%	N/A
		233'455'-HexaCB-(159)	2023/04/04		91	%	N/A
		233'456-HexaCB-(160)	2023/04/04		97	%	N/A
		233'45'6-HexaCB-(161)	2023/04/04		88	%	N/A
		233'4'55'-HexaCB-(162)	2023/04/04		93	%	N/A
		233'4'5'6-HexaCB-(164)	2023/04/04		95	%	N/A
		233'55'6-HexaCB-(165)	2023/04/04		89	%	N/A
		23'44'55'-HexaCB-(167)	2023/04/04		105	%	60 - 145
		33'44'55'-HexaCB-(169)	2023/04/04		103	%	60 - 145
		22'33'44'5-HeptaCB-(170)	2023/04/04		87	%	60 - 145
		HeptaCB-(171)+(173)	2023/04/04		93	%	N/A
		22'33'455'-HeptaCB-(172)	2023/04/04		94	%	N/A
		22'33'456'-HeptaCB-(174)	2023/04/04		94	%	N/A
		22'33'45'6-HeptaCB-(175)	2023/04/04		86	%	N/A
		22'33'466'-HeptaCB-(176)	2023/04/04		84	%	N/A
		22'33'45'6'-HeptaCB-(177)	2023/04/04		90	%	N/A
		22'33'55'6-HeptaCB-(178)	2023/04/04		88	%	N/A
		22'33'566'-HeptaCB-(179)	2023/04/04		88	%	N/A
		HeptaCB-(180)+(193)	2023/04/04		99	%	N/A
		22'344'56-HeptaCB-(181)	2023/04/04		93	%	N/A
		22'344'56'-HeptaCB-(182)	2023/04/04		89	%	N/A
		22'344'5'6-HeptaCB-(183)	2023/04/04		92	%	N/A
		22'344'66'-HeptaCB-(184)	2023/04/04		82	%	N/A
		22'3455'6-HeptaCB-(185)	2023/04/04		87	%	N/A
		22'34566'-HeptaCB-(186)	2023/04/04		87	%	N/A
		22'34'55'6-HeptaCB-(187)	2023/04/04		90	%	N/A
		22'34'566'-HeptaCB-(188)	2023/04/04		100	%	60 - 145
		233'44'55'-HeptaCB-(189)	2023/04/04		100	%	60 - 145
		233'44'56-HeptaCB-(190)	2023/04/04		91	%	N/A
		233'44'5'6-HeptaCB-(191)	2023/04/04		92	%	N/A
		233'455'6-HeptaCB-(192)	2023/04/04		94	%	N/A

Apex Laboratories Client Project #: A3B0217

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			22'33'44'55'-OctaCB-(194)	2023/04/04		100	%	N/A
			22'33'44'56-OctaCB-(195)	2023/04/04		103	%	N/A
			22'33'44'56'-OctaCB-(196)	2023/04/04		97	%	N/A
			22'33'44'66'OctaCB-(197)	2023/04/04		91	%	N/A
			OctaCB-(198)+(199)	2023/04/04		98	%	N/A
			22'33'4566'-OctaCB-(200)	2023/04/04		100	%	N/A
			22'33'45'66'-OctaCB-(201)	2023/04/04		89	%	N/A
			22'33'55'66'-OctaCB-(202)	2023/04/04		92	%	60 - 145
			22'344'55'6-OctaCB-(203)	2023/04/04		101	%	N/A
			22'344'566'-OctaCB-(204)	2023/04/04		87	%	N/A
			233'44'55'6-OctaCB-(205)	2023/04/04		92	%	60 - 145
			22'33'44'55'6-NonaCB-(206)	2023/04/04		91	%	60 - 145
			22'33'44'566'-NonaCB-(207)	2023/04/04		86	%	N/A
			22'33'455'66'-NonaCB-(208)	2023/04/04		93	%	60 - 145
			DecaCB-(209)	2023/04/04		108	%	60 - 145
8533813	CXU	Spiked Blank DUP	C13-2,44'-TriCB-(28)	2023/04/04		82	%	30 - 170
			C13-22'33'44'55'6-NonaCB-(206)	2023/04/04		100	%	40 - 145
			C13-22'33'44'5-HeptaCB-(170)	2023/04/04		106	%	40 - 145
			C13-22'33'455'66'-NonaCB-(208)	2023/04/04		95	%	40 - 145
			C13-22'33'55'66'-OctaCB-(202)	2023/04/04		91	%	40 - 145
			C13-22'33'55'6-HeptaCB-(178)	2023/04/04		83	%	40 - 145
			C13-22'344'55'-HeptaCB-(180)	2023/04/04		102	%	40 - 145
			C13-22'34'566'-HeptaCB-(188)	2023/04/04		71	%	40 - 145
			C13-22'44'66'-HexaCB-(155)	2023/04/04		56	%	40 - 145
			C13-22'466'-PentaCB-(104)	2023/04/04		66	%	40 - 145
			C13-22'66'-TetraCB-(54)	2023/04/04		41	%	15 - 145
			C13-22'6-TriCB-(19)	2023/04/04		52	%	40 - 145
			C13-22'-DiCB-(4)	2023/04/04		37	%	15 - 145
			C13-233'44'55'6-OctaCB-(205)	2023/04/04		107	%	40 - 145
			C13-233'44'55'-HeptaCB-(189)	2023/04/04		111	%	40 - 145
			C13-233'44'-PentaCB-(105)	2023/04/04		125 (1)	%	40 - 145
			C13-233'55'-PentaCB-(111)	2023/04/04		92	%	30 - 170
			C13-23'44'55'-HexaCB-(167)	2023/04/04		101	%	40 - 145
			C13-2344'5-PentaCB-(114)	2023/04/04		115	%	40 - 145
			C13-23'44'5-PentaCB-(118)	2023/04/04		116	%	40 - 145
			C13-2'344'5-PentaCB-(123)	2023/04/04		118	%	40 - 145
			C13-2-MonoCB-(1)	2023/04/04		39	%	15 - 145
			C13-33'44'55'-HexaCB-(169)	2023/04/04		112	%	40 - 145
			C13-33'44'5-PentaCB-(126)	2023/04/04		134 (1)	%	40 - 145
			C13-33'44'-TetraCB-(77)	2023/04/04		113	%	40 - 145
			C13-344'5-TetraCB-(77)	2023/04/04		110	%	40 - 145
			` '	2023/04/04		96		40 - 145
			C13-344'-TriCB-(37)	2023/04/04		96 75	%	
			C13-44'-DiCB-(15)	• •			%	15 - 145
			C13-4-MonoCB-(3)	2023/04/04		49 (1)	%	15 - 145
			C13-DecaCB-(209)	2023/04/04		85	%	40 - 145
			C13-HexaCB-(156)+(157)	2023/04/04		103	%	40 - 145
			2-MonoCB-(1)	2023/04/04		107	%	60 - 145
			3-MonoCB-(2)	2023/04/04		116	%	N/A
			4-MonoCB-(3)	2023/04/04		106	%	60 - 145
			22'-DiCB-(4)	2023/04/04		109	%	60 - 145
			2,3-DiCB-(5)	2023/04/04		96	%	N/A
			2,3'-DiCB-(6)	2023/04/04		95	%	N/A
			2,4-DiCB-(7)	2023/04/04		90	%	N/A

Apex Laboratories Client Project #: A3B0217

			•					
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			2,4'-DiCB-(8)	2023/04/04		55	%	N/A
			2,5-DiCB-(9)	2023/04/04		94	%	N/A
			2,6-DiCB-(10)	2023/04/04		72	%	N/A
			3,3'-DiCB-(11)	2023/04/04		127	%	N/A
			DiCB-(12)+(13)	2023/04/04		102	%	N/A
			3,5-DiCB-(14)	2023/04/04		106	%	N/A
			4,4'-DiCB-(15)	2023/04/04		111	%	60 - 145
			22'3-TriCB-(16)	2023/04/04		77	%	N/A
			22'4-TriCB-(17)	2023/04/04		71	%	N/A
			TriCB-(18)+(30)	2023/04/04		61	%	N/A
			22'6-TriCB-(19)	2023/04/04		102	%	60 - 145
			TriCB-(20) + (28)	2023/04/04		97	%	N/A
			TriCB-(21)+(33)	2023/04/04		102	%	N/A
			234'-TriCB-(22)	2023/04/04		101	%	N/A
			235-TriCB-(23)	2023/04/04		93	%	N/A
			236-TriCB-(24)	2023/04/04		75	%	N/A
			23'4-TriCB-(25)	2023/04/04		106	%	N/A
			TriCB-(26)+(29)	2023/04/04		92	%	N/A
			23'6-TriCB-(27)	2023/04/04		66	%	N/A
			24'5-TriCB-(31)	2023/04/04		97	%	N/A
			24'6-TriCB-(32)	2023/04/04		74	%	N/A
			23'5'-TriCB-(34)	2023/04/04		90	%	N/A
			33'4-TriCB-(35)	2023/04/04		117	%	N/A
			33'5-TriCB-(36)	2023/04/04		106	%	N/A
			344'-TriCB-(37)	2023/04/04		109	%	60 - 145
			345-TriCB-(38)	2023/04/04		112	%	N/A
			34'5-TriCB-(39)	2023/04/04		120	%	N/A
			TetraCB-(40)+(41)+(71)	2023/04/04		86	%	N/A
			22'34'-TetraCB-(42)	2023/04/04		97	%	N/A
			22'35-TetraCB-(43)	2023/04/04		90	%	N/A
			TetraCB-(44)+(47)+(65)	2023/04/04		87	%	N/A
			TetraCB-(45)+(51)	2023/04/04		73	%	N/A
			22'36'-TetraCB-(46)	2023/04/04		73	%	N/A
			22'45-TetraCB-(48)	2023/04/04		82	%	N/A
			TetraCB-(49)+TetraCB-(69)	2023/04/04		80	%	N/A
			TetraCB-(50)+(53)	2023/04/04		72	%	N/A
			22'55'-TetraCB-(52)	2023/04/04		87	%	N/A
			22'66'-TetraCB-(54)	2023/04/04		116	%	60 - 145
			233'4-TetraCB-(55)	2023/04/04		97	%	N/A
			233'4'-Tetra CB(56)	2023/04/04		99	% %	N/A N/A
			233'5-TetraCB-(57)	2023/04/04		90	% %	N/A N/A
			233'5'-TetraCB-(58)	2023/04/04		90	% %	N/A N/A
				2023/04/04		83	%	N/A
			TetraCB-(59)+(62)+(75) 2344'-TetraCB -(60)	2023/04/04		98	% %	N/A N/A
			TetraCB-(61)+(70)+(74)+(76)	2023/04/04		99	% %	N/A N/A
						99 96		
			234'5-TetraCB-(63) 234'6-TetraCB-(64)	2023/04/04 2023/04/04		96 96	% %	N/A N/A
				2023/04/04		96 98		
			23'44'-TetraCB-(66)			98 91	% «	N/A
			23'45-TetraCB-(67)	2023/04/04			% «	N/A
			23'45'-TetraCB-(68)	2023/04/04		91 80	%	N/A
			23'55'-TetraCB-(72)	2023/04/04		89	%	N/A
			23'5'6-TetraCB-(73)	2023/04/04		71	%	N/A
			33'44'-TetraCB-(77)	2023/04/04		98	%	60 - 145

Apex Laboratories Client Project #: A3B0217

QA/QC Batch Init QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
* 71	33'45-TetraCB-(78)	2023/04/04		116	%	N/A
	33'45'-TetraCB(79)	2023/04/04		105	%	N/A
	33'55'-TetraCB-(80)	2023/04/04		95	%	N/A
	344'5-TetraCB-(81)	2023/04/04		100	%	60 - 145
	22'33'4-PentaCB-(82)	2023/04/04		108	%	N/A
	PentaCB-(83)+(99)	2023/04/04		96	%	N/A
	22'33'6-PentaCB-(84)	2023/04/04		87	%	N/A
	PentaCB-(85)+(116)+(117)	2023/04/04		93	%	N/A
	PentaCB-(86)(87)(97)(109)(119)(125)	2023/04/04		92	%	N/A
	PentaCB-(88)+(91)	2023/04/04		89	%	N/A
	22'346'-PentaCB-(89)	2023/04/04		103	%	N/A
	PentaCB-(90)+(101)+(113)	2023/04/04		93	%	N/A
	22'355'-PentaCB-(92)	2023/04/04		101	%	N/A
	PentaCB-(93)+(98)+(100)+(102)	2023/04/04		82	%	N/A
	22'356'-PentaCB-(94)	2023/04/04		80	%	N/A
	22'35'6-PentaCB-(95)	2023/04/04		103	%	N/A
	22'366'-PentaCB-(96)	2023/04/04		88	%	N/A
	22'45'6-PentaCB-(103)	2023/04/04		88	%	N/A
	22'466'-PentaCB-(104)	2023/04/04		102	%	60 - 145
	233'44'-PentaCB-(105)	2023/04/04		105	%	60 - 145
	233'45-PentaCB-(106)	2023/04/04		112	%	N/A
	233'4'5-PentaCB-(107)	2023/04/04		96	%	N/A
	PentaCB-(108)+(124)	2023/04/04		101	%	N/A
	PentaCB-(110)+(115)	2023/04/04		104	%	N/A
	233'55'-PentaCB-(111)	2023/04/04		96	%	N/A
	233'56-PentaCB-(112)	2023/04/04		97	%	N/A
	2344'5-PentaCB-(114)	2023/04/04		106	%	60 - 14
	23'44'5-PentaCB-(118)	2023/04/04		103	%	60 - 14
	23'455'-PentaCB-(120)	2023/04/04		105	%	N/A
	23'45'6-PentaCB-(121)	2023/04/04		88	%	N/A
	233'4'5'-PentaCB-(122)	2023/04/04		128	%	N/A
	23'44'5'-PentaCB-(123)	2023/04/04		104	%	60 - 14
	33'44'5-PentaCB-(126)	2023/04/04		100	%	60 - 14
	33'455'-PentaCB-(127)	2023/04/04		109	%	N/A
	HexaCB-(128)+(166)	2023/04/04		97	%	N/A
	HexaCB-(129)+(138)+(163)	2023/04/04		103	%	N/A
	22'33'45'-HexaCB-(130)	2023/04/04		93	%	N/A
	22'33'46-HexaCB-(131)	2023/04/04		108	%	N/A
	22'33'46'-HexaCB-(132)	2023/04/04		92	%	N/A
	22'33'40 -HexaCB-(132)	2023/04/04		96	%	N/A
	HexaCB-(134)+(143)	2023/04/04		99	% %	
	HexaCB-(135)+(151)			94		N/A
	22'33'66'-HexaCB-(136)	2023/04/04 2023/04/04		92	% %	N/A N/A
	` ,			92 85		
	22'344'5-HexaCB-(137)	2023/04/04			%	N/A
	HexaCB-(139)+(140)	2023/04/04		90	%	N/A
	22'3455'-HexaCB-(141)	2023/04/04		98 06	%	N/A
	22'3456-HexaCB-(142)	2023/04/04		96 07	%	N/A
	22'345'6-HexaCB-(144)	2023/04/04		97	%	N/A
	22'3466'-HexaCB-(145)	2023/04/04		86	%	N/A
	22'34'55'-HexaCB-(146)	2023/04/04		93	%	N/A
	HexaCB-(147)+(149)	2023/04/04		91	%	N/A
	22'34'56'-HexaCB-(148)	2023/04/04		93	%	N/A
	22'34'66'-HexaCB-(150)	2023/04/04		84	%	N/A

Apex Laboratories Client Project #: A3B0217

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			22'3566'-HexaCB-(152)	2023/04/04		87	%	N/A
			HexaCB-(153)+(168)	2023/04/04		91	%	N/A
			22'44'56'-HexaCB-(154)	2023/04/04		89	%	N/A
			22'44'66'-HexaCB-(155)	2023/04/04		103	%	60 - 145
			HexaCB-(156)+(157)	2023/04/04		105	%	N/A
			233'44'6-HexaCB-(158)	2023/04/04		96	%	N/A
			233'455'-HexaCB-(159)	2023/04/04		95	%	N/A
			233'456-HexaCB-(160)	2023/04/04		99	%	N/A
			233'45'6-HexaCB-(161)	2023/04/04		92	%	N/A
			233'4'55'-HexaCB-(162)	2023/04/04		97	%	N/A
			233'4'5'6-HexaCB-(164)	2023/04/04		104	%	N/A
			233'55'6-HexaCB-(165)	2023/04/04		91	%	N/A
			23'44'55'-HexaCB-(167)	2023/04/04		107	%	60 - 145
			33'44'55'-HexaCB-(169)	2023/04/04		106	%	60 - 145
			22'33'44'5-HeptaCB-(170)	2023/04/04		88	%	60 - 145
			HeptaCB-(171)+(173)	2023/04/04		96	%	N/A
			22'33'455'-HeptaCB-(172)	2023/04/04		98	%	N/A
			22'33'456'-HeptaCB-(174)	2023/04/04		96	%	N/A
			22'33'45'6-HeptaCB-(175)	2023/04/04		93	%	N/A
			22'33'466'-HeptaCB-(176)	2023/04/04		90	%	N/A
			22'33'45'6'-HeptaCB-(177)	2023/04/04		93	%	N/A
			22'33'55'6-HeptaCB-(178)	2023/04/04		93	%	N/A
			22'33'566'-HeptaCB-(179)	2023/04/04		94	%	N/A
			HeptaCB-(180)+(193)	2023/04/04		103	%	N/A
			22'344'56-HeptaCB-(181)	2023/04/04		96	%	N/A
			22'344'56'-HeptaCB-(182)	2023/04/04		97	%	N/A
			22'344'5'6-HeptaCB-(183)	2023/04/04		88	%	N/A
			22'344'66'-HeptaCB-(184)	2023/04/04		86	%	N/A
			22'3455'6-HeptaCB-(185)	2023/04/04		103	%	N/A
			22'34566'-HeptaCB-(186)	2023/04/04		91	%	N/A
			22'34'55'6-HeptaCB-(187)	2023/04/04		96	%	N/A
			22'34'566'-HeptaCB-(188)	2023/04/04		103	%	60 - 145
			233'44'55'-HeptaCB-(189)	2023/04/04		104	%	60 - 145
			233'44'56-HeptaCB-(190)	2023/04/04		95	%	N/A
			233'44'5'6-HeptaCB-(191)	2023/04/04		95	%	N/A
			233'455'6-HeptaCB-(192)	2023/04/04		99	%	N/A
			22'33'44'55'-OctaCB-(194)	2023/04/04		101	%	N/A
			22'33'44'56-OctaCB-(195)	2023/04/04		102	%	N/A
			22'33'44'56'-OctaCB-(196)	2023/04/04		99	%	N/A
			22'33'44'66'OctaCB-(197)	2023/04/04		94	%	N/A
			OctaCB-(198)+(199)	2023/04/04		100	%	N/A
			22'33'4566'-OctaCB-(200)	2023/04/04		104	%	N/A
			22'33'45'66'-OctaCB-(201)	2023/04/04		92	%	N/A
			22'33'55'66'-OctaCB-(202)	2023/04/04		95	%	60 - 145
			22'344'55'6-OctaCB-(203)	2023/04/04		103	%	N/A
			22'344'566'-OctaCB-(204)	2023/04/04		91	%	N/A
			233'44'55'6-OctaCB-(205)	2023/04/04		93	%	60 - 145
			22'33'44'55'6-NonaCB-(206)	2023/04/04		93	%	60 - 145
			22'33'44'566'-NonaCB-(200)	2023/04/04		90	%	N/A
			22'33'455'66'-NonaCB-(208)	2023/04/04		90 97	% %	60 - 145
			DecaCB-(209)	2023/04/04		115	% %	60 - 145
0500040	CXU	RPD	2-MonoCB-(1)	2023/04/04	1.0	113	% %	30
8533813				ZUZ3/U4/U4			/0	30

Apex Laboratories Client Project #: A3B0217

QA/QC Batch	Init QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
Daten	ппс детуре	4-MonoCB-(3)	2023/04/04	0.85	70 NECOVELY	%	30
		22'-DiCB-(4)	2023/04/04	4.4		%	30
		2,3-DiCB-(5)	2023/04/04	3.6		%	30
		2,3'-DiCB-(6)	2023/04/04	0		%	30
		2,4-DiCB-(7)	2023/04/04	1.0		%	30
		2,4'-DiCB-(8)	2023/04/04	3.7		%	30
		2,5-DiCB-(9)	2023/04/04	2.3		%	30
		2,6-DiCB-(10)	2023/04/04	2.0		%	30
		3,3'-DiCB-(11)	2023/04/04	1.0		%	30
		DiCB-(12)+(13)	2023/04/04	0.29		%	30
		3,5-DiCB-(14)	2023/04/04	0.38		%	30
		4,4'-DiCB-(15)	2023/04/04	1.2		%	30
		22'3-TriCB-(16)	2023/04/04	9.8		%	30
		22'4-TriCB-(17)	2023/04/04	4.0		%	30
		TriCB-(18)+(30)	2023/04/04	2.5		%	30
		22'6-TriCB-(19)	2023/04/04	2.5		%	30
		TriCB-(20) + (28)	2023/04/04	4.3		%	30
		TriCB-(20) + (28)	2023/04/04	4.5 1.7		%	30
		234'-TriCB-(22)	2023/04/04	0.099		%	30
		235-TriCB-(22)	2023/04/04	3.2		%	30
		236-TriCB-(24)	2023/04/04	5.2 7.4		% %	30
		23'4-TriCB-(25)	2023/04/04	3.3		% %	30
						%	30
		TriCB-(26)+(29)	2023/04/04	1.4 9.2			
		23'6-TriCB-(27)	2023/04/04			%	30
		24'5-TriCB-(31)	2023/04/04	3.2		% %	30 30
		24'6-TriCB-(32)	2023/04/04	2.3			
		23'5'-TriCB-(34)	2023/04/04	1.7		%	30
		33'4-TriCB-(35)	2023/04/04	1.5		%	30
		33'5-TriCB-(36)	2023/04/04	0		%	30
		344'-TriCB-(37)	2023/04/04	2.1		%	30
		345-TriCB-(38)	2023/04/04	2.4		%	30
		34'5-TriCB-(39)	2023/04/04	1.1		%	30
		TetraCB-(40)+(41)+(71)	2023/04/04	4.3		%	30
		22'34'-TetraCB-(42)	2023/04/04	2.5		%	30
		22'35-TetraCB-(43)	2023/04/04	6.9		%	30
		TetraCB-(44)+(47)+(65)	2023/04/04	4.6		%	30
		TetraCB-(45)+(51)	2023/04/04	5.5		%	30
		22'36'-TetraCB-(46)	2023/04/04	3.7		%	30
		22'45-TetraCB-(48)	2023/04/04	5.1		%	30
		TetraCB-(49)+TetraCB-(69)	2023/04/04	4.3		%	30
		TetraCB-(50)+(53)	2023/04/04	6.2		%	30
		22'55'-TetraCB-(52)	2023/04/04	7.4		%	30
		22'66'-TetraCB-(54)	2023/04/04	1.3		%	30
		233'4-TetraCB-(55)	2023/04/04	3.1		%	30
		233'4'-Tetra CB(56)	2023/04/04	2.0		%	30
		233'5-TetraCB-(57)	2023/04/04	4.1		%	30
		233'5'-TetraCB-(58)	2023/04/04	3.5		%	30
		TetraCB-(59)+(62)+(75)	2023/04/04	6.1		%	30
		2344'-TetraCB -(60)	2023/04/04	2.9		%	30
		TetraCB-(61)+(70)+(74)+(76)	2023/04/04	4.1		%	30
		234'5-TetraCB-(63)	2023/04/04	4.2		%	30
		234'6-TetraCB-(64)	2023/04/04	4.5		%	30
		23'44'-TetraCB-(66)	2023/04/04	1.8		%	30

Apex Laboratories Client Project #: A3B0217

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch Init QC Ty	pe Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
	23'45-TetraCB-(67)	2023/04/04	1.6	, , , , , , , , , , , , , , , , , , , ,	%	30
	23'45'-TetraCB-(68)	2023/04/04	2.8		%	30
	23'55'-TetraCB-(72)	2023/04/04	5.7		%	30
	23'5'6-TetraCB-(73)	2023/04/04	3.7		%	30
	33'44'-TetraCB-(77)	2023/04/04	3.3		%	30
	33'45-TetraCB-(78)	2023/04/04	1.7		%	30
	33'45'-TetraCB(79)	2023/04/04	2.8		%	30
	33'55'-TetraCB-(80)	2023/04/04	3.5		%	30
	344'5-TetraCB-(81)	2023/04/04	1.8		%	30
	22'33'4-PentaCB-(82)	2023/04/04	3.5		%	30
	PentaCB-(83)+(99)	2023/04/04	5.9		%	30
	22'33'6-PentaCB-(84)	2023/04/04	4.5		%	30
	PentaCB-(85)+(116)+(117)	2023/04/04	5.1		%	30
	PentaCB-(86)(87)(97)(109)(119)(12		5.0		%	30
	PentaCB-(88)+(91)	2023/04/04	6.0		%	30
	22'346'-PentaCB-(89)	2023/04/04	5.1		%	30
	PentaCB-(90)+(101)+(113)	2023/04/04	5.0		%	30
	22'355'-PentaCB-(92)	2023/04/04	3.6		%	30
	PentaCB-(93)+(98)+(100)+(102)	2023/04/04	5.5		%	30
	22'356'-PentaCB-(94)	2023/04/04	3.7		%	30
	22'35'6-PentaCB-(95)	2023/04/04	8.8		%	30
	22'366'-PentaCB-(96)	2023/04/04	6.0		%	30
	22'45'6-PentaCB-(103)	2023/04/04	4.9		%	30
	22'466'-PentaCB-(104)	2023/04/04	1.6		%	30
	233'44'-PentaCB-(105)	2023/04/04	0.66		%	30
	233'45-PentaCB-(106)	2023/04/04	1.5		%	30
	233'4'5-PentaCB-(107)	2023/04/04	4.9		%	30
	PentaCB-(108)+(124)	2023/04/04	3.1		%	30
	PentaCB-(110)+(115)	2023/04/04	5.0		%	30
	233'55'-PentaCB-(111)	2023/04/04	4.0		%	30
	233'56-PentaCB-(111)	2023/04/04	4.0		%	30
	2344'5-PentaCB-(114)	2023/04/04	2.1		%	30
	23'44'5-PentaCB-(114)	2023/04/04	6.1		%	30
	23'455'-PentaCB-(120)	2023/04/04	5.4		%	30
	23'45'6-PentaCB-(121)	2023/04/04	6.6		%	30
	233'4'5'-PentaCB-(122)	2023/04/04	2.0		%	30
	233 4 5 - Peritacb-(122) 23'44'5'-PentaCB-(123)	2023/04/04	3.4		%	30
	33'44'5-PentaCB-(126)	2023/04/04	2.3		% %	30
	33'455'-PentaCB-(127)	2023/04/04	1.5		% %	30
	HexaCB-(128)+(166)	2023/04/04	6.0			30
	HexaCB-(129)+(138)+(163)	2023/04/04	5.1		%	30
	22'33'45'-HexaCB-(130)	2023/04/04	2.4		%	30
	22'33'46-HexaCB-(131)	2023/04/04	2.8		%	30
	22'33'46'-HexaCB-(132)	2023/04/04	3.3		%	30
	22'33'55'-HexaCB-(133)	2023/04/04	2.7		%	30
	HexaCB-(134)+(143)	2023/04/04	4.9		%	30
	HexaCB-(135)+(151)	2023/04/04	5.0		%	30
	22'33'66'-HexaCB-(136)	2023/04/04	8.6		%	30
	22'344'5-HexaCB-(137)	2023/04/04	0.47		%	30
	HexaCB-(139)+(140)	2023/04/04	4.0		%	30
	22'3455'-HexaCB-(141)	2023/04/04	4.7		%	30
	22'3456-HexaCB-(142)	2023/04/04	2.2		%	30
	22'345'6-HexaCB-(144)	2023/04/04	1.8		%	30

590

Apex Laboratories Client Project #: A3B0217

QA/QC Batch Init QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
	22'3466'-HexaCB-(145)	2023/04/04	4.7	70 NCCOVCI Y	%	30
	22'34'55'-HexaCB-(146)	2023/04/04	3.7		%	30
	HexaCB-(147)+(149)	2023/04/04	5.2		%	30
	22'34'56'-HexaCB-(148)	2023/04/04	7.8		%	30
	22'34'66'-HexaCB-(150)	2023/04/04	4.1		%	30
	22'3566'-HexaCB-(152)	2023/04/04	6.5		%	30
	HexaCB-(153)+(168)	2023/04/04	4.8		%	30
	22'44'56'-HexaCB-(154)	2023/04/04	5.4		%	30
	22'44'66'-HexaCB-(155)	2023/04/04	5.3		%	30
	HexaCB-(156)+(157)	2023/04/04	3.4		%	30
	233'44'6-HexaCB-(158)	2023/04/04	3.6		%	30
	233'455'-HexaCB-(159)	2023/04/04	4.4		%	30
	233'456-HexaCB-(160)	2023/04/04	2.2		%	30
	233'45'6-HexaCB-(161)	2023/04/04	4.2		%	30
	233'4'55'-HexaCB-(162)	2023/04/04	4.3		%	30
	233'4'5'6-HexaCB-(164)	2023/04/04	9.2		%	30
	233'55'6-HexaCB-(165)	2023/04/04	2.3		%	30
	23'44'55'-HexaCB-(167)	2023/04/04	1.2		%	30
	33'44'55'-HexaCB-(169)	2023/04/04	2.3		%	30
	22'33'44'5-HeptaCB-(170)	2023/04/04	1.4		%	30
	HeptaCB-(171)+(173)	2023/04/04	3.9		%	30
	22'33'455'-HeptaCB-(172)	2023/04/04	4.6		%	30
	22'33'456'-HeptaCB-(174)	2023/04/04	1.9		%	30
	22'33'45'6-HeptaCB-(175)	2023/04/04	7.6		%	30
	22'33'466'-HeptaCB-(176)	2023/04/04	7.6		%	30
	22'33'45'6'-HeptaCB-(177)	2023/04/04	3.2		%	30
	22'33'55'6-HeptaCB-(178)	2023/04/04	5.2		%	30
	22'33'566'-HeptaCB-(179)	2023/04/04	6.6		%	30
	HeptaCB-(180)+(193)	2023/04/04	3.9		%	30
	22'344'56-HeptaCB-(181)	2023/04/04	3.9		%	30
	22'344'56'-HeptaCB-(182)	2023/04/04	8.6		%	30
	22'344'5'6-HeptaCB-(183)	2023/04/04	4.2		%	30
	22'344'66'-HeptaCB-(184)	2023/04/04	5.0		%	30
	22'3455'6-HeptaCB-(185)	2023/04/04	17		%	30
	22'34566'-HeptaCB-(186)	2023/04/04	4.4		%	30
	22'34'55'6-HeptaCB-(187)	2023/04/04	6.8		%	30
	22'34'566'-HeptaCB-(188)	2023/04/04	3.3		%	30
	233'44'55'-HeptaCB-(189)	2023/04/04	3.4		%	30
	233'44'56-HeptaCB-(190)	2023/04/04	4.3		%	30
	233'44'5'6-HeptaCB-(191)	2023/04/04	3.0		%	30
	233'455'6-HeptaCB-(192)	2023/04/04	5.1		%	30
	22'33'44'55'-OctaCB-(194)	2023/04/04	1.5		%	30
	22'33'44'56-OctaCB-(195)	2023/04/04	0.098		%	30
	22'33'44'56'-OctaCB-(196)	2023/04/04	2.2		%	30
	22'33'44'66'OctaCB-(197)	2023/04/04	2.5		% %	30
	OctaCB-(198)+(199)	2023/04/04	2.5 1.7		% %	30
	22'33'4566'-OctaCB-(200)	2023/04/04	3.6		% %	30 30
	22'33'45'66'-OctaCB-(200)					
	` ,	2023/04/04	2.5		%	30
	22'33'55'66'-OctaCB-(202)	2023/04/04	3.6		%	30
	22'344'55'6-OctaCB-(203)	2023/04/04	2.2		%	30
	22'344'566'-OctaCB-(204)	2023/04/04	3.8		%	30
	233'44'55'6-OctaCB-(205)	2023/04/04	0.86		%	30
	22'33'44'55'6-NonaCB-(206)	2023/04/04	2.2		%	30

Apex Laboratories Client Project #: A3B0217

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			22'33'44'566'-NonaCB-(207)	2023/04/04	4.3		%	30
			22'33'455'66'-NonaCB-(208)	2023/04/04	4.9		%	30
			DecaCB-(209)	2023/04/04	6.0		%	30
3533813	CXU	Method Blank	C13-2,44'-TriCB-(28)	2023/03/03		109	%	30 - 170
			C13-22'33'44'55'6-NonaCB-(206)	2023/03/03		89	%	40 - 145
			C13-22'33'44'5-HeptaCB-(170)	2023/03/03		118	%	40 - 145
			C13-22'33'455'66'-NonaCB-(208)	2023/03/03		94	%	40 - 145
			C13-22'33'55'66'-OctaCB-(202)	2023/03/03		94	%	40 - 145
			C13-22'33'55'6-HeptaCB-(178)	2023/03/03		76	%	40 - 145
			C13-22'344'55'-HeptaCB-(180)	2023/03/03		110	%	40 - 145
			C13-22'34'566'-HeptaCB-(188)	2023/03/03		69	%	40 - 145
			C13-22'44'66'-HexaCB-(155)	2023/03/03		48	%	40 - 145
			C13-22'466'-PentaCB-(104)	2023/03/03		67	%	40 - 145
			C13-22'66'-TetraCB-(54)	2023/03/03		56	%	15 - 145
			C13-22'6-TriCB-(19)	2023/03/03		52	%	40 - 145
			C13-22'-DiCB-(4)	2023/03/03		37	%	15 - 145
			C13-233'44'55'6-OctaCB-(205)	2023/03/03		109	%	40 - 145
			C13-233'44'55'-HeptaCB-(189)	2023/03/03		113	%	40 - 145
			C13-233'44'-PentaCB-(105)	2023/03/03		146 (1)	%	40 - 145
			C13-233'55'-PentaCB-(111)	2023/03/03		98	%	30 - 170
			C13-23'44'55'-HexaCB-(167)	2023/03/03		96	%	40 - 145
		C13-2344'5-PentaCB-(114)	2023/03/03		139	%	40 - 145	
		C13-23'44'5-PentaCB-(118)	2023/03/03		143	%	40 - 14	
		C13-2'344'5-PentaCB-(123)	2023/03/03		143	%	40 - 145	
			C13-2-MonoCB-(1)	2023/03/03		39	%	15 - 145
			C13-33'44'55'-HexaCB-(169)	2023/03/03		101	%	40 - 145
			C13-33'44'5-PentaCB-(126)	2023/03/03		151 (1)	%	40 - 145
			C13-33'44'-TetraCB-(77)	2023/03/03		86	%	40 - 145
			C13-344'5-TetraCB-(81)	2023/03/03		82	%	40 - 145
			C13-344'-TriCB-(37)	2023/03/03		80	%	40 - 145
			C13-44'-DiCB-(15)	2023/03/03		82	%	15 - 145
			C13-4-MonoCB-(3)	2023/03/03		49	%	15 - 14!
			C13-DecaCB-(209)	2023/03/03		69	%	40 - 145
			C13-HexaCB-(156)+(157)	2023/03/03		96	%	40 - 145
			2-MonoCB-(1)	2023/03/03	0.010 U, EDL=0.010		ng/L	
			3-MonoCB-(2)	2023/03/03	0.0087 U, EDL=0.0087		ng/L	
			4-MonoCB-(3)	2023/03/03	0.0083 U, EDL=0.0083		ng/L	
			22'-DiCB-(4)	2023/03/03	0.029 U, EDL=0.029		ng/L	
			2,3-DiCB-(5)	2023/03/03	0.0053 U, EDL=0.0053		ng/L	
		2,3'-DiCB-(6)	2023/03/03	0.0054 U, EDL=0.0054		ng/L		
			2,4-DiCB-(7)	2023/03/03	0.0054 U, EDL=0.0054		ng/L	
			2,4'-DiCB-(8)	2023/03/03	0.0062 J, EDL=0.0051		ng/L	
			2,5-DiCB-(9)	2023/03/03	0.0055 U, EDL=0.0055		ng/L	
			2,6-DiCB-(10)	2023/03/03	0.0097 U, EDL=0.0097		ng/L	

Page 38 of 45

Apex Laboratories Client Project #: A3B0217

QA/QC Batch I	nit QC Type	Parameter	Date Analyzed	Value	% Recovery UNITS	QC Limits
		3,3'-DiCB-(11)	2023/03/03	0.0834 J, EDL=0.0052	ng/L	
		DiCB-(12)+(13)	2023/03/03	0.0051 U, EDL=0.0051	ng/L	
		3,5-DiCB-(14)	2023/03/03	0.0052 U, EDL=0.0052	ng/L	
		4,4'-DiCB-(15)	2023/03/03	0.0110 J, EDL=0.0053	ng/L	
		22'3-TriCB-(16)	2023/03/03	0.0279 J, EDL=0.0081	ng/L	
		22'4-TriCB-(17)	2023/03/03	0.0179 J, EDL=0.0061	ng/L	
		TriCB-(18)+(30)	2023/03/03	0.0176 J, EDL=0.0053	ng/L	
		22'6-TriCB-(19)	2023/03/03	0.0081 U, EDL=0.0081	ng/L	
		TriCB-(20) + (28)	2023/03/03	0.0548, EDL=0.0027	ng/L	
		TriCB-(21)+(33)	2023/03/03	0.0405 J, EDL=0.0029	ng/L	
		234'-TriCB-(22)	2023/03/03	0.0213, EDL=0.0029	ng/L	
		235-TriCB-(23)	2023/03/03	0.0028 U, EDL=0.0028	ng/L	
		236-TriCB-(24)	2023/03/03	0.0048 U, EDL=0.0048	ng/L	
		23'4-TriCB-(25)	2023/03/03	0.0050 U, EDL=0.0050	ng/L	
		TriCB-(26)+(29)	2023/03/03	0.0111 J, EDL=0.0022	ng/L	
		23'6-TriCB-(27)	2023/03/03	0.0046 U, EDL=0.0046	ng/L	
		24'5-TriCB-(31)	2023/03/03	0.0613, EDL=0.0026	ng/L	
		24'6-TriCB-(32)	2023/03/03	0.0157 J, EDL=0.0043	ng/L	
		23'5'-TriCB-(34)	2023/03/03	0.0029 U, EDL=0.0029	ng/L	
		33'4-TriCB-(35)	2023/03/03	0.0030 U, EDL=0.0030	ng/L	
		33'5-TriCB-(36)	2023/03/03	0.0025 U, EDL=0.0025	ng/L	
		344'-TriCB-(37)	2023/03/03	0.0127 J, EDL=0.0031	ng/L	
		345-TriCB-(38)	2023/03/03	0.0029 U, EDL=0.0029	ng/L	
		34'5-TriCB-(39)	2023/03/03	0.0030 U, EDL=0.0030	ng/L	
		TetraCB-(40)+(41)+(71)	2023/03/03	0.029 J, EDL=0.015	ng/L	
		22'34'-TetraCB-(42)	2023/03/03	0.020 U, EDL=0.020	ng/L	
		22'35-TetraCB-(43)	2023/03/03	0.018 U, EDL=0.018	ng/L	

Apex Laboratories Client Project #: A3B0217

QA/QC Batch Init	QC Type	Parameter	Date Analyzed	Value	% Recovery UNITS	QC Limits
		TetraCB-(44)+(47)+(65)	2023/03/03	0.057 U, EDL=0.057 (2)	ng/L	
		TetraCB-(45)+(51)	2023/03/03	0.015 U, EDL=0.015	ng/L	
		22'36'-TetraCB-(46)	2023/03/03	0.017 U, EDL=0.017	ng/L	
		22'45-TetraCB-(48)	2023/03/03	0.015 U, EDL=0.015	ng/L	
		TetraCB-(49)+TetraCB-(69)	2023/03/03	0.051 J, EDL=0.013	ng/L	
		TetraCB-(50)+(53)	2023/03/03	0.014 U, EDL=0.014	ng/L	
		22'55'-TetraCB-(52)	2023/03/03	0.150, EDL=0.015	ng/L	
		22'66'-TetraCB-(54)	2023/03/03	0.025 U, EDL=0.025	ng/L	
		233'4-TetraCB-(55)	2023/03/03	0.0095 U, EDL=0.0095	ng/L	
		233'4'-Tetra CB(56)	2023/03/03	0.0176 J, EDL=0.0097	ng/L	
		233'5-TetraCB-(57)	2023/03/03	0.0090 U, EDL=0.0090	ng/L	
		233'5'-TetraCB-(58)	2023/03/03	0.0094 U, EDL=0.0094	ng/L	
		TetraCB-(59)+(62)+(75)	2023/03/03	0.011 U, EDL=0.011	ng/L	
		2344'-TetraCB -(60)	2023/03/03	0.0121 J, EDL=0.0092	ng/L	
		TetraCB-(61)+(70)+(74)+(76)	2023/03/03	0.115 J, EDL=0.0086	ng/L	
		234'5-TetraCB-(63)	2023/03/03	0.0091 U, EDL=0.0091	ng/L	
		234'6-TetraCB-(64)	2023/03/03	0.028 J, EDL=0.013	ng/L	
		23'44'-TetraCB-(66)	2023/03/03	0.0394 J, EDL=0.0086	ng/L	
		23'45-TetraCB-(67)	2023/03/03	0.0080 U, EDL=0.0080	ng/L	
		23'45'-TetraCB-(68)	2023/03/03	0.0085 U, EDL=0.0085	ng/L	
		23'55'-TetraCB-(72)	2023/03/03	0.0090 U, EDL=0.0090	ng/L	
		23'5'6-TetraCB-(73)	2023/03/03	0.011 U, EDL=0.011	ng/L	
		33'44'-TetraCB-(77)	2023/03/03	0.0098 U, EDL=0.0098	ng/L	
		33'45-TetraCB-(78)	2023/03/03	0.010 U, EDL=0.010	ng/L	
		33'45'-TetraCB(79)	2023/03/03	0.0084 U, EDL=0.0084	ng/L	
		33'55'-TetraCB-(80)	2023/03/03	0.0077 U, EDL=0.0077	ng/L	
		344'5-TetraCB-(81)	2023/03/03	0.010 U, EDL=0.010	ng/L	

Apex Laboratories Client Project #: A3B0217

QA/QC Batch II	nit QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		22'33'4-PentaCB-(82)	2023/03/03	0.017 U, EDL=0.017		ng/L	
		PentaCB-(83)+(99)	2023/03/03	0.059 J, EDL=0.014		ng/L	
		22'33'6-PentaCB-(84)	2023/03/03	0.024, EDL=0.014		ng/L	
		PentaCB-(85)+(116)+(117)	2023/03/03	0.011 U, EDL=0.011		ng/L	
		PentaCB-(86)(87)(97)(109)(119)(125)	2023/03/03	0.068 J, EDL=0.011		ng/L	
		PentaCB-(88)+(91)	2023/03/03	0.012 U, EDL=0.012		ng/L	
		22'346'-PentaCB-(89)	2023/03/03	0.016 U, EDL=0.016		ng/L	
		PentaCB-(90)+(101)+(113)	2023/03/03	0.206, EDL=0.011		ng/L	
		22'355'-PentaCB-(92)	2023/03/03	0.035 J, EDL=0.015		ng/L	
		PentaCB-(93)+(98)+(100)+(102)	2023/03/03	0.013 U, EDL=0.013		ng/L	
		22'356'-PentaCB-(94)	2023/03/03	0.014 U, EDL=0.014		ng/L	
		22'35'6-PentaCB-(95)	2023/03/03	0.210, EDL=0.015		ng/L	
		22'366'-PentaCB-(96)	2023/03/03	0.013 U, EDL=0.013		ng/L	
		22'45'6-PentaCB-(103)	2023/03/03	0.013 U, EDL=0.013		ng/L	
		22'466'-PentaCB-(104)	2023/03/03	0.017 U, EDL=0.017		ng/L	
		233'44'-PentaCB-(105)	2023/03/03	0.0276 J, EDL=0.0052		ng/L	
		233'45-PentaCB-(106)	2023/03/03	0.0057 U, EDL=0.0057		ng/L	
		233'4'5-PentaCB-(107)	2023/03/03	0.0081 J, EDL=0.0043		ng/L	
		PentaCB-(108)+(124)	2023/03/03	0.0053 U, EDL=0.0053		ng/L	
		PentaCB-(110)+(115)	2023/03/03	0.122, EDL=0.011		ng/L	
		233'55'-PentaCB-(111)	2023/03/03	0.0092 U, EDL=0.0092		ng/L	
		233'56-PentaCB-(112)	2023/03/03	0.0091 U, EDL=0.0091		ng/L	
		2344'5-PentaCB-(114)	2023/03/03	0.0052 U, EDL=0.0052		ng/L	
		23'44'5-PentaCB-(118)	2023/03/03	0.0962 J, EDL=0.0048		ng/L	
		23'455'-PentaCB-(120)	2023/03/03	0.0097 U, EDL=0.0097		ng/L	
		23'45'6-PentaCB-(121)	2023/03/03	0.0092 U, EDL=0.0092		ng/L	
		233'4'5'-PentaCB-(122)	2023/03/03	0.0070 U, EDL=0.0070		ng/L	

Apex Laboratories Client Project #: A3B0217

QA/QC Batch Init Q	С Туре	Parameter	Date Analyzed	Value	% Recovery UNITS	QC Limits
		23'44'5'-PentaCB-(123)	2023/03/03	0.0054 U, EDL=0.0054	ng/L	
		33'44'5-PentaCB-(126)	2023/03/03	0.0054 U, EDL=0.0054	ng/L	
		33'455'-PentaCB-(127)	2023/03/03	0.0054 U, EDL=0.0054	ng/L	
		HexaCB-(128)+(166)	2023/03/03	0.0124 J, EDL=0.0057	ng/L	
		HexaCB-(129)+(138)+(163)	2023/03/03	0.201, EDL=0.0064	ng/L	
		22'33'45'-HexaCB-(130)	2023/03/03	0.0072 J, EDL=0.0069	ng/L	
		22'33'46-HexaCB-(131)	2023/03/03	0.0083 U, EDL=0.0083	ng/L	
		22'33'46'-HexaCB-(132)	2023/03/03	0.0682, EDL=0.0069	ng/L	
		22'33'55'-HexaCB-(133)	2023/03/03	0.0071 U, EDL=0.0071	ng/L	
		HexaCB-(134)+(143)	2023/03/03	0.0135 J, EDL=0.0076	ng/L	
		HexaCB-(135)+(151)	2023/03/03	0.143, EDL=0.013	ng/L	
		22'33'66'-HexaCB-(136)	2023/03/03	0.0455 J, EDL=0.0099	ng/L	
		22'344'5-HexaCB-(137)	2023/03/03	0.0065 U, EDL=0.0065	ng/L	
		HexaCB-(139)+(140)	2023/03/03	0.0060 U, EDL=0.0060	ng/L	
		22'3455'-HexaCB-(141)	2023/03/03	0.0545, EDL=0.0062	ng/L	
		22'3456-HexaCB-(142)	2023/03/03	0.0074 U, EDL=0.0074	ng/L	
		22'345'6-HexaCB-(144)	2023/03/03	0.022 J, EDL=0.013	ng/L	
		22'3466'-HexaCB-(145)	2023/03/03	0.0093 U, EDL=0.0093	ng/L	
		22'34'55'-HexaCB-(146)	2023/03/03	0.0310 J, EDL=0.0058	ng/L	
		HexaCB-(147)+(149)	2023/03/03	0.274, EDL=0.0055	ng/L	
		22'34'56'-HexaCB-(148)	2023/03/03	0.014 U, EDL=0.014	ng/L	
		22'34'66'-HexaCB-(150)	2023/03/03	0.0090 U, EDL=0.0090	ng/L	
		22'3566'-HexaCB-(152)	2023/03/03	0.0094 U, EDL=0.0094	ng/L	
		HexaCB-(153)+(168)	2023/03/03	0.237, EDL=0.0050	ng/L	
		22'44'56'-HexaCB-(154)	2023/03/03	0.010 U, EDL=0.010	ng/L	
		22'44'66'-HexaCB-(155)	2023/03/03	0.013 U, EDL=0.013	ng/L	
		HexaCB-(156)+(157)	2023/03/03	0.0088 J, EDL=0.0035	ng/L	

Apex Laboratories Client Project #: A3B0217

QA/QC Batch In	it QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		233'44'6-HexaCB-(158)	2023/03/03	0.0167 J, EDL=0.0042	·	ng/L	
		233'455'-HexaCB-(159)	2023/03/03	0.0033 U, EDL=0.0033		ng/L	
		233'456-HexaCB-(160)	2023/03/03	0.0052 U, EDL=0.0052		ng/L	
		233'45'6-HexaCB-(161)	2023/03/03	0.0048 U, EDL=0.0048		ng/L	
		233'4'55'-HexaCB-(162)	2023/03/03	0.0032 U, EDL=0.0032		ng/L	
		233'4'5'6-HexaCB-(164)	2023/03/03	0.0103 J, EDL=0.0046		ng/L	
		233'55'6-HexaCB-(165)	2023/03/03	0.0052 U, EDL=0.0052		ng/L	
		23'44'55'-HexaCB-(167)	2023/03/03	0.0041 J, EDL=0.0035		ng/L	
		33'44'55'-HexaCB-(169)	2023/03/03	0.0038 U, EDL=0.0038		ng/L	
		22'33'44'5-HeptaCB-(170)	2023/03/03	0.0208 J, EDL=0.0054		ng/L	
		HeptaCB-(171)+(173)	2023/03/03	0.013 U, EDL=0.013 (2)		ng/L	
		22'33'455'-HeptaCB-(172)	2023/03/03	0.0060 U, EDL=0.0060		ng/L	
		22'33'456'-HeptaCB-(174)	2023/03/03	0.0523, EDL=0.0054		ng/L	
		22'33'45'6-HeptaCB-(175)	2023/03/03	0.010 U, EDL=0.010		ng/L	
		22'33'466'-HeptaCB-(176)	2023/03/03	0.0140 J, EDL=0.0076		ng/L	
		22'33'45'6'-HeptaCB-(177)	2023/03/03	0.0308 J, EDL=0.0059		ng/L	
		22'33'55'6-HeptaCB-(178)	2023/03/03	0.014 J, EDL=0.011		ng/L	
		22'33'566'-HeptaCB-(179)	2023/03/03	0.0419 J, EDL=0.0074		ng/L	
		HeptaCB-(180)+(193)	2023/03/03	0.0737 J, EDL=0.0047		ng/L	
		22'344'56-HeptaCB-(181)	2023/03/03	0.0056 U, EDL=0.0056		ng/L	
		22'344'56'-HeptaCB-(182)	2023/03/03	0.0098 U, EDL=0.0098		ng/L	
		22'344'5'6-HeptaCB-(183)	2023/03/03	0.0419 J, EDL=0.0048		ng/L	
		22'344'66'-HeptaCB-(184)	2023/03/03	0.0073 U, EDL=0.0073		ng/L	
		22'3455'6-HeptaCB-(185)	2023/03/03	0.0058 U, EDL=0.0058		ng/L	
		22'34566'-HeptaCB-(186)	2023/03/03	0.0079 U, EDL=0.0079		ng/L	
		22'34'55'6-HeptaCB-(187)	2023/03/03	0.085, EDL=0.010		ng/L	
		22'34'566'-HeptaCB-(188)	2023/03/03	0.0080 U, EDL=0.0080		ng/L	

Apex Laboratories Client Project #: A3B0217

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery UNIT	-
			233'44'55'-HeptaCB-(189)	2023/03/03	0.0039 U, EDL=0.0039	ng/	L
			233'44'56-HeptaCB-(190)	2023/03/03	0.0049 J, EDL=0.0043	ng/	L
			233'44'5'6-HeptaCB-(191)	2023/03/03	0.0042 U, EDL=0.0042	ng/	L
			233'455'6-HeptaCB-(192)	2023/03/03	0.0047 U, EDL=0.0047	ng/	L
			22'33'44'55'-OctaCB-(194)	2023/03/03	0.0078 U, EDL=0.0078	ng/	L
			22'33'44'56-OctaCB-(195)	2023/03/03	0.0084 U, EDL=0.0084	ng/	L
			22'33'44'56'-OctaCB-(196)	2023/03/03	0.011 U, EDL=0.011	ng/	L
			22'33'44'66'OctaCB-(197)	2023/03/03	0.0081 U, EDL=0.0081	ng/	L
			OctaCB-(198)+(199)	2023/03/03	0.013 U, EDL=0.013	ng/	L
			22'33'4566'-OctaCB-(200)	2023/03/03	0.0082 U, EDL=0.0082	ng/	L
			22'33'45'66'-OctaCB-(201)	2023/03/03	0.0076 U, EDL=0.0076	ng/	L
			22'33'55'66'-OctaCB-(202)	2023/03/03	0.0090 U, EDL=0.0090	ng/	L
			22'344'55'6-OctaCB-(203)	2023/03/03	0.011 U, EDL=0.011	ng/	L
			22'344'566'-OctaCB-(204)	2023/03/03	0.0075 U, EDL=0.0075	ng/	L
			233'44'55'6-OctaCB-(205)	2023/03/03	0.0060 U, EDL=0.0060	ng/	L
			22'33'44'55'6-NonaCB-(206)	2023/03/03	0.011 U, EDL=0.011	ng/	L
			22'33'44'566'-NonaCB-(207)	2023/03/03	0.0076 U, EDL=0.0076	ng/	L
			22'33'455'66'-NonaCB-(208)	2023/03/03	0.0079 U, EDL=0.0079	ng/	L
			DecaCB-(209)	2023/03/03	0.012 U, EDL=0.012	ng/	L

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

- (1) The extracted internal standard analyte exhibited high recovery and as such, may not have allowed for accurate recovery correction of the associated native compound. For results that were not detected (ND), this potential high bias has no impact.
- (2) EMPC / NDR Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Bureau Veritas Job #: C338911 Apex Laboratories
Report Date: 2023/04/24 Client Project #: A3B0217

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Angel Guerrero, Supervisor, Ultra Trace Analysis, HRMS and SVOC

Colm McNamara, Senior Analyst, Liquid Chromatography

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

SUBCONTRACT ORDER

Apex Laboratories

A3B0217

SENDING LABORATORY:

Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223

Phone: (503) 718-2323 Fax: (503) 336-0745

Project Manager: Philip Nerenberg

RECEIVING LABORATORY:

BV Labs / Maxxam

C/O FEDEX DEPOT 299 Cayuga Rd

Cheektowaga, NY 14225 Phone :(800) 668-0639

Fax: (905) 332-9169

AUX 218123

Sample Name: MFA-B3A-20230207-G	W-36.0	Water	Sampled: 02/07/23 08:30	(A3B0217-01)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB)	02/20/23 17:00	02/07/24 08:30		
1668C PCB Congeners (SUB)	02/20/23 17:00	02/07/24 08:30		
1699 Insecticides/Pesticides (SUB)	02/20/23 17:00	02/14/23 08:30	waters	
537M - PFOAs (SUB)	02/20/23 17:00	02/14/23 08:30		
Containers Supplied:			09-F	eb-23 12:55
(H)Other-Non Preserved			Lori Dufou	r
(I)Other-Non Preserved				
(Q)1 L Amber Glass - Non Preserved			C3389	
(R)1 L Amber Glass - Non Preserved			0.000	11
(S)1 L Amber Glass - Non Preserved			AJH EN	V-713
(U)1 L Amber Glass - Non Preserved				

ample Name: Field Blank		Water	Sampled: 02/07/23 08:20	(A3B0217-02
Analysis	Due	Expires	Comments	
537M - PFOAs (SUB)	02/20/23 17:00	02/14/23 08:20		
Containers Supplied:				
(A)Other-Non Preserved				
(B)Other-Non Preserved				

Standard TAT

Temp. Blank - 1-4/11.6/1.2, 1.6/1.7/1.4, 4.3/4.4/4.3

82	3	2-8.23		Fed Ex (Shipper)	I Tenor - Reli	to ACTA
Released By		Date	Received By		Date Date	to the in
	Fed Ex (Shipper)		Jelei KALGI	SOLADHARA	2023 02 09	12:55
Released By		Date	Received By		Date	

Page 1 of 1

Your Project #: A3A1010

Attention: Philip Nerenberg

Apex Laboratories 6700 SW Sandburg St. Tigard, OR USA 97223

Report Date: 2023/04/20

Report #: R7596014 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C338927 Received: 2023/02/09, 12:55

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Moisture	1	N/A	2023/02/21	CAM SOP-00445	Carter 2nd ed 51.2 m
PFAS in soil by SPE/LCMS (1)	1	2023/02/24	2023/02/26	CAM SOP-00894	ASTM D7968-17a m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.
- U = Undetected at the limit of quantitation.
- J = Estimated concentration between the EDL & RDL.
- B = Blank Contamination.
- Q = One or more quality control criteria failed.
- E = Analyte concentration exceeds the maximum concentration level.
- K = Estimated maximum possible concentration due to ion abundance ratio failure.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Lori Dufour, Project Manager

Email: Lori.Dufour@bureauveritas.com

Phone# (905) 817-5700

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Total Cover Pages : 1 Page 1 of 12

Apex Laboratories Client Project #: A3A1010

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		VBK409			
Sampling Date		2023/01/31			
	UNITS	MFA-B1-B5-COMP-SL	RDL	MDL	QC Batch
Moisture	%	3.8	1.0	0.50	8513637
IVIOISCUIC	/0	5.0	1.0	0.50	0313037
RDL = Reportable Detection L		3.0	1.0	0.50	0313037

Apex Laboratories Client Project #: A3A1010

PERFLUOROALKYL SUBSTANCES (SOIL)

Bureau Veritas ID		VBK409			
Sampling Date		2023/01/31			
	UNITS	MFA-B1-B5-COMP-SL	RDL	MDL	QC Batch
Perfluorobutanoic acid (PFBA)	ug/kg	0.14 U	1.0	0.14	8521318
Perfluoropentanoic acid (PFPeA)	ug/kg	0.17 U	1.0	0.17	8521318
Perfluorohexanoic acid (PFHxA)	ug/kg	0.72 J	1.0	0.15	8521318
Perfluoroheptanoic acid (PFHpA)	ug/kg	0.51 J	1.0	0.17	8521318
Perfluorooctanoic acid (PFOA)	ug/kg	0.95 J	1.0	0.17	8521318
Perfluorononanoic acid (PFNA)	ug/kg	0.76 J	1.0	0.14	8521318
Perfluorodecanoic acid (PFDA)	ug/kg	1.5	1.0	0.13	8521318
Perfluoroundecanoic acid (PFUnA)	ug/kg	1.3	1.0	0.22	8521318
Perfluorododecanoic acid (PFDoA)	ug/kg	1.2	1.0	0.16	8521318
Perfluorotridecanoic acid (PFTRDA)	ug/kg	0.61 J	1.0	0.12	8521318
Perfluorotetradecanoic acid(PFTEDA)	ug/kg	0.46 J	1.0	0.13	8521318
Perfluorobutanesulfonic acid (PFBS)	ug/kg	0.15 U	1.0	0.15	8521318
Perfluoropentanesulfonic acid PFPes	ug/kg	0.34 U	1.0	0.34	8521318
Perfluorohexanesulfonic acid(PFHxS)	ug/kg	2.2 (1)	1.0	0.12	8521318
Perfluoroheptanesulfonic acid PFHpS	ug/kg	0.21 U	1.0	0.21	8521318
Perfluorooctanesulfonic acid (PFOS)	ug/kg	0.57 J	1.0	0.36	8521318
Perfluorononanesulfonic acid (PFNS)	ug/kg	0.18 U	1.0	0.18	8521318
Perfluorodecanesulfonic acid (PFDS)	ug/kg	0.92 J	1.0	0.21	8521318
Perfluorooctane Sulfonamide (PFOSA)	ug/kg	0.10 U	1.0	0.10	8521318
EtFOSA	ug/kg	0.38 U	1.0	0.38	8521318
MeFOSA	ug/kg	0.45 U	1.0	0.45	8521318
EtFOSE	ug/kg	0.37 U	1.0	0.37	8521318
MeFOSE	ug/kg	0.34 U	1.0	0.34	8521318
EtFOSAA	ug/kg	7.0	1.0	0.16	8521318
MeFOSAA	ug/kg	4.3	1.0	0.24	8521318
4:2 Fluorotelomer sulfonic acid	ug/kg	0.10 U	1.0	0.10	8521318
6:2 Fluorotelomer sulfonic acid	ug/kg	0.24 U	1.0	0.24	8521318
8:2 Fluorotelomer sulfonic acid	ug/kg	0.26 U	1.0	0.26	8521318
Hexafluoropropyleneoxide dimer acid	ug/kg	0.16 U	1.0	0.16	8521318
4,8-Dioxa-3H-perfluorononanoic acid	ug/kg	0.15 U	1.0	0.15	8521318
9Cl-PF3ONS (F-53B Major)	ug/kg	0.10 U	1.0	0.10	8521318
11Cl-PF3OUdS (F-53B Minor)	ug/kg	0.28 U	1.0	0.28	8521318
Surrogate Recovery (%)	-				
13C2-4:2-Fluorotelomersulfonic Acid	%	62	N/A	N/A	8521318
13C2-6:2-Fluorotelomersulfonic Acid	%	68	N/A	N/A	8521318
13C2-8:2-Fluorotelomersulfonic Acid	%	64	N/A	N/A	8521318

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Result is estimated as analyte confirmation criteria (ion ratio) were not met.

Apex Laboratories Client Project #: A3A1010

PERFLUOROALKYL SUBSTANCES (SOIL)

Bureau Veritas ID		VBK409			
Sampling Date		2023/01/31			
	UNITS	MFA-B1-B5-COMP-SL	RDL	MDL	QC Batch
13C2-Perfluorodecanoic acid	%	47 (1)	N/A	N/A	8521318
13C2-Perfluorododecanoic acid	%	52	N/A	N/A	8521318
13C2-Perfluorohexanoic acid	%	59	N/A	N/A	8521318
13C2-perfluorotetradecanoic acid	%	37 (2)	N/A	N/A	8521318
13C2-Perfluoroundecanoic acid	%	57	N/A	N/A	8521318
13C3-HFPO-DA	%	57	N/A	N/A	8521318
13C3-Perfluorobutanesulfonic acid	%	64	N/A	N/A	8521318
13C4-Perfluorobutanoic acid	%	69	N/A	N/A	8521318
13C4-Perfluoroheptanoic acid	%	63	N/A	N/A	8521318
13C4-Perfluorooctanesulfonic acid	%	62	N/A	N/A	8521318
13C4-Perfluorooctanoic acid	%	57	N/A	N/A	8521318
13C5-Perfluorononanoic acid	%	57	N/A	N/A	8521318
13C5-Perfluoropentanoic acid	%	66	N/A	N/A	8521318
13C8-Perfluorooctane Sulfonamide	%	56	N/A	N/A	8521318
18O2-Perfluorohexanesulfonic acid	%	61	N/A	N/A	8521318
D3-MeFOSA	%	36	N/A	N/A	8521318
D3-MeFOSAA	%	61	N/A	N/A	8521318
D5-EtFOSA	%	29	N/A	N/A	8521318
D5-EtFOSAA	%	62	N/A	N/A	8521318
D7-MeFOSE	%	35	N/A	N/A	8521318
D9-EtFOSE	%	31	N/A	N/A	8521318

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

- (1) Extracted internal standard analyte recovery was below the defined lower control limit (LCL) which may result in increased variability of the associated native analyte result (PFDA, PFDS).
- (2) Extracted internal standard analyte recovery was below the defined lower control limit (LCL) which may result in increased variability of the associated native analyte result (PFTeDA, PFTrDA).

Apex Laboratories Client Project #: A3A1010

TEST SUMMARY

Bureau Veritas ID: VBK409

Sample ID: MFA-B1-B5-COMP-SL Matrix: Soil

Collected: 2023/01/31

Shipped:

Received: 2023/02/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	8513637	N/A	2023/02/21	Joe Thomas
PFAS in soil by SPE/LCMS	LCMS	8521318	2023/02/24	2023/02/26	Adnan Khan

Apex Laboratories Client Project #: A3A1010

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	1.8°C
Package 2	5.6°C
Package 3	3.9°C

Revised Report (2023/4/20): Updated footnote comment (1) to reflect correct EIS and native analytes.

Sample VBK409 was air dried prior to analysis for moisture and extraction and analysed for PFAS as per client request.

Results relate only to the items tested.

Apex Laboratories Client Project #: A3A1010

QUALITY ASSURANCE REPORT

Init SB3	QC Type						
SB3		Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
000	RPD - Sample/Sample Dup	Moisture	2023/02/21	4.2		%	20
AKH	Matrix Spike	13C2-4:2-Fluorotelomersulfonic Acid	2023/02/26		86	%	50 - 150
		13C2-6:2-Fluorotelomersulfonic Acid	2023/02/26		83	%	50 - 150
		13C2-8:2-Fluorotelomersulfonic Acid	2023/02/26		86	%	50 - 150
		13C2-Perfluorodecanoic acid	2023/02/26		81	%	50 - 150
		13C2-Perfluorododecanoic acid	2023/02/26		71	%	50 - 150
		13C2-Perfluorohexanoic acid	2023/02/26		86	%	50 - 150
		13C2-perfluorotetradecanoic acid	2023/02/26		57	%	50 - 150
		13C2-Perfluoroundecanoic acid	2023/02/26		77	%	50 - 150
		13C3-HFPO-DA	2023/02/26		87	%	50 - 150
		13C3-Perfluorobutanesulfonic acid	2023/02/26		86	%	50 - 150
		13C4-Perfluorobutanoic acid	2023/02/26		90	%	50 - 150
		13C4-Perfluoroheptanoic acid	2023/02/26		87	%	50 - 150
		13C4-Perfluorooctanesulfonic acid	2023/02/26		83	%	50 - 150
		13C4-Perfluorooctanoic acid	2023/02/26		88	%	50 - 150
		13C5-Perfluorononanoic acid	2023/02/26		86	%	50 - 150
		13C5-Perfluoropentanoic acid	2023/02/26		90	%	50 - 150
		13C8-Perfluorooctane Sulfonamide	2023/02/26		74	%	50 - 150
		1802-Perfluorohexanesulfonic acid	2023/02/26		85	%	50 - 150
		D3-MeFOSA	2023/02/26		55	%	25 - 150
		D3-MeFOSAA	2023/02/26		69	%	50 - 150
		D5-EtFOSA	2023/02/26		50	%	25 - 150
		D5-EtFOSAA	2023/02/26		68	%	50 - 150
		D7-MeFOSE	2023/02/26		61	%	25 - 150
		D9-EtFOSE			58	%	25 - 150
		Perfluorobutanoic acid (PFBA)	2023/02/26		110	%	70 - 130
		Perfluoropentanoic acid (PFPeA)	2023/02/26		106	%	70 - 130
		,			110	%	70 - 130
		, ,			111	%	70 - 130
					108		70 - 130
		, ,			109		70 - 130
		, ,					70 - 130
		• • •					70 - 130
		• • •					70 - 130
							70 - 130
							70 - 130
		, , ,					70 - 130
		, ,					70 - 130
							70 - 130
							70 - 130
							70 - 130
		• ,					70 - 130
		• • •					70 - 130
							70 - 130 70 - 130
							70 - 130 70 - 130
							70 - 130
							70 - 130
							70 - 130
							70 - 130 70 - 130
			• •				70 - 130
							70 - 130 70 - 130
							70 - 130
							70 - 130 70 - 130
			13C2-Perfluorododecanoic acid 13C2-perfluorohexanoic acid 13C2-perfluorotetradecanoic acid 13C2-Perfluoroundecanoic acid 13C3-HFPO-DA 13C3-Perfluorobutanesulfonic acid 13C4-Perfluorobutanoic acid 13C4-Perfluoroctanesulfonic acid 13C4-Perfluoroctanesulfonic acid 13C4-Perfluoroctanoic acid 13C5-Perfluorononanoic acid 13C5-Perfluoropentanoic acid 13C8-Perfluoropentanoic acid 13C8-Perfluorobexanesulfonic acid D3-MeFOSA D3-MeFOSA D5-EtFOSA D5-EtFOSA D7-MeFOSE D9-EtFOSE	13C2-Perfluorobexanoic acid 13C2-Perfluorobexanoic acid 13C2-Perfluorobexanoic acid 13C2-Perfluorobexanoic acid 13C2-Perfluorobexanoic acid 13C2-Perfluorobexanoic acid 13C3-HEPO-DA 13C3-Perfluorobutanesulfonic acid 13C3-Perfluorobutanoic acid 13C4-Perfluorobutanoic acid 13C4-Perfluorobexanoic acid 13C4-Perfluorobexanoic acid 13C4-Perfluorobexanoic acid 13C4-Perfluorooctanoic acid 13C4-Perfluorooctanoic acid 13C4-Perfluorooctanoic acid 13C4-Perfluorooctanoic acid 13C5-Perfluorooctanoic acid 13C5-Perfluorooctane acid 13C5-Perfluorooctane acid 13C5-Perfluorooctane Sulfonia acid 13C3/02/26 13C5-Perfluorooctane Sulfonia acid 13C3/02/26 13C5-Perfluorobexanesulfonic acid 13C3/02/26 13C5-Perfluorobexanesulfonic acid 13C3/02/26 13C5-Perfluorobexanesulfonic acid 13C3/02/26 13C5-Perfluorobexanesulfonic acid 13C3/02/26 13C5-Perfluorobexanoic acid 13C3/02/26 13C5-Perfluorobexanoic acid 13C3/02/26 13C5-Perfluorobexanoic acid 1	13C2-Perfluorodecanoic acid 13C2-Perfluorotexanoic acid 2023/02/26 13C2-Perfluorotexanoic acid 2023/02/26 13C2-Perfluorotexanoic acid 2023/02/26 13C3-Perfluorotexanoic acid 2023/02/26 13C3-Perfluorobutanesulfonic acid 2023/02/26 13C4-Perfluorobutanoic acid 2023/02/26 13C4-Perfluorobutanoic acid 2023/02/26 13C4-Perfluorotanoic acid 2023/02/26 13C4-Perfluorocanoic acid 2023/02/26 13C5-Perfluoronotanoic acid 2023/02/26 2023/0	13C2-Perfluorodexanoic acid 2023/02/26 86 13C2-Perfluorotetradecanoic acid 2023/02/26 57 13C2-Perfluorotetradecanoic acid 2023/02/26 77 13C3-Perfluorotetradecanoic acid 2023/02/26 77 13C3-Perfluorobutanacia 2023/02/26 87 13C3-Perfluorobutanacia 2023/02/26 86 13C3-Perfluorobutanacia 2023/02/26 86 13C4-Perfluorobutanacia 2023/02/26 87 13C4-Perfluorobutanacia 2023/02/26 87 13C4-Perfluoroctanoic acid 2023/02/26 88 13C3-Perfluoroctanoic acid 2023/02/26 88 13C3-Perfluoroctanoic acid 2023/02/26 88 13C3-Perfluoroctanoic acid 2023/02/26 86 13C3-Perfluoroctanoic acid 2023/02/26 87 13C3-Perfluoroctanoic acid 2023/02/26 13C3-Perfluoroctanoic acid 2023/02/26	13C2-Perfluorodoceanolic acid 2023/02/26 213C2-Perfluoronetradecanolic acid 2023/02/26 213C2-Perfluoronetradecanolic acid 2023/02/26 213C3-Perfluorobutanecia acid 2023/02/26 213C3-Perfluorobutanecia acid 2023/02/26 213C3-Perfluorobutanolic acid 2023/02/26 213C3-Perfluorobutanolic acid 2023/02/26 213C4-Perfluorobutanolic acid 2023/02/26 213C4-Perfluorobutanolic acid 2023/02/26 213C4-Perfluoroctanesulfonic acid 2023/02/26 213C4-Perfluoroctanesulfonic acid 2023/02/26 213C4-Perfluoroctanesulfonic acid 2023/02/26 213C5-Perfluoronotanolic acid 2023/02/26

Apex Laboratories Client Project #: A3A1010

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Hexafluoropropyleneoxide dimer acid	2023/02/26		111	%	70 - 130
			4,8-Dioxa-3H-perfluorononanoic acid	2023/02/26		109	%	70 - 130
			9Cl-PF3ONS (F-53B Major)	2023/02/26		105	%	70 - 130
			11Cl-PF3OUdS (F-53B Minor)	2023/02/26		105	%	70 - 130
8521318	AKH	Spiked Blank	13C2-4:2-Fluorotelomersulfonic Acid	2023/02/26		85	%	50 - 150
			13C2-6:2-Fluorotelomersulfonic Acid	2023/02/26		84	%	50 - 150
			13C2-8:2-Fluorotelomersulfonic Acid	2023/02/26		80	%	50 - 150
			13C2-Perfluorodecanoic acid	2023/02/26		82	%	50 - 150
			13C2-Perfluorododecanoic acid	2023/02/26		72	%	50 - 150
			13C2-Perfluorohexanoic acid	2023/02/26		84	%	50 - 150
			13C2-perfluorotetradecanoic acid	2023/02/26		56	%	50 - 150
			13C2-Perfluoroundecanoic acid	2023/02/26		82	%	50 - 150
			13C3-HFPO-DA	2023/02/26		81	%	50 - 150
			13C3-Perfluorobutanesulfonic acid	2023/02/26		84	%	50 - 150
			13C4-Perfluorobutanoic acid	2023/02/26		87	%	50 - 150
			13C4-Perfluoroheptanoic acid	2023/02/26		84	%	50 - 150
			13C4-Perfluorooctanesulfonic acid	2023/02/26		80	%	50 - 150
			13C4-Perfluorooctanoic acid	2023/02/26		86	%	50 - 150
			13C5-Perfluorononanoic acid	2023/02/26		84	%	50 - 150
			13C5-Perfluoropentanoic acid	2023/02/26		87	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2023/02/26		76	%	50 - 150
			1802-Perfluorohexanesulfonic acid	2023/02/26		84	%	50 - 150
			D3-MeFOSA	2023/02/26		42	%	25 - 150
			D3-MeFOSAA	2023/02/26		78	%	50 - 150
			D5-EtFOSA	2023/02/26		38	%	25 - 150
			D5-EtFOSAA	2023/02/26		80	%	50 - 150
			D7-MeFOSE	2023/02/26		60	%	25 - 150
			D9-EtFOSE	2023/02/26		59	%	25 - 150
			Perfluorobutanoic acid (PFBA)	2023/02/26		109	%	70 - 130
			Perfluoropentanoic acid (PFPeA)	2023/02/26		106	%	70 - 130
			Perfluorohexanoic acid (PFHxA)	2023/02/26		107	%	70 - 130
			Perfluoroheptanoic acid (PFHpA)	2023/02/26		109	%	70 - 130
			Perfluorooctanoic acid (PFOA)	2023/02/26		104	%	70 - 130
			Perfluorononanoic acid (PFNA)	2023/02/26		106	%	70 - 130
			Perfluorodecanoic acid (PFDA)	2023/02/26		107	%	70 - 130
			Perfluoroundecanoic acid (PFUnA)	2023/02/26		104	%	70 - 130
			Perfluorododecanoic acid (PFDoA)	2023/02/26		105	%	70 - 130
			Perfluorotridecanoic acid (PFTRDA)	2023/02/26		117	%	70 - 130
			Perfluorotetradecanoic acid(PFTEDA)	2023/02/26		107	%	70 - 130
			Perfluorobutanesulfonic acid (PFBS)	2023/02/26		107	%	70 - 130
			Perfluoropentanesulfonic acid PFPes	2023/02/26		107	%	70 - 130 70 - 130
			Perfluorohexanesulfonic acid (PFHxS)	2023/02/26		107	%	70 - 130
			Perfluoroheptanesulfonic acid PFHpS	2023/02/26		107	% %	70 - 130 70 - 130
								70 - 130
			Perfluorooctanesulfonic acid (PFOS) Perfluorononanesulfonic acid (PFNS)	2023/02/26 2023/02/26		111 98	% %	70 - 130 70 - 130
			Perfluorodecanesulfonic acid (PFNS)	2023/02/26				70 - 130 70 - 130
			Perfluorodecanesuifonic acid (PFDS) Perfluorooctane Sulfonamide (PFOSA)	2023/02/26		103 109	% %	70 - 130 70 - 130
			EtFOSA	2023/02/26		108	%	70 - 130
			MeFOSA	2023/02/26		100	%	70 - 130
			EtFOSE	2023/02/26		109	%	70 - 130
			MeFOSE	2023/02/26		109	%	70 - 130
			EtFOSAA	2023/02/26		108	%	70 - 130
			MeFOSAA	2023/02/26		109	%	70 - 130

608

Apex Laboratories Client Project #: A3A1010

QUALITY ASSURANCE REPORT(CONT'D)

			QUALITY ASSURANCE REI	- (/				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			4:2 Fluorotelomer sulfonic acid	2023/02/26		107	%	70 - 130
			6:2 Fluorotelomer sulfonic acid	2023/02/26		107	%	70 - 130
			8:2 Fluorotelomer sulfonic acid	2023/02/26		112	%	70 - 130
			Hexafluoropropyleneoxide dimer acid	2023/02/26		113	%	70 - 130
			4,8-Dioxa-3H-perfluorononanoic acid	2023/02/26		110	%	70 - 130
			9CI-PF3ONS (F-53B Major)	2023/02/26		101	%	70 - 130
			11Cl-PF3OUdS (F-53B Minor)	2023/02/26		103	%	70 - 130
8521318	AKH	Method Blank	13C2-4:2-Fluorotelomersulfonic Acid	2023/02/26		90	%	50 - 150
			13C2-6:2-Fluorotelomersulfonic Acid	2023/02/26		83	%	50 - 150
			13C2-8:2-Fluorotelomersulfonic Acid	2023/02/26		80	%	50 - 150
			13C2-Perfluorodecanoic acid	2023/02/26		75	%	50 - 150
			13C2-Perfluorododecanoic acid	2023/02/26		70	%	50 - 150
			13C2-Perfluorohexanoic acid	2023/02/26		82	%	50 - 150
			13C2-perfluorotetradecanoic acid	2023/02/26		52	%	50 - 150
			13C2-Perfluoroundecanoic acid	2023/02/26		77	%	50 - 150
			13C3-HFPO-DA	2023/02/26		80	%	50 - 150
			13C3-Perfluorobutanesulfonic acid	2023/02/26		80	%	50 - 150
			13C4-Perfluorobutanoic acid	2023/02/26		86	%	50 - 150
			13C4-Perfluoroheptanoic acid	2023/02/26		85	%	50 - 150
			13C4-Perfluorooctanesulfonic acid	2023/02/26		75	%	50 - 150
			13C4-Perfluorooctanoic acid	2023/02/26		82	%	50 - 150
			13C5-Perfluorononanoic acid	2023/02/26		79	%	50 - 150
			13C5-Perfluoropentanoic acid	2023/02/26		86	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2023/02/26		68	%	50 - 150
			1802-Perfluorohexanesulfonic acid	2023/02/26		80	%	50 - 150
			D3-MeFOSA	2023/02/26		31	%	25 - 150
			D3-MeFOSAA	2023/02/26		72	%	50 - 150
			D5-EtFOSA	2023/02/26		27	%	25 - 150
			D5-EtFOSAA	2023/02/26		77	%	50 - 150
			D7-MeFOSE	2023/02/26		52	%	25 - 150
			D9-EtFOSE	2023/02/26		56	%	25 - 150 25 - 150
					0.14 U,	30		25 - 150
			Perfluorobutanoic acid (PFBA)	2023/02/26	MDL=0.14		ug/kg	
			Perfluoropentanoic acid (PFPeA)	2023/02/26	0.17 U, MDL=0.17		ug/kg	
			Perfluorohexanoic acid (PFHxA)	2023/02/26	0.15 U, MDL=0.15		ug/kg	
			Perfluoroheptanoic acid (PFHpA)	2023/02/26	0.17 U, MDL=0.17		ug/kg	
			Perfluorooctanoic acid (PFOA)	2023/02/26	0.17 U, MDL=0.17		ug/kg	
			Perfluorononanoic acid (PFNA)	2023/02/26	0.14 U, MDL=0.14		ug/kg	
			Perfluorodecanoic acid (PFDA)	2023/02/26	0.13 U, MDL=0.13		ug/kg	
			Perfluoroundecanoic acid (PFUnA)	2023/02/26	0.22 U, MDL=0.22		ug/kg	
			Perfluorododecanoic acid (PFDoA)	2023/02/26	0.16 U, MDL=0.16		ug/kg	
			Perfluorotridecanoic acid (PFTRDA)	2023/02/26	0.12 U, MDL=0.12		ug/kg	
			Perfluorotetradecanoic acid(PFTEDA)	2023/02/26	0.13 U, MDL=0.13		ug/kg	

609

Apex Laboratories Client Project #: A3A1010

_			QUALITY ASSURANCE REI					
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Perfluorobutanesulfonic acid (PFBS)	2023/02/26	0.15 U, MDL=0.15		ug/kg	
			Perfluoropentanesulfonic acid PFPes	2023/02/26	0.34 U, MDL=0.34		ug/kg	
			Perfluorohexanesulfonic acid(PFHxS)	2023/02/26	0.12 U, MDL=0.12		ug/kg	
			Perfluoroheptanesulfonic acid PFHpS	2023/02/26	0.21 U, MDL=0.21		ug/kg	
			Perfluorooctanesulfonic acid (PFOS)	2023/02/26	0.36 U, MDL=0.36		ug/kg	
			Perfluorononanesulfonic acid (PFNS)	2023/02/26	0.18 U, MDL=0.18		ug/kg	
			Perfluorodecanesulfonic acid (PFDS)	2023/02/26	0.21 U, MDL=0.21		ug/kg	
			Perfluorooctane Sulfonamide (PFOSA)	2023/02/26	0.10 U, MDL=0.10		ug/kg	
			EtFOSA	2023/02/26	0.38 U, MDL=0.38		ug/kg	
			MeFOSA	2023/02/26	0.45 U, MDL=0.45		ug/kg	
			EtFOSE	2023/02/26	0.37 U, MDL=0.37		ug/kg	
			MeFOSE	2023/02/26	0.34 U, MDL=0.34		ug/kg	
			EtFOSAA	2023/02/26	0.16 U, MDL=0.16		ug/kg	
			MeFOSAA	2023/02/26	0.24 U, MDL=0.24		ug/kg	
			4:2 Fluorotelomer sulfonic acid	2023/02/26	0.10 U, MDL=0.10		ug/kg	
			6:2 Fluorotelomer sulfonic acid	2023/02/26	0.24 U, MDL=0.24		ug/kg	
			8:2 Fluorotelomer sulfonic acid	2023/02/26	0.26 U, MDL=0.26		ug/kg	
			Hexafluoropropyleneoxide dimer acid	2023/02/26	0.16 U, MDL=0.16		ug/kg	
			4,8-Dioxa-3H-perfluorononanoic acid	2023/02/26	0.15 U, MDL=0.15		ug/kg	
			9CI-PF3ONS (F-53B Major)	2023/02/26	0.10 U, MDL=0.10		ug/kg	
			11Cl-PF3OUdS (F-53B Minor)	2023/02/26	0.28 U, MDL=0.28		ug/kg	
8521318	AKH	RPD - Sample/Sample Dup	Perfluorobutanoic acid (PFBA)	2023/02/26	NC		%	30
		, ,	Perfluoropentanoic acid (PFPeA)	2023/02/26	NC		%	30
			Perfluorohexanoic acid (PFHxA)	2023/02/26	NC		%	30
			Perfluoroheptanoic acid (PFHpA)	2023/02/26	NC		%	30
			Perfluorooctanoic acid (PFOA)	2023/02/26	NC		%	30
			Perfluorononanoic acid (PFNA)	2023/02/26	NC		%	30
			Perfluorodecanoic acid (PFDA)	2023/02/26	NC		%	30
			Perfluoroundecanoic acid (PFUnA)	2023/02/26	NC		%	30
			Perfluorododecanoic acid (PFDoA)	2023/02/26	NC		%	30
			Perfluorotridecanoic acid (PFTRDA)	2023/02/26	NC		%	30
			Perfluorotetradecanoic acid(PFTEDA)	2023/02/26	NC		%	30
			Perfluorobetiadecanoic acid (PFBS)	2023/02/26	NC		%	30
			remuoroputanesunonic acia (PPDS)	2023/02/20	INC		/0	30

Apex Laboratories Client Project #: A3A1010

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Perfluoropentanesulfonic acid PFPes	2023/02/26	NC		%	30
			Perfluorohexanesulfonic acid(PFHxS)	2023/02/26	NC		%	30
			Perfluoroheptanesulfonic acid PFHpS	2023/02/26	NC		%	30
			Perfluorooctanesulfonic acid (PFOS)	2023/02/26	NC		%	30
			Perfluorononanesulfonic acid (PFNS)	2023/02/26	NC		%	30
			Perfluorodecanesulfonic acid (PFDS)	2023/02/26	NC		%	30
			Perfluorooctane Sulfonamide (PFOSA)	2023/02/26	NC		%	30
			4:2 Fluorotelomer sulfonic acid	2023/02/26	NC		%	30
			6:2 Fluorotelomer sulfonic acid	2023/02/26	NC		%	30
			8:2 Fluorotelomer sulfonic acid	2023/02/26	NC		%	30

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Apex Laboratories Client Project #: A3A1010

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:
ML
Colm McNamara, Senior Analyst, Liquid Chromatography
Oriston Carriere
Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

09-Feb-23 12:55

SUBCONTRACT ORDER

Apex Laboratories A3A1010

Lori Dufour C338927

ACK 218/23

AJH RECEIVING LABORATORY:

ENV-1272

Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223

SENDING LABORATORY:

Phone: (503) 718-2323 Fax: (503) 336-0745

Project Manager: Philip Nerenberg BV Labs / Maxxam

C/O FEDEX DEPOT 299 Cayuga Rd

Cheektowaga, NY 14225 Phone:(800) 668-0639

Fax: (905) 332-9169

International Solic Sample Heat Treat Required

High Risk material Controlled Storage and Disposal

Sample Name: MFA-B1-2023013-21.9		Sediment	Sampled: 01/30/23 16:00	(A3A1010-01)
Analysis	Due	Expires	Comments	
Sample Compositing2	02/01/23 17:00	05/09/23 16:00	BV for PFAS EPA-1633: -03, -04, -05 into -06	Composite -01, -02,

Containers Supplied: (E)250 mL Poly (WM) - Non Preserved

Sample Name: MFA-B3-20230131-31.0 Sediment Sampled: 01/31/23 10:50 (A3A1010-02) Due Expires Comments Analysis 02/01/23 17:00 05/10/23 10:50 BV for PFAS EPA-1633: Composite -01, -02, Sample Compositing2 -03, -04, -05 into -06

Containers Supplied:

(E)250 mL Poly (WM) - Non Preserved

(E)250 mL Poly (WM) - Non Preserved

Sample Name: MFA-B2-20230131-23.0		Sediment	Sampled: 01/31/23 09:00	(A3A1010-03)
Analysis	Due	Expires	Comments	
Sample Compositing2	02/01/23 17:00	05/10/23 09:00	BV for PFAS EPA-1633; (-03, -04, -05 into -06	Composite -01, -02,
Containers Supplied: (E)250 mL Poly (WM) - Non Preserved				

Sample Name: MFA-B4-20230202-SL-26.5	5	Sediment	Sampled: 02/02/23 09:10	(A3A1010-04
Analysis	Due	Expires	Comments	
Sample Compositing2	02/01/23 17:00	05/12/23 09:10	BV for PFAS EPA-10 -03, -04, -05 into -06	633: Composite -01, -02,
Containers Supplied:				

Standard TAT

Temp. Blank- 1.6/1.7/1.4,1.4/1.6/2

02	3	2-8-23	Fed Ex (Shipper)	9.3
Released By		Date	Received By	Date
	Fed Ex (Shipper)		July KALGI SOLADHARA	2023 02/09 12:55
Released By		Date	Received By	Date

Tens-Refer to ACTR

Page 1 of 2

SUBCONTRACT ORDER

Apex Laboratories A3A1010

Hac Usino

Sample Name: MFA-B5-20230203-SL-2	7.0	Sediment	Sampled:	02/03/23 15:00	(A3A1010-05)
Analysis	Due	Expires	C	Comments	
Sample Compositing2	02/01/23 17:00	05/13/23 15:00		V for PFAS EPA-1633: 03, -04, -05 into -06	Composite -01, -02,
Containers Supplied: (E)250 mL Poly (WM) - Non Preserved					

			As Received Composite of -01,-02,-03,-04,-05				
Sample Name: MFA-SL-Composite		Sediment	Sampled: 01/30/23 16:00	(A3A1010-06)			
Analysis	Due	Expires	Comments				
1613B Dioxins and Furans (SUB) W8123	02/13/23 17:00	01/30/24 16:00	> will send next week!				
1668C PCB Congeners (SUB)	02/13/23 17:00	01/30/24 16:00 /	next week.				
Subcontract Outside	02/23/23 17:00	07/29/23 16:00	PFAS EPA-1633				
Containers Supplied: (C)250 mL Poly (WM) - Non Preserved							

Standard TAT

Released By

Date

Received By

Date

See Page |

Released By

Date

Received By

Date

Date

Date

Page 2 of 2

Your Project #: A3A1010 Your C.O.C. #: n/a

Attention: Philip Nerenberg

Apex Laboratories 6700 SW Sandburg St. Tigard, OR USA 97223

Report Date: 2023/06/06

Report #: R7659013 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C347690 Received: 2023/02/17, 12:20

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Dioxins/Furans in Soil (1613B) (1)	1	2023/02/22	2023/02/24	BRL SOP-00410	EPA 1613B m
2378TCDF Confirmation (M8290A/M1613)	1	2023/02/22	2023/03/02	BRL SOP-00406	EPA M8290Am/ M1613Bm
				BRL SOP-00410	
PCB Congeners in Soil (1668C) (2)	1	2023/03/28	2023/04/07	BRL SOP-00408	EPA 1668C m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Soils are reported on a dry weight basis unless otherwise specified.

Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.

- (2) Soils are reported on a dry weight basis unless otherwise specified.
- U = Undetected at the limit of quantitation.
- J = Estimated concentration between the EDL & RDL.
- B = Blank Contamination.
- Q = One or more quality control criteria failed.
- ${\sf E}$ = Analyte concentration exceeds the maximum concentration level.
- ${\sf K}$ = Estimated maximum possible concentration due to ion abundance ratio failure.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Lori Dufour, Project Manager Email: Lori.Dufour@bureauveritas.com

Phone# (905) 817-5700

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Total Cover Pages : 1 Page 1 of 33

Apex Laboratories Client Project #: A3A1010

DIOXINS AND FURANS BY HRMS (SOIL)

			ı			1		1	1
Bureau Veritas ID		VBZ186							
Sampling Date		2023/01/30 16:00							
COC Number		n/a				TOXIC EQU	IIVALENCY	# of	
	UNITS	MFA-B1-B5- COMP-SL-PRO	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg/g	77.1	0.126	1.00	0.227	1.00	77.1	1	8520730
1,2,3,7,8-Penta CDD *	pg/g	37.8	0.132	5.00	0.258	1.00	37.8	1	8520730
1,2,3,4,7,8-Hexa CDD *	pg/g	7.73	0.142	5.00	0.204	0.100	0.773	1	8520730
1,2,3,6,7,8-Hexa CDD *	pg/g	610	0.120	5.00	0.173	0.100	61.0	1	8520730
1,2,3,7,8,9-Hexa CDD *	pg/g	312	0.126	5.00	0.179	0.100	31.2	1	8520730
1,2,3,4,6,7,8-Hepta CDD *	pg/g	474	0.140	5.00	0.743	0.0100	4.74	1	8520730
Octa CDD *	pg/g	2230	0.154	10.0	0.800	0.000300	0.669	1	8520730
Total Tetra CDD *	pg/g	144	0.126	1.00	0.400	N/A	N/A	10	8520730
Total Penta CDD *	pg/g	251	0.132	5.00	0.400	N/A	N/A	10	8520730
Total Hexa CDD *	pg/g	3910	0.129	5.00	0.400	N/A	N/A	6	8520730
Total Hepta CDD *	pg/g	820	0.140	5.00	0.400	N/A	N/A	2	8520730
2,3,7,8-Tetra CDF **	pg/g	498	0.0995	1.00	0.181	0.100	49.8	1	8520730
1,2,3,7,8-Penta CDF **	pg/g	11.0	0.155	5.00	0.242	0.0300	0.330	1	8520730
2,3,4,7,8-Penta CDF **	pg/g	8.20	0.142	5.00	0.211	0.300	2.46	1	8520730
1,2,3,4,7,8-Hexa CDF **	pg/g	6.77	0.157	5.00	0.228	0.100	0.677	1	8520730
1,2,3,6,7,8-Hexa CDF **	pg/g	2.64 J	0.141	5.00	0.203	0.100	0.264	1	8520730
2,3,4,6,7,8-Hexa CDF **	pg/g	2.96 J	0.148	5.00	0.177	0.100	0.296	1	8520730
1,2,3,7,8,9-Hexa CDF **	pg/g	0.453 U (1)	0.453	5.00	0.185	0.100	0.0453	0	8520730
1,2,3,4,6,7,8-Hepta CDF **	pg/g	50.9	0.110	5.00	0.185	0.0100	0.509	1	8520730
1,2,3,4,7,8,9-Hepta CDF **	pg/g	3.56 J	0.115	5.00	0.194	0.0100	0.0356	1	8520730
Octa CDF **	pg/g	108	0.144	10.0	0.919	0.000300	0.0324	1	8520730
Total Tetra CDF **	pg/g	1110	0.0995	1.00	0.400	N/A	N/A	16	8520730
Total Penta CDF **	pg/g	130	0.148	5.00	0.400	N/A	N/A	13	8520730
Total Hexa CDF **	pg/g	67.4	0.153	5.00	0.400	N/A	N/A	9	8520730
Total Hepta CDF **	pg/g	137	0.112	5.00	0.400	N/A	N/A	3	8520730
Confirmation 2,3,7,8-Tetra CDF **	pg/g	440 (2)	0.52	5.0	0.090	0.100	44.0	N/A	8531857
TOTAL TOXIC EQUIVALENCY	pg/g	N/A	N/A	N/A	N/A	N/A	262	N/A	N/A

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

** CDF = Chloro Dibenzo-p-Furan

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

(2) results reported from 5x dilution

Apex Laboratories Client Project #: A3A1010

DIOXINS AND FURANS BY HRMS (SOIL)

Bureau Veritas ID		VBZ186							
Sampling Date		2023/01/30 16:00							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	MFA-B1-B5- COMP-SL-PRO	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Surrogate Recovery (%)									
37CL4 2378 Tetra CDD *	%	99	N/A	N/A	N/A	N/A	N/A	N/A	8520730
C13-1234678 HeptaCDD *	%	94	N/A	N/A	N/A	N/A	N/A	N/A	8520730
C13-1234678 HeptaCDF **	%	79	N/A	N/A	N/A	N/A	N/A	N/A	8520730
C13-123478 HexaCDD *	%	81	N/A	N/A	N/A	N/A	N/A	N/A	8520730
C13-123478 HexaCDF **	%	81	N/A	N/A	N/A	N/A	N/A	N/A	8520730
C13-1234789 HeptaCDF **	%	96	N/A	N/A	N/A	N/A	N/A	N/A	8520730
C13-123678 HexaCDD *	%	94	N/A	N/A	N/A	N/A	N/A	N/A	8520730
C13-123678 HexaCDF **	%	87	N/A	N/A	N/A	N/A	N/A	N/A	8520730
C13-12378 PentaCDD *	%	95	N/A	N/A	N/A	N/A	N/A	N/A	8520730
C13-12378 PentaCDF **	%	86	N/A	N/A	N/A	N/A	N/A	N/A	8520730
C13-123789 HexaCDF **	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8520730
C13-234678 HexaCDF **	%	86	N/A	N/A	N/A	N/A	N/A	N/A	8520730
C13-23478 PentaCDF **	%	87	N/A	N/A	N/A	N/A	N/A	N/A	8520730
C13-2378 TetraCDD *	%	94	N/A	N/A	N/A	N/A	N/A	N/A	8520730
C13-2378 TetraCDF **	%	97	N/A	N/A	N/A	N/A	N/A	N/A	8520730
C13-OCDD *	%	96	N/A	N/A	N/A	N/A	N/A	N/A	8520730
Confirmation C13-2378 TetraCDF **	%	46	N/A	N/A	N/A	N/A	N/A	N/A	8531857

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

** CDF = Chloro Dibenzo-p-Furan

Apex Laboratories Client Project #: A3A1010

SEMI-VOLATILE ORGANICS BY HRMS (SOIL)

Bureau Veritas ID		VBZ186							
Complian Data		2023/01/30							
Sampling Date		16:00							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
		MFA-B1-B5-							
	UNITS	COMP-SL- PRO	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
4,4'-DiCB-(15)	ng/g	5.16	0.0069	0.0050	0.0039	N/A	N/A	1	8576352
22'3-TriCB-(16)	ng/g	0.020 U	0.020	0.0050	0.013	N/A	N/A	1	8576352
22'4-TriCB-(17)	ng/g	0.031 U	0.031	0.0020	0.0040	N/A	N/A	1	8576352
TriCB-(18)+(30)	ng/g	1.10	0.027	0.0050	0.0052	N/A	N/A	1	8576352
22'6-TriCB-(19)	ng/g	0.034 U	0.034	0.0020	0.0052	N/A	N/A	1	8576352
TriCB-(20) + (28)	ng/g	3.24	0.015	0.050	0.0090	N/A	N/A	1	8576352
TriCB-(21)+(33)	ng/g	0.693	0.0082	0.0050	0.011	N/A	N/A	1	8576352
234'-TriCB-(22)	ng/g	1.00	0.016	0.0020	0.0049	N/A	N/A	1	8576352
235-TriCB-(23)	ng/g	0.0082 U	0.0082	0.0020	0.0046	N/A	N/A	1	8576352
236-TriCB-(24)	ng/g	0.012 U	0.012	0.0020	0.0090	N/A	N/A	1	8576352
23'4-TriCB-(25)	ng/g	0.0083 U	0.0083	0.0020	0.0064	N/A	N/A	1	8576352
TriCB-(26)+(29)	ng/g	0.480	0.015	0.0050	0.0087	N/A	N/A	1	8576352
23'6-TriCB-(27)	ng/g	0.012 U	0.012	0.0020	0.0065	N/A	N/A	1	8576352
24'5-TriCB-(31)	ng/g	2.73	0.015	0.0050	0.0038	N/A	N/A	1	8576352
24'6-TriCB-(32)	ng/g	0.022 U	0.022	0.0020	0.0024	N/A	N/A	1	8576352
23'5'-TriCB-(34)	ng/g	0.0079 U	0.0079	0.0020	0.0060	N/A	N/A	1	8576352
33'4-TriCB-(35)	ng/g	0.562	0.016	0.0020	0.0042	N/A	N/A	1	8576352
33'5-TriCB-(36)	ng/g	0.0075 U	0.0075	0.0020	0.0029	N/A	N/A	1	8576352
344'-TriCB-(37)	ng/g	0.374	0.0078	0.0020	0.0029	N/A	N/A	1	8576352
345-TriCB-(38)	ng/g	0.0080 U	0.0080	0.0020	0.0038	N/A	N/A	1	8576352
34'5-TriCB-(39)	ng/g	0.0082 U	0.0082	0.0020	0.0052	N/A	N/A	1	8576352
TetraCB-(40)+(41)+(71)	ng/g	0.021 U	0.021	0.010	0.016	N/A	N/A	1	8576352
22'34'-TetraCB-(42)	ng/g	0.056 U	0.056	0.0050	0.014	N/A	N/A	1	8576352
22'35-TetraCB-(43)	ng/g	0.028 U	0.028	0.0050	0.019	N/A	N/A	1	8576352
TetraCB-(44)+(47)+(65)	ng/g	7.84	0.040	0.010	0.041	N/A	N/A	1	8576352
TetraCB-(45)+(51)	ng/g	0.022 U	0.022	0.0050	0.018	N/A	N/A	1	8576352
22'36'-TetraCB-(46)	ng/g	0.024 U	0.024	0.0020	0.0090	N/A	N/A	1	8576352
22'45-TetraCB-(48)	ng/g	0.042 U	0.042	0.0050	0.0042	N/A	N/A	1	8576352
TetraCB-(49)+TetraCB-(69)	ng/g	6.53	0.037	0.010	0.010	N/A	N/A	1	8576352
TetraCB-(50)+(53)	ng/g	0.043 U	0.043	0.010	0.013	N/A	N/A	1	8576352
22'55'-TetraCB-(52)	ng/g	19.2	0.042	0.0050	0.016	N/A	N/A	1	8576352

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3A1010

SEMI-VOLATILE ORGANICS BY HRMS (SOIL)

UNITS COMP-SI-PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	Bureau Veritas ID		VBZ186							
Note	Sampling Data		2023/01/30							
UNITS COMP-SL-PRO UNITS COMP-SL-PRO UNITS COMP-SL-PRO DIA RDL RDL RDL RDL TEF (2005 WHO) TEQ(DL) Isomers QC Bate 22°66'-TetraCB-(54)	Sampling Date		16:00							
Lond COMP-SIO EDL PRO MDL TEF (2005 WHO) TEQ(DL) Isomers QC Bate 22266'-TetraCB-(54) ng/g 0.044 U 0.050 0.0096 N/A N/A N/A 1 857635 233'4-TetraCB-(55) ng/g 0.014 U 0.014 0.0050 0.011 N/A N/A 1 857635 233'5'-TetraCB-(57) ng/g 0.014 U 0.014 0.0050 0.0055 N/A N/A 1 857635 233'5'-TetraCB-(58) ng/g 0.015 U 0.014 U 0.0050 0.011 N/A N/A 1 857635 2344'-TetraCB-(59)+(62)+(75) ng/g 0.015 U 0.014 U 0.015 0.011 N/A N/A N/A 1 857635 2344'-TetraCB-(60) ng/g 0.014 U 0.014 0.0050 0.0033 N/A N/A N/A 1 857635 234'-TetraCB-(61)+(70)+(74)+(76) ng/g 0.013 U 0.013 0.0050 0.0071 N/A N/A N/A 1 857635 234'G-TetraCB-(63) ng/g 0.0	COC Number		n/a				TOXIC EQU	IVALENCY	# of	
233'4-TetraCB-(55)		UNITS	COMP-SL-	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
233'4'-Tetra CB(56)	22'66'-TetraCB-(54)	ng/g	0.044 U	0.044	0.0050	0.0096	N/A	N/A	1	8576352
233'5-TetraCB-(57)	233'4-TetraCB-(55)	ng/g	0.014 U	0.014	0.0050	0.011	N/A	N/A	1	8576352
233'S'-TetraCB-(58) ng/g 0.014 U 0.014 0.0050 0.011 N/A N/A 1 857635 TetraCB-(59)+(62)+(75) ng/g 0.015 U 0.015 0.010 0.014 U N/A N/A N/A 1 857635 2344'-TetraCB-(60) ng/g 0.014 U 0.014 U 0.0050 0.0053 N/A N/A 1 857635 TetraCB-(61)+(70)+(74)+(76) ng/g 17.9 0.028 0.020 0.022 N/A N/A N/A 1 857635 234'S-TetraCB-(63) ng/g 0.013 U 0.036 0.0050 0.0071 N/A N/A 1 857635 23'45-TetraCB-(64) ng/g 6.60 0.027 0.0050 0.0047 N/A N/A 1 857635 23'45-TetraCB-(66) ng/g 0.012 U 0.012 0.0050 0.099 N/A N/A 1 857635 23'45-TetraCB-(67) ng/g 0.013 U 0.013 0.0050 0.0088 N/A	233'4'-Tetra CB(56)	ng/g	1.11	0.014	0.0050	0.0051	N/A	N/A	1	8576352
TetraCB-(59)+(62)+(75)	233'5-TetraCB-(57)	ng/g	0.014 U	0.014	0.0050	0.0056	N/A	N/A	1	8576352
2344'-TetraCB-(60)	233'5'-TetraCB-(58)	ng/g	0.014 U	0.014	0.0050	0.011	N/A	N/A	1	8576352
TetraCB-(61)+(70)+(74)+(76)	TetraCB-(59)+(62)+(75)	ng/g	0.015 U	0.015	0.010	0.014	N/A	N/A	1	8576352
234'5-TetraCB-(63)	2344'-TetraCB -(60)	ng/g	0.014 U	0.014	0.0050	0.0053	N/A	N/A	1	8576352
234'6-TetraCB-(64)	TetraCB-(61)+(70)+(74)+(76)	ng/g	17.9	0.028	0.020	0.022	N/A	N/A	1	8576352
23'44'-TetraCB-(66)	234'5-TetraCB-(63)	ng/g	0.013 U	0.013	0.0050	0.0071	N/A	N/A	1	8576352
23'45-TetraCB-(67)	234'6-TetraCB-(64)	ng/g	3.11	0.036	0.0050	0.0047	N/A	N/A	1	8576352
23'45'-TetraCB-(68)	23'44'-TetraCB-(66)	ng/g	6.60	0.027	0.0050	0.099	N/A	N/A	1	8576352
23'55'-TetraCB-(72)	23'45-TetraCB-(67)	ng/g	0.012 U	0.012	0.0050	0.011	N/A	N/A	1	8576352
23'5'6-TetraCB-(73)	23'45'-TetraCB-(68)	ng/g	0.013 U	0.013	0.0050	0.0088	N/A	N/A	1	8576352
33'44'-TetraCB-(77)	23'55'-TetraCB-(72)	ng/g	0.013 U	0.013	0.0050	0.0086	N/A	N/A	1	8576352
33'45-TetraCB-(78) ng/g 0.015 U 0.015 0.0050 0.0065 0.0065 N/A N/A 1 857635 33'45'-TetraCB(79) ng/g 0.012 U 0.012 0.0050 0.0058 N/A N/A N/A 1 857635 33'45'-TetraCB-(80) ng/g 0.011 U 0.011 0.0050 0.0061 N/A N/A N/A 1 857635 344'5-TetraCB-(81) ng/g 0.013 U 0.013 0.0050 0.0058 0.000300 0.00000390 1 857635 32'3'4-PentaCB-(81) ng/g 0.027 U 0.027 0.0050 0.0048 N/A N/A N/A 1 857635 22'33'4-PentaCB-(82) ng/g 0.027 U 0.027 0.0050 0.0048 N/A N/A N/A 1 857635 22'33'6-PentaCB-(83)+(99) ng/g 5.86 0.050 0.0020 0.0027 0.0027 0.0027 N/A N/A N/A 1 857635 PentaCB-(85)+(116)+(117) ng/g 4.02 0.037 0.010 0.027 N/A N/A N/A N/A N/A 1 857635 PentaCB-(86)(87)(97)(109)(119)(125) <td>23'5'6-TetraCB-(73)</td> <td>ng/g</td> <td>0.014 U</td> <td>0.014</td> <td>0.0050</td> <td>0.019</td> <td>N/A</td> <td>N/A</td> <td>1</td> <td>8576352</td>	23'5'6-TetraCB-(73)	ng/g	0.014 U	0.014	0.0050	0.019	N/A	N/A	1	8576352
33'45'-TetraCB(79)	33'44'-TetraCB-(77)	ng/g	0.015 U	0.015	0.0050	0.0063	0.000100	0.00000150	1	8576352
33'55'-TetraCB-(80)	33'45-TetraCB-(78)	ng/g	0.015 U	0.015	0.0050	0.0065	N/A	N/A	1	8576352
344'5-TetraCB-(81) ng/g 0.013 U 0.013 0.0050 0.0058 0.000300 0.00000390 1 857635 22'33'4-PentaCB-(82) ng/g 0.027 U 0.027 0.0050 0.0048 N/A N/A N/A 1 857635 PentaCB-(83)+(99) ng/g 15.8 0.048 0.010 0.016 N/A N/A 1 857635 22'33'6-PentaCB-(84) ng/g 5.86 0.050 0.0020 0.0077 N/A N/A N/A 1 857635 PentaCB-(85)+(116)+(117) ng/g 4.02 0.037 0.010 0.027 N/A N/A N/A 1 857635 PentaCB-(86)(87)(97)(109)(119)(125) ng/g 20.3 0.040 0.020 0.029 N/A N/A N/A 1 857635 PentaCB-(88)+(91) ng/g 1.84 0.025 0.0050 0.013 N/A N/A N/A 1 857635 22'346'-PentaCB-(89) ng/g 0.030 U 0.030 U 0.0050 U	33'45'-TetraCB(79)	ng/g	0.012 U	0.012	0.0050	0.0058	N/A	N/A	1	8576352
22'33'4-PentaCB-(82) ng/g 0.027 U 0.027 0.0050 0.0048 N/A N/A N/A 1 857635 PentaCB-(83)+(99) ng/g 15.8 0.048 0.010 0.016 N/A N/A N/A 1 857635 22'33'6-PentaCB-(84) ng/g 5.86 0.050 0.0020 0.0077 N/A N/A N/A 1 857635 PentaCB-(85)+(116)+(117) ng/g 4.02 0.037 0.010 0.027 N/A N/A N/A 1 857635 PentaCB-(86)(87)(97)(109)(119)(125) ng/g 20.3 0.040 0.020 0.029 N/A N/A N/A 1 857635 PentaCB-(88)+(91) ng/g 1.84 0.025 0.0050 0.013 N/A N/A N/A N/A 1 857635 22'346'-PentaCB-(89) ng/g 0.030 U 0.030 0.0050 0.0080 N/A N/A N/A N/A 1 857635 PentaCB-(90)+(101)+(113) ng/g 32.8 0.041 0.020 0.011 N/A N/A N/A N/A 1 857635 22'355'-PentaCB-(92) ng/g 3.27 0.027 0.0050 0.0044 N/A N/A N/A N/A N/A N/A N/A<	33'55'-TetraCB-(80)	ng/g	0.011 U	0.011	0.0050	0.0061	N/A	N/A	1	8576352
PentaCB-(83)+(99) ng/g 15.8 0.048 0.010 0.016 N/A N/A 1 857635 22'33'6-PentaCB-(84) ng/g 5.86 0.050 0.0020 0.0077 N/A N/A 1 857635 PentaCB-(85)+(116)+(117) ng/g 4.02 0.037 0.010 0.027 N/A N/A 1 857635 PentaCB-(86)(87)(97)(109)(119)(125) ng/g 20.3 0.040 0.020 0.029 N/A N/A N/A 1 857635 PentaCB-(88)+(91) ng/g 1.84 0.025 0.0050 0.013 N/A N/A N/A 1 857635 22'346'-PentaCB-(89) ng/g 0.030 U 0.030 U 0.0050 O.0080 N/A N/A N/A 1 857635 PentaCB-(90)+(101)+(113) ng/g 32.8 0.041 O.020 O.011 N/A N/A N/A 1 857635 22'355'-PentaCB-(92) ng/g 3.27 O.027 O.0050 O.0044 N/A N/A N/A N/A	344'5-TetraCB-(81)	ng/g	0.013 U	0.013	0.0050	0.0058	0.000300	0.00000390	1	8576352
22'33'6-PentaCB-(84)	22'33'4-PentaCB-(82)	ng/g	0.027 U	0.027	0.0050	0.0048	N/A	N/A	1	8576352
PentaCB-(85)+(116)+(117) ng/g 4.02 0.037 0.010 0.027 N/A N/A 1 857635 PentaCB-(86)(87)(97)(109)(119)(125) ng/g 20.3 0.040 0.020 0.029 N/A N/A 1 857635 PentaCB-(88)+(91) ng/g 1.84 0.025 0.0050 0.013 N/A N/A 1 857635 22'346'-PentaCB-(89) ng/g 0.030 U 0.030 0.0050 0.0080 N/A N/A N/A 1 857635 PentaCB-(90)+(101)+(113) ng/g 32.8 0.041 0.020 0.011 N/A N/A N/A 1 857635 22'355'-PentaCB-(92) ng/g 3.27 0.027 0.0050 0.0044 N/A N/A N/A 1 857635	PentaCB-(83)+(99)	ng/g	15.8	0.048	0.010	0.016	N/A	N/A	1	8576352
PentaCB-(86)(87)(97)(109)(119)(125) ng/g 20.3 0.040 0.020 0.029 N/A N/A 1 857635 PentaCB-(88)+(91) ng/g 1.84 0.025 0.0050 0.013 N/A N/A 1 857635 22'346'-PentaCB-(89) ng/g 0.030 U 0.030 O 0.0050 0.0080 N/A N/A 1 857635 PentaCB-(90)+(101)+(113) ng/g 32.8 0.041 0.020 0.011 N/A N/A N/A 1 857635 22'355'-PentaCB-(92) ng/g 3.27 0.027 0.0050 0.0044 N/A N/A N/A 1 857635	22'33'6-PentaCB-(84)	ng/g	5.86	0.050	0.0020	0.0077	N/A	N/A	1	8576352
PentaCB-(88)+(91) ng/g 1.84 0.025 0.0050 0.013 N/A N/A 1 857635 22'346'-PentaCB-(89) ng/g 0.030 U 0.030 U 0.0050 O.0080 N/A N/A 1 857635 PentaCB-(90)+(101)+(113) ng/g 32.8 0.041 O.020 O.011 N/A N/A N/A 1 857635 22'355'-PentaCB-(92) ng/g 3.27 0.027 O.0050 O.0044 N/A N/A N/A 1 857635	PentaCB-(85)+(116)+(117)	ng/g	4.02	0.037	0.010	0.027	N/A	N/A	1	8576352
22'346'-PentaCB-(89)	PentaCB-(86)(87)(97)(109)(119)(125)	ng/g	20.3	0.040	0.020	0.029	N/A	N/A	1	8576352
PentaCB-(90)+(101)+(113) ng/g 32.8 0.041 0.020 0.011 N/A N/A 1 857635 22'355'-PentaCB-(92) ng/g 3.27 0.027 0.0050 0.0044 N/A N/A 1 857635	PentaCB-(88)+(91)	ng/g	1.84	0.025	0.0050	0.013	N/A	N/A	1	8576352
22'355'-PentaCB-(92) ng/g 3.27 0.027 0.0050 0.0044 N/A N/A 1 857635	22'346'-PentaCB-(89)	ng/g	0.030 U	0.030	0.0050	0.0080	N/A	N/A	1	8576352
5.0	PentaCB-(90)+(101)+(113)	ng/g	32.8	0.041	0.020	0.011	N/A	N/A	1	8576352
PentaCB-(93)+(98)+(100)+(102) ng/g 0.024 U 0.024 0.020 0.024 N/A N/A 1 857635.	22'355'-PentaCB-(92)	ng/g	3.27	0.027	0.0050	0.0044	N/A	N/A	1	8576352
	PentaCB-(93)+(98)+(100)+(102)	ng/g	0.024 U	0.024	0.020	0.024	N/A	N/A	1	8576352

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3A1010

SEMI-VOLATILE ORGANICS BY HRMS (SOIL)

PRO PRO 22'356'-PentaCB-(94) ng/g 0.027 U 0.027 0.0050 0.0063 N/A 22'35'6-PentaCB-(95) ng/g 23.2 0.055 0.0050 0.0088 N/A 22'366'-PentaCB-(96) ng/g 0.024 U 0.024 0.0050 0.010 N/A 22'45'6-PentaCB-(103) ng/g 0.025 U 0.025 0.0050 0.0061 N/A 22'466'-PentaCB-(104) ng/g 0.023 U 0.023 0.0050 0.0056 N/A	EQ(DL) Isc	# of	
COC Number n/a TOXIC EQUIVALE UNITS MFA-B1-B5- COMP-SL- PRO EDL PRO RDL NDL MDL TEF (2005 WHO) TI 22'356'-PentaCB-(94) ng/g 0.027 U 0.027 U 0.0050 U 0.0063 U N/A 22'35'6-PentaCB-(95) ng/g 23.2 U 0.055 U 0.0050 U 0.0088 U N/A 22'366'-PentaCB-(96) ng/g 0.024 U 0.024 U 0.0050 U 0.010 U N/A 22'45'6-PentaCB-(103) ng/g 0.025 U 0.025 U 0.0050 U 0.0061 U N/A 22'466'-PentaCB-(104) ng/g 0.023 U 0.023 U 0.0050 U 0.0056 U N/A 233'44'-PentaCB-(105) ng/g 0.011 U 0.011 U 0.0050 U 0.0036 U N/A 233'45-PentaCB-(106) ng/g 2.29 U 0.017 U 0.0050 U 0.017 U N/A	EQ(DL) Isc		
UNITS MFA-B1-B5-COMP-SL-PRO EDL RDL MDL TEF (2005 WHO) TEF (2005 WHO) 22'356'-PentaCB-(94) ng/g 0.027 U 0.027 0.0050 0.0063 N/A N/A 22'35'6-PentaCB-(95) ng/g 23.2 0.055 0.0050 0.0088 N/A N/A 22'366'-PentaCB-(96) ng/g 0.024 U 0.024 0.0050 0.010 N/A N/A 22'45'6-PentaCB-(103) ng/g 0.025 U 0.025 0.0050 0.0061 N/A N/A 22'466'-PentaCB-(104) ng/g 0.023 U 0.023 0.0050 0.0056 N/A N/A 233'44'-PentaCB-(105) ng/g 6.49 0.013 0.0050 0.0044 0.0000300 0.0 0.0 233'45-PentaCB-(106) ng/g 0.011 U 0.011 0.0050 0.0036 N/A N/A 233'4'5-PentaCB-(107) ng/g 2.29 0.017 0.0050 0.017 N/A	EQ(DL) Isc		
UNITS COMP-SL-PRO EDL RDL MDL TEF (2005 WHO) TI 22'356'-PentaCB-(94) ng/g 0.027 U 0.027 0.0050 0.0063 N/A N/A 0.0235'6-PentaCB-(95) N/A 0.025 0.0050 0.0063 N/A N/A 0.023'35'6-PentaCB-(96) 0.0050 0.0050 0.0088 N/A N/A 0.024 0.0050 0.0050 0.0010 N/A N/A 0.024'45'6-PentaCB-(103) 0.025 U 0.025 0.0050 0.0061 N/A N/A 0.024'46'-PentaCB-(104) 0.0050 0.0056 N/A N/A 0.023'44'-PentaCB-(105) 0.0050 0.0044 0.0000300 0.0050 0.0044 0.0000300 0.0050 0.0050 0.0056 N/A 0.011 U 0.0050 0.0036 N/A 0.011 U 0.0050 0.0036 N/A 0.012 0.0050 0.0036 N/A 0.013 0.0050 0.0036 N/A 0.014 0.0050 0.0036 N/A 0.015 0.0050 0.0036 N/A 0.015 0.0050	N/A	omers	
22'35'6-PentaCB-(95) ng/g 23.2 0.055 0.0050 0.0088 N/A 22'366'-PentaCB-(96) ng/g 0.024 U 0.024 0.0050 0.010 N/A 22'45'6-PentaCB-(103) ng/g 0.025 U 0.025 0.0050 0.0061 N/A 22'466'-PentaCB-(104) ng/g 0.023 U 0.023 0.0050 0.0056 N/A 233'44'-PentaCB-(105) ng/g 6.49 0.013 0.0050 0.0044 0.0000300 0.1 233'45-PentaCB-(106) ng/g 0.011 U 0.011 0.0050 0.0036 N/A 233'4'5-PentaCB-(107) ng/g 2.29 0.017 0.0050 0.017 N/A			QC Batch
22'366'-PentaCB-(96) ng/g 0.024 U 0.024 U 0.0050 0.010 N/A 22'45'6-PentaCB-(103) ng/g 0.025 U 0.025 U 0.0050 0.0061 N/A 22'466'-PentaCB-(104) ng/g 0.023 U 0.023 0.0050 0.0056 N/A 233'44'-PentaCB-(105) ng/g 6.49 0.013 0.0050 0.0044 0.0000300 0.0 233'45-PentaCB-(106) ng/g 0.011 U 0.011 0.0050 0.0036 N/A N/A 233'4'5-PentaCB-(107) ng/g 2.29 0.017 0.0050 0.017 N/A		1	8576352
22'45'6-PentaCB-(103) ng/g 0.025 U 0.025 U 0.0050 0.0061 N/A 22'466'-PentaCB-(104) ng/g 0.023 U 0.023 U 0.0050 0.0056 N/A 233'44'-PentaCB-(105) ng/g 6.49 0.013 0.0050 0.0044 0.0000300 0.0 233'45-PentaCB-(106) ng/g 0.011 U 0.011 0.0050 0.0036 N/A 233'4'5-PentaCB-(107) ng/g 2.29 0.017 0.0050 0.017 N/A	N/A	1	8576352
22'466'-PentaCB-(104) ng/g 0.023 U 0.023 U 0.0050 O.0056 N/A 233'44'-PentaCB-(105) ng/g 6.49 O.013 O.0050 O.0044 O.0000300 O.0033'45-PentaCB-(106) 0.011 U O.011 O.0050 O.0036 N/A 233'45-PentaCB-(107) ng/g 2.29 O.017 O.0050 O.017 N/A	N/A	1	8576352
233'44'-PentaCB-(105) ng/g 6.49 0.013 0.0050 0.0044 0.0000300 0.0 233'45-PentaCB-(106) ng/g 0.011 U 0.011 0.0050 0.0036 N/A 233'4'5-PentaCB-(107) ng/g 2.29 0.017 0.0050 0.017 N/A	N/A	1	8576352
233'45-PentaCB-(106) ng/g 0.011 U 0.011 0.0050 0.0036 N/A 233'4'5-PentaCB-(107) ng/g 2.29 0.017 0.0050 0.017 N/A	N/A	1	8576352
233'4'5-PentaCB-(107) ng/g 2.29 0.017 0.0050 0.017 N/A	000195	1	8576352
	N/A	1	8576352
PentaCB-(108)+(124) ng/g 1.28 0.021 0.010 0.011 N/A	N/A	1	8576352
	N/A	1	8576352
PentaCB-(110)+(115) ng/g 37.2 0.037 0.010 0.012 N/A	N/A	1	8576352
233'55'-PentaCB-(111) ng/g 0.016 U 0.016 0.0050 0.0056 N/A	N/A	1	8576352
233'56-PentaCB-(112) ng/g 0.016 U 0.016 0.0050 0.0078 N/A	N/A	1	8576352
2344'5-PentaCB-(114) ng/g 0.011 U 0.011 0.0050 0.0042 0.0000300 0.00	00000330	1	8576352
23'44'5-PentaCB-(118) ng/g 17.8 0.010 0.010 0.0066 0.0000300 0.	000534	1	8576352
23'455'-PentaCB-(120) ng/g 0.017 U 0.017 0.0050 0.0064 N/A	N/A	1	8576352
23'45'6-PentaCB-(121) ng/g 0.017 U 0.017 0.0050 0.0063 N/A	N/A	1	8576352
233'4'5'-PentaCB-(122) ng/g 0.013 U 0.013 0.0050 0.0066 N/A	N/A	1	8576352
23'44'5'-PentaCB-(123) ng/g 0.011 U 0.011 0.0050 0.014 0.0000300 0.00	00000330	1	8576352
33'44'5-PentaCB-(126) ng/g 0.013 U 0.013 0.0050 0.0030 0.100 0	.00130	1	8576352
33'455'-PentaCB-(127) ng/g 0.010 U 0.010 0.0050 0.0032 N/A	N/A	1	8576352
HexaCB-(128)+(166) ng/g 3.64 0.028 0.010 0.021 N/A	N/A	1	8576352
HexaCB-(129)+(138)+(163) ng/g 25.3 0.033 0.020 0.037 N/A	N/A	1	8576352
22'33'45'-HexaCB-(130) ng/g 1.52 0.036 0.0050 0.0051 N/A	N/A	1	8576352
22'33'46-HexaCB-(131) ng/g 0.022 U 0.022 0.0050 0.0099 N/A	N/A	1	8576352
22'33'46'-HexaCB-(132) ng/g 7.64 0.037 0.0050 0.0087 N/A	N/A	1	8576352
22'33'55'-HexaCB-(133) ng/g 0.019 U 0.019 0.0050 0.010 N/A	N/A	1	8576352
HexaCB-(134)+(143) ng/g 1.36 0.040 0.010 0.017 N/A	N/A	1	8576352
HexaCB-(135)+(151) ng/g 6.22 0.068 0.020 0.014 N/A		_	0576353
22'33'66'-HexaCB-(136) ng/g 2.76 0.052 0.0050 0.0083 N/A	N/A	1	8576352
22'344'5-HexaCB-(137) ng/g 0.016 U 0.016 0.010 0.030 N/A		-	8576352 8576352

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3A1010

SEMI-VOLATILE ORGANICS BY HRMS (SOIL)

Bureau Veritas ID		VBZ186							
Samulina Data		2023/01/30							
Sampling Date		16:00							
COC Number		n/a				TOXIC EQU	IIVALENCY	# of	
	UNITS	MFA-B1-B5- COMP-SL- PRO	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
HexaCB-(139)+(140)	ng/g	0.015 U	0.015	0.010	0.016	N/A	N/A	1	8576352
22'3455'-HexaCB-(141)	ng/g	3.20	0.030	0.0050	0.012	N/A	N/A	1	8576352
22'3456-HexaCB-(142)	ng/g	0.020 U	0.020	0.0050	0.0088	N/A	N/A	1	8576352
22'345'6-HexaCB-(144)	ng/g	0.036 U	0.036	0.0050	0.0072	N/A	N/A	1	8576352
22'3466'-HexaCB-(145)	ng/g	0.025 U	0.025	0.0050	0.0082	N/A	N/A	1	8576352
22'34'55'-HexaCB-(146)	ng/g	2.46	0.029	0.0050	0.010	N/A	N/A	1	8576352
HexaCB-(147)+(149)	ng/g	11.9	0.027	0.010	0.019	N/A	N/A	1	8576352
22'34'56'-HexaCB-(148)	ng/g	0.034 U	0.034	0.0050	0.0084	N/A	N/A	1	8576352
22'34'66'-HexaCB-(150)	ng/g	0.024 U	0.024	0.0050	0.0061	N/A	N/A	1	8576352
22'3566'-HexaCB-(152)	ng/g	0.027 U	0.027	0.0050	0.013	N/A	N/A	1	8576352
HexaCB-(153)+(168)	ng/g	15.4	0.025	0.010	0.013	N/A	N/A	1	8576352
22'44'56'-HexaCB-(154)	ng/g	0.027 U	0.027	0.0050	0.012	N/A	N/A	1	8576352
22'44'66'-HexaCB-(155)	ng/g	0.024 U	0.024	0.0050	0.0087	N/A	N/A	1	8576352
HexaCB-(156)+(157)	ng/g	3.36	0.011	0.010	0.0086	0.0000300	0.000101	1	8576352
233'44'6-HexaCB-(158)	ng/g	2.47	0.021	0.0050	0.0072	N/A	N/A	1	8576352
233'455'-HexaCB-(159)	ng/g	0.0085 U	0.0085	0.0050	0.0082	N/A	N/A	1	8576352
233'456-HexaCB-(160)	ng/g	0.013 U	0.013	0.0050	0.017	N/A	N/A	1	8576352
233'45'6-HexaCB-(161)	ng/g	0.012 U	0.012	0.0050	0.011	N/A	N/A	1	8576352
233'4'55'-HexaCB-(162)	ng/g	0.0083 U	0.0083	0.0050	0.0083	N/A	N/A	1	8576352
233'4'5'6-HexaCB-(164)	ng/g	0.012 U	0.012	0.0050	0.017	N/A	N/A	1	8576352
233'55'6-HexaCB-(165)	ng/g	0.013 U	0.013	0.0050	0.010	N/A	N/A	1	8576352
23'44'55'-HexaCB-(167)	ng/g	1.06	0.012	0.0050	0.0056	0.0000300	0.0000318	1	8576352
33'44'55'-HexaCB-(169)	ng/g	0.010 U	0.010	0.0050	0.024	0.0300	0.000300	1	8576352
22'33'44'5-HeptaCB-(170)	ng/g	2.23	0.024	0.0050	0.0042	N/A	N/A	1	8576352
HeptaCB-(171)+(173)	ng/g	0.041 U	0.041	0.010	0.011	N/A	N/A	1	8576352
22'33'455'-HeptaCB-(172)	ng/g	0.020 U	0.020	0.0050	0.0080	N/A	N/A	1	8576352
22'33'456'-HeptaCB-(174)	ng/g	3.00	0.037	0.0050	0.014	N/A	N/A	1	8576352
22'33'45'6-HeptaCB-(175)	ng/g	0.031 U	0.031	0.0050	0.0092	N/A	N/A	1	8576352
22'33'466'-HeptaCB-(176)	ng/g	0.024 U	0.024	0.0050	0.0098	N/A	N/A	1	8576352
22'33'45'6'-HeptaCB-(177)	ng/g	1.57	0.041	0.0050	0.0078	N/A	N/A	1	8576352

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3A1010

SEMI-VOLATILE ORGANICS BY HRMS (SOIL)

Bureau Veritas ID		VBZ186							
Committee Date		2023/01/30							
Sampling Date		16:00							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	MFA-B1-B5- COMP-SL- PRO	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'55'6-HeptaCB-(178)	ng/g	0.034 U	0.034	0.0050	0.010	N/A	N/A	1	8576352
22'33'566'-HeptaCB-(179)	ng/g	0.047 U	0.047	0.0050	0.0086	N/A	N/A	1	8576352
HeptaCB-(180)+(193)	ng/g	8.67	0.032	0.010	0.0085	N/A	N/A	1	8576352
22'344'56-HeptaCB-(181)	ng/g	0.019 U	0.019	0.0050	0.0080	N/A	N/A	1	8576352
22'344'56'-HeptaCB-(182)	ng/g	0.029 U	0.029	0.0050	0.0092	N/A	N/A	1	8576352
22'344'5'6-HeptaCB-(183)	ng/g	1.84	0.034	0.0050	0.028	N/A	N/A	1	8576352
22'344'66'-HeptaCB-(184)	ng/g	0.022 U	0.022	0.0050	0.010	N/A	N/A	1	8576352
22'3455'6-HeptaCB-(185)	ng/g	0.020 U	0.020	0.0050	0.022	N/A	N/A	1	8576352
22'34566'-HeptaCB-(186)	ng/g	0.024 U	0.024	0.0050	0.0086	N/A	N/A	1	8576352
22'34'55'6-HeptaCB-(187)	ng/g	3.19	0.059	0.0050	0.011	N/A	N/A	1	8576352
22'34'566'-HeptaCB-(188)	ng/g	0.029 U	0.029	0.0050	0.0047	N/A	N/A	1	8576352
233'44'55'-HeptaCB-(189)	ng/g	0.013 U	0.013	0.0050	0.0041	0.0000300	0.000000390	1	8576352
233'44'56-HeptaCB-(190)	ng/g	0.029 U	0.029	0.0050	0.0041	N/A	N/A	1	8576352
233'44'5'6-HeptaCB-(191)	ng/g	0.014 U	0.014	0.0050	0.0045	N/A	N/A	1	8576352
233'455'6-HeptaCB-(192)	ng/g	0.016 U	0.016	0.0050	0.0090	N/A	N/A	1	8576352
22'33'44'55'-OctaCB-(194)	ng/g	0.026 U	0.026	0.0050	0.0095	N/A	N/A	1	8576352
22'33'44'56-OctaCB-(195)	ng/g	0.027 U	0.027	0.0050	0.0094	N/A	N/A	1	8576352
22'33'44'56'-OctaCB-(196)	ng/g	0.067 U	0.067	0.0050	0.016	N/A	N/A	1	8576352
22'33'44'66'OctaCB-(197)	ng/g	0.024 U	0.024	0.0050	0.044	N/A	N/A	1	8576352
OctaCB-(198)+(199)	ng/g	0.036 U	0.036	0.010	0.014	N/A	N/A	1	8576352
22'33'4566'-OctaCB-(200)	ng/g	0.054 U	0.054	0.0050	0.032	N/A	N/A	1	8576352
22'33'45'66'-OctaCB-(201)	ng/g	0.023 U	0.023	0.0050	0.017	N/A	N/A	1	8576352
22'33'55'66'-OctaCB-(202)	ng/g	0.027 U	0.027	0.0050	0.0081	N/A	N/A	1	8576352
22'344'55'6-OctaCB-(203)	ng/g	0.067 U	0.067	0.0050	0.011	N/A	N/A	1	8576352
22'344'566'-OctaCB-(204)	ng/g	0.024 U	0.024	0.0050	0.021	N/A	N/A	1	8576352
233'44'55'6-OctaCB-(205)	ng/g	0.019 U	0.019	0.0050	0.0096	N/A	N/A	1	8576352
22'33'44'55'6-NonaCB-(206)	ng/g	0.019 U	0.019	0.0050	0.0077	N/A	N/A	1	8576352
22'33'44'566'-NonaCB-(207)	ng/g	0.016 U	0.016	0.0050	0.0081	N/A	N/A	1	8576352
22'33'455'66'-NonaCB-(208)	ng/g	0.019 U	0.019	0.0050	0.0073	N/A	N/A	1	8576352
DecaCB-(209)	ng/g	0.019 U	0.019	0.0050	0.012	N/A	N/A	1	8576352

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3A1010

SEMI-VOLATILE ORGANICS BY HRMS (SOIL)

Bureau Veritas ID		VBZ186							
Sampling Date		2023/01/30							
Sampling Date		16:00							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	MFA-B1-B5- COMP-SL- PRO	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Total PCB	ng/g	0 (1)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
TOTAL TOXIC EQUIVALENCY	ng/g	N/A	N/A	N/A	N/A	N/A	0.00247	N/A	N/A
Surrogate Recovery (%)		•		-	-	•		•	
C13-2,44'-TriCB-(28)	%	22	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-22'33'44'55'6-NonaCB-(206)	%	30 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-22'33'44'5-HeptaCB-(170)	%	31 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-22'33'455'66'-NonaCB-(208)	%	26 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-22'33'55'66'-OctaCB-(202)	%	28 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-22'33'55'6-HeptaCB-(178)	%	12 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-22'344'55'-HeptaCB-(180)	%	25 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-22'34'566'-HeptaCB-(188)	%	26 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-22'44'66'-HexaCB-(155)	%	26 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-22'466'-PentaCB-(104)	%	22 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-22'66'-TetraCB-(54)	%	15	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-22'6-TriCB-(19)	%	22	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-22'-DiCB-(4)	%	5.0 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-233'44'55'6-OctaCB-(205)	%	31 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-233'44'55'-HeptaCB-(189)	%	39 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-233'44'-PentaCB-(105)	%	35 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-233'55'-PentaCB-(111)	%	11 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-23'44'55'-HexaCB-(167)	%	38 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-2344'5-PentaCB-(114)	%	38 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-23'44'5-PentaCB-(118)	%	39 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-2'344'5-PentaCB-(123)	%	34 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-2-MonoCB-(1)	%	5.0 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-33'44'55'-HexaCB-(169)	%	42	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-33'44'5-PentaCB-(126)	%	31 (2)	N/A	N/A	N/A	N/A	N/A	N/A	8576352

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Due to Mono, Di and Tetra Channels failing to report Totals, Total PCBs cannot be calculated. Sum of Tri, Penta - Deca Totals is approximately 291.1364.

(2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Apex Laboratories Client Project #: A3A1010

SEMI-VOLATILE ORGANICS BY HRMS (SOIL)

Bureau Veritas ID		VBZ186							
Sampling Date		2023/01/30 16:00							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	MFA-B1-B5- COMP-SL- PRO	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-33'44'-TetraCB-(77)	%	36 (1)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-344'5-TetraCB-(81)	%	37 (1)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-344'-TriCB-(37)	%	49	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-44'-DiCB-(15)	%	36	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-4-MonoCB-(3)	%	19	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-DecaCB-(209)	%	28 (1)	N/A	N/A	N/A	N/A	N/A	N/A	8576352
C13-HexaCB-(156)+(157)	%	40	N/A	N/A	N/A	N/A	N/A	N/A	8576352

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Apex Laboratories Client Project #: A3A1010

TEST SUMMARY

Bureau Veritas ID: VBZ186

Sample ID: MFA-B1-B5- COMP-SL-PRO Matrix: Soil

Collected: 2023/01/30

Shipped:

Received: 2023/02/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dioxins/Furans in Soil (1613B)	HRMS/MS	8520730	2023/02/22	2023/02/24	Yan Qin
2378TCDF Confirmation (M8290A/M1613)	HRMS/MS	8531857	2023/02/22	2023/03/02	Angel Guerrero
PCB Congeners in Soil (1668C)	HRMS/MS	8576352	2023/03/28	2023/04/07	Cathy Xu

Apex Laboratories Client Project #: A3A1010

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	7.4°C

Revised Report (2023/6/6): Corrected sample ID to MFA-B1-B5-COMP-SL-PRO and added temperature blank records in general comments. Updated results for PCB 77.

Temperature Blank Record: 4.2C, 4.8C. 4.2C.

Sample VBZ186 [MFA-B1-B5- COMP-SL-PRO] : Recoveries are low due to matrix inferences in the sample. No results available for PCB 1 to PCB 10. Results should be reviewed with caution.

Results relate only to the items tested.

Apex Laboratories Client Project #: A3A1010

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value % Recovery	UNITS	QC Limits
8520730	YQI	Matrix Spike	37CL4 2378 Tetra CDD	2023/02/27	103	%	35 - 197
		·	C13-1234678 HeptaCDD	2023/02/27	128	%	23 - 140
			C13-1234678 HeptaCDF	2023/02/27	113	%	28 - 143
			C13-123478 HexaCDD	2023/02/27	139	%	32 - 141
			C13-123478 HexaCDF	2023/02/27	144	%	26 - 152
			C13-1234789 HeptaCDF	2023/02/27	121	%	26 - 138
			C13-123678 HexaCDD	2023/02/27	137 (1)	%	28 - 130
			C13-123678 HexaCDF	2023/02/27	125 (1)	%	26 - 123
			C13-12378 PentaCDD	2023/02/27	96	%	25 - 181
			C13-12378 PentaCDF	2023/02/27	90	%	24 - 185
			C13-123789 HexaCDF	2023/02/27	136	%	29 - 147
			C13-234678 HexaCDF	2023/02/27	121	%	28 - 136
			C13-23478 PentaCDF	2023/02/27	91	%	21 - 178
			C13-2378 TetraCDD	2023/02/27	100	%	25 - 164
			C13-2378 TetraCDF	2023/02/27	103	%	24 - 169
			C13-OCDD	2023/02/27	109	%	17 - 157
			2,3,7,8-Tetra CDD	2023/02/27	108	%	67 - 158
			1,2,3,7,8-Penta CDD	2023/02/27	98	%	25 - 181
			1,2,3,4,7,8-Hexa CDD	2023/02/27	106 (2)	%	70 - 164
			1,2,3,6,7,8-Hexa CDD	2023/02/27	96 (2)	%	76 - 134
			1,2,3,7,8,9-Hexa CDD	2023/02/27	69 (2)	%	64 - 162
			1,2,3,4,6,7,8-Hepta CDD	2023/02/27	101 (2)	%	70 - 140
			Octa CDD	2023/02/27	105 (2)	%	78 - 144
			2,3,7,8-Tetra CDF	2023/02/27	107	%	75 - 158
			1,2,3,7,8-Penta CDF	2023/02/27	100	%	80 - 134
			2,3,4,7,8-Penta CDF	2023/02/27	96	%	68 - 160
			1,2,3,4,7,8-Hexa CDF	2023/02/27	93 (2)	%	72 - 134
			1,2,3,6,7,8-Hexa CDF	2023/02/27	98 (2)	%	84 - 130
			2,3,4,6,7,8-Hexa CDF	2023/02/27	94 (2)	%	70 - 156
			1,2,3,7,8,9-Hexa CDF	2023/02/27	101 (2)	%	78 - 130
			1,2,3,4,6,7,8-Hepta CDF	2023/02/27	104 (2)	%	82 - 122
			1,2,3,4,7,8,9-Hepta CDF	2023/02/27	98 (2)	%	78 - 138
			Octa CDF	2023/02/27	103 (2)	%	63 - 170
8520730	YQI	Spiked Blank	37CL4 2378 Tetra CDD	2023/02/24	93	%	35 - 197
			C13-1234678 HeptaCDD	2023/02/24	86	%	23 - 140
			C13-1234678 HeptaCDF	2023/02/24	77	%	28 - 143
			C13-123478 HexaCDD	2023/02/24	83	%	32 - 141
			C13-123478 HexaCDF	2023/02/24	77	%	26 - 152
			C13-1234789 HeptaCDF	2023/02/24	86	%	26 - 138
			C13-123678 HexaCDD	2023/02/24	92	%	28 - 130
			C13-123678 HexaCDF	2023/02/24	89	%	26 - 123
			C13-12378 PentaCDD	2023/02/24	97	%	25 - 181
			C13-12378 PentaCDF	2023/02/24	86	%	24 - 185
			C13-123789 HexaCDF	2023/02/24	84	%	29 - 147
			C13-234678 HexaCDF	2023/02/24	90	%	28 - 136
			C13-23478 PentaCDF	2023/02/24	92	%	21 - 178
			C13-2378 TetraCDD	2023/02/24	86	%	25 - 164
			C13-2378 TetraCDF	2023/02/24	91	%	24 - 169
			C13-OCDD	2023/02/24	87	%	17 - 157
			2,3,7,8-Tetra CDD	2023/02/24	105	%	67 - 158
			1,2,3,7,8-Penta CDD	2023/02/24	95	%	25 - 181
			1,2,3,4,7,8-Hexa CDD	2023/02/24	100	%	70 - 164
			1,2,3,6,7,8-Hexa CDD	2023/02/24	99	%	76 - 134

Apex Laboratories Client Project #: A3A1010

01/00				LE REPORT(CONT D)				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			1,2,3,7,8,9-Hexa CDD	2023/02/24		99	%	64 - 162
			1,2,3,4,6,7,8-Hepta CDD	2023/02/24		102	%	70 - 140
			Octa CDD	2023/02/24		100	%	78 - 144
			2,3,7,8-Tetra CDF	2023/02/24		101	%	75 - 158
			1,2,3,7,8-Penta CDF	2023/02/24		97	%	80 - 134
			2,3,4,7,8-Penta CDF	2023/02/24		92	%	68 - 160
			1,2,3,4,7,8-Hexa CDF	2023/02/24		103	%	72 - 134
			1,2,3,6,7,8-Hexa CDF	2023/02/24		102	%	84 - 130
			2,3,4,6,7,8-Hexa CDF	2023/02/24		95	%	70 - 156
			1,2,3,7,8,9-Hexa CDF	2023/02/24		101	%	78 - 130
			1,2,3,4,6,7,8-Hepta CDF	2023/02/24		110	%	82 - 122
			1,2,3,4,7,8,9-Hepta CDF	2023/02/24		103	%	78 - 138
			Octa CDF	2023/02/24		91	%	63 - 170
8520730	YQI	Method Blank	37CL4 2378 Tetra CDD	2023/02/24		101	%	35 - 197
			C13-1234678 HeptaCDD	2023/02/24		104	%	23 - 140
			C13-1234678 HeptaCDF	2023/02/24		92	%	28 - 143
			C13-123478 HexaCDD	2023/02/24		88	%	32 - 141
			C13-123478 HexaCDF	2023/02/24		84	%	26 - 152
			C13-1234789 HeptaCDF	2023/02/24		109	%	26 - 138
			C13-123678 HexaCDD	2023/02/24		109	%	28 - 130
			C13-123678 HexaCDF	2023/02/24		91	%	26 - 123
			C13-12378 PentaCDD	2023/02/24		117	%	25 - 181
			C13-12378 PentaCDF	2023/02/24		98	%	24 - 185
			C13-123789 HexaCDF	2023/02/24		99	%	29 - 147
			C13-234678 HexaCDF	2023/02/24		98	%	28 - 136
			C13-23478 PentaCDF	2023/02/24		110	%	21 - 178
			C13-2378 TetraCDD	2023/02/24		99	%	25 - 164
			C13-2378 TetraCDF	2023/02/24		102	%	24 - 169
			C13-OCDD	2023/02/24		123	%	17 - 157
			2,3,7,8-Tetra CDD	2023/02/24	0.0992 U,	123	pg/g	17-137
			1,2,3,7,8-Penta CDD	2023/02/24	EDL=0.0992 0.178 U,		pg/g	
					EDL=0.178			
			1,2,3,4,7,8-Hexa CDD	2023/02/24	0.119 U, EDL=0.119		pg/g	
			1,2,3,6,7,8-Hexa CDD	2023/02/24	0.0960 U, EDL=0.0960		pg/g	
			1,2,3,7,8,9-Hexa CDD	2023/02/24	0.110 U, EDL=0.110		pg/g	
			1,2,3,4,6,7,8-Hepta CDD	2023/02/24	0.201 U, EDL=0.201 (3)		pg/g	
			Octa CDD	2023/02/24	0.514 J, EDL=0.131		pg/g	
			Total Tetra CDD	2023/02/24	0.0992 U, EDL=0.0992		pg/g	
			Total Penta CDD	2023/02/24	0.178 U, EDL=0.178		pg/g	
			Total Hexa CDD	2023/02/24	0.112 U, EDL=0.112		pg/g	
			Total Hepta CDD	2023/02/24	0.145 U, EDL=0.145		pg/g	
			2,3,7,8-Tetra CDF	2023/02/24	0.105 U, EDL=0.105		pg/g	

Apex Laboratories Client Project #: A3A1010

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
Daten	11110	Qс турс	1,2,3,7,8-Penta CDF	2023/02/24	0.141 U,	70 Necovery	pg/g	QC LIIIICS
					EDL=0.141		10/0	
			2,3,4,7,8-Penta CDF	2023/02/24	0.0820 U,		pg/g	
					EDL=0.0820			
			1,2,3,4,7,8-Hexa CDF	2023/02/24	0.110 U, EDL=0.110		pg/g	
			1,2,3,6,7,8-Hexa CDF	2023/02/24	0.125 U, EDL=0.125		pg/g	
			2,3,4,6,7,8-Hexa CDF	2023/02/24	0.119 U, EDL=0.119		pg/g	
			1,2,3,7,8,9-Hexa CDF	2023/02/24	0.165 U, EDL=0.165		pg/g	
			1,2,3,4,6,7,8-Hepta CDF	2023/02/24	0.187 U, EDL=0.187		pg/g	
			1,2,3,4,7,8,9-Hepta CDF	2023/02/24	0.0900 U, EDL=0.0900		pg/g	
			Octa CDF	2023/02/24	0.268 J, EDL=0.125		pg/g	
			Total Tetra CDF	2023/02/24	0.105 U, EDL=0.105		pg/g	
			Total Penta CDF	2023/02/24	0.128 U, EDL=0.128		pg/g	
			Total Hexa CDF	2023/02/24	0.148 U, EDL=0.148		pg/g	
			Total Hepta CDF	2023/02/24	0.195 U, EDL=0.195		pg/g	
8520730	YQI	RPD - Sample/Sample Dup	2,3,7,8-Tetra CDD	2023/02/24	NC		%	25
	-	, , , ,	1,2,3,7,8-Penta CDD	2023/02/24	NC		%	25
			1,2,3,4,7,8-Hexa CDD	2023/02/24	NC		%	25
			1,2,3,6,7,8-Hexa CDD	2023/02/24	NC		%	25
			1,2,3,7,8,9-Hexa CDD	2023/02/24	NC		%	25
			1,2,3,4,6,7,8-Hepta CDD	2023/02/24	NC		%	25
			Octa CDD	2023/02/24	NC		%	25
			Total Tetra CDD	2023/02/24	NC		%	25
			Total Penta CDD	2023/02/24	NC		%	25
			Total Hexa CDD	2023/02/24	NC		%	25
			Total Hepta CDD	2023/02/24	NC		%	25
			2,3,7,8-Tetra CDF	2023/02/24	NC		%	25
			1,2,3,7,8-Penta CDF	2023/02/24	NC		%	25
			2,3,4,7,8-Penta CDF	2023/02/24	NC		%	25
			1,2,3,4,7,8-Hexa CDF	2023/02/24	NC		%	25
			1,2,3,6,7,8-Hexa CDF	2023/02/24	NC		%	25
			2,3,4,6,7,8-Hexa CDF	2023/02/24	NC		%	25
			1,2,3,7,8,9-Hexa CDF	2023/02/24	NC		%	25
			1,2,3,4,6,7,8-Hepta CDF	2023/02/24	NC		%	25
			1,2,3,4,7,8,9-Hepta CDF	2023/02/24	NC		%	25
			Octa CDF	2023/02/24	NC (3)		%	25
			Total Tetra CDF	2023/02/24	NC		%	25
			Total Penta CDF	2023/02/24	NC		%	25
			Total Hexa CDF	2023/02/24	NC		%	25
			Total Hepta CDF	2023/02/24	NC		%	25
8531857	AGU	Method Blank	Confirmation 2,3,7,8-Tetra CDF	2023/03/02	0.16 U, EDL=0.16		pg/g	
			Confirmation C13-2378 TetraCDF	2023/03/02		45	%	40 - 135

Apex Laboratories Client Project #: A3A1010

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
8576352	CXU	Spiked Blank	C13-2,44'-TriCB-(28)	2023/04/04		63	%	15 - 145
			C13-22'33'44'55'6-NonaCB-(206)	2023/04/04		99	%	40 - 145
			C13-22'33'44'5-HeptaCB-(170)	2023/04/04		97	%	40 - 145
			C13-22'33'455'66'-NonaCB-(208)	2023/04/04		91	%	40 - 145
			C13-22'33'55'66'-OctaCB-(202)	2023/04/04		83	%	40 - 145
			C13-22'33'55'6-HeptaCB-(178)	2023/04/04		73	%	40 - 145
			C13-22'344'55'-HeptaCB-(180)	2023/04/04		92	%	40 - 145
			C13-22'34'566'-HeptaCB-(188)	2023/04/04		62	%	40 - 145
			C13-22'44'66'-HexaCB-(155)	2023/04/04		49	%	40 - 145
			C13-22'466'-PentaCB-(104)	2023/04/04		53	%	40 - 145
			C13-22'66'-TetraCB-(54)	2023/04/04		38	%	15 - 145
			C13-22'6-TriCB-(19)	2023/04/04		45	%	15 - 145
			C13-22'-DiCB-(4)	2023/04/04		36	%	15 - 145
			C13-233'44'55'6-OctaCB-(205)	2023/04/04		99	%	40 - 145
			C13-233'44'55'-HeptaCB-(189)	2023/04/04		100	%	40 - 145
			C13-233'44'-PentaCB-(105)	2023/04/04		101	%	40 - 145
			C13-233'55'-PentaCB-(111)	2023/04/04		81	%	40 - 145
			C13-23'44'55'-HexaCB-(167)	2023/04/04		87	%	40 - 145
			C13-2344'5-PentaCB-(114)	2023/04/04		94	%	40 - 145
			C13-23'44'5-PentaCB-(118)	2023/04/04		97	%	40 - 145
			C13-2'344'5-PentaCB-(123)	2023/04/04		94	%	40 - 145
			C13-2-MonoCB-(1)	2023/04/04		38	%	15 - 145
			C13-33'44'55'-HexaCB-(169)	2023/04/04		98	%	40 - 145
			C13-33'44'5-PentaCB-(126)	2023/04/04		110	%	40 - 145
			C13-33'44'-TetraCB-(77)	2023/04/04		91	%	40 - 145
			C13-344'5-TetraCB-(81)	2023/04/04		86	%	40 - 145
			C13-344'-TriCB-(37)	2023/04/04		68	%	15 - 145
			C13-44'-DiCB-(15)	2023/04/04		57	%	15 - 145
			C13-4-MonoCB-(3)	2023/04/04		42	%	15 - 145
			C13-DecaCB-(209)	2023/04/04		85	%	40 - 145
			C13-HexaCB-(156)+(157)	2023/04/04		93	%	40 - 145
			4,4'-DiCB-(15)	2023/04/04		124	%	60 - 145
			22'3-TriCB-(16)	2023/04/04		83	%	N/A
			22'4-TriCB-(17)	2023/04/04		94	%	N/A
			TriCB-(18)+(30)	2023/04/04		91	%	N/A
			22'6-TriCB-(19)	2023/04/04		114	%	60 - 145
			TriCB-(20) + (28)	2023/04/04		103	%	N/A
			TriCB-(21)+(33)	2023/04/04		112	%	N/A
			234'-TriCB-(22)	2023/04/04		110	%	N/A
			235-TriCB-(23)	2023/04/04		104	%	N/A
			236-TriCB-(24)	2023/04/04		102	%	N/A
			23'4-TriCB-(25)	2023/04/04		117	%	N/A
			TriCB-(26)+(29)	2023/04/04		100	%	N/A
			23'6-TriCB-(27)	2023/04/04		94	%	N/A
			24'5-TriCB-(31)	2023/04/04		103	%	N/A
			24'6-TriCB-(32)	2023/04/04		97	%	N/A
			23'5'-TriCB-(34)	2023/04/04		100	%	N/A
			33'4-TriCB-(35)	2023/04/04		123	%	N/A
			33'5-TriCB-(36)	2023/04/04		116	%	N/A
			* *					60 - 145
				• •				N/A
								N/A N/A
								N/A N/A
			344'-TriCB-(37) 345-TriCB-(38) 34'5-TriCB-(39) TetraCB-(40)+(41)+(71)	2023/04/04 2023/04/04 2023/04/04 2023/04/04		119 119 128 89	% % % %	

Apex Laboratories Client Project #: A3A1010

QA/QC Batch In	it QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
	71.	22'34'-TetraCB-(42)	2023/04/04		101	%	N/A
		22'35-TetraCB-(43)	2023/04/04		93	%	N/A
		TetraCB-(44)+(47)+(65)	2023/04/04		89	%	N/A
		TetraCB-(45)+(51)	2023/04/04		78	%	N/A
		22'36'-TetraCB-(46)	2023/04/04		78	%	N/A
		22'45-TetraCB-(48)	2023/04/04		84	%	N/A
		TetraCB-(49)+TetraCB-(69)	2023/04/04		85	%	N/A
		TetraCB-(50)+(53)	2023/04/04		76	%	N/A
		22'55'-TetraCB-(52)	2023/04/04		87	%	N/A
		22'66'-TetraCB-(54)	2023/04/04		121	%	60 - 145
		233'4-TetraCB-(55)	2023/04/04		99	%	N/A
		233'4'-Tetra CB(56)	2023/04/04		103	%	N/A
		233'5-TetraCB-(57)	2023/04/04		93	%	N/A
		233'5'-TetraCB-(58)	2023/04/04		95	%	N/A
		TetraCB-(59)+(62)+(75)	2023/04/04		86	%	N/A
		2344'-TetraCB -(60)	2023/04/04		100	%	N/A
		TetraCB-(61)+(70)+(74)+(76)	2023/04/04		100	%	N/A
		234'5-TetraCB-(63)	2023/04/04		99	%	N/A
		234'6-TetraCB-(64)	2023/04/04		100	%	N/A
		23'44'-TetraCB-(66)	2023/04/04		101	%	N/A
		23'45-TetraCB-(67)	2023/04/04		95	%	N/A
		23'45'-TetraCB-(68)	2023/04/04		93	%	N/A
		23'55'-TetraCB-(72)	2023/04/04		92	%	N/A
		23'5'6-TetraCB-(73)	2023/04/04		74	%	N/A
		33'44'-TetraCB-(77)	2023/04/04		103	%	60 - 145
		33'45-TetraCB-(78)	2023/04/04		121	%	N/A
		33'45'-TetraCB(79)	2023/04/04		112	%	N/A
		33'55'-TetraCB-(80)	2023/04/04		99	%	N/A
		344'5-TetraCB-(81)	2023/04/04		109	%	60 - 145
		22'33'4-PentaCB-(82)	2023/04/04		122	%	N/A
		PentaCB-(83)+(99)	2023/04/04		105	%	N/A
		22'33'6-PentaCB-(84)	2023/04/04		96	%	N/A
		PentaCB-(85)+(116)+(117)	2023/04/04		103	%	N/A
		PentaCB-(86)(87)(97)(109)(119)(125)	2023/04/04		103	%	N/A
		PentaCB-(88)+(91)	2023/04/04		96	%	N/A
		22'346'-PentaCB-(89)	2023/04/04		112	%	N/A
		PentaCB-(90)+(101)+(113)	2023/04/04		102	%	N/A
		22'355'-PentaCB-(92)	2023/04/04		109	%	N/A
		PentaCB-(93)+(98)+(100)+(102)	2023/04/04		90	%	N/A
		22'356'-PentaCB-(94)	2023/04/04		93	%	N/A
		22'35'6-PentaCB-(95)	2023/04/04		108	%	N/A
		22'366'-PentaCB-(96)	2023/04/04		95	%	N/A
		22'45'6-PentaCB-(103)	2023/04/04		97	%	N/A
		22'466'-PentaCB-(104)	2023/04/04		110	%	60 - 145
		233'44'-PentaCB-(105)	2023/04/04		115	%	60 - 145
		233'45-PentaCB-(106)	2023/04/04		118	%	N/A
		233'4'5-PentaCB-(107)	2023/04/04		105	%	N/A
		PentaCB-(108)+(124)	2023/04/04		109	%	N/A
		PentaCB-(110)+(115)	2023/04/04		113	%	N/A
		233'55'-PentaCB-(111)	2023/04/04		107	%	N/A
		233'56-PentaCB-(111)	2023/04/04		106	%	N/A
		2344'5-PentaCB-(114)	2023/04/04		114	%	60 - 145
		23'44'5-PentaCB-(114)	2023/04/04		109	%	60 - 145

Apex Laboratories Client Project #: A3A1010

			QUALITY ASSURANCE					
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			23'455'-PentaCB-(120)	2023/04/04		118	%	N/A
			23'45'6-PentaCB-(121)	2023/04/04		95	%	N/A
			233'4'5'-PentaCB-(122)	2023/04/04		141	%	N/A
			23'44'5'-PentaCB-(123)	2023/04/04		114	%	60 - 145
			33'44'5-PentaCB-(126)	2023/04/04		111	%	60 - 145
			33'455'-PentaCB-(127)	2023/04/04		118	%	N/A
			HexaCB-(128)+(166)	2023/04/04		105	%	N/A
			HexaCB-(129)+(138)+(163)	2023/04/04		110	%	N/A
			22'33'45'-HexaCB-(130)	2023/04/04		100	%	N/A
			22'33'46-HexaCB-(131)	2023/04/04		115	%	N/A
			22'33'46'-HexaCB-(132)	2023/04/04		95	%	N/A
			22'33'55'-HexaCB-(133)	2023/04/04		102	%	N/A
			HexaCB-(134)+(143)	2023/04/04		106	%	N/A
			HexaCB-(135)+(151)	2023/04/04		100	%	N/A
			22'33'66'-HexaCB-(136)	2023/04/04		98	%	N/A
			22'344'5-HexaCB-(137)	2023/04/04		90	%	N/A
			HexaCB-(139)+(140)	2023/04/04		95	%	N/A
			22'3455'-HexaCB-(141)	2023/04/04		110	%	N/A
			22'3456-HexaCB-(142)	2023/04/04		100	%	N/A
			22'345'6-HexaCB-(144)	2023/04/04		106	%	N/A
			22'3466'-HexaCB-(145)	2023/04/04		93	%	N/A
			22'34'55'-HexaCB-(146)	2023/04/04		100	%	N/A
			HexaCB-(147)+(149)	2023/04/04		95	%	N/A
			22'34'56'-HexaCB-(148)	2023/04/04		98	%	N/A
			22'34'66'-HexaCB-(150)	2023/04/04		92	%	N/A
			22'3566'-HexaCB-(152)	2023/04/04		93	%	N/A
			HexaCB-(153)+(168)	2023/04/04		97	%	N/A
			22'44'56'-HexaCB-(154)	2023/04/04		97	%	N/A
			22'44'66'-HexaCB-(155)	2023/04/04		111	%	60 - 145
			HexaCB-(156)+(157)	2023/04/04		113	%	N/A
			233'44'6-HexaCB-(158)	2023/04/04		103	%	N/A
			233'455'-HexaCB-(159)	2023/04/04		102	%	N/A
			233'456-HexaCB-(160)	2023/04/04		108	%	N/A
			233'45'6-HexaCB-(161)	2023/04/04		100	%	N/A
			233'4'55'-HexaCB-(162)	2023/04/04		103	%	N/A
			233'4'5'6-HexaCB-(164)	2023/04/04		110	%	N/A
			233'55'6-HexaCB-(165)	2023/04/04		100	%	N/A
			23'44'55'-HexaCB-(167)	2023/04/04		119	%	60 - 145
			33'44'55'-HexaCB-(169)	2023/04/04		116	%	60 - 145
			22'33'44'5-HeptaCB-(170)	2023/04/04		96	%	60 - 145
			HeptaCB-(171)+(173)	2023/04/04		102	%	N/A
			22'33'455'-HeptaCB-(172)	2023/04/04		102	%	N/A
			22'33'456'-HeptaCB-(174)	2023/04/04		104	%	N/A
			22'33'45'6-HeptaCB-(174)	2023/04/04		99	% %	N/A N/A
			22 33 43 6-пертась-(173) 22'33'466'-HeptaCB-(176)	2023/04/04		99 95	% %	N/A N/A
			22 33 400 -neptaCb-(170) 22'33'45'6'-HeptaCb-(177)	2023/04/04		100	% %	N/A N/A
			22'33'55'6-HeptaCB-(177)	2023/04/04		100	% %	N/A N/A
			• • • • •	2023/04/04				
			22'33'566'-HeptaCB-(179)			99	%	N/A
			HeptaCB-(180)+(193)	2023/04/04		111	%	N/A
			22'344'56-HeptaCB-(181)	2023/04/04		105	%	N/A
			22'344'56'-HeptaCB-(182)	2023/04/04		104	%	N/A
			22'344'5'6-HeptaCB-(183)	2023/04/04		93	%	N/A
			22'344'66'-HeptaCB-(184)	2023/04/04		98	%	N/A

Apex Laboratories Client Project #: A3A1010

			QUALITY ASSURANCE R	CEP ON I (CONT D)				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			22'3455'6-HeptaCB-(185)	2023/04/04		110	%	N/A
			22'34566'-HeptaCB-(186)	2023/04/04		101	%	N/A
			22'34'55'6-HeptaCB-(187)	2023/04/04		105	%	N/A
			22'34'566'-HeptaCB-(188)	2023/04/04		114	%	60 - 145
			233'44'55'-HeptaCB-(189)	2023/04/04		114	%	60 - 145
			233'44'56-HeptaCB-(190)	2023/04/04		104	%	N/A
			233'44'5'6-HeptaCB-(191)	2023/04/04		102	%	N/A
			233'455'6-HeptaCB-(192)	2023/04/04		106	%	N/A
			22'33'44'55'-OctaCB-(194)	2023/04/04		111	%	N/A
			22'33'44'56-OctaCB-(195)	2023/04/04		110	%	N/A
			22'33'44'56'-OctaCB-(196)	2023/04/04		110	%	N/A
			22'33'44'66'OctaCB-(197)	2023/04/04		104	%	N/A
			OctaCB-(198)+(199)	2023/04/04		112	%	N/A
			22'33'4566'-OctaCB-(200)	2023/04/04		110	%	N/A
			22'33'45'66'-OctaCB-(201)	2023/04/04		101	%	N/A
			22'33'55'66'-OctaCB-(202)	2023/04/04		102	%	60 - 145
			22'344'55'6-OctaCB-(203)	2023/04/04		115	%	N/A
			22'344'566'-OctaCB-(204)	2023/04/04		104	%	N/A
			233'44'55'6-OctaCB-(205)	2023/04/04		102	%	60 - 145
			22'33'44'55'6-NonaCB-(206)	2023/04/04		101	%	60 - 145
			22'33'44'566'-NonaCB-(207)	2023/04/04		97	%	N/A
			22'33'455'66'-NonaCB-(208)	2023/04/04		104	%	60 - 145
			DecaCB-(209)	2023/04/04		123	%	60 - 145
8576352	CXU	Spiked Blank DUP	C13-2,44'-TriCB-(28)	2023/04/04		45	%	15 - 145
			C13-22'33'44'55'6-NonaCB-(206)	2023/04/04		84	%	40 - 145
			C13-22'33'44'5-HeptaCB-(170)	2023/04/04		84	%	40 - 145
			C13-22'33'455'66'-NonaCB-(208)	2023/04/04		79	%	40 - 145
			C13-22'33'55'66'-OctaCB-(202)	2023/04/04		74	%	40 - 145
			C13-22'33'55'6-HeptaCB-(178)	2023/04/04		70	%	40 - 145
			C13-22'344'55'-HeptaCB-(180)	2023/04/04		80	%	40 - 145
			C13-22'34'566'-HeptaCB-(188)	2023/04/04		57	%	40 - 145
			C13-22'44'66'-HexaCB-(155)	2023/04/04		40	%	40 - 145
			C13-22'466'-PentaCB-(104)	2023/04/04		43	%	40 - 145
			C13-22'66'-TetraCB-(54)	2023/04/04		25	%	15 - 145
			C13-22'6-TriCB-(19)	2023/04/04		29	%	15 - 145
			C13-22'-DiCB-(4)	2023/04/04		24	%	15 - 145
			C13-233'44'55'6-OctaCB-(205)	2023/04/04		87	%	40 - 145
			C13-233'44'55'-HeptaCB-(189)	2023/04/04		88	%	40 - 145
			C13-233'44'-PentaCB-(105)	2023/04/04		89	%	40 - 145
			C13-233'55'-PentaCB-(111)	2023/04/04		69	%	40 - 145
			C13-23'44'55'-HexaCB-(167)	2023/04/04		76	%	40 - 145
			C13-2344'5-PentaCB-(114)	2023/04/04		83	%	40 - 145
			C13-23'44'5-PentaCB-(118)	2023/04/04		88	%	40 - 145
			C13-2'344'5-PentaCB-(123)	2023/04/04		87	%	40 - 145
			C13-2-MonoCB-(1)	2023/04/04		24	%	15 - 145
			C13-33'44'55'-HexaCB-(169)	2023/04/04		86	%	40 - 145
			C13-33'44'5-PentaCB-(126)	2023/04/04		98	%	40 - 145
			C13-33'44'-TetraCB-(77)	2023/04/04		77	%	40 - 145
			C13-33 44 Fettacb (77)	2023/04/04		81	%	40 - 145
			C13-344'-TriCB-(37)	2023/04/04		59	%	15 - 145
			C13-44'-DiCB-(15)	2023/04/04		38	% %	15 - 145 15 - 145
			C13-44 -DICB-(13)	2023/04/04		26	%	15 - 145
			C13-4-Monocb-(3)	2023/04/04		74	%	40 - 145
			C13-DEC9CD-(203)	2023/04/04		/4	/0	40 - 145

Apex Laboratories Client Project #: A3A1010

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			C13-HexaCB-(156)+(157)	2023/04/04		79	%	40 - 145
			4,4'-DiCB-(15)	2023/04/04		122	%	60 - 145
			22'3-TriCB-(16)	2023/04/04		75	%	N/A
			22'4-TriCB-(17)	2023/04/04		75	%	N/A
			TriCB-(18)+(30)	2023/04/04		72	%	N/A
			22'6-TriCB-(19)	2023/04/04		108	%	60 - 145
			TriCB-(20) + (28)	2023/04/04		91	%	N/A
			TriCB-(21)+(33)	2023/04/04		98	%	N/A
			234'-TriCB-(22)	2023/04/04		97	%	N/A
			235-TriCB-(23)	2023/04/04		86	%	N/A
			236-TriCB-(24)	2023/04/04		78	%	N/A
			23'4-TriCB-(25)	2023/04/04		102	%	N/A
			TriCB-(26)+(29)	2023/04/04		87	%	N/A
			23'6-TriCB-(27)	2023/04/04		77	%	N/A
			24'5-TriCB-(31)	2023/04/04		92	%	N/A
			24'6-TriCB-(32)	2023/04/04		79	%	N/A
			23'5'-TriCB-(34)	2023/04/04		86	%	N/A
			33'4-TriCB-(35)	2023/04/04		121	%	N/A
			33'5-TriCB-(36)	2023/04/04		110	%	N/A
			344'-TriCB-(37)	2023/04/04		113	%	60 - 145
			345-TriCB-(38)	2023/04/04		111	%	N/A
			34'5-TriCB-(39)	2023/04/04		123	%	N/A
			TetraCB-(40)+(41)+(71)	2023/04/04		93	%	N/A
			22'34'-TetraCB-(42)	2023/04/04		93	%	N/A
			22'35-TetraCB-(43)	2023/04/04		79	%	N/A
			TetraCB-(44)+(47)+(65)	2023/04/04		81	%	N/A
			TetraCB-(45)+(51)	2023/04/04		64	%	N/A
			22'36'-TetraCB-(46)	2023/04/04		67	%	N/A
			22'45-TetraCB-(48)	2023/04/04		75	%	N/A
			TetraCB-(49)+TetraCB-(69)	2023/04/04		75	%	N/A
			TetraCB-(50)+(53)	2023/04/04		63	%	N/A
			22'55'-TetraCB-(52)	2023/04/04		77	%	N/A
			22'66'-TetraCB-(54)	2023/04/04		126	%	60 - 145
			233'4-TetraCB-(55)	2023/04/04		94	%	N/A
			233'4'-Tetra CB(56)	2023/04/04		99	%	N/A
			233'5-TetraCB-(57)	2023/04/04		87	%	N/A
			233'5'-TetraCB-(58)	2023/04/04		89	%	N/A
			TetraCB-(59)+(62)+(75)	2023/04/04		76	%	N/A
			2344'-TetraCB -(60)	2023/04/04		97	%	N/A
			TetraCB-(61)+(70)+(74)+(76)	2023/04/04		96	%	N/A
			234'5-TetraCB-(63)	2023/04/04		93	%	N/A
			234'6-TetraCB-(64)	2023/04/04		92	%	N/A
			23'44'-TetraCB-(66)	2023/04/04		95	%	N/A
			23'45-TetraCB-(67)	2023/04/04		89	%	N/A
			23'45'-TetraCB-(68)	2023/04/04		88	%	N/A
			23'45'-TetraCB-(72)	2023/04/04		86	%	N/A
			23'5'6-TetraCB-(72)	2023/04/04		67	%	N/A
			33'44'-TetraCB-(77)	2023/04/04		101	% %	60 - 145
			33'45-TetraCB-(77)	2023/04/04		120	% %	N/A
			33'45'-TetraCB(79)	2023/04/04		113 97	%	N/A
			33'55'-TetraCB-(80)	2023/04/04			%	N/A
			344'5-TetraCB-(81)	2023/04/04		105	%	60 - 145
			22'33'4-PentaCB-(82)	2023/04/04		125	%	N/A

Apex Laboratories Client Project #: A3A1010

QA/QC Batch In	nit QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		PentaCB-(83)+(99)	2023/04/04		99	%	N/A
		22'33'6-PentaCB-(84)	2023/04/04		88	%	N/A
		PentaCB-(85)+(116)+(117)	2023/04/04		97	%	N/A
		PentaCB-(86)(87)(97)(109)(119)(125)	2023/04/04		96	%	N/A
		PentaCB-(88)+(91)	2023/04/04		89	%	N/A
		22'346'-PentaCB-(89)	2023/04/04		107	%	N/A
		PentaCB-(90)+(101)+(113)	2023/04/04		96	%	N/A
		22'355'-PentaCB-(92)	2023/04/04		104	%	N/A
		PentaCB-(93)+(98)+(100)+(102)	2023/04/04		81	%	N/A
		22'356'-PentaCB-(94)	2023/04/04		82	%	N/A
		22'35'6-PentaCB-(95)	2023/04/04		100	%	N/A
		22'366'-PentaCB-(96)	2023/04/04		84	%	N/A
		22'45'6-PentaCB-(103)	2023/04/04		88	%	N/A
		22'466'-PentaCB-(104)	2023/04/04		107	%	60 - 145
		233'44'-PentaCB-(105)	2023/04/04		115	%	60 - 145
		233'45-PentaCB-(106)	2023/04/04		118	%	N/A
		233'4'5-PentaCB-(107)	2023/04/04		102	%	N/A
		PentaCB-(108)+(124)	2023/04/04		106	%	N/A
		PentaCB-(110)+(115)	2023/04/04		110	%	N/A
		233'55'-PentaCB-(111)	2023/04/04		103	%	N/A
		233'56-PentaCB-(112)	2023/04/04		102	%	N/A
		2344'5-PentaCB-(114)	2023/04/04		112	%	60 - 145
		23'44'5-PentaCB-(118)	2023/04/04		106	%	60 - 145
		23'455'-PentaCB-(120)	2023/04/04		114	%	N/A
		23'45'6-PentaCB-(121)	2023/04/04		89	%	N/A
		233'4'5'-PentaCB-(122)	2023/04/04		138	%	N/A
		23'44'5'-PentaCB-(123)	2023/04/04		108	%	60 - 145
		33'44'5-PentaCB-(126)	2023/04/04		108	%	60 - 145
		33'455'-PentaCB-(127)	2023/04/04		118	%	N/A
		HexaCB-(128)+(166)	2023/04/04		13	%	N/A
		HexaCB-(129)+(138)+(163)	2023/04/04		110	%	N/A
		22'33'45'-HexaCB-(130)	2023/04/04		100	%	N/A
		22'33'46-HexaCB-(131)	2023/04/04		113	%	N/A
		22'33'46'-HexaCB-(132)	2023/04/04		94	%	N/A
		22'33'55'-HexaCB-(133)	2023/04/04		103	%	N/A
		HexaCB-(134)+(143)	2023/04/04		105	%	N/A
		HexaCB-(135)+(151)	2023/04/04		99	%	N/A
		22'33'66'-HexaCB-(136)	2023/04/04		94	%	N/A
		22'344'5-HexaCB-(137)	2023/04/04		97	%	N/A
		HexaCB-(139)+(140)	2023/04/04		94	%	N/A
		22'3455'-HexaCB-(141)	2023/04/04		104	%	N/A
		22'3456-HexaCB-(142)	2023/04/04		102	%	N/A
		22'345'6-HexaCB-(144)	2023/04/04		13	%	N/A
		22'3466'-HexaCB-(145)	2023/04/04		90	%	N/A
		22'34'55'-HexaCB-(146)	2023/04/04		98	%	N/A
		HexaCB-(147)+(149)	2023/04/04		95	%	N/A
		22'34'56'-HexaCB-(148)	2023/04/04		95	%	N/A
		22'34'66'-HexaCB-(150)	2023/04/04		85	%	N/A
		22'3566'-HexaCB-(152)	2023/04/04		91	%	N/A
		HexaCB-(153)+(168)	2023/04/04		98	%	N/A
		22'44'56'-HexaCB-(154)	2023/04/04		96	%	N/A
		22'44'66'-HexaCB-(155)	2023/04/04		110	%	60 - 145
		HexaCB-(156)+(157)	2023/04/04		112	%	N/A

Apex Laboratories Client Project #: A3A1010

QA/QC							
Batch I	Init QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		233'44'6-HexaCB-(158)	2023/04/04		106	%	N/A
		233'455'-HexaCB-(159)	2023/04/04		102	%	N/A
		233'456-HexaCB-(160)	2023/04/04		110	%	N/A
		233'45'6-HexaCB-(161)	2023/04/04		101	%	N/A
		233'4'55'-HexaCB-(162)	2023/04/04		100	%	N/A
		233'4'5'6-HexaCB-(164)	2023/04/04		104	%	N/A
		233'55'6-HexaCB-(165)	2023/04/04		97	%	N/A
		23'44'55'-HexaCB-(167)	2023/04/04		115	%	60 - 145
		33'44'55'-HexaCB-(169)	2023/04/04		112	%	60 - 145
		22'33'44'5-HeptaCB-(170)	2023/04/04		94	%	60 - 145
		HeptaCB-(171)+(173)	2023/04/04		99	%	N/A
		22'33'455'-HeptaCB-(172)	2023/04/04		102	%	N/A
		22'33'456'-HeptaCB-(174)	2023/04/04		104	%	N/A
		22'33'45'6-HeptaCB-(175)	2023/04/04		99	%	N/A
		22'33'466'-HeptaCB-(176)	2023/04/04		97	%	N/A
		22'33'45'6'-HeptaCB-(177)	2023/04/04		97	%	N/A
		22'33'55'6-HeptaCB-(178)	2023/04/04		102	%	N/A
		22'33'566'-HeptaCB-(179)	2023/04/04		97	%	N/A
		HeptaCB-(180)+(193)	2023/04/04		108	%	N/A
		22'344'56-HeptaCB-(181)	2023/04/04		1.7	%	N/A
		22'344'56'-HeptaCB-(182)	2023/04/04		101	%	N/A
		22'344'5'6-HeptaCB-(183)	2023/04/04		98	%	N/A
		22'344'66'-HeptaCB-(184)	2023/04/04		96	%	N/A
		22'3455'6-HeptaCB-(185)	2023/04/04		99	%	N/A
		22'34566'-HeptaCB-(186)	2023/04/04		99	%	N/A
		22'34'55'6-HeptaCB-(187)	2023/04/04		102	%	N/A
		22'34'566'-HeptaCB-(188)	2023/04/04		106	%	60 - 145
		233'44'55'-HeptaCB-(189)	2023/04/04		110	%	60 - 145
		233'44'56-HeptaCB-(190)	2023/04/04		101	%	N/A
		233'44'5'6-HeptaCB-(191)	2023/04/04		99	%	N/A
		233'455'6-HeptaCB-(192)	2023/04/04		105	%	N/A
		22'33'44'55'-OctaCB-(194)	2023/04/04		108	%	N/A
		22'33'44'56-OctaCB-(195)	2023/04/04		107	%	N/A
		22'33'44'56'-OctaCB-(196)	2023/04/04		107	%	N/A
		22'33'44'66'OctaCB-(197)	2023/04/04		109	%	N/A
		OctaCB-(198)+(199)	2023/04/04		108	%	N/A
		22'33'4566'-OctaCB-(200)	2023/04/04		107	%	N/A
		22'33'45'66'-OctaCB-(201)	2023/04/04		98	%	N/A
		22'33'55'66'-OctaCB-(202)	2023/04/04		100	%	60 - 145
		22'344'55'6-OctaCB-(203)	2023/04/04		110	%	N/A
		22'344'566'-OctaCB-(204)	2023/04/04		101	%	N/A
		233'44'55'6-OctaCB-(205)	2023/04/04		99	%	60 - 145
		22'33'44'55'6-NonaCB-(206)	2023/04/04		100	%	60 - 145
		22'33'44'566'-NonaCB-(207)	2023/04/04		96	%	N/A
		22'33'455'66'-NonaCB-(208)	2023/04/04		102	%	60 - 145
			2023/04/04				
8576352 C	CXU RPD	DecaCB-(209) 4,4'-DiCB-(15)	2023/04/04	1.8	121	% %	60 - 145 30
03/0332	OVO ILL		2023/04/04				
		22'3-TriCB-(16)		11		%	30
		22'4-TriCB-(17)	2023/04/04	22		%	30
		TriCB-(18)+(30)	2023/04/04	23		%	30
		22'6-TriCB-(19)	2023/04/04	5.4		%	30
		TriCB-(20) + (28)	2023/04/04	12		%	30
		TriCB-(21)+(33)	2023/04/04	14		%	30

Apex Laboratories Client Project #: A3A1010

QA/QC Batch	Init QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
Datcii	ппс дстуре	234'-TriCB-(22)	2023/04/04	12	76 Necovery	%	30
		235-TriCB-(22)	2023/04/04	18		%	30
		236-TriCB-(24)	2023/04/04	26		%	30
		23'4-TriCB-(25)	2023/04/04	14		%	30
		TriCB-(26)+(29)	2023/04/04	14		%	30
		23'6-TriCB-(27)	2023/04/04	20		%	30
		24'5-TriCB-(31)	2023/04/04	11		%	30
		24'6-TriCB-(32)	2023/04/04	20		%	30
		23'5'-TriCB-(34)	2023/04/04	15		%	30
		33'4-TriCB-(35)	2023/04/04	2.1		%	30
		33'5-TriCB-(36)	2023/04/04	5.0		%	30
				5.0 5.7		%	30
		344'-TriCB-(37) 345-TriCB-(38)	2023/04/04 2023/04/04	6.6		% %	30
						% %	30
		34'5-TriCB-(39)	2023/04/04	4.2			
		TetraCB-(40)+(41)+(71)	2023/04/04	4.6		%	30
		22'34'-TetraCB-(42)	2023/04/04	8.5		%	30
		22'35-TetraCB-(43)	2023/04/04	17		%	30
		TetraCB-(44)+(47)+(65)	2023/04/04	10		%	30
		TetraCB-(45)+(51)	2023/04/04	19		%	30
		22'36'-TetraCB-(46)	2023/04/04	15		%	30
		22'45-TetraCB-(48)	2023/04/04	11		%	30
		TetraCB-(49)+TetraCB-(69)	2023/04/04	14		%	30
		TetraCB-(50)+(53)	2023/04/04	18		%	30
		22'55'-TetraCB-(52)	2023/04/04	11		%	30
		22'66'-TetraCB-(54)	2023/04/04	3.3		%	30
		233'4-TetraCB-(55)	2023/04/04	5.0		%	30
		233'4'-Tetra CB(56)	2023/04/04	3.4		%	30
		233'5-TetraCB-(57)	2023/04/04	6.0		%	30
		233'5'-TetraCB-(58)	2023/04/04	7.0		%	30
		TetraCB-(59)+(62)+(75)	2023/04/04	11		%	30
		2344'-TetraCB -(60)	2023/04/04	3.3		%	30
		TetraCB-(61)+(70)+(74)+(76)	2023/04/04	4.5		%	30
		234'5-TetraCB-(63)	2023/04/04	5.5		%	30
		234'6-TetraCB-(64)	2023/04/04	7.6		%	30
		23'44'-TetraCB-(66)	2023/04/04	5.6		%	30
		23'45-TetraCB-(67)	2023/04/04	6.3		%	30
		23'45'-TetraCB-(68)	2023/04/04	5.0		%	30
		23'55'-TetraCB-(72)	2023/04/04	6.8		%	30
		23'5'6-TetraCB-(73)	2023/04/04	10		%	30
		33'44'-TetraCB-(77)	2023/04/04	2.2		%	30
		33'45-TetraCB-(78)	2023/04/04	0.83		%	30
		33'45'-TetraCB(79)	2023/04/04	0.62		%	30
		33'55'-TetraCB-(80)	2023/04/04	1.5		%	30
		344'5-TetraCB-(81)	2023/04/04	3.9		%	30
		22'33'4-PentaCB-(82)	2023/04/04	2.1		%	30
		PentaCB-(83)+(99)	2023/04/04	5.9		%	30
		22'33'6-PentaCB-(84)	2023/04/04	8.6		%	30
		PentaCB-(85)+(116)+(117)	2023/04/04	5.8		%	30
		PentaCB-(86)(87)(97)(109)(119)(125)	2023/04/04	6.5		%	30
		PentaCB-(88)+(91)	2023/04/04	7.7		%	30
		22'346'-PentaCB-(89)	2023/04/04	4.9		%	30
		PentaCB-(90)+(101)+(113)	2023/04/04	6.6		%	30
		22'355'-PentaCB-(92)	2023/04/04	5.2		%	30

Apex Laboratories Client Project #: A3A1010

Batch In	nit QC Type	Parameter PentaCB-(93)+(98)+(100)+(102) 22'356'-PentaCB-(94) 22'35'6-PentaCB-(95) 22'366'-PentaCB-(96) 22'45'6-PentaCB-(103) 22'466'-PentaCB-(104) 233'44'-PentaCB-(105)	Date Analyzed 2023/04/04 2023/04/04 2023/04/04 2023/04/04 2023/04/04	Value 11 12 8.0 12	% Recovery	WNITS % %	QC Limits 30 30
		22'356'-PentaCB-(94) 22'35'6-PentaCB-(95) 22'366'-PentaCB-(96) 22'45'6-PentaCB-(103) 22'466'-PentaCB-(104)	2023/04/04 2023/04/04 2023/04/04 2023/04/04	12 8.0		%	
		22'35'6-PentaCB-(95) 22'366'-PentaCB-(96) 22'45'6-PentaCB-(103) 22'466'-PentaCB-(104)	2023/04/04 2023/04/04 2023/04/04	8.0			30
		22'366'-PentaCB-(96) 22'45'6-PentaCB-(103) 22'466'-PentaCB-(104)	2023/04/04 2023/04/04			%	30
		22'45'6-PentaCB-(103) 22'466'-PentaCB-(104)	2023/04/04			%	30
		22'466'-PentaCB-(104)		9.8		%	30
		• •	2023/04/04	3.3		%	30
		233 44 -F CIT(aCD-(103)	2023/04/04	0.087		%	30
		233'45-PentaCB-(106)	2023/04/04	0.51		%	30
		233'4'5-PentaCB-(100)	2023/04/04	2.6		%	30
		PentaCB-(108)+(124)	2023/04/04	2.1		%	30
		PentaCB-(110)+(115)	2023/04/04	3.4		%	30
			2023/04/04			%	30
		233'55'-PentaCB-(111) 233'56-PentaCB-(112)	2023/04/04	3.9 3.9		%	30
							30
		2344'5-PentaCB-(114)	2023/04/04	1.4		%	
		23'44'5-PentaCB-(118)	2023/04/04	2.7		%	30
		23'455'-PentaCB-(120)	2023/04/04	3.6		%	30
		23'45'6-PentaCB-(121)	2023/04/04	5.8		%	30
		233'4'5'-PentaCB-(122)	2023/04/04	1.9		%	30
		23'44'5'-PentaCB-(123)	2023/04/04	4.8		%	30
		33'44'5-PentaCB-(126)	2023/04/04	2.6		%	30
		33'455'-PentaCB-(127)	2023/04/04	0.25		%	30
		HexaCB-(128)+(166)	2023/04/04	157 (4)		%	30
		HexaCB-(129)+(138)+(163)	2023/04/04	0.64		%	30
		22'33'45'-HexaCB-(130)	2023/04/04	0.30		%	30
		22'33'46-HexaCB-(131)	2023/04/04	1.8		%	30
		22'33'46'-HexaCB-(132)	2023/04/04	0.32		%	30
		22'33'55'-HexaCB-(133)	2023/04/04	1.1		%	30
		HexaCB-(134)+(143)	2023/04/04	0.48		%	30
		HexaCB-(135)+(151)	2023/04/04	1.5		%	30
		22'33'66'-HexaCB-(136)	2023/04/04	4.0		%	30
		22'344'5-HexaCB-(137)	2023/04/04	8.0		%	30
		HexaCB-(139)+(140)	2023/04/04	1.0		%	30
		22'3455'-HexaCB-(141)	2023/04/04	5.2		%	30
		22'3456-HexaCB-(142)	2023/04/04	2.0		%	30
		22'345'6-HexaCB-(144)	2023/04/04	156 (4)		%	30
		22'3466'-HexaCB-(145)	2023/04/04	2.4		%	30
		22'34'55'-HexaCB-(146)	2023/04/04	2.0		%	30
		HexaCB-(147)+(149)	2023/04/04	0.11		%	30
		22'34'56'-HexaCB-(148)	2023/04/04	2.5		%	30
		22'34'66'-HexaCB-(150)	2023/04/04	7.1		%	30
		22'3566'-HexaCB-(152)	2023/04/04	2.0		%	30
		HexaCB-(153)+(168)	2023/04/04	1.3		%	30
		22'44'56'-HexaCB-(154)	2023/04/04	0.93		%	30
		22'44'66'-HexaCB-(155)	2023/04/04	0.99		%	30
		HexaCB-(156)+(157)	2023/04/04	0.76		%	30
		233'44'6-HexaCB-(158)	2023/04/04	2.5		%	30
		233'455'-HexaCB-(159)	2023/04/04	0.59		%	30
		233'456-HexaCB-(160)	2023/04/04	1.4		%	30
		233'45'6-HexaCB-(161)	2023/04/04	0.60		%	30
		233'4'55'-HexaCB-(162)	2023/04/04	2.9		%	30
		233'4'5'6-HexaCB-(164)	2023/04/04	2.9 5.5		%	30
			2023/04/04			% %	
		233'55'6-HexaCB-(165)	ZUZ3/U4/U4	2.8		70	30

Apex Laboratories Client Project #: A3A1010

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			33'44'55'-HexaCB-(169)	2023/04/04	3.0		%	30
			22'33'44'5-HeptaCB-(170)	2023/04/04	2.3		%	30
			HeptaCB-(171)+(173)	2023/04/04	3.0		%	30
			22'33'455'-HeptaCB-(172)	2023/04/04	0.39		%	30
			22'33'456'-HeptaCB-(174)	2023/04/04	0		%	30
			22'33'45'6-HeptaCB-(175)	2023/04/04	0.41		%	30
			22'33'466'-HeptaCB-(176)	2023/04/04	2.3		%	30
			22'33'45'6'-HeptaCB-(177)	2023/04/04	3.0		%	30
			22'33'55'6-HeptaCB-(178)	2023/04/04	0.30		%	30
			22'33'566'-HeptaCB-(179)	2023/04/04	2.2		%	30
			HeptaCB-(180)+(193)	2023/04/04	1.9		%	30
			22'344'56-HeptaCB-(181)	2023/04/04	194 (4)		%	30
			22'344'56'-HeptaCB-(182)	2023/04/04	3.1		%	30
			22'344'5'6-HeptaCB-(183)	2023/04/04	4.7		%	30
			22'344'66'-HeptaCB-(184)	2023/04/04	1.4		%	30
			22'3455'6-HeptaCB-(185)	2023/04/04	11		%	30
			22'34566'-HeptaCB-(186)	2023/04/04	1.9		%	30
			22'34'55'6-HeptaCB-(187)	2023/04/04	2.0		%	30
			22'34'566'-HeptaCB-(188)	2023/04/04	7.2		%	30
			233'44'55'-HeptaCB-(189)	2023/04/04	3.7		%	30
			233'44'56-HeptaCB-(190)	2023/04/04	2.3		%	30
			233'44'5'6-HeptaCB-(191)	2023/04/04	2.9		%	30
			233'455'6-HeptaCB-(192)	2023/04/04	1.0		%	30
			22'33'44'55'-OctaCB-(194)	2023/04/04	2.8		%	30
			22'33'44'56-OctaCB-(195)	2023/04/04	2.9		%	30
			22'33'44'56'-OctaCB-(196)	2023/04/04	3.1		%	30
			22'33'44'66'OctaCB-(197)	2023/04/04	5.1		%	30
			OctaCB-(198)+(199)	2023/04/04	3.6		%	30
			22'33'4566'-OctaCB-(200)	2023/04/04	3.2		%	30
			22'33'45'66'-OctaCB-(201)	2023/04/04	3.7		%	30
			22'33'55'66'-OctaCB-(202)	2023/04/04	2.3		%	30
			22'344'55'6-OctaCB-(203)	2023/04/04	4.1		%	30
			22'344'566'-OctaCB-(204)	2023/04/04	2.8		%	30
			233'44'55'6-OctaCB-(205)	2023/04/04	2.1		%	30
			22'33'44'55'6-NonaCB-(206)	2023/04/04	0.99		%	30
			22'33'44'566'-NonaCB-(207)	2023/04/04	1.9		%	30
			22'33'455'66'-NonaCB-(208)	2023/04/04	1.7		%	30
			DecaCB-(209)	2023/04/04	1.9		%	30
8576352	CXU	Method Blank	C13-2,44'-TriCB-(28)	2023/04/05		46	%	15 - 145
			C13-22'33'44'55'6-NonaCB-(206)	2023/04/05		87	%	40 - 145
			C13-22'33'44'5-HeptaCB-(170)	2023/04/05		85	%	40 - 145
			C13-22'33'455'66'-NonaCB-(208)	2023/04/05		80	%	40 - 145
			C13-22'33'55'66'-OctaCB-(202)	2023/04/05		74	%	40 - 145
			C13-22'33'55'6-HeptaCB-(178)	2023/04/05		60	%	40 - 145
			C13-22'344'55'-HeptaCB-(180)	2023/04/05		81	%	40 - 145
			C13-22'34'35'-HeptaCB-(188)	2023/04/05		51	%	40 - 145
			C13-22'44'66'-HexaCB-(155)	2023/04/05		37 (5)	%	40 - 145
			C13-22'44'66'-PentaCB-(104)	2023/04/05		37 (3) 45	%	40 - 145
			C13-22'66'-TetraCB-(54)	2023/04/05		45 27	% %	15 - 145
			C13-22'6-TetraCB-(54)	2023/04/05		35	% %	15 - 145 15 - 145
			• •	• •		35 26		
			C13-22'-DiCB-(4)	2023/04/05			%	15 - 145
			C13-233'44'55'6-OctaCB-(205)	2023/04/05		84	%	40 - 145
			C13-233'44'55'-HeptaCB-(189)	2023/04/05		69	%	40 - 145

Apex Laboratories Client Project #: A3A1010

QA/QC		06.7	Demonstra	Day A. I. I.	\/-!	0/ D - ·	LINUTO	001: ::
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			C13-233'44'-PentaCB-(105)	2023/04/05		88	%	40 - 145
			C13-233'55'-PentaCB-(111)	2023/04/05		68	%	40 - 145
			C13-23'44'55'-HexaCB-(167)	2023/04/05		60	%	40 - 145
			C13-2344'5-PentaCB-(114)	2023/04/05		79 25	%	40 - 145
			C13-23'44'5-PentaCB-(118)	2023/04/05		85	%	40 - 145
			C13-2'344'5-PentaCB-(123)	2023/04/05		84	%	40 - 145
			C13-2-MonoCB-(1)	2023/04/05		27	%	15 - 145
			C13-33'44'55'-HexaCB-(169) C13-33'44'5-PentaCB-(126)	2023/04/05		68 95	%	40 - 145 40 - 145
			C13-33'44'-TetraCB-(77)	2023/04/05		95 82	% %	40 - 145
				2023/04/05		82 77	% %	40 - 145
			C13-344'5-TetraCB-(81)	2023/04/05				
			C13-344'-TriCB-(37)	2023/04/05		55 46	% %	15 - 145 15 - 145
			C13-44'-DiCB-(15)	2023/04/05		30	% %	15 - 145 15 - 145
			C13-4-MonoCB-(3)	2023/04/05		73	% %	40 - 145
			C13-DecaCB-(209)	2023/04/05 2023/04/05		63	% %	40 - 145
			C13-HexaCB-(156)+(157) 4,4'-DiCB-(15)	2023/04/05	0.00021 U,	03		40 - 145
					EDL=0.00021		ng/g	
			22'3-TriCB-(16)	2023/04/05	0.00043 U, EDL=0.00043		ng/g	
			22'4-TriCB-(17)	2023/04/05	0.00035 U, EDL=0.00035		ng/g	
			TriCB-(18)+(30)	2023/04/05	0.00030 U, EDL=0.00030		ng/g	
			22'6-TriCB-(19)	2023/04/05	0.00061 U, EDL=0.00061		ng/g	
			TriCB-(20) + (28)	2023/04/05	0.00020 J, EDL=0.00018		ng/g	
			TriCB-(21)+(33)	2023/04/05	0.00020 U, EDL=0.00020		ng/g	
			234'-TriCB-(22)	2023/04/05	0.00019 U, EDL=0.00019		ng/g	
			235-TriCB-(23)	2023/04/05	0.00020 U, EDL=0.00020		ng/g	
			236-TriCB-(24)	2023/04/05	0.00027 U, EDL=0.00027		ng/g	
			23'4-TriCB-(25)	2023/04/05	0.00020 U, EDL=0.00020		ng/g	
			TriCB-(26)+(29)	2023/04/05	0.00018 U, EDL=0.00018		ng/g	
			23'6-TriCB-(27)	2023/04/05	0.00025 U, EDL=0.00025		ng/g	
			24'5-TriCB-(31)	2023/04/05	0.00020 J, EDL=0.00018		ng/g	
			24'6-TriCB-(32)	2023/04/05	0.00024 U, EDL=0.00024		ng/g	
			23'5'-TriCB-(34)	2023/04/05	0.00019 U, EDL=0.00019		ng/g	
			33'4-TriCB-(35)	2023/04/05	0.00020 U, EDL=0.00020		ng/g	
			33'5-TriCB-(36)	2023/04/05	0.00017 U, EDL=0.00017		ng/g	
			344'-TriCB-(37)	2023/04/05	0.00018 U, EDL=0.00018		ng/g	

Apex Laboratories Client Project #: A3A1010

QA/QC Batch Init QC Type	Parameter	Date Analyzed	Value	% Recovery UNITS	QC Limits
	345-TriCB-(38)	2023/04/05	0.00020 U, EDL=0.00020	ng/g	
	34'5-TriCB-(39)	2023/04/05	0.00020 U, EDL=0.00020	ng/g	
	TetraCB-(40)+(41)+(71)	2023/04/05	0.00045 U, EDL=0.00045	ng/g	
	22'34'-TetraCB-(42)	2023/04/05	0.00059 U, EDL=0.00059	ng/g	
	22'35-TetraCB-(43)	2023/04/05	0.00063 U, EDL=0.00063	ng/g	
	TetraCB-(44)+(47)+(65)	2023/04/05	0.00050 J, EDL=0.00044	ng/g	
	TetraCB-(45)+(51)	2023/04/05	0.00048 U, EDL=0.00048	ng/g	
	22'36'-TetraCB-(46)	2023/04/05	0.00051 U, EDL=0.00051	ng/g	
	22'45-TetraCB-(48)	2023/04/05	0.00046 U, EDL=0.00046	ng/g	
	TetraCB-(49)+TetraCB-(69)	2023/04/05	0.00040 U, EDL=0.00040	ng/g	
	TetraCB-(50)+(53)	2023/04/05	0.00047 U, EDL=0.00047	ng/g	
	22'55'-TetraCB-(52)	2023/04/05	0.00045 U, EDL=0.00045	ng/g	
	22'66'-TetraCB-(54)	2023/04/05	0.0014 U, EDL=0.0014	ng/g	
	233'4-TetraCB-(55)	2023/04/05	0.00031 U, EDL=0.00031	ng/g	
	233'4'-Tetra CB(56)	2023/04/05	0.00030 U, EDL=0.00030	ng/g	
	233'5-TetraCB-(57)	2023/04/05	0.00030 U, EDL=0.00030	ng/g	
	233'5'-TetraCB-(58)	2023/04/05	0.00029 U, EDL=0.00029	ng/g	
	TetraCB-(59)+(62)+(75)	2023/04/05	0.00033 U, EDL=0.00033	ng/g	
	2344'-TetraCB -(60)	2023/04/05	0.00030 U, EDL=0.00030	ng/g	
	TetraCB-(61)+(70)+(74)+(76)	2023/04/05	0.00030 U, EDL=0.00030	ng/g	
	234'5-TetraCB-(63)	2023/04/05	0.00029 U, EDL=0.00029	ng/g	
	234'6-TetraCB-(64)	2023/04/05	0.00038 U, EDL=0.00038	ng/g	
	23'44'-TetraCB-(66)	2023/04/05	0.00029 U, EDL=0.00029	ng/g	
	23'45-TetraCB-(67)	2023/04/05	0.00025 U, EDL=0.00025	ng/g	
	23'45'-TetraCB-(68)	2023/04/05	0.00027 U, EDL=0.00027	ng/g	
	23'55'-TetraCB-(72)	2023/04/05	0.00029 U, EDL=0.00029	ng/g	
	23'5'6-TetraCB-(73)	2023/04/05	0.00031 U, EDL=0.00031	ng/g	

Apex Laboratories Client Project #: A3A1010

QA/QC Batch Init	QC Type	Parameter	Date Analyzed	Value	% Recovery UNITS	QC Limits
		33'44'-TetraCB-(77)	2023/04/05	0.00027 U, EDL=0.00027	ng/g	
		33'45-TetraCB-(78)	2023/04/05	0.00033 U, EDL=0.00033	ng/g	
		33'45'-TetraCB(79)	2023/04/05	0.00026 U, EDL=0.00026	ng/g	
		33'55'-TetraCB-(80)	2023/04/05	0.00024 U, EDL=0.00024	ng/g	
		344'5-TetraCB-(81)	2023/04/05	0.00029 U, EDL=0.00029	ng/g	
		22'33'4-PentaCB-(82)	2023/04/05	0.0012 U, EDL=0.0012	ng/g	
		PentaCB-(83)+(99)	2023/04/05	0.00099 U, EDL=0.00099	ng/g	
		22'33'6-PentaCB-(84)	2023/04/05	0.0011 U, EDL=0.0011	ng/g	
		PentaCB-(85)+(116)+(117)	2023/04/05	0.00075 U, EDL=0.00075	ng/g	
		PentaCB-(86)(87)(97)(109)(119)(125)	2023/04/05	0.00080 U, EDL=0.00080	ng/g	
		PentaCB-(88)+(91)	2023/04/05	0.0010 U, EDL=0.0010	ng/g	
		22'346'-PentaCB-(89)	2023/04/05	0.0012 U, EDL=0.0012	ng/g	
		PentaCB-(90)+(101)+(113)	2023/04/05	0.00082 U, EDL=0.00082	ng/g	
		22'355'-PentaCB-(92)	2023/04/05	0.0011 U, EDL=0.0011	ng/g	
		PentaCB-(93)+(98)+(100)+(102)	2023/04/05	0.00098 U, EDL=0.00098	ng/g	
		22'356'-PentaCB-(94)	2023/04/05	0.0010 U, EDL=0.0010	ng/g	
		22'35'6-PentaCB-(95)	2023/04/05	0.0011 U, EDL=0.0011	ng/g	
		22'366'-PentaCB-(96)	2023/04/05	0.0010 U, EDL=0.0010	ng/g	
		22'45'6-PentaCB-(103)	2023/04/05	0.00097 U, EDL=0.00097	ng/g	
		22'466'-PentaCB-(104)	2023/04/05	0.0012 U, EDL=0.0012	ng/g	
		233'44'-PentaCB-(105)	2023/04/05	0.00038 U, EDL=0.00038	ng/g	
		233'45-PentaCB-(106)	2023/04/05	0.00045 U, EDL=0.00045	ng/g	
		233'4'5-PentaCB-(107)	2023/04/05	0.00035 U, EDL=0.00035	ng/g	
		PentaCB-(108)+(124)	2023/04/05	0.00044 U, EDL=0.00044	ng/g	
		PentaCB-(110)+(115)	2023/04/05	0.00076 U, EDL=0.00076	ng/g	
		233'55'-PentaCB-(111)	2023/04/05	0.00066 U, EDL=0.00066	ng/g	
		233'56-PentaCB-(112)	2023/04/05	0.00064 U, EDL=0.00064	ng/g	

Apex Laboratories Client Project #: A3A1010

QA/QC Batch Init	QC Type	Parameter	Date Analyzed	Value	% Recovery UNITS	QC Limits
		2344'5-PentaCB-(114)	2023/04/05	0.00041 U, EDL=0.00041	ng/g	
		23'44'5-PentaCB-(118)	2023/04/05	0.00040 J, EDL=0.00037	ng/g	
		23'455'-PentaCB-(120)	2023/04/05	0.00069 U, EDL=0.00069	ng/g	
		23'45'6-PentaCB-(121)	2023/04/05	0.00069 U, EDL=0.00069	ng/g	
		233'4'5'-PentaCB-(122)	2023/04/05	0.00057 U, EDL=0.00057	ng/g	
		23'44'5'-PentaCB-(123)	2023/04/05	0.00041 U, EDL=0.00041	ng/g	
		33'44'5-PentaCB-(126)	2023/04/05	0.00038 U, EDL=0.00038	ng/g	
		33'455'-PentaCB-(127)	2023/04/05	0.00045 U, EDL=0.00045	ng/g	
		HexaCB-(128)+(166)	2023/04/05	0.00025 U, EDL=0.00025	ng/g	
		HexaCB-(129)+(138)+(163)	2023/04/05	0.00160 J, EDL=0.00028	ng/g	
		22'33'45'-HexaCB-(130)	2023/04/05	0.00032 U, EDL=0.00032	ng/g	
		22'33'46-HexaCB-(131)	2023/04/05	0.00040 U, EDL=0.00040	ng/g	
		22'33'46'-HexaCB-(132)	2023/04/05	0.00040 J, EDL=0.00031	ng/g	
		22'33'55'-HexaCB-(133)	2023/04/05	0.00032 U, EDL=0.00032	ng/g	
		HexaCB-(134)+(143)	2023/04/05	0.00035 U, EDL=0.00035	ng/g	
		HexaCB-(135)+(151)	2023/04/05	0.00071 U, EDL=0.00071	ng/g	
		22'33'66'-HexaCB-(136)	2023/04/05	0.00051 U, EDL=0.00051	ng/g	
		22'344'5-HexaCB-(137)	2023/04/05	0.00030 U, EDL=0.00030	ng/g	
		HexaCB-(139)+(140)	2023/04/05	0.00027 U, EDL=0.00027	ng/g	
		22'3455'-HexaCB-(141)	2023/04/05	0.00030 J, EDL=0.00027	ng/g	
		22'3456-HexaCB-(142)	2023/04/05	0.00034 U, EDL=0.00034	ng/g	
		22'345'6-HexaCB-(144)	2023/04/05	0.00069 U, EDL=0.00069	ng/g	
		22'3466'-HexaCB-(145)	2023/04/05	0.00051 U, EDL=0.00051	ng/g	
		22'34'55'-HexaCB-(146)	2023/04/05	0.00025 U, EDL=0.00025	ng/g	
		HexaCB-(147)+(149)	2023/04/05	0.00100 J, EDL=0.00024	ng/g	
		22'34'56'-HexaCB-(148)	2023/04/05	0.00070 U, EDL=0.00070	ng/g	
		22'34'66'-HexaCB-(150)	2023/04/05	0.00047 U, EDL=0.00047	ng/g	

Apex Laboratories Client Project #: A3A1010

QA/QC Batch Init QC Type	Parameter	Date Analyzed	Value	% Recovery UNITS	QC Limits
	22'3566'-HexaCB-(152)	2023/04/05	0.00053 U, EDL=0.00053	ng/g	
	HexaCB-(153)+(168)	2023/04/05	0.00110 J, EDL=0.00023	ng/g	
	22'44'56'-HexaCB-(154)	2023/04/05	0.00054 U, EDL=0.00054	ng/g	
	22'44'66'-HexaCB-(155)	2023/04/05	0.00059 U, EDL=0.00059	ng/g	
	HexaCB-(156)+(157)	2023/04/05	0.00019 U, EDL=0.00019	ng/g	
	233'44'6-HexaCB-(158)	2023/04/05	0.00019 U, EDL=0.00019	ng/g	
	233'455'-HexaCB-(159)	2023/04/05	0.00019 U, EDL=0.00019	ng/g	
	233'456-HexaCB-(160)	2023/04/05	0.00023 U, EDL=0.00023	ng/g	
	233'45'6-HexaCB-(161)	2023/04/05	0.00022 U, EDL=0.00022	ng/g	
	233'4'55'-HexaCB-(162)	2023/04/05	0.00018 U, EDL=0.00018	ng/g	
	233'4'5'6-HexaCB-(164)	2023/04/05	0.00020 U, EDL=0.00020	ng/g	
	233'55'6-HexaCB-(165)	2023/04/05	0.00023 U, EDL=0.00023	ng/g	
	23'44'55'-HexaCB-(167)	2023/04/05	0.00020 U, EDL=0.00020	ng/g	
	33'44'55'-HexaCB-(169)	2023/04/05	0.00020 U, EDL=0.00020	ng/g	
	22'33'44'5-HeptaCB-(170)	2023/04/05	0.00050 J, EDL=0.00025	ng/g	
	HeptaCB-(171)+(173)	2023/04/05	0.00029 U, EDL=0.00029	ng/g	
	22'33'455'-HeptaCB-(172)	2023/04/05	0.00029 U, EDL=0.00029	ng/g	
	22'33'456'-HeptaCB-(174)	2023/04/05	0.00050 J, EDL=0.00026	ng/g	
	22'33'45'6-HeptaCB-(175)	2023/04/05	0.00044 U, EDL=0.00044	ng/g	
	22'33'466'-HeptaCB-(176)	2023/04/05	0.00033 U, EDL=0.00033	ng/g	
	22'33'45'6'-HeptaCB-(177)	2023/04/05	0.00029 U, EDL=0.00029	ng/g	
	22'33'55'6-HeptaCB-(178)	2023/04/05	0.00047 U, EDL=0.00047	ng/g	
	22'33'566'-HeptaCB-(179)	2023/04/05	0.00032 U, EDL=0.00032	ng/g	
	HeptaCB-(180)+(193)	2023/04/05	0.00130 J, EDL=0.00025	ng/g	
	22'344'56-HeptaCB-(181)	2023/04/05	0.00027 U, EDL=0.00027	ng/g	
	22'344'56'-HeptaCB-(182)	2023/04/05	0.00041 U, EDL=0.00041	ng/g	
	22'344'5'6-HeptaCB-(183)	2023/04/05	0.00023 U, EDL=0.00023	ng/g	

Apex Laboratories Client Project #: A3A1010

QA/QC	1	OC Turns	Davamatav	Daka Assabsa 1	Val	0/ D	LINUTC	001111
Batch	Init	QC Type	Parameter 22'344'66'-HeptaCB-(184)	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			22 344 66 -нертась-(184)	2023/04/05	0.00031 U, EDL=0.00031		ng/g	
			22'3455'6-HeptaCB-(185)	2023/04/05	0.00029 U, EDL=0.00029		ng/g	
			22'34566'-HeptaCB-(186)	2023/04/05	0.00033 U, EDL=0.00033		ng/g	
			22'34'55'6-HeptaCB-(187)	2023/04/05	0.00060 J, EDL=0.00042		ng/g	
			22'34'566'-HeptaCB-(188)	2023/04/05	0.00040 U, EDL=0.00040		ng/g	
			233'44'55'-HeptaCB-(189)	2023/04/05	0.00021 U, EDL=0.00021		ng/g	
			233'44'56-HeptaCB-(190)	2023/04/05	0.00021 U, EDL=0.00021		ng/g	
			233'44'5'6-HeptaCB-(191)	2023/04/05	0.00020 U, EDL=0.00020		ng/g	
			233'455'6-HeptaCB-(192)	2023/04/05	0.00022 U, EDL=0.00022		ng/g	
			22'33'44'55'-OctaCB-(194)	2023/04/05	0.00029 U, EDL=0.00029		ng/g	
			22'33'44'56-OctaCB-(195)	2023/04/05	0.00032 U, EDL=0.00032		ng/g	
			22'33'44'56'-OctaCB-(196)	2023/04/05	0.00037 U, EDL=0.00037		ng/g	
			22'33'44'66'OctaCB-(197)	2023/04/05	0.00025 U, EDL=0.00025		ng/g	
			OctaCB-(198)+(199)	2023/04/05	0.00039 U, EDL=0.00039		ng/g	
			22'33'4566'-OctaCB-(200)	2023/04/05	0.00029 U, EDL=0.00029		ng/g	
			22'33'45'66'-OctaCB-(201)	2023/04/05	0.00026 U, EDL=0.00026		ng/g	
			22'33'55'66'-OctaCB-(202)	2023/04/05	0.00031 U, EDL=0.00031		ng/g	
			22'344'55'6-OctaCB-(203)	2023/04/05	0.00036 U, EDL=0.00036		ng/g	
			22'344'566'-OctaCB-(204)	2023/04/05	0.00026 U, EDL=0.00026		ng/g	
			233'44'55'6-OctaCB-(205)	2023/04/05	0.00021 U, EDL=0.00021		ng/g	
			22'33'44'55'6-NonaCB-(206)	2023/04/05	0.00047 U, EDL=0.00047		ng/g	
			22'33'44'566'-NonaCB-(207)	2023/04/05	0.00035 U, EDL=0.00035		ng/g	
			22'33'455'66'-NonaCB-(208)	2023/04/05	0.00037 U, EDL=0.00037		ng/g	
			DecaCB-(209)	2023/04/05	0.00019 U, EDL=0.00019		ng/g	

Apex Laboratories Client Project #: A3A1010

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Total PCB	2023/04/05	0.0108,		ng/g	
					EDL=0.0014			

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Recovery outside method acceptance criteria due to matrix effects
- (2) Result from 5x dilution due to matrix interference
- (3) EMPC / NDR Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.
- (4) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (5) Within criteria.

Apex Laboratories Client Project #: A3A1010

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Angel Guerrero, Supervisor, Ultra Trace Analysis, HRMS and SVOC

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

SUBCONTRACT ORDER

Apex Laboratories

A3A1010

Pup a Volzz

SENDING LABORATORY:

Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223

Phone: (503) 718-2323 Fax: (503) 336-0745

Project Manager: Philip Nerenberg

RECEIVING LABORATORY:

BV Labs / Maxxam

C/O FEDEX DEPOT 299 Cayuga Rd

Cheektowaga, NY 14225 Phone :(800) 668-0639

Fax: (905) 332-9169

Sample Name: MFA-B1-2023013-21.9		Sediment	Received 1/31/23@1008 by ESJ avic Sampled: 01/30/23 16:00 (A3A1010-0
Analysis	Due	Expires	Comments
Sample Compositing2	02/01/23 17:00	05/09/23 16:00	BV for PFAS EPA-1633: Composite -01, -02, -03, -04, -05 into -06
Containers Supplied: (E)250 mL Poly (WM) - Non Preserved			- CHANGE CONT. SET
Sample Name: MFA-B3-20230131-31.0		Sediment	Received 2/1/23@1200 by SAT Sampled: 01/31/23 10:50 (A3A1010-0
Analysis	Due	Expires	Comments
Sample Compositing2	02/01/23 17:00	05/10/23 19:50	BV for PFAS EPA-1633: Composite -01, -02, -03, -04, -05 into -06
Containers Supplied:			
(E)250 mL Poly (WM) - Non Preserved	-	/	Received 2/1/23@1200 by SAT
Sample Name: MFA-B2-20230131-23.0	/	Sediment	Sampled: 01/31/23 09:00 (A3A1010-0
Analysis	Due	Expires	Comments
Sample Compositing2	02/01/23 17:00	05/10/23 09:00	BV for PFAS EPA-1633: Composite -01, -02, -03, -04, -05 into -06
Containers Supplied: (E)250 mL Poly (WM) - Non Preserved			
			Received 2/3/23@1120 by SAT
Sample Name: MFA-B4-20230262-SL-26.5	5	Sediment	Sampled: 02/02/23 09:10 (A3A1010-0
Analysis	Due	Expires	Comments
Sample Compositing2	02/01/23 17:00	05/12/23 09:10	BV for PFAS EPA-1633: Composite -01, -02, -03, -04, -05 into -06
Containers Supplied: (E)250 mL Poly (WM) - Non Preserved	Already	Pecerve	17-Feb-23 12:20
	J		Lori Dufour
2-16	-23		Fed Ex (Shipper AKO ENV-1367
Released By Date	-9	Received By	19 DEGP 124 Date 2023/02/17
Fed Ex (Shipper)		from on	190001 2191

SUBCONTRACT ORDER

Abx 415/23

Apex Laboratories
A3A1010

Sample Name: MFA-B5-20230203-SL-27	.0	Sediment	Sampled: 02/03/23 15:00	(A3A1010-05)
Analysis	Due	Expires	Comments	
Sample Compositing2	02/01/23 17:00	05/13/23 15:00	BV for PFAS EPA-1633: C -03, -04, -05 into -06	Composite -01, -02,
Containers Supplied: (E)250 mL Poly (WM) - Non Preserved			. Death of Comparison	F 01 02 02 04 05
Sample Name: MFA-B1-B5-COMP-SL		Sediment	As Received Composite of Sampled: 01/30/23 16:00	(A3A1010-06)
Analysis	Due	Expires	Comments	
Subcontract Outside	02/23/23 17:00	07/29/23 16:00	PFAS EPA-1633	
Containers Supplied: (C)250 mL Poly (WM) - Non Preserved	Already	feceived		
Sample Name: MFA-SL-Composite After	J	Sediment	After Processing Sampled: 01/30/23 16:00	(A3A1010-07
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB) 1668C PCB Congeners (SUB) Containers Supplied: (L)40 mL VOA - Non Preserved (M)40 mL VOA - Non Preserved	02/28/23 17:00 02/28/23 17:00	01/30/24 16:00 01/30/24 16:00	10g - Use L container 10g - Use M container	
Stan	idard T	AT		
Stan * see Analysis con			rovided *	JOK 2023/ Alatempto JOK 202
* see Analysis con	nments for		Fed Ex (Shipper)	JOK 2023/ Ala temp to JOK 202 13-0/13-2/1 No chishody

SUBCONTRACT ORDER

Apex Laboratories A3A1010

17-Feb-23 12:20

ENW-1367

Lori Dufour C347690

Apex Laboratories

6700 S.W. Sandburg Street Tigard, OR 97223

Phone: (503) 718-2323 Fax: (503) 336-0745

Project Manager: Philip Nerenberg

RECEIVING LABORATORY:

BV Labs / Maxxam

C/O FEDEX DEPOT 299 Cayuga Rd

Cheektowaga, NY 14225 Phone:(800) 668-0639 Fax: (905) 332-9169

KA

International Solid Sample Heat Treat Required

High Risk material

Sample Name: MFA-B1-2023013-21.9		Sediment	Received 1/31/23@1008 by E Sampled: 01/30/23 16:00	SJ 3/20(2 (A3A1010-01)
Analysis	Due	Expires	Comments	
Sample Compositing2 Containers Supplied:	02/01/23 17:00	05/09/23 16:00	BV for PFAS EPA-1633: Comp -03, -04, -05 into -06	oosite -01, -02,
(E)250 mL Poly (WM) - Non Preserved				
Sample Name: MFA-B3-20230131-31.0		Sediment	Received 2/1/23@1200 by SA Sampled: 01/31/23 10:50	(A3A1010-02)
Analysis	Due	Expires	Comments	
Sample Compositing2	02/01/23 17:00	05/10/23 10:50	BV for PFAS EPA-1633: Comp -03, -04, -05 into -06	posite -01, -02,
Containers Supplied: (E)250 mL Poly (WM) - Non Preserved				
Sample Name: MFA-B2-20230131-23.0		Sediment	Received 2/1/23@1200 by SA Sampled: 01/31/23 09:00	(A3A1010-03)
Analysis	Due	Expires	Comments	
Sample Compositing2 Containers Supplied:	02/01/23 17:00	05/10/23 09:00	BV for PFAS EPA-1633: Comp -03, -04, -05 into -06	posite -01, -02,
(E)250 mL Poly (WM) - Non Preserved				
Sample Name: MFA-B4-20230202-SL-26.	5	Sediment	Received 2/3/23@1120 by SA' Sampled: 02/02/23 09:10	(A3A1010-04)
Analysis	Due	Expires	Comments	
Sample Compositing2	02/01/23 17:00	05/12/23 09:10	BV for PFAS EPA-1633: Comp -03, -04, -05 into -06	posite -01, -02,
Containers Supplied; (E)250 mL Poly (WM) - Non Preserved	Already R	errived		
Stand	lavel THT			
Released By Date	1/23 /255	Received By	hithe Suker Date	3/03/22
Fed Ex (Shipper)		J. K.	SHITH SUNLUN	11:43
Released By Date		Received By	REFER To	MIK Page 1 of 2

SUBCONTRACT ORDER

Apex Laboratories
A3A1010

6

3120123 Received 2/6/23@1205 by AJM (A3A1010-05) Sample Name: MFA-B5-20230203-SL-27.0 Sediment Sampled: 02/03/23 15:00 Due Comments Analysis Expires BV for PFAS EPA-1633: Composite -01, -02, 02/01/23 17:00 05/13/23 15:00 Sample Compositing2 -03, -04, -05 into -06 Containers Supplied: (E)250 mL Poly (WM) - Non Preserved As Received Composite of -01,-02,-03,-04,-05 (A3A1010-06) Sample Name: MFA-B1-B5-COMP-SL Sediment Sampled: 01/30/23 16:00 Expires Comments Due Analysis 02/23/23 17:00 07/29/23 16:00 PFAS EPA-1633 Subcontract Outside Containers Supplied: (C)250 mL Poly (WM) - Non Preserved eceive After Processing (A3A1010-07) Sample Name: MFA-SL-Composite After Processing Sampled: 01/30/23 16:00 Sediment Expires Comments Due Analysis 10g - Use L container 02/28/23 17:00 01/30/24 16:00 1613B Dioxins and Furans (SUB) 10g - Use M, P containers 02/28/23 17:00 01/30/24 16:00 1668C PCB Congeners (SUB) Containers Supplied: (L)40 mL VOA - Non Preserved (Already Received (M)40 mL VOA - Non Preserved (P)40 mL VOA - Non Preserved -

Standard TAT

Released By Date Received By Date

Released By Date

Released By Date

Released By Date

Received By Date

Received By Date

Page 2 of 2

Your Project #: A3B0522

Attention: Philip Nerenberg

Apex Laboratories 6700 SW Sandburg St. Tigard, OR USA 97223

Report Date: 2023/05/17

Report #: R7632656 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C347713 Received: 2023/02/17, 12:20

Sample Matrix: Water # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Dioxins/Furans in Water (1613B) (1)	5	2023/02/24	2023/02/28	BRL SOP-00410	EPA 1613B m
OC Pesticides in Water by GCTQ	5	2023/02/21	2023/02/24	BRL SOP-00014	EPA Method 1699m
PCB Congeners in Water (1668C)	4	2023/02/23	2023/03/05	BRL SOP-00408	EPA 1668C m
PCB Congeners in Water (1668C)	1	2023/02/23	2023/03/06	BRL SOP-00408	EPA 1668C m
PFAS in water by SPE/LCMS (2)	6	2023/02/23	2023/02/25	CAM SOP-00894	EPA 537.1 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.
- (2) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.
- U = Undetected at the limit of quantitation.
- J = Estimated concentration between the EDL & RDL.
- B = Blank Contamination.
- Q = One or more quality control criteria failed.
- E = Analyte concentration exceeds the maximum concentration level.
- K = Estimated maximum possible concentration due to ion abundance ratio failure.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Lori Dufour, Project Manager Email: Lori.Dufour@bureauveritas.com Phone# (905) 817-5700

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Total Cover Pages : 1 Page 1 of 86

Apex Laboratories Client Project #: A3B0522

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VBZ249	VBZ250	VBZ251			
Campling Data		2023/02/14	2023/02/14	2023/02/14			
Sampling Date		10:05	10:05	12:51			
	UNITS	MW3-20230214-GW-35	MW3-20230214-GW- 35-DUP	MW5-20230214-GW-40	RDL	MDL	QC Batch
Aldrin	ng/L	0.021 U	0.021 U	0.021 U	0.20	0.021	8513671
alpha-BHC	ng/L	0.024 U	0.024 U	0.024 U	0.20	0.024	8513671
delta-BHC	ng/L	0.029 U	0.029 U	0.114 J	0.20	0.029	8513671
beta-BHC	ng/L	0.029 J	0.021 J	0.095 J	0.20	0.014	8513671
Lindane	ng/L	0.033 U	0.033 U	0.033 U	0.20	0.033	8513671
a-Chlordane	ng/L	0.029 U	0.029 U	0.029 U	0.20	0.029	8513671
g-Chlordane	ng/L	0.029 U	0.029 U	0.029 U	0.20	0.029	8513671
Oxychlordane	ng/L	0.028 U	0.028 U	0.028 U	0.20	0.028	8513671
o,p-DDD	ng/L	0.020 U	0.020 U	0.020 U	0.20	0.020	8513671
p,p-DDD	ng/L	0.020 J	0.060 J	0.039 J	0.20	0.014	8513671
o,p-DDE	ng/L	0.016 U	0.016 U	0.016 U	0.20	0.016	8513671
p,p-DDE	ng/L	0.012 U	0.012 U	0.012 J	0.20	0.012	8513671
o,p-DDT	ng/L	0.040 U	0.040 U	0.040 U	0.20	0.040	8513671
p,p-DDT	ng/L	0.050 U	0.050 U	0.084 J	0.20	0.050	8513671
Dieldrin	ng/L	0.050 U	0.050 U	0.061 J	0.20	0.050	8513671
Endosulfan I	ng/L	0.071 J	0.115 J	0.067 U	0.40	0.067	8513671
Endosulfan II	ng/L	0.074 U	0.074 U	0.089 J	0.40	0.074	8513671
Endosulfan sulfate	ng/L	0.070 U	0.070 U	0.070 U	0.20	0.070	8513671
Endrin	ng/L	0.048 J	0.045 U	0.189 J	0.20	0.045	8513671
Endrin aldehyde	ng/L	0.071 U	0.071 U	0.071 U	0.20	0.071	8513671
Endrin ketone	ng/L	0.034 U	0.034 U	0.034 U	0.20	0.034	8513671
Heptachlor	ng/L	0.029 U	0.029 U	0.036 J	0.20	0.029	8513671
Heptachlor epoxide	ng/L	0.015 U	0.015 U	0.015 U	0.20	0.015	8513671
Hexachlorobenzene	ng/L	0.10 U	0.10 U	0.10 U	0.20	0.10	8513671
Methoxychlor	ng/L	0.085 J	0.065 J	0.079 J	0.20	0.040	8513671
Mirex	ng/L	0.021 U	0.021 U	0.032 J	0.20	0.021	8513671
cis-Nonachlor	ng/L	0.037 U	0.037 U	0.037 U	0.20	0.037	8513671
trans-Nonachlor	ng/L	0.044 U	0.044 U	0.044 U	0.20	0.044	8513671
Surrogate Recovery (%)	-						
13C10-cis Nonachlor	%	76	85	62	N/A	N/A	8513671
13C10-Heptachlor	%	164 (1)	160 (1)	116	N/A	N/A	8513671
13C10-Heptachlor Epoxide	%	105	102	89	N/A	N/A	8513671
13C10-Oxychlordane	%	97	100	81	N/A	N/A	8513671
13C10-trans Nonachlor	%	90	85	76	N/A	N/A	8513671
	_			•			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) The extracted internal standard analyte exhibited high recovery and as such, may not have allowed for accurate recovery correction of the associated native compound. For results that were not detected (ND), this potential high bias has no impact.

Apex Laboratories Client Project #: A3B0522

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VBZ249	VBZ250	VBZ251			
Sampling Data		2023/02/14	2023/02/14	2023/02/14			
Sampling Date		10:05	10:05	12:51			
	UNITS	MW3-20230214-GW-35	MW3-20230214-GW- 35-DUP	MW5-20230214-GW-40	RDL	MDL	QC Batch
13C12-Endrin	%	115	107	87	N/A	N/A	8513671
13C12-Endrin Ketone	%	69	61	58	N/A	N/A	8513671
13C6-beta BHC	%	70	74	46	N/A	N/A	8513671
13C6-d6-gamma BHC (Lindane	%	79	84	89	N/A	N/A	8513671
13C-Methoxychlor	%	140 (1)	140 (1)	106	N/A	N/A	8513671
13C-pp-DDD	%	93	87	74	N/A	N/A	8513671
13C-pp-DDE	%	81	78	71	N/A	N/A	8513671
13C-pp-DDT	%	78	71	49	N/A	N/A	8513671
C13-Hexachlorobenzene	%	76	74	60	N/A	N/A	8513671

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) The extracted internal standard analyte exhibited high recovery and as such, may not have allowed for accurate recovery correction of the associated native compound. For results that were not detected (ND), this potential high bias has no impact.

Apex Laboratories Client Project #: A3B0522

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VBZ251	VBZ252	VBZ253			
Compling Date		2023/02/14	2023/02/14	2023/02/14			
Sampling Date		12:51	14:37	16:17			
	UNITS	MW5-20230214-GW-40 Lab-Dup	MW4-20230214-GW-40	MW6-20230214-GW-40.25	RDL	MDL	QC Batch
Aldrin	ng/L	0.054 J	0.021 U	0.034 J	0.20	0.021	8513671
alpha-BHC	ng/L	0.024 U	0.038 J	0.039 J	0.20	0.024	8513671
delta-BHC	ng/L	0.044 J	0.106 J	0.029 U	0.20	0.029	8513671
beta-BHC	ng/L	0.078 J	0.115 J	0.014 U	0.20	0.014	8513671
Lindane	ng/L	0.033 U	0.033 U	0.084 J	0.20	0.033	8513671
a-Chlordane	ng/L	0.029 U	0.029 U	0.029 U	0.20	0.029	8513671
g-Chlordane	ng/L	0.029 U	0.029 U	0.079 J	0.20	0.029	8513671
Oxychlordane	ng/L	0.028 U	0.028 U	0.028 U	0.20	0.028	8513671
o,p-DDD	ng/L	0.020 U	0.043 J	0.089 J	0.20	0.020	8513671
p,p-DDD	ng/L	0.044 J	0.064 J	0.071 J	0.20	0.014	8513671
o,p-DDE	ng/L	0.016 U	0.016 U	0.016 U	0.20	0.016	8513671
p,p-DDE	ng/L	0.018 J	0.012 J	0.019 J	0.20	0.012	8513671
o,p-DDT	ng/L	0.040 U	0.122 J	0.095 J	0.20	0.040	8513671
p,p-DDT	ng/L	0.050 U	0.104 J	0.050 U	0.20	0.050	8513671
Dieldrin	ng/L	0.050 U	0.050 U	0.050 U	0.20	0.050	8513671
Endosulfan I	ng/L	0.067 U	0.075 J	0.124 J	0.40	0.067	8513671
Endosulfan II	ng/L	0.074 U	0.165 J	0.074 U	0.40	0.074	8513671
Endosulfan sulfate	ng/L	0.070 U	0.070 U	0.070 U	0.20	0.070	8513671
Endrin	ng/L	0.118 J	0.101 J	0.133 J	0.20	0.045	8513671
Endrin aldehyde	ng/L	0.071 U	0.071 U	0.071 U	0.20	0.071	8513671
Endrin ketone	ng/L	0.034 U	0.034 U	0.034 U	0.20	0.034	8513671
Heptachlor	ng/L	0.039 J	0.036 J	0.041 J	0.20	0.029	8513671
Heptachlor epoxide	ng/L	0.015 U	0.015 U	0.015 U	0.20	0.015	8513671
Hexachlorobenzene	ng/L	0.10 U	0.10 U	0.10 U	0.20	0.10	8513671
Methoxychlor	ng/L	0.040 U	0.122 J	0.075 J	0.20	0.040	8513671
Mirex	ng/L	0.030 J	0.021 U	0.021 U	0.20	0.021	8513671
cis-Nonachlor	ng/L	0.037 U	0.037 U	0.037 U	0.20	0.037	8513671
trans-Nonachlor	ng/L	0.044 U	0.044 U	0.044 U	0.20	0.044	8513671
Surrogate Recovery (%)		•	·				
13C10-cis Nonachlor	%	64	72	65	N/A	N/A	8513671
13C10-Heptachlor	%	111	125 (1)	117	N/A	N/A	8513671
13C10-Heptachlor Epoxide	%	88	99	91	N/A	N/A	8513671
13C10-Oxychlordane	%	82	90	84	N/A	N/A	8513671
1				· · · · · · · · · · · · · · · · · · ·			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) The extracted internal standard analyte exhibited high recovery and as such, may not have allowed for accurate recovery correction of the associated native compound. For results that were not detected (ND), this potential high bias has no impact.

Apex Laboratories Client Project #: A3B0522

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VBZ251	VBZ252	VBZ253			
Sampling Date		2023/02/14	2023/02/14	2023/02/14			
Sampling Date		12:51	14:37	16:17			
	UNITS	MW5-20230214-GW-40 Lab-Dup	MW4-20230214-GW-40	MW6-20230214-GW-40.25	RDL	MDL	QC Batch
13C10-trans Nonachlor	%	74	83	77	N/A	N/A	8513671
13C12-Endrin	%	85	97	95	N/A	N/A	8513671
13C12-Endrin Ketone	%	61	71	68	N/A	N/A	8513671
13C6-beta BHC	%	45	52	78	N/A	N/A	8513671
13C6-d6-gamma BHC (Lindane	%	50	57	84	N/A	N/A	8513671
13C-Methoxychlor	%	113	120	119	N/A	N/A	8513671
13C-pp-DDD	%	73	85	75	N/A	N/A	8513671
13C-pp-DDE	%	72	82	75	N/A	N/A	8513671
13C-pp-DDT	%	51	59	53	N/A	N/A	8513671
C13-Hexachlorobenzene	%	56	70	61	N/A	N/A	8513671

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Apex Laboratories Client Project #: A3B0522

PERFLUOROALKYL SUBSTANCES (WATER)

Bureau Veritas ID		VBZ249	VBZ250	VBZ251			
Dareda Veritas ib		2023/02/14	2023/02/14	2023/02/14			
Sampling Date		10:05	10:05	12:51			
	UNITS	MW3-20230214-GW-35	MW3-20230214-GW- 35-DUP	MW5-20230214-GW-40	RDL	MDL	QC Batch
Perfluorobutanoic acid (PFBA)	ug/L	0.023	0.022	0.015 J	0.020	0.0015	8519276
Perfluoropentanoic acid (PFPeA)	ug/L	0.033	0.031	0.026	0.020	0.0025	8519276
Perfluorohexanoic acid (PFHxA)	ug/L	0.046	0.044	0.13	0.020	0.0038	8519276
Perfluoroheptanoic acid (PFHpA)	ug/L	0.068	0.067	0.042	0.020	0.0018	8519276
Perfluorooctanoic acid (PFOA)	ug/L	0.10	0.096	0.060	0.020	0.0030	8519276
Perfluorononanoic acid (PFNA)	ug/L	0.056	0.053	0.017 J	0.020	0.0021	8519276
Perfluorodecanoic acid (PFDA)	ug/L	0.021	0.018 J	0.0057 J	0.020	0.0016	8519276
Perfluoroundecanoic acid (PFUnA)	ug/L	0.0024 U	0.0024 U	0.0024 U	0.020	0.0024	8519276
Perfluorododecanoic acid (PFDoA)	ug/L	0.0029 U	0.0029 U	0.0029 U	0.020	0.0029	8519276
Perfluorotridecanoic acid (PFTRDA)	ug/L	0.0026 U	0.0026 U	0.0026 U	0.020	0.0026	8519276
Perfluorotetradecanoic acid(PFTEDA)	ug/L	0.0016 U	0.0016 U	0.0016 U	0.020	0.0016	8519276
Perfluorobutanesulfonic acid (PFBS)	ug/L	0.0021 U	0.0021 U	0.0021 U	0.020	0.0021	8519276
Perfluoropentanesulfonic acid PFPes	ug/L	0.0023 U	0.0023 U	0.0023 U	0.020	0.0023	8519276
Perfluorohexanesulfonic acid(PFHxS)	ug/L	0.0022 U	0.0022 U	0.0022 U	0.020	0.0022	8519276
Perfluoroheptanesulfonic acid PFHpS	ug/L	0.0039 U	0.0039 U	0.0039 U	0.020	0.0039	8519276
Perfluorooctanesulfonic acid (PFOS)	ug/L	0.0076 J	0.0070 J	0.0035 U	0.020	0.0035	8519276
Perfluorononanesulfonic acid (PFNS)	ug/L	0.0037 U	0.0037 U	0.0037 U	0.020	0.0037	8519276
Perfluorodecanesulfonic acid (PFDS)	ug/L	0.0048 U	0.0048 U	0.0048 U	0.020	0.0048	8519276
Perfluorooctane Sulfonamide (PFOSA	ug/L	0.0034 U	0.0034 U	0.0034 U	0.020	0.0034	8519276
EtFOSA	ug/L	0.0095 U	0.0095 U	0.0095 U	0.020	0.0095	8519276
MeFOSA	ug/L	0.0084 U	0.0084 U	0.0084 U	0.020	0.0084	8519276
EtFOSE	ug/L	0.0070 U	0.0070 U	0.0070 U	0.020	0.0070	8519276
MeFOSE	ug/L	0.0073 U	0.0073 U	0.0073 U	0.020	0.0073	8519276
EtFOSAA	ug/L	0.0046 U	0.0046 U	0.0046 U	0.020	0.0046	8519276
MeFOSAA	ug/L	0.0045 U	0.0045 U	0.0045 U	0.020	0.0045	8519276
4:2 Fluorotelomer sulfonic acid	ug/L	0.0033 U	0.0033 U	0.0033 U	0.020	0.0033	8519276
6:2 Fluorotelomer sulfonic acid	ug/L	0.0015 U	0.0015 U	0.0015 U	0.020	0.0015	8519276
8:2 Fluorotelomer sulfonic acid	ug/L	0.0031 U	0.0031 U	0.0031 U	0.020	0.0031	8519276
Hexafluoropropyleneoxide dimer acid		0.0052 U	0.0052 U	0.0052 U	0.020	0.0052	8519276
4,8-Dioxa-3H-perfluorononanoic acid	ug/L	0.0027 U	0.0027 U	0.0027 U	0.020	0.0027	8519276
9CI-PF3ONS (F-53B Major)	ug/L	0.0043 U	0.0043 U	0.0043 U	0.020	0.0043	8519276
11Cl-PF3OUdS (F-53B Minor)	ug/L	0.0035 U	0.0035 U	0.0035 U	0.020	0.0035	8519276
Surrogate Recovery (%)							1
13C2-4:2-Fluorotelomersulfonic Acid	%	86	87	86	N/A	N/A	8519276
13C2-6:2-Fluorotelomersulfonic Acid	%	88	88	86	N/A	N/A	8519276
13C2-8:2-Fluorotelomersulfonic Acid	%	83	86	78	N/A	N/A	8519276
RDL = Reportable Detection Limit				•			1

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

PERFLUOROALKYL SUBSTANCES (WATER)

Bureau Veritas ID		VBZ249	VBZ250	VBZ251			
		2023/02/14	2023/02/14	2023/02/14			
Sampling Date		10:05	10:05	12:51			
	UNITS	MW3-20230214-GW-35	MW3-20230214-GW- 35-DUP	MW5-20230214-GW-40	RDL	MDL	QC Batch
13C2-Perfluorodecanoic acid	%	81	81	74	N/A	N/A	8519276
13C2-Perfluorododecanoic acid	%	73	74	63	N/A	N/A	8519276
13C2-Perfluorohexanoic acid	%	83	85	81	N/A	N/A	8519276
13C2-perfluorotetradecanoic acid	%	68	69	58	N/A	N/A	8519276
13C2-Perfluoroundecanoic acid	%	74	76	65	N/A	N/A	8519276
13C3-HFPO-DA	%	83	83	82	N/A	N/A	8519276
13C3-Perfluorobutanesulfonic acid	%	84	86	82	N/A	N/A	8519276
13C4-Perfluorobutanoic acid	%	87	88	87	N/A	N/A	8519276
13C4-Perfluoroheptanoic acid	%	84	86	84	N/A	N/A	8519276
13C4-Perfluorooctanesulfonic acid	%	83	83	76	N/A	N/A	8519276
13C4-Perfluorooctanoic acid	%	81	85	81	N/A	N/A	8519276
13C5-Perfluorononanoic acid	%	82	85	79	N/A	N/A	8519276
13C5-Perfluoropentanoic acid	%	85	87	84	N/A	N/A	8519276
13C8-Perfluorooctane Sulfonamide	%	73	73	61	N/A	N/A	8519276
18O2-Perfluorohexanesulfonic acid	%	84	87	81	N/A	N/A	8519276
D3-MeFOSA	%	54	52	44 (1)	N/A	N/A	8519276
D3-MeFOSAA	%	72	75	64	N/A	N/A	8519276
D5-EtFOSA	%	56	51	43 (2)	N/A	N/A	8519276
D5-EtFOSAA	%	73	71	60	N/A	N/A	8519276
D7-MeFOSE	%	66	62	57	N/A	N/A	8519276
D9-EtFOSE	%	65	66	56	N/A	N/A	8519276

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

⁽¹⁾ Extracted internal standard analyte recovery was below the defined lower control limit (LCL) which may result in increased variability of the associated native analyte result (MeFOSA).

⁽²⁾ Extracted internal standard analyte recovery was below the defined lower control limit (LCL) which may result in increased variability of the associated native analyte result (EtFOSA).

Apex Laboratories Client Project #: A3B0522

PERFLUOROALKYL SUBSTANCES (WATER)

					1		1
Bureau Veritas ID		VBZ252	VBZ253	VBZ254			
Sampling Date		2023/02/14	2023/02/14	2023/02/14			
		14:37	16:17	16:10			
	UNITS	MW4-20230214-GW-40	MW6-20230214-GW-40.25	FIELD BLANK-02	RDL	MDL	QC Batch
Perfluorobutanoic acid (PFBA)	ug/L	0.0015 U	0.0098 J	0.0015 U	0.020	0.0015	8519276
Perfluoropentanoic acid (PFPeA)	ug/L	0.012 J	0.022	0.0025 U	0.020	0.0025	8519276
Perfluorohexanoic acid (PFHxA)	ug/L	0.16	0.076	0.0038 U	0.020	0.0038	8519276
Perfluoroheptanoic acid (PFHpA)	ug/L	0.0087 J	0.049	0.0018 U	0.020	0.0018	8519276
Perfluorooctanoic acid (PFOA)	ug/L	0.025	0.083	0.0030 U	0.020	0.0030	8519276
Perfluorononanoic acid (PFNA)	ug/L	0.0030 J	0.038	0.0021 U	0.020	0.0021	8519276
Perfluorodecanoic acid (PFDA)	ug/L	0.0016 U	0.012 J	0.0016 U	0.020	0.0016	8519276
Perfluoroundecanoic acid (PFUnA)	ug/L	0.0024 U	0.0024 U	0.0024 U	0.020	0.0024	8519276
Perfluorododecanoic acid (PFDoA)	ug/L	0.0029 U	0.0029 U	0.0029 U	0.020	0.0029	8519276
Perfluorotridecanoic acid (PFTRDA)	ug/L	0.0026 U	0.0026 U	0.0026 U	0.020	0.0026	8519276
Perfluorotetradecanoic acid(PFTEDA)	ug/L	0.0016 U	0.0016 U	0.0016 U	0.020	0.0016	8519276
Perfluorobutanesulfonic acid (PFBS)	ug/L	0.0037 J	0.0028 J	0.0021 U	0.020	0.0021	8519276
Perfluoropentanesulfonic acid PFPes	ug/L	0.0023 U	0.0023 U	0.0023 U	0.020	0.0023	8519276
Perfluorohexanesulfonic acid(PFHxS)	ug/L	0.0022 U	0.0022 U	0.0022 U	0.020	0.0022	8519276
Perfluoroheptanesulfonic acid PFHpS	ug/L	0.0039 U	0.0039 U	0.0039 U	0.020	0.0039	8519276
Perfluorooctanesulfonic acid (PFOS)	ug/L	0.0035 U	0.012 J	0.0035 U	0.020	0.0035	8519276
Perfluorononanesulfonic acid (PFNS)	ug/L	0.0037 U	0.0037 U	0.0037 U	0.020	0.0037	8519276
Perfluorodecanesulfonic acid (PFDS)	ug/L	0.0048 U	0.0048 U	0.0048 U	0.020	0.0048	8519276
Perfluorooctane Sulfonamide (PFOSA	ug/L	0.0034 U	0.0034 U	0.0034 U	0.020	0.0034	8519276
EtFOSA	ug/L	0.0095 U	0.0095 U	0.0095 U	0.020	0.0095	8519276
MeFOSA	ug/L	0.0084 U	0.0084 U	0.0084 U	0.020	0.0084	8519276
EtFOSE	ug/L	0.0070 U	0.0070 U	0.0070 U	0.020	0.0070	8519276
MeFOSE	ug/L	0.0073 U	0.0073 U	0.0073 U	0.020	0.0073	8519276
EtFOSAA	ug/L	0.0046 U	0.0046 U	0.0046 U	0.020	0.0046	8519276
MeFOSAA	ug/L	0.0045 U	0.0045 U	0.0045 U	0.020	0.0045	8519276
4:2 Fluorotelomer sulfonic acid	ug/L	0.0033 U	0.0033 U	0.0033 U	0.020	0.0033	8519276
6:2 Fluorotelomer sulfonic acid	ug/L	0.0015 U	0.0021 J	0.0015 U	0.020	0.0015	8519276
8:2 Fluorotelomer sulfonic acid	ug/L	0.0031 U	0.0059 J	0.0031 U	0.020	0.0031	8519276
Hexafluoropropyleneoxide dimer acid	ug/L	0.0052 U	0.0052 U	0.0052 U	0.020	0.0052	8519276
4,8-Dioxa-3H-perfluorononanoic acid		0.0027 U	0.0027 U	0.0027 U	0.020	0.0027	8519276
9Cl-PF3ONS (F-53B Major)	ug/L	0.0043 U	0.0043 U	0.0043 U	0.020	0.0043	8519276
11Cl-PF3OUdS (F-53B Minor)	ug/L	0.0035 U	0.0035 U	0.0035 U	0.020	0.0035	8519276
Surrogate Recovery (%)	•					•	
13C2-4:2-Fluorotelomersulfonic Acid	%	83	93	94	N/A	N/A	8519276
13C2-6:2-Fluorotelomersulfonic Acid	%	87	96	93	N/A	N/A	8519276
13C2-8:2-Fluorotelomersulfonic Acid	%	82	88	84	N/A	N/A	8519276
RDL = Reportable Detection Limit							

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

PERFLUOROALKYL SUBSTANCES (WATER)

Bureau Veritas ID		VBZ252	VBZ253	VBZ254			
Samulina Data		2023/02/14	2023/02/14	2023/02/14			
Sampling Date		14:37	16:17	16:10			
	UNITS	MW4-20230214-GW-40	MW6-20230214-GW-40.25	FIELD BLANK-02	RDL	MDL	QC Batch
13C2-Perfluorodecanoic acid	%	77	82	82	N/A	N/A	8519276
13C2-Perfluorododecanoic acid	%	69	71	74	N/A	N/A	8519276
13C2-Perfluorohexanoic acid	%	80	88	85	N/A	N/A	8519276
13C2-perfluorotetradecanoic acid	%	65	66	73	N/A	N/A	8519276
13C2-Perfluoroundecanoic acid	%	71	74	76	N/A	N/A	8519276
13C3-HFPO-DA	%	79	85	83	N/A	N/A	8519276
13C3-Perfluorobutanesulfonic acid	%	80	89	79	N/A	N/A	8519276
13C4-Perfluorobutanoic acid	%	86	93	87	N/A	N/A	8519276
13C4-Perfluoroheptanoic acid	%	83	90	87	N/A	N/A	8519276
13C4-Perfluorooctanesulfonic acid	%	78	87	81	N/A	N/A	8519276
13C4-Perfluorooctanoic acid	%	82	89	84	N/A	N/A	8519276
13C5-Perfluorononanoic acid	%	80	87	83	N/A	N/A	8519276
13C5-Perfluoropentanoic acid	%	83	84	87	N/A	N/A	8519276
13C8-Perfluorooctane Sulfonamide	%	63	70	75	N/A	N/A	8519276
18O2-Perfluorohexanesulfonic acid	%	82	91	82	N/A	N/A	8519276
D3-MeFOSA	%	47 (1)	51	56	N/A	N/A	8519276
D3-MeFOSAA	%	74	72	72	N/A	N/A	8519276
D5-EtFOSA	%	47 (2)	53	58	N/A	N/A	8519276
D5-EtFOSAA	%	70	66	70	N/A	N/A	8519276
D7-MeFOSE	%	60	64	67	N/A	N/A	8519276
D9-EtFOSE	%	60	64	70	N/A	N/A	8519276

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

⁽¹⁾ Extracted internal standard analyte recovery was below the defined lower control limit (LCL) which may result in increased variability of the associated native analyte result (MeFOSA).

⁽²⁾ Extracted internal standard analyte recovery was below the defined lower control limit (LCL) which may result in increased variability of the associated native analyte result (EtFOSA).

Apex Laboratories Client Project #: A3B0522

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		VBZ249							
Sampling Date		2023/02/14				TOXIC EQU	IIVALENCY	# of	
Jamping Date		10:05				TOXICEQU	TVALLITO	# 01	
	UNITS	MW3-20230214-GW-35	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg/L	1.37 U	1.37	9.26	1.45	1.00	1.37	0	8524619
1,2,3,7,8-Penta CDD *	pg/L	0.983 U	0.983	46.3	1.86	1.00	0.983	0	8524619
1,2,3,4,7,8-Hexa CDD *	pg/L	0.979 U	0.979	46.3	2.25	0.100	0.0979	0	8524619
1,2,3,6,7,8-Hexa CDD *	pg/L	1.01 U	1.01	46.3	1.40	0.100	0.101	0	8524619
1,2,3,7,8,9-Hexa CDD *	pg/L	0.924 U	0.924	46.3	1.13	0.100	0.0924	0	8524619
1,2,3,4,6,7,8-Hepta CDD *	pg/L	1.00 U	1.00	46.3	1.90	0.0100	0.0100	0	8524619
Octa CDD *	pg/L	2.11 J	0.995	92.6	3.13	0.000300	0.000633	1	8524619
Total Tetra CDD *	pg/L	1.37 U	1.37	9.26	4.00	N/A	N/A	0	8524619
Total Penta CDD *	pg/L	0.983 U	0.983	46.3	4.00	N/A	N/A	0	8524619
Total Hexa CDD *	pg/L	0.969 U	0.969	46.3	4.00	N/A	N/A	0	8524619
Total Hepta CDD *	pg/L	1.00 U	1.00	46.3	4.00	N/A	N/A	0	8524619
2,3,7,8-Tetra CDF **	pg/L	0.994 U	0.994	9.26	1.68	0.100	0.0994	0	8524619
1,2,3,7,8-Penta CDF **	pg/L	1.19 U	1.19	46.3	1.33	0.0300	0.0357	0	8524619
2,3,4,7,8-Penta CDF **	pg/L	1.02 U	1.02	46.3	1.23	0.300	0.306	0	8524619
1,2,3,4,7,8-Hexa CDF **	pg/L	0.815 U	0.815	46.3	1.85	0.100	0.0815	0	8524619
1,2,3,6,7,8-Hexa CDF **	pg/L	0.817 U	0.817	46.3	1.52	0.100	0.0817	0	8524619
2,3,4,6,7,8-Hexa CDF **	pg/L	0.738 U	0.738	46.3	1.97	0.100	0.0738	0	8524619
1,2,3,7,8,9-Hexa CDF **	pg/L	0.894 U	0.894	46.3	1.66	0.100	0.0894	0	8524619
1,2,3,4,6,7,8-Hepta CDF **	pg/L	0.815 U	0.815	46.3	2.00	0.0100	0.00815	0	8524619
1,2,3,4,7,8,9-Hepta CDF **	pg/L	0.888 U	0.888	46.3	1.87	0.0100	0.00888	0	8524619
Octa CDF **	pg/L	0.840 U	0.840	92.6	3.99	0.000300	0.000252	0	8524619
Total Tetra CDF **	pg/L	0.994 U	0.994	9.26	4.00	N/A	N/A	0	8524619
Total Penta CDF **	pg/L	1.10 U	1.10	46.3	4.00	N/A	N/A	0	8524619
Total Hexa CDF **	pg/L	0.813 U	0.813	46.3	4.00	N/A	N/A	0	8524619
Total Hepta CDF **	pg/L	0.849 U	0.849	46.3	4.00	N/A	N/A	0	8524619
TOTAL TOXIC EQUIVALENC	pg/L	N/A	N/A	N/A	N/A	N/A	3.44	N/A	N/A
Surrogate Recovery (%)									
37CL4 2378 Tetra CDD *	%	89	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-1234678 HeptaCDD *	%	98	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-1234678 HeptaCDF **	%	92	N/A	N/A	N/A	N/A	N/A	N/A	8524619

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

Apex Laboratories Client Project #: A3B0522

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		VBZ249							
Sampling Date		2023/02/14 10:05				TOXIC EQL	JIVALENCY	# of	
	UNITS	MW3-20230214-GW-35	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-123478 HexaCDD *	%	101	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123478 HexaCDF **	%	98	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-1234789 HeptaCDF **	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123678 HexaCDD *	%	98	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123678 HexaCDF **	%	95	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-12378 PentaCDD *	%	100	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-12378 PentaCDF **	%	91	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123789 HexaCDF **	%	96	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-234678 HexaCDF **	%	106	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-23478 PentaCDF **	%	96	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-2378 TetraCDD *	%	80	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-2378 TetraCDF **	%	90	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-OCDD *	%	103	N/A	N/A	N/A	N/A	N/A	N/A	8524619

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

Apex Laboratories
Client Project #: A3B0522

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		VBZ250							
Sampling Date		2023/02/14 10:05				TOXIC EQL	JIVALENCY	# of	
	UNITS	MW3-20230214-GW- 35-DUP	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg/L	1.42 U	1.42	9.35	1.45	1.00	1.42	0	8524619
1,2,3,7,8-Penta CDD *	pg/L	1.10 U	1.10	46.7	1.86	1.00	1.10	0	8524619
1,2,3,4,7,8-Hexa CDD *	pg/L	1.04 U	1.04	46.7	2.25	0.100	0.104	0	8524619
1,2,3,6,7,8-Hexa CDD *	pg/L	1.03 U	1.03	46.7	1.40	0.100	0.103	0	8524619
1,2,3,7,8,9-Hexa CDD *	pg/L	0.964 U	0.964	46.7	1.13	0.100	0.0964	0	8524619
1,2,3,4,6,7,8-Hepta CDD *	pg/L	1.03 U	1.03	46.7	1.90	0.0100	0.0103	0	8524619
Octa CDD *	pg/L	3.24 J	1.12	93.5	3.13	0.000300	0.000972	1	8524619
Total Tetra CDD *	pg/L	1.42 U	1.42	9.35	4.00	N/A	N/A	0	8524619
Total Penta CDD *	pg/L	1.10 U	1.10	46.7	4.00	N/A	N/A	0	8524619
Total Hexa CDD *	pg/L	1.06 U	1.06	46.7	4.00	N/A	N/A	0	8524619
Total Hepta CDD *	pg/L	1.43 U	1.43	46.7	4.00	N/A	N/A	0	8524619
2,3,7,8-Tetra CDF **	pg/L	1.02 U	1.02	9.35	1.68	0.100	0.102	0	8524619
1,2,3,7,8-Penta CDF **	pg/L	1.29 U	1.29	46.7	1.33	0.0300	0.0387	0	8524619
2,3,4,7,8-Penta CDF **	pg/L	1.08 U	1.08	46.7	1.23	0.300	0.324	0	8524619
1,2,3,4,7,8-Hexa CDF **	pg/L	0.879 U	0.879	46.7	1.85	0.100	0.0879	0	8524619
1,2,3,6,7,8-Hexa CDF **	pg/L	0.908 U	0.908	46.7	1.52	0.100	0.0908	0	8524619
2,3,4,6,7,8-Hexa CDF **	pg/L	0.805 U	0.805	46.7	1.97	0.100	0.0805	0	8524619
1,2,3,7,8,9-Hexa CDF **	pg/L	0.973 U	0.973	46.7	1.66	0.100	0.0973	0	8524619
1,2,3,4,6,7,8-Hepta CDF **	pg/L	0.893 U	0.893	46.7	2.00	0.0100	0.00893	0	8524619
1,2,3,4,7,8,9-Hepta CDF **	pg/L	0.955 U	0.955	46.7	1.87	0.0100	0.00955	0	8524619
Octa CDF **	pg/L	0.989 U	0.989	93.5	3.99	0.000300	0.000297	0	8524619
Total Tetra CDF **	pg/L	1.02 U	1.02	9.35	4.00	N/A	N/A	0	8524619
Total Penta CDF **	pg/L	1.18 U	1.18	46.7	4.00	N/A	N/A	0	8524619
Total Hexa CDF **	pg/L	0.888 U	0.888	46.7	4.00	N/A	N/A	0	8524619
Total Hepta CDF **	pg/L	0.923 U	0.923	46.7	4.00	N/A	N/A	0	8524619
TOTAL TOXIC EQUIVALENC	pg/L	N/A	N/A	N/A	N/A	N/A	3.67	N/A	N/A
Surrogate Recovery (%)									
37CL4 2378 Tetra CDD *	%	86	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-1234678 HeptaCDD *	%	101	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-1234678 HeptaCDF **	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8524619

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

Apex Laboratories Client Project #: A3B0522

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		VBZ250							
Sampling Date		2023/02/14 10:05				TOXIC EQU	JIVALENCY	# of	
	UNITS	MW3-20230214-GW- 35-DUP	EDL	RDL	MDL	DL TEF (2005 WHO) TEQ(DL)		Isomers	QC Batch
C13-123478 HexaCDD *	%	102	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123478 HexaCDF **	%	100	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-1234789 HeptaCDF **	%	96	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123678 HexaCDD *	%	102	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123678 HexaCDF **	%	94	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-12378 PentaCDD *	%	99	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-12378 PentaCDF **	%	91	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123789 HexaCDF **	%	98	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-234678 HexaCDF **	%	107	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-23478 PentaCDF **	%	99	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-2378 TetraCDD *	%	82	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-2378 TetraCDF **	%	94	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-OCDD *	%	104	N/A	N/A	N/A	N/A	N/A	N/A	8524619

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

Apex Laboratories
Client Project #: A3B0522

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		VBZ251							
Sampling Date		2023/02/14 12:51				TOXIC EQL	JIVALENCY	# of	
	UNITS	MW5-20230214-GW-40	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg/L	1.47 U	1.47	9.26	1.45	1.00	1.47	0	8524619
1,2,3,7,8-Penta CDD *	pg/L	1.08 U	1.08	46.3	1.86	1.00	1.08	0	8524619
1,2,3,4,7,8-Hexa CDD *	pg/L	1.05 U	1.05	46.3	2.25	0.100	0.105	0	8524619
1,2,3,6,7,8-Hexa CDD *	pg/L	1.04 U	1.04	46.3	1.40	0.100	0.104	0	8524619
1,2,3,7,8,9-Hexa CDD *	pg/L	0.972 U	0.972	46.3	1.13	0.100	0.0972	0	8524619
1,2,3,4,6,7,8-Hepta CDD *	pg/L	1.01 U	1.01	46.3	1.90	0.0100	0.0101	0	8524619
Octa CDD *	pg/L	1.44 U	1.44	92.6	3.13	0.000300	0.000432	0	8524619
Total Tetra CDD *	pg/L	1.47 U	1.47	9.26	4.00	N/A	N/A	0	8524619
Total Penta CDD *	pg/L	1.08 U	1.08	46.3	4.00	N/A	N/A	0	8524619
Total Hexa CDD *	pg/L	1.02 U	1.02	46.3	4.00	N/A	N/A	0	8524619
Total Hepta CDD *	pg/L	1.01 U	1.01	46.3	4.00	N/A	N/A	0	8524619
2,3,7,8-Tetra CDF **	pg/L	1.02 U	1.02	9.26	1.68	0.100	0.102	0	8524619
1,2,3,7,8-Penta CDF **	pg/L	1.30 U	1.30	46.3	1.33	0.0300	0.0390	0	8524619
2,3,4,7,8-Penta CDF **	pg/L	1.11 U	1.11	46.3	1.23	0.300	0.333	0	8524619
1,2,3,4,7,8-Hexa CDF **	pg/L	0.944 U	0.944	46.3	1.85	0.100	0.0944	0	8524619
1,2,3,6,7,8-Hexa CDF **	pg/L	0.944 U	0.944	46.3	1.52	0.100	0.0944	0	8524619
2,3,4,6,7,8-Hexa CDF **	pg/L	0.830 U	0.830	46.3	1.97	0.100	0.0830	0	8524619
1,2,3,7,8,9-Hexa CDF **	pg/L	1.03 U	1.03	46.3	1.66	0.100	0.103	0	8524619
1,2,3,4,6,7,8-Hepta CDF **	pg/L	0.893 U	0.893	46.3	2.00	0.0100	0.00893	0	8524619
1,2,3,4,7,8,9-Hepta CDF **	pg/L	0.975 U	0.975	46.3	1.87	0.0100	0.00975	0	8524619
Octa CDF **	pg/L	0.959 U	0.959	92.6	3.99	0.000300	0.000288	0	8524619
Total Tetra CDF **	pg/L	1.02 U	1.02	9.26	4.00	N/A	N/A	0	8524619
Total Penta CDF **	pg/L	1.20 U	1.20	46.3	4.00	N/A	N/A	0	8524619
Total Hexa CDF **	pg/L	0.933 U	0.933	46.3	4.00	N/A	N/A	0	8524619
Total Hepta CDF **	pg/L	0.932 U	0.932	46.3	4.00	N/A	N/A	0	8524619
TOTAL TOXIC EQUIVALENC	pg/L	N/A	N/A	N/A	N/A	N/A	3.73	N/A	N/A
Surrogate Recovery (%)									
37CL4 2378 Tetra CDD *	%	81	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-1234678 HeptaCDD *	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-1234678 HeptaCDF **	%	87	N/A	N/A	N/A	N/A	N/A	N/A	8524619

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

Apex Laboratories Client Project #: A3B0522

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		VBZ251							
Sampling Date		2023/02/14				TOXIC FOL	JIVALENCY	# of	
		12:51							
	UNITS	MW5-20230214-GW-40	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-123478 HexaCDD *	%	94	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123478 HexaCDF **	%	91	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-1234789 HeptaCDF **	%	88	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123678 HexaCDD *	%	94	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123678 HexaCDF **	%	89	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-12378 PentaCDD *	%	91	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-12378 PentaCDF **	%	82	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123789 HexaCDF **	%	90	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-234678 HexaCDF **	%	101	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-23478 PentaCDF **	%	88	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-2378 TetraCDD *	%	73	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-2378 TetraCDF **	%	87	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-OCDD *	%	96	N/A	N/A	N/A	N/A	N/A	N/A	8524619

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

Apex Laboratories
Client Project #: A3B0522

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		VBZ252							
Sampling Date		2023/02/14 14:37				TOXIC EQL	JIVALENCY	# of	
	UNITS	MW4-20230214-GW-40	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg/L	1.50 U	1.50	9.80	1.45	1.00	1.50	0	8524619
1,2,3,7,8-Penta CDD *	pg/L	1.15 U	1.15	49.0	1.86	1.00	1.15	0	8524619
1,2,3,4,7,8-Hexa CDD *	pg/L	1.05 U	1.05	49.0	2.25	0.100	0.105	0	8524619
1,2,3,6,7,8-Hexa CDD *	pg/L	1.01 U	1.01	49.0	1.40	0.100	0.101	0	8524619
1,2,3,7,8,9-Hexa CDD *	pg/L	0.959 U	0.959	49.0	1.13	0.100	0.0959	0	8524619
1,2,3,4,6,7,8-Hepta CDD *	pg/L	1.06 U	1.06	49.0	1.90	0.0100	0.0106	0	8524619
Octa CDD *	pg/L	4.17 U (1)	4.17	98.0	3.13	0.000300	0.00125	0	8524619
Total Tetra CDD *	pg/L	1.50 U	1.50	9.80	4.00	N/A	N/A	0	8524619
Total Penta CDD *	pg/L	1.15 U	1.15	49.0	4.00	N/A	N/A	0	8524619
Total Hexa CDD *	pg/L	1.01 U	1.01	49.0	4.00	N/A	N/A	0	8524619
Total Hepta CDD *	pg/L	1.06 U	1.06	49.0	4.00	N/A	N/A	0	8524619
2,3,7,8-Tetra CDF **	pg/L	1.07 U	1.07	9.80	1.68	0.100	0.107	0	8524619
1,2,3,7,8-Penta CDF **	pg/L	1.33 U	1.33	49.0	1.33	0.0300	0.0399	0	8524619
2,3,4,7,8-Penta CDF **	pg/L	1.10 U	1.10	49.0	1.23	0.300	0.330	0	8524619
1,2,3,4,7,8-Hexa CDF **	pg/L	0.937 U	0.937	49.0	1.85	0.100	0.0937	0	8524619
1,2,3,6,7,8-Hexa CDF **	pg/L	0.922 U	0.922	49.0	1.52	0.100	0.0922	0	8524619
2,3,4,6,7,8-Hexa CDF **	pg/L	0.827 U	0.827	49.0	1.97	0.100	0.0827	0	8524619
1,2,3,7,8,9-Hexa CDF **	pg/L	0.995 U	0.995	49.0	1.66	0.100	0.0995	0	8524619
1,2,3,4,6,7,8-Hepta CDF **	pg/L	0.880 U	0.880	49.0	2.00	0.0100	0.00880	0	8524619
1,2,3,4,7,8,9-Hepta CDF **	pg/L	0.954 U	0.954	49.0	1.87	0.0100	0.00954	0	8524619
Octa CDF **	pg/L	1.03 U	1.03	98.0	3.99	0.000300	0.000309	0	8524619
Total Tetra CDF **	pg/L	1.07 U	1.07	9.80	4.00	N/A	N/A	0	8524619
Total Penta CDF **	pg/L	1.21 U	1.21	49.0	4.00	N/A	N/A	0	8524619
Total Hexa CDF **	pg/L	0.917 U	0.917	49.0	4.00	N/A	N/A	0	8524619
Total Hepta CDF **	pg/L	0.915 U	0.915	49.0	4.00	N/A	N/A	0	8524619
TOTAL TOXIC EQUIVALENC	pg/L	N/A	N/A	N/A	N/A	N/A	3.83	N/A	N/A
Surrogate Recovery (%)									
37CL4 2378 Tetra CDD *	%	78	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-1234678 HeptaCDD *	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8524619
								• —	

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

** CDF = Chloro Dibenzo-p-Furan

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Apex Laboratories Client Project #: A3B0522

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		VBZ252							
Sampling Date		2023/02/14 14:37				TOXIC EQ	JIVALENCY	# of	
	UNITS	MW4-20230214-GW-40	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-1234678 HeptaCDF **	%	89	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123478 HexaCDD *	%	92	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123478 HexaCDF **	%	90	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-1234789 HeptaCDF **	%	91	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123678 HexaCDD *	%	95	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123678 HexaCDF **	%	89	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-12378 PentaCDD *	%	89	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-12378 PentaCDF **	%	81	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123789 HexaCDF **	%	91	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-234678 HexaCDF **	%	100	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-23478 PentaCDF **	%	89	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-2378 TetraCDD *	%	69	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-2378 TetraCDF **	%	83	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-OCDD *	%	95	N/A	N/A	N/A	N/A	N/A	N/A	8524619

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

N/A = Not Applicable

* CDD = Chloro Dibenzo-p-Dioxin

Apex Laboratories Client Project #: A3B0522

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		VBZ253							
Sampling Date		2023/02/14				TOXIC EQU	JIVALENCY	# of	
, , , , , , , , , , , , , , , , , , ,		16:17				-			
	UNITS	MW6-20230214-GW-40.25	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg/L	1.54 U	1.54	10.5	1.45	1.00	1.54	0	8524619
1,2,3,7,8-Penta CDD *	pg/L	1.34 U	1.34	52.6	1.86	1.00	1.34	0	8524619
1,2,3,4,7,8-Hexa CDD *	pg/L	1.25 U	1.25	52.6	2.25	0.100	0.125	0	8524619
1,2,3,6,7,8-Hexa CDD *	pg/L	1.21 U	1.21	52.6	1.40	0.100	0.121	0	8524619
1,2,3,7,8,9-Hexa CDD *	pg/L	1.14 U	1.14	52.6	1.13	0.100	0.114	0	8524619
1,2,3,4,6,7,8-Hepta CDD *	pg/L	1.39 U	1.39	52.6	1.90	0.0100	0.0139	0	8524619
Octa CDD *	pg/L	7.62 J	1.38	105	3.13	0.000300	0.00229	1	8524619
Total Tetra CDD *	pg/L	1.54 U	1.54	10.5	4.00	N/A	N/A	0	8524619
Total Penta CDD *	pg/L	1.34 U	1.34	52.6	4.00	N/A	N/A	0	8524619
Total Hexa CDD *	pg/L	1.20 U	1.20	52.6	4.00	N/A	N/A	0	8524619
Total Hepta CDD *	pg/L	1.45 U	1.45	52.6	4.00	N/A	N/A	0	8524619
2,3,7,8-Tetra CDF **	pg/L	1.03 U	1.03	10.5	1.68	0.100	0.103	0	8524619
1,2,3,7,8-Penta CDF **	pg/L	1.43 U	1.43	52.6	1.33	0.0300	0.0429	0	8524619
2,3,4,7,8-Penta CDF **	pg/L	1.23 U	1.23	52.6	1.23	0.300	0.369	0	8524619
1,2,3,4,7,8-Hexa CDF **	pg/L	0.994 U	0.994	52.6	1.85	0.100	0.0994	0	8524619
1,2,3,6,7,8-Hexa CDF **	pg/L	0.986 U	0.986	52.6	1.52	0.100	0.0986	0	8524619
2,3,4,6,7,8-Hexa CDF **	pg/L	0.898 U	0.898	52.6	1.97	0.100	0.0898	0	8524619
1,2,3,7,8,9-Hexa CDF **	pg/L	1.12 U	1.12	52.6	1.66	0.100	0.112	0	8524619
1,2,3,4,6,7,8-Hepta CDF **	pg/L	0.975 U	0.975	52.6	2.00	0.0100	0.00975	0	8524619
1,2,3,4,7,8,9-Hepta CDF **	pg/L	1.05 U	1.05	52.6	1.87	0.0100	0.0105	0	8524619
Octa CDF **	pg/L	1.21 U	1.21	105	3.99	0.000300	0.000363	0	8524619
Total Tetra CDF **	pg/L	1.03 U	1.03	10.5	4.00	N/A	N/A	0	8524619
Total Penta CDF **	pg/L	1.32 U	1.32	52.6	4.00	N/A	N/A	0	8524619
Total Hexa CDF **	pg/L	0.995 U	0.995	52.6	4.00	N/A	N/A	0	8524619
Total Hepta CDF **	pg/L	1.01 U	1.01	52.6	4.00	N/A	N/A	0	8524619
TOTAL TOXIC EQUIVALENC	pg/L	N/A	N/A	N/A	N/A	N/A	4.19	N/A	N/A
Surrogate Recovery (%)									
37CL4 2378 Tetra CDD *	%	94	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-1234678 HeptaCDD *	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-1234678 HeptaCDF **	%	90	N/A	N/A	N/A	N/A	N/A	N/A	8524619

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

Apex Laboratories Client Project #: A3B0522

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		VBZ253							
Sampling Date		2023/02/14 16:17				TOXIC EQ	JIVALENCY	# of	
	UNITS	MW6-20230214-GW-40.25	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-123478 HexaCDD *	%	94	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123478 HexaCDF **	%	95	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-1234789 HeptaCDF **	%	92	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123678 HexaCDD *	%	96	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123678 HexaCDF **	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-12378 PentaCDD *	%	92	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-12378 PentaCDF **	%	90	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123789 HexaCDF **	%	91	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-234678 HexaCDF **	%	103	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-23478 PentaCDF **	%	95	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-2378 TetraCDD *	%	83	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-2378 TetraCDF **	%	105	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-OCDD *	%	95	N/A	N/A	N/A	N/A	N/A	N/A	8524619

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ249							
Sampling Date		2023/02/14				TOXIC FOL	JIVALENCY	# of	
Jumphing Dute		10:05				`	JIVALLITO!		
	UNITS	MW3-20230214-GW-35	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2-MonoCB-(1)	ng/L	0.013 J	0.011	0.020	0.0098	N/A	N/A	1	8533813
3-MonoCB-(2)	ng/L	0.011 U	0.011	0.020	0.0079	N/A	N/A	1	8533813
4-MonoCB-(3)	ng/L	0.0095 U	0.0095	0.050	0.0071	N/A	N/A	1	8533813
22'-DiCB-(4)	ng/L	0.0100 J	0.0074	0.050	0.017	N/A	N/A	1	8533813
2,3-DiCB-(5)	ng/L	0.0032 U	0.0032	0.050	0.012	N/A	N/A	1	8533813
2,3'-DiCB-(6)	ng/L	0.0031 U	0.0031	0.020	0.0053	N/A	N/A	1	8533813
2,4-DiCB-(7)	ng/L	0.0031 U	0.0031	0.020	0.0056	N/A	N/A	1	8533813
2,4'-DiCB-(8)	ng/L	0.0030 U	0.0030	0.050	0.017	N/A	N/A	1	8533813
2,5-DiCB-(9)	ng/L	0.0031 U	0.0031	0.020	0.0044	N/A	N/A	1	8533813
2,6-DiCB-(10)	ng/L	0.0039 U	0.0039	0.050	0.0052	N/A	N/A	1	8533813
3,3'-DiCB-(11)	ng/L	0.0032 U	0.0032	0.20	0.0090	N/A	N/A	1	8533813
DiCB-(12)+(13)	ng/L	0.0029 U	0.0029	0.050	0.015	N/A	N/A	1	8533813
3,5-DiCB-(14)	ng/L	0.0032 U	0.0032	0.020	0.0082	N/A	N/A	1	8533813
4,4'-DiCB-(15)	ng/L	0.0027 U	0.0027	0.050	0.011	N/A	N/A	1	8533813
22'3-TriCB-(16)	ng/L	0.0071 U	0.0071	0.050	0.0060	N/A	N/A	1	8533813
22'4-TriCB-(17)	ng/L	0.0057 U	0.0057	0.020	0.0091	N/A	N/A	1	8533813
TriCB-(18)+(30)	ng/L	0.0049 U	0.0049	0.050	0.017	N/A	N/A	1	8533813
22'6-TriCB-(19)	ng/L	0.0090 U	0.0090	0.020	0.0061	N/A	N/A	1	8533813
TriCB-(20) + (28)	ng/L	0.0033 U	0.0033	0.050	0.010	N/A	N/A	1	8533813
TriCB-(21)+(33)	ng/L	0.0036 U	0.0036	0.050	0.011	N/A	N/A	1	8533813
234'-TriCB-(22)	ng/L	0.0037 U	0.0037	0.020	0.0065	N/A	N/A	1	8533813
235-TriCB-(23)	ng/L	0.0037 U	0.0037	0.020	0.0072	N/A	N/A	1	8533813
236-TriCB-(24)	ng/L	0.0045 U	0.0045	0.020	0.0043	N/A	N/A	1	8533813
23'4-TriCB-(25)	ng/L	0.0037 U	0.0037	0.020	0.0054	N/A	N/A	1	8533813
TriCB-(26)+(29)	ng/L	0.0034 U	0.0034	0.050	0.013	N/A	N/A	1	8533813
23'6-TriCB-(27)	ng/L	0.0042 U	0.0042	0.020	0.0082	N/A	N/A	1	8533813
24'5-TriCB-(31)	ng/L	0.0032 U	0.0032	0.050	0.0078	N/A	N/A	1	8533813
24'6-TriCB-(32)	ng/L	0.0040 U	0.0040	0.020	0.0087	N/A	N/A	1	8533813
23'5'-TriCB-(34)	ng/L	0.0036 U	0.0036	0.020	0.0061	N/A	N/A	1	8533813
33'4-TriCB-(35)	ng/L	0.0035 U	0.0035	0.020	0.0042	N/A	N/A	1	8533813
33'5-TriCB-(36)	ng/L	0.0032 U	0.0032	0.020	0.0052	N/A	N/A	1	8533813
344'-TriCB-(37)	ng/L	0.0032 U	0.0032	0.020	0.0041	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ249							
Sampling Date		2023/02/14				TOXIC FOL	JIVALENCY	# of	
1 0		10:05				Ì		" 01	
	UNITS	MW3-20230214-GW-35	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
345-TriCB-(38)	ng/L	0.0034 U	0.0034	0.020	0.0047	N/A	N/A	1	8533813
34'5-TriCB-(39)	ng/L	0.0036 U	0.0036	0.020	0.0059	N/A	N/A	1	8533813
TetraCB-(40)+(41)+(71)	ng/L	0.011 U	0.011	0.10	0.035	N/A	N/A	1	8533813
22'34'-TetraCB-(42)	ng/L	0.015 U	0.015	0.050	0.011	N/A	N/A	1	8533813
22'35-TetraCB-(43)	ng/L	0.014 U	0.014	0.050	0.015	N/A	N/A	1	8533813
TetraCB-(44)+(47)+(65)	ng/L	0.019 J	0.010	0.10	0.029	N/A	N/A	1	8533813
TetraCB-(45)+(51)	ng/L	0.011 U	0.011	0.050	0.011	N/A	N/A	1	8533813
22'36'-TetraCB-(46)	ng/L	0.012 U	0.012	0.020	0.014	N/A	N/A	1	8533813
22'45-TetraCB-(48)	ng/L	0.011 U	0.011	0.050	0.017	N/A	N/A	1	8533813
TetraCB-(49)+TetraCB-(69)	ng/L	0.0097 U	0.0097	0.10	0.023	N/A	N/A	1	8533813
TetraCB-(50)+(53)	ng/L	0.011 U	0.011	0.10	0.027	N/A	N/A	1	8533813
22'55'-TetraCB-(52)	ng/L	0.011 U	0.011	0.050	0.019	N/A	N/A	1	8533813
22'66'-TetraCB-(54)	ng/L	0.018 U	0.018	0.050	0.020	N/A	N/A	1	8533813
233'4-TetraCB-(55)	ng/L	0.0077 U	0.0077	0.050	0.015	N/A	N/A	1	8533813
233'4'-Tetra CB(56)	ng/L	0.0075 U	0.0075	0.050	0.018	N/A	N/A	1	8533813
233'5-TetraCB-(57)	ng/L	0.0074 U	0.0074	0.050	0.0097	N/A	N/A	1	8533813
233'5'-TetraCB-(58)	ng/L	0.0073 U	0.0073	0.050	0.020	N/A	N/A	1	8533813
TetraCB-(59)+(62)+(75)	ng/L	0.0077 U	0.0077	0.10	0.038	N/A	N/A	1	8533813
2344'-TetraCB -(60)	ng/L	0.0072 U	0.0072	0.050	0.011	N/A	N/A	1	8533813
TetraCB-(61)+(70)+(74)+(76)	ng/L	0.0074 U	0.0074	0.20	0.035	N/A	N/A	1	8533813
234'5-TetraCB-(63)	ng/L	0.0071 U	0.0071	0.050	0.0080	N/A	N/A	1	8533813
234'6-TetraCB-(64)	ng/L	0.0090 U	0.0090	0.050	0.0089	N/A	N/A	1	8533813
23'44'-TetraCB-(66)	ng/L	0.0070 U	0.0070	0.050	0.0084	N/A	N/A	1	8533813
23'45-TetraCB-(67)	ng/L	0.0061 U	0.0061	0.050	0.0040	N/A	N/A	1	8533813
23'45'-TetraCB-(68)	ng/L	0.0066 U	0.0066	0.050	0.014	N/A	N/A	1	8533813
23'55'-TetraCB-(72)	ng/L	0.0071 U	0.0071	0.050	0.0082	N/A	N/A	1	8533813
23'5'6-TetraCB-(73)	ng/L	0.0075 U	0.0075	0.050	0.023	N/A	N/A	1	8533813
33'44'-TetraCB-(77)	ng/L	0.0055 U	0.0055	0.050	0.011	0.000100	0.000000550	1	8533813
33'45-TetraCB-(78)	ng/L	0.0077 U	0.0077	0.050	0.013	N/A	N/A	1	8533813
33'45'-TetraCB(79)	ng/L	0.0061 U	0.0061	0.050	0.0088	N/A	N/A	1	8533813
33'55'-TetraCB-(80)	ng/L	0.0060 U	0.0060	0.050	0.0087	N/A	N/A	1	8533813
344'5-TetraCB-(81)	ng/L	0.0060 U	0.0060	0.050	0.0079	0.000300	0.0000180	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ249							
Sampling Date		2023/02/14				TOXIC FOL	JIVALENCY	# of	
Sampling Date		10:05				Ì	JIVALLITO!		
	UNITS	MW3-20230214-GW-35	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'4-PentaCB-(82)	ng/L	0.011 U	0.011	0.050	0.014	N/A	N/A	1	8533813
PentaCB-(83)+(99)	ng/L	0.0087 U	0.0087	0.10	0.033	N/A	N/A	1	8533813
22'33'6-PentaCB-(84)	ng/L	0.0096 U	0.0096	0.020	0.0088	N/A	N/A	1	8533813
PentaCB-(85)+(116)+(117)	ng/L	0.0068 U	0.0068	0.10	0.040	N/A	N/A	1	8533813
PentaCB-(86)(87)(97)(109)(119)(125	ng/L	0.0073 U	0.0073	0.20	0.080	N/A	N/A	1	8533813
PentaCB-(88)+(91)	ng/L	0.0093 U	0.0093	0.050	0.025	N/A	N/A	1	8533813
22'346'-PentaCB-(89)	ng/L	0.011 U	0.011	0.050	0.0040	N/A	N/A	1	8533813
PentaCB-(90)+(101)+(113)	ng/L	0.0074 U	0.0074	0.20	0.0080	N/A	N/A	1	8533813
22'355'-PentaCB-(92)	ng/L	0.010 U	0.010	0.050	0.010	N/A	N/A	1	8533813
PentaCB-(93)+(98)+(100)+(102)	ng/L	0.0091 U	0.0091	0.20	0.051	N/A	N/A	1	8533813
22'356'-PentaCB-(94)	ng/L	0.0095 U	0.0095	0.050	0.017	N/A	N/A	1	8533813
22'35'6-PentaCB-(95)	ng/L	0.0099 U	0.0099	0.050	0.011	N/A	N/A	1	8533813
22'366'-PentaCB-(96)	ng/L	0.0080 U	0.0080	0.050	0.014	N/A	N/A	1	8533813
22'45'6-PentaCB-(103)	ng/L	0.0089 U	0.0089	0.050	0.012	N/A	N/A	1	8533813
22'466'-PentaCB-(104)	ng/L	0.0087 U	0.0087	0.050	0.022	N/A	N/A	1	8533813
233'44'-PentaCB-(105)	ng/L	0.0045 U	0.0045	0.050	0.0052	0.0000300	0.00000135	1	8533813
233'45-PentaCB-(106)	ng/L	0.0059 U	0.0059	0.050	0.018	N/A	N/A	1	8533813
233'4'5-PentaCB-(107)	ng/L	0.0045 U	0.0045	0.050	0.014	N/A	N/A	1	8533813
PentaCB-(108)+(124)	ng/L	0.0056 U	0.0056	0.10	0.023	N/A	N/A	1	8533813
PentaCB-(110)+(115)	ng/L	0.0067 U	0.0067	0.10	0.022	N/A	N/A	1	8533813
233'55'-PentaCB-(111)	ng/L	0.0060 U	0.0060	0.050	0.012	N/A	N/A	1	8533813
233'56-PentaCB-(112)	ng/L	0.0057 U	0.0057	0.050	0.018	N/A	N/A	1	8533813
2344'5-PentaCB-(114)	ng/L	0.0052 U	0.0052	0.050	0.0084	0.0000300	0.00000156	1	8533813
23'44'5-PentaCB-(118)	ng/L	0.0048 U	0.0048	0.10	0.0071	0.0000300	0.00000144	1	8533813
23'455'-PentaCB-(120)	ng/L	0.0061 U	0.0061	0.050	0.014	N/A	N/A	1	8533813
23'45'6-PentaCB-(121)	ng/L	0.0063 U	0.0063	0.050	0.0040	N/A	N/A	1	8533813
233'4'5'-PentaCB-(122)	ng/L	0.0073 U	0.0073	0.050	0.011	N/A	N/A	1	8533813
23'44'5'-PentaCB-(123)	ng/L	0.0054 U	0.0054	0.050	0.014	0.0000300	0.00000162	1	8533813
33'44'5-PentaCB-(126)	ng/L	0.0047 U	0.0047	0.050	0.0061	0.100	0.000470	1	8533813
33'455'-PentaCB-(127)	ng/L	0.0055 U	0.0055	0.050	0.017	N/A	N/A	1	8533813
HexaCB-(128)+(166)	ng/L	0.0066 U	0.0066	0.10	0.026	N/A	N/A	1	8533813
HexaCB-(129)+(138)+(163)	ng/L	0.0075 U	0.0075	0.20	0.014	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ249							
Sampling Date		2023/02/14				TOXIC FOL	JIVALENCY	# of	
		10:05				`			
	UNITS	MW3-20230214-GW-35	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'45'-HexaCB-(130)	ng/L	0.0082 U	0.0082	0.050	0.020	N/A	N/A	1	8533813
22'33'46-HexaCB-(131)	ng/L	0.010 U	0.010	0.050	0.019	N/A	N/A	1	8533813
22'33'46'-HexaCB-(132)	ng/L	0.0089 U	0.0089	0.050	0.019	N/A	N/A	1	8533813
22'33'55'-HexaCB-(133)	ng/L	0.0088 U	0.0088	0.050	0.017	N/A	N/A	1	8533813
HexaCB-(134)+(143)	ng/L	0.0094 U	0.0094	0.10	0.028	N/A	N/A	1	8533813
HexaCB-(135)+(151)	ng/L	0.010 U	0.010	0.10	0.038	N/A	N/A	1	8533813
22'33'66'-HexaCB-(136)	ng/L	0.0074 U	0.0074	0.050	0.014	N/A	N/A	1	8533813
22'344'5-HexaCB-(137)	ng/L	0.0078 U	0.0078	0.10	0.014	N/A	N/A	1	8533813
HexaCB-(139)+(140)	ng/L	0.0072 U	0.0072	0.10	0.032	N/A	N/A	1	8533813
22'3455'-HexaCB-(141)	ng/L	0.0074 U	0.0074	0.050	0.018	N/A	N/A	1	8533813
22'3456-HexaCB-(142)	ng/L	0.0092 U	0.0092	0.050	0.018	N/A	N/A	1	8533813
22'345'6-HexaCB-(144)	ng/L	0.0099 U	0.0099	0.050	0.011	N/A	N/A	1	8533813
22'3466'-HexaCB-(145)	ng/L	0.0072 U	0.0072	0.050	0.022	N/A	N/A	1	8533813
22'34'55'-HexaCB-(146)	ng/L	0.0068 U	0.0068	0.050	0.014	N/A	N/A	1	8533813
HexaCB-(147)+(149)	ng/L	0.0071 U	0.0071	0.10	0.027	N/A	N/A	1	8533813
22'34'56'-HexaCB-(148)	ng/L	0.010 U	0.010	0.050	0.013	N/A	N/A	1	8533813
22'34'66'-HexaCB-(150)	ng/L	0.0071 U	0.0071	0.050	0.022	N/A	N/A	1	8533813
22'3566'-HexaCB-(152)	ng/L	0.0074 U	0.0074	0.050	0.020	N/A	N/A	1	8533813
HexaCB-(153)+(168)	ng/L	0.0060 U	0.0060	0.10	0.028	N/A	N/A	1	8533813
22'44'56'-HexaCB-(154)	ng/L	0.0078 U	0.0078	0.050	0.014	N/A	N/A	1	8533813
22'44'66'-HexaCB-(155)	ng/L	0.0077 U	0.0077	0.050	0.013	N/A	N/A	1	8533813
HexaCB-(156)+(157)	ng/L	0.0049 U	0.0049	0.10	0.015	0.0000300	0.00000147	1	8533813
233'44'6-HexaCB-(158)	ng/L	0.0049 U	0.0049	0.050	0.017	N/A	N/A	1	8533813
233'455'-HexaCB-(159)	ng/L	0.0047 U	0.0047	0.050	0.015	N/A	N/A	1	8533813
233'456-HexaCB-(160)	ng/L	0.0062 U	0.0062	0.050	0.013	N/A	N/A	1	8533813
233'45'6-HexaCB-(161)	ng/L	0.0057 U	0.0057	0.050	0.022	N/A	N/A	1	8533813
233'4'55'-HexaCB-(162)	ng/L	0.0046 U	0.0046	0.050	0.016	N/A	N/A	1	8533813
233'4'5'6-HexaCB-(164)	ng/L	0.0053 U	0.0053	0.050	0.020	N/A	N/A	1	8533813
233'55'6-HexaCB-(165)	ng/L	0.0063 U	0.0063	0.050	0.022	N/A	N/A	1	8533813
23'44'55'-HexaCB-(167)	ng/L	0.0049 U	0.0049	0.050	0.0096	0.0000300	0.00000147	1	8533813
33'44'55'-HexaCB-(169)	ng/L	0.0051 U	0.0051	0.050	0.0092	0.0300	0.000153	1	8533813
22'33'44'5-HeptaCB-(170)	ng/L	0.0051 U	0.0051	0.050	0.011	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ249							
Sampling Date		2023/02/14				TOXIC FOL	JIVALENCY	# of	
		10:05				TOXICEQU	JIVALLING!	# 01	
	UNITS	MW3-20230214-GW-35	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
HeptaCB-(171)+(173)	ng/L	0.0063 U	0.0063	0.10	0.027	N/A	N/A	1	8533813
22'33'455'-HeptaCB-(172)	ng/L	0.0062 U	0.0062	0.050	0.012	N/A	N/A	1	8533813
22'33'456'-HeptaCB-(174)	ng/L	0.0059 U	0.0059	0.050	0.017	N/A	N/A	1	8533813
22'33'45'6-HeptaCB-(175)	ng/L	0.0072 U	0.0072	0.050	0.0064	N/A	N/A	1	8533813
22'33'466'-HeptaCB-(176)	ng/L	0.0052 U	0.0052	0.050	0.0079	N/A	N/A	1	8533813
22'33'45'6'-HeptaCB-(177)	ng/L	0.0064 U	0.0064	0.050	0.013	N/A	N/A	1	8533813
22'33'55'6-HeptaCB-(178)	ng/L	0.0073 U	0.0073	0.050	0.0071	N/A	N/A	1	8533813
22'33'566'-HeptaCB-(179)	ng/L	0.0052 U	0.0052	0.050	0.010	N/A	N/A	1	8533813
HeptaCB-(180)+(193)	ng/L	0.0048 U	0.0048	0.10	0.018	N/A	N/A	1	8533813
22'344'56-HeptaCB-(181)	ng/L	0.0061 U	0.0061	0.050	0.015	N/A	N/A	1	8533813
22'344'56'-HeptaCB-(182)	ng/L	0.0065 U	0.0065	0.050	0.0066	N/A	N/A	1	8533813
22'344'5'6-HeptaCB-(183)	ng/L	0.0055 U	0.0055	0.050	0.017	N/A	N/A	1	8533813
22'344'66'-HeptaCB-(184)	ng/L	0.0050 U	0.0050	0.050	0.0065	N/A	N/A	1	8533813
22'3455'6-HeptaCB-(185)	ng/L	0.0066 U	0.0066	0.050	0.017	N/A	N/A	1	8533813
22'34566'-HeptaCB-(186)	ng/L	0.0054 U	0.0054	0.050	0.0095	N/A	N/A	1	8533813
22'34'55'6-HeptaCB-(187)	ng/L	0.0065 U	0.0065	0.050	0.0047	N/A	N/A	1	8533813
22'34'566'-HeptaCB-(188)	ng/L	0.0056 U	0.0056	0.050	0.015	N/A	N/A	1	8533813
233'44'55'-HeptaCB-(189)	ng/L	0.0042 U	0.0042	0.050	0.014	0.0000300	0.00000126	1	8533813
233'44'56-HeptaCB-(190)	ng/L	0.0044 U	0.0044	0.050	0.016	N/A	N/A	1	8533813
233'44'5'6-HeptaCB-(191)	ng/L	0.0044 U	0.0044	0.050	0.014	N/A	N/A	1	8533813
233'455'6-HeptaCB-(192)	ng/L	0.0048 U	0.0048	0.050	0.0088	N/A	N/A	1	8533813
22'33'44'55'-OctaCB-(194)	ng/L	0.011 U	0.011	0.050	0.024	N/A	N/A	1	8533813
22'33'44'56-OctaCB-(195)	ng/L	0.012 U	0.012	0.050	0.019	N/A	N/A	1	8533813
22'33'44'56'-OctaCB-(196)	ng/L	0.012 U	0.012	0.050	0.017	N/A	N/A	1	8533813
22'33'44'66'OctaCB-(197)	ng/L	0.0086 U	0.0086	0.050	0.033	N/A	N/A	1	8533813
OctaCB-(198)+(199)	ng/L	0.013 U	0.013	0.10	0.028	N/A	N/A	1	8533813
22'33'4566'-OctaCB-(200)	ng/L	0.010 U	0.010	0.050	0.031	N/A	N/A	1	8533813
22'33'45'66'-OctaCB-(201)	ng/L	0.0088 U	0.0088	0.050	0.014	N/A	N/A	1	8533813
22'33'55'66'-OctaCB-(202)	ng/L	0.0097 U	0.0097	0.050	0.013	N/A	N/A	1	8533813
22'344'55'6-OctaCB-(203)	ng/L	0.012 U	0.012	0.050	0.021	N/A	N/A	1	8533813
22'344'566'-OctaCB-(204)	ng/L	0.0076 U	0.0076	0.050	0.018	N/A	N/A	1	8533813
233'44'55'6-OctaCB-(205)	ng/L	0.0077 U	0.0077	0.050	0.014	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ249							
Sampling Date		2023/02/14				TOXIC FOL	JIVALENCY	# of	
Sumpling Bute		10:05				`	, , , , , , , , , , , , , , , , , , ,	" 01	
	UNITS	MW3-20230214-GW-35	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'44'55'6-NonaCB-(206)	ng/L	0.014 U	0.014	0.050	0.020	N/A	N/A	1	8533813
22'33'44'566'-NonaCB-(207)	ng/L	0.013 U	0.013	0.050	0.018	N/A	N/A	1	8533813
22'33'455'66'-NonaCB-(208)	ng/L	0.012 U	0.012	0.050	0.021	N/A	N/A	1	8533813
DecaCB-(209)	ng/L	0.018 U	0.018	0.050	0.015	N/A	N/A	1	8533813
TOTAL TOXIC EQUIVALENCY	ng/L	N/A	N/A	N/A	N/A	N/A	0.000626	N/A	N/A
Surrogate Recovery (%)									
C13-2,44'-TriCB-(28)	%	37	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'44'55'6-NonaCB-(206)	%	123	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'44'5-HeptaCB-(170)	%	97	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'455'66'-NonaCB-(208)	%	107	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'55'66'-OctaCB-(202)	%	102	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'55'6-HeptaCB-(178)	%	94	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'344'55'-HeptaCB-(180)	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'34'566'-HeptaCB-(188)	%	80	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'44'66'-HexaCB-(155)	%	74	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'466'-PentaCB-(104)	%	55	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'66'-TetraCB-(54)	%	46	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'6-TriCB-(19)	%	46	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'-DiCB-(4)	%	38	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'55'6-OctaCB-(205)	%	100	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'55'-HeptaCB-(189)	%	82	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'-PentaCB-(105)	%	70	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'55'-PentaCB-(111)	%	84	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-23'44'55'-HexaCB-(167)	%	65	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2344'5-PentaCB-(114)	%	59	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-23'44'5-PentaCB-(118)	%	60	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2'344'5-PentaCB-(123)	%	61	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2-MonoCB-(1)	%	22	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'55'-HexaCB-(169)	%	71	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'5-PentaCB-(126)	%	72	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'-TetraCB-(77)	%	89	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-344'5-TetraCB-(81)	%	83	N/A	N/A	N/A	N/A	N/A	N/A	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ249							
Sampling Date		2023/02/14 10:05				TOXIC EQU	JIVALENCY	# of	
	UNITS	MW3-20230214-GW-35	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-344'-TriCB-(37)	%	46	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-44'-DiCB-(15)	%	43	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-4-MonoCB-(3)	%	26	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-DecaCB-(209)	%	141	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-HexaCB-(156)+(157)	%	65	N/A	N/A	N/A	N/A	N/A	N/A	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ250							
Sampling Date		2023/02/14				TOVICEOU	JIVALENCY	# of	
Sampling Date		10:05				TOXIC EQU	JIVALENCY	# 01	
	UNITS	MW3-20230214-GW- 35-DUP	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2-MonoCB-(1)	ng/L	0.017 U	0.017	0.020	0.0098	N/A	N/A	1	8533813
3-MonoCB-(2)	ng/L	0.017 U	0.017	0.020	0.0079	N/A	N/A	1	8533813
4-MonoCB-(3)	ng/L	0.014 U	0.014	0.051	0.0071	N/A	N/A	1	8533813
22'-DiCB-(4)	ng/L	0.020 U	0.020	0.051	0.017	N/A	N/A	1	8533813
2,3-DiCB-(5)	ng/L	0.0084 U	0.0084	0.051	0.012	N/A	N/A	1	8533813
2,3'-DiCB-(6)	ng/L	0.0082 U	0.0082	0.020	0.0053	N/A	N/A	1	8533813
2,4-DiCB-(7)	ng/L	0.0083 U	0.0083	0.020	0.0056	N/A	N/A	1	8533813
2,4'-DiCB-(8)	ng/L	0.0080 U	0.0080	0.051	0.017	N/A	N/A	1	8533813
2,5-DiCB-(9)	ng/L	0.0081 U	0.0081	0.020	0.0044	N/A	N/A	1	8533813
2,6-DiCB-(10)	ng/L	0.010 U	0.010	0.051	0.0052	N/A	N/A	1	8533813
3,3'-DiCB-(11)	ng/L	0.118 J	0.0084	0.20	0.0090	N/A	N/A	1	8533813
DiCB-(12)+(13)	ng/L	0.0076 U	0.0076	0.051	0.015	N/A	N/A	1	8533813
3,5-DiCB-(14)	ng/L	0.0083 U	0.0083	0.020	0.0082	N/A	N/A	1	8533813
4,4'-DiCB-(15)	ng/L	0.0070 U	0.0070	0.051	0.011	N/A	N/A	1	8533813
22'3-TriCB-(16)	ng/L	0.012 U	0.012	0.051	0.0060	N/A	N/A	1	8533813
22'4-TriCB-(17)	ng/L	0.0094 U	0.0094	0.020	0.0091	N/A	N/A	1	8533813
TriCB-(18)+(30)	ng/L	0.0081 U	0.0081	0.051	0.017	N/A	N/A	1	8533813
22'6-TriCB-(19)	ng/L	0.017 U	0.017	0.020	0.0061	N/A	N/A	1	8533813
TriCB-(20) + (28)	ng/L	0.0125 J	0.0054	0.050	0.010	N/A	N/A	1	8533813
TriCB-(21)+(33)	ng/L	0.0078 J	0.0060	0.051	0.011	N/A	N/A	1	8533813
234'-TriCB-(22)	ng/L	0.0060 U	0.0060	0.020	0.0065	N/A	N/A	1	8533813
235-TriCB-(23)	ng/L	0.0061 U	0.0061	0.020	0.0072	N/A	N/A	1	8533813
236-TriCB-(24)	ng/L	0.0074 U	0.0074	0.020	0.0043	N/A	N/A	1	8533813
23'4-TriCB-(25)	ng/L	0.0061 U	0.0061	0.020	0.0054	N/A	N/A	1	8533813
TriCB-(26)+(29)	ng/L	0.0056 U	0.0056	0.051	0.013	N/A	N/A	1	8533813
23'6-TriCB-(27)	ng/L	0.0069 U	0.0069	0.020	0.0082	N/A	N/A	1	8533813
24'5-TriCB-(31)	ng/L	0.0120 J	0.0053	0.051	0.0078	N/A	N/A	1	8533813
24'6-TriCB-(32)	ng/L	0.0066 U	0.0066	0.020	0.0087	N/A	N/A	1	8533813
23'5'-TriCB-(34)	ng/L	0.0060 U	0.0060	0.020	0.0061	N/A	N/A	1	8533813
33'4-TriCB-(35)	ng/L	0.0058 U	0.0058	0.020	0.0042	N/A	N/A	1	8533813
33'5-TriCB-(36)	ng/L	0.0053 U	0.0053	0.020	0.0052	N/A	N/A	1	8533813
344'-TriCB-(37)	ng/L	0.0051 U	0.0051	0.020	0.0041	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ250							
Sampling Date		2023/02/14				TOYIC FOL	JIVALENCY	# of	
Jamping Date		10:05				TOXICEQU	JIVALLING	# 01	
	UNITS	MW3-20230214-GW- 35-DUP	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
345-TriCB-(38)	ng/L	0.0056 U	0.0056	0.020	0.0047	N/A	N/A	1	8533813
34'5-TriCB-(39)	ng/L	0.0059 U	0.0059	0.020	0.0059	N/A	N/A	1	8533813
TetraCB-(40)+(41)+(71)	ng/L	0.014 U	0.014	0.10	0.035	N/A	N/A	1	8533813
22'34'-TetraCB-(42)	ng/L	0.019 U	0.019	0.051	0.011	N/A	N/A	1	8533813
22'35-TetraCB-(43)	ng/L	0.018 U	0.018	0.051	0.015	N/A	N/A	1	8533813
TetraCB-(44)+(47)+(65)	ng/L	0.029 J	0.013	0.10	0.029	N/A	N/A	1	8533813
TetraCB-(45)+(51)	ng/L	0.015 U	0.015	0.051	0.011	N/A	N/A	1	8533813
22'36'-TetraCB-(46)	ng/L	0.016 U	0.016	0.020	0.014	N/A	N/A	1	8533813
22'45-TetraCB-(48)	ng/L	0.014 U	0.014	0.051	0.017	N/A	N/A	1	8533813
TetraCB-(49)+TetraCB-(69)	ng/L	0.012 U	0.012	0.10	0.023	N/A	N/A	1	8533813
TetraCB-(50)+(53)	ng/L	0.014 U	0.014	0.10	0.027	N/A	N/A	1	8533813
22'55'-TetraCB-(52)	ng/L	0.020 J	0.014	0.051	0.019	N/A	N/A	1	8533813
22'66'-TetraCB-(54)	ng/L	0.026 U	0.026	0.051	0.020	N/A	N/A	1	8533813
233'4-TetraCB-(55)	ng/L	0.0099 U	0.0099	0.051	0.015	N/A	N/A	1	8533813
233'4'-Tetra CB(56)	ng/L	0.0095 U	0.0095	0.051	0.018	N/A	N/A	1	8533813
233'5-TetraCB-(57)	ng/L	0.0094 U	0.0094	0.051	0.0097	N/A	N/A	1	8533813
233'5'-TetraCB-(58)	ng/L	0.0093 U	0.0093	0.051	0.020	N/A	N/A	1	8533813
TetraCB-(59)+(62)+(75)	ng/L	0.0098 U	0.0098	0.10	0.038	N/A	N/A	1	8533813
2344'-TetraCB -(60)	ng/L	0.0093 U	0.0093	0.051	0.011	N/A	N/A	1	8533813
TetraCB-(61)+(70)+(74)+(76)	ng/L	0.0260 J	0.0095	0.20	0.035	N/A	N/A	1	8533813
234'5-TetraCB-(63)	ng/L	0.0091 U	0.0091	0.051	0.0080	N/A	N/A	1	8533813
234'6-TetraCB-(64)	ng/L	0.011 U	0.011	0.051	0.0089	N/A	N/A	1	8533813
23'44'-TetraCB-(66)	ng/L	0.0093 J	0.0089	0.051	0.0084	N/A	N/A	1	8533813
23'45-TetraCB-(67)	ng/L	0.0078 U	0.0078	0.051	0.0040	N/A	N/A	1	8533813
23'45'-TetraCB-(68)	ng/L	0.0085 U	0.0085	0.051	0.014	N/A	N/A	1	8533813
23'55'-TetraCB-(72)	ng/L	0.0091 U	0.0091	0.051	0.0082	N/A	N/A	1	8533813
23'5'6-TetraCB-(73)	ng/L	0.0096 U	0.0096	0.051	0.023	N/A	N/A	1	8533813
33'44'-TetraCB-(77)	ng/L	0.0068 U	0.0068	0.051	0.011	0.000100	0.000000680	1	8533813
33'45-TetraCB-(78)	ng/L	0.0098 U	0.0098	0.051	0.013	N/A	N/A	1	8533813
33'45'-TetraCB(79)	ng/L	0.0078 U	0.0078	0.051	0.0088	N/A	N/A	1	8533813
33'55'-TetraCB-(80)	ng/L	0.0077 U	0.0077	0.051	0.0087	N/A	N/A	1	8533813
344'5-TetraCB-(81)	ng/L	0.0076 U	0.0076	0.051	0.0079	0.000300	0.00000228	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ250							
Sampling Data		2023/02/14				TOVICEOU	IIVALENCY	# of	
Sampling Date		10:05				TOXIC EQU	JIVALENCY	# 01	
	UNITS	MW3-20230214-GW- 35-DUP	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'4-PentaCB-(82)	ng/L	0.013 U	0.013	0.051	0.014	N/A	N/A	1	8533813
PentaCB-(83)+(99)	ng/L	0.011 U	0.011	0.10	0.033	N/A	N/A	1	8533813
22'33'6-PentaCB-(84)	ng/L	0.012 U	0.012	0.020	0.0088	N/A	N/A	1	8533813
PentaCB-(85)+(116)+(117)	ng/L	0.0084 U	0.0084	0.10	0.040	N/A	N/A	1	8533813
PentaCB-(86)(87)(97)(109)(119)(125	ng/L	0.0152 J	0.0091	0.20	0.080	N/A	N/A	1	8533813
PentaCB-(88)+(91)	ng/L	0.012 U	0.012	0.051	0.025	N/A	N/A	1	8533813
22'346'-PentaCB-(89)	ng/L	0.014 U	0.014	0.051	0.0040	N/A	N/A	1	8533813
PentaCB-(90)+(101)+(113)	ng/L	0.0361 J	0.0092	0.20	0.0080	N/A	N/A	1	8533813
22'355'-PentaCB-(92)	ng/L	0.012 U	0.012	0.051	0.010	N/A	N/A	1	8533813
PentaCB-(93)+(98)+(100)+(102)	ng/L	0.011 U	0.011	0.20	0.051	N/A	N/A	1	8533813
22'356'-PentaCB-(94)	ng/L	0.012 U	0.012	0.051	0.017	N/A	N/A	1	8533813
22'35'6-PentaCB-(95)	ng/L	0.033 J	0.012	0.051	0.011	N/A	N/A	1	8533813
22'366'-PentaCB-(96)	ng/L	0.010 U	0.010	0.051	0.014	N/A	N/A	1	8533813
22'45'6-PentaCB-(103)	ng/L	0.011 U	0.011	0.051	0.012	N/A	N/A	1	8533813
22'466'-PentaCB-(104)	ng/L	0.011 U	0.011	0.051	0.022	N/A	N/A	1	8533813
233'44'-PentaCB-(105)	ng/L	0.0056 U	0.0056	0.051	0.0052	0.0000300	0.000000168	1	8533813
233'45-PentaCB-(106)	ng/L	0.0073 U	0.0073	0.051	0.018	N/A	N/A	1	8533813
233'4'5-PentaCB-(107)	ng/L	0.0056 U	0.0056	0.051	0.014	N/A	N/A	1	8533813
PentaCB-(108)+(124)	ng/L	0.0069 U	0.0069	0.10	0.023	N/A	N/A	1	8533813
PentaCB-(110)+(115)	ng/L	0.0241 J	0.0084	0.10	0.022	N/A	N/A	1	8533813
233'55'-PentaCB-(111)	ng/L	0.0074 U	0.0074	0.051	0.012	N/A	N/A	1	8533813
233'56-PentaCB-(112)	ng/L	0.0071 U	0.0071	0.051	0.018	N/A	N/A	1	8533813
2344'5-PentaCB-(114)	ng/L	0.0063 U	0.0063	0.051	0.0084	0.0000300	0.00000189	1	8533813
23'44'5-PentaCB-(118)	ng/L	0.0144 J	0.0060	0.10	0.0071	0.0000300	0.000000432	1	8533813
23'455'-PentaCB-(120)	ng/L	0.0076 U	0.0076	0.051	0.014	N/A	N/A	1	8533813
23'45'6-PentaCB-(121)	ng/L	0.0078 U	0.0078	0.051	0.0040	N/A	N/A	1	8533813
233'4'5'-PentaCB-(122)	ng/L	0.0091 U	0.0091	0.051	0.011	N/A	N/A	1	8533813
23'44'5'-PentaCB-(123)	ng/L	0.0067 U	0.0067	0.051	0.014	0.0000300	0.000000201	1	8533813
33'44'5-PentaCB-(126)	ng/L	0.0060 U	0.0060	0.051	0.0061	0.100	0.000600	1	8533813
33'455'-PentaCB-(127)	ng/L	0.0068 U	0.0068	0.051	0.017	N/A	N/A	1	8533813
HexaCB-(128)+(166)	ng/L	0.0090 U	0.0090	0.10	0.026	N/A	N/A	1	8533813
HexaCB-(129)+(138)+(163)	ng/L	0.025 J	0.010	0.20	0.014	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories
Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ250							
Sampling Date		2023/02/14				TOVIC FOL	JIVALENCY	# of	
Sampling Date		10:05				TOXIC EQU	JIVALENCT	# 01	
	UNITS	MW3-20230214-GW- 35-DUP	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'45'-HexaCB-(130)	ng/L	0.011 U	0.011	0.051	0.020	N/A	N/A	1	8533813
22'33'46-HexaCB-(131)	ng/L	0.014 U	0.014	0.051	0.019	N/A	N/A	1	8533813
22'33'46'-HexaCB-(132)	ng/L	0.012 U	0.012	0.051	0.019	N/A	N/A	1	8533813
22'33'55'-HexaCB-(133)	ng/L	0.012 U	0.012	0.051	0.017	N/A	N/A	1	8533813
HexaCB-(134)+(143)	ng/L	0.013 U	0.013	0.10	0.028	N/A	N/A	1	8533813
HexaCB-(135)+(151)	ng/L	0.014 U	0.014	0.10	0.038	N/A	N/A	1	8533813
22'33'66'-HexaCB-(136)	ng/L	0.010 U	0.010	0.051	0.014	N/A	N/A	1	8533813
22'344'5-HexaCB-(137)	ng/L	0.010 U	0.010	0.10	0.014	N/A	N/A	1	8533813
HexaCB-(139)+(140)	ng/L	0.0096 U	0.0096	0.10	0.032	N/A	N/A	1	8533813
22'3455'-HexaCB-(141)	ng/L	0.010 U	0.010	0.051	0.018	N/A	N/A	1	8533813
22'3456-HexaCB-(142)	ng/L	0.012 U	0.012	0.051	0.018	N/A	N/A	1	8533813
22'345'6-HexaCB-(144)	ng/L	0.013 U	0.013	0.051	0.011	N/A	N/A	1	8533813
22'3466'-HexaCB-(145)	ng/L	0.0097 U	0.0097	0.051	0.022	N/A	N/A	1	8533813
22'34'55'-HexaCB-(146)	ng/L	0.0092 U	0.0092	0.051	0.014	N/A	N/A	1	8533813
HexaCB-(147)+(149)	ng/L	0.0323 J	0.0095	0.10	0.027	N/A	N/A	1	8533813
22'34'56'-HexaCB-(148)	ng/L	0.014 U	0.014	0.051	0.013	N/A	N/A	1	8533813
22'34'66'-HexaCB-(150)	ng/L	0.0096 U	0.0096	0.051	0.022	N/A	N/A	1	8533813
22'3566'-HexaCB-(152)	ng/L	0.0099 U	0.0099	0.051	0.020	N/A	N/A	1	8533813
HexaCB-(153)+(168)	ng/L	0.0253 J	0.0081	0.10	0.028	N/A	N/A	1	8533813
22'44'56'-HexaCB-(154)	ng/L	0.011 U	0.011	0.051	0.014	N/A	N/A	1	8533813
22'44'66'-HexaCB-(155)	ng/L	0.0098 U	0.0098	0.051	0.013	N/A	N/A	1	8533813
HexaCB-(156)+(157)	ng/L	0.0062 U	0.0062	0.10	0.015	0.0000300	0.00000186	1	8533813
233'44'6-HexaCB-(158)	ng/L	0.0066 U	0.0066	0.051	0.017	N/A	N/A	1	8533813
233'455'-HexaCB-(159)	ng/L	0.0063 U	0.0063	0.051	0.015	N/A	N/A	1	8533813
233'456-HexaCB-(160)	ng/L	0.0083 U	0.0083	0.051	0.013	N/A	N/A	1	8533813
233'45'6-HexaCB-(161)	ng/L	0.0077 U	0.0077	0.051	0.022	N/A	N/A	1	8533813
233'4'55'-HexaCB-(162)	ng/L	0.0062 U	0.0062	0.051	0.016	N/A	N/A	1	8533813
233'4'5'6-HexaCB-(164)	ng/L	0.0072 U	0.0072	0.051	0.020	N/A	N/A	1	8533813
233'55'6-HexaCB-(165)	ng/L	0.0084 U	0.0084	0.051	0.022	N/A	N/A	1	8533813
23'44'55'-HexaCB-(167)	ng/L	0.0064 U	0.0064	0.051	0.0096	0.0000300	0.00000192	1	8533813
33'44'55'-HexaCB-(169)	ng/L	0.0082 U	0.0082	0.051	0.0092	0.0300	0.000246	1	8533813
22'33'44'5-HeptaCB-(170)	ng/L	0.0068 U	0.0068	0.051	0.011	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories
Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ250							
Sampling Date		2023/02/14				TOYIC FOL	JIVALENCY	# of	
Sampling Date		10:05				TOXICEQU	JIVALENCT	# 01	
	UNITS	MW3-20230214-GW- 35-DUP	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
HeptaCB-(171)+(173)	ng/L	0.0083 U	0.0083	0.10	0.027	N/A	N/A	1	8533813
22'33'455'-HeptaCB-(172)	ng/L	0.0082 U	0.0082	0.051	0.012	N/A	N/A	1	8533813
22'33'456'-HeptaCB-(174)	ng/L	0.0077 U	0.0077	0.051	0.017	N/A	N/A	1	8533813
22'33'45'6-HeptaCB-(175)	ng/L	0.0094 U	0.0094	0.051	0.0064	N/A	N/A	1	8533813
22'33'466'-HeptaCB-(176)	ng/L	0.0068 U	0.0068	0.051	0.0079	N/A	N/A	1	8533813
22'33'45'6'-HeptaCB-(177)	ng/L	0.0085 U	0.0085	0.051	0.013	N/A	N/A	1	8533813
22'33'55'6-HeptaCB-(178)	ng/L	0.0096 U	0.0096	0.051	0.0071	N/A	N/A	1	8533813
22'33'566'-HeptaCB-(179)	ng/L	0.0068 U	0.0068	0.051	0.010	N/A	N/A	1	8533813
HeptaCB-(180)+(193)	ng/L	0.0089 J	0.0062	0.10	0.018	N/A	N/A	1	8533813
22'344'56-HeptaCB-(181)	ng/L	0.0080 U	0.0080	0.051	0.015	N/A	N/A	1	8533813
22'344'56'-HeptaCB-(182)	ng/L	0.0085 U	0.0085	0.051	0.0066	N/A	N/A	1	8533813
22'344'5'6-HeptaCB-(183)	ng/L	0.0073 U	0.0073	0.051	0.017	N/A	N/A	1	8533813
22'344'66'-HeptaCB-(184)	ng/L	0.0065 U	0.0065	0.051	0.0065	N/A	N/A	1	8533813
22'3455'6-HeptaCB-(185)	ng/L	0.0087 U	0.0087	0.051	0.017	N/A	N/A	1	8533813
22'34566'-HeptaCB-(186)	ng/L	0.0071 U	0.0071	0.051	0.0095	N/A	N/A	1	8533813
22'34'55'6-HeptaCB-(187)	ng/L	0.0085 U	0.0085	0.051	0.0047	N/A	N/A	1	8533813
22'34'566'-HeptaCB-(188)	ng/L	0.0069 U	0.0069	0.051	0.015	N/A	N/A	1	8533813
233'44'55'-HeptaCB-(189)	ng/L	0.0058 U	0.0058	0.051	0.014	0.0000300	0.00000174	1	8533813
233'44'56-HeptaCB-(190)	ng/L	0.0057 U	0.0057	0.051	0.016	N/A	N/A	1	8533813
233'44'5'6-HeptaCB-(191)	ng/L	0.0057 U	0.0057	0.051	0.014	N/A	N/A	1	8533813
233'455'6-HeptaCB-(192)	ng/L	0.0063 U	0.0063	0.051	0.0088	N/A	N/A	1	8533813
22'33'44'55'-OctaCB-(194)	ng/L	0.015 U	0.015	0.051	0.024	N/A	N/A	1	8533813
22'33'44'56-OctaCB-(195)	ng/L	0.017 U	0.017	0.051	0.019	N/A	N/A	1	8533813
22'33'44'56'-OctaCB-(196)	ng/L	0.017 U	0.017	0.051	0.017	N/A	N/A	1	8533813
22'33'44'66'OctaCB-(197)	ng/L	0.012 U	0.012	0.051	0.033	N/A	N/A	1	8533813
OctaCB-(198)+(199)	ng/L	0.018 U	0.018	0.10	0.028	N/A	N/A	1	8533813
22'33'4566'-OctaCB-(200)	ng/L	0.014 U	0.014	0.051	0.031	N/A	N/A	1	8533813
22'33'45'66'-OctaCB-(201)	ng/L	0.012 U	0.012	0.051	0.014	N/A	N/A	1	8533813
22'33'55'66'-OctaCB-(202)	ng/L	0.013 U	0.013	0.051	0.013	N/A	N/A	1	8533813
22'344'55'6-OctaCB-(203)	ng/L	0.017 U	0.017	0.051	0.021	N/A	N/A	1	8533813
22'344'566'-OctaCB-(204)	ng/L	0.010 U	0.010	0.051	0.018	N/A	N/A	1	8533813
233'44'55'6-OctaCB-(205)	ng/L	0.011 U	0.011	0.051	0.014	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories
Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ250							
Sampling Date		2023/02/14				TOVIC FOL	JIVALENCY	# of	
Sampling Date		10:05				TOXICEQU	JIVALLINCI	# 01	
	UNITS	MW3-20230214-GW- 35-DUP	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'44'55'6-NonaCB-(206)	ng/L	0.020 U	0.020	0.051	0.020	N/A	N/A	1	8533813
22'33'44'566'-NonaCB-(207)	ng/L	0.018 U	0.018	0.051	0.018	N/A	N/A	1	8533813
22'33'455'66'-NonaCB-(208)	ng/L	0.016 U	0.016	0.051	0.021	N/A	N/A	1	8533813
DecaCB-(209)	ng/L	0.024 U	0.024	0.051	0.015	N/A	N/A	1	8533813
TOTAL TOXIC EQUIVALENCY	ng/L	N/A	N/A	N/A	N/A	N/A	0.000851	N/A	N/A
Surrogate Recovery (%)									
C13-2,44'-TriCB-(28)	%	36	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'44'55'6-NonaCB-(206)	%	115	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'44'5-HeptaCB-(170)	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'455'66'-NonaCB-(208)	%	101	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'55'66'-OctaCB-(202)	%	100	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'55'6-HeptaCB-(178)	%	101	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'344'55'-HeptaCB-(180)	%	94	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'34'566'-HeptaCB-(188)	%	79	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'44'66'-HexaCB-(155)	%	72	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'466'-PentaCB-(104)	%	47	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'66'-TetraCB-(54)	%	35	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'6-TriCB-(19)	%	35 (1)	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'-DiCB-(4)	%	29	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'55'6-OctaCB-(205)	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'55'-HeptaCB-(189)	%	76	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'-PentaCB-(105)	%	62	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'55'-PentaCB-(111)	%	85	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-23'44'55'-HexaCB-(167)	%	61	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2344'5-PentaCB-(114)	%	54	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-23'44'5-PentaCB-(118)	%	54	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2'344'5-PentaCB-(123)	%	54	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2-MonoCB-(1)	%	15	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'55'-HexaCB-(169)	%	55	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'5-PentaCB-(126)	%	62	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'-TetraCB-(77)	%	79	N/A	N/A	N/A	N/A	N/A	N/A	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Within criteria.

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ250							
Sampling Date		2023/02/14 10:05				TOXIC EQUIVALENCY		# of	
	UNITS	MW3-20230214-GW- 35-DUP	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-344'5-TetraCB-(81)	%	72	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-344'-TriCB-(37)	%	41	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-44'-DiCB-(15)	%	34	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-4-MonoCB-(3)	%	19	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-DecaCB-(209)	%	125	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-HexaCB-(156)+(157)	%	63	N/A	N/A	N/A	N/A	N/A	N/A	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ251							
Sampling Date		2023/02/14				TOYIC FOI	JIVALENCY	# of	
Janipinig Date		12:51				TOXICEQU	JIVALLINCI	# 01	
	UNITS	MW5-20230214-GW-40	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2-MonoCB-(1)	ng/L	0.018 J	0.015	0.021	0.0098	N/A	N/A	1	8533813
3-MonoCB-(2)	ng/L	0.016 U	0.016	0.021	0.0079	N/A	N/A	1	8533813
4-MonoCB-(3)	ng/L	0.014 U	0.014	0.053	0.0071	N/A	N/A	1	8533813
22'-DiCB-(4)	ng/L	0.022 U	0.022	0.053	0.017	N/A	N/A	1	8533813
2,3-DiCB-(5)	ng/L	0.0090 U	0.0090	0.053	0.012	N/A	N/A	1	8533813
2,3'-DiCB-(6)	ng/L	0.0089 U	0.0089	0.021	0.0053	N/A	N/A	1	8533813
2,4-DiCB-(7)	ng/L	0.0089 U	0.0089	0.021	0.0056	N/A	N/A	1	8533813
2,4'-DiCB-(8)	ng/L	0.0086 J	0.0086	0.053	0.017	N/A	N/A	1	8533813
2,5-DiCB-(9)	ng/L	0.0087 U	0.0087	0.021	0.0044	N/A	N/A	1	8533813
2,6-DiCB-(10)	ng/L	0.011 U	0.011	0.053	0.0052	N/A	N/A	1	8533813
3,3'-DiCB-(11)	ng/L	0.117 J	0.0090	0.21	0.0090	N/A	N/A	1	8533813
DiCB-(12)+(13)	ng/L	0.0082 U	0.0082	0.053	0.015	N/A	N/A	1	8533813
3,5-DiCB-(14)	ng/L	0.0090 U	0.0090	0.021	0.0082	N/A	N/A	1	8533813
4,4'-DiCB-(15)	ng/L	0.0075 U	0.0075	0.053	0.011	N/A	N/A	1	8533813
22'3-TriCB-(16)	ng/L	0.013 U	0.013	0.053	0.0060	N/A	N/A	1	8533813
22'4-TriCB-(17)	ng/L	0.011 U	0.011	0.021	0.0091	N/A	N/A	1	8533813
TriCB-(18)+(30)	ng/L	0.0091 U	0.0091	0.053	0.017	N/A	N/A	1	8533813
22'6-TriCB-(19)	ng/L	0.017 U	0.017	0.021	0.0061	N/A	N/A	1	8533813
TriCB-(20) + (28)	ng/L	0.0084 J	0.0060	0.050	0.010	N/A	N/A	1	8533813
TriCB-(21)+(33)	ng/L	0.0067 U	0.0067	0.053	0.011	N/A	N/A	1	8533813
234'-TriCB-(22)	ng/L	0.0068 U	0.0068	0.021	0.0065	N/A	N/A	1	8533813
235-TriCB-(23)	ng/L	0.0068 U	0.0068	0.021	0.0072	N/A	N/A	1	8533813
236-TriCB-(24)	ng/L	0.0083 U	0.0083	0.021	0.0043	N/A	N/A	1	8533813
23'4-TriCB-(25)	ng/L	0.0069 U	0.0069	0.021	0.0054	N/A	N/A	1	8533813
TriCB-(26)+(29)	ng/L	0.0063 U	0.0063	0.053	0.013	N/A	N/A	1	8533813
23'6-TriCB-(27)	ng/L	0.0078 U	0.0078	0.021	0.0082	N/A	N/A	1	8533813
24'5-TriCB-(31)	ng/L	0.0060 U	0.0060	0.053	0.0078	N/A	N/A	1	8533813
24'6-TriCB-(32)	ng/L	0.0074 U	0.0074	0.021	0.0087	N/A	N/A	1	8533813
23'5'-TriCB-(34)	ng/L	0.0067 U	0.0067	0.021	0.0061	N/A	N/A	1	8533813
33'4-TriCB-(35)	ng/L	0.0065 U	0.0065	0.021	0.0042	N/A	N/A	1	8533813
33'5-TriCB-(36)	ng/L	0.0060 U	0.0060	0.021	0.0052	N/A	N/A	1	8533813
344'-TriCB-(37)	ng/L	0.0058 U	0.0058	0.021	0.0041	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ251							
Sampling Date		2023/02/14				TOXIC FOL	JIVALENCY	# of	
Sumpling Date		12:51				`	JIVALLITO!		
	UNITS	MW5-20230214-GW-40	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
345-TriCB-(38)	ng/L	0.0063 U	0.0063	0.021	0.0047	N/A	N/A	1	8533813
34'5-TriCB-(39)	ng/L	0.0067 U	0.0067	0.021	0.0059	N/A	N/A	1	8533813
TetraCB-(40)+(41)+(71)	ng/L	0.019 U	0.019	0.11	0.035	N/A	N/A	1	8533813
22'34'-TetraCB-(42)	ng/L	0.026 U	0.026	0.053	0.011	N/A	N/A	1	8533813
22'35-TetraCB-(43)	ng/L	0.025 U	0.025	0.053	0.015	N/A	N/A	1	8533813
TetraCB-(44)+(47)+(65)	ng/L	0.020 J	0.018	0.11	0.029	N/A	N/A	1	8533813
TetraCB-(45)+(51)	ng/L	0.020 U	0.020	0.053	0.011	N/A	N/A	1	8533813
22'36'-TetraCB-(46)	ng/L	0.022 U	0.022	0.021	0.014	N/A	N/A	1	8533813
22'45-TetraCB-(48)	ng/L	0.019 U	0.019	0.053	0.017	N/A	N/A	1	8533813
TetraCB-(49)+TetraCB-(69)	ng/L	0.017 U	0.017	0.11	0.023	N/A	N/A	1	8533813
TetraCB-(50)+(53)	ng/L	0.020 U	0.020	0.11	0.027	N/A	N/A	1	8533813
22'55'-TetraCB-(52)	ng/L	0.019 U	0.019	0.053	0.019	N/A	N/A	1	8533813
22'66'-TetraCB-(54)	ng/L	0.029 U	0.029	0.053	0.020	N/A	N/A	1	8533813
233'4-TetraCB-(55)	ng/L	0.014 U	0.014	0.053	0.015	N/A	N/A	1	8533813
233'4'-Tetra CB(56)	ng/L	0.013 U	0.013	0.053	0.018	N/A	N/A	1	8533813
233'5-TetraCB-(57)	ng/L	0.013 U	0.013	0.053	0.0097	N/A	N/A	1	8533813
233'5'-TetraCB-(58)	ng/L	0.013 U	0.013	0.053	0.020	N/A	N/A	1	8533813
TetraCB-(59)+(62)+(75)	ng/L	0.014 U	0.014	0.11	0.038	N/A	N/A	1	8533813
2344'-TetraCB -(60)	ng/L	0.013 U	0.013	0.053	0.011	N/A	N/A	1	8533813
TetraCB-(61)+(70)+(74)+(76)	ng/L	0.013 U	0.013	0.21	0.035	N/A	N/A	1	8533813
234'5-TetraCB-(63)	ng/L	0.013 U	0.013	0.053	0.0080	N/A	N/A	1	8533813
234'6-TetraCB-(64)	ng/L	0.016 U	0.016	0.053	0.0089	N/A	N/A	1	8533813
23'44'-TetraCB-(66)	ng/L	0.012 U	0.012	0.053	0.0084	N/A	N/A	1	8533813
23'45-TetraCB-(67)	ng/L	0.011 U	0.011	0.053	0.0040	N/A	N/A	1	8533813
23'45'-TetraCB-(68)	ng/L	0.012 U	0.012	0.053	0.014	N/A	N/A	1	8533813
23'55'-TetraCB-(72)	ng/L	0.013 U	0.013	0.053	0.0082	N/A	N/A	1	8533813
23'5'6-TetraCB-(73)	ng/L	0.013 U	0.013	0.053	0.023	N/A	N/A	1	8533813
33'44'-TetraCB-(77)	ng/L	0.0098 U	0.0098	0.053	0.011	0.000100	0.000000980	1	8533813
33'45-TetraCB-(78)	ng/L	0.014 U	0.014	0.053	0.013	N/A	N/A	1	8533813
33'45'-TetraCB(79)	ng/L	0.011 U	0.011	0.053	0.0088	N/A	N/A	1	8533813
33'55'-TetraCB-(80)	ng/L	0.011 U	0.011	0.053	0.0087	N/A	N/A	1	8533813
344'5-TetraCB-(81)	ng/L	0.011 U	0.011	0.053	0.0079	0.000300	0.00000330	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ251							
Sampling Date		2023/02/14				TOXIC FOL	JIVALENCY	# of	
Sampling Date		12:51				TOXICEQU	JIVALLINCI	# 01	
	UNITS	MW5-20230214-GW-40	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'4-PentaCB-(82)	ng/L	0.018 U	0.018	0.053	0.014	N/A	N/A	1	8533813
PentaCB-(83)+(99)	ng/L	0.015 U	0.015	0.11	0.033	N/A	N/A	1	8533813
22'33'6-PentaCB-(84)	ng/L	0.017 U	0.017	0.021	0.0088	N/A	N/A	1	8533813
PentaCB-(85)+(116)+(117)	ng/L	0.012 U	0.012	0.11	0.040	N/A	N/A	1	8533813
PentaCB-(86)(87)(97)(109)(119)(125	ng/L	0.013 U	0.013	0.21	0.080	N/A	N/A	1	8533813
PentaCB-(88)+(91)	ng/L	0.016 U	0.016	0.053	0.025	N/A	N/A	1	8533813
22'346'-PentaCB-(89)	ng/L	0.019 U	0.019	0.053	0.0040	N/A	N/A	1	8533813
PentaCB-(90)+(101)+(113)	ng/L	0.013 J	0.013	0.21	0.0080	N/A	N/A	1	8533813
22'355'-PentaCB-(92)	ng/L	0.017 U	0.017	0.053	0.010	N/A	N/A	1	8533813
PentaCB-(93)+(98)+(100)+(102)	ng/L	0.016 U	0.016	0.21	0.051	N/A	N/A	1	8533813
22'356'-PentaCB-(94)	ng/L	0.016 U	0.016	0.053	0.017	N/A	N/A	1	8533813
22'35'6-PentaCB-(95)	ng/L	0.017 U	0.017	0.053	0.011	N/A	N/A	1	8533813
22'366'-PentaCB-(96)	ng/L	0.014 U	0.014	0.053	0.014	N/A	N/A	1	8533813
22'45'6-PentaCB-(103)	ng/L	0.015 U	0.015	0.053	0.012	N/A	N/A	1	8533813
22'466'-PentaCB-(104)	ng/L	0.015 U	0.015	0.053	0.022	N/A	N/A	1	8533813
233'44'-PentaCB-(105)	ng/L	0.0076 U	0.0076	0.053	0.0052	0.0000300	0.000000228	1	8533813
233'45-PentaCB-(106)	ng/L	0.010 U	0.010	0.053	0.018	N/A	N/A	1	8533813
233'4'5-PentaCB-(107)	ng/L	0.0077 U	0.0077	0.053	0.014	N/A	N/A	1	8533813
PentaCB-(108)+(124)	ng/L	0.0096 U	0.0096	0.11	0.023	N/A	N/A	1	8533813
PentaCB-(110)+(115)	ng/L	0.012 U	0.012	0.11	0.022	N/A	N/A	1	8533813
233'55'-PentaCB-(111)	ng/L	0.010 U	0.010	0.053	0.012	N/A	N/A	1	8533813
233'56-PentaCB-(112)	ng/L	0.0098 U	0.0098	0.053	0.018	N/A	N/A	1	8533813
2344'5-PentaCB-(114)	ng/L	0.0089 U	0.0089	0.053	0.0084	0.0000300	0.000000267	1	8533813
23'44'5-PentaCB-(118)	ng/L	0.0084 U	0.0084	0.11	0.0071	0.0000300	0.000000252	1	8533813
23'455'-PentaCB-(120)	ng/L	0.010 U	0.010	0.053	0.014	N/A	N/A	1	8533813
23'45'6-PentaCB-(121)	ng/L	0.011 U	0.011	0.053	0.0040	N/A	N/A	1	8533813
233'4'5'-PentaCB-(122)	ng/L	0.013 U	0.013	0.053	0.011	N/A	N/A	1	8533813
23'44'5'-PentaCB-(123)	ng/L	0.0093 U	0.0093	0.053	0.014	0.0000300	0.000000279	1	8533813
33'44'5-PentaCB-(126)	ng/L	0.0084 U	0.0084	0.053	0.0061	0.100	0.000840	1	8533813
33'455'-PentaCB-(127)	ng/L	0.0094 U	0.0094	0.053	0.017	N/A	N/A	1	8533813
HexaCB-(128)+(166)	ng/L	0.011 U	0.011	0.11	0.026	N/A	N/A	1	8533813
HexaCB-(129)+(138)+(163)	ng/L	0.012 U	0.012	0.21	0.014	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ251							
Sampling Date		2023/02/14				TOXIC FOL	JIVALENCY	# of	
Sumpling Date		12:51				`	JIVALLITO!		
	UNITS	MW5-20230214-GW-40	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'45'-HexaCB-(130)	ng/L	0.014 U	0.014	0.053	0.020	N/A	N/A	1	8533813
22'33'46-HexaCB-(131)	ng/L	0.017 U	0.017	0.053	0.019	N/A	N/A	1	8533813
22'33'46'-HexaCB-(132)	ng/L	0.015 U	0.015	0.053	0.019	N/A	N/A	1	8533813
22'33'55'-HexaCB-(133)	ng/L	0.015 U	0.015	0.053	0.017	N/A	N/A	1	8533813
HexaCB-(134)+(143)	ng/L	0.016 U	0.016	0.11	0.028	N/A	N/A	1	8533813
HexaCB-(135)+(151)	ng/L	0.017 U	0.017	0.11	0.038	N/A	N/A	1	8533813
22'33'66'-HexaCB-(136)	ng/L	0.012 U	0.012	0.053	0.014	N/A	N/A	1	8533813
22'344'5-HexaCB-(137)	ng/L	0.013 U	0.013	0.11	0.014	N/A	N/A	1	8533813
HexaCB-(139)+(140)	ng/L	0.012 U	0.012	0.11	0.032	N/A	N/A	1	8533813
22'3455'-HexaCB-(141)	ng/L	0.012 U	0.012	0.053	0.018	N/A	N/A	1	8533813
22'3456-HexaCB-(142)	ng/L	0.015 U	0.015	0.053	0.018	N/A	N/A	1	8533813
22'345'6-HexaCB-(144)	ng/L	0.016 U	0.016	0.053	0.011	N/A	N/A	1	8533813
22'3466'-HexaCB-(145)	ng/L	0.012 U	0.012	0.053	0.022	N/A	N/A	1	8533813
22'34'55'-HexaCB-(146)	ng/L	0.011 U	0.011	0.053	0.014	N/A	N/A	1	8533813
HexaCB-(147)+(149)	ng/L	0.012 U	0.012	0.11	0.027	N/A	N/A	1	8533813
22'34'56'-HexaCB-(148)	ng/L	0.017 U	0.017	0.053	0.013	N/A	N/A	1	8533813
22'34'66'-HexaCB-(150)	ng/L	0.012 U	0.012	0.053	0.022	N/A	N/A	1	8533813
22'3566'-HexaCB-(152)	ng/L	0.012 U	0.012	0.053	0.020	N/A	N/A	1	8533813
HexaCB-(153)+(168)	ng/L	0.0099 U	0.0099	0.11	0.028	N/A	N/A	1	8533813
22'44'56'-HexaCB-(154)	ng/L	0.013 U	0.013	0.053	0.014	N/A	N/A	1	8533813
22'44'66'-HexaCB-(155)	ng/L	0.014 U	0.014	0.053	0.013	N/A	N/A	1	8533813
HexaCB-(156)+(157)	ng/L	0.0078 U	0.0078	0.11	0.015	0.0000300	0.000000234	1	8533813
233'44'6-HexaCB-(158)	ng/L	0.0081 U	0.0081	0.053	0.017	N/A	N/A	1	8533813
233'455'-HexaCB-(159)	ng/L	0.0077 U	0.0077	0.053	0.015	N/A	N/A	1	8533813
233'456-HexaCB-(160)	ng/L	0.010 U	0.010	0.053	0.013	N/A	N/A	1	8533813
233'45'6-HexaCB-(161)	ng/L	0.0095 U	0.0095	0.053	0.022	N/A	N/A	1	8533813
233'4'55'-HexaCB-(162)	ng/L	0.0075 U	0.0075	0.053	0.016	N/A	N/A	1	8533813
233'4'5'6-HexaCB-(164)	ng/L	0.0088 U	0.0088	0.053	0.020	N/A	N/A	1	8533813
233'55'6-HexaCB-(165)	ng/L	0.010 U	0.010	0.053	0.022	N/A	N/A	1	8533813
23'44'55'-HexaCB-(167)	ng/L	0.0080 U	0.0080	0.053	0.0096	0.0000300	0.000000240	1	8533813
33'44'55'-HexaCB-(169)	ng/L	0.0083 U	0.0083	0.053	0.0092	0.0300	0.000249	1	8533813
22'33'44'5-HeptaCB-(170)	ng/L	0.0089 U	0.0089	0.053	0.011	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ251							
Sampling Date		2023/02/14				TOXIC FOI	JIVALENCY	# of	
Jumphing Date		12:51				TOXIC EQC	/.VALLITCI	# 01	
	UNITS	MW5-20230214-GW-40	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
HeptaCB-(171)+(173)	ng/L	0.011 U	0.011	0.11	0.027	N/A	N/A	1	8533813
22'33'455'-HeptaCB-(172)	ng/L	0.011 U	0.011	0.053	0.012	N/A	N/A	1	8533813
22'33'456'-HeptaCB-(174)	ng/L	0.010 U	0.010	0.053	0.017	N/A	N/A	1	8533813
22'33'45'6-HeptaCB-(175)	ng/L	0.012 U	0.012	0.053	0.0064	N/A	N/A	1	8533813
22'33'466'-HeptaCB-(176)	ng/L	0.0090 U	0.0090	0.053	0.0079	N/A	N/A	1	8533813
22'33'45'6'-HeptaCB-(177)	ng/L	0.011 U	0.011	0.053	0.013	N/A	N/A	1	8533813
22'33'55'6-HeptaCB-(178)	ng/L	0.013 U	0.013	0.053	0.0071	N/A	N/A	1	8533813
22'33'566'-HeptaCB-(179)	ng/L	0.0090 U	0.0090	0.053	0.010	N/A	N/A	1	8533813
HeptaCB-(180)+(193)	ng/L	0.0083 U	0.0083	0.11	0.018	N/A	N/A	1	8533813
22'344'56-HeptaCB-(181)	ng/L	0.011 U	0.011	0.053	0.015	N/A	N/A	1	8533813
22'344'56'-HeptaCB-(182)	ng/L	0.011 U	0.011	0.053	0.0066	N/A	N/A	1	8533813
22'344'5'6-HeptaCB-(183)	ng/L	0.0096 U	0.0096	0.053	0.017	N/A	N/A	1	8533813
22'344'66'-HeptaCB-(184)	ng/L	0.0086 U	0.0086	0.053	0.0065	N/A	N/A	1	8533813
22'3455'6-HeptaCB-(185)	ng/L	0.011 U	0.011	0.053	0.017	N/A	N/A	1	8533813
22'34566'-HeptaCB-(186)	ng/L	0.0094 U	0.0094	0.053	0.0095	N/A	N/A	1	8533813
22'34'55'6-HeptaCB-(187)	ng/L	0.011 U	0.011	0.053	0.0047	N/A	N/A	1	8533813
22'34'566'-HeptaCB-(188)	ng/L	0.011 U	0.011	0.053	0.015	N/A	N/A	1	8533813
233'44'55'-HeptaCB-(189)	ng/L	0.0067 U	0.0067	0.053	0.014	0.0000300	0.000000201	1	8533813
233'44'56-HeptaCB-(190)	ng/L	0.0076 U	0.0076	0.053	0.016	N/A	N/A	1	8533813
233'44'5'6-HeptaCB-(191)	ng/L	0.0076 U	0.0076	0.053	0.014	N/A	N/A	1	8533813
233'455'6-HeptaCB-(192)	ng/L	0.0084 U	0.0084	0.053	0.0088	N/A	N/A	1	8533813
22'33'44'55'-OctaCB-(194)	ng/L	0.0063 U	0.0063	0.053	0.024	N/A	N/A	1	8533813
22'33'44'56-OctaCB-(195)	ng/L	0.0071 U	0.0071	0.053	0.019	N/A	N/A	1	8533813
22'33'44'56'-OctaCB-(196)	ng/L	0.0072 U	0.0072	0.053	0.017	N/A	N/A	1	8533813
22'33'44'66'OctaCB-(197)	ng/L	0.0050 U	0.0050	0.053	0.033	N/A	N/A	1	8533813
OctaCB-(198)+(199)	ng/L	0.0077 U	0.0077	0.11	0.028	N/A	N/A	1	8533813
22'33'4566'-OctaCB-(200)	ng/L	0.0060 U	0.0060	0.053	0.031	N/A	N/A	1	8533813
22'33'45'66'-OctaCB-(201)	ng/L	0.0051 U	0.0051	0.053	0.014	N/A	N/A	1	8533813
22'33'55'66'-OctaCB-(202)	ng/L	0.0059 U	0.0059	0.053	0.013	N/A	N/A	1	8533813
22'344'55'6-OctaCB-(203)	ng/L	0.0072 U	0.0072	0.053	0.021	N/A	N/A	1	8533813
22'344'566'-OctaCB-(204)	ng/L	0.0044 U	0.0044	0.053	0.018	N/A	N/A	1	8533813
233'44'55'6-OctaCB-(205)	ng/L	0.0043 U	0.0043	0.053	0.014	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ251							
Sampling Date		2023/02/14				TOXIC EOL	JIVALENCY	# of	
		12:51				`			
	UNITS	MW5-20230214-GW-40	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'44'55'6-NonaCB-(206)	ng/L	0.0078 U	0.0078	0.053	0.020	N/A	N/A	1	8533813
22'33'44'566'-NonaCB-(207)	ng/L	0.0071 U	0.0071	0.053	0.018	N/A	N/A	1	8533813
22'33'455'66'-NonaCB-(208)	ng/L	0.0068 U	0.0068	0.053	0.021	N/A	N/A	1	8533813
DecaCB-(209)	ng/L	0.0063 U	0.0063	0.053	0.015	N/A	N/A	1	8533813
TOTAL TOXIC EQUIVALENCY	ng/L	N/A	N/A	N/A	N/A	N/A	0.00109	N/A	N/A
Surrogate Recovery (%)									
C13-2,44'-TriCB-(28)	%	48	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'44'55'6-NonaCB-(206)	%	115	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'44'5-HeptaCB-(170)	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'455'66'-NonaCB-(208)	%	98	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'55'66'-OctaCB-(202)	%	88	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'55'6-HeptaCB-(178)	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'344'55'-HeptaCB-(180)	%	88	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'34'566'-HeptaCB-(188)	%	76	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'44'66'-HexaCB-(155)	%	71	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'466'-PentaCB-(104)	%	60	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'66'-TetraCB-(54)	%	51	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'6-TriCB-(19)	%	48	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'-DiCB-(4)	%	44	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'55'6-OctaCB-(205)	%	95	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'55'-HeptaCB-(189)	%	85	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'-PentaCB-(105)	%	77	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'55'-PentaCB-(111)	%	87	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-23'44'55'-HexaCB-(167)	%	71	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2344'5-PentaCB-(114)	%	64	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-23'44'5-PentaCB-(118)	%	65	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2'344'5-PentaCB-(123)	%	65	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2-MonoCB-(1)	%	30	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'55'-HexaCB-(169)	%	79	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'5-PentaCB-(126)	%	76	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'-TetraCB-(77)	%	89	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-344'5-TetraCB-(81)	%	83	N/A	N/A	N/A	N/A	N/A	N/A	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ251							
Sampling Date		2023/02/14				TOXIC FOL	JIVALENCY	# of	
		12:51							
	UNITS	MW5-20230214-GW-40	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-344'-TriCB-(37)	%	55	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-44'-DiCB-(15)	%	51	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-4-MonoCB-(3)	%	33	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-DecaCB-(209)	%	131	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-HexaCB-(156)+(157)	%	74	N/A	N/A	N/A	N/A	N/A	N/A	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ252							
Sampling Date		2023/02/14				TOXIC FOL	JIVALENCY	# of	
Jumphing Dute		14:37				`	JIVALLITO!		
	UNITS	MW4-20230214-GW-40	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2-MonoCB-(1)	ng/L	0.024	0.019	0.022	0.0098	N/A	N/A	1	8533813
3-MonoCB-(2)	ng/L	0.019 U	0.019	0.022	0.0079	N/A	N/A	1	8533813
4-MonoCB-(3)	ng/L	0.017 U	0.017	0.056	0.0071	N/A	N/A	1	8533813
22'-DiCB-(4)	ng/L	0.022 U	0.022	0.056	0.017	N/A	N/A	1	8533813
2,3-DiCB-(5)	ng/L	0.0098 U	0.0098	0.056	0.012	N/A	N/A	1	8533813
2,3'-DiCB-(6)	ng/L	0.0096 U	0.0096	0.022	0.0053	N/A	N/A	1	8533813
2,4-DiCB-(7)	ng/L	0.0097 U	0.0097	0.022	0.0056	N/A	N/A	1	8533813
2,4'-DiCB-(8)	ng/L	0.0093 U	0.0093	0.056	0.017	N/A	N/A	1	8533813
2,5-DiCB-(9)	ng/L	0.0095 U	0.0095	0.022	0.0044	N/A	N/A	1	8533813
2,6-DiCB-(10)	ng/L	0.012 U	0.012	0.056	0.0052	N/A	N/A	1	8533813
3,3'-DiCB-(11)	ng/L	0.0738 J	0.0098	0.22	0.0090	N/A	N/A	1	8533813
DiCB-(12)+(13)	ng/L	0.0090 U	0.0090	0.056	0.015	N/A	N/A	1	8533813
3,5-DiCB-(14)	ng/L	0.0098 U	0.0098	0.022	0.0082	N/A	N/A	1	8533813
4,4'-DiCB-(15)	ng/L	0.0084 U	0.0084	0.056	0.011	N/A	N/A	1	8533813
22'3-TriCB-(16)	ng/L	0.015 U	0.015	0.056	0.0060	N/A	N/A	1	8533813
22'4-TriCB-(17)	ng/L	0.012 U	0.012	0.022	0.0091	N/A	N/A	1	8533813
TriCB-(18)+(30)	ng/L	0.010 U	0.010	0.056	0.017	N/A	N/A	1	8533813
22'6-TriCB-(19)	ng/L	0.019 U	0.019	0.022	0.0061	N/A	N/A	1	8533813
TriCB-(20) + (28)	ng/L	0.0095 J	0.0068	0.050	0.010	N/A	N/A	1	8533813
TriCB-(21)+(33)	ng/L	0.0076 U	0.0076	0.056	0.011	N/A	N/A	1	8533813
234'-TriCB-(22)	ng/L	0.0076 U	0.0076	0.022	0.0065	N/A	N/A	1	8533813
235-TriCB-(23)	ng/L	0.0077 U	0.0077	0.022	0.0072	N/A	N/A	1	8533813
236-TriCB-(24)	ng/L	0.0094 U	0.0094	0.022	0.0043	N/A	N/A	1	8533813
23'4-TriCB-(25)	ng/L	0.0078 U	0.0078	0.022	0.0054	N/A	N/A	1	8533813
TriCB-(26)+(29)	ng/L	0.0071 U	0.0071	0.056	0.013	N/A	N/A	1	8533813
23'6-TriCB-(27)	ng/L	0.0088 U	0.0088	0.022	0.0082	N/A	N/A	1	8533813
24'5-TriCB-(31)	ng/L	0.0076 J	0.0067	0.056	0.0078	N/A	N/A	1	8533813
24'6-TriCB-(32)	ng/L	0.0084 U	0.0084	0.022	0.0087	N/A	N/A	1	8533813
23'5'-TriCB-(34)	ng/L	0.0076 U	0.0076	0.022	0.0061	N/A	N/A	1	8533813
33'4-TriCB-(35)	ng/L	0.0074 U	0.0074	0.022	0.0042	N/A	N/A	1	8533813
33'5-TriCB-(36)	ng/L	0.0068 U	0.0068	0.022	0.0052	N/A	N/A	1	8533813
344'-TriCB-(37)	ng/L	0.0067 U	0.0067	0.022	0.0041	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ252							
Sampling Date		2023/02/14				TOXIC FOL	JIVALENCY	# of	
		14:37				Ì		0.	
l l	UNITS	MW4-20230214-GW-40	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
345-TriCB-(38)	ng/L	0.0071 U	0.0071	0.022	0.0047	N/A	N/A	1	8533813
34'5-TriCB-(39)	ng/L	0.0075 U	0.0075	0.022	0.0059	N/A	N/A	1	8533813
TetraCB-(40)+(41)+(71)	ng/L	0.019 U	0.019	0.11	0.035	N/A	N/A	1	8533813
22'34'-TetraCB-(42)	ng/L	0.026 U	0.026	0.056	0.011	N/A	N/A	1	8533813
22'35-TetraCB-(43)	ng/L	0.025 U	0.025	0.056	0.015	N/A	N/A	1	8533813
TetraCB-(44)+(47)+(65)	ng/L	0.018 U	0.018	0.11	0.029	N/A	N/A	1	8533813
TetraCB-(45)+(51)	ng/L	0.020 U	0.020	0.056	0.011	N/A	N/A	1	8533813
22'36'-TetraCB-(46)	ng/L	0.022 U	0.022	0.022	0.014	N/A	N/A	1	8533813
22'45-TetraCB-(48)	ng/L	0.019 U	0.019	0.056	0.017	N/A	N/A	1	8533813
TetraCB-(49)+TetraCB-(69)	ng/L	0.017 U	0.017	0.11	0.023	N/A	N/A	1	8533813
TetraCB-(50)+(53)	ng/L	0.020 U	0.020	0.11	0.027	N/A	N/A	1	8533813
22'55'-TetraCB-(52)	ng/L	0.019 U	0.019	0.056	0.019	N/A	N/A	1	8533813
22'66'-TetraCB-(54)	ng/L	0.034 U	0.034	0.056	0.020	N/A	N/A	1	8533813
233'4-TetraCB-(55)	ng/L	0.014 U	0.014	0.056	0.015	N/A	N/A	1	8533813
233'4'-Tetra CB(56)	ng/L	0.013 U	0.013	0.056	0.018	N/A	N/A	1	8533813
233'5-TetraCB-(57)	ng/L	0.013 U	0.013	0.056	0.0097	N/A	N/A	1	8533813
233'5'-TetraCB-(58)	ng/L	0.013 U	0.013	0.056	0.020	N/A	N/A	1	8533813
TetraCB-(59)+(62)+(75)	ng/L	0.014 U	0.014	0.11	0.038	N/A	N/A	1	8533813
2344'-TetraCB -(60)	ng/L	0.013 U	0.013	0.056	0.011	N/A	N/A	1	8533813
TetraCB-(61)+(70)+(74)+(76)	ng/L	0.013 U	0.013	0.22	0.035	N/A	N/A	1	8533813
234'5-TetraCB-(63)	ng/L	0.013 U	0.013	0.056	0.0080	N/A	N/A	1	8533813
234'6-TetraCB-(64)	ng/L	0.016 U	0.016	0.056	0.0089	N/A	N/A	1	8533813
23'44'-TetraCB-(66)	ng/L	0.012 U	0.012	0.056	0.0084	N/A	N/A	1	8533813
23'45-TetraCB-(67)	ng/L	0.011 U	0.011	0.056	0.0040	N/A	N/A	1	8533813
23'45'-TetraCB-(68)	ng/L	0.012 U	0.012	0.056	0.014	N/A	N/A	1	8533813
23'55'-TetraCB-(72)	ng/L	0.013 U	0.013	0.056	0.0082	N/A	N/A	1	8533813
23'5'6-TetraCB-(73)	ng/L	0.013 U	0.013	0.056	0.023	N/A	N/A	1	8533813
33'44'-TetraCB-(77)	ng/L	0.0097 U	0.0097	0.056	0.011	0.000100	0.000000970	1	8533813
33'45-TetraCB-(78)	ng/L	0.014 U	0.014	0.056	0.013	N/A	N/A	1	8533813
33'45'-TetraCB(79)	ng/L	0.011 U	0.011	0.056	0.0088	N/A	N/A	1	8533813
33'55'-TetraCB-(80)	ng/L	0.011 U	0.011	0.056	0.0087	N/A	N/A	1	8533813
344'5-TetraCB-(81)	ng/L	0.011 U	0.011	0.056	0.0079	0.000300	0.0000330	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ252							
Sampling Date		2023/02/14				TOXIC FOL	JIVALENCY	# of	
Sampling Date		14:37				,	, valenci		
	UNITS	MW4-20230214-GW-40	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'4-PentaCB-(82)	ng/L	0.018 U	0.018	0.056	0.014	N/A	N/A	1	8533813
PentaCB-(83)+(99)	ng/L	0.015 U	0.015	0.11	0.033	N/A	N/A	1	8533813
22'33'6-PentaCB-(84)	ng/L	0.016 U	0.016	0.022	0.0088	N/A	N/A	1	8533813
PentaCB-(85)+(116)+(117)	ng/L	0.012 U	0.012	0.11	0.040	N/A	N/A	1	8533813
PentaCB-(86)(87)(97)(109)(119)(125	ng/L	0.012 U	0.012	0.22	0.080	N/A	N/A	1	8533813
PentaCB-(88)+(91)	ng/L	0.016 U	0.016	0.056	0.025	N/A	N/A	1	8533813
22'346'-PentaCB-(89)	ng/L	0.019 U	0.019	0.056	0.0040	N/A	N/A	1	8533813
PentaCB-(90)+(101)+(113)	ng/L	0.018 J	0.013	0.22	0.0080	N/A	N/A	1	8533813
22'355'-PentaCB-(92)	ng/L	0.017 U	0.017	0.056	0.010	N/A	N/A	1	8533813
PentaCB-(93)+(98)+(100)+(102)	ng/L	0.016 U	0.016	0.22	0.051	N/A	N/A	1	8533813
22'356'-PentaCB-(94)	ng/L	0.016 U	0.016	0.056	0.017	N/A	N/A	1	8533813
22'35'6-PentaCB-(95)	ng/L	0.017 U	0.017	0.056	0.011	N/A	N/A	1	8533813
22'366'-PentaCB-(96)	ng/L	0.014 U	0.014	0.056	0.014	N/A	N/A	1	8533813
22'45'6-PentaCB-(103)	ng/L	0.015 U	0.015	0.056	0.012	N/A	N/A	1	8533813
22'466'-PentaCB-(104)	ng/L	0.016 U	0.016	0.056	0.022	N/A	N/A	1	8533813
233'44'-PentaCB-(105)	ng/L	0.0077 U	0.0077	0.056	0.0052	0.0000300	0.000000231	1	8533813
233'45-PentaCB-(106)	ng/L	0.010 U	0.010	0.056	0.018	N/A	N/A	1	8533813
233'4'5-PentaCB-(107)	ng/L	0.0077 U	0.0077	0.056	0.014	N/A	N/A	1	8533813
PentaCB-(108)+(124)	ng/L	0.0095 U	0.0095	0.11	0.023	N/A	N/A	1	8533813
PentaCB-(110)+(115)	ng/L	0.015 J	0.012	0.11	0.022	N/A	N/A	1	8533813
233'55'-PentaCB-(111)	ng/L	0.010 U	0.010	0.056	0.012	N/A	N/A	1	8533813
233'56-PentaCB-(112)	ng/L	0.0098 U	0.0098	0.056	0.018	N/A	N/A	1	8533813
2344'5-PentaCB-(114)	ng/L	0.0085 U	0.0085	0.056	0.0084	0.0000300	0.000000255	1	8533813
23'44'5-PentaCB-(118)	ng/L	0.0082 U	0.0082	0.11	0.0071	0.0000300	0.000000246	1	8533813
23'455'-PentaCB-(120)	ng/L	0.010 U	0.010	0.056	0.014	N/A	N/A	1	8533813
23'45'6-PentaCB-(121)	ng/L	0.011 U	0.011	0.056	0.0040	N/A	N/A	1	8533813
233'4'5'-PentaCB-(122)	ng/L	0.012 U	0.012	0.056	0.011	N/A	N/A	1	8533813
23'44'5'-PentaCB-(123)	ng/L	0.0091 U	0.0091	0.056	0.014	0.0000300	0.000000273	1	8533813
33'44'5-PentaCB-(126)	ng/L	0.0083 U	0.0083	0.056	0.0061	0.100	0.000830	1	8533813
33'455'-PentaCB-(127)	ng/L	0.0094 U	0.0094	0.056	0.017	N/A	N/A	1	8533813
HexaCB-(128)+(166)	ng/L	0.0099 U	0.0099	0.11	0.026	N/A	N/A	1	8533813
HexaCB-(129)+(138)+(163)	ng/L	0.011 U	0.011	0.22	0.014	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ252							
Sampling Date		2023/02/14 14:37				TOXIC EQL	JIVALENCY	# of	
	UNITS	MW4-20230214-GW-40	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'45'-HexaCB-(130)	ng/L	0.012 U	0.012	0.056	0.020	N/A	N/A	1	8533813
22'33'46-HexaCB-(131)	ng/L	0.015 U	0.015	0.056	0.019	N/A	N/A	1	8533813
22'33'46'-HexaCB-(132)	ng/L	0.013 U	0.013	0.056	0.019	N/A	N/A	1	8533813
22'33'55'-HexaCB-(133)	ng/L	0.013 U	0.013	0.056	0.017	N/A	N/A	1	8533813
HexaCB-(134)+(143)	ng/L	0.014 U	0.014	0.11	0.028	N/A	N/A	1	8533813
HexaCB-(135)+(151)	ng/L	0.015 U	0.015	0.11	0.038	N/A	N/A	1	8533813
22'33'66'-HexaCB-(136)	ng/L	0.011 U	0.011	0.056	0.014	N/A	N/A	1	8533813
22'344'5-HexaCB-(137)	ng/L	0.012 U	0.012	0.11	0.014	N/A	N/A	1	8533813
HexaCB-(139)+(140)	ng/L	0.011 U	0.011	0.11	0.032	N/A	N/A	1	8533813
22'3455'-HexaCB-(141)	ng/L	0.011 U	0.011	0.056	0.018	N/A	N/A	1	8533813
22'3456-HexaCB-(142)	ng/L	0.014 U	0.014	0.056	0.018	N/A	N/A	1	8533813
22'345'6-HexaCB-(144)	ng/L	0.015 U	0.015	0.056	0.011	N/A	N/A	1	8533813
22'3466'-HexaCB-(145)	ng/L	0.011 U	0.011	0.056	0.022	N/A	N/A	1	8533813
22'34'55'-HexaCB-(146)	ng/L	0.010 U	0.010	0.056	0.014	N/A	N/A	1	8533813
HexaCB-(147)+(149)	ng/L	0.013 J	0.011	0.11	0.027	N/A	N/A	1	8533813
22'34'56'-HexaCB-(148)	ng/L	0.015 U	0.015	0.056	0.013	N/A	N/A	1	8533813
22'34'66'-HexaCB-(150)	ng/L	0.011 U	0.011	0.056	0.022	N/A	N/A	1	8533813
22'3566'-HexaCB-(152)	ng/L	0.011 U	0.011	0.056	0.020	N/A	N/A	1	8533813
HexaCB-(153)+(168)	ng/L	0.0128 J	0.0090	0.11	0.028	N/A	N/A	1	8533813
22'44'56'-HexaCB-(154)	ng/L	0.012 U	0.012	0.056	0.014	N/A	N/A	1	8533813
22'44'66'-HexaCB-(155)	ng/L	0.014 U	0.014	0.056	0.013	N/A	N/A	1	8533813
HexaCB-(156)+(157)	ng/L	0.0063 U	0.0063	0.11	0.015	0.0000300	0.00000189	1	8533813
233'44'6-HexaCB-(158)	ng/L	0.0073 U	0.0073	0.056	0.017	N/A	N/A	1	8533813
233'455'-HexaCB-(159)	ng/L	0.0070 U	0.0070	0.056	0.015	N/A	N/A	1	8533813
233'456-HexaCB-(160)	ng/L	0.0092 U	0.0092	0.056	0.013	N/A	N/A	1	8533813
233'45'6-HexaCB-(161)	ng/L	0.0086 U	0.0086	0.056	0.022	N/A	N/A	1	8533813
233'4'55'-HexaCB-(162)	ng/L	0.0068 U	0.0068	0.056	0.016	N/A	N/A	1	8533813
233'4'5'6-HexaCB-(164)	ng/L	0.0080 U	0.0080	0.056	0.020	N/A	N/A	1	8533813
233'55'6-HexaCB-(165)	ng/L	0.0094 U	0.0094	0.056	0.022	N/A	N/A	1	8533813
23'44'55'-HexaCB-(167)	ng/L	0.0071 U	0.0071	0.056	0.0096	0.0000300	0.000000213	1	8533813
33'44'55'-HexaCB-(169)	ng/L	0.0098 U	0.0098	0.056	0.0092	0.0300	0.000294	1	8533813
22'33'44'5-HeptaCB-(170)	ng/L	0.0092 U	0.0092	0.056	0.011	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ252							
Sampling Date		2023/02/14				TOXIC FOL	JIVALENCY	# of	
Jumping Date		14:37						01	
	UNITS	MW4-20230214-GW-40	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
HeptaCB-(171)+(173)	ng/L	0.011 U	0.011	0.11	0.027	N/A	N/A	1	8533813
22'33'455'-HeptaCB-(172)	ng/L	0.011 U	0.011	0.056	0.012	N/A	N/A	1	8533813
22'33'456'-HeptaCB-(174)	ng/L	0.010 U	0.010	0.056	0.017	N/A	N/A	1	8533813
22'33'45'6-HeptaCB-(175)	ng/L	0.013 U	0.013	0.056	0.0064	N/A	N/A	1	8533813
22'33'466'-HeptaCB-(176)	ng/L	0.0093 U	0.0093	0.056	0.0079	N/A	N/A	1	8533813
22'33'45'6'-HeptaCB-(177)	ng/L	0.012 U	0.012	0.056	0.013	N/A	N/A	1	8533813
22'33'55'6-HeptaCB-(178)	ng/L	0.013 U	0.013	0.056	0.0071	N/A	N/A	1	8533813
22'33'566'-HeptaCB-(179)	ng/L	0.0092 U	0.0092	0.056	0.010	N/A	N/A	1	8533813
HeptaCB-(180)+(193)	ng/L	0.0085 U	0.0085	0.11	0.018	N/A	N/A	1	8533813
22'344'56-HeptaCB-(181)	ng/L	0.011 U	0.011	0.056	0.015	N/A	N/A	1	8533813
22'344'56'-HeptaCB-(182)	ng/L	0.012 U	0.012	0.056	0.0066	N/A	N/A	1	8533813
22'344'5'6-HeptaCB-(183)	ng/L	0.0099 U	0.0099	0.056	0.017	N/A	N/A	1	8533813
22'344'66'-HeptaCB-(184)	ng/L	0.0088 U	0.0088	0.056	0.0065	N/A	N/A	1	8533813
22'3455'6-HeptaCB-(185)	ng/L	0.012 U	0.012	0.056	0.017	N/A	N/A	1	8533813
22'34566'-HeptaCB-(186)	ng/L	0.0096 U	0.0096	0.056	0.0095	N/A	N/A	1	8533813
22'34'55'6-HeptaCB-(187)	ng/L	0.012 U	0.012	0.056	0.0047	N/A	N/A	1	8533813
22'34'566'-HeptaCB-(188)	ng/L	0.0098 U	0.0098	0.056	0.015	N/A	N/A	1	8533813
233'44'55'-HeptaCB-(189)	ng/L	0.0076 U	0.0076	0.056	0.014	0.0000300	0.000000228	1	8533813
233'44'56-HeptaCB-(190)	ng/L	0.0078 U	0.0078	0.056	0.016	N/A	N/A	1	8533813
233'44'5'6-HeptaCB-(191)	ng/L	0.0078 U	0.0078	0.056	0.014	N/A	N/A	1	8533813
233'455'6-HeptaCB-(192)	ng/L	0.0086 U	0.0086	0.056	0.0088	N/A	N/A	1	8533813
22'33'44'55'-OctaCB-(194)	ng/L	0.019 U	0.019	0.056	0.024	N/A	N/A	1	8533813
22'33'44'56-OctaCB-(195)	ng/L	0.022 U	0.022	0.056	0.019	N/A	N/A	1	8533813
22'33'44'56'-OctaCB-(196)	ng/L	0.022 U	0.022	0.056	0.017	N/A	N/A	1	8533813
22'33'44'66'OctaCB-(197)	ng/L	0.015 U	0.015	0.056	0.033	N/A	N/A	1	8533813
OctaCB-(198)+(199)	ng/L	0.023 U	0.023	0.11	0.028	N/A	N/A	1	8533813
22'33'4566'-OctaCB-(200)	ng/L	0.018 U	0.018	0.056	0.031	N/A	N/A	1	8533813
22'33'45'66'-OctaCB-(201)	ng/L	0.015 U	0.015	0.056	0.014	N/A	N/A	1	8533813
22'33'55'66'-OctaCB-(202)	ng/L	0.015 U	0.015	0.056	0.013	N/A	N/A	1	8533813
22'344'55'6-OctaCB-(203)	ng/L	0.022 U	0.022	0.056	0.021	N/A	N/A	1	8533813
22'344'566'-OctaCB-(204)	ng/L	0.013 U	0.013	0.056	0.018	N/A	N/A	1	8533813
233'44'55'6-OctaCB-(205)	ng/L	0.015 U	0.015	0.056	0.014	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ252							
Sampling Date		2023/02/14				TOVIC FOL	JIVALENCY	# of	
Sampling Date		14:37				TOXIC EQU	DIVALENCE	# 01	
	UNITS	MW4-20230214-GW-40	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'44'55'6-NonaCB-(206)	ng/L	0.029 U	0.029	0.056	0.020	N/A	N/A	1	8533813
22'33'44'566'-NonaCB-(207)	ng/L	0.025 U	0.025	0.056	0.018	N/A	N/A	1	8533813
22'33'455'66'-NonaCB-(208)	ng/L	0.023 U	0.023	0.056	0.021	N/A	N/A	1	8533813
DecaCB-(209)	ng/L	0.027 U	0.027	0.056	0.015	N/A	N/A	1	8533813
TOTAL TOXIC EQUIVALENCY	ng/L	N/A	N/A	N/A	N/A	N/A	0.00113	N/A	N/A
Surrogate Recovery (%)	•								
C13-2,44'-TriCB-(28)	%	34	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'44'55'6-NonaCB-(206)	%	115	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'44'5-HeptaCB-(170)	%	100	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'455'66'-NonaCB-(208)	%	104	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'55'66'-OctaCB-(202)	%	124	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'55'6-HeptaCB-(178)	%	91	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'344'55'-HeptaCB-(180)	%	98	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'34'566'-HeptaCB-(188)	%	74	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'44'66'-HexaCB-(155)	%	67	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'466'-PentaCB-(104)	%	47	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'66'-TetraCB-(54)	%	37	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'6-TriCB-(19)	%	39 (1)	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'-DiCB-(4)	%	34	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'55'6-OctaCB-(205)	%	97	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'55'-HeptaCB-(189)	%	84	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'-PentaCB-(105)	%	65	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'55'-PentaCB-(111)	%	84	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-23'44'55'-HexaCB-(167)	%	73	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2344'5-PentaCB-(114)	%	57	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-23'44'5-PentaCB-(118)	%	56	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2'344'5-PentaCB-(123)	%	57	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2-MonoCB-(1)	%	20	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'55'-HexaCB-(169)	%	61	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'5-PentaCB-(126)	%	65	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'-TetraCB-(77)	%	78	N/A	N/A	N/A	N/A	N/A	N/A	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Within criteria.

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ252							
Sampling Date		2023/02/14 14:37				TOXIC EQUIVALENCY		# of	
	UNITS	MW4-20230214-GW-40	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-344'5-TetraCB-(81)	%	73	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-344'-TriCB-(37)	%	41	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-44'-DiCB-(15)	%	35	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-4-MonoCB-(3)	%	23	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-DecaCB-(209)	%	126	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-HexaCB-(156)+(157)	%	83	N/A	N/A	N/A	N/A	N/A	N/A	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories
Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ253							
Sampling Date		2023/02/14				TOXIC EQU	IIVAI FNCV	# of	
Jamping Date		16:17				,	TVALLITET	# 01	
	UNITS	MW6-20230214-GW-40.25	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2-MonoCB-(1)	ng/L	0.042	0.013	0.020	0.0098	N/A	N/A	1	8533813
3-MonoCB-(2)	ng/L	0.013 U	0.013	0.020	0.0079	N/A	N/A	1	8533813
4-MonoCB-(3)	ng/L	0.011 U	0.011	0.050	0.0071	N/A	N/A	1	8533813
22'-DiCB-(4)	ng/L	0.017 J	0.014	0.050	0.017	N/A	N/A	1	8533813
2,3-DiCB-(5)	ng/L	0.0063 U	0.0063	0.050	0.012	N/A	N/A	1	8533813
2,3'-DiCB-(6)	ng/L	0.0062 U	0.0062	0.020	0.0053	N/A	N/A	1	8533813
2,4-DiCB-(7)	ng/L	0.0062 U	0.0062	0.020	0.0056	N/A	N/A	1	8533813
2,4'-DiCB-(8)	ng/L	0.0203 J	0.0060	0.050	0.017	N/A	N/A	1	8533813
2,5-DiCB-(9)	ng/L	0.0061 U	0.0061	0.020	0.0044	N/A	N/A	1	8533813
2,6-DiCB-(10)	ng/L	0.0078 U	0.0078	0.050	0.0052	N/A	N/A	1	8533813
3,3'-DiCB-(11)	ng/L	0.139 J	0.0063	0.20	0.0090	N/A	N/A	1	8533813
DiCB-(12)+(13)	ng/L	0.0058 U	0.0058	0.050	0.015	N/A	N/A	1	8533813
3,5-DiCB-(14)	ng/L	0.0063 U	0.0063	0.020	0.0082	N/A	N/A	1	8533813
4,4'-DiCB-(15)	ng/L	0.0092 J	0.0053	0.050	0.011	N/A	N/A	1	8533813
22'3-TriCB-(16)	ng/L	0.010 U	0.010	0.050	0.0060	N/A	N/A	1	8533813
22'4-TriCB-(17)	ng/L	0.0084 U	0.0084	0.020	0.0091	N/A	N/A	1	8533813
TriCB-(18)+(30)	ng/L	0.0131 J	0.0073	0.050	0.017	N/A	N/A	1	8533813
22'6-TriCB-(19)	ng/L	0.014 U	0.014	0.020	0.0061	N/A	N/A	1	8533813
TriCB-(20) + (28)	ng/L	0.0048 U	0.0048	0.050	0.010	N/A	N/A	1	8533813
TriCB-(21)+(33)	ng/L	0.0168 J	0.0053	0.050	0.011	N/A	N/A	1	8533813
234'-TriCB-(22)	ng/L	0.0054 U	0.0054	0.020	0.0065	N/A	N/A	1	8533813
235-TriCB-(23)	ng/L	0.0054 U	0.0054	0.020	0.0072	N/A	N/A	1	8533813
236-TriCB-(24)	ng/L	0.0066 U	0.0066	0.020	0.0043	N/A	N/A	1	8533813
23'4-TriCB-(25)	ng/L	0.0055 U	0.0055	0.020	0.0054	N/A	N/A	1	8533813
TriCB-(26)+(29)	ng/L	0.0050 U	0.0050	0.050	0.013	N/A	N/A	1	8533813
23'6-TriCB-(27)	ng/L	0.0062 U	0.0062	0.020	0.0082	N/A	N/A	1	8533813
24'5-TriCB-(31)	ng/L	0.0048 U	0.0048	0.050	0.0078	N/A	N/A	1	8533813
24'6-TriCB-(32)	ng/L	0.0059 U	0.0059	0.020	0.0087	N/A	N/A	1	8533813
23'5'-TriCB-(34)	ng/L	0.0053 U	0.0053	0.020	0.0061	N/A	N/A	1	8533813
33'4-TriCB-(35)	ng/L	0.0052 U	0.0052	0.020	0.0042	N/A	N/A	1	8533813
33'5-TriCB-(36)	ng/L	0.0048 U	0.0048	0.020	0.0052	N/A	N/A	1	8533813
344'-TriCB-(37)	ng/L	0.0101 J	0.0046	0.020	0.0041	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ253							
Sampling Date		2023/02/14				TOXIC EQU	IIVALENCY	# of	
, ,		16:17				`	TVALLITET	# 01	
l l	UNITS	MW6-20230214-GW-40.25	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
345-TriCB-(38)	ng/L	0.0050 U	0.0050	0.020	0.0047	N/A	N/A	1	8533813
34'5-TriCB-(39)	ng/L	0.0053 U	0.0053	0.020	0.0059	N/A	N/A	1	8533813
TetraCB-(40)+(41)+(71)	ng/L	0.014 U	0.014	0.10	0.035	N/A	N/A	1	8533813
22'34'-TetraCB-(42)	ng/L	0.020 U	0.020	0.050	0.011	N/A	N/A	1	8533813
22'35-TetraCB-(43)	ng/L	0.019 U	0.019	0.050	0.015	N/A	N/A	1	8533813
TetraCB-(44)+(47)+(65)	ng/L	0.037 J	0.014	0.10	0.029	N/A	N/A	1	8533813
TetraCB-(45)+(51)	ng/L	0.015 U	0.015	0.050	0.011	N/A	N/A	1	8533813
22'36'-TetraCB-(46)	ng/L	0.017 U	0.017	0.020	0.014	N/A	N/A	1	8533813
22'45-TetraCB-(48)	ng/L	0.015 U	0.015	0.050	0.017	N/A	N/A	1	8533813
TetraCB-(49)+TetraCB-(69)	ng/L	0.017 J	0.013	0.10	0.023	N/A	N/A	1	8533813
TetraCB-(50)+(53)	ng/L	0.015 U	0.015	0.10	0.027	N/A	N/A	1	8533813
22'55'-TetraCB-(52)	ng/L	0.038 J	0.015	0.050	0.019	N/A	N/A	1	8533813
22'66'-TetraCB-(54)	ng/L	0.023 U	0.023	0.050	0.020	N/A	N/A	1	8533813
233'4-TetraCB-(55)	ng/L	0.010 U	0.010	0.050	0.015	N/A	N/A	1	8533813
233'4'-Tetra CB(56)	ng/L	0.010 U	0.010	0.050	0.018	N/A	N/A	1	8533813
233'5-TetraCB-(57)	ng/L	0.010 U	0.010	0.050	0.0097	N/A	N/A	1	8533813
233'5'-TetraCB-(58)	ng/L	0.0099 U	0.0099	0.050	0.020	N/A	N/A	1	8533813
	ng/L	0.010 U	0.010	0.10	0.038	N/A	N/A	1	8533813
2344'-TetraCB -(60)	ng/L	0.0098 U	0.0098	0.050	0.011	N/A	N/A	1	8533813
TetraCB-(61)+(70)+(74)+(76)	ng/L	0.047 J	0.010	0.20	0.035	N/A	N/A	1	8533813
234'5-TetraCB-(63)	ng/L	0.0096 U	0.0096	0.050	0.0080	N/A	N/A	1	8533813
234'6-TetraCB-(64)	ng/L	0.012 U	0.012	0.050	0.0089	N/A	N/A	1	8533813
23'44'-TetraCB-(66)	ng/L	0.0204 J	0.0095	0.050	0.0084	N/A	N/A	1	8533813
23'45-TetraCB-(67)	ng/L	0.0083 U	0.0083	0.050	0.0040	N/A	N/A	1	8533813
23'45'-TetraCB-(68)	ng/L	0.0090 U	0.0090	0.050	0.014	N/A	N/A	1	8533813
23'55'-TetraCB-(72)	ng/L	0.0097 U	0.0097	0.050	0.0082	N/A	N/A	1	8533813
23'5'6-TetraCB-(73)	ng/L	0.010 U	0.010	0.050	0.023	N/A	N/A	1	8533813
33'44'-TetraCB-(77)	ng/L	0.0090 J	0.0074	0.050	0.011	0.000100	0.00000900	1	8533813
33'45-TetraCB-(78)	ng/L	0.010 U	0.010	0.050	0.013	N/A	N/A	1	8533813
33'45'-TetraCB(79)	ng/L	0.0083 U	0.0083	0.050	0.0088	N/A	N/A	1	8533813
33'55'-TetraCB-(80)	ng/L	0.0081 U	0.0081	0.050	0.0087	N/A	N/A	1	8533813
344'5-TetraCB-(81)	ng/L	0.0083 U	0.0083	0.050	0.0079	0.000300	0.00000249	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ253							
Sampling Date		2023/02/14				TOXIC FOL	JIVALENCY	# of	
		16:17				,			
	UNITS	MW6-20230214-GW-40.25	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'4-PentaCB-(82)	ng/L	0.014 U	0.014	0.050	0.014	N/A	N/A	1	8533813
PentaCB-(83)+(99)	ng/L	0.012 U	0.012	0.10	0.033	N/A	N/A	1	8533813
22'33'6-PentaCB-(84)	ng/L	0.013 U	0.013	0.020	0.0088	N/A	N/A	1	8533813
PentaCB-(85)+(116)+(117)	ng/L	0.0091 U	0.0091	0.10	0.040	N/A	N/A	1	8533813
PentaCB-(86)(87)(97)(109)(119)(125	ng/L	0.0098 U	0.0098	0.20	0.080	N/A	N/A	1	8533813
PentaCB-(88)+(91)	ng/L	0.012 U	0.012	0.050	0.025	N/A	N/A	1	8533813
22'346'-PentaCB-(89)	ng/L	0.015 U	0.015	0.050	0.0040	N/A	N/A	1	8533813
PentaCB-(90)+(101)+(113)	ng/L	0.0692 J	0.0099	0.20	0.0080	N/A	N/A	1	8533813
22'355'-PentaCB-(92)	ng/L	0.013 U	0.013	0.050	0.010	N/A	N/A	1	8533813
PentaCB-(93)+(98)+(100)+(102)	ng/L	0.012 U	0.012	0.20	0.051	N/A	N/A	1	8533813
22'356'-PentaCB-(94)	ng/L	0.013 U	0.013	0.050	0.017	N/A	N/A	1	8533813
22'35'6-PentaCB-(95)	ng/L	0.058	0.013	0.050	0.011	N/A	N/A	1	8533813
22'366'-PentaCB-(96)	ng/L	0.011 U	0.011	0.050	0.014	N/A	N/A	1	8533813
22'45'6-PentaCB-(103)	ng/L	0.012 U	0.012	0.050	0.012	N/A	N/A	1	8533813
22'466'-PentaCB-(104)	ng/L	0.011 U	0.011	0.050	0.022	N/A	N/A	1	8533813
233'44'-PentaCB-(105)	ng/L	0.0178 J	0.0060	0.050	0.0052	0.0000300	0.00000534	1	8533813
233'45-PentaCB-(106)	ng/L	0.0079 U	0.0079	0.050	0.018	N/A	N/A	1	8533813
233'4'5-PentaCB-(107)	ng/L	0.0060 U	0.0060	0.050	0.014	N/A	N/A	1	8533813
PentaCB-(108)+(124)	ng/L	0.0075 U	0.0075	0.10	0.023	N/A	N/A	1	8533813
PentaCB-(110)+(115)	ng/L	0.0521 J	0.0090	0.10	0.022	N/A	N/A	1	8533813
233'55'-PentaCB-(111)	ng/L	0.0080 U	0.0080	0.050	0.012	N/A	N/A	1	8533813
233'56-PentaCB-(112)	ng/L	0.0076 U	0.0076	0.050	0.018	N/A	N/A	1	8533813
2344'5-PentaCB-(114)	ng/L	0.0070 U	0.0070	0.050	0.0084	0.0000300	0.000000210	1	8533813
23'44'5-PentaCB-(118)	ng/L	0.0314 J	0.0066	0.10	0.0071	0.0000300	0.000000942	1	8533813
23'455'-PentaCB-(120)	ng/L	0.0082 U	0.0082	0.050	0.014	N/A	N/A	1	8533813
23'45'6-PentaCB-(121)	ng/L	0.0084 U	0.0084	0.050	0.0040	N/A	N/A	1	8533813
233'4'5'-PentaCB-(122)	ng/L	0.0098 U	0.0098	0.050	0.011	N/A	N/A	1	8533813
23'44'5'-PentaCB-(123)	ng/L	0.0073 U	0.0073	0.050	0.014	0.0000300	0.000000219	1	8533813
33'44'5-PentaCB-(126)	ng/L	0.0067 U	0.0067	0.050	0.0061	0.100	0.000670	1	8533813
33'455'-PentaCB-(127)	ng/L	0.0073 U	0.0073	0.050	0.017	N/A	N/A	1	8533813
HexaCB-(128)+(166)	ng/L	0.0099 U	0.0099	0.10	0.026	N/A	N/A	1	8533813
HexaCB-(129)+(138)+(163)	ng/L	0.056 J	0.011	0.20	0.014	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ253							
Sampling Date		2023/02/14				TOXIC FOL	JIVALENCY	# of	
		16:17				,			
	UNITS	MW6-20230214-GW-40.25	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'45'-HexaCB-(130)	ng/L	0.012 U	0.012	0.050	0.020	N/A	N/A	1	8533813
22'33'46-HexaCB-(131)	ng/L	0.015 U	0.015	0.050	0.019	N/A	N/A	1	8533813
22'33'46'-HexaCB-(132)	ng/L	0.019 J	0.013	0.050	0.019	N/A	N/A	1	8533813
22'33'55'-HexaCB-(133)	ng/L	0.013 U	0.013	0.050	0.017	N/A	N/A	1	8533813
HexaCB-(134)+(143)	ng/L	0.014 U	0.014	0.10	0.028	N/A	N/A	1	8533813
HexaCB-(135)+(151)	ng/L	0.038 J	0.015	0.10	0.038	N/A	N/A	1	8533813
22'33'66'-HexaCB-(136)	ng/L	0.011 U	0.011	0.050	0.014	N/A	N/A	1	8533813
22'344'5-HexaCB-(137)	ng/L	0.012 U	0.012	0.10	0.014	N/A	N/A	1	8533813
HexaCB-(139)+(140)	ng/L	0.011 U	0.011	0.10	0.032	N/A	N/A	1	8533813
22'3455'-HexaCB-(141)	ng/L	0.014 J	0.011	0.050	0.018	N/A	N/A	1	8533813
22'3456-HexaCB-(142)	ng/L	0.014 U	0.014	0.050	0.018	N/A	N/A	1	8533813
22'345'6-HexaCB-(144)	ng/L	0.015 U	0.015	0.050	0.011	N/A	N/A	1	8533813
22'3466'-HexaCB-(145)	ng/L	0.011 U	0.011	0.050	0.022	N/A	N/A	1	8533813
22'34'55'-HexaCB-(146)	ng/L	0.010 U	0.010	0.050	0.014	N/A	N/A	1	8533813
HexaCB-(147)+(149)	ng/L	0.063 J	0.010	0.10	0.027	N/A	N/A	1	8533813
22'34'56'-HexaCB-(148)	ng/L	0.015 U	0.015	0.050	0.013	N/A	N/A	1	8533813
22'34'66'-HexaCB-(150)	ng/L	0.011 U	0.011	0.050	0.022	N/A	N/A	1	8533813
22'3566'-HexaCB-(152)	ng/L	0.011 U	0.011	0.050	0.020	N/A	N/A	1	8533813
HexaCB-(153)+(168)	ng/L	0.0594 J	0.0089	0.10	0.028	N/A	N/A	1	8533813
22'44'56'-HexaCB-(154)	ng/L	0.012 U	0.012	0.050	0.014	N/A	N/A	1	8533813
22'44'66'-HexaCB-(155)	ng/L	0.011 U	0.011	0.050	0.013	N/A	N/A	1	8533813
HexaCB-(156)+(157)	ng/L	0.0071 U	0.0071	0.10	0.015	0.0000300	0.000000213	1	8533813
233'44'6-HexaCB-(158)	ng/L	0.0073 U	0.0073	0.050	0.017	N/A	N/A	1	8533813
233'455'-HexaCB-(159)	ng/L	0.0069 U	0.0069	0.050	0.015	N/A	N/A	1	8533813
233'456-HexaCB-(160)	ng/L	0.0092 U	0.0092	0.050	0.013	N/A	N/A	1	8533813
233'45'6-HexaCB-(161)	ng/L	0.0085 U	0.0085	0.050	0.022	N/A	N/A	1	8533813
233'4'55'-HexaCB-(162)	ng/L	0.0068 U	0.0068	0.050	0.016	N/A	N/A	1	8533813
233'4'5'6-HexaCB-(164)	ng/L	0.0079 U	0.0079	0.050	0.020	N/A	N/A	1	8533813
233'55'6-HexaCB-(165)	ng/L	0.0093 U	0.0093	0.050	0.022	N/A	N/A	1	8533813
23'44'55'-HexaCB-(167)	ng/L	0.0072 U	0.0072	0.050	0.0096	0.0000300	0.000000216	1	8533813
33'44'55'-HexaCB-(169)	ng/L	0.0083 U	0.0083	0.050	0.0092	0.0300	0.000249	1	8533813
22'33'44'5-HeptaCB-(170)	ng/L	0.0078 U	0.0078	0.050	0.011	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories
Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ253							
Sampling Date		2023/02/14				TOXIC FOL	JIVALENCY	# of	
Sumpling Date		16:17				,		11 01	
	UNITS	MW6-20230214-GW-40.25	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
HeptaCB-(171)+(173)	ng/L	0.0095 U	0.0095	0.10	0.027	N/A	N/A	1	8533813
22'33'455'-HeptaCB-(172)	ng/L	0.0093 U	0.0093	0.050	0.012	N/A	N/A	1	8533813
22'33'456'-HeptaCB-(174)	ng/L	0.0101 J	0.0088	0.050	0.017	N/A	N/A	1	8533813
22'33'45'6-HeptaCB-(175)	ng/L	0.011 U	0.011	0.050	0.0064	N/A	N/A	1	8533813
22'33'466'-HeptaCB-(176)	ng/L	0.0078 U	0.0078	0.050	0.0079	N/A	N/A	1	8533813
22'33'45'6'-HeptaCB-(177)	ng/L	0.0097 U	0.0097	0.050	0.013	N/A	N/A	1	8533813
22'33'55'6-HeptaCB-(178)	ng/L	0.011 U	0.011	0.050	0.0071	N/A	N/A	1	8533813
22'33'566'-HeptaCB-(179)	ng/L	0.0090 J	0.0078	0.050	0.010	N/A	N/A	1	8533813
HeptaCB-(180)+(193)	ng/L	0.0180 J	0.0071	0.10	0.018	N/A	N/A	1	8533813
22'344'56-HeptaCB-(181)	ng/L	0.0091 U	0.0091	0.050	0.015	N/A	N/A	1	8533813
22'344'56'-HeptaCB-(182)	ng/L	0.0097 U	0.0097	0.050	0.0066	N/A	N/A	1	8533813
22'344'5'6-HeptaCB-(183)	ng/L	0.0090 J	0.0083	0.050	0.017	N/A	N/A	1	8533813
22'344'66'-HeptaCB-(184)	ng/L	0.0074 U	0.0074	0.050	0.0065	N/A	N/A	1	8533813
22'3455'6-HeptaCB-(185)	ng/L	0.0099 U	0.0099	0.050	0.017	N/A	N/A	1	8533813
22'34566'-HeptaCB-(186)	ng/L	0.0081 U	0.0081	0.050	0.0095	N/A	N/A	1	8533813
22'34'55'6-HeptaCB-(187)	ng/L	0.0191 J	0.0097	0.050	0.0047	N/A	N/A	1	8533813
22'34'566'-HeptaCB-(188)	ng/L	0.0080 U	0.0080	0.050	0.015	N/A	N/A	1	8533813
233'44'55'-HeptaCB-(189)	ng/L	0.0063 U	0.0063	0.050	0.014	0.0000300	0.00000189	1	8533813
233'44'56-HeptaCB-(190)	ng/L	0.0065 U	0.0065	0.050	0.016	N/A	N/A	1	8533813
233'44'5'6-HeptaCB-(191)	ng/L	0.0065 U	0.0065	0.050	0.014	N/A	N/A	1	8533813
233'455'6-HeptaCB-(192)	ng/L	0.0072 U	0.0072	0.050	0.0088	N/A	N/A	1	8533813
22'33'44'55'-OctaCB-(194)	ng/L	0.011 U	0.011	0.050	0.024	N/A	N/A	1	8533813
22'33'44'56-OctaCB-(195)	ng/L	0.012 U	0.012	0.050	0.019	N/A	N/A	1	8533813
22'33'44'56'-OctaCB-(196)	ng/L	0.012 U	0.012	0.050	0.017	N/A	N/A	1	8533813
22'33'44'66'OctaCB-(197)	ng/L	0.0085 U	0.0085	0.050	0.033	N/A	N/A	1	8533813
OctaCB-(198)+(199)	ng/L	0.013 U	0.013	0.10	0.028	N/A	N/A	1	8533813
22'33'4566'-OctaCB-(200)	ng/L	0.010 U	0.010	0.050	0.031	N/A	N/A	1	8533813
22'33'45'66'-OctaCB-(201)	ng/L	0.0088 U	0.0088	0.050	0.014	N/A	N/A	1	8533813
22'33'55'66'-OctaCB-(202)	ng/L	0.0094 U	0.0094	0.050	0.013	N/A	N/A	1	8533813
22'344'55'6-OctaCB-(203)	ng/L	0.012 U	0.012	0.050	0.021	N/A	N/A	1	8533813
22'344'566'-OctaCB-(204)	ng/L	0.0076 U	0.0076	0.050	0.018	N/A	N/A	1	8533813
233'44'55'6-OctaCB-(205)	ng/L	0.0078 U	0.0078	0.050	0.014	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VBZ253							
Sampling Date		2023/02/14				TOXIC EQU	JIVALENCY	# of	
		16:17				,			
	UNITS	MW6-20230214-GW-40.25	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'44'55'6-NonaCB-(206)	ng/L	0.026 U	0.026	0.050	0.020	N/A	N/A	1	8533813
22'33'44'566'-NonaCB-(207)	ng/L	0.023 U	0.023	0.050	0.018	N/A	N/A	1	8533813
22'33'455'66'-NonaCB-(208)	ng/L	0.021 U	0.021	0.050	0.021	N/A	N/A	1	8533813
DecaCB-(209)	ng/L	0.025 U	0.025	0.050	0.015	N/A	N/A	1	8533813
TOTAL TOXIC EQUIVALENCY	ng/L	N/A	N/A	N/A	N/A	N/A	0.000925	N/A	N/A
Surrogate Recovery (%)									
C13-2,44'-TriCB-(28)	%	38	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'44'55'6-NonaCB-(206)	%	109	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'44'5-HeptaCB-(170)	%	102	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'455'66'-NonaCB-(208)	%	98	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'55'66'-OctaCB-(202)	%	102	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'55'6-HeptaCB-(178)	%	87	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'344'55'-HeptaCB-(180)	%	97	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'34'566'-HeptaCB-(188)	%	77	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'44'66'-HexaCB-(155)	%	74	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'466'-PentaCB-(104)	%	57	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'66'-TetraCB-(54)	%	43	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'6-TriCB-(19)	%	42	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'-DiCB-(4)	%	37	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'55'6-OctaCB-(205)	%	94	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'55'-HeptaCB-(189)	%	88	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'-PentaCB-(105)	%	68	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'55'-PentaCB-(111)	%	82	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-23'44'55'-HexaCB-(167)	%	62	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2344'5-PentaCB-(114)	%	56	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-23'44'5-PentaCB-(118)	%	57	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2'344'5-PentaCB-(123)	%	57	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2-MonoCB-(1)	%	21	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'55'-HexaCB-(169)	%	62	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'5-PentaCB-(126)	%	65	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'-TetraCB-(77)	%	83	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-344'5-TetraCB-(81)	%	74	N/A	N/A	N/A	N/A	N/A	N/A	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

	VBZ253							
	2023/02/14 16:17				TOXIC EQUIVALENCY		# of	
UNITS	MW6-20230214-GW-40.25	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
%	48	N/A	N/A	N/A	N/A	N/A	N/A	8533813
%	41	N/A	N/A	N/A	N/A	N/A	N/A	8533813
%	25	N/A	N/A	N/A	N/A	N/A	N/A	8533813
%	122	N/A	N/A	N/A	N/A	N/A	N/A	8533813
%	64	N/A	N/A	N/A	N/A	N/A	N/A	8533813
	% % %	2023/02/14 16:17 UNITS MW6-20230214-GW-40.25 % 48 % 41 % 25 % 122	2023/02/14 16:17 UNITS MW6-20230214-GW-40.25 EDL % 48 N/A % 41 N/A % 25 N/A % 122 N/A	2023/02/14 16:17 UNITS MW6-20230214-GW-40.25 EDL RDL % 48 N/A N/A % 41 N/A N/A % 25 N/A N/A % 122 N/A N/A	2023/02/14 16:17 UNITS MW6-20230214-GW-40.25 EDL RDL MDL % 48 N/A N/A N/A % 41 N/A N/A N/A % 25 N/A N/A N/A % 122 N/A N/A N/A	2023/02/14 TOXIC EQUID TOXIC EQUID TOXIC EQUID TOXIC EQUID TEF (2005 WHO)	2023/02/14 16:17 TOXIC EQUIVALENCY	2023/02/14 16:17 TOXIC EQUIVALENCY # of

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0522

TEST SUMMARY

Bureau Veritas ID: VBZ249

Sample ID: MW3-20230214-GW-35

Matrix: Water

Collected: 2023/02/14 Shipped:

Received: 2023/02/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dioxins/Furans in Water (1613B)	HRMS/MS	8524619	2023/02/24	2023/02/28	Yan Qin
OC Pesticides in Water by GCTQ	GCTQ/MS	8513671	2023/02/21	2023/02/24	Chau Ting (Ruth) Chan
PCB Congeners in Water (1668C)	HRMS/MS	8533813	2023/02/23	2023/03/05	Cathy Xu
PFAS in water by SPE/LCMS	LCMS	8519276	2023/02/23	2023/02/25	Erik Slempers

Bureau Veritas ID: VBZ250

Sample ID: MW3-20230214-GW-35-DUP

Matrix: Water

Shipped:

Collected: 2023/02/14

Received: 2023/02/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dioxins/Furans in Water (1613B)	HRMS/MS	8524619	2023/02/24	2023/02/28	Yan Qin
OC Pesticides in Water by GCTQ	GCTQ/MS	8513671	2023/02/21	2023/02/24	Chau Ting (Ruth) Chan
PCB Congeners in Water (1668C)	HRMS/MS	8533813	2023/02/23	2023/03/05	Cathy Xu
PFAS in water by SPE/LCMS	LCMS	8519276	2023/02/23	2023/02/25	Erik Slempers

Bureau Veritas ID: VBZ251

Sample ID: MW5-20230214-GW-40

Matrix: Water

Collected: 2023/02/14

Shipped:

Received: 2023/02/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dioxins/Furans in Water (1613B)	HRMS/MS	8524619	2023/02/24	2023/02/28	Yan Qin
OC Pesticides in Water by GCTQ	GCTQ/MS	8513671	2023/02/21	2023/02/24	Chau Ting (Ruth) Chan
PCB Congeners in Water (1668C)	HRMS/MS	8533813	2023/02/23	2023/03/06	Cathy Xu
PFAS in water by SPE/LCMS	LCMS	8519276	2023/02/23	2023/02/25	Erik Slempers

Bureau Veritas ID: VBZ251 Dup

Sample ID: MW5-20230214-GW-40

Matrix: Water

Collected: 2023/02/14 Shipped:

Received: 2023/02/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
OC Pesticides in Water by GCTQ	GCTQ/MS	8513671	2023/02/21	2023/02/24	Chau Ting (Ruth) Chan

Bureau Veritas ID: VBZ252

Sample ID: MW4-20230214-GW-40

Matrix: Water

Collected: 2023/02/14 Shipped:

Received: 2023/02/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dioxins/Furans in Water (1613B)	HRMS/MS	8524619	2023/02/24	2023/02/28	Yan Qin
OC Pesticides in Water by GCTQ	GCTQ/MS	8513671	2023/02/21	2023/02/24	Chau Ting (Ruth) Chan
PCB Congeners in Water (1668C)	HRMS/MS	8533813	2023/02/23	2023/03/05	Cathy Xu
PFAS in water by SPE/LCMS	LCMS	8519276	2023/02/23	2023/02/25	Erik Slempers

Apex Laboratories Client Project #: A3B0522

TEST SUMMARY

Bureau Veritas ID: VBZ253

Sample ID: MW6-20230214-GW-40.25 Matrix: Water

Collected: 2023/02/14

Shipped:

Received: 2023/02/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dioxins/Furans in Water (1613B)	HRMS/MS	8524619	2023/02/24	2023/02/28	Yan Qin
OC Pesticides in Water by GCTQ	GCTQ/MS	8513671	2023/02/21	2023/02/24	Chau Ting (Ruth) Chan
PCB Congeners in Water (1668C)	HRMS/MS	8533813	2023/02/23	2023/03/05	Cathy Xu
PFAS in water by SPE/LCMS	LCMS	8519276	2023/02/23	2023/02/25	Erik Slempers

Bureau Veritas ID: VBZ254

Sample ID: FIELD BLANK-02

Matrix: Water

Shipped:

Collected: 2023/02/14

Received: 2023/02/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
PFAS in water by SPE/LCMS	LCMS	8519276	2023/02/23	2023/02/25	Erik Slempers

Apex Laboratories Client Project #: A3B0522

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	5.0°C
Package 2	3.1°C
Package 3	4.5°C
Package 4	4.9°C

Revised Report (2023/5/17): Added additional parameters (full list) for PFAS.

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

PCB Congeners in Water (1668C): Worksheet Blank contains some traces of PCB congeners natives that are above the RDL. However, all samples in worksheet (8533813) shows trace concentration levels below RDL. Results should be reviewed with caution.

Results relate only to the items tested.

Apex Laboratories Client Project #: A3B0522

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
8513671	CTC	Matrix Spike(VBZ250)	13C10-cis Nonachlor	2023/02/23		77	%	36 - 139
			13C10-Heptachlor	2023/02/23		161 (1)	%	5 - 120
			13C10-Heptachlor Epoxide	2023/02/23		105	%	27 - 137
			13C10-Oxychlordane	2023/02/23		101	%	23 - 135
			13C10-trans Nonachlor	2023/02/23		88	%	14 - 136
			13C12-Endrin	2023/02/23		117	%	35 - 155
			13C12-Endrin Ketone	2023/02/23		57	%	35 - 155
			13C6-beta BHC	2023/02/23		71	%	32 - 130
			13C6-d6-gamma BHC (Lindane)	2023/02/23		78	%	11 - 120
			13C-Methoxychlor	2023/02/23		132 (1)	%	5 - 120
			13C-pp-DDD	2023/02/23		94	%	5 - 120
			13C-pp-DDE	2023/02/23		78	%	47 - 160
			13C-pp-DDT	2023/02/23		73	%	5 - 120
			C13-Hexachlorobenzene	2023/02/23		75	%	5 - 120
			Aldrin	2023/02/23		51	%	50 - 200
			alpha-BHC	2023/02/23		119	%	50 - 200
			delta-BHC	2023/02/23		118	%	50 - 200
			beta-BHC	2023/02/23		125	%	50 - 200
			Lindane	2023/02/23		118	%	50 - 200
			a-Chlordane	2023/02/23		138	%	50 - 200
			g-Chlordane	2023/02/23		134	%	50 - 200
			Oxychlordane	2023/02/23		104	%	50 - 200
			o,p-DDD	2023/02/23		122	%	50 - 200
			p,p-DDD	2023/02/23		124	%	50 - 200
			o,p-DDE	2023/02/23		112	%	50 - 200
			p,p-DDE	2023/02/23		112	%	50 - 200
			o,p-DDT	2023/02/23		136	%	50 - 200
			p,p-DDT	2023/02/23		150	%	50 - 200
			Dieldrin	2023/02/23		144	%	50 - 200
			Endosulfan I	2023/02/23		124	%	50 - 200
			Endosulfan II	2023/02/23		127	%	50 - 200
			Endosulfan sulfate	2023/02/23		145	%	50 - 200
			Endrin	2023/02/23		112	%	50 - 200
			Endrin aldehyde	2023/02/23		140	%	50 - 200
			Endrin ketone	2023/02/23		112	%	50 - 200
			Heptachlor	2023/02/23		119	%	50 - 200
			Heptachlor epoxide	2023/02/23		113	%	50 - 200
			Hexachlorobenzene	2023/02/23		109	%	50 - 200
			Methoxychlor	2023/02/23		116	%	50 - 200
			Mirex	2023/02/23		66	%	50 - 200
			cis-Nonachlor	2023/02/23		121	%	50 - 200
			trans-Nonachlor	2023/02/23		117	%	50 - 200
8513671	CTC	Spiked Blank	13C10-cis Nonachlor	2023/02/23		60	%	36 - 139
		•	13C10-Heptachlor	2023/02/23		82	%	5 - 120
			13C10-Heptachlor Epoxide	2023/02/23		83	%	27 - 137
			13C10-Oxychlordane	2023/02/23		74	%	23 - 135
			13C10-trans Nonachlor	2023/02/23		71	%	14 - 136
			13C12-Endrin	2023/02/23		63	%	35 - 155
			13C12-Endrin Ketone	2023/02/23		43	%	35 - 155
			13C6-beta BHC	2023/02/23		68	%	32 - 130
			13C6-d6-gamma BHC (Lindane)	2023/02/23		79	%	11 - 120
			13C-Methoxychlor	2023/02/23		77	%	5 - 120
			13C-pp-DDD	2023/02/23		57	%	5 - 120

Apex Laboratories Client Project #: A3B0522

04/00								
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
241011		ζο : γρο	13C-pp-DDE	2023/02/23	74.40	74	%	47 - 160
			13C-pp-DDT	2023/02/23		55	%	5 - 120
			C13-Hexachlorobenzene	2023/02/23		61	%	5 - 120
			Aldrin	2023/02/23		91	%	50 - 200
			alpha-BHC	2023/02/23		132	%	50 - 200
			delta-BHC	2023/02/23		127	%	50 - 200
			beta-BHC	2023/02/23		117	%	50 - 200
			Lindane	2023/02/23		124	%	50 - 200
			a-Chlordane	2023/02/23		128	%	50 - 200
			g-Chlordane	2023/02/23		117	%	50 - 200
			Oxychlordane	2023/02/23		110	%	50 - 200
			o,p-DDD	2023/02/23		149	%	50 - 200
			p,p-DDD	2023/02/23		128	%	50 - 200
			o,p-DDE	2023/02/23		110	%	50 - 200
			p,p-DDE	2023/02/23		110	%	50 - 200
			o,p-DDT	2023/02/23		123	%	50 - 200
			p,p-DDT	2023/02/23		124	%	50 - 200
			Dieldrin	2023/02/23		136	%	50 - 200
			Endosulfan I	2023/02/23		140	%	50 - 200
			Endosulfan II	2023/02/23		112	%	50 - 200
			Endosulfan sulfate	2023/02/23		150	%	50 - 200
			Endrin	2023/02/23		113	%	50 - 200
			Endrin aldehyde	2023/02/23		145	%	50 - 200
			Endrin ketone	2023/02/23		123	%	50 - 200
			Heptachlor	2023/02/23		109	%	50 - 200
			Heptachlor epoxide	2023/02/23		115	%	50 - 200
			Hexachlorobenzene	2023/02/23		109	%	50 - 200
			Methoxychlor	2023/02/23		118	%	50 - 200
			Mirex	2023/02/23		75	%	50 - 200
			cis-Nonachlor	2023/02/23		127	%	50 - 200
			trans-Nonachlor	2023/02/23		119	%	50 - 200
8513671	CTC	Method Blank	13C10-cis Nonachlor	2023/02/23		62	%	36 - 139
			13C10-Heptachlor	2023/02/23		97	%	5 - 120
			13C10-Heptachlor Epoxide	2023/02/23		88	%	27 - 137
			13C10-Oxychlordane	2023/02/23		78	%	23 - 135
			13C10-trans Nonachlor	2023/02/23		70	%	14 - 136
			13C12-Endrin	2023/02/23		74	%	35 - 155
			13C12-Endrin Ketone	2023/02/23		53	%	35 - 155
			13C6-beta BHC	2023/02/23		74	%	32 - 130
			13C6-d6-gamma BHC (Lindane)	2023/02/23		92	%	11 - 120
			13C-Methoxychlor	2023/02/23		82	%	5 - 120
			13C-pp-DDD	2023/02/23		57	%	5 - 120
			13C-pp-DDE	2023/02/23		77	%	47 - 160
			13C-pp-DDT	2023/02/23		57	%	5 - 120
			C13-Hexachlorobenzene	2023/02/23		65	%	5 - 120
			Aldrin	2023/02/23	0.021 U, MDL=0.021		ng/L	
			alpha-BHC	2023/02/23	0.024 U, MDL=0.024		ng/L	
			delta-BHC	2023/02/23	0.029 U, MDL=0.029		ng/L	
			beta-BHC	2023/02/23	0.014 U, MDL=0.014		ng/L	

Apex Laboratories Client Project #: A3B0522

QA/QC	±:مرا	OC Tuno	Darameter	Data Analus - I	Value	0/ Doggersom	LINUTC	001::-
Batch	Init	QC Type	Parameter Lindane	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Lindane	2023/02/23	0.033 U, MDL=0.033		ng/L	
			a-Chlordane	2023/02/23	0.029 U, MDL=0.029		ng/L	
			g-Chlordane	2023/02/23	0.029 U, MDL=0.029		ng/L	
			Oxychlordane	2023/02/23	0.028 U, MDL=0.028		ng/L	
			o,p-DDD	2023/02/23	0.020 U, MDL=0.020		ng/L	
			p,p-DDD	2023/02/23	0.014 U, MDL=0.014		ng/L	
			o,p-DDE	2023/02/23	0.016 U, MDL=0.016		ng/L	
			p,p-DDE	2023/02/23	0.012 J, MDL=0.012		ng/L	
			o,p-DDT	2023/02/23	0.040 U, MDL=0.040		ng/L	
			p,p-DDT	2023/02/23	0.050 U, MDL=0.050		ng/L	
			Dieldrin	2023/02/23	0.050 U, MDL=0.050		ng/L	
			Endosulfan I	2023/02/23	0.067 U, MDL=0.067		ng/L	
			Endosulfan II	2023/02/23	0.074 U, MDL=0.074		ng/L	
			Endosulfan sulfate	2023/02/23	0.070 U, MDL=0.070		ng/L	
			Endrin	2023/02/23	0.083 J, MDL=0.045		ng/L	
			Endrin aldehyde	2023/02/23	0.071 U, MDL=0.071		ng/L	
			Endrin ketone	2023/02/23	0.034 U, MDL=0.034		ng/L	
			Heptachlor	2023/02/23	0.029 U, MDL=0.029		ng/L	
			Heptachlor epoxide	2023/02/23	0.015 U, MDL=0.015		ng/L	
			Hexachlorobenzene	2023/02/23	0.10 U, MDL=0.10		ng/L	
			Methoxychlor	2023/02/23	0.040 U, MDL=0.040		ng/L	
			Mirex	2023/02/23	0.021 U, MDL=0.021		ng/L	
			cis-Nonachlor	2023/02/23	0.037 U, MDL=0.037		ng/L	
			trans-Nonachlor	2023/02/23	0.044 U, MDL=0.044		ng/L	
8513671	CTC	RPD - Sample/Sample Dup	Aldrin	2023/02/24	NC		%	25
			alpha-BHC	2023/02/24	NC		%	25
			delta-BHC	2023/02/24	NC		%	25
			beta-BHC	2023/02/24	NC		%	25
			Lindane	2023/02/24	NC		%	25
			a-Chlordane	2023/02/24	NC		%	25

Apex Laboratories Client Project #: A3B0522

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			g-Chlordane	2023/02/24	NC		%	25
			Oxychlordane	2023/02/24	NC		%	25
			o,p-DDD	2023/02/24	NC		%	25
			p,p-DDD	2023/02/24	NC		%	25
			o,p-DDE	2023/02/24	NC		%	25
			p,p-DDE	2023/02/24	NC		%	25
			o,p-DDT	2023/02/24	NC		%	25
			p,p-DDT	2023/02/24	NC		%	25
			Dieldrin	2023/02/24	NC		%	25
			Endosulfan I	2023/02/24	NC		%	25
			Endosulfan II	2023/02/24	NC		%	25
			Endosulfan sulfate	2023/02/24	NC		%	25
			Endrin	2023/02/24	NC		%	25
			Endrin aldehyde	2023/02/24	NC		%	25
			Endrin ketone	2023/02/24	NC		%	25
			Heptachlor	2023/02/24	NC		%	25
			Heptachlor epoxide	2023/02/24	NC		%	25
			Hexachlorobenzene	2023/02/24	NC		%	25
			Methoxychlor	2023/02/24	NC		%	25
			Mirex	2023/02/24	NC		%	25
			cis-Nonachlor	2023/02/24	NC		%	25
			trans-Nonachlor	2023/02/24	NC		%	25
8519276	ESL	Spiked Blank	13C2-4:2-Fluorotelomersulfonic Acid	2023/02/25		91	%	50 - 150
		•	13C2-6:2-Fluorotelomersulfonic Acid	2023/02/25		90	%	50 - 150
			13C2-8:2-Fluorotelomersulfonic Acid	2023/02/25		87	%	50 - 150
			13C2-Perfluorodecanoic acid	2023/02/25		88	%	50 - 150
			13C2-Perfluorododecanoic acid	2023/02/25		80	%	50 - 150
			13C2-Perfluorohexanoic acid	2023/02/25		89	%	50 - 150
			13C2-perfluorotetradecanoic acid	2023/02/25		77	%	50 - 150
			13C2-Perfluoroundecanoic acid	2023/02/25		82	%	50 - 150
			13C3-HFPO-DA	2023/02/25		87	%	50 - 150
			13C3-Perfluorobutanesulfonic acid	2023/02/25		89	%	50 - 150
			13C4-Perfluorobutanoic acid	2023/02/25		92	%	50 - 150
			13C4-Perfluoroheptanoic acid	2023/02/25		90	%	50 - 150
			13C4-Perfluorooctanesulfonic acid	2023/02/25		88	%	50 - 150
			13C4-Perfluorooctanoic acid	2023/02/25		90	%	50 - 150
			13C5-Perfluorononanoic acid	2023/02/25		88	%	50 - 150
			13C5-Perfluoropentanoic acid	2023/02/25		90	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2023/02/25		79	%	50 - 150
			1802-Perfluorohexanesulfonic acid	2023/02/25		91	%	50 - 150
			D3-MeFOSA	2023/02/25		59	%	50 - 150
			D3-MeFOSAA	2023/02/25		75	%	50 - 150
			D5-EtFOSA	2023/02/25		61	%	50 - 150
			D5-EtFOSAA	2023/02/25		74	%	50 - 150
			D7-MeFOSE	2023/02/25		73	%	50 - 150
			D9-EtFOSE	2023/02/25		73 70	% %	50 - 150
			Perfluorobutanoic acid (PFBA)	2023/02/25		109	% %	70 - 130
			Perfluoropentanoic acid (PFPA)	2023/02/25		106	% %	70 - 130
			Perfluoropentanoic acid (PFHxA)	2023/02/25		106	% %	70 - 130 70 - 130
			Perfluoroneptanoic acid (PFHpA)	2023/02/25		107	% %	70 - 130 70 - 130
			Perfluorooctanoic acid (PFOA)	2023/02/25		108	%	70 - 130
			Perfluorononanoic acid (PFNA)	2023/02/25		110	%	70 - 130
			Perfluorodecanoic acid (PFDA)	2023/02/25		109	%	70 - 130

Apex Laboratories Client Project #: A3B0522

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		- N	Perfluoroundecanoic acid (PFUnA)	2023/02/25		104	%	70 - 130
			Perfluorododecanoic acid (PFDoA)	2023/02/25		108	%	70 - 130
			Perfluorotridecanoic acid (PFTRDA)	2023/02/25		108	%	70 - 130
			Perfluorotetradecanoic acid(PFTEDA)	2023/02/25		108	%	70 - 130
			Perfluorobutanesulfonic acid (PFBS)	2023/02/25		109	%	70 - 130
			Perfluoropentanesulfonic acid PFPes	2023/02/25		105	%	70 - 130
			Perfluorohexanesulfonic acid(PFHxS)	2023/02/25		107	%	70 - 130
			Perfluoroheptanesulfonic acid PFHpS	2023/02/25		106	%	70 - 130
			Perfluorooctanesulfonic acid (PFOS)	2023/02/25		109	%	70 - 130
			Perfluorononanesulfonic acid (PFNS)	2023/02/25		104	%	70 - 130
			Perfluorodecanesulfonic acid (PFDS)	2023/02/25		100	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2023/02/25		111	%	70 - 130
			EtFOSA	2023/02/25		114	%	70 - 130
			MeFOSA	2023/02/25		115	%	70 - 130
			EtFOSE	2023/02/25		111	%	70 - 130
			MeFOSE	2023/02/25		109	%	70 - 130
			EtFOSAA	2023/02/25		108	%	70 - 130
			MeFOSAA	2023/02/25		112	%	70 - 130
			4:2 Fluorotelomer sulfonic acid	2023/02/25		109	%	70 - 130
			6:2 Fluorotelomer sulfonic acid	2023/02/25		108	%	70 - 130
			8:2 Fluorotelomer sulfonic acid	2023/02/25		108	%	70 - 130
			Hexafluoropropyleneoxide dimer acid	2023/02/25		112	%	70 - 130
			4,8-Dioxa-3H-perfluorononanoic acid	2023/02/25		107	%	70 - 130
			9Cl-PF3ONS (F-53B Major)	2023/02/25		106	%	70 - 130
			11Cl-PF3OUdS (F-53B Minor)	2023/02/25		102	%	70 - 130
8519276	ESL	Spiked Blank DUP	13C2-4:2-Fluorotelomersulfonic Acid	2023/02/25		89	%	50 - 150
			13C2-6:2-Fluorotelomersulfonic Acid	2023/02/25		86	%	50 - 150
			13C2-8:2-Fluorotelomersulfonic Acid	2023/02/25		84	%	50 - 150
			13C2-Perfluorodecanoic acid	2023/02/25		86	%	50 - 150
			13C2-Perfluorododecanoic acid	2023/02/25		78	%	50 - 150
			13C2-Perfluorohexanoic acid	2023/02/25		86	%	50 - 150
			13C2-perfluorotetradecanoic acid	2023/02/25		76	%	50 - 150
			13C2-Perfluoroundecanoic acid	2023/02/25		82	%	50 - 150
			13C3-HFPO-DA	2023/02/25		87	%	50 - 150
			13C3-Perfluorobutanesulfonic acid	2023/02/25		86	%	50 - 150
			13C4-Perfluorobutanoic acid	2023/02/25		89	%	50 - 150
			13C4-Perfluoroheptanoic acid	2023/02/25		86	%	50 - 150
			13C4-Perfluorooctanesulfonic acid	2023/02/25		86	%	50 - 150
			13C4-Perfluorooctanoic acid	2023/02/25		86	%	50 - 150
			13C5-Perfluorononanoic acid	2023/02/25		84	%	50 - 150
			13C5-Perfluoropentanoic acid	2023/02/25		88	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2023/02/25		76	%	50 - 150
			18O2-Perfluorohexanesulfonic acid	2023/02/25		88	%	50 - 150
			D3-MeFOSA	2023/02/25		62	%	50 - 150
			D3-MeFOSAA	2023/02/25		75	%	50 - 150
			D5-EtFOSA	2023/02/25		62	%	50 - 150
			D5-EtFOSAA	2023/02/25		70	%	50 - 150
			D7-MeFOSE	2023/02/25		70	%	50 - 150
			D9-EtFOSE	2023/02/25		73	%	50 - 150
			Perfluorobutanoic acid (PFBA)	2023/02/25		108	%	70 - 130
			Perfluoropentanoic acid (PFPeA)	2023/02/25		107	%	70 - 130
			Perfluorohexanoic acid (PFHxA)	2023/02/25		108	%	70 - 130
			Perfluoroheptanoic acid (PFHpA)	2023/02/25		107	%	70 - 130

Apex Laboratories Client Project #: A3B0522

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		71.	Perfluorooctanoic acid (PFOA)	2023/02/25		107	%	70 - 130
			Perfluorononanoic acid (PFNA)	2023/02/25		111	%	70 - 130
			Perfluorodecanoic acid (PFDA)	2023/02/25		107	%	70 - 130
			Perfluoroundecanoic acid (PFUnA)	2023/02/25		104	%	70 - 130
			Perfluorododecanoic acid (PFDoA)	2023/02/25		109	%	70 - 130
			Perfluorotridecanoic acid (PFTRDA)	2023/02/25		107	%	70 - 130
			Perfluorotetradecanoic acid(PFTEDA)	2023/02/25		108	%	70 - 130
			Perfluorobutanesulfonic acid (PFBS)	2023/02/25		108	%	70 - 130
			Perfluoropentanesulfonic acid PFPes	2023/02/25		106	%	70 - 130
			Perfluorohexanesulfonic acid(PFHxS)	2023/02/25		106	%	70 - 130
			Perfluoroheptanesulfonic acid PFHpS	2023/02/25		106	%	70 - 130
			Perfluorooctanesulfonic acid (PFOS)	2023/02/25		108	%	70 - 130
			Perfluorononanesulfonic acid (PFNS)	2023/02/25		105	%	70 - 130
			Perfluorodecanesulfonic acid (PFDS)	2023/02/25		102	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2023/02/25		113	%	70 - 130
			EtFOSA	2023/02/25		114	%	70 - 130
			MeFOSA	2023/02/25		116	%	70 - 130
			EtFOSE	2023/02/25		106	%	70 - 130
			MeFOSE	2023/02/25		116	%	70 - 130
			EtFOSAA	2023/02/25		113	%	70 - 130
			MeFOSAA	2023/02/25		111	%	70 - 130
			4:2 Fluorotelomer sulfonic acid	2023/02/25		106	%	70 - 130
			6:2 Fluorotelomer sulfonic acid	2023/02/25		108	%	70 - 130
			8:2 Fluorotelomer sulfonic acid	2023/02/25		108	%	70 - 130
			Hexafluoropropyleneoxide dimer acid	2023/02/25		104	%	70 - 130
			4,8-Dioxa-3H-perfluorononanoic acid	2023/02/25		106	%	70 - 130
			9CI-PF3ONS (F-53B Major)	2023/02/25		106	%	70 - 130
			11Cl-PF3OUdS (F-53B Minor)	2023/02/25		103	%	70 - 130
8519276	ESL	RPD	Perfluorobutanoic acid (PFBA)	2023/02/25	1.6	103	%	30
0313270	LUL	111 5	Perfluoropentanoic acid (PFPeA)	2023/02/25	0.066		%	30
			Perfluorohexanoic acid (PFHxA)	2023/02/25	0.82		%	30
			Perfluoroheptanoic acid (PFHpA)	2023/02/25	0.15		%	30
			Perfluorooctanoic acid (PFOA)	2023/02/25	0.53		%	30
			Perfluorononanoic acid (PFNA)	2023/02/25	1.4		%	30
			Perfluorodecanoic acid (PFDA)	2023/02/25	2.3		%	30
			Perfluoroundecanoic acid (PFUnA)	2023/02/25	0.45		%	30
			Perfluorododecanoic acid (PFDoA)	2023/02/25	1.3		%	30
			Perfluorotridecanoic acid (PFTRDA)	2023/02/25	0.53		%	30
			Perfluorotetradecanoic acid(PFTEDA)	2023/02/25	0.18		%	30
			Perfluorobutanesulfonic acid (PFBS)	2023/02/25	1.3		%	30
			Perfluoropentanesulfonic acid (FFBs)	2023/02/25	0.63		%	30
			Perfluorohexanesulfonic acid (PFHxS)	2023/02/25	1.1		%	30
			Perfluoronexariesulfonic acid PFHpS	2023/02/25	0.13		% %	30
			Perfluorooctanesulfonic acid (PFOS)	2023/02/25	1.2		%	30
			Perfluorooctanesulfonic acid (PFOS)	2023/02/25	1.3		% %	30
			Perfluorodecanesulfonic acid (PFDS)	2023/02/25	1.3		% %	30
			Perfluorodecanesulionic acid (PFDS) Perfluorooctane Sulfonamide (PFOSA)	2023/02/25	1.4		% %	30
			EtFOSA	2023/02/25	0.44		% %	30
			MeFOSA	2023/02/25	0.31		%	30
			EtFOSE MoEOSE	2023/02/25	4.1		%	30 30
			MeFOSE	2023/02/25	5.6		%	30
			EtFOSAA	2023/02/25	4.8		%	30
			MeFOSAA	2023/02/25	0.41		%	30

Apex Laboratories Client Project #: A3B0522

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		•	4:2 Fluorotelomer sulfonic acid	2023/02/25	2.8	•	%	30
			6:2 Fluorotelomer sulfonic acid	2023/02/25	0.73		%	30
			8:2 Fluorotelomer sulfonic acid	2023/02/25	0.077		%	30
			Hexafluoropropyleneoxide dimer acid	2023/02/25	7.1		%	30
			4,8-Dioxa-3H-perfluorononanoic acid	2023/02/25	0.26		%	30
			9CI-PF3ONS (F-53B Major)	2023/02/25	0.17		%	30
			11Cl-PF3OUdS (F-53B Minor)	2023/02/25	0.61		%	30
8519276	ESL	Method Blank	13C2-4:2-Fluorotelomersulfonic Acid	2023/02/25		99	%	50 - 150
			13C2-6:2-Fluorotelomersulfonic Acid	2023/02/25		96	%	50 - 150
			13C2-8:2-Fluorotelomersulfonic Acid	2023/02/25		89	%	50 - 150
			13C2-Perfluorodecanoic acid	2023/02/25		86	%	50 - 150
			13C2-Perfluorododecanoic acid	2023/02/25		79	%	50 - 150
			13C2-Perfluorohexanoic acid	2023/02/25		91	%	50 - 150
			13C2-perfluorotetradecanoic acid	2023/02/25		68	%	50 - 150
			13C2-Perfluoroundecanoic acid	2023/02/25		80	%	50 - 150
			13C3-HFPO-DA	2023/02/25		87	%	50 - 150
			13C3-Perfluorobutanesulfonic acid	2023/02/25		89	%	50 - 150
			13C4-Perfluorobutanoic acid	2023/02/25		93	%	50 - 150
			13C4-Perfluoroheptanoic acid	2023/02/25		91	%	50 - 150
			13C4-Perfluorooctanesulfonic acid	2023/02/25		86	%	50 - 150
			13C4-Perfluorooctanoic acid	2023/02/25		88	%	50 - 150
			13C5-Perfluorononanoic acid	2023/02/25		88	%	50 - 150
			13C5-Perfluoropentanoic acid	2023/02/25		92	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2023/02/25		79	%	50 - 150
			1802-Perfluorohexanesulfonic acid	2023/02/25		91	%	50 - 150
			D3-MeFOSA	2023/02/25		57	%	50 - 150
			D3-MeFOSAA	2023/02/25		75	%	50 - 150
			D5-EtFOSA	2023/02/25		57	%	50 - 150
			D5-EtFOSAA	2023/02/25		74	%	50 - 150
			D7-MeFOSE	2023/02/25		73	%	50 - 150
			D9-EtFOSE	2023/02/25		72	%	50 - 150
			Perfluorobutanoic acid (PFBA)	2023/02/25	0.0015 U, MDL=0.0015		ug/L	
			Perfluoropentanoic acid (PFPeA)	2023/02/25	0.0025 U, MDL=0.0025		ug/L	
			Perfluorohexanoic acid (PFHxA)	2023/02/25	0.0038 U, MDL=0.0038		ug/L	
			Perfluoroheptanoic acid (PFHpA)	2023/02/25	0.0018 U, MDL=0.0018		ug/L	
			Perfluorooctanoic acid (PFOA)	2023/02/25	0.0030 U, MDL=0.0030		ug/L	
			Perfluorononanoic acid (PFNA)	2023/02/25	0.0021 U, MDL=0.0021		ug/L	
			Perfluorodecanoic acid (PFDA)	2023/02/25	0.0016 U, MDL=0.0016		ug/L	
			Perfluoroundecanoic acid (PFUnA)	2023/02/25	0.0024 U, MDL=0.0024		ug/L	
			Perfluorododecanoic acid (PFDoA)	2023/02/25	0.0029 U, MDL=0.0029		ug/L	
			Perfluorotridecanoic acid (PFTRDA)	2023/02/25	0.0026 U, MDL=0.0026		ug/L	
			Perfluorotetradecanoic acid(PFTEDA)	2023/02/25	0.0016 U, MDL=0.0016		ug/L	

Apex Laboratories Client Project #: A3B0522

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Perfluorobutanesulfonic acid (PFBS)	2023/02/25	0.0021 U, MDL=0.0021		ug/L	
			Perfluoropentanesulfonic acid PFPes	2023/02/25	0.0023 U, MDL=0.0023		ug/L	
			Perfluorohexanesulfonic acid(PFHxS)	2023/02/25	0.0022 U, MDL=0.0022		ug/L	
			Perfluoroheptanesulfonic acid PFHpS	2023/02/25	0.0039 U, MDL=0.0039		ug/L	
			Perfluorooctanesulfonic acid (PFOS)	2023/02/25	0.0035 U, MDL=0.0035		ug/L	
			Perfluorononanesulfonic acid (PFNS)	2023/02/25	0.0037 U, MDL=0.0037		ug/L	
			Perfluorodecanesulfonic acid (PFDS)	2023/02/25	0.0048 U, MDL=0.0048		ug/L	
			Perfluorooctane Sulfonamide (PFOSA)	2023/02/25	0.0034 U, MDL=0.0034		ug/L	
			EtFOSA	2023/02/25	0.0095 U, MDL=0.0095		ug/L	
			MeFOSA	2023/02/25	0.0084 U, MDL=0.0084		ug/L	
			EtFOSE	2023/02/25	0.0070 U, MDL=0.0070		ug/L	
			MeFOSE	2023/02/25	0.0073 U, MDL=0.0073		ug/L	
			EtFOSAA	2023/02/25	0.0046 U, MDL=0.0046		ug/L	
			MeFOSAA	2023/02/25	0.0045 U, MDL=0.0045		ug/L	
			4:2 Fluorotelomer sulfonic acid	2023/02/25	0.0033 U, MDL=0.0033		ug/L	
			6:2 Fluorotelomer sulfonic acid	2023/02/25	0.0015 U, MDL=0.0015		ug/L	
			8:2 Fluorotelomer sulfonic acid	2023/02/25	0.0031 U, MDL=0.0031		ug/L	
			Hexafluoropropyleneoxide dimer acid	2023/02/25	0.0052 U, MDL=0.0052		ug/L	
			4,8-Dioxa-3H-perfluorononanoic acid	2023/02/25	0.0027 U, MDL=0.0027		ug/L	
			9Cl-PF3ONS (F-53B Major)	2023/02/25	0.0043 U, MDL=0.0043		ug/L	
			11Cl-PF3OUdS (F-53B Minor)	2023/02/25	0.0035 U, MDL=0.0035		ug/L	
8524619	YQI	Spiked Blank	37CL4 2378 Tetra CDD	2023/02/28		76	%	35 - 197
			C13-1234678 HeptaCDD	2023/02/28		96	%	23 - 140
			C13-1234678 HeptaCDF	2023/02/28		91	%	28 - 143
			C13-123478 HexaCDD	2023/02/28		92	%	32 - 141
			C13-123478 HexaCDF	2023/02/28		88	%	26 - 152
			C13-1234789 HeptaCDF	2023/02/28		93	%	28 - 138
			C13-123678 HexaCDD	2023/02/28		96	%	28 - 130
			C13-123678 HexaCDF	2023/02/28		90	%	26 - 123
			C13-12378 PentaCDD	2023/02/28		91	%	25 - 181
			C13-12378 PentaCDF	2023/02/28		82	%	24 - 185
			C13-123789 HexaCDF	2023/02/28		92	%	29 - 147
			C13-234678 HexaCDF	2023/02/28		99	%	28 - 136

Apex Laboratories Client Project #: A3B0522

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			C13-23478 PentaCDF	2023/02/28		89	%	21 - 178
			C13-2378 TetraCDD	2023/02/28		72	%	25 - 164
			C13-2378 TetraCDF	2023/02/28		83	%	24 - 169
			C13-OCDD	2023/02/28		96	%	17 - 157
			2,3,7,8-Tetra CDD	2023/02/28		105	%	67 - 158
			1,2,3,7,8-Penta CDD	2023/02/28		96	%	25 - 181
			1,2,3,4,7,8-Hexa CDD	2023/02/28		97	%	70 - 164
			1,2,3,6,7,8-Hexa CDD	2023/02/28		97	%	76 - 134
			1,2,3,7,8,9-Hexa CDD	2023/02/28		97	%	64 - 162
			1,2,3,4,6,7,8-Hepta CDD	2023/02/28		100	%	70 - 140
			Octa CDD	2023/02/28		103	%	78 - 144
			2,3,7,8-Tetra CDF	2023/02/28		99	%	75 - 158
			1,2,3,7,8-Penta CDF	2023/02/28		102	%	80 - 134
			2,3,4,7,8-Penta CDF	2023/02/28		98	%	68 - 160
			1,2,3,4,7,8-Hexa CDF	2023/02/28		99	%	72 - 134
			1,2,3,6,7,8-Hexa CDF	2023/02/28		98	%	84 - 130
			2,3,4,6,7,8-Hexa CDF	2023/02/28		93	%	70 - 156
			1,2,3,7,8,9-Hexa CDF	2023/02/28		98	%	78 - 130
			1,2,3,4,6,7,8-Hepta CDF	2023/02/28		102	%	82 - 122
			1,2,3,4,7,8,9-Hepta CDF	2023/02/28		96	%	78 - 138
			Octa CDF	2023/02/28		97	%	63 - 170
8524619	YQI	Spiked Blank DUP	37CL4 2378 Tetra CDD	2023/02/28		74	%	35 - 197
	-		C13-1234678 HeptaCDD	2023/02/28		93	%	23 - 140
			C13-1234678 HeptaCDF	2023/02/28		90	%	28 - 143
			C13-123478 HexaCDD	2023/02/28		95	%	32 - 141
			C13-123478 HexaCDF	2023/02/28		89	%	26 - 152
			C13-1234789 HeptaCDF	2023/02/28		92	%	28 - 138
			C13-123678 HexaCDD	2023/02/28		98	%	28 - 130
			C13-123678 HexaCDF	2023/02/28		91	%	26 - 123
			C13-12378 PentaCDD	2023/02/28		87	%	25 - 181
			C13-12378 PentaCDF	2023/02/28		81	%	24 - 185
			C13-123789 HexaCDF	2023/02/28		91	%	29 - 147
			C13-234678 HexaCDF	2023/02/28		103	%	28 - 136
			C13-23478 PentaCDF	2023/02/28		84	%	21 - 178
			C13-2378 TetraCDD	2023/02/28		72	%	25 - 164
			C13-2378 TetraCDF	2023/02/28		80	%	24 - 169
			C13-OCDD	2023/02/28		91	%	17 - 157
			2,3,7,8-Tetra CDD	2023/02/28		100	%	67 - 158
			1,2,3,7,8-Penta CDD	2023/02/28		98	%	25 - 181
			1,2,3,4,7,8-Hexa CDD	2023/02/28		95	%	70 - 164
			1,2,3,6,7,8-Hexa CDD	2023/02/28		99	%	76 - 134
			1,2,3,7,8,9-Hexa CDD	2023/02/28		98	%	64 - 162
			1,2,3,4,6,7,8-Hepta CDD	2023/02/28		101	%	70 - 140
			Octa CDD	2023/02/28		103	%	78 - 144
			2,3,7,8-Tetra CDF	2023/02/28		94	%	75 - 158
			1,2,3,7,8 Penta CDF	2023/02/28		99	%	80 - 134
			2,3,4,7,8-Penta CDF	2023/02/28		101	%	68 - 160
			1,2,3,4,7,8-Hexa CDF	2023/02/28		98	%	72 - 134
			1,2,3,6,7,8-Hexa CDF	2023/02/28		95	%	84 - 130
			2,3,4,6,7,8-Hexa CDF	2023/02/28		89	%	70 - 156
			1,2,3,7,8,9-Hexa CDF	2023/02/28		99	%	78 - 130
			1,2,3,4,6,7,8-Hepta CDF	2023/02/28		104	%	82 - 122
			1,2,3,4,7,8,9-Hepta CDF	2023/02/28		96	%	78 - 138
			1,2,3,4,7,0,3-11epta CDF	2023/02/20		30	/0	70-130

Apex Laboratories Client Project #: A3B0522

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Octa CDF	2023/02/28		98	%	63 - 170
8524619 \	YQI	RPD	2,3,7,8-Tetra CDD	2023/02/28	4.9		%	25
			1,2,3,7,8-Penta CDD	2023/02/28	2.1		%	25
			1,2,3,4,7,8-Hexa CDD	2023/02/28	2.1		%	25
			1,2,3,6,7,8-Hexa CDD	2023/02/28	2.0		%	25
			1,2,3,7,8,9-Hexa CDD	2023/02/28	1.0		%	25
			1,2,3,4,6,7,8-Hepta CDD	2023/02/28	1.0		%	25
			Octa CDD	2023/02/28	0		%	25
			2,3,7,8-Tetra CDF	2023/02/28	5.2		%	25
			1,2,3,7,8-Penta CDF	2023/02/28	3.0		%	25
			2,3,4,7,8-Penta CDF	2023/02/28	3.0		%	25
			1,2,3,4,7,8-Hexa CDF	2023/02/28	1.0		%	25
			1,2,3,6,7,8-Hexa CDF	2023/02/28	3.1		%	25
			2,3,4,6,7,8-Hexa CDF	2023/02/28	4.4		%	25
			1,2,3,7,8,9-Hexa CDF	2023/02/28	1.0		%	25
			1,2,3,4,6,7,8-Hepta CDF	2023/02/28	1.9		%	25
			1,2,3,4,7,8,9-Hepta CDF	2023/02/28	0		%	25
			Octa CDF	2023/02/28	1.0		%	25
8524619	YQI	Method Blank	37CL4 2378 Tetra CDD	2023/02/28		84	%	35 - 197
			C13-1234678 HeptaCDD	2023/02/28		86	%	23 - 140
			C13-1234678 HeptaCDF	2023/02/28		83	%	28 - 143
			C13-123478 HexaCDD	2023/02/28		92	%	32 - 141
			C13-123478 HexaCDF	2023/02/28		89	%	26 - 152
			C13-1234789 HeptaCDF	2023/02/28		83	%	28 - 138
			C13-123678 HexaCDD	2023/02/28		95	%	28 - 130
			C13-123678 HexaCDF	2023/02/28		91	%	26 - 123
			C13-12378 PentaCDD	2023/02/28		91	%	25 - 181
			C13-12378 PentaCDF	2023/02/28		85	%	24 - 185
			C13-123789 HexaCDF	2023/02/28		86	%	29 - 147
			C13-234678 HexaCDF	2023/02/28		95	%	28 - 136
			C13-23478 PentaCDF	2023/02/28		93	%	21 - 178
			C13-2378 TetraCDD	2023/02/28		75	%	25 - 164
			C13-2378 TetraCDF	2023/02/28		87	%	24 - 169
			C13-OCDD	2023/02/28		86	%	17 - 157
			2,3,7,8-Tetra CDD	2023/02/28	1.43 U, EDL=1.43		pg/L	
			1,2,3,7,8-Penta CDD	2023/02/28	1.04 U, EDL=1.04		pg/L	
			1,2,3,4,7,8-Hexa CDD	2023/02/28	1.01 U, EDL=1.01		pg/L	
			1,2,3,6,7,8-Hexa CDD	2023/02/28	0.967 U, EDL=0.967		pg/L	
			1,2,3,7,8,9-Hexa CDD	2023/02/28	0.919 U, EDL=0.919		pg/L	
			1,2,3,4,6,7,8-Hepta CDD	2023/02/28	1.04 U, EDL=1.04		pg/L	
			Octa CDD	2023/02/28	2.48 J, EDL=1.19		pg/L	
			Total Tetra CDD	2023/02/28	1.43 U, EDL=1.43		pg/L	
			Total Penta CDD	2023/02/28	1.04 U, EDL=1.04		pg/L	
			Total Hexa CDD	2023/02/28	1.12 U, EDL=1.12		pg/L	

Apex Laboratories Client Project #: A3B0522

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Total Hepta CDD	2023/02/28	1.04 U, EDL=1.04		pg/L	
			2,3,7,8-Tetra CDF	2023/02/28	1.04 U, EDL=1.04		pg/L	
			1,2,3,7,8-Penta CDF	2023/02/28	1.28 U, EDL=1.28		pg/L	
			2,3,4,7,8-Penta CDF	2023/02/28	1.07 U,		pg/L	
			1,2,3,4,7,8-Hexa CDF	2023/02/28	EDL=1.07 0.863 U,		pg/L	
			1,2,3,6,7,8-Hexa CDF	2023/02/28	EDL=0.863 0.820 U,		pg/L	
			2,3,4,6,7,8-Hexa CDF	2023/02/28	EDL=0.820 0.790 U,		pg/L	
			1,2,3,7,8,9-Hexa CDF	2023/02/28	EDL=0.790 0.960 U,		pg/L	
			1,2,3,4,6,7,8-Hepta CDF	2023/02/28	EDL=0.960 0.860 U,		pg/L	
			1,2,3,4,7,8,9-Hepta CDF	2023/02/28	EDL=0.860 0.950 U,		pg/L	
			Octa CDF	2023/02/28	EDL=0.950 1.06 U, EDL=1.06		pg/L	
			Total Tetra CDF	2023/02/28	1.04 U, EDL=1.04		pg/L	
			Total Penta CDF	2023/02/28	1.16 U, EDL=1.16		pg/L	
			Total Hexa CDF	2023/02/28	0.854 U, EDL=0.854		pg/L	
			Total Hepta CDF	2023/02/28	0.902 U, EDL=0.902		pg/L	
8533813	CXU	Spiked Blank	C13-2,44'-TriCB-(28)	2023/04/04		80 (1)	%	30 - 170
			C13-22'33'44'55'6-NonaCB-(206)	2023/04/04		108	%	40 - 145
			C13-22'33'44'5-HeptaCB-(170)	2023/04/04		116	%	40 - 145
			C13-22'33'455'66'-NonaCB-(208)	2023/04/04		107	%	40 - 145
			C13-22'33'55'66'-OctaCB-(202)	2023/04/04		98	%	40 - 145
			C13-22'33'55'6-HeptaCB-(178)	2023/04/04		85	%	40 - 145
			C13-22'344'55'-HeptaCB-(180)	2023/04/04		111	%	40 - 145
			C13-22'34'566'-HeptaCB-(188)	2023/04/04		77	%	40 - 145
			C13-22'44'66'-HexaCB-(155)	2023/04/04		60	%	40 - 145
			C13-22'466'-PentaCB-(104)	2023/04/04		66	%	40 - 145
			C13-22'66'-TetraCB-(54)	2023/04/04		40	%	15 - 145
			C13-22'6-TriCB-(19)	2023/04/04		50	%	40 - 145
			C13-22'-DiCB-(4)	2023/04/04		33	%	15 - 145
			C13-233'44'55'6-OctaCB-(205)	2023/04/04		115	%	40 - 145
			C13-233'44'55'-HeptaCB-(189)	2023/04/04		123	%	40 - 145
			C13-233'44'-PentaCB-(105)	2023/04/04		132 (1)	%	40 - 145
			C13-233'55'-PentaCB-(111)	2023/04/04		94	%	30 - 170
			C13-23'44'55'-HexaCB-(167)	2023/04/04		109	%	40 - 145
			C13-2344'5-PentaCB-(114)	2023/04/04		121	%	40 - 145
			C13-23'44'5-PentaCB-(118)	2023/04/04		126 (1)	%	40 - 145
			C13-2'344'5-PentaCB-(123)	2023/04/04		127 (1)	%	40 - 145
			C13-2-MonoCB-(1)	2023/04/04		35	%	15 - 145
			C13-33'44'55'-HexaCB-(169)	2023/04/04		121	%	40 - 145
			C13-33'44'5-PentaCB-(126)	2023/04/04		144 (1)	%	40 - 145

Apex Laboratories Client Project #: A3B0522

QA/QC							
Batch	Init QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		C13-33'44'-TetraCB-(77)	2023/04/04		120	%	40 - 145
		C13-344'5-TetraCB-(81)	2023/04/04		115	%	40 - 145
		C13-344'-TriCB-(37)	2023/04/04		98 (1)	%	40 - 145
		C13-44'-DiCB-(15)	2023/04/04		73	%	15 - 145
		C13-4-MonoCB-(3)	2023/04/04		44	%	15 - 145
		C13-DecaCB-(209)	2023/04/04		96	%	40 - 145
		C13-HexaCB-(156)+(157)	2023/04/04		114	%	40 - 145
		2-MonoCB-(1)	2023/04/04		108	%	60 - 145
		3-MonoCB-(2)	2023/04/04		118	%	N/A
		4-MonoCB-(3)	2023/04/04		107	%	60 - 145
		22'-DiCB-(4)	2023/04/04		114	%	60 - 145
		2,3-DiCB-(5)	2023/04/04		92	%	N/A
		2,3'-DiCB-(6)	2023/04/04		95	%	N/A
		2,4-DiCB-(7)	2023/04/04		89	%	N/A
		2,4'-DiCB-(8)	2023/04/04		53	%	N/A
		2,5-DiCB-(9)	2023/04/04		92	%	N/A
		2,6-DiCB-(10)	2023/04/04		71	%	N/A
		3,3'-DiCB-(11)	2023/04/04		126	%	N/A
		DiCB-(12)+(13)	2023/04/04		102	%	N/A
		3,5-DiCB-(14)	2023/04/04		106	%	N/A
		4,4'-DiCB-(15)	2023/04/04		112	%	60 - 145
		22'3-TriCB-(16)	2023/04/04		70	%	N/A
		22'4-TriCB-(17)	2023/04/04		68	%	N/A
		TriCB-(18)+(30)	2023/04/04		59	%	N/A
		22'6-TriCB-(19)	2023/04/04		105	%	60 - 145
		TriCB-(20) + (28)	2023/04/04		92	%	N/A
		TriCB-(21)+(33)	2023/04/04		100	%	N/A
		234'-TriCB-(22)	2023/04/04		101	%	N/A
		235-TriCB-(23)	2023/04/04		90	%	N/A
		236-TriCB-(24)	2023/04/04		81	%	N/A
		23'4-TriCB-(25)	2023/04/04		102	%	N/A
		TriCB-(26)+(29)	2023/04/04		91	%	N/A
		23'6-TriCB-(27)	2023/04/04		60	%	N/A
		24'5-TriCB-(31)	2023/04/04		94	%	N/A
		24'6-TriCB-(32)	2023/04/04		72	%	N/A
		23'5'-TriCB-(34)	2023/04/04		89	%	N/A
		33'4-TriCB-(35)	2023/04/04		115	%	N/A
		33'5-TriCB-(36)	2023/04/04		106	%	N/A
		344'-TriCB-(37)	2023/04/04		107	%	60 - 145
		345-TriCB-(38)	2023/04/04		109	%	N/A
		34'5-TriCB-(39)	2023/04/04		119	%	N/A
		TetraCB-(40)+(41)+(71)	2023/04/04		83	%	N/A
		22'34'-TetraCB-(42)	2023/04/04		94	%	N/A
		22'35-TetraCB-(43)	2023/04/04		84	%	N/A
		TetraCB-(44)+(47)+(65)	2023/04/04		83	%	N/A
		TetraCB-(45)+(51)	2023/04/04		69	%	N/A
		22'36'-TetraCB-(46)	2023/04/04		71	%	N/A
		22'45-TetraCB-(48)	2023/04/04		78	%	N/A
		TetraCB-(49)+TetraCB-(69)	2023/04/04		77	%	N/A
		TetraCB-(50)+(53)	2023/04/04		68	%	N/A
		22'55'-TetraCB-(52)	2023/04/04		80	%	N/A
		22'66'-TetraCB-(54)	2023/04/04		115	%	60 - 145
		233'4-TetraCB-(55)	2023/04/04		94	%	N/A

Apex Laboratories Client Project #: A3B0522

QA/QC Batch	Init QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		233'4'-Tetra CB(56)	2023/04/04		97	%	N/A
		233'5-TetraCB-(57)	2023/04/04		86	%	N/A
		233'5'-TetraCB-(58)	2023/04/04		88	%	N/A
		TetraCB-(59)+(62)+(75)	2023/04/04		78	%	N/A
		2344'-TetraCB -(60)	2023/04/04		95	%	N/A
		TetraCB-(61)+(70)+(74)+(76)	2023/04/04		95	%	N/A
		234'5-TetraCB-(63)	2023/04/04		92	%	N/A
		234'6-TetraCB-(64)	2023/04/04		92	%	N/A
		23'44'-TetraCB-(66)	2023/04/04		96	%	N/A
		23'45-TetraCB-(67)	2023/04/04		89	%	N/A
		23'45'-TetraCB-(68)	2023/04/04		89	%	N/A
		23'55'-TetraCB-(72)	2023/04/04		84	%	N/A
		23'5'6-TetraCB-(73)	2023/04/04		69	%	N/A
		33'44'-TetraCB-(77)	2023/04/04		94	%	60 - 145
		33'45-TetraCB-(78)	2023/04/04		114	%	N/A
		33'45'-TetraCB(79)	2023/04/04		103	%	N/A
		33'55'-TetraCB-(80)	2023/04/04		92	%	N/A
		344'5-TetraCB-(81)	2023/04/04		99	%	60 - 145
		22'33'4-PentaCB-(82)	2023/04/04		104	%	N/A
		PentaCB-(83)+(99)	2023/04/04		91	%	N/A
		22'33'6-PentaCB-(84)	2023/04/04		83	%	N/A
		PentaCB-(85)+(116)+(117)	2023/04/04		88	%	N/A
		PentaCB-(86)(87)(97)(109)(119)(125)	2023/04/04		87	%	N/A
		PentaCB-(88)+(91)	2023/04/04		84	%	N/A
		22'346'-PentaCB-(89)	2023/04/04		98	%	N/A
		PentaCB-(90)+(101)+(113)	2023/04/04		88	%	N/A
		22'355'-PentaCB-(92)	2023/04/04		97	%	N/A
		PentaCB-(93)+(98)+(100)+(102)	2023/04/04		78	%	N/A
		22'356'-PentaCB-(94)	2023/04/04		76 77	%	N/A
		22'35'6-PentaCB-(95)	2023/04/04		94	%	N/A N/A
		22'366'-PentaCB-(96)	2023/04/04		83	%	N/A
		22'45'6-PentaCB-(103)	2023/04/04		84	%	N/A
		22'466'-PentaCB-(104)	2023/04/04		100	%	60 - 145
		23'44'-PentaCB-(105)	2023/04/04		106	% %	60 - 145
		233'45-PentaCB-(106)	2023/04/04		111	%	N/A
		233'4'5-PentaCB-(100)	2023/04/04		91	% %	N/A N/A
		PentaCB-(108)+(124)	2023/04/04		98	% %	N/A N/A
		PentaCB-(110)+(115)	2023/04/04		98 99	% %	N/A N/A
		233'55'-PentaCB-(111)	2023/04/04		92	%	N/A
		233'56-PentaCB-(112)	2023/04/04		94	%	N/A
		2344'5-PentaCB-(114)	2023/04/04		104	%	60 - 145
		23'44'5-PentaCB-(118)	2023/04/04		97	%	60 - 145
		23'455'-PentaCB-(120)	2023/04/04		100	%	N/A
		23'45'6-PentaCB-(121)	2023/04/04		83	%	N/A
		233'4'5'-PentaCB-(122)	2023/04/04		125	%	N/A
		23'44'5'-PentaCB-(123)	2023/04/04		101	%	60 - 145
		33'44'5-PentaCB-(126)	2023/04/04		98	%	60 - 145
		33'455'-PentaCB-(127)	2023/04/04		107	%	N/A
		HexaCB-(128)+(166)	2023/04/04		92	%	N/A
		HexaCB-(129)+(138)+(163)	2023/04/04		98	%	N/A
		22'33'45'-HexaCB-(130)	2023/04/04		91	%	N/A
		22'33'46-HexaCB-(131)	2023/04/04		105	%	N/A
		22'33'46'-HexaCB-(132)	2023/04/04		89	%	N/A

Apex Laboratories Client Project #: A3B0522

				E REPORT(CONT D)				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			22'33'55'-HexaCB-(133)	2023/04/04		93	%	N/A
			HexaCB-(134)+(143)	2023/04/04		94	%	N/A
			HexaCB-(135)+(151)	2023/04/04		89	%	N/A
			22'33'66'-HexaCB-(136)	2023/04/04		84	%	N/A
			22'344'5-HexaCB-(137)	2023/04/04		86	%	N/A
			HexaCB-(139)+(140)	2023/04/04		86	%	N/A
			22'3455'-HexaCB-(141)	2023/04/04		94	%	N/A
			22'3456-HexaCB-(142)	2023/04/04		94	%	N/A
			22'345'6-HexaCB-(144)	2023/04/04		96	%	N/A
			22'3466'-HexaCB-(145)	2023/04/04		82	%	N/A
			22'34'55'-HexaCB-(146)	2023/04/04		90	%	N/A
			HexaCB-(147)+(149)	2023/04/04		87	%	N/A
			22'34'56'-HexaCB-(148)	2023/04/04		86	%	N/A
			22'34'66'-HexaCB-(150)	2023/04/04		80	%	N/A
			22'3566'-HexaCB-(152)	2023/04/04		82	%	N/A
			HexaCB-(153)+(168)	2023/04/04		87	%	N/A
			22'44'56'-HexaCB-(154)	2023/04/04		85	%	N/A
			22'44'66'-HexaCB-(155)	2023/04/04		98	%	60 - 145
			HexaCB-(156)+(157)	2023/04/04		101	%	N/A
			233'44'6-HexaCB-(158)	2023/04/04		93	%	N/A
			233'455'-HexaCB-(159)	2023/04/04		91	%	N/A
			233'456-HexaCB-(160)	2023/04/04		97	%	N/A
			233'45'6-HexaCB-(161)	2023/04/04		88	%	N/A
			233'4'55'-HexaCB-(162)	2023/04/04		93	%	N/A
			233'4'5'6-HexaCB-(164)	2023/04/04		95	%	N/A
			233'55'6-HexaCB-(165)	2023/04/04		89	%	N/A
			23'44'55'-HexaCB-(167)	2023/04/04		105	%	60 - 145
			33'44'55'-HexaCB-(169)	2023/04/04		103	%	60 - 145
			22'33'44'5-HeptaCB-(170)	2023/04/04		87	%	60 - 145
			HeptaCB-(171)+(173)	2023/04/04		93	%	N/A
			22'33'455'-HeptaCB-(172)	2023/04/04		94	%	N/A
			22'33'456'-HeptaCB-(174)	2023/04/04		94	%	N/A
			22'33'45'6-HeptaCB-(175)	2023/04/04		86	%	N/A
			22'33'466'-HeptaCB-(176)	2023/04/04		84	%	N/A
			22'33'45'6'-HeptaCB-(177)	2023/04/04		90	%	N/A
			22'33'55'6-HeptaCB-(178)	2023/04/04		88	%	N/A
			22'33'566'-HeptaCB-(179)	2023/04/04		88	%	N/A
			HeptaCB-(180)+(193)	2023/04/04		99	%	N/A
			22'344'56-HeptaCB-(181)	2023/04/04		93	%	N/A
			22'344'56'-HeptaCB-(182)	2023/04/04		89	%	N/A
			22'344'5'6-HeptaCB-(183)	2023/04/04		92	%	N/A
			22'344'66'-HeptaCB-(184)	2023/04/04		82	%	N/A
			22'3455'6-HeptaCB-(185)	2023/04/04		87	%	N/A
			22'34566'-HeptaCB-(186)	2023/04/04		87	%	N/A
			22'34'55'6-HeptaCB-(187)	2023/04/04		90	% %	N/A N/A
			22'34'566'-HeptaCB-(188)	2023/04/04		100	% %	60 - 145
			22 34 366 - HeptaCB-(188) 233'44'55'-HeptaCB-(189)	2023/04/04		100	%	60 - 145
			233'44'56-HeptaCB-(199)	2023/04/04		91	% %	N/A
			233'44'5'6-HeptaCB-(191)	2023/04/04		92	% %	N/A N/A
			233'455'6-HeptaCB-(191)	2023/04/04		92 94		
							% %	N/A
			22'33'44'55'-OctaCB-(194)	2023/04/04		100	%	N/A
			22'33'44'56-OctaCB-(195)	2023/04/04		103	%	N/A
			22'33'44'56'-OctaCB-(196)	2023/04/04		97	%	N/A

Apex Laboratories Client Project #: A3B0522

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			22'33'44'66'OctaCB-(197)	2023/04/04		91	%	N/A
			OctaCB-(198)+(199)	2023/04/04		98	%	N/A
			22'33'4566'-OctaCB-(200)	2023/04/04		100	%	N/A
			22'33'45'66'-OctaCB-(201)	2023/04/04		89	%	N/A
			22'33'55'66'-OctaCB-(202)	2023/04/04		92	%	60 - 145
			22'344'55'6-OctaCB-(203)	2023/04/04		101	%	N/A
			22'344'566'-OctaCB-(204)	2023/04/04		87	%	N/A
			233'44'55'6-OctaCB-(205)	2023/04/04		92	%	60 - 145
			22'33'44'55'6-NonaCB-(206)	2023/04/04		91	%	60 - 145
			22'33'44'566'-NonaCB-(207)	2023/04/04		86	%	N/A
			22'33'455'66'-NonaCB-(208)	2023/04/04		93	%	60 - 145
			DecaCB-(209)	2023/04/04		108	%	60 - 145
8533813	CXU	Spiked Blank DUP	C13-2,44'-TriCB-(28)	2023/04/04		82	%	30 - 170
			C13-22'33'44'55'6-NonaCB-(206)	2023/04/04		100	%	40 - 145
			C13-22'33'44'5-HeptaCB-(170)	2023/04/04		106	%	40 - 145
			C13-22'33'455'66'-NonaCB-(208)	2023/04/04		95	%	40 - 145
			C13-22'33'55'66'-OctaCB-(202)	2023/04/04		91	%	40 - 145
			C13-22'33'55'6-HeptaCB-(178)	2023/04/04		83	%	40 - 145
			C13-22'344'55'-HeptaCB-(180)	2023/04/04		102	%	40 - 145
			C13-22'34'566'-HeptaCB-(188)	2023/04/04		71	%	40 - 145
			C13-22'44'66'-HexaCB-(155)	2023/04/04		56	%	40 - 145
			C13-22'466'-PentaCB-(104)	2023/04/04		66	%	40 - 145
			C13-22'66'-TetraCB-(54)	2023/04/04		41	%	15 - 145
			C13-22'6-TriCB-(19)	2023/04/04		52	%	40 - 145
			C13-22'-DiCB-(4)	2023/04/04		37	%	15 - 145
			C13-233'44'55'6-OctaCB-(205)	2023/04/04		107	%	40 - 145
			C13-233'44'55'-HeptaCB-(189)	2023/04/04		111	%	40 - 145
			C13-233'44'-PentaCB-(105)	2023/04/04		125 (1)	%	40 - 145
			C13-233'55'-PentaCB-(111)	2023/04/04		92	%	30 - 170
			C13-23'44'55'-HexaCB-(167)	2023/04/04		101	%	40 - 145
			C13-2344'5-PentaCB-(114)	2023/04/04		115	%	40 - 145
			C13-23'44'5-PentaCB-(118)	2023/04/04		116	%	40 - 145
			C13-2'344'5-PentaCB-(123)	2023/04/04		118	%	40 - 145
			C13-2-MonoCB-(1)	2023/04/04		39	%	15 - 145
			C13-33'44'55'-HexaCB-(169)	2023/04/04		112	%	40 - 145
			C13-33'44'5-PentaCB-(126)	2023/04/04		134 (1)	%	40 - 145
			C13-33'44'-TetraCB-(77)	2023/04/04		113	%	40 - 145
			C13-344'5-TetraCB-(81)	2023/04/04		110	%	40 - 145
			C13-344'-TriCB-(37)	2023/04/04		96	%	40 - 145
			C13-44'-DiCB-(15)	2023/04/04		75	%	15 - 145
			C13-4-MonoCB-(3)	2023/04/04		49 (1)	%	15 - 145
			C13-DecaCB-(209)	2023/04/04		85	%	40 - 145
			C13-HexaCB-(156)+(157)	2023/04/04		103	%	40 - 145
			2-MonoCB-(1)	2023/04/04		107	%	60 - 145
			3-MonoCB-(2)	2023/04/04		116	%	N/A
			4-MonoCB-(3)	2023/04/04		106	%	60 - 145
			22'-DiCB-(4)	2023/04/04		109	%	60 - 145
			2,3-DiCB-(5)	2023/04/04		96	%	N/A
			2,3'-DiCB-(6)	2023/04/04		95	%	N/A
			2,4-DiCB-(7)	2023/04/04		90	%	N/A
			2,4'-DiCB-(8)	2023/04/04		55	%	N/A
			2,5-DiCB-(9)	2023/04/04		94	%	N/A
			2,6-DiCB-(10)	2023/04/04		72	%	N/A

Apex Laboratories Client Project #: A3B0522

QA/QC Batch Init C	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		3,3'-DiCB-(11)	2023/04/04		127	%	N/A
		DiCB-(12)+(13)	2023/04/04		102	%	N/A
		3,5-DiCB-(14)	2023/04/04		106	%	N/A
		4,4'-DiCB-(15)	2023/04/04		111	%	60 - 145
		22'3-TriCB-(16)	2023/04/04		77	%	N/A
		22'4-TriCB-(17)	2023/04/04		71	%	N/A
		TriCB-(18)+(30)	2023/04/04		61	%	N/A
		22'6-TriCB-(19)	2023/04/04		102	%	60 - 145
		TriCB-(20) + (28)	2023/04/04		97	%	N/A
		TriCB-(21)+(33)	2023/04/04		102	%	N/A
		234'-TriCB-(22)	2023/04/04		101	%	N/A
		235-TriCB-(23)	2023/04/04		93	%	N/A
		236-TriCB-(24)	2023/04/04		75	%	N/A
		23'4-TriCB-(25)	2023/04/04		106	%	N/A
		TriCB-(26)+(29)	2023/04/04		92	%	N/A
		23'6-TriCB-(27)	2023/04/04		66	%	N/A
		24'5-TriCB-(31)	2023/04/04		97	%	N/A
		24'6-TriCB-(32)	2023/04/04		74	%	N/A
		23'5'-TriCB-(34)	2023/04/04		90	%	N/A
		33'4-TriCB-(35)	2023/04/04		117	%	N/A
		33'5-TriCB-(36)	2023/04/04		106	%	N/A
		344'-TriCB-(37)	2023/04/04		109	%	60 - 145
		345-TriCB-(38)	2023/04/04		112	%	N/A
		34'5-TriCB-(39)	2023/04/04		120	%	N/A
		TetraCB-(40)+(41)+(71)	2023/04/04		86	%	N/A
		22'34'-TetraCB-(42)	2023/04/04		97	%	N/A
		22'35-TetraCB-(43)	2023/04/04		90	%	N/A
		TetraCB-(44)+(47)+(65)	2023/04/04		87	%	N/A
		TetraCB-(45)+(51)	2023/04/04		73	%	N/A
		22'36'-TetraCB-(46)	2023/04/04		73	%	N/A
		22'45-TetraCB-(48)	2023/04/04		82	%	N/A
		TetraCB-(49)+TetraCB-(69)	2023/04/04		80	%	N/A
		TetraCB-(50)+(53)	2023/04/04		72	%	N/A
		22'55'-TetraCB-(52)	2023/04/04		87	%	N/A
		22'66'-TetraCB-(54)	2023/04/04		116	%	60 - 145
		233'4-TetraCB-(55)	2023/04/04		97	%	N/A
		233'4'-Tetra CB(56)	2023/04/04		99	%	N/A
		233'5-TetraCB-(57)	2023/04/04		90	%	N/A
		233'5'-TetraCB-(58)	2023/04/04		91	%	N/A
		TetraCB-(59)+(62)+(75)	2023/04/04		83	%	N/A
		2344'-TetraCB -(60)	2023/04/04		98	%	N/A
		TetraCB-(61)+(70)+(74)+(76)	2023/04/04		99	%	N/A
		234'5-TetraCB-(63)	2023/04/04		96	%	N/A
		234'6-TetraCB-(64)	2023/04/04		96	%	N/A
		23'44'-TetraCB-(66)	2023/04/04		98	%	N/A
		23'45-TetraCB-(67)	2023/04/04		91	%	N/A
		23'45'-TetraCB-(68)	2023/04/04		91	%	N/A
		23'55'-TetraCB-(72)	2023/04/04		89	%	N/A
		23'5'6-TetraCB-(73)	2023/04/04		71	%	N/A
		33'44'-TetraCB-(77)	2023/04/04		98	%	60 - 145
		33'45-TetraCB-(78)	2023/04/04		116	%	N/A
		33'45'-TetraCB(79)	2023/04/04		105	%	N/A
		33'55'-TetraCB-(80)	2023/04/04		95	%	N/A

Apex Laboratories Client Project #: A3B0522

QA/QC Batch Init QC Type	Parameter	Date Analyzed Val	ue % Recovery	UNITS	QC Limits
20.750	344'5-TetraCB-(81)	2023/04/04	100	%	60 - 145
	22'33'4-PentaCB-(82)	2023/04/04	108	%	N/A
	PentaCB-(83)+(99)	2023/04/04	96	%	N/A
	22'33'6-PentaCB-(84)	2023/04/04	87	%	N/A
	PentaCB-(85)+(116)+(117)	2023/04/04	93	%	N/A
	PentaCB-(86)(87)(97)(109)(119)(125)	2023/04/04	92	%	N/A
	PentaCB-(88)+(91)	2023/04/04	89	%	N/A
	22'346'-PentaCB-(89)	2023/04/04	103	%	N/A
	PentaCB-(90)+(101)+(113)	2023/04/04	93	%	N/A
	22'355'-PentaCB-(92)	2023/04/04	101	%	N/A
	PentaCB-(93)+(98)+(100)+(102)	2023/04/04	82	%	N/A
	22'356'-PentaCB-(94)	2023/04/04	80	%	N/A
	22'35'6-PentaCB-(95)	2023/04/04	103	%	N/A
	22'366'-PentaCB-(96)	2023/04/04	88	%	N/A
	22'45'6-PentaCB-(103)	2023/04/04	88	%	N/A
	22'466'-PentaCB-(104)	2023/04/04	102	%	60 - 145
	233'44'-PentaCB-(105)	2023/04/04	105	%	60 - 145
	233'45-PentaCB-(106)	2023/04/04	112	%	N/A
	233'4'5-PentaCB-(107)	2023/04/04	96	%	N/A
	PentaCB-(108)+(124)	2023/04/04	101	%	N/A
	PentaCB-(110)+(115)	2023/04/04	104	%	N/A
	233'55'-PentaCB-(111)	2023/04/04	96	%	N/A
	233'56-PentaCB-(112)	2023/04/04	97	%	N/A
	2344'5-PentaCB-(114)	2023/04/04	106	%	60 - 145
	23'44'5-PentaCB-(118)	2023/04/04	103	%	60 - 145
	23'455'-PentaCB-(120)	2023/04/04	105	%	N/A
	23'45'6-PentaCB-(121)	2023/04/04	88	%	N/A
	233'4'5'-PentaCB-(122)	2023/04/04	128	%	N/A
	23'44'5'-PentaCB-(123)	2023/04/04	104	%	60 - 145
	33'44'5-PentaCB-(126)	2023/04/04	100	%	60 - 145
	33'455'-PentaCB-(127)	2023/04/04	109	%	N/A
	HexaCB-(128)+(166)	2023/04/04	97	%	N/A
	HexaCB-(129)+(138)+(163)	2023/04/04	103	%	N/A
	22'33'45'-HexaCB-(130)	2023/04/04	93	%	N/A
	22'33'46-HexaCB-(131)	2023/04/04	108	%	N/A
	22'33'46'-HexaCB-(132)	2023/04/04	92	%	N/A
	22'33'55'-HexaCB-(133)	2023/04/04	96	%	N/A
	HexaCB-(134)+(143)	2023/04/04	99	%	N/A
	HexaCB-(135)+(151)	2023/04/04	94	%	N/A
	22'33'66'-HexaCB-(136)	2023/04/04	92	%	N/A
	22'344'5-HexaCB-(137)	2023/04/04	85	%	N/A
	HexaCB-(139)+(140)	2023/04/04	90	%	N/A
	22'3455'-HexaCB-(141)	2023/04/04	98	%	N/A
	22'3456-HexaCB-(142)	2023/04/04	96	%	N/A
	22'345'6-HexaCB-(144)	2023/04/04	97	%	N/A
	22'3466'-HexaCB-(145)	2023/04/04	86	%	N/A
	22'34'55'-HexaCB-(146)	2023/04/04	93	%	N/A
	HexaCB-(147)+(149)	2023/04/04	91	%	N/A
	22'34'56'-HexaCB-(148)	2023/04/04	93	%	N/A
	22'34'66'-HexaCB-(150)	2023/04/04	84	%	N/A
	22'3566'-HexaCB-(152)	2023/04/04	87	%	N/A
	HexaCB-(153)+(168)	2023/04/04	91	%	N/A
	22'44'56'-HexaCB-(154)	2023/04/04	89	%	N/A

Apex Laboratories Client Project #: A3B0522

QA/QC	lo:4	OC Tuno	Darameter	Date Analysis	Value	0/ Donous	LINUTC	001::-
Batch	Init	QC Type	Parameter	Date Analyzed 2023/04/04	Value	% Recovery	UNITS	QC Limits
			22'44'66'-HexaCB-(155)			103	%	60 - 145
			HexaCB-(156)+(157)	2023/04/04		105	%	N/A
			233'44'6-HexaCB-(158)	2023/04/04		96	%	N/A
			233'455'-HexaCB-(159)	2023/04/04		95	%	N/A
			233'456-HexaCB-(160)	2023/04/04		99	%	N/A
			233'45'6-HexaCB-(161)	2023/04/04		92	%	N/A
			233'4'55'-HexaCB-(162)	2023/04/04		97	%	N/A
			233'4'5'6-HexaCB-(164)	2023/04/04		104	%	N/A
			233'55'6-HexaCB-(165)	2023/04/04		91	%	N/A
			23'44'55'-HexaCB-(167)	2023/04/04		107	%	60 - 145
			33'44'55'-HexaCB-(169)	2023/04/04		106	%	60 - 145
			22'33'44'5-HeptaCB-(170)	2023/04/04		88	%	60 - 145
			HeptaCB-(171)+(173)	2023/04/04		96	%	N/A
			22'33'455'-HeptaCB-(172)	2023/04/04		98	%	N/A
			22'33'456'-HeptaCB-(174)	2023/04/04		96	%	N/A
			22'33'45'6-HeptaCB-(175)	2023/04/04		93	%	N/A
			22'33'466'-HeptaCB-(176)	2023/04/04		90	%	N/A
			22'33'45'6'-HeptaCB-(177)	2023/04/04		93	%	N/A
			22'33'55'6-HeptaCB-(178)	2023/04/04		93	%	N/A
			22'33'566'-HeptaCB-(179)	2023/04/04		94	%	N/A
			HeptaCB-(180)+(193)	2023/04/04		103	%	N/A
			22'344'56-HeptaCB-(181)	2023/04/04		96	%	N/A
			22'344'56'-HeptaCB-(182)	2023/04/04		97	%	N/A
			22'344'5'6-HeptaCB-(183)	2023/04/04		88	%	N/A
			22'344'66'-HeptaCB-(184)	2023/04/04		86	%	N/A
			22'3455'6-HeptaCB-(185)	2023/04/04		103	%	N/A
			22'34566'-HeptaCB-(186)	2023/04/04		91	%	N/A
			22'34'55'6-HeptaCB-(187)	2023/04/04		96	%	N/A
			22'34'566'-HeptaCB-(188)	2023/04/04		103	%	60 - 145
			233'44'55'-HeptaCB-(189)	2023/04/04		104	%	60 - 145
			233'44'56-HeptaCB-(190)	2023/04/04		95	%	N/A
			233'44'5'6-HeptaCB-(191)	2023/04/04		95	%	N/A
			233'455'6-HeptaCB-(192)	2023/04/04		99	%	N/A
			22'33'44'55'-OctaCB-(194)	2023/04/04		101	%	N/A
			22'33'44'56-OctaCB-(195)	2023/04/04		102	%	N/A
			22'33'44'56'-OctaCB-(196)	2023/04/04		99	%	N/A
			22'33'44'66'OctaCB-(197)	2023/04/04		94	%	N/A
			OctaCB-(198)+(199)	2023/04/04		100	%	N/A
			22'33'4566'-OctaCB-(200)	2023/04/04		104	%	N/A
			22'33'45'66'-OctaCB-(201)	2023/04/04		92	%	N/A
			22'33'55'66'-OctaCB-(202)	2023/04/04		95	%	60 - 145
			22'344'55'6-OctaCB-(203)	2023/04/04		103	%	N/A
			22'344'566'-OctaCB-(204)	2023/04/04		91	%	N/A
			233'44'55'6-OctaCB-(205)	2023/04/04		93	%	60 - 145
			22'33'44'55'6-NonaCB-(206)	2023/04/04		93	%	60 - 145
			22'33'44'566'-NonaCB-(207)	2023/04/04		90	%	N/A
			22'33'455'66'-NonaCB-(208)	2023/04/04		97	%	60 - 145
			DecaCB-(209)	2023/04/04		115	%	60 - 145
8533813	CXU	RPD	2-MonoCB-(1)	2023/04/04	1.0		%	30
			3-MonoCB-(2)	2023/04/04	1.9		%	30
			4-MonoCB-(3)	2023/04/04	0.85		%	30
			22'-DiCB-(4)	2023/04/04	4.4		%	30
			2,3-DiCB-(5)	2023/04/04	3.6		%	30

Apex Laboratories Client Project #: A3B0522

QA/QC Batch	Init QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
Daten	ппс дстуре	2,3'-DiCB-(6)	2023/04/04	0	70 NECOVELY	%	30
		2,4-DiCB-(7)	2023/04/04	1.0		%	30
		2,4'-DiCB-(8)	2023/04/04	3.7		%	30
		2,5-DiCB-(9)	2023/04/04	2.3		%	30
		2,6-DiCB-(10)	2023/04/04	2.0		%	30
		3,3'-DiCB-(11)	2023/04/04	1.0		%	30
		DiCB-(12)+(13)	2023/04/04	0.29		%	30
		3,5-DiCB-(14)	2023/04/04	0.38		%	30
		4,4'-DiCB-(15)	2023/04/04	1.2		%	30
		22'3-TriCB-(16)	2023/04/04	9.8		%	30
		22'4-TriCB-(17)	2023/04/04	4.0		%	30
		TriCB-(18)+(30)	2023/04/04	2.5		%	30
		22'6-TriCB-(19)	2023/04/04	2.5		%	30
		TriCB-(20) + (28)	2023/04/04	4.3		%	30
		TriCB-(21)+(33)	2023/04/04	1.7		%	30
		234'-TriCB-(22)	2023/04/04	0.099		%	30
		234 - TriCB-(22) 235-TriCB-(23)	2023/04/04	3.2		% %	30
		235-111CB-(23) 236-TriCB-(24)	2023/04/04	5.2 7.4		%	30
		230-111CB-(24) 23'4-TriCB-(25)	2023/04/04	3.3		%	30
		TriCB-(26)+(29)	2023/04/04	1.4		%	30
		23'6-TriCB-(27)	2023/04/04	9.2		% %	30
		23 6-111CB-(27) 24'5-TriCB-(31)	2023/04/04	3.2		% %	30
		24'6-TriCB-(32)	2023/04/04	2.3		%	30
				2.3 1.7			
		23'5'-TriCB-(34)	2023/04/04			%	30
		33'4-TriCB-(35)	2023/04/04	1.5		% %	30 30
		33'5-TriCB-(36)	2023/04/04	0			
		344'-TriCB-(37)	2023/04/04	2.1		%	30
		345-TriCB-(38)	2023/04/04	2.4		%	30
		34'5-TriCB-(39)	2023/04/04	1.1		%	30
		TetraCB-(40)+(41)+(71)	2023/04/04	4.3		%	30
		22'34'-TetraCB-(42)	2023/04/04	2.5		%	30
		22'35-TetraCB-(43)	2023/04/04	6.9		%	30
		TetraCB-(44)+(47)+(65)	2023/04/04	4.6		%	30
		TetraCB-(45)+(51)	2023/04/04	5.5		%	30
		22'36'-TetraCB-(46)	2023/04/04	3.7		%	30
		22'45-TetraCB-(48)	2023/04/04	5.1		%	30
		TetraCB-(49)+TetraCB-(69)	2023/04/04	4.3		%	30
		TetraCB-(50)+(53)	2023/04/04	6.2		%	30
		22'55'-TetraCB-(52)	2023/04/04	7.4		%	30
		22'66'-TetraCB-(54)	2023/04/04	1.3		%	30
		233'4-TetraCB-(55)	2023/04/04	3.1		%	30
		233'4'-Tetra CB(56)	2023/04/04	2.0		%	30
		233'5-TetraCB-(57)	2023/04/04	4.1		%	30
		233'5'-TetraCB-(58)	2023/04/04	3.5		%	30
		TetraCB-(59)+(62)+(75)	2023/04/04	6.1		%	30
		2344'-TetraCB -(60)	2023/04/04	2.9		%	30
		TetraCB-(61)+(70)+(74)+(76)	2023/04/04	4.1		%	30
		234'5-TetraCB-(63)	2023/04/04	4.2		%	30
		234'6-TetraCB-(64)	2023/04/04	4.5		%	30
		23'44'-TetraCB-(66)	2023/04/04	1.8		%	30
		23'45-TetraCB-(67)	2023/04/04	1.6		%	30
		23'45'-TetraCB-(68)	2023/04/04	2.8		%	30
		23'55'-TetraCB-(72)	2023/04/04	5.7		%	30

Apex Laboratories Client Project #: A3B0522

QA/QC Batch	Init QC Type	Parameter	5				
		raiailletei	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		23'5'6-TetraCB-(73)	2023/04/04	3.7		%	30
		33'44'-TetraCB-(77)	2023/04/04	3.3		%	30
		33'45-TetraCB-(78)	2023/04/04	1.7		%	30
		33'45'-TetraCB(79)	2023/04/04	2.8		%	30
		33'55'-TetraCB-(80)	2023/04/04	3.5		%	30
		344'5-TetraCB-(81)	2023/04/04	1.8		%	30
		22'33'4-PentaCB-(82)	2023/04/04	3.5		%	30
		PentaCB-(83)+(99)	2023/04/04	5.9		%	30
		22'33'6-PentaCB-(84)	2023/04/04	4.5		%	30
		PentaCB-(85)+(116)+(117)	2023/04/04	5.1		%	30
		PentaCB-(86)(87)(97)(109)(119)(125)	2023/04/04	5.0		%	30
		PentaCB-(88)+(91)	2023/04/04	6.0		%	30
		22'346'-PentaCB-(89)	2023/04/04	5.1		%	30
		PentaCB-(90)+(101)+(113)	2023/04/04	5.0		%	30
		22'355'-PentaCB-(92)	2023/04/04	3.6		%	30
		PentaCB-(93)+(98)+(100)+(102)	2023/04/04	5.5		%	30
		22'356'-PentaCB-(94)	2023/04/04	3.7		%	30
		22'35'6-PentaCB-(95)	2023/04/04	8.8		%	30
		22'366'-PentaCB-(96)	2023/04/04	6.0		%	30
		22'45'6-PentaCB-(103)	2023/04/04	4.9		%	30
		22'466'-PentaCB-(104)	2023/04/04	1.6		%	30
		233'44'-PentaCB-(105)	2023/04/04	0.66		%	30
		233'45-PentaCB-(106)	2023/04/04	1.5		%	30
		233'4'5-PentaCB-(107)	2023/04/04	4.9		%	30
		PentaCB-(108)+(124)	2023/04/04	3.1		%	30
		PentaCB-(110)+(115)	2023/04/04	5.0		%	30
		233'55'-PentaCB-(111)	2023/04/04	4.0		%	30
		233'56-PentaCB-(112)	2023/04/04	4.0		%	30
		2344'5-PentaCB-(114)	2023/04/04	2.1		%	30
		23'44'5-PentaCB-(118)	2023/04/04	6.1		%	30
		23'455'-PentaCB-(120)	2023/04/04	5.4		%	30
		23'45'6-PentaCB-(121)	2023/04/04	6.6		%	30
		233'4'5'-PentaCB-(122)	2023/04/04	2.0		%	30
		23'44'5'-PentaCB-(123)	2023/04/04	3.4		%	30
		33'44'5-PentaCB-(126)	2023/04/04	2.3		%	30
		33'455'-PentaCB-(127)	2023/04/04	1.5		%	30
		HexaCB-(128)+(166)	2023/04/04	6.0		%	30
		HexaCB-(129)+(138)+(163)	2023/04/04	5.1		%	30
		22'33'45'-HexaCB-(130)	2023/04/04	2.4		%	30
		22'33'46-HexaCB-(131)	2023/04/04	2.8		%	30
		22'33'46'-HexaCB-(132)	2023/04/04	3.3		%	30
		22'33'55'-HexaCB-(133)	2023/04/04	2.7		%	30
		HexaCB-(134)+(143)	2023/04/04	4.9		%	30
		HexaCB-(135)+(151)	2023/04/04	5.0		%	30
		22'33'66'-HexaCB-(136)	2023/04/04	8.6		%	30
		22'344'5-HexaCB-(137)	2023/04/04	0.47		%	30
		HexaCB-(139)+(140)	2023/04/04	4.0		%	30
		22'3455'-HexaCB-(141)	2023/04/04	4.7		%	30
		22'3456-HexaCB-(142)	2023/04/04	2.2		%	30
		22'345'6-HexaCB-(144)	2023/04/04	1.8		%	30
		22'3466'-HexaCB-(144)	2023/04/04	4.7		%	30
		22'34'55'-HexaCB-(146)	2023/04/04	3.7		% %	30
		HexaCB-(147)+(149)	2023/04/04	5. <i>7</i> 5.2		%	30

Apex Laboratories Client Project #: A3B0522

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			22'34'56'-HexaCB-(148)	2023/04/04	7.8		%	30
			22'34'66'-HexaCB-(150)	2023/04/04	4.1		%	30
			22'3566'-HexaCB-(152)	2023/04/04	6.5		%	30
			HexaCB-(153)+(168)	2023/04/04	4.8		%	30
			22'44'56'-HexaCB-(154)	2023/04/04	5.4		%	30
			22'44'66'-HexaCB-(155)	2023/04/04	5.3		%	30
			HexaCB-(156)+(157)	2023/04/04	3.4		%	30
			233'44'6-HexaCB-(158)	2023/04/04	3.6		%	30
			233'455'-HexaCB-(159)	2023/04/04	4.4		%	30
			233'456-HexaCB-(160)	2023/04/04	2.2		%	30
			233'45'6-HexaCB-(161)	2023/04/04	4.2		%	30
			233'4'55'-HexaCB-(162)	2023/04/04	4.3		%	30
			233'4'5'6-HexaCB-(164)	2023/04/04	9.2		%	30
			233'55'6-HexaCB-(165)	2023/04/04	2.3		%	30
			23'44'55'-HexaCB-(167)	2023/04/04	1.2		%	30
			33'44'55'-HexaCB-(169)	2023/04/04	2.3		%	30
			22'33'44'5-HeptaCB-(170)	2023/04/04	1.4		%	30
			HeptaCB-(171)+(173)	2023/04/04	3.9		%	30
			22'33'455'-HeptaCB-(172)	2023/04/04	4.6		%	30
			22'33'456'-HeptaCB-(174)	2023/04/04	1.9		%	30
			22'33'45'6-HeptaCB-(175)	2023/04/04	7.6		%	30
			22'33'466'-HeptaCB-(176)	2023/04/04	7.6		%	30
			22'33'45'6'-HeptaCB-(177)	2023/04/04	3.2		%	30
			22'33'55'6-HeptaCB-(178)	2023/04/04	5.2		%	30
			22'33'566'-HeptaCB-(179)	2023/04/04	6.6		%	30
			HeptaCB-(180)+(193)	2023/04/04	3.9		%	30
			22'344'56-HeptaCB-(181)	2023/04/04	3.9		%	30
			22'344'56'-HeptaCB-(182)	2023/04/04	8.6		%	30
			22'344'5'6-HeptaCB-(183)	2023/04/04	4.2		%	30
			22'344'66'-HeptaCB-(184)	2023/04/04	5.0		%	30
			22'3455'6-HeptaCB-(185)	2023/04/04	17		%	30
			22'34566'-HeptaCB-(186)	2023/04/04	4.4		%	30
			22'34'55'6-HeptaCB-(187)	2023/04/04	6.8		%	30
			22'34'566'-HeptaCB-(188)	2023/04/04	3.3		%	30
			233'44'55'-HeptaCB-(189)	2023/04/04	3.4		%	30
				• •				
			233'44'56-HeptaCB-(190)	2023/04/04	4.3		% %	30 30
			233'44'5'6-HeptaCB-(191)	2023/04/04 2023/04/04	3.0 5.1			30
			233'455'6-HeptaCB-(192) 22'33'44'55'-OctaCB-(194)				%	
				2023/04/04	1.5		%	30
			22'33'44'56-OctaCB-(195)	2023/04/04	0.098		%	30
			22'33'44'56'-OctaCB-(196)	2023/04/04	2.2		%	30
			22'33'44'66'OctaCB-(197)	2023/04/04	2.5		%	30
			OctaCB-(198)+(199)	2023/04/04	1.7		%	30
			22'33'4566'-OctaCB-(200)	2023/04/04	3.6		%	30
			22'33'45'66'-OctaCB-(201)	2023/04/04	2.5		%	30
			22'33'55'66'-OctaCB-(202)	2023/04/04	3.6		%	30
			22'344'55'6-OctaCB-(203)	2023/04/04	2.2		%	30
			22'344'566'-OctaCB-(204)	2023/04/04	3.8		%	30
			233'44'55'6-OctaCB-(205)	2023/04/04	0.86		%	30
			22'33'44'55'6-NonaCB-(206)	2023/04/04	2.2		%	30
			22'33'44'566'-NonaCB-(207)	2023/04/04	4.3		%	30
			22'33'455'66'-NonaCB-(208)	2023/04/04	4.9		%	30
			DecaCB-(209)	2023/04/04	6.0		%	30

Apex Laboratories Client Project #: A3B0522

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
8533813	CXU	Method Blank	C13-2,44'-TriCB-(28)	2023/03/03		109	%	30 - 170
			C13-22'33'44'55'6-NonaCB-(206)	2023/03/03		89	%	40 - 145
			C13-22'33'44'5-HeptaCB-(170)	2023/03/03		118	%	40 - 145
			C13-22'33'455'66'-NonaCB-(208)	2023/03/03		94	%	40 - 145
			C13-22'33'55'66'-OctaCB-(202)	2023/03/03		94	%	40 - 145
			C13-22'33'55'6-HeptaCB-(178)	2023/03/03		76	%	40 - 145
			C13-22'344'55'-HeptaCB-(180)	2023/03/03		110	%	40 - 145
			C13-22'34'566'-HeptaCB-(188)	2023/03/03		69	%	40 - 145
			C13-22'44'66'-HexaCB-(155)	2023/03/03		48	%	40 - 145
			C13-22'466'-PentaCB-(104)	2023/03/03		67	%	40 - 145
			C13-22'66'-TetraCB-(54)	2023/03/03		56	%	15 - 145
			C13-22'6-TriCB-(19)	2023/03/03		52	%	40 - 145
			C13-22'-DiCB-(4)	2023/03/03		37	%	15 - 145
			C13-233'44'55'6-OctaCB-(205)	2023/03/03		109	%	40 - 145
			C13-233'44'55'-HeptaCB-(189)	2023/03/03		113	%	40 - 145
			C13-233'44'-PentaCB-(105)	2023/03/03		146 (1)	%	40 - 145
			C13-233'55'-PentaCB-(111)	2023/03/03		98	%	30 - 170
			C13-23'44'55'-HexaCB-(167)	2023/03/03		96	%	40 - 145
			C13-2344'5-PentaCB-(114)	2023/03/03		139	%	40 - 145
			C13-23'44'5-PentaCB-(118)	2023/03/03		143	%	40 - 145
			C13-2'344'5-PentaCB-(123)	2023/03/03		143	%	40 - 145
			C13-2-MonoCB-(1)	2023/03/03		39	%	15 - 145
			C13-33'44'55'-HexaCB-(169)	2023/03/03		101	%	40 - 145
			C13-33'44'5-PentaCB-(126)	2023/03/03		151 (1)	%	40 - 145
			C13-33'44'-TetraCB-(77)	2023/03/03		86	%	40 - 145
			C13-344'5-TetraCB-(81)	2023/03/03		82	%	40 - 145
			C13-344'-TriCB-(37)	2023/03/03		80	%	40 - 145
			C13-44'-DiCB-(15)	2023/03/03		82	%	15 - 145
			C13-4-MonoCB-(3)	2023/03/03		49	%	15 - 145
			C13-DecaCB-(209)	2023/03/03		69	%	40 - 145
			C13-HexaCB-(156)+(157)	2023/03/03		96	%	40 - 145
			2-MonoCB-(1)	2023/03/03	0.010 U,	30	ng/L	.0 2.0
			2 Mondes (1)	2023/03/03	EDL=0.010		1.6/ -	
			3-MonoCB-(2)	2023/03/03	0.0087 U, EDL=0.0087		ng/L	
			4-MonoCB-(3)	2023/03/03	0.0083 U, EDL=0.0083		ng/L	
			22'-DiCB-(4)	2023/03/03	0.029 U, EDL=0.029		ng/L	
			2,3-DiCB-(5)	2023/03/03	0.0053 U, EDL=0.0053		ng/L	
			2,3'-DiCB-(6)	2023/03/03	0.0054 U, EDL=0.0054		ng/L	
			2,4-DiCB-(7)	2023/03/03	0.0054 U, EDL=0.0054		ng/L	
			2,4'-DiCB-(8)	2023/03/03	0.0062 J, EDL=0.0051		ng/L	
			2,5-DiCB-(9)	2023/03/03	0.0055 U, EDL=0.0055		ng/L	
			2,6-DiCB-(10)	2023/03/03	0.0097 U, EDL=0.0097		ng/L	
			3,3'-DiCB-(11)	2023/03/03	0.0834 J, EDL=0.0052		ng/L	

Apex Laboratories Client Project #: A3B0522

QA/QC Batch In	it QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		DiCB-(12)+(13)	2023/03/03	0.0051 U, EDL=0.0051	,	ng/L	
		3,5-DiCB-(14)	2023/03/03	0.0052 U, EDL=0.0052		ng/L	
		4,4'-DiCB-(15)	2023/03/03	0.0110 J, EDL=0.0053		ng/L	
		22'3-TriCB-(16)	2023/03/03	0.0279 J, EDL=0.0081		ng/L	
		22'4-TriCB-(17)	2023/03/03	0.0179 J, EDL=0.0061		ng/L	
		TriCB-(18)+(30)	2023/03/03	0.0176 J, EDL=0.0053		ng/L	
		22'6-TriCB-(19)	2023/03/03	0.0081 U, EDL=0.0081		ng/L	
		TriCB-(20) + (28)	2023/03/03	0.0548, EDL=0.0027		ng/L	
		TriCB-(21)+(33)	2023/03/03	0.0405 J, EDL=0.0029		ng/L	
		234'-TriCB-(22)	2023/03/03	0.0213, EDL=0.0029		ng/L	
		235-TriCB-(23)	2023/03/03	0.0028 U, EDL=0.0028		ng/L	
		236-TriCB-(24)	2023/03/03	0.0048 U, EDL=0.0048		ng/L	
		23'4-TriCB-(25)	2023/03/03	0.0050 U, EDL=0.0050		ng/L	
		TriCB-(26)+(29)	2023/03/03	0.0111 J, EDL=0.0022		ng/L	
		23'6-TriCB-(27)	2023/03/03	0.0046 U, EDL=0.0046		ng/L	
		24'5-TriCB-(31)	2023/03/03	0.0613, EDL=0.0026		ng/L	
		24'6-TriCB-(32)	2023/03/03	0.0157 J, EDL=0.0043		ng/L	
		23'5'-TriCB-(34)	2023/03/03	0.0029 U, EDL=0.0029		ng/L	
		33'4-TriCB-(35)	2023/03/03	0.0030 U, EDL=0.0030		ng/L	
		33'5-TriCB-(36)	2023/03/03	0.0025 U, EDL=0.0025		ng/L	
		344'-TriCB-(37)	2023/03/03	0.0127 J, EDL=0.0031		ng/L	
		345-TriCB-(38)	2023/03/03	0.0029 U, EDL=0.0029		ng/L	
		34'5-TriCB-(39)	2023/03/03	0.0030 U, EDL=0.0030		ng/L	
		TetraCB-(40)+(41)+(71)	2023/03/03	0.029 J, EDL=0.015		ng/L	
		22'34'-TetraCB-(42)	2023/03/03	0.020 U, EDL=0.020		ng/L	
		22'35-TetraCB-(43)	2023/03/03	0.018 U, EDL=0.018		ng/L	
		TetraCB-(44)+(47)+(65)	2023/03/03	0.057 U, EDL=0.057 (2)		ng/L	

Apex Laboratories Client Project #: A3B0522

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery \	UNITS	QC Limits
Daten	IIIIL	QC туре	TetraCB-(45)+(51)	2023/03/03	0.015 U,	•	ng/L	QC LIIIIIIS
			, , , ,		EDL=0.015		o.	
			22'36'-TetraCB-(46)	2023/03/03	0.017 U, EDL=0.017		ng/L	
			22'45-TetraCB-(48)	2023/03/03	0.015 U, EDL=0.015		ng/L	
			TetraCB-(49)+TetraCB-(69)	2023/03/03	0.051 J, EDL=0.013		ng/L	
			TetraCB-(50)+(53)	2023/03/03	0.014 U, EDL=0.014		ng/L	
			22'55'-TetraCB-(52)	2023/03/03	0.150, EDL=0.015		ng/L	
			22'66'-TetraCB-(54)	2023/03/03	0.025 U, EDL=0.025		ng/L	
			233'4-TetraCB-(55)	2023/03/03	0.0095 U, EDL=0.0095		ng/L	
			233'4'-Tetra CB(56)	2023/03/03	0.0176 J, EDL=0.0097		ng/L	
			233'5-TetraCB-(57)	2023/03/03	0.0090 U, EDL=0.0090		ng/L	
			233'5'-TetraCB-(58)	2023/03/03	0.0094 U, EDL=0.0094		ng/L	
			TetraCB-(59)+(62)+(75)	2023/03/03	0.011 U, EDL=0.011		ng/L	
			2344'-TetraCB -(60)	2023/03/03	0.0121 J, EDL=0.0092		ng/L	
			TetraCB-(61)+(70)+(74)+(76)	2023/03/03	0.115 J, EDL=0.0086		ng/L	
			234'5-TetraCB-(63)	2023/03/03	0.0091 U, EDL=0.0091		ng/L	
			234'6-TetraCB-(64)	2023/03/03	0.028 J, EDL=0.013		ng/L	
			23'44'-TetraCB-(66)	2023/03/03	0.0394 J, EDL=0.0086		ng/L	
			23'45-TetraCB-(67)	2023/03/03	0.0080 U, EDL=0.0080		ng/L	
			23'45'-TetraCB-(68)	2023/03/03	0.0085 U, EDL=0.0085		ng/L	
			23'55'-TetraCB-(72)	2023/03/03	0.0090 U, EDL=0.0090		ng/L	
			23'5'6-TetraCB-(73)	2023/03/03	0.011 U, EDL=0.011		ng/L	
			33'44'-TetraCB-(77)	2023/03/03	0.0098 U, EDL=0.0098		ng/L	
			33'45-TetraCB-(78)	2023/03/03	0.010 U, EDL=0.010		ng/L	
			33'45'-TetraCB(79)	2023/03/03	0.0084 U, EDL=0.0084		ng/L	
			33'55'-TetraCB-(80)	2023/03/03	0.0077 U, EDL=0.0077		ng/L	
			344'5-TetraCB-(81)	2023/03/03	0.010 U, EDL=0.010		ng/L	
			22'33'4-PentaCB-(82)	2023/03/03	0.017 U, EDL=0.017		ng/L	

Apex Laboratories Client Project #: A3B0522

QA/QC Batch	Init QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		PentaCB-(83)+(99)	2023/03/03	0.059 J, EDL=0.014		ng/L	
		22'33'6-PentaCB-(84)	2023/03/03	0.024, EDL=0.014		ng/L	
		PentaCB-(85)+(116)+(117)	2023/03/03	0.011 U, EDL=0.011		ng/L	
		PentaCB-(86)(87)(97)(109)(119)(125)	2023/03/03	0.068 J, EDL=0.011		ng/L	
		PentaCB-(88)+(91)	2023/03/03	0.012 U, EDL=0.012		ng/L	
		22'346'-PentaCB-(89)	2023/03/03	0.016 U, EDL=0.016		ng/L	
		PentaCB-(90)+(101)+(113)	2023/03/03	0.206, EDL=0.011		ng/L	
		22'355'-PentaCB-(92)	2023/03/03	0.035 J, EDL=0.015		ng/L	
		PentaCB-(93)+(98)+(100)+(102)	2023/03/03	0.013 U, EDL=0.013		ng/L	
		22'356'-PentaCB-(94)	2023/03/03	0.014 U, EDL=0.014		ng/L	
		22'35'6-PentaCB-(95)	2023/03/03	0.210, EDL=0.015		ng/L	
		22'366'-PentaCB-(96)	2023/03/03	0.013 U, EDL=0.013		ng/L	
		22'45'6-PentaCB-(103)	2023/03/03	0.013 U, EDL=0.013		ng/L	
		22'466'-PentaCB-(104)	2023/03/03	0.017 U, EDL=0.017		ng/L	
		233'44'-PentaCB-(105)	2023/03/03	0.0276 J, EDL=0.0052		ng/L	
		233'45-PentaCB-(106)	2023/03/03	0.0057 U, EDL=0.0057		ng/L	
		233'4'5-PentaCB-(107)	2023/03/03	0.0081 J, EDL=0.0043		ng/L	
		PentaCB-(108)+(124)	2023/03/03	0.0053 U, EDL=0.0053		ng/L	
		PentaCB-(110)+(115)	2023/03/03	0.122, EDL=0.011		ng/L	
		233'55'-PentaCB-(111)	2023/03/03	0.0092 U, EDL=0.0092		ng/L	
		233'56-PentaCB-(112)	2023/03/03	0.0091 U, EDL=0.0091		ng/L	
		2344'5-PentaCB-(114)	2023/03/03	0.0052 U, EDL=0.0052		ng/L	
		23'44'5-PentaCB-(118)	2023/03/03	0.0962 J, EDL=0.0048		ng/L	
		23'455'-PentaCB-(120)	2023/03/03	0.0097 U, EDL=0.0097		ng/L	
		23'45'6-PentaCB-(121)	2023/03/03	0.0092 U, EDL=0.0092		ng/L	
		233'4'5'-PentaCB-(122)	2023/03/03	0.0070 U, EDL=0.0070		ng/L	
		23'44'5'-PentaCB-(123)	2023/03/03	0.0054 U, EDL=0.0054		ng/L	

Apex Laboratories Client Project #: A3B0522

QA/QC	Init OCTuna	Parameter	Data Analyzad	Value	9/ Pocovory LINITS	001:5:4-
Batch	Init QC Type	Parameter 33'44'5-PentaCB-(126)	Date Analyzed 2023/03/03	Value 0.0054 U,	% Recovery UNITS ng/L	QC Limits
			,,	EDL=0.0054	U,	
		33'455'-PentaCB-(127)	2023/03/03	0.0054 U, EDL=0.0054	ng/L	
		HexaCB-(128)+(166)	2023/03/03	0.0124 J, EDL=0.0057	ng/L	
		HexaCB-(129)+(138)+(163)	2023/03/03	0.201, EDL=0.0064	ng/L	
		22'33'45'-HexaCB-(130)	2023/03/03	0.0072 J, EDL=0.0069	ng/L	
		22'33'46-HexaCB-(131)	2023/03/03	0.0083 U, EDL=0.0083	ng/L	
		22'33'46'-HexaCB-(132)	2023/03/03	0.0682, EDL=0.0069	ng/L	
		22'33'55'-HexaCB-(133)	2023/03/03	0.0071 U, EDL=0.0071	ng/L	
		HexaCB-(134)+(143)	2023/03/03	0.0135 J, EDL=0.0076	ng/L	
		HexaCB-(135)+(151)	2023/03/03	0.143, EDL=0.013	ng/L	
		22'33'66'-HexaCB-(136)	2023/03/03	0.0455 J, EDL=0.0099	ng/L	
		22'344'5-HexaCB-(137)	2023/03/03	0.0065 U, EDL=0.0065	ng/L	
		HexaCB-(139)+(140)	2023/03/03	0.0060 U, EDL=0.0060	ng/L	
		22'3455'-HexaCB-(141)	2023/03/03	0.0545, EDL=0.0062	ng/L	
		22'3456-HexaCB-(142)	2023/03/03	0.0074 U, EDL=0.0074	ng/L	
		22'345'6-HexaCB-(144)	2023/03/03	0.022 J, EDL=0.013	ng/L	
		22'3466'-HexaCB-(145)	2023/03/03	0.0093 U, EDL=0.0093	ng/L	
		22'34'55'-HexaCB-(146)	2023/03/03	0.0310 J, EDL=0.0058	ng/L	
		HexaCB-(147)+(149)	2023/03/03	0.274, EDL=0.0055	ng/L	
		22'34'56'-HexaCB-(148)	2023/03/03	0.014 U, EDL=0.014	ng/L	
		22'34'66'-HexaCB-(150)	2023/03/03	0.0090 U, EDL=0.0090	ng/L	
		22'3566'-HexaCB-(152)	2023/03/03	0.0094 U, EDL=0.0094	ng/L	
		HexaCB-(153)+(168)	2023/03/03	0.237, EDL=0.0050	ng/L	
		22'44'56'-HexaCB-(154)	2023/03/03	0.010 U, EDL=0.010	ng/L	
		22'44'66'-HexaCB-(155)	2023/03/03	0.013 U, EDL=0.013	ng/L	
		HexaCB-(156)+(157)	2023/03/03	0.0088 J, EDL=0.0035	ng/L	
		233'44'6-HexaCB-(158)	2023/03/03	0.0167 J, EDL=0.0042	ng/L	

Apex Laboratories Client Project #: A3B0522

				REPORT(CONT D)				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			233'455'-HexaCB-(159)	2023/03/03	0.0033 U, EDL=0.0033		ng/L	
			233'456-HexaCB-(160)	2023/03/03	0.0052 U, EDL=0.0052		ng/L	
			233'45'6-HexaCB-(161)	2023/03/03	0.0048 U, EDL=0.0048		ng/L	
			233'4'55'-HexaCB-(162)	2023/03/03	0.0032 U, EDL=0.0032		ng/L	
			233'4'5'6-HexaCB-(164)	2023/03/03	0.0103 J, EDL=0.0046		ng/L	
			233'55'6-HexaCB-(165)	2023/03/03	0.0052 U, EDL=0.0052		ng/L	
			23'44'55'-HexaCB-(167)	2023/03/03	0.0041 J, EDL=0.0035		ng/L	
			33'44'55'-HexaCB-(169)	2023/03/03	0.0038 U, EDL=0.0038		ng/L	
			22'33'44'5-HeptaCB-(170)	2023/03/03	0.0208 J, EDL=0.0054		ng/L	
			HeptaCB-(171)+(173)	2023/03/03	0.013 U, EDL=0.013 (2)		ng/L	
			22'33'455'-HeptaCB-(172)	2023/03/03	0.0060 U, EDL=0.0060		ng/L	
			22'33'456'-HeptaCB-(174)	2023/03/03	0.0523, EDL=0.0054		ng/L	
			22'33'45'6-HeptaCB-(175)	2023/03/03	0.010 U, EDL=0.010		ng/L	
			22'33'466'-HeptaCB-(176)	2023/03/03	0.0140 J, EDL=0.0076		ng/L	
			22'33'45'6'-HeptaCB-(177)	2023/03/03	0.0308 J, EDL=0.0059		ng/L	
			22'33'55'6-HeptaCB-(178)	2023/03/03	0.014 J, EDL=0.011		ng/L	
			22'33'566'-HeptaCB-(179)	2023/03/03	0.0419 J, EDL=0.0074		ng/L	
			HeptaCB-(180)+(193)	2023/03/03	0.0737 J, EDL=0.0047		ng/L	
			22'344'56-HeptaCB-(181)	2023/03/03	0.0056 U, EDL=0.0056		ng/L	
			22'344'56'-HeptaCB-(182)	2023/03/03	0.0098 U, EDL=0.0098		ng/L	
			22'344'5'6-HeptaCB-(183)	2023/03/03	0.0419 J, EDL=0.0048		ng/L	
			22'344'66'-HeptaCB-(184)	2023/03/03	0.0073 U, EDL=0.0073		ng/L	
			22'3455'6-HeptaCB-(185)	2023/03/03	0.0058 U, EDL=0.0058		ng/L	
			22'34566'-HeptaCB-(186)	2023/03/03	0.0079 U, EDL=0.0079		ng/L	
			22'34'55'6-HeptaCB-(187)	2023/03/03	0.085, EDL=0.010		ng/L	
			22'34'566'-HeptaCB-(188)	2023/03/03	0.0080 U, EDL=0.0080		ng/L	
			233'44'55'-HeptaCB-(189)	2023/03/03	0.0039 U, EDL=0.0039		ng/L	

Apex Laboratories Client Project #: A3B0522

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limit
		ζο.γρο	233'44'56-HeptaCB-(190)	2023/03/03	0.0049 J,	75 110001017	ng/L	Ψ0 2
			. , ,		EDL=0.0043		G.	
			233'44'5'6-HeptaCB-(191)	2023/03/03	0.0042 U,		ng/L	
					EDL=0.0042			
			233'455'6-HeptaCB-(192)	2023/03/03	0.0047 U,		ng/L	
			22/22/44/55/ O-t- CD (404)	2022/02/02	EDL=0.0047		/1	
			22'33'44'55'-OctaCB-(194)	2023/03/03	0.0078 U, EDL=0.0078		ng/L	
			22'33'44'56-OctaCB-(195)	2023/03/03	0.0084 U,		ng/L	
					EDL=0.0084			
			22'33'44'56'-OctaCB-(196)	2023/03/03	0.011 U, EDL=0.011		ng/L	
			22'33'44'66'OctaCB-(197)	2023/03/03	0.0081 U,		ng/L	
					EDL=0.0081			
			OctaCB-(198)+(199)	2023/03/03	0.013 U, EDL=0.013		ng/L	
			22'33'4566'-OctaCB-(200)	2023/03/03	0.0082 U,		ng/L	
			(22,	,,	EDL=0.0082		O,	
			22'33'45'66'-OctaCB-(201)	2023/03/03	0.0076 U,		ng/L	
					EDL=0.0076			
			22'33'55'66'-OctaCB-(202)	2023/03/03	0.0090 U,		ng/L	
					EDL=0.0090			
			22'344'55'6-OctaCB-(203)	2023/03/03	0.011 U,		ng/L	
			22'344'566'-OctaCB-(204)	2023/03/03	EDL=0.011 0.0075 U,		na/I	
			22 344 300 -OctaCB-(204)	2023/03/03	EDL=0.0075		ng/L	
			233'44'55'6-OctaCB-(205)	2023/03/03	0.0060 U,		ng/L	
			200 11 00 0 000002 (200)	2020, 00, 00	EDL=0.0060		6/ =	
			22'33'44'55'6-NonaCB-(206)	2023/03/03	0.011 U,		ng/L	
					EDL=0.011			
			22'33'44'566'-NonaCB-(207)	2023/03/03	0.0076 U,		ng/L	
					EDL=0.0076			
			22'33'455'66'-NonaCB-(208)	2023/03/03	0.0079 U, EDL=0.0079		ng/L	
			DecaCB-(209)	2023/03/03	0.012 U,		ng/L	
				,,	EDL=0.012		Ŭ,	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) The extracted internal standard analyte exhibited high recovery and as such, may not have allowed for accurate recovery correction of the associated native compound. For results that were not detected (ND), this potential high bias has no impact.
- (2) EMPC / NDR Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Item #2.

Report Date: 2023/05/17

Apex Laboratories Client Project #: A3B0522

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Angel Guerrero, Supervisor, Ultra Trace Analysis, HRMS and SVOC Colm McNamara, Senior Analyst, Liquid Chromatography

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for $\{2\}\{3\}$ laboratory operations.

SUBCONTRACT ORDER

Apex Laboratories

17-Feb-23 12:20 Lori Dufour C347713

7B 215713 A3B0522

Due

02/28/23 17:00

02/28/23 17:00

02/28/23 17:00

02/28/23 17:00

SENDING LABORATORY: Apex Laboratories

6700 S.W. Sandburg Street

Tigard, OR 97223 Phone: (503) 718-2323 Fax: (503) 336-0745

Analysis

Project Manager: Philip Nerenberg

1613B Dioxins and Furans (SUB)

1699 Insecticides/Pesticides (SUB)

1668C PCB Congeners (SUB)

RECEIVING LABORATORY. AJE

ENV-1656

BV Labs / Maxxam

Water

02/21/23 10:05

02/21/23 10:05

C/O FEDEX DEPOT 299 Cayuga Rd

Cheektowaga, NY 14225 Phone:(800) 668-0639 Fax: (905) 332-9169

Sample Name: MW3-20230214-GW-35

Sampled: 02/14/23 10:05 (A3B0522-01) Expires Comments 02/14/24 10:05 02/14/24 10:05

waters

537M - PFOAs (SUB) Containers Supplied:

(H)Other-Non Preserved

(I)Other-Non Preserved

(Q)1 L Amber Glass - Non Preserved

(R)1 L Amber Glass - Non Preserved

(S)1 L Amber Glass - Non Preserved

(U)1 L Amber Glass - Non Preserved

Sample Name: MW3-20230214-GW-35-DUP		ame: MW3-20230214-GW-35-DUP Water Sampled: 02/14/23 10:05		
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB)	02/28/23 17:00	02/14/24 10:05		
1668C PCB Congeners (SUB)	02/28/23 17:00	02/14/24 10:05		
1699 Insecticides/Pesticides (SUB)	02/28/23 17:00	02/21/23 10:05	waters	
537M - PFOAs (SUB)	02/28/23 17:00	02/21/23 10:05		
Containers Supplied: (H)Other-Non Preserved				
(I)Other-Non Preserved				
(Q)1 L Amber Glass - Non Preserved				
(R)1 L Amber Glass - Non Preserved				
(S)1 L Amber Glass - Non Preserved				
(U)1 L Amber Glass - Non Preserved				

Standard THT

	pcs ==5 +2 2-15-23		Fed Ex (Shipper)	1	
Released By Fed Ex (Shipper)	Date	Received By	ARSHDEEP	Date 2073	102/17 12:20
Released By	Date N/A	Received By	On ice	Date Refu to ACTN	Page I of 3

SUBCONTRACT ORDER

Apex Laboratories

Ph 2115/13 A3B0522

Sample Name: MW5-20230214-GW-4	0	Water	Sampled: 02/14/23 12:51	(A3B0522-03)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB)	02/28/23 17:00	02/14/24 12:51		
1668C PCB Congeners (SUB)	02/28/23 17:00	02/14/24 12:51		
1699 Insecticides/Pesticides (SUB)	02/28/23 17:00	02/21/23 12:51	waters	
537M - PFOAs (SUB)	02/28/23 17:00	02/21/23 12:51		
Containers Supplied:				
(H)Other-Non Preserved				
(I)Other-Non Preserved				
(Q)1 L Amber Glass - Non Preserved				
(R)I L Amber Glass - Non Preserved				
(S)I L Amber Glass - Non Preserved				
(U)1 L Amber Glass - Non Preserved				

Sample Name: MW4-20230214-GW-4	0	Water	Sampled: 02/14/23 14:37	(A3B0522-04)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB)	02/28/23 17:00	02/14/24 14:37		
1668C PCB Congeners (SUB)	02/28/23 17:00	02/14/24 14:37		
1699 Insecticides/Pesticides (SUB)	02/28/23 17:00	02/21/23 14:37	waters	
537M - PFOAs (SUB)	02/28/23 17:00	02/21/23 14:37	7,000	
Containers Supplied:				
(H)Other-Non Preserved				
(I)Other-Non Preserved				
(Q)1 L Amber Glass - Non Preserved				
(R)1 L Amber Glass - Non Preserved				
(S)1 L Amber Glass - Non Preserved				
(U)1 L Amber Glass - Non Preserved				

Standard TAT

558	2-15-23	Fed Ex	(Shipper)
Released By Fed Ex (Shipper)	Date	Received By	Date
Released By	Date	Received By	Date
			Page 2 of 3

739

SUBCONTRACT ORDER

Apex Laboratories

965 2115/23 A3B0522

ample Name: MW6-20230214-GW-4	0.25	Water	Sampled: 02/14/23 16:17	(A3B0522-05)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB)	02/28/23 17:00	02/14/24 16:17		
1668C PCB Congeners (SUB)	02/28/23 17:00	02/14/24 16:17		
1699 Insecticides/Pesticides (SUB)	02/28/23 17:00	02/21/23 16:17	waters	
537M - PFOAs (SUB)	02/28/23 17:00	02/21/23 16:17		
Containers Supplied:				
(H)Other-Non Preserved				
(I)Other-Non Preserved				
(Q)1 LAmber Glass - Non Preserved				
(R)I LAmber Glass - Non Preserved				
(S)1 L Amber Glass - Non Preserved				
(U)1 L Amber Glass - Non Preserved				

Sample Name: Field Blank-02		Water	Sampled: 02/14/23 16:10	(A3B0522-06)
Analysis	Due	Expires	Comments	
537M - PFOAs (SUB)	02/28/23 17:00	02/21/23 16:10		
Containers Supplied:				
(A)Other-Non Preserved				
(B)Other-Non Preserved				

Standard TAT

8		2-16-23		Fed Ex (Shipper)	
Released By		Date	Received By	Date	
	Fed Ex (Shipper)				
Released By		Date	Received By	Date	-

Page 3 of 3

Your Project #: A3B0674 Your C.O.C. #: n/a

Attention: Philip Nerenberg

Apex Laboratories 6700 SW Sandburg St. Tigard, OR USA 97223

Report Date: 2023/04/21

Report #: R7597655 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C351279 Received: 2023/02/22, 12:20

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Dioxins/Furans in Water (1613B) (1)	2	2023/02/24	2023/02/28	BRL SOP-00410	EPA 1613B m
OC Pesticides in Water by GCTQ	2	2023/02/27	2023/03/03	BRL SOP-00014	EPA Method 1699m
PCB Congeners in Water (1668C)	2	2023/02/23	2023/04/06	BRL SOP-00408	EPA 1668C m
PFAS in water by SPE/LCMS (2)	2	2023/03/04	2023/03/05	CAM SOP-00894	EPA 537.1 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.
- (2) Per- and polyfluoroalkyl substances (PFAS) identified as surrogates on the certificate of analysis represent the extracted internal standard.
- $\ensuremath{\mathsf{U}}$ = Undetected at the limit of quantitation.
- J = Estimated concentration between the EDL & RDL.
- B = Blank Contamination.
- Q = One or more quality control criteria failed.
- E = Analyte concentration exceeds the maximum concentration level.
- K = Estimated maximum possible concentration due to ion abundance ratio failure.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Lori Dufour, Project Manager Email: Lori.Dufour@bureauveritas.com Phone# (905) 817-5700

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Total Cover Pages : 1 Page 1 of 56

Apex Laboratories Client Project #: A3B0674

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VCT482			VCT483			
Samulina Data		2023/02/20			2023/02/20			
Sampling Date		10:26			14:41			
COC Number		n/a			n/a			
	UNITS	MW1-20230220-GW-70	RDL	MDL	MW2-20230220-GW-60	RDL	MDL	QC Batch
Aldrin	ng/L	0.021 U	0.20	0.021	0.052 J	0.20	0.021	8523575
alpha-BHC	ng/L	0.024 U	0.20	0.024	0.024 U	0.20	0.024	8523575
delta-BHC	ng/L	0.029 U	0.20	0.029	0.029 U	0.20	0.029	8523575
beta-BHC	ng/L	0.024 J	0.20	0.014	0.020 U (1)	0.29	0.020	8523575
Lindane	ng/L	0.067 J	0.20	0.033	0.058 J	0.20	0.033	8523575
a-Chlordane	ng/L	0.029 U	0.20	0.029	0.029 U	0.20	0.029	8523575
g-Chlordane	ng/L	0.029 U	0.20	0.029	0.029 U	0.20	0.029	8523575
Oxychlordane	ng/L	0.028 U	0.20	0.028	0.028 U	0.20	0.028	8523575
o,p-DDD	ng/L	0.020 U	0.20	0.020	0.020 U	0.20	0.020	8523575
p,p-DDD	ng/L	0.014 U	0.20	0.014	0.015 J	0.20	0.014	8523575
o,p-DDE	ng/L	0.016 U	0.20	0.016	0.016 U	0.20	0.016	8523575
p,p-DDE	ng/L	0.012 U	0.20	0.012	0.026 J	0.20	0.012	8523575
o,p-DDT	ng/L	0.040 U	0.20	0.040	0.041 J	0.20	0.040	8523575
p,p-DDT	ng/L	0.050 U	0.20	0.050	0.050 U	0.20	0.050	8523575
Dieldrin	ng/L	0.050 U	0.20	0.050	0.050 U	0.20	0.050	8523575
Endosulfan I	ng/L	0.067 U	0.40	0.067	0.067 U	0.40	0.067	8523575
Endosulfan II	ng/L	0.074 U	0.40	0.074	0.089 J	0.40	0.074	8523575
Endosulfan sulfate	ng/L	0.070 U	0.20	0.070	0.070 U	0.20	0.070	8523575
Endrin	ng/L	0.093 J	0.20	0.045	0.045 U	0.20	0.045	8523575
Endrin aldehyde	ng/L	0.071 U	0.20	0.071	0.071 U	0.20	0.071	8523575
Endrin ketone	ng/L	0.034 U	0.20	0.034	0.034 U	0.20	0.034	8523575
Heptachlor	ng/L	0.029 U	0.20	0.029	0.029 U	0.20	0.029	8523575
Heptachlor epoxide	ng/L	0.015 U	0.20	0.015	0.092 J	0.20	0.015	8523575
Hexachlorobenzene	ng/L	0.10 U	0.20	0.10	0.10 U	0.20	0.10	8523575
Methoxychlor	ng/L	0.040 U	0.20	0.040	0.040 U	0.20	0.040	8523575
Mirex	ng/L	0.021 U	0.20	0.021	0.021 U	0.20	0.021	8523575
cis-Nonachlor	ng/L	0.037 U	0.20	0.037	0.037 U	0.20	0.037	8523575
trans-Nonachlor	ng/L	0.044 U	0.20	0.044	0.044 U	0.20	0.044	8523575
Surrogate Recovery (%)								
13C10-cis Nonachlor	%	79	N/A	N/A	84	N/A	N/A	8523575
13C10-Heptachlor	%	79	N/A	N/A	83	N/A	N/A	8523575
13C10-Heptachlor Epoxide	%	76	N/A	N/A	88	N/A	N/A	8523575
13C10-Oxychlordane	%	79	N/A	N/A	89	N/A	N/A	8523575
13C10-trans Nonachlor	%	76	N/A	N/A	88	N/A	N/A	8523575
13C12-Endrin	%	96	N/A	N/A	106	N/A	N/A	8523575

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Apex Laboratories Client Project #: A3B0674

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VCT482			VCT483			
Sampling Date		2023/02/20			2023/02/20			
Sampling Date		10:26			14:41			
COC Number		n/a			n/a			
	UNITS	MW1-20230220-GW-70	RDL	MDL	MW2-20230220-GW-60	RDL	MDL	QC Batch
13C12-Endrin Ketone	%	78	N/A	N/A	78	N/A	N/A	8523575
13C6-beta BHC	%	74	N/A	N/A	57	N/A	N/A	8523575
13C6-d6-gamma BHC (Lindane)	%	74	N/A	N/A	63	N/A	N/A	8523575
13C-Methoxychlor	%	96	N/A	N/A	110	N/A	N/A	8523575
13C-pp-DDD	%	83	N/A	N/A	93	N/A	N/A	8523575
13C-pp-DDE	%	79	N/A	N/A	85	N/A	N/A	8523575
13C-pp-DDT	%	73	N/A	N/A	77	N/A	N/A	8523575
C13-Hexachlorobenzene	%	64	N/A	N/A	70	N/A	N/A	8523575

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Report Date: 2023/04/21

Apex Laboratories Client Project #: A3B0674

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VCT483			
Sampling Date		2023/02/20			
Sumpling Dute		14:41			
COC Number		n/a			
	UNITS	MW2-20230220-GW-60	RDL	MDL	QC Batch
		Lab-Dup			
Aldrin	ng/L	0.031 J	0.20	0.021	8523575
alpha-BHC	ng/L	0.024 U	0.20	0.024	8523575
delta-BHC	ng/L	0.029 U	0.20	0.029	8523575
beta-BHC	ng/L	0.016 U (1)	0.23	0.016	8523575
Lindane	ng/L	0.072 J	0.20	0.033	8523575
a-Chlordane	ng/L	0.029 U	0.20	0.029	8523575
g-Chlordane	ng/L	0.029 U	0.20	0.029	8523575
Oxychlordane	ng/L	0.028 U	0.20	0.028	8523575
o,p-DDD	ng/L	0.020 U	0.20	0.020	8523575
p,p-DDD	ng/L	0.014 U	0.20	0.014	8523575
o,p-DDE	ng/L	0.016 U	0.20	0.016	8523575
p,p-DDE	ng/L	0.026 J	0.20	0.012	8523575
o,p-DDT	ng/L	0.040 U	0.20	0.040	8523575
p,p-DDT	ng/L	0.050 U	0.20	0.050	8523575
Dieldrin	ng/L	0.050 U	0.20	0.050	8523575
Endosulfan I	ng/L	0.092 J	0.40	0.067	8523575
Endosulfan II	ng/L	0.074 U	0.40	0.074	8523575
Endosulfan sulfate	ng/L	0.070 U	0.20	0.070	8523575
Endrin	ng/L	0.075 J	0.20	0.045	8523575
Endrin aldehyde	ng/L	0.071 U	0.20	0.071	8523575
Endrin ketone	ng/L	0.034 U	0.20	0.034	8523575
Heptachlor	ng/L	0.029 U	0.20	0.029	8523575
Heptachlor epoxide	ng/L	0.112 J	0.20	0.015	8523575
Hexachlorobenzene	ng/L	0.10 U	0.20	0.10	8523575
Methoxychlor	ng/L	0.040 U	0.20	0.040	8523575
Mirex	ng/L	0.021 U	0.20	0.021	8523575
cis-Nonachlor	ng/L	0.037 U	0.20	0.037	8523575
trans-Nonachlor	ng/L	0.044 U	0.20	0.044	8523575
Surrogate Recovery (%)	•				
13C10-cis Nonachlor	%	91	N/A	N/A	8523575
13C10-Heptachlor	%	85	N/A	N/A	8523575
13C10-Heptachlor Epoxide	%	95	N/A	N/A	8523575
13C10-Oxychlordane	%	87	N/A	N/A	8523575

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Report Date: 2023/04/21

Apex Laboratories Client Project #: A3B0674

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VCT483			
Sampling Date		2023/02/20			
Sampling Date		14:41			
COC Number		n/a			
	UNITS	MW2-20230220-GW-60 Lab-Dup	RDL	MDL	QC Batch
13C10-trans Nonachlor	%	86	N/A	N/A	8523575
13C12-Endrin	%	103	N/A	N/A	8523575
13C12-Endrin Ketone	%	78	N/A	N/A	8523575
13C6-beta BHC	%	82	N/A	N/A	8523575
13C6-d6-gamma BHC (Lindane)	%	77	N/A	N/A	8523575
13C-Methoxychlor	%	114	N/A	N/A	8523575
13C-pp-DDD	%	94	N/A	N/A	8523575
13C-pp-DDE	%	96	N/A	N/A	8523575
13C-pp-DDT	%	79	N/A	N/A	8523575
C13-Hexachlorobenzene	%	63	N/A	N/A	8523575

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Report Date: 2023/04/21

Apex Laboratories Client Project #: A3B0674

PERFLUOROALKYL SUBSTANCES (WATER)

Bureau Veritas ID		VCT482	VCT483			
Consulting Date		2023/02/20	2023/02/20			
Sampling Date		10:26	14:41			
COC Number		n/a	n/a			
	UNITS	MW1-20230220-GW-70	MW2-20230220-GW-60	RDL	MDL	QC Batch
Perfluorobutanoic acid (PFBA)	ug/L	0.0015 U	0.0015 U	0.020	0.0015	8534937
Perfluoropentanoic acid (PFPeA)	ug/L	0.0025 U	0.0025 U	0.020	0.0025	8534937
Perfluorohexanoic acid (PFHxA)	ug/L	0.0038 U	0.0038 U	0.020	0.0038	8534937
Perfluoroheptanoic acid (PFHpA)	ug/L	0.0018 U	0.0018 U	0.020	0.0018	8534937
Perfluorooctanoic acid (PFOA)	ug/L	0.011 J	0.0030 U	0.020	0.0030	8534937
Perfluorononanoic acid (PFNA)	ug/L	0.0070 J	0.0021 U	0.020	0.0021	8534937
Perfluorodecanoic acid (PFDA)	ug/L	0.0016 U	0.0016 U	0.020	0.0016	8534937
Perfluoroundecanoic acid (PFUnA)	ug/L	0.0024 U	0.0024 U	0.020	0.0024	8534937
Perfluorododecanoic acid (PFDoA)	ug/L	0.0029 U	0.0029 U	0.020	0.0029	8534937
Perfluorotridecanoic acid (PFTRDA)	ug/L	0.0026 U	0.0026 U	0.020	0.0026	8534937
Perfluorotetradecanoic acid(PFTEDA)	ug/L	0.0016 U	0.0016 U	0.020	0.0016	8534937
Perfluorobutanesulfonic acid (PFBS)	ug/L	0.0021 U	0.0021 U	0.020	0.0021	8534937
Perfluoropentanesulfonic acid PFPes	ug/L	0.0023 U	0.0023 U	0.020	0.0023	8534937
Perfluorohexanesulfonic acid(PFHxS)	ug/L	0.0022 U	0.0022 U	0.020	0.0022	8534937
Perfluoroheptanesulfonic acid PFHpS	ug/L	0.0039 U	0.0039 U	0.020	0.0039	8534937
Perfluorooctanesulfonic acid (PFOS)	ug/L	0.0035 U	0.0035 U	0.020	0.0035	8534937
Perfluorononanesulfonic acid (PFNS)	ug/L	0.0037 U	0.0037 U	0.020	0.0037	8534937
Perfluorodecanesulfonic acid (PFDS)	ug/L	0.0048 U	0.0048 U	0.020	0.0048	8534937
Perfluorooctane Sulfonamide (PFOSA)	ug/L	0.0034 U	0.0034 U	0.020	0.0034	8534937
EtFOSA	ug/L	0.0095 U	0.0095 U	0.020	0.0095	8534937
MeFOSA	ug/L	0.0084 U	0.0084 U	0.020	0.0084	8534937
EtFOSE	ug/L	0.0070 U	0.0070 U	0.020	0.0070	8534937
MeFOSE	ug/L	0.0073 U	0.0073 U	0.020	0.0073	8534937
EtFOSAA	ug/L	0.0046 U	0.0046 U	0.020	0.0046	8534937
MeFOSAA	ug/L	0.0045 U	0.0045 U	0.020	0.0045	8534937
4:2 Fluorotelomer sulfonic acid	ug/L	0.0033 U	0.0033 U	0.020	0.0033	8534937
6:2 Fluorotelomer sulfonic acid	ug/L	0.0015 U	0.0015 U	0.020	0.0015	8534937
8:2 Fluorotelomer sulfonic acid	ug/L	0.0031 U	0.0031 U	0.020	0.0031	8534937
Hexafluoropropyleneoxide dimer acid	ug/L	0.0052 U	0.0052 U	0.020	0.0052	8534937
4,8-Dioxa-3H-perfluorononanoic acid	ug/L	0.0027 U	0.0027 U	0.020	0.0027	8534937
9CI-PF3ONS (F-53B Major)	ug/L	0.0043 U	0.0043 U	0.020	0.0043	8534937
11Cl-PF3OUdS (F-53B Minor)	ug/L	0.0035 U	0.0035 U	0.020	0.0035	8534937
Surrogate Recovery (%)	•	-			•	•
13C2-4:2-Fluorotelomersulfonic Acid	%	102	90	N/A	N/A	8534937
13C2-6:2-Fluorotelomersulfonic Acid	%	101	92	N/A	N/A	8534937
RDL = Reportable Detection Limit QC Batch = Quality Control Batch						

Apex Laboratories Client Project #: A3B0674

PERFLUOROALKYL SUBSTANCES (WATER)

Bureau Veritas ID		VCT482	VCT483			
Sampling Date		2023/02/20	2023/02/20			
Sampling Date		10:26	14:41			
COC Number		n/a	n/a			
	UNITS	MW1-20230220-GW-70	MW2-20230220-GW-60	RDL	MDL	QC Batch
13C2-8:2-Fluorotelomersulfonic Acid	%	100	93	N/A	N/A	8534937
13C2-Perfluorodecanoic acid	%	102	90	N/A	N/A	8534937
13C2-Perfluorododecanoic acid	%	92	82	N/A	N/A	8534937
13C2-Perfluorohexanoic acid	%	104	93	N/A	N/A	8534937
13C2-perfluorotetradecanoic acid	%	82	56	N/A	N/A	8534937
13C2-Perfluoroundecanoic acid	%	96	87	N/A	N/A	8534937
13C3-HFPO-DA	%	99	91	N/A	N/A	8534937
13C3-Perfluorobutanesulfonic acid	%	108	96	N/A	N/A	8534937
13C4-Perfluorobutanoic acid	%	105	93	N/A	N/A	8534937
13C4-Perfluoroheptanoic acid	%	104	93	N/A	N/A	8534937
13C4-Perfluorooctanesulfonic acid	%	101	94	N/A	N/A	8534937
13C4-Perfluorooctanoic acid	%	102	92	N/A	N/A	8534937
13C5-Perfluorononanoic acid	%	103	91	N/A	N/A	8534937
13C5-Perfluoropentanoic acid	%	106	94	N/A	N/A	8534937
13C8-Perfluorooctane Sulfonamide	%	100	93	N/A	N/A	8534937
18O2-Perfluorohexanesulfonic acid	%	105	94	N/A	N/A	8534937
D3-MeFOSA	%	82	74	N/A	N/A	8534937
D3-MeFOSAA	%	95	89	N/A	N/A	8534937
D5-EtFOSA	%	82	75	N/A	N/A	8534937
D5-EtFOSAA	%	91	83	N/A	N/A	8534937
D7-MeFOSE	%	90	78	N/A	N/A	8534937
D9-EtFOSE	%	90	78	N/A	N/A	8534937

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0674

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		VCT482							
Sampling Date		2023/02/20							
Sampling Date		10:26							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	MW1-20230220-GW-70	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg/L	1.45 U	1.45	10.5	1.45	1.00	1.45	0	8524619
1,2,3,7,8-Penta CDD *	pg/L	1.07 U	1.07	52.6	1.86	1.00	1.07	0	8524619
1,2,3,4,7,8-Hexa CDD *	pg/L	1.10 U	1.10	52.6	2.25	0.100	0.110	0	8524619
1,2,3,6,7,8-Hexa CDD *	pg/L	1.08 U	1.08	52.6	1.40	0.100	0.108	0	8524619
1,2,3,7,8,9-Hexa CDD *	pg/L	1.02 U	1.02	52.6	1.13	0.100	0.102	0	8524619
1,2,3,4,6,7,8-Hepta CDD *	pg/L	1.06 U	1.06	52.6	1.90	0.0100	0.0106	0	8524619
Octa CDD *	pg/L	1.07 U	1.07	105	3.13	0.000300	0.000321	0	8524619
Total Tetra CDD *	pg/L	1.45 U	1.45	10.5	4.00	N/A	N/A	0	8524619
Total Penta CDD *	pg/L	1.07 U	1.07	52.6	4.00	N/A	N/A	0	8524619
Total Hexa CDD *	pg/L	1.15 U	1.15	52.6	4.00	N/A	N/A	0	8524619
Total Hepta CDD *	pg/L	1.06 U	1.06	52.6	4.00	N/A	N/A	0	8524619
2,3,7,8-Tetra CDF **	pg/L	1.07 U	1.07	10.5	1.68	0.100	0.107	0	8524619
1,2,3,7,8-Penta CDF **	pg/L	1.31 U	1.31	52.6	1.33	0.0300	0.0393	0	8524619
2,3,4,7,8-Penta CDF **	pg/L	1.11 U	1.11	52.6	1.23	0.300	0.333	0	8524619
1,2,3,4,7,8-Hexa CDF **	pg/L	0.904 U	0.904	52.6	1.85	0.100	0.0904	0	8524619
1,2,3,6,7,8-Hexa CDF **	pg/L	0.911 U	0.911	52.6	1.52	0.100	0.0911	0	8524619
2,3,4,6,7,8-Hexa CDF **	pg/L	0.811 U	0.811	52.6	1.97	0.100	0.0811	0	8524619
1,2,3,7,8,9-Hexa CDF **	pg/L	0.979 U	0.979	52.6	1.66	0.100	0.0979	0	8524619
1,2,3,4,6,7,8-Hepta CDF **	pg/L	0.870 U	0.870	52.6	2.00	0.0100	0.00870	0	8524619
1,2,3,4,7,8,9-Hepta CDF **	pg/L	0.962 U	0.962	52.6	1.87	0.0100	0.00962	0	8524619
Octa CDF **	pg/L	0.954 U	0.954	105	3.99	0.000300	0.000286	0	8524619
Total Tetra CDF **	pg/L	1.07 U	1.07	10.5	4.00	N/A	N/A	0	8524619
Total Penta CDF **	pg/L	1.20 U	1.20	52.6	4.00	N/A	N/A	0	8524619
Total Hexa CDF **	pg/L	0.898 U	0.898	52.6	4.00	N/A	N/A	0	8524619
Total Hepta CDF **	pg/L	0.913 U	0.913	52.6	4.00	N/A	N/A	0	8524619
TOTAL TOXIC EQUIVALENCY	pg/L	N/A	N/A	N/A	N/A	N/A	3.71	N/A	N/A
Surrogate Recovery (%)									
37CL4 2378 Tetra CDD *	%	79	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-1234678 HeptaCDD *	%	92	N/A	N/A	N/A	N/A	N/A	N/A	8524619

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

** CDF = Chloro Dibenzo-p-Furan

Apex Laboratories Client Project #: A3B0674

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		VCT482							
Sampling Date		2023/02/20 10:26							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	MW1-20230220-GW-70	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-1234678 HeptaCDF **	%	89	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123478 HexaCDD *	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123478 HexaCDF **	%	91	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-1234789 HeptaCDF **	%	89	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123678 HexaCDD *	%	94	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123678 HexaCDF **	%	88	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-12378 PentaCDD *	%	89	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-12378 PentaCDF **	%	83	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123789 HexaCDF **	%	91	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-234678 HexaCDF **	%	100	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-23478 PentaCDF **	%	90	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-2378 TetraCDD *	%	74	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-2378 TetraCDF **	%	85	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-OCDD *	%	96	N/A	N/A	N/A	N/A	N/A	N/A	8524619

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

N/A = Not Applicable

* CDD = Chloro Dibenzo-p-Dioxin

Apex Laboratories Client Project #: A3B0674

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		VCT483							
Sampling Date		2023/02/20							
Sampling Date		14:41							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	MW2-20230220-GW-60	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg/L	1.53 U	1.53	10.2	1.45	1.00	1.53	0	8524619
1,2,3,7,8-Penta CDD *	pg/L	1.06 U	1.06	51.0	1.86	1.00	1.06	0	8524619
1,2,3,4,7,8-Hexa CDD *	pg/L	1.02 U	1.02	51.0	2.25	0.100	0.102	0	8524619
1,2,3,6,7,8-Hexa CDD *	pg/L	1.07 U	1.07	51.0	1.40	0.100	0.107	0	8524619
1,2,3,7,8,9-Hexa CDD *	pg/L	0.971 U	0.971	51.0	1.13	0.100	0.0971	0	8524619
1,2,3,4,6,7,8-Hepta CDD *	pg/L	1.01 U	1.01	51.0	1.90	0.0100	0.0101	0	8524619
Octa CDD *	pg/L	3.63 J	1.08	102	3.13	0.000300	0.00109	1	8524619
Total Tetra CDD *	pg/L	1.53 U	1.53	10.2	4.00	N/A	N/A	0	8524619
Total Penta CDD *	pg/L	1.06 U	1.06	51.0	4.00	N/A	N/A	0	8524619
Total Hexa CDD *	pg/L	1.39 U	1.39	51.0	4.00	N/A	N/A	0	8524619
Total Hepta CDD *	pg/L	1.01 U	1.01	51.0	4.00	N/A	N/A	0	8524619
2,3,7,8-Tetra CDF **	pg/L	1.12 U	1.12	10.2	1.68	0.100	0.112	0	8524619
1,2,3,7,8-Penta CDF **	pg/L	1.33 U	1.33	51.0	1.33	0.0300	0.0399	0	8524619
2,3,4,7,8-Penta CDF **	pg/L	1.14 U	1.14	51.0	1.23	0.300	0.342	0	8524619
1,2,3,4,7,8-Hexa CDF **	pg/L	0.891 U	0.891	51.0	1.85	0.100	0.0891	0	8524619
1,2,3,6,7,8-Hexa CDF **	pg/L	0.884 U	0.884	51.0	1.52	0.100	0.0884	0	8524619
2,3,4,6,7,8-Hexa CDF **	pg/L	0.800 U	0.800	51.0	1.97	0.100	0.0800	0	8524619
1,2,3,7,8,9-Hexa CDF **	pg/L	0.955 U	0.955	51.0	1.66	0.100	0.0955	0	8524619
1,2,3,4,6,7,8-Hepta CDF **	pg/L	0.844 U	0.844	51.0	2.00	0.0100	0.00844	0	8524619
1,2,3,4,7,8,9-Hepta CDF **	pg/L	0.897 U	0.897	51.0	1.87	0.0100	0.00897	0	8524619
Octa CDF **	pg/L	0.958 U	0.958	102	3.99	0.000300	0.000287	0	8524619
Total Tetra CDF **	pg/L	1.12 U	1.12	10.2	4.00	N/A	N/A	0	8524619
Total Penta CDF **	pg/L	1.23 U	1.23	51.0	4.00	N/A	N/A	0	8524619
Total Hexa CDF **	pg/L	0.880 U	0.880	51.0	4.00	N/A	N/A	0	8524619
Total Hepta CDF **	pg/L	0.869 U	0.869	51.0	4.00	N/A	N/A	0	8524619
TOTAL TOXIC EQUIVALENCY	pg/L	N/A	N/A	N/A	N/A	N/A	3.77	N/A	N/A
Surrogate Recovery (%)									
37CL4 2378 Tetra CDD *	%	84	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-1234678 HeptaCDD *	%	96	N/A	N/A	N/A	N/A	N/A	N/A	8524619

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

** CDF = Chloro Dibenzo-p-Furan

Apex Laboratories Client Project #: A3B0674

DIOXINS AND FURANS BY HRMS (WATER)

Bureau Veritas ID		VCT483							
Sampling Date		2023/02/20 14:41							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	MW2-20230220-GW-60	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-1234678 HeptaCDF **	%	91	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123478 HexaCDD *	%	98	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123478 HexaCDF **	%	92	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-1234789 HeptaCDF **	%	94	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123678 HexaCDD *	%	92	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123678 HexaCDF **	%	90	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-12378 PentaCDD *	%	88	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-12378 PentaCDF **	%	81	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-123789 HexaCDF **	%	92	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-234678 HexaCDF **	%	100	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-23478 PentaCDF **	%	86	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-2378 TetraCDD *	%	71	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-2378 TetraCDF **	%	83	N/A	N/A	N/A	N/A	N/A	N/A	8524619
C13-OCDD *	%	99	N/A	N/A	N/A	N/A	N/A	N/A	8524619

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

N/A = Not Applicable

* CDD = Chloro Dibenzo-p-Dioxin

Apex Laboratories Client Project #: A3B0674

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VCT482							
Samulina Data		2023/02/20							
Sampling Date		10:26							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	MW1-20230220-GW-70	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2-MonoCB-(1)	ng/L	0.028	0.024	0.021	0.0098	N/A	N/A	1	8533813
3-MonoCB-(2)	ng/L	0.055	0.021	0.021	0.0079	N/A	N/A	1	8533813
4-MonoCB-(3)	ng/L	0.100	0.017	0.052	0.0071	N/A	N/A	1	8533813
22'-DiCB-(4)	ng/L	0.020 U	0.020	0.052	0.017	N/A	N/A	1	8533813
2,3-DiCB-(5)	ng/L	0.0053 U	0.0053	0.052	0.012	N/A	N/A	1	8533813
2,3'-DiCB-(6)	ng/L	0.0055 U	0.0055	0.021	0.0053	N/A	N/A	1	8533813
2,4-DiCB-(7)	ng/L	0.0053 U	0.0053	0.021	0.0056	N/A	N/A	1	8533813
2,4'-DiCB-(8)	ng/L	0.0091 J	0.0052	0.052	0.017	N/A	N/A	1	8533813
2,5-DiCB-(9)	ng/L	0.0052 U	0.0052	0.021	0.0044	N/A	N/A	1	8533813
2,6-DiCB-(10)	ng/L	0.0073 U	0.0073	0.052	0.0052	N/A	N/A	1	8533813
3,3'-DiCB-(11)	ng/L	0.365	0.0054	0.21	0.0090	N/A	N/A	1	8533813
DiCB-(12)+(13)	ng/L	0.0057 J	0.0050	0.052	0.015	N/A	N/A	1	8533813
3,5-DiCB-(14)	ng/L	0.0054 U	0.0054	0.021	0.0082	N/A	N/A	1	8533813
4,4'-DiCB-(15)	ng/L	0.0138 J	0.0046	0.052	0.011	N/A	N/A	1	8533813
22'3-TriCB-(16)	ng/L	0.013 U	0.013	0.052	0.0060	N/A	N/A	1	8533813
22'4-TriCB-(17)	ng/L	0.011 U	0.011	0.021	0.0091	N/A	N/A	1	8533813
TriCB-(18)+(30)	ng/L	0.0123 J	0.0091	0.052	0.017	N/A	N/A	1	8533813
22'6-TriCB-(19)	ng/L	0.012 U	0.012	0.021	0.0061	N/A	N/A	1	8533813
TriCB-(20) + (28)	ng/L	0.0059 J	0.0028	0.050	0.010	N/A	N/A	1	8533813
TriCB-(21)+(33)	ng/L	0.0038 J	0.0031	0.052	0.011	N/A	N/A	1	8533813
234'-TriCB-(22)	ng/L	0.0064 U	0.0064	0.021	0.0065	N/A	N/A	1	8533813
235-TriCB-(23)	ng/L	0.0063 U	0.0063	0.021	0.0072	N/A	N/A	1	8533813
236-TriCB-(24)	ng/L	0.0080 U	0.0080	0.021	0.0043	N/A	N/A	1	8533813
23'4-TriCB-(25)	ng/L	0.0064 U	0.0064	0.021	0.0054	N/A	N/A	1	8533813
TriCB-(26)+(29)	ng/L	0.0058 U	0.0058	0.052	0.013	N/A	N/A	1	8533813
23'6-TriCB-(27)	ng/L	0.0076 U	0.0076	0.021	0.0082	N/A	N/A	1	8533813
24'5-TriCB-(31)	ng/L	0.0114 J	0.0054	0.052	0.0078	N/A	N/A	1	8533813
24'6-TriCB-(32)	ng/L	0.0074 U	0.0074	0.021	0.0087	N/A	N/A	1	8533813
23'5'-TriCB-(34)	ng/L	0.0062 U	0.0062	0.021	0.0061	N/A	N/A	1	8533813
33'4-TriCB-(35)	ng/L	0.0064 U	0.0064	0.021	0.0042	N/A	N/A	1	8533813
33'5-TriCB-(36)	ng/L	0.0057 U	0.0057	0.021	0.0052	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0674

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VCT482							
Sampling Data		2023/02/20							
Sampling Date		10:26							
COC Number		n/a				TOXIC EQUIVALENCY		# of	
	UNITS	MW1-20230220-GW-70	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
344'-TriCB-(37)	ng/L	0.0066 U	0.0066	0.021	0.0041	N/A	N/A	1	8533813
345-TriCB-(38)	ng/L	0.0059 U	0.0059	0.021	0.0047	N/A	N/A	1	8533813
34'5-TriCB-(39)	ng/L	0.0063 U	0.0063	0.021	0.0059	N/A	N/A	1	8533813
TetraCB-(40)+(41)+(71)	ng/L	0.019 U	0.019	0.10	0.035	N/A	N/A	1	8533813
22'34'-TetraCB-(42)	ng/L	0.026 U	0.026	0.052	0.011	N/A	N/A	1	8533813
22'35-TetraCB-(43)	ng/L	0.025 U	0.025	0.052	0.015	N/A	N/A	1	8533813
TetraCB-(44)+(47)+(65)	ng/L	0.018 U	0.018	0.10	0.029	N/A	N/A	1	8533813
TetraCB-(45)+(51)	ng/L	0.020 U (1)	0.020	0.052	0.011	N/A	N/A	1	8533813
22'36'-TetraCB-(46)	ng/L	0.022 U	0.022	0.021	0.014	N/A	N/A	1	8533813
22'45-TetraCB-(48)	ng/L	0.019 U	0.019	0.052	0.017	N/A	N/A	1	8533813
TetraCB-(49)+TetraCB-(69)	ng/L	0.017 U	0.017	0.10	0.023	N/A	N/A	1	8533813
TetraCB-(50)+(53)	ng/L	0.019 U	0.019	0.10	0.027	N/A	N/A	1	8533813
22'55'-TetraCB-(52)	ng/L	0.031 J	0.019	0.052	0.019	N/A	N/A	1	8533813
22'66'-TetraCB-(54)	ng/L	0.021 U	0.021	0.052	0.020	N/A	N/A	1	8533813
233'4-TetraCB-(55)	ng/L	0.015 U	0.015	0.052	0.015	N/A	N/A	1	8533813
233'4'-Tetra CB(56)	ng/L	0.014 U	0.014	0.052	0.018	N/A	N/A	1	8533813
233'5-TetraCB-(57)	ng/L	0.014 U	0.014	0.052	0.0097	N/A	N/A	1	8533813
233'5'-TetraCB-(58)	ng/L	0.013 U	0.013	0.052	0.020	N/A	N/A	1	8533813
TetraCB-(59)+(62)+(75)	ng/L	0.014 U	0.014	0.10	0.038	N/A	N/A	1	8533813
2344'-TetraCB -(60)	ng/L	0.014 U	0.014	0.052	0.011	N/A	N/A	1	8533813
TetraCB-(61)+(70)+(74)+(76)	ng/L	0.032 J	0.014	0.21	0.035	N/A	N/A	1	8533813
234'5-TetraCB-(63)	ng/L	0.013 U	0.013	0.052	0.0080	N/A	N/A	1	8533813
234'6-TetraCB-(64)	ng/L	0.016 U	0.016	0.052	0.0089	N/A	N/A	1	8533813
23'44'-TetraCB-(66)	ng/L	0.013 U	0.013	0.052	0.0084	N/A	N/A	1	8533813
23'45-TetraCB-(67)	ng/L	0.011 U	0.011	0.052	0.0040	N/A	N/A	1	8533813
23'45'-TetraCB-(68)	ng/L	0.012 U	0.012	0.052	0.014	N/A	N/A	1	8533813
23'55'-TetraCB-(72)	ng/L	0.013 U	0.013	0.052	0.0082	N/A	N/A	1	8533813
23'5'6-TetraCB-(73)	ng/L	0.013 U	0.013	0.052	0.023	N/A	N/A	1	8533813
33'44'-TetraCB-(77)	ng/L	0.011 U	0.011	0.052	0.011	0.000100	0.00000110	1	8533813
33'45-TetraCB-(78)	ng/L	0.015 U	0.015	0.052	0.013	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Apex Laboratories Client Project #: A3B0674

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VCT482							
Sampling Data		2023/02/20							
Sampling Date		10:26							
COC Number		n/a				TOXIC EQU	IIVALENCY	# of	
	UNITS	MW1-20230220-GW-70	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
33'45'-TetraCB(79)	ng/L	0.011 U	0.011	0.052	0.0088	N/A	N/A	1	8533813
33'55'-TetraCB-(80)	ng/L	0.011 U	0.011	0.052	0.0087	N/A	N/A	1	8533813
344'5-TetraCB-(81)	ng/L	0.012 U	0.012	0.052	0.0079	0.000300	0.00000360	1	8533813
22'33'4-PentaCB-(82)	ng/L	0.025 U	0.025	0.052	0.014	N/A	N/A	1	8533813
PentaCB-(83)+(99)	ng/L	0.020 U	0.020	0.10	0.033	N/A	N/A	1	8533813
22'33'6-PentaCB-(84)	ng/L	0.021 U	0.021	0.021	0.0088	N/A	N/A	1	8533813
PentaCB-(85)+(116)+(117)	ng/L	0.026 U	0.026	0.10	0.040	N/A	N/A	1	8533813
PentaCB-(86)(87)(97)(109)(119)(125)	ng/L	0.026 J	0.016	0.21	0.080	N/A	N/A	1	8533813
PentaCB-(88)+(91)	ng/L	0.020 U	0.020	0.052	0.025	N/A	N/A	1	8533813
22'346'-PentaCB-(89)	ng/L	0.024 U	0.024	0.052	0.0040	N/A	N/A	1	8533813
PentaCB-(90)+(101)+(113)	ng/L	0.016 U (1)	0.016	0.21	0.0080	N/A	N/A	1	8533813
22'355'-PentaCB-(92)	ng/L	0.022 U	0.022	0.052	0.010	N/A	N/A	1	8533813
PentaCB-(93)+(98)+(100)+(102)	ng/L	0.019 U	0.019	0.21	0.051	N/A	N/A	1	8533813
22'356'-PentaCB-(94)	ng/L	0.020 U	0.020	0.052	0.017	N/A	N/A	1	8533813
22'35'6-PentaCB-(95)	ng/L	0.052	0.022	0.052	0.011	N/A	N/A	1	8533813
22'366'-PentaCB-(96)	ng/L	0.016 U	0.016	0.052	0.014	N/A	N/A	1	8533813
22'45'6-PentaCB-(103)	ng/L	0.020 U	0.020	0.052	0.012	N/A	N/A	1	8533813
22'466'-PentaCB-(104)	ng/L	0.016 U (1)	0.016	0.052	0.022	N/A	N/A	1	8533813
233'44'-PentaCB-(105)	ng/L	0.0100 J	0.0096	0.052	0.0052	0.0000300	0.000000300	1	8533813
233'45-PentaCB-(106)	ng/L	0.012 U	0.012	0.052	0.018	N/A	N/A	1	8533813
233'4'5-PentaCB-(107)	ng/L	0.0091 U	0.0091	0.052	0.014	N/A	N/A	1	8533813
PentaCB-(108)+(124)	ng/L	0.011 U	0.011	0.10	0.023	N/A	N/A	1	8533813
PentaCB-(110)+(115)	ng/L	0.046 J	0.015	0.10	0.022	N/A	N/A	1	8533813
233'55'-PentaCB-(111)	ng/L	0.013 U	0.013	0.052	0.012	N/A	N/A	1	8533813
233'56-PentaCB-(112)	ng/L	0.013 U	0.013	0.052	0.018	N/A	N/A	1	8533813
2344'5-PentaCB-(114)	ng/L	0.011 U	0.011	0.052	0.0084	0.0000300	0.00000330	1	8533813
23'44'5-PentaCB-(118)	ng/L	0.031 J	0.010	0.10	0.0071	0.0000300	0.000000930	1	8533813
23'455'-PentaCB-(120)	ng/L	0.014 U	0.014	0.052	0.014	N/A	N/A	1	8533813
23'45'6-PentaCB-(121)	ng/L	0.014 U	0.014	0.052	0.0040	N/A	N/A	1	8533813
233'4'5'-PentaCB-(122)	ng/L	0.015 U	0.015	0.052	0.011	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Apex Laboratories Client Project #: A3B0674

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VCT482							
Samulina Data		2023/02/20							
Sampling Date		10:26							
COC Number		n/a				TOXIC EQUIVALENCY		# of	
	UNITS	MW1-20230220-GW-70	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
23'44'5'-PentaCB-(123)	ng/L	0.011 U	0.011	0.052	0.014	0.0000300	0.000000330	1	8533813
33'44'5-PentaCB-(126)	ng/L	0.010 U	0.010	0.052	0.0061	0.100	0.00100	1	8533813
33'455'-PentaCB-(127)	ng/L	0.011 U	0.011	0.052	0.017	N/A	N/A	1	8533813
HexaCB-(128)+(166)	ng/L	0.016 U	0.016	0.10	0.026	N/A	N/A	1	8533813
HexaCB-(129)+(138)+(163)	ng/L	0.061 J	0.018	0.21	0.014	N/A	N/A	1	8533813
22'33'45'-HexaCB-(130)	ng/L	0.018 U	0.018	0.052	0.020	N/A	N/A	1	8533813
22'33'46-HexaCB-(131)	ng/L	0.023 U	0.023	0.052	0.019	N/A	N/A	1	8533813
22'33'46'-HexaCB-(132)	ng/L	0.020 U	0.020	0.052	0.019	N/A	N/A	1	8533813
22'33'55'-HexaCB-(133)	ng/L	0.020 U	0.020	0.052	0.017	N/A	N/A	1	8533813
HexaCB-(134)+(143)	ng/L	0.022 U	0.022	0.10	0.028	N/A	N/A	1	8533813
HexaCB-(135)+(151)	ng/L	0.037 J	0.023	0.10	0.038	N/A	N/A	1	8533813
22'33'66'-HexaCB-(136)	ng/L	0.016 U	0.016	0.052	0.014	N/A	N/A	1	8533813
22'344'5-HexaCB-(137)	ng/L	0.019 U	0.019	0.10	0.014	N/A	N/A	1	8533813
HexaCB-(139)+(140)	ng/L	0.017 U	0.017	0.10	0.032	N/A	N/A	1	8533813
22'3455'-HexaCB-(141)	ng/L	0.016 U	0.016	0.052	0.018	N/A	N/A	1	8533813
22'3456-HexaCB-(142)	ng/L	0.021 U	0.021	0.052	0.018	N/A	N/A	1	8533813
22'345'6-HexaCB-(144)	ng/L	0.022 U	0.022	0.052	0.011	N/A	N/A	1	8533813
22'3466'-HexaCB-(145)	ng/L	0.015 U	0.015	0.052	0.022	N/A	N/A	1	8533813
22'34'55'-HexaCB-(146)	ng/L	0.016 U	0.016	0.052	0.014	N/A	N/A	1	8533813
HexaCB-(147)+(149)	ng/L	0.072 J	0.016	0.10	0.027	N/A	N/A	1	8533813
22'34'56'-HexaCB-(148)	ng/L	0.023 U	0.023	0.052	0.013	N/A	N/A	1	8533813
22'34'66'-HexaCB-(150)	ng/L	0.016 U	0.016	0.052	0.022	N/A	N/A	1	8533813
22'3566'-HexaCB-(152)	ng/L	0.017 U	0.017	0.052	0.020	N/A	N/A	1	8533813
HexaCB-(153)+(168)	ng/L	0.062 J	0.014	0.10	0.028	N/A	N/A	1	8533813
22'44'56'-HexaCB-(154)	ng/L	0.018 U	0.018	0.052	0.014	N/A	N/A	1	8533813
22'44'66'-HexaCB-(155)	ng/L	0.018 U	0.018	0.052	0.013	N/A	N/A	1	8533813
HexaCB-(156)+(157)	ng/L	0.010 U	0.010	0.10	0.015	0.0000300	0.000000300	1	8533813
233'44'6-HexaCB-(158)	ng/L	0.011 U	0.011	0.052	0.017	N/A	N/A	1	8533813
233'455'-HexaCB-(159)	ng/L	0.0096 U	0.0096	0.052	0.015	N/A	N/A	1	8533813
233'456-HexaCB-(160)	ng/L	0.014 U	0.014	0.052	0.013	N/A	N/A	1	8533813
233'45'6-HexaCB-(161)	ng/L	0.014 U	0.014	0.052	0.022	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0674

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VCT482							
Sampling Date		2023/02/20							
Sampling Date		10:26							
COC Number		n/a				TOXIC EQUIVALENCY		# of	
	UNITS	MW1-20230220-GW-70	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
233'4'55'-HexaCB-(162)	ng/L	0.0095 U	0.0095	0.052	0.016	N/A	N/A	1	8533813
233'4'5'6-HexaCB-(164)	ng/L	0.012 U	0.012	0.052	0.020	N/A	N/A	1	8533813
233'55'6-HexaCB-(165)	ng/L	0.015 U	0.015	0.052	0.022	N/A	N/A	1	8533813
23'44'55'-HexaCB-(167)	ng/L	0.010 U	0.010	0.052	0.0096	0.0000300	0.000000300	1	8533813
33'44'55'-HexaCB-(169)	ng/L	0.011 U	0.011	0.052	0.0092	0.0300	0.000330	1	8533813
22'33'44'5-HeptaCB-(170)	ng/L	0.012 U	0.012	0.052	0.011	N/A	N/A	1	8533813
HeptaCB-(171)+(173)	ng/L	0.015 U	0.015	0.10	0.027	N/A	N/A	1	8533813
22'33'455'-HeptaCB-(172)	ng/L	0.015 U	0.015	0.052	0.012	N/A	N/A	1	8533813
22'33'456'-HeptaCB-(174)	ng/L	0.014 U	0.014	0.052	0.017	N/A	N/A	1	8533813
22'33'45'6-HeptaCB-(175)	ng/L	0.018 U	0.018	0.052	0.0064	N/A	N/A	1	8533813
22'33'466'-HeptaCB-(176)	ng/L	0.013 U	0.013	0.052	0.0079	N/A	N/A	1	8533813
22'33'45'6'-HeptaCB-(177)	ng/L	0.015 U	0.015	0.052	0.013	N/A	N/A	1	8533813
22'33'55'6-HeptaCB-(178)	ng/L	0.018 U	0.018	0.052	0.0071	N/A	N/A	1	8533813
22'33'566'-HeptaCB-(179)	ng/L	0.013 U (1)	0.013	0.052	0.010	N/A	N/A	1	8533813
HeptaCB-(180)+(193)	ng/L	0.023 J	0.011	0.10	0.018	N/A	N/A	1	8533813
22'344'56-HeptaCB-(181)	ng/L	0.014 U	0.014	0.052	0.015	N/A	N/A	1	8533813
22'344'56'-HeptaCB-(182)	ng/L	0.016 U	0.016	0.052	0.0066	N/A	N/A	1	8533813
22'344'5'6-HeptaCB-(183)	ng/L	0.013 U	0.013	0.052	0.017	N/A	N/A	1	8533813
22'344'66'-HeptaCB-(184)	ng/L	0.012 U	0.012	0.052	0.0065	N/A	N/A	1	8533813
22'3455'6-HeptaCB-(185)	ng/L	0.013 U	0.013	0.052	0.017	N/A	N/A	1	8533813
22'34566'-HeptaCB-(186)	ng/L	0.013 U	0.013	0.052	0.0095	N/A	N/A	1	8533813
22'34'55'6-HeptaCB-(187)	ng/L	0.022 J	0.016	0.052	0.0047	N/A	N/A	1	8533813
22'34'566'-HeptaCB-(188)	ng/L	0.013 U	0.013	0.052	0.015	N/A	N/A	1	8533813
233'44'55'-HeptaCB-(189)	ng/L	0.0093 U	0.0093	0.052	0.014	0.0000300	0.000000279	1	8533813
233'44'56-HeptaCB-(190)	ng/L	0.010 U	0.010	0.052	0.016	N/A	N/A	1	8533813
233'44'5'6-HeptaCB-(191)	ng/L	0.010 U	0.010	0.052	0.014	N/A	N/A	1	8533813
233'455'6-HeptaCB-(192)	ng/L	0.012 U	0.012	0.052	0.0088	N/A	N/A	1	8533813
22'33'44'55'-OctaCB-(194)	ng/L	0.0095 U	0.0095	0.052	0.024	N/A	N/A	1	8533813
22'33'44'56-OctaCB-(195)	ng/L	0.011 U	0.011	0.052	0.019	N/A	N/A	1	8533813
22'33'44'56'-OctaCB-(196)	ng/L	0.011 U	0.011	0.052	0.017	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Apex Laboratories Client Project #: A3B0674

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VCT482							
Sampling Date		2023/02/20							
Sampling Date		10:26							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	MW1-20230220-GW-70	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
22'33'44'66'OctaCB-(197)	ng/L	0.0080 U	0.0080	0.052	0.033	N/A	N/A	1	8533813
OctaCB-(198)+(199)	ng/L	0.012 U	0.012	0.10	0.028	N/A	N/A	1	8533813
22'33'4566'-OctaCB-(200)	ng/L	0.0091 U	0.0091	0.052	0.031	N/A	N/A	1	8533813
22'33'45'66'-OctaCB-(201)	ng/L	0.0081 U	0.0081	0.052	0.014	N/A	N/A	1	8533813
22'33'55'66'-OctaCB-(202)	ng/L	0.0090 U	0.0090	0.052	0.013	N/A	N/A	1	8533813
22'344'55'6-OctaCB-(203)	ng/L	0.011 U	0.011	0.052	0.021	N/A	N/A	1	8533813
22'344'566'-OctaCB-(204)	ng/L	0.0056 U	0.0056	0.052	0.018	N/A	N/A	1	8533813
233'44'55'6-OctaCB-(205)	ng/L	0.0069 U	0.0069	0.052	0.014	N/A	N/A	1	8533813
22'33'44'55'6-NonaCB-(206)	ng/L	0.014 U	0.014	0.052	0.020	N/A	N/A	1	8533813
22'33'44'566'-NonaCB-(207)	ng/L	0.012 U	0.012	0.052	0.018	N/A	N/A	1	8533813
22'33'455'66'-NonaCB-(208)	ng/L	0.011 U	0.011	0.052	0.021	N/A	N/A	1	8533813
DecaCB-(209)	ng/L	0.011 U	0.011	0.052	0.015	N/A	N/A	1	8533813
Total PCB	ng/L	1.11	0.026	N/A	N/A	N/A	N/A	N/A	8533813
TOTAL TOXIC EQUIVALENCY	ng/L	N/A	N/A	N/A	N/A	N/A	0.00134	N/A	N/A
Surrogate Recovery (%)			•						•
C13-2,44'-TriCB-(28)	%	61	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2,4'5-TriCB-(31) (FS)	%	116	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'44'55'6-NonaCB-(206)	%	111	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'44'5-HeptaCB-(170)	%	94	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'455'66'-NonaCB-(208)	%	99	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'55'66'-OctaCB-(202)	%	95	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'55'6-HeptaCB-(178)	%	98	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'344'55'-HeptaCB-(180)	%	92	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'34'566'-HeptaCB-(188)	%	77	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'44'66'-HexaCB-(155)	%	75	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'466'-PentaCB-(104)	%	64	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'66'-TetraCB-(54)	%	76	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'6-TriCB-(19)	%	48	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'-DiCB-(4)	%	33	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'55'6-OctaCB-(205)	%	97	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'55'-HeptaCB-(189)	%	85	N/A	N/A	N/A	N/A	N/A	N/A	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0674

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VCT482							
Sampling Date		2023/02/20 10:26				_			_
COC Number		n/a				TOXIC EQUIVALENCY		# of	
	UNITS	MW1-20230220-GW-70	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-233'44'-PentaCB-(105)	%	70	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'55'-PentaCB-(111)	%	87	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-23'44'55'-HexaCB-(167)	%	71	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2344'5-PentaCB-(114)	%	61	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-23'44'5-PentaCB-(118)	%	61	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2'344'5-PentaCB-(123)	%	61	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2-MonoCB-(1)	%	15	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'55'-HexaCB-(169)	%	76	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'5-PentaCB-(126)	%	69	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'-TetraCB-(77)	%	83	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-344'5-TetraCB-(81)	%	75	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-344'-TriCB-(37)	%	54	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-44'-DiCB-(15)	%	58	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-4-MonoCB-(3)	%	21	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-DecaCB-(209)	%	127	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-HexaCB-(156)+(157)	%	73	N/A	N/A	N/A	N/A	N/A	N/A	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0674

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VCT483							
Compling Date		2023/02/20							
Sampling Date		14:41							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	MW2-20230220-GW-60	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2-MonoCB-(1)	ng/L	0.023 U	0.023	0.020	0.0098	N/A	N/A	1	8533813
3-MonoCB-(2)	ng/L	0.021 U	0.021	0.020	0.0079	N/A	N/A	1	8533813
4-MonoCB-(3)	ng/L	0.018 U	0.018	0.050	0.0071	N/A	N/A	1	8533813
22'-DiCB-(4)	ng/L	0.025 U	0.025	0.050	0.017	N/A	N/A	1	8533813
2,3-DiCB-(5)	ng/L	0.0083 U	0.0083	0.050	0.012	N/A	N/A	1	8533813
2,3'-DiCB-(6)	ng/L	0.0086 U	0.0086	0.020	0.0053	N/A	N/A	1	8533813
2,4-DiCB-(7)	ng/L	0.0084 U	0.0084	0.020	0.0056	N/A	N/A	1	8533813
2,4'-DiCB-(8)	ng/L	0.0082 U	0.0082	0.050	0.017	N/A	N/A	1	8533813
2,5-DiCB-(9)	ng/L	0.0082 U	0.0082	0.020	0.0044	N/A	N/A	1	8533813
2,6-DiCB-(10)	ng/L	0.011 U	0.011	0.050	0.0052	N/A	N/A	1	8533813
3,3'-DiCB-(11)	ng/L	0.102 J	0.0085	0.20	0.0090	N/A	N/A	1	8533813
DiCB-(12)+(13)	ng/L	0.0079 U	0.0079	0.050	0.015	N/A	N/A	1	8533813
3,5-DiCB-(14)	ng/L	0.0085 U	0.0085	0.020	0.0082	N/A	N/A	1	8533813
4,4'-DiCB-(15)	ng/L	0.0075 U	0.0075	0.050	0.011	N/A	N/A	1	8533813
22'3-TriCB-(16)	ng/L	0.013 U	0.013	0.050	0.0060	N/A	N/A	1	8533813
22'4-TriCB-(17)	ng/L	0.010 U	0.010	0.020	0.0091	N/A	N/A	1	8533813
TriCB-(18)+(30)	ng/L	0.0085 U	0.0085	0.050	0.017	N/A	N/A	1	8533813
22'6-TriCB-(19)	ng/L	0.018 U	0.018	0.020	0.0061	N/A	N/A	1	8533813
TriCB-(20) + (28)	ng/L	0.0077 J	0.0026	0.050	0.010	N/A	N/A	1	8533813
TriCB-(21)+(33)	ng/L	0.0047 J	0.0029	0.050	0.011	N/A	N/A	1	8533813
234'-TriCB-(22)	ng/L	0.0070 J	0.0060	0.020	0.0065	N/A	N/A	1	8533813
235-TriCB-(23)	ng/L	0.0059 U	0.0059	0.020	0.0072	N/A	N/A	1	8533813
236-TriCB-(24)	ng/L	0.0075 U	0.0075	0.020	0.0043	N/A	N/A	1	8533813
23'4-TriCB-(25)	ng/L	0.0060 U	0.0060	0.020	0.0054	N/A	N/A	1	8533813
TriCB-(26)+(29)	ng/L	0.0054 U	0.0054	0.050	0.013	N/A	N/A	1	8533813
23'6-TriCB-(27)	ng/L	0.0071 U	0.0071	0.020	0.0082	N/A	N/A	1	8533813
24'5-TriCB-(31)	ng/L	0.0148 J	0.0051	0.050	0.0078	N/A	N/A	1	8533813
24'6-TriCB-(32)	ng/L	0.0070 U	0.0070	0.020	0.0087	N/A	N/A	1	8533813
23'5'-TriCB-(34)	ng/L	0.0058 U	0.0058	0.020	0.0061	N/A	N/A	1	8533813
33'4-TriCB-(35)	ng/L	0.0060 U	0.0060	0.020	0.0042	N/A	N/A	1	8533813
33'5-TriCB-(36)	ng/L	0.0053 U	0.0053	0.020	0.0052	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0674

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VCT483							
Sampling Date		2023/02/20							
Sampling Date		14:41							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	MW2-20230220-GW-60	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
344'-TriCB-(37)	ng/L	0.0077 J	0.0052	0.020	0.0041	N/A	N/A	1	8533813
345-TriCB-(38)	ng/L	0.0055 U	0.0055	0.020	0.0047	N/A	N/A	1	8533813
34'5-TriCB-(39)	ng/L	0.0059 U	0.0059	0.020	0.0059	N/A	N/A	1	8533813
TetraCB-(40)+(41)+(71)	ng/L	0.016 U	0.016	0.10	0.035	N/A	N/A	1	8533813
22'34'-TetraCB-(42)	ng/L	0.022 U	0.022	0.050	0.011	N/A	N/A	1	8533813
22'35-TetraCB-(43)	ng/L	0.021 U	0.021	0.050	0.015	N/A	N/A	1	8533813
TetraCB-(44)+(47)+(65)	ng/L	0.028 J	0.015	0.10	0.029	N/A	N/A	1	8533813
TetraCB-(45)+(51)	ng/L	0.017 U	0.017	0.050	0.011	N/A	N/A	1	8533813
22'36'-TetraCB-(46)	ng/L	0.019 U	0.019	0.020	0.014	N/A	N/A	1	8533813
22'45-TetraCB-(48)	ng/L	0.016 U	0.016	0.050	0.017	N/A	N/A	1	8533813
TetraCB-(49)+TetraCB-(69)	ng/L	0.015 U	0.015	0.10	0.023	N/A	N/A	1	8533813
TetraCB-(50)+(53)	ng/L	0.017 U	0.017	0.10	0.027	N/A	N/A	1	8533813
22'55'-TetraCB-(52)	ng/L	0.049 J	0.017	0.050	0.019	N/A	N/A	1	8533813
22'66'-TetraCB-(54)	ng/L	0.028 U	0.028	0.050	0.020	N/A	N/A	1	8533813
233'4-TetraCB-(55)	ng/L	0.012 U	0.012	0.050	0.015	N/A	N/A	1	8533813
233'4'-Tetra CB(56)	ng/L	0.012 U	0.012	0.050	0.018	N/A	N/A	1	8533813
233'5-TetraCB-(57)	ng/L	0.012 U	0.012	0.050	0.0097	N/A	N/A	1	8533813
233'5'-TetraCB-(58)	ng/L	0.011 U	0.011	0.050	0.020	N/A	N/A	1	8533813
TetraCB-(59)+(62)+(75)	ng/L	0.012 U	0.012	0.10	0.038	N/A	N/A	1	8533813
2344'-TetraCB -(60)	ng/L	0.012 U	0.012	0.050	0.011	N/A	N/A	1	8533813
TetraCB-(61)+(70)+(74)+(76)	ng/L	0.058 J	0.012	0.20	0.035	N/A	N/A	1	8533813
234'5-TetraCB-(63)	ng/L	0.011 U	0.011	0.050	0.0080	N/A	N/A	1	8533813
234'6-TetraCB-(64)	ng/L	0.014 U	0.014	0.050	0.0089	N/A	N/A	1	8533813
23'44'-TetraCB-(66)	ng/L	0.011 U (1)	0.011	0.050	0.0084	N/A	N/A	1	8533813
23'45-TetraCB-(67)	ng/L	0.0095 U	0.0095	0.050	0.0040	N/A	N/A	1	8533813
23'45'-TetraCB-(68)	ng/L	0.011 U	0.011	0.050	0.014	N/A	N/A	1	8533813
23'55'-TetraCB-(72)	ng/L	0.011 U	0.011	0.050	0.0082	N/A	N/A	1	8533813
23'5'6-TetraCB-(73)	ng/L	0.011 U	0.011	0.050	0.023	N/A	N/A	1	8533813
33'44'-TetraCB-(77)	ng/L	0.0086 U	0.0086	0.050	0.011	0.000100	0.000000860	1	8533813
33'45-TetraCB-(78)	ng/L	0.012 U	0.012	0.050	0.013	N/A	N/A	1	8533813
1									

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Apex Laboratories Client Project #: A3B0674

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VCT483							
Someting Date		2023/02/20							
Sampling Date		14:41							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	MW2-20230220-GW-60	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
33'45'-TetraCB(79)	ng/L	0.0095 U	0.0095	0.050	0.0088	N/A	N/A	1	8533813
33'55'-TetraCB-(80)	ng/L	0.0097 U	0.0097	0.050	0.0087	N/A	N/A	1	8533813
344'5-TetraCB-(81)	ng/L	0.0093 U	0.0093	0.050	0.0079	0.000300	0.00000279	1	8533813
22'33'4-PentaCB-(82)	ng/L	0.018 U	0.018	0.050	0.014	N/A	N/A	1	8533813
PentaCB-(83)+(99)	ng/L	0.015 U	0.015	0.10	0.033	N/A	N/A	1	8533813
22'33'6-PentaCB-(84)	ng/L	0.019 J	0.015	0.020	0.0088	N/A	N/A	1	8533813
PentaCB-(85)+(116)+(117)	ng/L	0.026 J	0.019	0.10	0.040	N/A	N/A	1	8533813
PentaCB-(86)(87)(97)(109)(119)(125)	ng/L	0.050 J	0.012	0.20	0.080	N/A	N/A	1	8533813
PentaCB-(88)+(91)	ng/L	0.015 U	0.015	0.050	0.025	N/A	N/A	1	8533813
22'346'-PentaCB-(89)	ng/L	0.018 U	0.018	0.050	0.0040	N/A	N/A	1	8533813
PentaCB-(90)+(101)+(113)	ng/L	0.120 J	0.012	0.20	0.0080	N/A	N/A	1	8533813
22'355'-PentaCB-(92)	ng/L	0.016 U	0.016	0.050	0.010	N/A	N/A	1	8533813
PentaCB-(93)+(98)+(100)+(102)	ng/L	0.014 U	0.014	0.20	0.051	N/A	N/A	1	8533813
22'356'-PentaCB-(94)	ng/L	0.015 U	0.015	0.050	0.017	N/A	N/A	1	8533813
22'35'6-PentaCB-(95)	ng/L	0.104	0.016	0.050	0.011	N/A	N/A	1	8533813
22'366'-PentaCB-(96)	ng/L	0.012 U	0.012	0.050	0.014	N/A	N/A	1	8533813
22'45'6-PentaCB-(103)	ng/L	0.014 U	0.014	0.050	0.012	N/A	N/A	1	8533813
22'466'-PentaCB-(104)	ng/L	0.013 U	0.013	0.050	0.022	N/A	N/A	1	8533813
233'44'-PentaCB-(105)	ng/L	0.0196 J	0.0070	0.050	0.0052	0.0000300	0.000000588	1	8533813
233'45-PentaCB-(106)	ng/L	0.0084 U	0.0084	0.050	0.018	N/A	N/A	1	8533813
233'4'5-PentaCB-(107)	ng/L	0.0066 U	0.0066	0.050	0.014	N/A	N/A	1	8533813
PentaCB-(108)+(124)	ng/L	0.0083 U	0.0083	0.10	0.023	N/A	N/A	1	8533813
PentaCB-(110)+(115)	ng/L	0.102	0.011	0.10	0.022	N/A	N/A	1	8533813
233'55'-PentaCB-(111)	ng/L	0.0095 U	0.0095	0.050	0.012	N/A	N/A	1	8533813
233'56-PentaCB-(112)	ng/L	0.0243 J	0.0092	0.050	0.018	N/A	N/A	1	8533813
2344'5-PentaCB-(114)	ng/L	0.0075 U	0.0075	0.050	0.0084	0.0000300	0.000000225	1	8533813
23'44'5-PentaCB-(118)	ng/L	0.0617 J	0.0071	0.10	0.0071	0.0000300	0.00000185	1	8533813
23'455'-PentaCB-(120)	ng/L	0.010 U	0.010	0.050	0.014	N/A	N/A	1	8533813
23'45'6-PentaCB-(121)	ng/L	0.010 U	0.010	0.050	0.0040	N/A	N/A	1	8533813
233'4'5'-PentaCB-(122)	ng/L	0.011 U	0.011	0.050	0.011	N/A	N/A	1	8533813
23'44'5'-PentaCB-(123)	ng/L	0.0082 U	0.0082	0.050	0.014	0.0000300	0.000000246	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0674

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VCT483							
Sampling Date		2023/02/20							
Sampling Date		14:41							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	MW2-20230220-GW-60	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
33'44'5-PentaCB-(126)	ng/L	0.0075 U	0.0075	0.050	0.0061	0.100	0.000750	1	8533813
33'455'-PentaCB-(127)	ng/L	0.0081 U	0.0081	0.050	0.017	N/A	N/A	1	8533813
HexaCB-(128)+(166)	ng/L	0.011 U (1)	0.011	0.10	0.026	N/A	N/A	1	8533813
HexaCB-(129)+(138)+(163)	ng/L	0.139 J	0.013	0.20	0.014	N/A	N/A	1	8533813
22'33'45'-HexaCB-(130)	ng/L	0.013 U	0.013	0.050	0.020	N/A	N/A	1	8533813
22'33'46-HexaCB-(131)	ng/L	0.017 U	0.017	0.050	0.019	N/A	N/A	1	8533813
22'33'46'-HexaCB-(132)	ng/L	0.044 J	0.014	0.050	0.019	N/A	N/A	1	8533813
22'33'55'-HexaCB-(133)	ng/L	0.014 U	0.014	0.050	0.017	N/A	N/A	1	8533813
HexaCB-(134)+(143)	ng/L	0.016 U	0.016	0.10	0.028	N/A	N/A	1	8533813
HexaCB-(135)+(151)	ng/L	0.076 J	0.016	0.10	0.038	N/A	N/A	1	8533813
22'33'66'-HexaCB-(136)	ng/L	0.023 J	0.011	0.050	0.014	N/A	N/A	1	8533813
22'344'5-HexaCB-(137)	ng/L	0.013 U	0.013	0.10	0.014	N/A	N/A	1	8533813
HexaCB-(139)+(140)	ng/L	0.012 U	0.012	0.10	0.032	N/A	N/A	1	8533813
22'3455'-HexaCB-(141)	ng/L	0.029 J	0.012	0.050	0.018	N/A	N/A	1	8533813
22'3456-HexaCB-(142)	ng/L	0.015 U	0.015	0.050	0.018	N/A	N/A	1	8533813
22'345'6-HexaCB-(144)	ng/L	0.016 U	0.016	0.050	0.011	N/A	N/A	1	8533813
22'3466'-HexaCB-(145)	ng/L	0.011 U	0.011	0.050	0.022	N/A	N/A	1	8533813
22'34'55'-HexaCB-(146)	ng/L	0.018 J	0.011	0.050	0.014	N/A	N/A	1	8533813
HexaCB-(147)+(149)	ng/L	0.134	0.012	0.10	0.027	N/A	N/A	1	8533813
22'34'56'-HexaCB-(148)	ng/L	0.016 U	0.016	0.050	0.013	N/A	N/A	1	8533813
22'34'66'-HexaCB-(150)	ng/L	0.011 U	0.011	0.050	0.022	N/A	N/A	1	8533813
22'3566'-HexaCB-(152)	ng/L	0.012 U	0.012	0.050	0.020	N/A	N/A	1	8533813
HexaCB-(153)+(168)	ng/L	0.125	0.0097	0.10	0.028	N/A	N/A	1	8533813
22'44'56'-HexaCB-(154)	ng/L	0.013 U	0.013	0.050	0.014	N/A	N/A	1	8533813
22'44'66'-HexaCB-(155)	ng/L	0.011 U	0.011	0.050	0.013	N/A	N/A	1	8533813
HexaCB-(156)+(157)	ng/L	0.0098 J	0.0073	0.10	0.015	0.0000300	0.000000294	1	8533813
233'44'6-HexaCB-(158)	ng/L	0.0113 J	0.0079	0.050	0.017	N/A	N/A	1	8533813
233'455'-HexaCB-(159)	ng/L	0.0068 U	0.0068	0.050	0.015	N/A	N/A	1	8533813
233'456-HexaCB-(160)	ng/L	0.010 U	0.010	0.050	0.013	N/A	N/A	1	8533813
233'45'6-HexaCB-(161)	ng/L	0.0096 U	0.0096	0.050	0.022	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Apex Laboratories Client Project #: A3B0674

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VCT483							
Sampling Date		2023/02/20							
Sampling Date		14:41							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	MW2-20230220-GW-60	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
233'4'55'-HexaCB-(162)	ng/L	0.0068 U	0.0068	0.050	0.016	N/A	N/A	1	8533813
233'4'5'6-HexaCB-(164)	ng/L	0.0084 U	0.0084	0.050	0.020	N/A	N/A	1	8533813
233'55'6-HexaCB-(165)	ng/L	0.010 U	0.010	0.050	0.022	N/A	N/A	1	8533813
23'44'55'-HexaCB-(167)	ng/L	0.0074 U	0.0074	0.050	0.0096	0.0000300	0.000000222	1	8533813
33'44'55'-HexaCB-(169)	ng/L	0.0081 U	0.0081	0.050	0.0092	0.0300	0.000243	1	8533813
22'33'44'5-HeptaCB-(170)	ng/L	0.0163 J	0.0087	0.050	0.011	N/A	N/A	1	8533813
HeptaCB-(171)+(173)	ng/L	0.010 U	0.010	0.10	0.027	N/A	N/A	1	8533813
22'33'455'-HeptaCB-(172)	ng/L	0.011 U	0.011	0.050	0.012	N/A	N/A	1	8533813
22'33'456'-HeptaCB-(174)	ng/L	0.0298 J	0.0098	0.050	0.017	N/A	N/A	1	8533813
22'33'45'6-HeptaCB-(175)	ng/L	0.012 U	0.012	0.050	0.0064	N/A	N/A	1	8533813
22'33'466'-HeptaCB-(176)	ng/L	0.0087 U	0.0087	0.050	0.0079	N/A	N/A	1	8533813
22'33'45'6'-HeptaCB-(177)	ng/L	0.019 J	0.011	0.050	0.013	N/A	N/A	1	8533813
22'33'55'6-HeptaCB-(178)	ng/L	0.012 U	0.012	0.050	0.0071	N/A	N/A	1	8533813
22'33'566'-HeptaCB-(179)	ng/L	0.0204 J	0.0087	0.050	0.010	N/A	N/A	1	8533813
HeptaCB-(180)+(193)	ng/L	0.0498 J	0.0074	0.10	0.018	N/A	N/A	1	8533813
22'344'56-HeptaCB-(181)	ng/L	0.0099 U	0.0099	0.050	0.015	N/A	N/A	1	8533813
22'344'56'-HeptaCB-(182)	ng/L	0.011 U	0.011	0.050	0.0066	N/A	N/A	1	8533813
22'344'5'6-HeptaCB-(183)	ng/L	0.0193 J	0.0089	0.050	0.017	N/A	N/A	1	8533813
22'344'66'-HeptaCB-(184)	ng/L	0.0084 U	0.0084	0.050	0.0065	N/A	N/A	1	8533813
22'3455'6-HeptaCB-(185)	ng/L	0.0093 U	0.0093	0.050	0.017	N/A	N/A	1	8533813
22'34566'-HeptaCB-(186)	ng/L	0.0089 U	0.0089	0.050	0.0095	N/A	N/A	1	8533813
22'34'55'6-HeptaCB-(187)	ng/L	0.038 J	0.011	0.050	0.0047	N/A	N/A	1	8533813
22'34'566'-HeptaCB-(188)	ng/L	0.0083 U	0.0083	0.050	0.015	N/A	N/A	1	8533813
233'44'55'-HeptaCB-(189)	ng/L	0.0066 U	0.0066	0.050	0.014	0.0000300	0.00000198	1	8533813
233'44'56-HeptaCB-(190)	ng/L	0.0071 U	0.0071	0.050	0.016	N/A	N/A	1	8533813
233'44'5'6-HeptaCB-(191)	ng/L	0.0070 U	0.0070	0.050	0.014	N/A	N/A	1	8533813
233'455'6-HeptaCB-(192)	ng/L	0.0082 U	0.0082	0.050	0.0088	N/A	N/A	1	8533813
22'33'44'55'-OctaCB-(194)	ng/L	0.0092 U	0.0092	0.050	0.024	N/A	N/A	1	8533813
22'33'44'56-OctaCB-(195)	ng/L	0.011 U	0.011	0.050	0.019	N/A	N/A	1	8533813
22'33'44'56'-OctaCB-(196)	ng/L	0.011 U	0.011	0.050	0.017	N/A	N/A	1	8533813
22'33'44'66'OctaCB-(197)	ng/L	0.0079 U	0.0079	0.050	0.033	N/A	N/A	1	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0674

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VCT483							
Sampling Date		2023/02/20							
Sampling Date		14:41							
COC Number		n/a				TOXIC EQU	IVALENCY	# of	
	UNITS	MW2-20230220-GW-60	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
OctaCB-(198)+(199)	ng/L	0.012 U	0.012	0.10	0.028	N/A	N/A	1	8533813
22'33'4566'-OctaCB-(200)	ng/L	0.0089 U	0.0089	0.050	0.031	N/A	N/A	1	8533813
22'33'45'66'-OctaCB-(201)	ng/L	0.0079 U	0.0079	0.050	0.014	N/A	N/A	1	8533813
22'33'55'66'-OctaCB-(202)	ng/L	0.0084 U	0.0084	0.050	0.013	N/A	N/A	1	8533813
22'344'55'6-OctaCB-(203)	ng/L	0.011 U	0.011	0.050	0.021	N/A	N/A	1	8533813
22'344'566'-OctaCB-(204)	ng/L	0.0055 U	0.0055	0.050	0.018	N/A	N/A	1	8533813
233'44'55'6-OctaCB-(205)	ng/L	0.0070 U	0.0070	0.050	0.014	N/A	N/A	1	8533813
22'33'44'55'6-NonaCB-(206)	ng/L	0.014 U	0.014	0.050	0.020	N/A	N/A	1	8533813
22'33'44'566'-NonaCB-(207)	ng/L	0.012 U	0.012	0.050	0.018	N/A	N/A	1	8533813
22'33'455'66'-NonaCB-(208)	ng/L	0.011 U	0.011	0.050	0.021	N/A	N/A	1	8533813
DecaCB-(209)	ng/L	0.010 U	0.010	0.050	0.015	N/A	N/A	1	8533813
Total PCB	ng/L	1.60	0.028	N/A	N/A	N/A	N/A	N/A	8533813
TOTAL TOXIC EQUIVALENCY	ng/L	N/A	N/A	N/A	N/A	N/A	0.00100	N/A	N/A
Surrogate Recovery (%)	•		•					•	
C13-2,44'-TriCB-(28)	%	45	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2,4'5-TriCB-(31) (FS)	%	87	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'44'55'6-NonaCB-(206)	%	114	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'44'5-HeptaCB-(170)	%	102	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'455'66'-NonaCB-(208)	%	105	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'55'66'-OctaCB-(202)	%	107	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'33'55'6-HeptaCB-(178)	%	107	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'344'55'-HeptaCB-(180)	%	100	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'34'566'-HeptaCB-(188)	%	92	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'44'66'-HexaCB-(155)	%	89	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'466'-PentaCB-(104)	%	58	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'66'-TetraCB-(54)	%	44	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'6-TriCB-(19)	%	39 (1)	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-22'-DiCB-(4)	%	33	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'55'6-OctaCB-(205)	%	100	N/A	N/A	N/A	N/A	N/A	N/A	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Apex Laboratories
Client Project #: A3B0674

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

Bureau Veritas ID		VCT483							
Sampling Date		2023/02/20 14:41							
COC Number		n/a				TOXIC EQU	IIVALENCY	# of	
	UNITS	MW2-20230220-GW-60	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-233'44'55'-HeptaCB-(189)	%	93	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'44'-PentaCB-(105)	%	71	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-233'55'-PentaCB-(111)	%	90	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-23'44'55'-HexaCB-(167)	%	74	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2344'5-PentaCB-(114)	%	64	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-23'44'5-PentaCB-(118)	%	64	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2'344'5-PentaCB-(123)	%	62	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-2-MonoCB-(1)	%	18	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'55'-HexaCB-(169)	%	77	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'5-PentaCB-(126)	%	71	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-33'44'-TetraCB-(77)	%	87	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-344'5-TetraCB-(81)	%	81	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-344'-TriCB-(37)	%	52	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-44'-DiCB-(15)	%	44	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-4-MonoCB-(3)	%	23	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-DecaCB-(209)	%	131	N/A	N/A	N/A	N/A	N/A	N/A	8533813
C13-HexaCB-(156)+(157)	%	75	N/A	N/A	N/A	N/A	N/A	N/A	8533813

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3B0674

TEST SUMMARY

Bureau Veritas ID: VCT482

Sample ID: MW1-20230220-GW-70

Matrix: Water

Collected: 2023/02/20

Shipped:

Received: 2023/02/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dioxins/Furans in Water (1613B)	HRMS/MS	8524619	2023/02/24	2023/02/28	Yan Qin
OC Pesticides in Water by GCTQ	GCTQ/MS	8523575	2023/02/27	2023/03/03	Chau Ting (Ruth) Chan
PCB Congeners in Water (1668C)	HRMS/MS	8533813	2023/02/23	2023/04/06	Cathy Xu
PFAS in water by SPE/LCMS	LCMS	8534937	2023/03/04	2023/03/05	Hitaishi Bhardwaj

Bureau Veritas ID: VCT483

Sample ID: MW2-20230220-GW-60

Matrix: Water

Shipped:

Collected: 2023/02/20

Received: 2023/02/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dioxins/Furans in Water (1613B)	HRMS/MS	8524619	2023/02/24	2023/02/28	Yan Qin
OC Pesticides in Water by GCTQ	GCTQ/MS	8523575	2023/02/27	2023/03/03	Chau Ting (Ruth) Chan
PCB Congeners in Water (1668C)	HRMS/MS	8533813	2023/02/23	2023/04/06	Cathy Xu
PFAS in water by SPE/LCMS	LCMS	8534937	2023/03/04	2023/03/05	Hitaishi Bhardwaj

Bureau Veritas ID: VCT483 Dup

Sample ID: MW2-20230220-GW-60

Matrix: Water

Collected: 2023/02/20

Shipped:

Received: 2023/02/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
OC Pesticides in Water by GCTQ	GCTQ/MS	8523575	2023/02/27	2023/03/03	Chau Ting (Ruth) Chan

Report Date: 2023/04/21

Apex Laboratories Client Project #: A3B0674

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	3.0°C
Package 2	3.7°C

SEMI-VOLATILE ORGANICS BY HRMS (WATER)

PCB Congeners in Water (1668C): Worksheet Blank contains some traces of PCB congeners natives that are above the RDL. However, all samples in worksheet (8533813) shows trace concentration levels below RDL. Results should be reviewed with caution.

Results relate only to the items tested.

Apex Laboratories Client Project #: A3B0674

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
8523575	CTC	Matrix Spike(VCT482)	13C10-cis Nonachlor	2023/03/03		108	%	36 - 139
			13C10-Heptachlor	2023/03/03		97	%	5 - 120
			13C10-Heptachlor Epoxide	2023/03/03		94	%	27 - 137
			13C10-Oxychlordane	2023/03/03		97	%	23 - 135
			13C10-trans Nonachlor	2023/03/03		89	%	14 - 136
			13C12-Endrin	2023/03/03		131	%	35 - 155
			13C12-Endrin Ketone	2023/03/03		89	%	35 - 155
			13C6-beta BHC	2023/03/03		81	%	32 - 130
			13C6-d6-gamma BHC (Lindane)	2023/03/03		94	%	11 - 120
			13C-Methoxychlor	2023/03/03		125 (1)	%	5 - 120
			13C-pp-DDD	2023/03/03		110	%	5 - 120
			13C-pp-DDE	2023/03/03		96	%	47 - 160
			13C-pp-DDT	2023/03/03		90	%	5 - 120
			C13-Hexachlorobenzene	2023/03/03		79	%	5 - 120
			Aldrin	2023/03/03		155	%	50 - 200
			alpha-BHC	2023/03/03		122	%	50 - 200
			delta-BHC	2023/03/03		128	%	50 - 200
			beta-BHC	2023/03/03		130	%	50 - 200
			Lindane	2023/03/03		120	%	50 - 200
			a-Chlordane	2023/03/03		137	%	50 - 200
			g-Chlordane	2023/03/03		120	%	50 - 200
			Oxychlordane	2023/03/03		86	%	50 - 200
			o,p-DDD	2023/03/03		110	%	50 - 200
			p,p-DDD	2023/03/03		119	%	50 - 200
			o,p-DDE	2023/03/03		118	%	50 - 200
			p,p-DDE	2023/03/03		126	%	50 - 200
			o,p-DDT	2023/03/03		111	%	50 - 200
			p,p-DDT	2023/03/03		143	%	50 - 200
			Dieldrin	2023/03/03		126	%	50 - 200
			Endosulfan I	2023/03/03		125	%	50 - 200
			Endosulfan II	2023/03/03		127	%	50 - 200
			Endosulfan sulfate	2023/03/03		139	%	50 - 200
			Endrin	2023/03/03		96	%	50 - 200
			Endrin aldehyde	2023/03/03		123	%	50 - 200
			Endrin ketone	2023/03/03		139	%	50 - 200
			Heptachlor	2023/03/03		114	%	50 - 200
			Heptachlor epoxide	2023/03/03		136	%	50 - 200
			Hexachlorobenzene	2023/03/03		115	%	50 - 200
			Methoxychlor	2023/03/03		131	%	50 - 200
			Mirex	2023/03/03		118	%	50 - 200
			cis-Nonachlor	2023/03/03		123	%	50 - 200
			trans-Nonachlor	2023/03/03		126	%	50 - 200
8523575	СТС	Spiked Blank	13C10-cis Nonachlor	2023/03/03		88	% %	36 - 139
0323373	CIC	שווגבע טומווג	13C10-CIS Nortactifior 13C10-Heptachlor	2023/03/03		81	%	5 - 120
			•			87		
			13C10-Heptachlor Epoxide	2023/03/03		87 88	%	27 - 137 23 - 135
			13C10-Oxychlordane 13C10-trans Nonachlor	2023/03/03 2023/03/03		88 82	% %	23 - 135 14 - 136
			13C12-Endrin	2023/03/03		90	%	35 - 155
			13C12-Endrin Ketone	2023/03/03		76 80	%	35 - 155
			13C6-beta BHC	2023/03/03		80 86	%	32 - 130 11 130
			13C6-d6-gamma BHC (Lindane)	2023/03/03		86 83	%	11 - 120
			13C-Methoxychlor	2023/03/03		83	%	5 - 120 5 - 120
			13C-pp-DDD	2023/03/03		88	%	5 - 120

Apex Laboratories Client Project #: A3B0674

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			13C-pp-DDE	2023/03/03		81	%	47 - 160
			13C-pp-DDT	2023/03/03		79	%	5 - 120
			C13-Hexachlorobenzene	2023/03/03		67	%	5 - 120
			Aldrin	2023/03/03		124	%	50 - 200
			alpha-BHC	2023/03/03		110	%	50 - 200
			delta-BHC	2023/03/03		110	%	50 - 200
			beta-BHC	2023/03/03		105	%	50 - 200
			Lindane	2023/03/03		117	%	50 - 200
			a-Chlordane	2023/03/03		141	%	50 - 200
			g-Chlordane	2023/03/03		126	%	50 - 200
			Oxychlordane	2023/03/03		101	%	50 - 200
			o,p-DDD	2023/03/03		110	%	50 - 200
			p,p-DDD	2023/03/03		119	%	50 - 200
			o,p-DDE	2023/03/03		115	%	50 - 200
			p,p-DDE	2023/03/03		118	%	50 - 200
			o,p-DDT	2023/03/03		106	%	50 - 200
			p,p-DDT	2023/03/03		122	%	50 - 200
			Dieldrin	2023/03/03		114	%	50 - 200
			Endosulfan I	2023/03/03		132	%	50 - 200
			Endosulfan II	2023/03/03		135	%	50 - 200
			Endosulfan sulfate	2023/03/03		114	%	50 - 200
			Endrin	2023/03/03		107	%	50 - 200
			Endrin aldehyde	2023/03/03		126	%	50 - 200
			Endrin ketone	2023/03/03		119	%	50 - 200
			Heptachlor	2023/03/03		109	%	50 - 200
			Heptachlor epoxide	2023/03/03		124	%	50 - 200
			Hexachlorobenzene	2023/03/03		113	%	50 - 200
			Methoxychlor	2023/03/03		121	%	50 - 200
			Mirex	2023/03/03		99	% %	50 - 200
			cis-Nonachlor	2023/03/03		121	% %	50 - 200
			trans-Nonachlor	2023/03/03		119	% %	50 - 200
8523575	CTC	Method Blank	13C10-cis Nonachlor	2023/03/03		80		
0023070	CTC	METHOR PIGHK					%	36 - 139
			13C10-Heptachlor	2023/03/03		66 83	%	5 - 120 27 - 137
			13C10-Heptachlor Epoxide	2023/03/03		83	%	
			13C10-Oxychlordane	2023/03/03		86	%	23 - 135
			13C10-trans Nonachlor	2023/03/03		83	%	14 - 136
			13C12-Endrin	2023/03/03		91 77	%	35 - 155
			13C12-Endrin Ketone	2023/03/03		77 70	%	35 - 155
			13C6-beta BHC	2023/03/03		70	%	32 - 130
			13C6-d6-gamma BHC (Lindane)	2023/03/03		98	%	11 - 120
			13C-Methoxychlor	2023/03/03		69	%	5 - 120
			13C-pp-DDD	2023/03/03		71	%	5 - 120
			13C-pp-DDE	2023/03/03		97	%	47 - 160
			13C-pp-DDT	2023/03/03		79 	%	5 - 120
			C13-Hexachlorobenzene	2023/03/03		75	%	5 - 120
			Aldrin	2023/03/03	0.021 U, MDL=0.021		ng/L	
			alpha-BHC	2023/03/03	0.024 U, MDL=0.024		ng/L	
			delta-BHC	2023/03/03	0.029 U, MDL=0.029		ng/L	
			beta-BHC	2023/03/03	0.014 U, MDL=0.014		ng/L	

Apex Laboratories Client Project #: A3B0674

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Lindane	2023/03/03	0.033 U, MDL=0.033	,	ng/L	
			a-Chlordane	2023/03/03	0.029 U, MDL=0.029		ng/L	
			g-Chlordane	2023/03/03	0.029 U, MDL=0.029		ng/L	
			Oxychlordane	2023/03/03	0.028 U, MDL=0.028		ng/L	
			o,p-DDD	2023/03/03	0.020 U, MDL=0.020		ng/L	
			p,p-DDD	2023/03/03	0.014 U, MDL=0.014		ng/L	
			o,p-DDE	2023/03/03	0.016 U, MDL=0.016		ng/L	
			p,p-DDE	2023/03/03	0.012 U, MDL=0.012		ng/L	
			o,p-DDT	2023/03/03	0.040 U, MDL=0.040		ng/L	
			p,p-DDT	2023/03/03	0.050 U, MDL=0.050		ng/L	
			Dieldrin	2023/03/03	0.050 U, MDL=0.050		ng/L	
			Endosulfan I	2023/03/03	0.067 U, MDL=0.067		ng/L	
			Endosulfan II	2023/03/03	0.074 U, MDL=0.074		ng/L	
			Endosulfan sulfate	2023/03/03	0.070 U, MDL=0.070		ng/L	
			Endrin	2023/03/03	0.063 J, MDL=0.045		ng/L	
			Endrin aldehyde	2023/03/03	0.071 U, MDL=0.071		ng/L	
			Endrin ketone	2023/03/03	0.034 U, MDL=0.034		ng/L	
			Heptachlor	2023/03/03	0.029 U, MDL=0.029		ng/L	
			Heptachlor epoxide	2023/03/03	0.015 U, MDL=0.015		ng/L	
			Hexachlorobenzene	2023/03/03	0.10 U, MDL=0.10		ng/L	
			Methoxychlor	2023/03/03	0.040 U, MDL=0.040		ng/L	
			Mirex	2023/03/03	0.021 U, MDL=0.021		ng/L	
			cis-Nonachlor	2023/03/03	0.037 U, MDL=0.037		ng/L	
			trans-Nonachlor	2023/03/03	0.044 U, MDL=0.044		ng/L	
8523575	CTC	RPD - Sample/Sample Dup	Aldrin	2023/03/03	NC		%	25
			alpha-BHC	2023/03/03	NC		%	25
			delta-BHC	2023/03/03	NC		%	25
			beta-BHC	2023/03/03	NC (2)		%	25
			Lindane	2023/03/03	NC		%	25
			a-Chlordane	2023/03/03	NC		%	25

Apex Laboratories Client Project #: A3B0674

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			g-Chlordane	2023/03/03	NC		%	25
			Oxychlordane	2023/03/03	NC		%	25
			o,p-DDD	2023/03/03	NC		%	25
			p,p-DDD	2023/03/03	NC		%	25
			o,p-DDE	2023/03/03	NC		%	25
			p,p-DDE	2023/03/03	NC		%	25
			o,p-DDT	2023/03/03	NC		%	25
			p,p-DDT	2023/03/03	NC		%	25
			Dieldrin	2023/03/03	NC		%	25
			Endosulfan I	2023/03/03	NC		%	25
			Endosulfan II	2023/03/03	NC		%	25
			Endosulfan sulfate	2023/03/03	NC		%	25
			Endrin	2023/03/03	NC		%	25
			Endrin aldehyde	2023/03/03	NC		%	25
			Endrin ketone	2023/03/03	NC		%	25
			Heptachlor	2023/03/03	NC		%	25
			Heptachlor epoxide	2023/03/03	NC		%	25
			Hexachlorobenzene	2023/03/03	NC		%	25
			Methoxychlor	2023/03/03	NC		%	25
			Mirex	2023/03/03	NC		%	25
			cis-Nonachlor	2023/03/03	NC		%	25
			trans-Nonachlor	2023/03/03	NC		%	25
8524619	YQI	Spiked Blank	37CL4 2378 Tetra CDD	2023/02/28		76	%	35 - 197
			C13-1234678 HeptaCDD	2023/02/28		96	%	23 - 140
			C13-1234678 HeptaCDF	2023/02/28		91	%	28 - 143
			C13-123478 HexaCDD	2023/02/28		92	%	32 - 141
			C13-123478 HexaCDF	2023/02/28		88	%	26 - 152
			C13-1234789 HeptaCDF	2023/02/28		93	%	28 - 138
			C13-123678 HexaCDD	2023/02/28		96	%	28 - 130
			C13-123678 HexaCDF	2023/02/28		90	%	26 - 123
			C13-12378 PentaCDD	2023/02/28		91	%	25 - 181
			C13-12378 PentaCDF	2023/02/28		82	%	24 - 185
			C13-123789 HexaCDF	2023/02/28		92	%	29 - 147
			C13-234678 HexaCDF	2023/02/28		99	%	28 - 136
			C13-23478 PentaCDF	2023/02/28		89	%	21 - 178
			C13-2378 TetraCDD	2023/02/28		72	%	25 - 164
			C13-2378 TetraCDF	2023/02/28		83	%	24 - 169
			C13-OCDD	2023/02/28		96	%	17 - 157
			2,3,7,8-Tetra CDD	2023/02/28		105	%	67 - 158
			1,2,3,7,8-Penta CDD	2023/02/28		96	%	25 - 181
			1,2,3,4,7,8-Hexa CDD	2023/02/28		97	%	70 - 164
			1,2,3,6,7,8-Hexa CDD	2023/02/28		97	%	76 - 134
			1,2,3,7,8,9-Hexa CDD	2023/02/28		97	%	64 - 162
			1,2,3,4,6,7,8-Hepta CDD	2023/02/28		100	%	70 - 140
			Octa CDD	2023/02/28		103	%	78 - 144
			2,3,7,8-Tetra CDF	2023/02/28		99	%	75 - 158
			1,2,3,7,8-Penta CDF	2023/02/28		102	%	80 - 134
			2,3,4,7,8-Penta CDF	2023/02/28		98	%	68 - 160
			1,2,3,4,7,8-Hexa CDF	2023/02/28		99	%	72 - 134
			1,2,3,6,7,8-Hexa CDF	2023/02/28		98	%	84 - 130
			2,3,4,6,7,8-Hexa CDF	2023/02/28		93	%	70 - 156
			1,2,3,7,8,9-Hexa CDF	2023/02/28		98	%	78 - 130
			1,2,3,4,6,7,8-Hepta CDF	2023/02/28		102	%	82 - 122

Apex Laboratories Client Project #: A3B0674

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			1,2,3,4,7,8,9-Hepta CDF	2023/02/28		96	%	78 - 138
			Octa CDF	2023/02/28		97	%	63 - 170
8524619	YQI	Spiked Blank DUP	37CL4 2378 Tetra CDD	2023/02/28		74	%	35 - 197
			C13-1234678 HeptaCDD	2023/02/28		93	%	23 - 140
			C13-1234678 HeptaCDF	2023/02/28		90	%	28 - 143
			C13-123478 HexaCDD	2023/02/28		95	%	32 - 141
			C13-123478 HexaCDF	2023/02/28		89	%	26 - 152
			C13-1234789 HeptaCDF	2023/02/28		92	%	28 - 138
			C13-123678 HexaCDD	2023/02/28		98	%	28 - 130
			C13-123678 HexaCDF	2023/02/28		91	%	26 - 123
			C13-12378 PentaCDD	2023/02/28		87	%	25 - 181
			C13-12378 PentaCDF	2023/02/28		81	%	24 - 185
			C13-123789 HexaCDF	2023/02/28		91	%	29 - 147
			C13-234678 HexaCDF	2023/02/28		103	%	28 - 136
			C13-23478 PentaCDF	2023/02/28		84	%	21 - 178
			C13-2378 TetraCDD	2023/02/28		72	%	25 - 164
			C13-2378 TetraCDF	2023/02/28		80	%	24 - 169
			C13-OCDD	2023/02/28		91	%	17 - 157
			2,3,7,8-Tetra CDD	2023/02/28		100	%	67 - 158
			1,2,3,7,8-Penta CDD	2023/02/28		98	%	25 - 181
			1,2,3,4,7,8-Hexa CDD	2023/02/28		95	%	70 - 164
			1,2,3,6,7,8-Hexa CDD	2023/02/28		99	%	76 - 134
			1,2,3,7,8,9-Hexa CDD	2023/02/28		98	%	64 - 162
			1,2,3,4,6,7,8-Hepta CDD	2023/02/28		101	%	70 - 140
			Octa CDD	2023/02/28		103	%	78 - 144
			2,3,7,8-Tetra CDF	2023/02/28		94	%	75 - 158
			1,2,3,7,8-Penta CDF	2023/02/28		99	%	80 - 134
			2,3,4,7,8-Penta CDF	2023/02/28		101	%	68 - 160
			1,2,3,4,7,8-Hexa CDF	2023/02/28		98	%	72 - 134
			1,2,3,6,7,8-Hexa CDF	2023/02/28		95	%	84 - 130
			2,3,4,6,7,8-Hexa CDF	2023/02/28		89	%	70 - 156
			1,2,3,7,8,9-Hexa CDF	2023/02/28		99	%	78 - 130
			1,2,3,4,6,7,8-Hepta CDF	2023/02/28		104	%	82 - 122
			1,2,3,4,7,8,9-Hepta CDF	2023/02/28		96	%	78 - 138
			Octa CDF	2023/02/28		98	%	63 - 170
8524619	YQI	RPD	2,3,7,8-Tetra CDD	2023/02/28	4.9		%	25
			1,2,3,7,8-Penta CDD	2023/02/28	2.1		%	25
			1,2,3,4,7,8-Hexa CDD	2023/02/28	2.1		%	25
			1,2,3,6,7,8-Hexa CDD	2023/02/28	2.0		%	25
			1,2,3,7,8,9-Hexa CDD	2023/02/28	1.0		%	25
			1,2,3,4,6,7,8-Hepta CDD	2023/02/28	1.0		%	25
			Octa CDD	2023/02/28	0		%	25
			2,3,7,8-Tetra CDF	2023/02/28	5.2		%	25
			1,2,3,7,8-Penta CDF	2023/02/28	3.0		%	25
			2,3,4,7,8-Penta CDF	2023/02/28	3.0		%	25
			1,2,3,4,7,8-Hexa CDF	2023/02/28	1.0		%	25
			1,2,3,6,7,8-Hexa CDF	2023/02/28	3.1		%	25
			2,3,4,6,7,8-Hexa CDF	2023/02/28	4.4		%	25
			1,2,3,7,8,9-Hexa CDF	2023/02/28	1.0		%	25
			1,2,3,4,6,7,8-Hepta CDF	2023/02/28	1.9		%	25
			1,2,3,4,7,8,9-Hepta CDF	2023/02/28	0		%	25
			Octa CDF	2023/02/28	1.0		%	25
8524619	YQI	Method Blank	37CL4 2378 Tetra CDD	2023/02/28		84	%	35 - 197

Apex Laboratories Client Project #: A3B0674

QA/QC		OC Town	Danasakas	Det A 1	\/-!	0/ D -	LINUTO	001: ::
Batch	Init	QC Type	Parameter CD2	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			C13-1234678 HeptaCDD	2023/02/28		86	%	23 - 140
			C13-1234678 HeptaCDF	2023/02/28		83	%	28 - 143
			C13-123478 HexaCDD	2023/02/28		92	%	32 - 141
			C13-123478 HexaCDF	2023/02/28		89	%	26 - 152
			C13-1234789 HeptaCDF	2023/02/28		83	%	28 - 138
			C13-123678 HexaCDD	2023/02/28		95	%	28 - 130
			C13-123678 HexaCDF	2023/02/28		91	%	26 - 123
			C13-12378 PentaCDD	2023/02/28		91	%	25 - 181
			C13-12378 PentaCDF C13-123789 HexaCDF	2023/02/28		85 86	% %	24 - 185 29 - 147
			C13-123789 REXACDF C13-234678 HexaCDF	2023/02/28		95	%	29 - 147
				2023/02/28				
			C13-23478 PentaCDF C13-2378 TetraCDD	2023/02/28		93 75	%	21 - 178
				2023/02/28			%	25 - 164
			C13-2378 TetraCDF	2023/02/28		87	%	24 - 169
			C13-OCDD	2023/02/28	4.42.11	86	%	17 - 157
			2,3,7,8-Tetra CDD	2023/02/28	1.43 U, EDL=1.43		pg/L	
			1,2,3,7,8-Penta CDD	2023/02/28	1.04 U, EDL=1.04		pg/L	
			1,2,3,4,7,8-Hexa CDD	2023/02/28	1.01 U, EDL=1.01		pg/L	
			1,2,3,6,7,8-Hexa CDD	2023/02/28	0.967 U, EDL=0.967		pg/L	
			1,2,3,7,8,9-Hexa CDD	2023/02/28	0.919 U, EDL=0.919		pg/L	
			1,2,3,4,6,7,8-Hepta CDD	2023/02/28	1.04 U, EDL=1.04		pg/L	
			Octa CDD	2023/02/28	2.48 J, EDL=1.19		pg/L	
			Total Tetra CDD	2023/02/28	1.43 U, EDL=1.43		pg/L	
			Total Penta CDD	2023/02/28	1.04 U, EDL=1.04		pg/L	
			Total Hexa CDD	2023/02/28	1.12 U, EDL=1.12		pg/L	
			Total Hepta CDD	2023/02/28	1.04 U, EDL=1.04		pg/L	
			2,3,7,8-Tetra CDF	2023/02/28	1.04 U, EDL=1.04		pg/L	
			1,2,3,7,8-Penta CDF	2023/02/28	1.28 U, EDL=1.28		pg/L	
			2,3,4,7,8-Penta CDF	2023/02/28	1.07 U, EDL=1.07		pg/L	
			1,2,3,4,7,8-Hexa CDF	2023/02/28	0.863 U, EDL=0.863		pg/L	
			1,2,3,6,7,8-Hexa CDF	2023/02/28	0.820 U, EDL=0.820		pg/L	
			2,3,4,6,7,8-Hexa CDF	2023/02/28	0.790 U, EDL=0.790		pg/L	
			1,2,3,7,8,9-Hexa CDF	2023/02/28	0.960 U, EDL=0.960		pg/L	
			1,2,3,4,6,7,8-Hepta CDF	2023/02/28	0.860 U, EDL=0.860		pg/L	

Apex Laboratories Client Project #: A3B0674

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			1,2,3,4,7,8,9-Hepta CDF	2023/02/28	0.950 U, EDL=0.950		pg/L	
			Octa CDF	2023/02/28	1.06 U, EDL=1.06		pg/L	
			Total Tetra CDF	2023/02/28	1.04 U, EDL=1.04		pg/L	
			Total Penta CDF	2023/02/28	1.16 U,		pg/L	
			Total Hexa CDF	2023/02/28	EDL=1.16 0.854 U,		pg/L	
			Total Hepta CDF	2023/02/28	EDL=0.854 0.902 U, EDL=0.902		pg/L	
8533813	CXU	Spiked Blank	C13-2,44'-TriCB-(28)	2023/04/04	EDL=0.902	80 (1)	%	30 - 170
0333013	СЛО	эрікса Біатк	C13-22'33'44'55'6-NonaCB-(206)	2023/04/04		108	%	40 - 145
			C13-22'33'44'5-HeptaCB-(170)	2023/04/04		116	%	40 - 145
			C13-22'33'455'66'-NonaCB-(208)	2023/04/04		107	%	40 - 145
			C13-22'33'55'66'-OctaCB-(202)	2023/04/04		98	%	40 - 145
			C13-22'33'55'6-HeptaCB-(178)	2023/04/04		85	%	40 - 145
			C13-22'344'55'-HeptaCB-(180)	2023/04/04		111	%	40 - 145
			C13-22'34'566'-HeptaCB-(188)	2023/04/04		77	%	40 - 145
			C13-22'44'66'-HexaCB-(155)	2023/04/04		60	%	40 - 145
			C13-22'466'-PentaCB-(104)	2023/04/04		66	%	40 - 145
			C13-22'66'-TetraCB-(54)	2023/04/04		40	%	15 - 145
			C13-22'6-TriCB-(19)	2023/04/04		50	%	40 - 145
			C13-22'-DiCB-(19)	2023/04/04		33	% %	15 - 145
			C13-23'44'55'6-OctaCB-(205)	2023/04/04		115	% %	40 - 145
						123	% %	40 - 145
			C13-233'44'55'-HeptaCB-(189)	2023/04/04			% %	40 - 145
			C13-233'44'-PentaCB-(105)	2023/04/04 2023/04/04		132 (1) 94	% %	30 - 170
			C13-233'55'-PentaCB-(111)					
			C13-23/44'55'-HexaCB-(167)	2023/04/04		109 121	% %	40 - 145
			C13-2344'5-PentaCB-(114)	2023/04/04				40 - 145
			C13-23'44'5-PentaCB-(118)	2023/04/04		126 (1)	%	40 - 145
			C13-2'344'5-PentaCB-(123)	2023/04/04 2023/04/04		127 (1)	%	40 - 145
			C13-2-MonoCB-(1)			35 121	%	15 - 145 40 - 145
			C13-33'44'55'-HexaCB-(169)	2023/04/04		121	%	40 - 145
			C13-33'44'5-PentaCB-(126)	2023/04/04		144 (1)	%	40 - 145
			C13-33'44'-TetraCB-(77)	2023/04/04		120	%	40 - 145
			C13-344'5-TetraCB-(81)	2023/04/04		115	%	40 - 145
			C13-344'-TriCB-(37)	2023/04/04		98 (1)	%	40 - 145
			C13-44'-DiCB-(15)	2023/04/04		73	%	15 - 145
			C13-4-MonoCB-(3)	2023/04/04		44	%	15 - 145
			C13-DecaCB-(209)	2023/04/04		96	%	40 - 145
			C13-HexaCB-(156)+(157)	2023/04/04		114	%	40 - 145
			2-MonoCB-(1)	2023/04/04		108	%	60 - 145
			3-MonoCB-(2)	2023/04/04		118	%	N/A
			4-MonoCB-(3)	2023/04/04		107	%	60 - 145
			22'-DiCB-(4)	2023/04/04		114	%	60 - 145
			2,3-DiCB-(5)	2023/04/04		92	%	N/A
			2,3'-DiCB-(6)	2023/04/04		95	%	N/A
			2,4-DiCB-(7)	2023/04/04		89	%	N/A
			2,4'-DiCB-(8)	2023/04/04		53	%	N/A
			2,5-DiCB-(9)	2023/04/04		92	%	N/A
			2,6-DiCB-(10)	2023/04/04		71	%	N/A

Apex Laboratories Client Project #: A3B0674

QA/QC								
Batch	Init (QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		••	3,3'-DiCB-(11)	2023/04/04		126	%	N/A
			DiCB-(12)+(13)	2023/04/04		102	%	N/A
			3,5-DiCB-(14)	2023/04/04		106	%	N/A
			4,4'-DiCB-(15)	2023/04/04		112	%	60 - 145
			22'3-TriCB-(16)	2023/04/04		70	%	N/A
			22'4-TriCB-(17)	2023/04/04		68	%	N/A
			TriCB-(18)+(30)	2023/04/04		59	%	N/A
			22'6-TriCB-(19)	2023/04/04		105	%	60 - 145
			TriCB-(20) + (28)	2023/04/04		92	%	N/A
			TriCB-(21)+(33)	2023/04/04		100	%	N/A
			234'-TriCB-(22)	2023/04/04		101	%	N/A
			235-TriCB-(23)	2023/04/04		90	%	N/A
			236-TriCB-(24)	2023/04/04		81	%	N/A
			23'4-TriCB-(25)	2023/04/04		102	%	N/A
			TriCB-(26)+(29)	2023/04/04		91	%	N/A
			23'6-TriCB-(27)	2023/04/04		60	%	N/A
			24'5-TriCB-(31)	2023/04/04		94	%	N/A
			24'6-TriCB-(32)	2023/04/04		72	%	N/A
			23'5'-TriCB-(34)	2023/04/04		89	%	N/A
			33'4-TriCB-(35)	2023/04/04		115	%	N/A
			33'5-TriCB-(36)	2023/04/04		106	%	N/A
			344'-TriCB-(37)	2023/04/04		107	%	60 - 145
			345-TriCB-(38)	2023/04/04		109	%	N/A
			34'5-TriCB-(39)	2023/04/04		119	%	N/A
			TetraCB-(40)+(41)+(71)	2023/04/04		83	%	N/A
			22'34'-TetraCB-(42)	2023/04/04		94	%	N/A
			22'35-TetraCB-(43)	2023/04/04		84	%	N/A
			TetraCB-(44)+(47)+(65)	2023/04/04		83	%	N/A
			TetraCB-(45)+(51)	2023/04/04		69	%	N/A
			22'36'-TetraCB-(46)	2023/04/04		71	%	N/A
			22'45-TetraCB-(48)	2023/04/04		78	%	N/A
			TetraCB-(49)+TetraCB-(69)	2023/04/04		77	%	N/A
			TetraCB-(50)+(53)	2023/04/04		68	%	N/A
			22'55'-TetraCB-(52)	2023/04/04		80	%	N/A
			22'66'-TetraCB-(54)	2023/04/04		115	%	60 - 145
			233'4-TetraCB-(55)	2023/04/04		94	%	N/A
			233'4'-Tetra CB(56)	2023/04/04		97	%	N/A
			233'5-TetraCB-(57)	2023/04/04		86	%	N/A
			233'5'-TetraCB-(58)	2023/04/04		88	%	N/A
			TetraCB-(59)+(62)+(75)	2023/04/04		78	%	N/A
			2344'-TetraCB -(60)	2023/04/04		95	%	N/A
			TetraCB-(61)+(70)+(74)+(76)	2023/04/04		95	%	N/A
			234'5-TetraCB-(63)	2023/04/04		92	%	N/A
			234'6-TetraCB-(64)	2023/04/04		92	%	N/A
			23'44'-TetraCB-(66)	2023/04/04		96	%	N/A
			23'45-TetraCB-(67)	2023/04/04		89	%	N/A
			23'45'-TetraCB-(67)	2023/04/04		89	%	N/A
			23'45'-TetraCB-(08) 23'55'-TetraCB-(72)	2023/04/04		84	%	N/A
			23'5'6-TetraCB-(72)	2023/04/04		69	%	N/A
			33'44'-TetraCB-(77)	2023/04/04		94	% %	60 - 145
			33'45-TetraCB-(78)	2023/04/04		114	% %	N/A
			33'45'-TetraCB(79)	2023/04/04		103	% %	N/A N/A
						92		
			33'55'-TetraCB-(80)	2023/04/04		92	%	N/A

Apex Laboratories Client Project #: A3B0674

			QUALITY ASSURANCE RE					
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			344'5-TetraCB-(81)	2023/04/04		99	%	60 - 145
			22'33'4-PentaCB-(82)	2023/04/04		104	%	N/A
			PentaCB-(83)+(99)	2023/04/04		91	%	N/A
			22'33'6-PentaCB-(84)	2023/04/04		83	%	N/A
			PentaCB-(85)+(116)+(117)	2023/04/04		88	%	N/A
			PentaCB-(86)(87)(97)(109)(119)(125)	2023/04/04		87	%	N/A
			PentaCB-(88)+(91)	2023/04/04		84	%	N/A
			22'346'-PentaCB-(89)	2023/04/04		98	%	N/A
			PentaCB-(90)+(101)+(113)	2023/04/04		88	%	N/A
			22'355'-PentaCB-(92)	2023/04/04		97	%	N/A
			PentaCB-(93)+(98)+(100)+(102)	2023/04/04		78	%	N/A
			22'356'-PentaCB-(94)	2023/04/04		77	%	N/A
			22'35'6-PentaCB-(95)	2023/04/04		94	%	N/A
			22'366'-PentaCB-(96)	2023/04/04		83	%	N/A
			22'45'6-PentaCB-(103)	2023/04/04		84	%	N/A
			22'466'-PentaCB-(104)	2023/04/04		100	%	60 - 145
			233'44'-PentaCB-(105)	2023/04/04		106	%	60 - 145
			233'45-PentaCB-(106)	2023/04/04		111	%	N/A
			233'4'5-PentaCB-(107)	2023/04/04		91	%	N/A
			PentaCB-(108)+(124)	2023/04/04		98	%	N/A
			PentaCB-(110)+(115)	2023/04/04		99	%	N/A
			233'55'-PentaCB-(111)	2023/04/04		92	%	N/A
			233'56-PentaCB-(112)	2023/04/04		94	%	N/A
			2344'5-PentaCB-(114)	2023/04/04		104	%	60 - 145
			23'44'5-PentaCB-(118)	2023/04/04		97	%	60 - 145
			23'455'-PentaCB-(120)	2023/04/04		100	%	N/A
			23'45'6-PentaCB-(121)	2023/04/04		83	%	N/A
			233'4'5'-PentaCB-(122)	2023/04/04		125	%	N/A
			23'44'5'-PentaCB-(123)	2023/04/04		101	%	60 - 145
			33'44'5-PentaCB-(126)	2023/04/04		98	%	60 - 145
			33'455'-PentaCB-(127)	2023/04/04		107	%	N/A
			HexaCB-(128)+(166)	2023/04/04		92	%	N/A
			HexaCB-(129)+(138)+(163)	2023/04/04		98	%	N/A
			22'33'45'-HexaCB-(130)	2023/04/04		91	%	N/A
			22'33'46-HexaCB-(131)	2023/04/04		105	%	N/A
			22'33'46'-HexaCB-(132)	2023/04/04		89	%	N/A
			22'33'55'-HexaCB-(133)	2023/04/04		93	%	N/A
			HexaCB-(134)+(143)	2023/04/04		94	%	N/A
			HexaCB-(135)+(151)	2023/04/04		89	%	N/A
			22'33'66'-HexaCB-(136)	2023/04/04		84	%	N/A
			22'344'5-HexaCB-(137)	2023/04/04		86	%	N/A
			HexaCB-(139)+(140)	2023/04/04		86	%	N/A
			22'3455'-HexaCB-(141)	2023/04/04		94	%	N/A
			22'3456-HexaCB-(141)	2023/04/04		94	%	N/A
			22'345'6-HexaCB-(144)	2023/04/04		96	%	N/A
			22'3466'-HexaCB-(144)	2023/04/04		82	% %	N/A N/A
			22'34'55'-HexaCB-(146)	2023/04/04		90	% %	N/A N/A
			HexaCB-(147)+(149)	2023/04/04		87	%	N/A
			22'34'56'-HexaCB-(148)	2023/04/04		86	% %	N/A N/A
			22'34'66'-HexaCB-(150)	2023/04/04		80		N/A N/A
			22'3566'-HexaCB-(150)	2023/04/04		80 82	% %	N/A N/A
			HexaCB-(153)+(168)	2023/04/04		87	% %	
								N/A
			22'44'56'-HexaCB-(154)	2023/04/04		85	%	N/A

Apex Laboratories Client Project #: A3B0674

QA/QC	lo:4	OC Tuno	Paramotor	Data Analysis	Value	0/ Dagg:	LIMITO	001::4-
Batch	Init	QC Type	Parameter	Date Analyzed 2023/04/04	Value	% Recovery	UNITS	QC Limits
			22'44'66'-HexaCB-(155)	• •		98	%	60 - 145
			HexaCB-(156)+(157)	2023/04/04		101	%	N/A
			233'44'6-HexaCB-(158)	2023/04/04		93	%	N/A
			233'455'-HexaCB-(159)	2023/04/04		91	%	N/A
			233'456-HexaCB-(160)	2023/04/04		97	%	N/A
			233'45'6-HexaCB-(161)	2023/04/04		88	%	N/A
			233'4'55'-HexaCB-(162)	2023/04/04		93	%	N/A
			233'4'5'6-HexaCB-(164)	2023/04/04		95	%	N/A
			233'55'6-HexaCB-(165)	2023/04/04		89	%	N/A
			23'44'55'-HexaCB-(167)	2023/04/04		105	%	60 - 145
			33'44'55'-HexaCB-(169)	2023/04/04		103	%	60 - 145
			22'33'44'5-HeptaCB-(170)	2023/04/04		87	%	60 - 145
			HeptaCB-(171)+(173)	2023/04/04		93	%	N/A
			22'33'455'-HeptaCB-(172)	2023/04/04		94	%	N/A
			22'33'456'-HeptaCB-(174)	2023/04/04		94	%	N/A
			22'33'45'6-HeptaCB-(175)	2023/04/04		86	%	N/A
			22'33'466'-HeptaCB-(176)	2023/04/04		84	%	N/A
			22'33'45'6'-HeptaCB-(177)	2023/04/04		90	%	N/A
			22'33'55'6-HeptaCB-(178)	2023/04/04		88	%	N/A
			22'33'566'-HeptaCB-(179)	2023/04/04		88	%	N/A
			HeptaCB-(180)+(193)	2023/04/04		99	%	N/A
			22'344'56-HeptaCB-(181)	2023/04/04		93	%	N/A
			22'344'56'-HeptaCB-(182)	2023/04/04		89	%	N/A
			22'344'5'6-HeptaCB-(183)	2023/04/04		92	%	N/A
			22'344'66'-HeptaCB-(184)	2023/04/04		82	%	N/A
			22'3455'6-HeptaCB-(185)	2023/04/04		87	%	N/A
			22'34566'-HeptaCB-(186)	2023/04/04		87	%	N/A
			22'34'55'6-HeptaCB-(187)	2023/04/04		90	%	N/A
			22'34'566'-HeptaCB-(188)	2023/04/04		100	%	60 - 145
			233'44'55'-HeptaCB-(189)	2023/04/04		100	%	60 - 145
			233'44'56-HeptaCB-(190)	2023/04/04		91	%	N/A
			233'44'5'6-HeptaCB-(191)	2023/04/04		92	%	N/A
			233'455'6-HeptaCB-(192)	2023/04/04		94	%	N/A
			22'33'44'55'-OctaCB-(194)	2023/04/04		100	%	N/A
			22'33'44'56-OctaCB-(195)	2023/04/04		103	%	N/A
			22'33'44'56'-OctaCB-(196)	2023/04/04		97	%	N/A
			22'33'44'66'OctaCB-(197)	2023/04/04		91	%	N/A
			OctaCB-(198)+(199)	2023/04/04		98	%	N/A
			22'33'4566'-OctaCB-(200)	2023/04/04		100	%	N/A
			22'33'45'66'-OctaCB-(201)	2023/04/04		89	%	N/A
			22'33'55'66'-OctaCB-(202)	2023/04/04		92	%	60 - 145
			22'344'55'6-OctaCB-(203)	2023/04/04		101	%	N/A
			22'344'566'-OctaCB-(204)	2023/04/04		87	%	N/A
			233'44'55'6-OctaCB-(205)	2023/04/04		92	%	60 - 145
			22'33'44'55'6-NonaCB-(206)	2023/04/04		91	%	60 - 145
			22'33'44'566'-NonaCB-(207)	2023/04/04		86	%	N/A
			22'33'455'66'-NonaCB-(208)	2023/04/04		93	%	60 - 145
			DecaCB-(209)	2023/04/04		108	%	60 - 145
8533813	CXU	Spiked Blank DUP	C13-2,44'-TriCB-(28)	2023/04/04		82	%	30 - 170
			C13-22'33'44'55'6-NonaCB-(206)	2023/04/04		100	%	40 - 145
			C13-22'33'44'5-HeptaCB-(170)	2023/04/04		106	%	40 - 145
			C13-22'33'455'66'-NonaCB-(208)	2023/04/04		95	%	40 - 145
			C13-22'33'55'66'-OctaCB-(202)	2023/04/04		91	%	40 - 145

Apex Laboratories Client Project #: A3B0674

			QUALITY ASSURANCE					
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			C13-22'33'55'6-HeptaCB-(178)	2023/04/04		83	%	40 - 145
			C13-22'344'55'-HeptaCB-(180)	2023/04/04		102	%	40 - 145
			C13-22'34'566'-HeptaCB-(188)	2023/04/04		71	%	40 - 145
			C13-22'44'66'-HexaCB-(155)	2023/04/04		56	%	40 - 145
			C13-22'466'-PentaCB-(104)	2023/04/04		66	%	40 - 145
			C13-22'66'-TetraCB-(54)	2023/04/04		41	%	15 - 145
			C13-22'6-TriCB-(19)	2023/04/04		52	%	40 - 145
			C13-22'-DiCB-(4)	2023/04/04		37	%	15 - 145
			C13-233'44'55'6-OctaCB-(205)	2023/04/04		107	%	40 - 145
			C13-233'44'55'-HeptaCB-(189)	2023/04/04		111	%	40 - 145
			C13-233'44'-PentaCB-(105)	2023/04/04		125 (1)	%	40 - 145
			C13-233'55'-PentaCB-(111)	2023/04/04		92	%	30 - 170
			C13-23'44'55'-HexaCB-(167)	2023/04/04		101	%	40 - 145
			C13-2344'5-PentaCB-(114)	2023/04/04		115	%	40 - 145
			C13-23'44'5-PentaCB-(118)	2023/04/04		116	%	40 - 145
			C13-2'344'5-PentaCB-(123)	2023/04/04		118	%	40 - 145
			C13-2-MonoCB-(1)	2023/04/04		39	%	15 - 145
			C13-33'44'55'-HexaCB-(169)	2023/04/04		112	%	40 - 145
			C13-33'44'5-PentaCB-(126)	2023/04/04		134 (1)	%	40 - 145
			C13-33'44'-TetraCB-(77)	2023/04/04		113	%	40 - 145
			C13-344'5-TetraCB-(81)	2023/04/04		110	%	40 - 145
			C13-344'-TriCB-(37)	2023/04/04		96	%	40 - 145
			C13-44'-DiCB-(15)	2023/04/04		75	%	15 - 145
			C13-4-MonoCB-(3)	2023/04/04		49 (1)	%	15 - 145
			C13-DecaCB-(209)	2023/04/04		85	%	40 - 145
			C13-HexaCB-(156)+(157)	2023/04/04		103	%	40 - 145
			2-MonoCB-(1)	2023/04/04		107	%	60 - 145
			3-MonoCB-(2)	2023/04/04		116	%	N/A
			4-MonoCB-(3)	2023/04/04		106	%	60 - 145
			22'-DiCB-(4)	2023/04/04		109	%	60 - 145
			2,3-DiCB-(5)	2023/04/04		96	%	N/A
			2,3'-DiCB-(6)	2023/04/04		95	%	N/A
			2,4-DiCB-(7)	2023/04/04		90	%	N/A
			2,4'-DiCB-(8)	2023/04/04		55	%	N/A
			2,5-DiCB-(9)	2023/04/04		94	%	N/A
			2,6-DiCB-(10)	2023/04/04		72	%	N/A
			3,3'-DiCB-(11)	2023/04/04		127	%	N/A
			DiCB-(12)+(13)	2023/04/04		102	%	N/A
			3,5-DiCB-(14)	2023/04/04		106	%	N/A
			4,4'-DiCB-(15)	2023/04/04		111	%	60 - 145
			22'3-TriCB-(16)	2023/04/04		77	%	N/A
			22'4-TriCB-(17)	2023/04/04		71	%	N/A
			TriCB-(18)+(30)	2023/04/04		61	%	N/A
			22'6-TriCB-(19)	2023/04/04		102	%	60 - 145
			TriCB-(20) + (28)	2023/04/04		97	%	N/A
			TriCB-(21)+(33)	2023/04/04		102	%	N/A
			234'-TriCB-(22)	2023/04/04		101	%	N/A
			235-TriCB-(23)	2023/04/04		93	%	N/A
			236-TriCB-(24)	2023/04/04		75	%	N/A
			23'4-TriCB-(25)	2023/04/04		106	%	N/A
			TriCB-(26)+(29)	2023/04/04		92	% %	N/A N/A
			23'6-TriCB-(27)	2023/04/04		66	% %	N/A N/A
			24'5-TriCB-(31)	2023/04/04		97	% %	
			24 3-111CD-(31)	2023/04/04		97	70	N/A

Apex Laboratories Client Project #: A3B0674

QA/QC Batch II	nit QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
	· 11° -	24'6-TriCB-(32)	2023/04/04	-	74	%	N/A
		23'5'-TriCB-(34)	2023/04/04		90	%	N/A
		33'4-TriCB-(35)	2023/04/04		117	%	N/A
		33'5-TriCB-(36)	2023/04/04		106	%	N/A
		344'-TriCB-(37)	2023/04/04		109	%	60 - 145
		345-TriCB-(38)	2023/04/04		112	%	N/A
		34'5-TriCB-(39)	2023/04/04		120	%	N/A
		TetraCB-(40)+(41)+(71)	2023/04/04		86	%	N/A
		22'34'-TetraCB-(42)	2023/04/04		97	%	N/A
		22'35-TetraCB-(43)	2023/04/04		90	%	N/A
		TetraCB-(44)+(47)+(65)	2023/04/04		87	%	N/A
		TetraCB-(45)+(51)	2023/04/04		73	%	N/A
		22'36'-TetraCB-(46)	2023/04/04		73	%	N/A
		22'45-TetraCB-(48)	2023/04/04		82	%	N/A
		TetraCB-(49)+TetraCB-(69)	2023/04/04		80	%	N/A
		TetraCB-(50)+(53)	2023/04/04		72	%	N/A
		22'55'-TetraCB-(52)	2023/04/04		87	%	N/A
		22'66'-TetraCB-(54)	2023/04/04		116	%	60 - 145
		233'4-TetraCB-(55)	2023/04/04		97	%	N/A
		233'4'-Tetra CB(56)	2023/04/04		99	%	N/A
		233'5-TetraCB-(57)	2023/04/04		90	%	N/A
		233'5'-TetraCB-(58)	2023/04/04		91	%	N/A
		TetraCB-(59)+(62)+(75)	2023/04/04		83	%	N/A
		2344'-TetraCB -(60)	2023/04/04		98	%	N/A
		TetraCB-(61)+(70)+(74)+(76)	2023/04/04		99	%	N/A
		234'5-TetraCB-(63)	2023/04/04		96	%	N/A
		234'6-TetraCB-(64)	2023/04/04		96	%	N/A
		23'44'-TetraCB-(66)	2023/04/04		98	%	N/A
		23'45-TetraCB-(67)	2023/04/04		91	% %	N/A N/A
		23'45'-TetraCB-(68)	2023/04/04		91	%	N/A N/A
					89	%	
		23'55'-TetraCB-(72)	2023/04/04 2023/04/04				N/A
		23'5'6-TetraCB-(73)	• •		71	%	N/A
		33'44'-TetraCB-(77)	2023/04/04		98 116	%	60 - 145 N/A
		33'45-TetraCB-(78)	2023/04/04		116 105	% %	N/A
		33'45'-TetraCB(79)	2023/04/04				N/A
		33'55'-TetraCB-(80)	2023/04/04		95	%	N/A
		344'5-TetraCB-(81)	2023/04/04		100	%	60 - 145 N/A
		22'33'4-PentaCB-(82)	2023/04/04		108	%	N/A
		PentaCB-(83)+(99)	2023/04/04		96	%	N/A
		22'33'6-PentaCB-(84)	2023/04/04		87	%	N/A
		PentaCB-(85)+(116)+(117)	2023/04/04		93	%	N/A
		PentaCB-(86)(87)(97)(109)(119)(125)	2023/04/04		92	%	N/A
		PentaCB-(88)+(91)	2023/04/04		89	%	N/A
		22'346'-PentaCB-(89)	2023/04/04		103	%	N/A
		PentaCB-(90)+(101)+(113)	2023/04/04		93	%	N/A
		22'355'-PentaCB-(92)	2023/04/04		101	%	N/A
		PentaCB-(93)+(98)+(100)+(102)	2023/04/04		82	%	N/A
		22'356'-PentaCB-(94)	2023/04/04		80	%	N/A
		22'35'6-PentaCB-(95)	2023/04/04		103	%	N/A
		22'366'-PentaCB-(96)	2023/04/04		88	%	N/A
		22'45'6-PentaCB-(103)	2023/04/04		88	%	N/A
		22'466'-PentaCB-(104)	2023/04/04		102	%	60 - 145
		233'44'-PentaCB-(105)	2023/04/04		105	%	60 - 145

Apex Laboratories Client Project #: A3B0674

	QUALITY ASSURANCE REPORT(CONT D)									
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits		
			233'45-PentaCB-(106)	2023/04/04		112	%	N/A		
			233'4'5-PentaCB-(107)	2023/04/04		96	%	N/A		
			PentaCB-(108)+(124)	2023/04/04		101	%	N/A		
			PentaCB-(110)+(115)	2023/04/04		104	%	N/A		
İ			233'55'-PentaCB-(111)	2023/04/04		96	%	N/A		
1			233'56-PentaCB-(112)	2023/04/04		97	%	N/A		
İ			2344'5-PentaCB-(114)	2023/04/04		106	%	60 - 145		
1			23'44'5-PentaCB-(118)	2023/04/04		103	%	60 - 145		
İ			23'455'-PentaCB-(120)	2023/04/04		105	%	N/A		
			23'45'6-PentaCB-(121)	2023/04/04		88	%	N/A		
			233'4'5'-PentaCB-(122)	2023/04/04		128	%	N/A		
			23'44'5'-PentaCB-(123)	2023/04/04		104	%	60 - 145		
			33'44'5-PentaCB-(126)	2023/04/04		100	%	60 - 145		
			33'455'-PentaCB-(127)	2023/04/04		109	%	N/A		
			HexaCB-(128)+(166)	2023/04/04		97	%	N/A		
			HexaCB-(129)+(138)+(163)	2023/04/04		103	%	N/A		
			22'33'45'-HexaCB-(130)	2023/04/04		93	%	N/A		
			22'33'46-HexaCB-(131)	2023/04/04		108	%	N/A		
			22'33'46'-HexaCB-(132)	2023/04/04		92	%	N/A		
			22'33'55'-HexaCB-(133)	2023/04/04		96	%	N/A		
			HexaCB-(134)+(143)	2023/04/04		99	%	N/A		
			HexaCB-(135)+(151)	2023/04/04		94	%	N/A		
			22'33'66'-HexaCB-(136)	2023/04/04		92	%	N/A		
			22'344'5-HexaCB-(137)	2023/04/04		85	%	N/A		
			HexaCB-(139)+(140)	2023/04/04		90	%	N/A		
			22'3455'-HexaCB-(141)	2023/04/04		98	%	N/A		
			22'3456-HexaCB-(142)	2023/04/04		96	%	N/A		
			22'345'6-HexaCB-(144)	2023/04/04		97	%	N/A		
			22'3466'-HexaCB-(145)	2023/04/04		86	%	N/A		
			22'34'55'-HexaCB-(145)	2023/04/04		93	%	N/A		
			HexaCB-(147)+(149)	2023/04/04		91	%	N/A		
			22'34'56'-HexaCB-(148)	2023/04/04		93	%	N/A		
			22'34'66'-HexaCB-(146)	2023/04/04		84	%	N/A		
			22'3566'-HexaCB-(150)	2023/04/04		87	% %	N/A N/A		
			HexaCB-(153)+(168)	2023/04/04		91	% %			
			22'44'56'-HexaCB-(154)	2023/04/04		89	% %	N/A N/A		
				2023/04/04						
			22'44'66'-HexaCB-(155)			103	%	60 - 145 N/A		
			HexaCB-(156)+(157)	2023/04/04		105	%	N/A		
			233'44'6-HexaCB-(158)	2023/04/04		96	%	N/A		
			233'455'-HexaCB-(159)	2023/04/04		95	%	N/A		
			233'456-HexaCB-(160)	2023/04/04		99	%	N/A		
			233'45'6-HexaCB-(161)	2023/04/04		92	%	N/A		
			233'4'55'-HexaCB-(162)	2023/04/04		97	%	N/A		
			233'4'5'6-HexaCB-(164)	2023/04/04		104	%	N/A		
			233'55'6-HexaCB-(165)	2023/04/04		91	%	N/A		
			23'44'55'-HexaCB-(167)	2023/04/04		107	%	60 - 145		
			33'44'55'-HexaCB-(169)	2023/04/04		106	%	60 - 145		
			22'33'44'5-HeptaCB-(170)	2023/04/04		88	%	60 - 145		
			HeptaCB-(171)+(173)	2023/04/04		96	%	N/A		
			22'33'455'-HeptaCB-(172)	2023/04/04		98	%	N/A		
			22'33'456'-HeptaCB-(174)	2023/04/04		96	%	N/A		
			22'33'45'6-HeptaCB-(175)	2023/04/04		93	%	N/A		
			22'33'466'-HeptaCB-(176)	2023/04/04		90	%	N/A		

Apex Laboratories Client Project #: A3B0674

QA/QC							
Batch	Init QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		22'33'45'6'-HeptaCB-(177)	2023/04/04		93	%	N/A
		22'33'55'6-HeptaCB-(178)	2023/04/04		93	%	N/A
		22'33'566'-HeptaCB-(179)	2023/04/04		94	%	N/A
		HeptaCB-(180)+(193)	2023/04/04		103	%	N/A
		22'344'56-HeptaCB-(181)	2023/04/04		96	%	N/A
		22'344'56'-HeptaCB-(182)	2023/04/04		97	%	N/A
		22'344'5'6-HeptaCB-(183)	2023/04/04		88	%	N/A
		22'344'66'-HeptaCB-(184)	2023/04/04		86	%	N/A
		22'3455'6-HeptaCB-(185)	2023/04/04		103	%	N/A
		22'34566'-HeptaCB-(186)	2023/04/04		91	%	N/A
		22'34'55'6-HeptaCB-(187)	2023/04/04		96	%	N/A
		22'34'566'-HeptaCB-(188)	2023/04/04		103	%	60 - 145
		233'44'55'-HeptaCB-(189)	2023/04/04		104	%	60 - 145
		233'44'56-HeptaCB-(190)	2023/04/04		95	%	N/A
		233'44'5'6-HeptaCB-(191)	2023/04/04		95	%	N/A
		233'455'6-HeptaCB-(192)	2023/04/04		99	%	N/A
		22'33'44'55'-OctaCB-(194)	2023/04/04		101	%	N/A
		22'33'44'56-OctaCB-(195)	2023/04/04		102	%	N/A
		22'33'44'56'-OctaCB-(196)	2023/04/04		99	%	N/A
		22'33'44'66'OctaCB-(197)	2023/04/04		94	%	N/A
		OctaCB-(198)+(199)	2023/04/04		100	%	N/A
		22'33'4566'-OctaCB-(200)	2023/04/04		104	%	N/A
		22'33'45'66'-OctaCB-(201)	2023/04/04		92	%	N/A
		22'33'55'66'-OctaCB-(202)	2023/04/04		95	%	60 - 145
		22'344'55'6-OctaCB-(203)	2023/04/04		103	%	N/A
		22'344'566'-OctaCB-(204)	2023/04/04		91	%	N/A
		233'44'55'6-OctaCB-(205)	2023/04/04		93	%	60 - 145
		22'33'44'55'6-NonaCB-(206)	2023/04/04		93	%	60 - 145
		22'33'44'566'-NonaCB-(207)	2023/04/04		90	%	N/A
		22'33'455'66'-NonaCB-(208)	2023/04/04		97	%	60 - 145
		DecaCB-(209)	2023/04/04		115	%	60 - 145
3533813	CXU RPD	2-MonoCB-(1)	2023/04/04	1.0		%	30
		3-MonoCB-(2)	2023/04/04	1.9		%	30
		4-MonoCB-(3)	2023/04/04	0.85		%	30
		22'-DiCB-(4)	2023/04/04	4.4		%	30
		2,3-DiCB-(5)	2023/04/04	3.6		%	30
		2,3'-DiCB-(6)	2023/04/04	0		%	30
		2,4-DiCB-(7)	2023/04/04	1.0		%	30
		2,4'-DiCB-(8)	2023/04/04	3.7		%	30
		2,5-DiCB-(9)	2023/04/04	2.3		%	30
		2,6-DiCB-(10)	2023/04/04	2.0		%	30
		3,3'-DiCB-(11)	2023/04/04	1.0		%	30
		DiCB-(12)+(13)	2023/04/04	0.29		%	30
		3,5-DiCB-(14)	2023/04/04	0.38		%	30
		4,4'-DiCB-(15)	2023/04/04	1.2		%	30
		22'3-TriCB-(16)	2023/04/04	9.8		%	30
		22'4-TriCB-(17)	2023/04/04	4.0		%	30
		TriCB-(18)+(30)	2023/04/04	2.5		%	30
		22'6-TriCB-(19)	2023/04/04	2.5		%	30
		TriCB-(20) + (28)	2023/04/04	4.3		%	30
		TriCB-(20) + (28)	2023/04/04	4.5 1.7		% %	30
		234'-TriCB-(22)	2023/04/04	0.099		% %	30
		234 - HICD-(22)	2023/04/04	0.033		/0	30

Apex Laboratories Client Project #: A3B0674

QA/QC Batch	Init QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
Dateii		236-TriCB-(24)	2023/04/04	7.4	70 NECOVERY	%	30
		23'4-TriCB-(25)	2023/04/04	3.3		%	30
		TriCB-(26)+(29)	2023/04/04	1.4		%	30
		23'6-TriCB-(27)	2023/04/04	9.2		%	30
		24'5-TriCB-(31)	2023/04/04	3.2		%	30
		24'6-TriCB-(32)	2023/04/04	2.3		%	30
		23'5'-TriCB-(34)	2023/04/04	1.7		%	30
		33'4-TriCB-(35)	2023/04/04	1.5		%	30
		33'5-TriCB-(36)	2023/04/04	0		%	30
		344'-TriCB-(37)	2023/04/04	2.1		%	30
		345-TriCB-(38)	2023/04/04	2.4		%	30
		34'5-TriCB-(39)	2023/04/04	1.1		%	30
		TetraCB-(40)+(41)+(71)	2023/04/04	4.3		%	30
		22'34'-TetraCB-(42)	2023/04/04	2.5		%	30
		22'35-TetraCB-(43)	2023/04/04	6.9		%	30
		TetraCB-(44)+(47)+(65)	2023/04/04	4.6		%	30
		TetraCB-(45)+(51)	2023/04/04	5.5		%	30
		22'36'-TetraCB-(46)	2023/04/04	3.7		%	30
		22'45-TetraCB-(48)	2023/04/04	5.1		%	30
		TetraCB-(49)+TetraCB-(69)	2023/04/04	4.3		%	30
		TetraCB-(50)+(53)	2023/04/04	6.2		%	30
		22'55'-TetraCB-(52)	2023/04/04	7.4		%	30
		22'66'-TetraCB-(54)	2023/04/04	1.3		%	30
		233'4-TetraCB-(55)	2023/04/04	3.1		%	30
		233'4'-Tetra CB(56)	2023/04/04	2.0		%	30
		233'5-TetraCB-(57)	2023/04/04	4.1		%	30
		233'5'-TetraCB-(58)	2023/04/04	3.5		%	30
		TetraCB-(59)+(62)+(75)	2023/04/04	6.1		%	30
		2344'-TetraCB -(60)	2023/04/04	2.9		%	30
		TetraCB-(61)+(70)+(74)+(76)	2023/04/04	4.1		%	30
		234'5-TetraCB-(63)	2023/04/04	4.2		%	30
		234'6-TetraCB-(64)	2023/04/04	4.5		%	30
		23'44'-TetraCB-(66)	2023/04/04	1.8		%	30
		23'45-TetraCB-(67)	2023/04/04	1.6		%	30
		23'45'-TetraCB-(68)	2023/04/04	2.8		%	30
		23'55'-TetraCB-(72)	2023/04/04	5.7		%	30
		23'5'6-TetraCB-(72)	2023/04/04	3.7		% %	30
		33'44'-TetraCB-(77)	2023/04/04	3.7		% %	30
			2023/04/04	3.3 1.7		%	30
		33'45-TetraCB-(78) 33'45'-TetraCB(79)	2023/04/04	2.8		% %	30
		33'55'-TetraCB-(80) 344'5-TetraCB-(81)	2023/04/04	3.5		%	30 30
		22'33'4-PentaCB-(82)	2023/04/04 2023/04/04	1.8 3.5		% %	30
						% %	30
		PentaCB-(83)+(99)	2023/04/04	5.9			
		22'33'6-PentaCB-(84)	2023/04/04	4.5		%	30
		PentaCB-(85)+(116)+(117) PentaCB-(86)(87)(97)(109)(119)(125)	2023/04/04	5.1		%	30 30
			2023/04/04	5.0		%	30
		PentaCB-(88)+(91)	2023/04/04	6.0		%	30
		22'346'-PentaCB-(89)	2023/04/04	5.1		%	30
		PentaCB-(90)+(101)+(113)	2023/04/04	5.0		%	30
		22'355'-PentaCB-(92)	2023/04/04	3.6		%	30
		PentaCB-(93)+(98)+(100)+(102)	2023/04/04	5.5		%	30
		22'356'-PentaCB-(94)	2023/04/04	3.7		%	30

Apex Laboratories Client Project #: A3B0674

QA/QC Batch	Init QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
Dateil		22'35'6-PentaCB-(95)	2023/04/04	8.8	70 NCCOVCI Y	%	30
		22'366'-PentaCB-(96)	2023/04/04	6.0		%	30
		22'45'6-PentaCB-(103)	2023/04/04	4.9		%	30
		22'466'-PentaCB-(104)	2023/04/04	1.6		%	30
		233'44'-PentaCB-(105)	2023/04/04	0.66		%	30
		233'45-PentaCB-(106)	2023/04/04	1.5		%	30
		233'4'5-PentaCB-(107)	2023/04/04	4.9		%	30
		PentaCB-(108)+(124)	2023/04/04	3.1		%	30
		PentaCB-(110)+(115)	2023/04/04	5.0		%	30
		233'55'-PentaCB-(111)	2023/04/04	4.0		%	30
		233'56-PentaCB-(112)	2023/04/04	4.0		%	30
		2344'5-PentaCB-(114)	2023/04/04	2.1		%	30
		23'44'5-PentaCB-(118)	2023/04/04	6.1		%	30
		23'455'-PentaCB-(120)	2023/04/04	5.4		%	30
		23'45'6-PentaCB-(121)	2023/04/04	6.6		%	30
		233'4'5'-PentaCB-(122)	2023/04/04	2.0		%	30
		23'44'5'-PentaCB-(123)	2023/04/04	3.4		%	30
		33'44'5-PentaCB-(126)	2023/04/04	2.3		%	30
		33'455'-PentaCB-(127)	2023/04/04	1.5		%	30
		HexaCB-(128)+(166)	2023/04/04	6.0		%	30
		HexaCB-(129)+(138)+(163)	2023/04/04	5.1		%	30
		22'33'45'-HexaCB-(130)	2023/04/04	2.4		%	30
		22'33'46-HexaCB-(131)	2023/04/04	2.8		%	30
		22'33'46'-HexaCB-(132)	2023/04/04	3.3		%	30
		22'33'55'-HexaCB-(133)	2023/04/04	2.7		%	30
		HexaCB-(134)+(143)	2023/04/04	4.9		%	30
		HexaCB-(135)+(151)	2023/04/04	5.0		%	30
		22'33'66'-HexaCB-(136)	2023/04/04	8.6		%	30
		22'344'5-HexaCB-(137)	2023/04/04	0.47		%	30
		HexaCB-(139)+(140)	2023/04/04	4.0		%	30
		22'3455'-HexaCB-(141)	2023/04/04	4.7		%	30
		22'3456-HexaCB-(142)	2023/04/04	2.2		%	30
		22'345'6-HexaCB-(144)	2023/04/04	1.8		%	30
		22'3466'-HexaCB-(145)	2023/04/04	4.7		%	30
		22'34'55'-HexaCB-(146)	2023/04/04	3.7		%	30
		HexaCB-(147)+(149)	2023/04/04	5.2		%	30
		22'34'56'-HexaCB-(148)	2023/04/04	7.8		%	30
		22'34'66'-HexaCB-(150)	2023/04/04	4.1		%	30
		22'3566'-HexaCB-(152)	2023/04/04	6.5		%	30
		HexaCB-(153)+(168)	2023/04/04	4.8		%	30
		22'44'56'-HexaCB-(154)	2023/04/04	5.4		%	30
		22'44'66'-HexaCB-(155)	2023/04/04	5.3		%	30
		HexaCB-(156)+(157)	2023/04/04	3.4		%	30
		233'44'6-HexaCB-(158)	2023/04/04	3.6		%	30
		233'455'-HexaCB-(159)	2023/04/04	4.4		%	30
		233'456-HexaCB-(160)	2023/04/04	2.2		%	30
		233'45'6-HexaCB-(161)	2023/04/04	4.2		%	30
		233'4'55'-HexaCB-(162)	2023/04/04	4.3		%	30
		233'4'5'6-HexaCB-(164)	2023/04/04	9.2		%	30
		233'55'6-HexaCB-(165)	2023/04/04	2.3		%	30
		23'44'55'-HexaCB-(167)	2023/04/04	1.2		%	30
		33'44'55'-HexaCB-(169)	2023/04/04	2.3		%	30
		22'33'44'5-HeptaCB-(170)	2023/04/04	1.4		%	30

Apex Laboratories Client Project #: A3B0674

			QUALITY ASSURANCE IN	• •				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
Daten	IIIIC	QС Туре	HeptaCB-(171)+(173)	2023/04/04	3.9	70 Necovery	%	30
			22'33'455'-HeptaCB-(172)	2023/04/04	4.6		%	30
			22'33'456'-HeptaCB-(174)	2023/04/04	1.9		%	30
			22'33'45'6-HeptaCB-(175)	2023/04/04	7.6		%	30
			22'33'466'-HeptaCB-(176)	2023/04/04	7.6		%	30
			22'33'45'6'-HeptaCB-(177)	2023/04/04	3.2		%	30
			22'33'55'6-HeptaCB-(177)	2023/04/04	5.2		%	30
			22'33'566'-HeptaCB-(179)	2023/04/04	6.6		%	30
			HeptaCB-(180)+(193)	2023/04/04	3.9		%	30
			22'344'56-HeptaCB-(181)	2023/04/04	3.9		%	30
			22'344'56'-HeptaCB-(182)	2023/04/04	8.6		%	30
			22'344'5'6-HeptaCB-(183)	2023/04/04	4.2		%	30
			22'344'66'-HeptaCB-(184)	2023/04/04	5.0		% %	30
			22'3455'6-HeptaCB-(185)	2023/04/04	3.0 17		%	30
			22'34566'-HeptaCB-(186)	2023/04/04	4.4		% %	30
			22'34'55'6-HeptaCB-(187)	2023/04/04	6.8		% %	30
			• • • •	2023/04/04			% %	30
			22'34'566'-HeptaCB-(188)	2023/04/04	3.3 3.4		% %	30
			233'44'55'-HeptaCB-(189) 233'44'56-HeptaCB-(190)	2023/04/04	4.3		% %	30
				2023/04/04	3.0			
			233'44'5'6-HeptaCB-(191)	2023/04/04	5.1		% %	30 30
			233'455'6-HeptaCB-(192) 22'33'44'55'-OctaCB-(194)	2023/04/04	1.5		% %	30 30
				2023/04/04			% %	30 30
			22'33'44'56-OctaCB-(195)		0.098			
			22'33'44'56'-OctaCB-(196)	2023/04/04	2.2		%	30
			22'33'44'66'OctaCB-(197)	2023/04/04	2.5		% %	30 30
			OctaCB-(198)+(199)	2023/04/04	1.7			
			22'33'4566'-OctaCB-(200)	2023/04/04	3.6		%	30
			22'33'45'66'-OctaCB-(201)	2023/04/04	2.5		%	30
			22'33'55'66'-OctaCB-(202)	2023/04/04	3.6		%	30
			22'344'55'6-OctaCB-(203)	2023/04/04	2.2		%	30
			22'344'566'-OctaCB-(204)	2023/04/04	3.8		%	30
			233'44'55'6-OctaCB-(205)	2023/04/04	0.86		%	30
			22'33'44'55'6-NonaCB-(206)	2023/04/04	2.2		%	30
			22'33'44'566'-NonaCB-(207)	2023/04/04	4.3		%	30
			22'33'455'66'-NonaCB-(208)	2023/04/04	4.9		%	30
			DecaCB-(209)	2023/04/04	6.0		%	30
8533813	CXU	Method Blank	C13-2,44'-TriCB-(28)	2023/03/03		109	%	30 - 170
			C13-22'33'44'55'6-NonaCB-(206)	2023/03/03		89	%	40 - 145
			C13-22'33'44'5-HeptaCB-(170)	2023/03/03		118	%	40 - 145
			C13-22'33'455'66'-NonaCB-(208)	2023/03/03		94	%	40 - 145
			C13-22'33'55'66'-OctaCB-(202)	2023/03/03		94	%	40 - 145
			C13-22'33'55'6-HeptaCB-(178)	2023/03/03		76	%	40 - 145
			C13-22'344'55'-HeptaCB-(180)	2023/03/03		110	%	40 - 145
			C13-22'34'566'-HeptaCB-(188)	2023/03/03		69	%	40 - 145
			C13-22'44'66'-HexaCB-(155)	2023/03/03		48	%	40 - 145
			C13-22'466'-PentaCB-(104)	2023/03/03		67	%	40 - 145
			C13-22'66'-TetraCB-(54)	2023/03/03		56	%	15 - 145
			C13-22'6-TriCB-(19)	2023/03/03		52	%	40 - 145
			C13-22'-DiCB-(4)	2023/03/03		37	%	15 - 145
			C13-233'44'55'6-OctaCB-(205)	2023/03/03		109	%	40 - 145
			C13-233'44'55'-HeptaCB-(189)	2023/03/03		113	%	40 - 145
			C13-233'44'-PentaCB-(105)	2023/03/03		146 (1)	%	40 - 145
			C13-233'55'-PentaCB-(111)	2023/03/03		98	%	30 - 170

Apex Laboratories Client Project #: A3B0674

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			C13-23'44'55'-HexaCB-(167)	2023/03/03		96	%	40 - 145
			C13-2344'5-PentaCB-(114)	2023/03/03		139	%	40 - 145
			C13-23'44'5-PentaCB-(118)	2023/03/03		143	%	40 - 145
			C13-2'344'5-PentaCB-(123)	2023/03/03		143	%	40 - 145
			C13-2-MonoCB-(1)	2023/03/03		39	%	15 - 145
			C13-33'44'55'-HexaCB-(169)	2023/03/03		101	%	40 - 145
			C13-33'44'5-PentaCB-(126)	2023/03/03		151 (1)	%	40 - 145
			C13-33'44'-TetraCB-(77)	2023/03/03		86	%	40 - 145
			C13-344'5-TetraCB-(81)	2023/03/03		82	%	40 - 145
			C13-344'-TriCB-(37)	2023/03/03		80	%	40 - 145
			C13-44'-DiCB-(15)	2023/03/03		82	%	15 - 145
			C13-4-MonoCB-(3)	2023/03/03		49	%	15 - 145
			C13-DecaCB-(209)	2023/03/03		69	%	40 - 145
			C13-HexaCB-(156)+(157)	2023/03/03		96	%	40 - 145
			2-MonoCB-(1)	2023/03/03	0.010 U, EDL=0.010		ng/L	
			3-MonoCB-(2)	2023/03/03	0.0087 U, EDL=0.0087		ng/L	
			4-MonoCB-(3)	2023/03/03	0.0083 U, EDL=0.0083		ng/L	
			22'-DiCB-(4)	2023/03/03	0.029 U, EDL=0.029		ng/L	
			2,3-DiCB-(5)	2023/03/03	0.0053 U, EDL=0.0053		ng/L	
			2,3'-DiCB-(6)	2023/03/03	0.0054 U, EDL=0.0054		ng/L	
			2,4-DiCB-(7)	2023/03/03	0.0054 U, EDL=0.0054		ng/L	
			2,4'-DiCB-(8)	2023/03/03	0.0062 J, EDL=0.0051		ng/L	
			2,5-DiCB-(9)	2023/03/03	0.0055 U, EDL=0.0055		ng/L	
			2,6-DiCB-(10)	2023/03/03	0.0097 U, EDL=0.0097		ng/L	
			3,3'-DiCB-(11)	2023/03/03	0.0834 J, EDL=0.0052		ng/L	
			DiCB-(12)+(13)	2023/03/03	0.0051 U, EDL=0.0051		ng/L	
			3,5-DiCB-(14)	2023/03/03	0.0052 U, EDL=0.0052		ng/L	
			4,4'-DiCB-(15)	2023/03/03	0.0110 J, EDL=0.0053		ng/L	
			22'3-TriCB-(16)	2023/03/03	0.0279 J, EDL=0.0081		ng/L	
			22'4-TriCB-(17)	2023/03/03	0.0179 J, EDL=0.0061		ng/L	
			TriCB-(18)+(30)	2023/03/03	0.0176 J, EDL=0.0053		ng/L	
			22'6-TriCB-(19)	2023/03/03	0.0081 U, EDL=0.0081		ng/L	
			TriCB-(20) + (28)	2023/03/03	0.0548, EDL=0.0027		ng/L	
			TriCB-(21)+(33)	2023/03/03	0.0405 J, EDL=0.0029		ng/L	

Apex Laboratories Client Project #: A3B0674

QA/QC Batch Init QC Type	Parameter	Date Analyzed	Value	% Recovery UNITS	QC Limits
	234'-TriCB-(22)	2023/03/03	0.0213, EDL=0.0029	ng/L	
	235-TriCB-(23)	2023/03/03	0.0028 U, EDL=0.0028	ng/L	
	236-TriCB-(24)	2023/03/03	0.0048 U, EDL=0.0048	ng/L	
	23'4-TriCB-(25)	2023/03/03	0.0050 U, EDL=0.0050	ng/L	
	TriCB-(26)+(29)	2023/03/03	0.0111 J, EDL=0.0022	ng/L	
	23'6-TriCB-(27)	2023/03/03	0.0046 U, EDL=0.0046	ng/L	
	24'5-TriCB-(31)	2023/03/03	0.0613, EDL=0.0026	ng/L	
	24'6-TriCB-(32)	2023/03/03	0.0157 J, EDL=0.0043	ng/L	
	23'5'-TriCB-(34)	2023/03/03	0.0029 U, EDL=0.0029	ng/L	
	33'4-TriCB-(35)	2023/03/03	0.0030 U, EDL=0.0030	ng/L	
	33'5-TriCB-(36)	2023/03/03	0.0025 U, EDL=0.0025	ng/L	
	344'-TriCB-(37)	2023/03/03	0.0127 J, EDL=0.0031	ng/L	
	345-TriCB-(38)	2023/03/03	0.0029 U, EDL=0.0029	ng/L	
	34'5-TriCB-(39)	2023/03/03	0.0030 U, EDL=0.0030	ng/L	
	TetraCB-(40)+(41)+(71)	2023/03/03	0.029 J, EDL=0.015	ng/L	
	22'34'-TetraCB-(42)	2023/03/03	0.020 U, EDL=0.020	ng/L	
	22'35-TetraCB-(43)	2023/03/03	0.018 U, EDL=0.018	ng/L	
	TetraCB-(44)+(47)+(65)	2023/03/03	0.057 U, EDL=0.057 (2)	ng/L	
	TetraCB-(45)+(51)	2023/03/03	0.015 U, EDL=0.015	ng/L	
	22'36'-TetraCB-(46)	2023/03/03	0.017 U, EDL=0.017	ng/L	
	22'45-TetraCB-(48)	2023/03/03	0.015 U, EDL=0.015	ng/L	
	TetraCB-(49)+TetraCB-(69)	2023/03/03	0.051 J, EDL=0.013	ng/L	
	TetraCB-(50)+(53)	2023/03/03	0.014 U, EDL=0.014	ng/L	
	22'55'-TetraCB-(52)	2023/03/03	0.150, EDL=0.015	ng/L	
	22'66'-TetraCB-(54)	2023/03/03	0.025 U, EDL=0.025	ng/L	
	233'4-TetraCB-(55)	2023/03/03	0.0095 U, EDL=0.0095	ng/L	
	233'4'-Tetra CB(56)	2023/03/03	0.0176 J, EDL=0.0097	ng/L	

Apex Laboratories Client Project #: A3B0674

QA/QC Batch Ini	it QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		233'5-TetraCB-(57)	2023/03/03	0.0090 U, EDL=0.0090		ng/L	
		233'5'-TetraCB-(58)	2023/03/03	0.0094 U, EDL=0.0094		ng/L	
		TetraCB-(59)+(62)+(75)	2023/03/03	0.011 U, EDL=0.011		ng/L	
		2344'-TetraCB -(60)	2023/03/03	0.0121 J, EDL=0.0092		ng/L	
		TetraCB-(61)+(70)+(74)+(76)	2023/03/03	0.115 J, EDL=0.0086		ng/L	
		234'5-TetraCB-(63)	2023/03/03	0.0091 U, EDL=0.0091		ng/L	
		234'6-TetraCB-(64)	2023/03/03	0.028 J, EDL=0.013		ng/L	
		23'44'-TetraCB-(66)	2023/03/03	0.0394 J, EDL=0.0086		ng/L	
		23'45-TetraCB-(67)	2023/03/03	0.0080 U, EDL=0.0080		ng/L	
		23'45'-TetraCB-(68)	2023/03/03	0.0085 U, EDL=0.0085		ng/L	
		23'55'-TetraCB-(72)	2023/03/03	0.0090 U, EDL=0.0090		ng/L	
		23'5'6-TetraCB-(73)	2023/03/03	0.011 U, EDL=0.011		ng/L	
		33'44'-TetraCB-(77)	2023/03/03	0.0098 U, EDL=0.0098		ng/L	
		33'45-TetraCB-(78)	2023/03/03	0.010 U, EDL=0.010		ng/L	
		33'45'-TetraCB(79)	2023/03/03	0.0084 U, EDL=0.0084		ng/L	
		33'55'-TetraCB-(80)	2023/03/03	0.0077 U, EDL=0.0077		ng/L	
		344'5-TetraCB-(81)	2023/03/03	0.010 U, EDL=0.010		ng/L	
		22'33'4-PentaCB-(82)	2023/03/03	0.017 U, EDL=0.017		ng/L	
		PentaCB-(83)+(99)	2023/03/03	0.059 J, EDL=0.014		ng/L	
		22'33'6-PentaCB-(84)	2023/03/03	0.024, EDL=0.014		ng/L	
		PentaCB-(85)+(116)+(117)	2023/03/03	0.011 U, EDL=0.011		ng/L	
		PentaCB-(86)(87)(97)(109)(119)(125)	2023/03/03	0.068 J, EDL=0.011		ng/L	
		PentaCB-(88)+(91)	2023/03/03	0.012 U, EDL=0.012		ng/L	
		22'346'-PentaCB-(89)	2023/03/03	0.016 U, EDL=0.016		ng/L	
		PentaCB-(90)+(101)+(113)	2023/03/03	0.206, EDL=0.011		ng/L	
		22'355'-PentaCB-(92)	2023/03/03	0.035 J, EDL=0.015		ng/L	
		PentaCB-(93)+(98)+(100)+(102)	2023/03/03	0.013 U, EDL=0.013		ng/L	

Apex Laboratories Client Project #: A3B0674

QA/QC Batch In	it QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		22'356'-PentaCB-(94)	2023/03/03	0.014 U, EDL=0.014		ng/L	
		22'35'6-PentaCB-(95)	2023/03/03	0.210, EDL=0.015		ng/L	
		22'366'-PentaCB-(96)	2023/03/03	0.013 U, EDL=0.013		ng/L	
		22'45'6-PentaCB-(103)	2023/03/03	0.013 U, EDL=0.013		ng/L	
		22'466'-PentaCB-(104)	2023/03/03	0.017 U, EDL=0.017		ng/L	
		233'44'-PentaCB-(105)	2023/03/03	0.0276 J, EDL=0.0052		ng/L	
		233'45-PentaCB-(106)	2023/03/03	0.0057 U, EDL=0.0057		ng/L	
		233'4'5-PentaCB-(107)	2023/03/03	0.0081 J, EDL=0.0043		ng/L	
		PentaCB-(108)+(124)	2023/03/03	0.0053 U, EDL=0.0053		ng/L	
		PentaCB-(110)+(115)	2023/03/03	0.122, EDL=0.011		ng/L	
		233'55'-PentaCB-(111)	2023/03/03	0.0092 U, EDL=0.0092		ng/L	
		233'56-PentaCB-(112)	2023/03/03	0.0091 U, EDL=0.0091		ng/L	
		2344'5-PentaCB-(114)	2023/03/03	0.0052 U, EDL=0.0052		ng/L	
		23'44'5-PentaCB-(118)	2023/03/03	0.0962 J, EDL=0.0048		ng/L	
		23'455'-PentaCB-(120)	2023/03/03	0.0097 U, EDL=0.0097		ng/L	
		23'45'6-PentaCB-(121)	2023/03/03	0.0092 U, EDL=0.0092		ng/L	
		233'4'5'-PentaCB-(122)	2023/03/03	0.0070 U, EDL=0.0070		ng/L	
		23'44'5'-PentaCB-(123)	2023/03/03	0.0054 U, EDL=0.0054		ng/L	
		33'44'5-PentaCB-(126)	2023/03/03	0.0054 U, EDL=0.0054		ng/L	
		33'455'-PentaCB-(127)	2023/03/03	0.0054 U, EDL=0.0054		ng/L	
		HexaCB-(128)+(166)	2023/03/03	0.0124 J, EDL=0.0057		ng/L	
		HexaCB-(129)+(138)+(163)	2023/03/03	0.201, EDL=0.0064		ng/L	
		22'33'45'-HexaCB-(130)	2023/03/03	0.0072 J, EDL=0.0069		ng/L	
		22'33'46-HexaCB-(131)	2023/03/03	0.0083 U, EDL=0.0083		ng/L	
		22'33'46'-HexaCB-(132)	2023/03/03	0.0682, EDL=0.0069		ng/L	
		22'33'55'-HexaCB-(133)	2023/03/03	0.0071 U, EDL=0.0071		ng/L	
		HexaCB-(134)+(143)	2023/03/03	0.0135 J, EDL=0.0076		ng/L	

Apex Laboratories Client Project #: A3B0674

QA/QC Batch	Init QC Type	Parameter	Date Analyzed	Value	% Recovery UNITS	QC Limits
		HexaCB-(135)+(151)	2023/03/03	0.143, EDL=0.013	ng/L	
		22'33'66'-HexaCB-(136)	2023/03/03	0.0455 J, EDL=0.0099	ng/L	
		22'344'5-HexaCB-(137)	2023/03/03	0.0065 U, EDL=0.0065	ng/L	
		HexaCB-(139)+(140)	2023/03/03	0.0060 U, EDL=0.0060	ng/L	
		22'3455'-HexaCB-(141)	2023/03/03	0.0545, EDL=0.0062	ng/L	
		22'3456-HexaCB-(142)	2023/03/03	0.0074 U, EDL=0.0074	ng/L	
		22'345'6-HexaCB-(144)	2023/03/03	0.022 J, EDL=0.013	ng/L	
		22'3466'-HexaCB-(145)	2023/03/03	0.0093 U, EDL=0.0093	ng/L	
		22'34'55'-HexaCB-(146)	2023/03/03	0.0310 J, EDL=0.0058	ng/L	
		HexaCB-(147)+(149)	2023/03/03	0.274, EDL=0.0055	ng/L	
		22'34'56'-HexaCB-(148)	2023/03/03	0.014 U, EDL=0.014	ng/L	
		22'34'66'-HexaCB-(150)	2023/03/03	0.0090 U, EDL=0.0090	ng/L	
		22'3566'-HexaCB-(152)	2023/03/03	0.0094 U, EDL=0.0094	ng/L	
		HexaCB-(153)+(168)	2023/03/03	0.237, EDL=0.0050	ng/L	
		22'44'56'-HexaCB-(154)	2023/03/03	0.010 U, EDL=0.010	ng/L	
		22'44'66'-HexaCB-(155)	2023/03/03	0.013 U, EDL=0.013	ng/L	
		HexaCB-(156)+(157)	2023/03/03	0.0088 J, EDL=0.0035	ng/L	
		233'44'6-HexaCB-(158)	2023/03/03	0.0167 J, EDL=0.0042	ng/L	
		233'455'-HexaCB-(159)	2023/03/03	0.0033 U, EDL=0.0033	ng/L	
		233'456-HexaCB-(160)	2023/03/03	0.0052 U, EDL=0.0052	ng/L	
		233'45'6-HexaCB-(161)	2023/03/03	0.0048 U, EDL=0.0048	ng/L	
		233'4'55'-HexaCB-(162)	2023/03/03	0.0032 U, EDL=0.0032	ng/L	
		233'4'5'6-HexaCB-(164)	2023/03/03	0.0103 J, EDL=0.0046	ng/L	
		233'55'6-HexaCB-(165)	2023/03/03	0.0052 U, EDL=0.0052	ng/L	
		23'44'55'-HexaCB-(167)	2023/03/03	0.0041 J, EDL=0.0035	ng/L	
		33'44'55'-HexaCB-(169)	2023/03/03	0.0038 U, EDL=0.0038	ng/L	
		22'33'44'5-HeptaCB-(170)	2023/03/03	0.0208 J, EDL=0.0054	ng/L	

Apex Laboratories Client Project #: A3B0674

QA/QC Batch Ini	t QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		HeptaCB-(171)+(173)	2023/03/03	0.013 U, EDL=0.013 (2)		ng/L	
		22'33'455'-HeptaCB-(172)	2023/03/03	0.0060 U, EDL=0.0060		ng/L	
		22'33'456'-HeptaCB-(174)	2023/03/03	0.0523, EDL=0.0054		ng/L	
		22'33'45'6-HeptaCB-(175)	2023/03/03	0.010 U, EDL=0.010		ng/L	
		22'33'466'-HeptaCB-(176)	2023/03/03	0.0140 J, EDL=0.0076		ng/L	
		22'33'45'6'-HeptaCB-(177)	2023/03/03	0.0308 J, EDL=0.0059		ng/L	
		22'33'55'6-HeptaCB-(178)	2023/03/03	0.014 J, EDL=0.011		ng/L	
		22'33'566'-HeptaCB-(179)	2023/03/03	0.0419 J, EDL=0.0074		ng/L	
		HeptaCB-(180)+(193)	2023/03/03	0.0737 J, EDL=0.0047		ng/L	
		22'344'56-HeptaCB-(181)	2023/03/03	0.0056 U, EDL=0.0056		ng/L	
		22'344'56'-HeptaCB-(182)	2023/03/03	0.0098 U, EDL=0.0098		ng/L	
		22'344'5'6-HeptaCB-(183)	2023/03/03	0.0419 J, EDL=0.0048		ng/L	
		22'344'66'-HeptaCB-(184)	2023/03/03	0.0073 U, EDL=0.0073		ng/L	
		22'3455'6-HeptaCB-(185)	2023/03/03	0.0058 U, EDL=0.0058		ng/L	
		22'34566'-HeptaCB-(186)	2023/03/03	0.0079 U, EDL=0.0079		ng/L	
		22'34'55'6-HeptaCB-(187)	2023/03/03	0.085, EDL=0.010		ng/L	
		22'34'566'-HeptaCB-(188)	2023/03/03	0.0080 U, EDL=0.0080		ng/L	
		233'44'55'-HeptaCB-(189)	2023/03/03	0.0039 U, EDL=0.0039		ng/L	
		233'44'56-HeptaCB-(190)	2023/03/03	0.0049 J, EDL=0.0043		ng/L	
		233'44'5'6-HeptaCB-(191)	2023/03/03	0.0042 U, EDL=0.0042		ng/L	
		233'455'6-HeptaCB-(192)	2023/03/03	0.0047 U, EDL=0.0047		ng/L	
		22'33'44'55'-OctaCB-(194)	2023/03/03	0.0078 U, EDL=0.0078		ng/L	
		22'33'44'56-OctaCB-(195)	2023/03/03	0.0084 U, EDL=0.0084		ng/L	
		22'33'44'56'-OctaCB-(196)	2023/03/03	0.011 U, EDL=0.011		ng/L	
		22'33'44'66'OctaCB-(197)	2023/03/03	0.0081 U, EDL=0.0081		ng/L	
		OctaCB-(198)+(199)	2023/03/03	0.013 U, EDL=0.013		ng/L	
		22'33'4566'-OctaCB-(200)	2023/03/03	0.0082 U, EDL=0.0082		ng/L	

Apex Laboratories Client Project #: A3B0674

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		2- 170	22'33'45'66'-OctaCB-(201)	2023/03/03	0.0076 U,	, , , , , , , , , , , , , , , , , , , ,	ng/L	~ = mints
			22'33'55'66'-OctaCB-(202)	2023/03/03	0.0090 U,		ng/L	
			22'344'55'6-OctaCB-(203)	2023/03/03	EDL=0.0090 0.011 U, EDL=0.011		ng/L	
			22'344'566'-OctaCB-(204)	2023/03/03	0.0075 U, EDL=0.0075		ng/L	
			233'44'55'6-OctaCB-(205)	2023/03/03	0.0060 U, EDL=0.0060		ng/L	
			22'33'44'55'6-NonaCB-(206)	2023/03/03	0.011 U, EDL=0.011		ng/L	
			22'33'44'566'-NonaCB-(207)	2023/03/03	0.0076 U, EDL=0.0076		ng/L	
			22'33'455'66'-NonaCB-(208)	2023/03/03	0.0079 U, EDL=0.0079		ng/L	
			DecaCB-(209)	2023/03/03	0.012 U, EDL=0.012		ng/L	
			Total PCB	2023/03/03	3.21, EDL=0.057		ng/L	
8534937	HBJ	Spiked Blank	13C2-4:2-Fluorotelomersulfonic Acid	2023/03/05		97	%	50 - 150
			13C2-6:2-Fluorotelomersulfonic Acid	2023/03/05		95	%	50 - 150
			13C2-8:2-Fluorotelomersulfonic Acid	2023/03/05		95	%	50 - 150
			13C2-Perfluorodecanoic acid	2023/03/05		94	%	50 - 150
			13C2-Perfluorododecanoic acid	2023/03/05		85	%	50 - 150
			13C2-Perfluorohexanoic acid	2023/03/05		99	%	50 - 150
			13C2-perfluorotetradecanoic acid	2023/03/05		81	%	50 - 150
			13C2-Perfluoroundecanoic acid	2023/03/05		89	%	50 - 150
			13C3-HFPO-DA	2023/03/05		100	%	50 - 150
			13C3-Perfluorobutanesulfonic acid	2023/03/05		96	%	50 - 150
			13C4-Perfluorobutanoic acid	2023/03/05		98	%	50 - 150
			13C4-Perfluoroheptanoic acid	2023/03/05		97	%	50 - 150
			13C4-Perfluorooctanesulfonic acid	2023/03/05		97	%	50 - 150
			13C4-Perfluorooctanoic acid	2023/03/05		96	%	50 - 150
			13C5-Perfluorononanoic acid	2023/03/05		95	%	50 - 150
			13C5-Perfluoropentanoic acid	2023/03/05		98	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2023/03/05		92	%	50 - 150
			1802-Perfluorohexanesulfonic acid	2023/03/05		100	%	50 - 150
			D3-MeFOSA	2023/03/05		79	%	50 - 150
			D3-MeFOSAA	2023/03/05		88	%	50 - 150
			D5-EtFOSA	2023/03/05		77	%	50 - 150
			D5-EtFOSAA	2023/03/05		81	%	50 - 150
			D7-MeFOSE	2023/03/05		84	%	50 - 150
			D9-EtFOSE	2023/03/05		82	%	50 - 150
			Perfluorobutanoic acid (PFBA)	2023/03/05		89	%	70 - 130
			Perfluoropentanoic acid (PFPeA)	2023/03/05		90	%	70 - 130
			Perfluorohexanoic acid (PFHxA)	2023/03/05		90	%	70 - 130
			Perfluoroheptanoic acid (PFHpA)	2023/03/05		90	%	70 - 130
			Perfluorooctanoic acid (PFOA)	2023/03/05		90	%	70 - 130
			Perfluorononanoic acid (PFNA)	2023/03/05		90	%	70 - 130
			Perfluorodecanoic acid (PFDA)	2023/03/05		90	%	70 - 130
			Perfluoroundecanoic acid (PFUnA)	2023/03/05		88	%	70 - 130
			Perfluorododecanoic acid (PFDoA)	2023/03/05		90	%	70 - 130
			Perfluorotridecanoic acid (PFTRDA)	2023/03/05		93	%	70 - 130

Apex Laboratories Client Project #: A3B0674

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Perfluorotetradecanoic acid(PFTEDA)	2023/03/05		87	%	70 - 130
			Perfluorobutanesulfonic acid (PFBS)	2023/03/05		90	%	70 - 130
			Perfluoropentanesulfonic acid PFPes	2023/03/05		89	%	70 - 130
			Perfluorohexanesulfonic acid(PFHxS)	2023/03/05		88	%	70 - 130
			Perfluoroheptanesulfonic acid PFHpS	2023/03/05		87	%	70 - 130
			Perfluorooctanesulfonic acid (PFOS)	2023/03/05		90	%	70 - 130
			Perfluorononanesulfonic acid (PFNS)	2023/03/05		87	%	70 - 130
			Perfluorodecanesulfonic acid (PFDS)	2023/03/05		89	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2023/03/05		90	%	70 - 130
			EtFOSA	2023/03/05		91	%	70 - 130
			MeFOSA	2023/03/05		89	%	70 - 130
			EtFOSE	2023/03/05		88	%	70 - 130
			MeFOSE	2023/03/05		89	%	70 - 130
			EtFOSAA	2023/03/05		90	%	70 - 130
			MeFOSAA	2023/03/05		87	%	70 - 130
			4:2 Fluorotelomer sulfonic acid	2023/03/05		87	%	70 - 130
			6:2 Fluorotelomer sulfonic acid	2023/03/05		89	%	70 - 130
			8:2 Fluorotelomer sulfonic acid	2023/03/05		88	%	70 - 130
			Hexafluoropropyleneoxide dimer acid	2023/03/05		89	%	70 - 130
			4,8-Dioxa-3H-perfluorononanoic acid	2023/03/05		91	%	70 - 130
			9CI-PF3ONS (F-53B Major)	2023/03/05		87	%	70 - 130
			11Cl-PF3OUdS (F-53B Minor)	2023/03/05		84	%	70 - 130
8534937	HBJ	Spiked Blank DUP	13C2-4:2-Fluorotelomersulfonic Acid	2023/03/05		93	%	50 - 150
			13C2-6:2-Fluorotelomersulfonic Acid	2023/03/05		90	%	50 - 150
			13C2-8:2-Fluorotelomersulfonic Acid	2023/03/05		93	%	50 - 150
			13C2-Perfluorodecanoic acid	2023/03/05		95	%	50 - 150
			13C2-Perfluorododecanoic acid	2023/03/05		86	%	50 - 150
			13C2-Perfluorohexanoic acid	2023/03/05		95	%	50 - 150
			13C2-perfluorotetradecanoic acid	2023/03/05		72	%	50 - 150
			13C2-Perfluoroundecanoic acid	2023/03/05		87	%	50 - 150
			13C3-HFPO-DA	2023/03/05		89	%	50 - 150
			13C3-Perfluorobutanesulfonic acid	2023/03/05		95	%	50 - 150
			13C4-Perfluorobutanoic acid	2023/03/05		96	%	50 - 150
			13C4-Perfluoroheptanoic acid	2023/03/05		96	%	50 - 150
			13C4-Perfluorooctanesulfonic acid	2023/03/05		95	%	50 - 150
			13C4-Perfluorooctanoic acid	2023/03/05		94	%	50 - 150
			13C5-Perfluorononanoic acid	2023/03/05		94	%	50 - 150
			13C5-Perfluoropentanoic acid	2023/03/05		97	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2023/03/05		91	%	50 - 150
			1802-Perfluorohexanesulfonic acid	2023/03/05		94	%	50 - 150
			D3-MeFOSA	2023/03/05		76	%	50 - 150
			D3-MeFOSAA	2023/03/05		85	%	50 - 150
			D5-EtFOSA	2023/03/05		77	%	50 - 150
			D5-EtFOSAA	2023/03/05		85	%	50 - 150
			D7-MeFOSE	2023/03/05		81	%	50 - 150
			D9-EtFOSE	2023/03/05		80	%	50 - 150
			Perfluorobutanoic acid (PFBA)	2023/03/05		92	%	70 - 130
			Perfluoropentanoic acid (PFPeA)	2023/03/05		91	%	70 - 130
			Perfluorohexanoic acid (PFHxA)	2023/03/05		93	%	70 - 130
			Perfluoroheptanoic acid (PFHpA)	2023/03/05		91	%	70 - 130
			Perfluorooctanoic acid (PFOA)	2023/03/05		93	%	70 - 130
			Perfluorononanoic acid (PFNA)	2023/03/05		91	%	70 - 130
			i cinaciononanoicacia (i i iva)	2020/00/00		J1	/0	, 0 130

Bureau Veritas Job #: C351279 Report Date: 2023/04/21 Apex Laboratories Client Project #: A3B0674

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							· · · · · · · · · · · · · · · · · · ·	
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Perfluoroundecanoic acid (PFUnA)	2023/03/05		92	%	70 - 130
			Perfluorododecanoic acid (PFDoA)	2023/03/05		90	%	70 - 130
			Perfluorotridecanoic acid (PFTRDA)	2023/03/05		102	%	70 - 130
			Perfluorotetradecanoic acid(PFTEDA)	2023/03/05		89	%	70 - 130
			Perfluorobutanesulfonic acid (PFBS)	2023/03/05		92	%	70 - 130
			Perfluoropentanesulfonic acid PFPes	2023/03/05		90	%	70 - 130
			Perfluorohexanesulfonic acid(PFHxS)	2023/03/05		92	%	70 - 130
			Perfluoroheptanesulfonic acid PFHpS	2023/03/05		90	%	70 - 130
			Perfluorooctanesulfonic acid (PFOS)	2023/03/05		93	%	70 - 130
			Perfluorononanesulfonic acid (PFNS)	2023/03/05		87	%	70 - 130
			Perfluorodecanesulfonic acid (PFDS)	2023/03/05		87	%	70 - 130
			Perfluorooctane Sulfonamide (PFOSA)	2023/03/05		92	%	70 - 130
			EtFOSA	2023/03/05		91	%	70 - 130
			MeFOSA	2023/03/05		89	%	70 - 130
			EtFOSE	2023/03/05		91	%	70 - 130
			MeFOSE	2023/03/05		93	%	70 - 130
			EtFOSAA	2023/03/05		89	%	70 - 130
			MeFOSAA	2023/03/05		92	%	70 - 130
			4:2 Fluorotelomer sulfonic acid	2023/03/05		92	%	70 - 130
			6:2 Fluorotelomer sulfonic acid	2023/03/05		94	%	70 - 130
			8:2 Fluorotelomer sulfonic acid	2023/03/05		91	%	70 - 130
			Hexafluoropropyleneoxide dimer acid	2023/03/05		103	%	70 - 130
			4,8-Dioxa-3H-perfluorononanoic acid	2023/03/05		93	%	70 - 130
			9CI-PF3ONS (F-53B Major)	2023/03/05		89	%	70 - 130
			11Cl-PF3OUdS (F-53B Minor)	2023/03/05		89	%	70 - 130
8534937	HBJ	RPD	Perfluorobutanoic acid (PFBA)	2023/03/05	2.9		%	30
			Perfluoropentanoic acid (PFPeA)	2023/03/05	1.2		%	30
			Perfluorohexanoic acid (PFHxA)	2023/03/05	3.1		%	30
			Perfluoroheptanoic acid (PFHpA)	2023/03/05	0.88		%	30
			Perfluorooctanoic acid (PFOA)	2023/03/05	3.2		%	30
			Perfluorononanoic acid (PFNA)	2023/03/05	0.97		%	30
			Perfluorodecanoic acid (PFDA)	2023/03/05	1.1		%	30
			Perfluoroundecanoic acid (PFUnA)	2023/03/05	4.5		%	30
			Perfluorododecanoic acid (PFDoA)	2023/03/05	0.25		%	30
			Perfluorotridecanoic acid (PFTRDA)	2023/03/05	9.8		%	30
			Perfluorotetradecanoic acid(PFTEDA)	2023/03/05	1.2		%	30
			Perfluorobutanesulfonic acid (PFBS)	2023/03/05	2.2		%	30
			Perfluoropentanesulfonic acid PFPes	2023/03/05	0.86		%	30
			Perfluorohexanesulfonic acid(PFHxS)	2023/03/05	4.9		%	30
			Perfluoroheptanesulfonic acid PFHpS	2023/03/05	2.9		%	30
			Perfluorooctanesulfonic acid (PFOS)	2023/03/05	2.8		%	30
			Perfluorononanesulfonic acid (PFNS)	2023/03/05	0.79		%	30
			Perfluorodecanesulfonic acid (PFDS)	2023/03/05	1.7		% %	30
				2023/03/05	1.7			
			Perfluorooctane Sulfonamide (PFOSA) EtFOSA	2023/03/05	0.73		% %	30 30
			MeFOSA	2023/03/05				
			EtFOSE	• •	0.49		%	30 30
				2023/03/05	2.6		%	30 30
			MeFOSE	2023/03/05	3.8		%	30
			EtFOSAA	2023/03/05	0.60		%	30
			MeFOSAA	2023/03/05	6.3		%	30
			4:2 Fluorotelomer sulfonic acid	2023/03/05	5.3		%	30
			6:2 Fluorotelomer sulfonic acid	2023/03/05	5.8		%	30
			8:2 Fluorotelomer sulfonic acid	2023/03/05	3.5		%	30

Bureau Veritas Job #: C351279 Report Date: 2023/04/21 Apex Laboratories Client Project #: A3B0674

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC			_			-1-		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Hexafluoropropyleneoxide dimer acid	2023/03/05	14		%	30
			4,8-Dioxa-3H-perfluorononanoic acid	2023/03/05	1.7		%	30
			9Cl-PF3ONS (F-53B Major)	2023/03/05	2.0		%	30
			11Cl-PF3OUdS (F-53B Minor)	2023/03/05	5.4		%	30
3534937	HBJ	Method Blank	13C2-4:2-Fluorotelomersulfonic Acid	2023/03/05		99	%	50 - 150
			13C2-6:2-Fluorotelomersulfonic Acid	2023/03/05		99	%	50 - 150
			13C2-8:2-Fluorotelomersulfonic Acid	2023/03/05		97	%	50 - 150
			13C2-Perfluorodecanoic acid	2023/03/05		90	%	50 - 150
			13C2-Perfluorododecanoic acid	2023/03/05		79	%	50 - 150
			13C2-Perfluorohexanoic acid	2023/03/05		97	%	50 - 150
			13C2-perfluorotetradecanoic acid	2023/03/05		45 (3)	%	50 - 150
			13C2-Perfluoroundecanoic acid	2023/03/05		83	%	50 - 150
			13C3-HFPO-DA	2023/03/05		97	%	50 - 150
			13C3-Perfluorobutanesulfonic acid	2023/03/05		99	%	50 - 150
			13C4-Perfluorobutanoic acid	2023/03/05		98	%	50 - 150
			13C4-Perfluoroheptanoic acid	2023/03/05		97	%	50 - 150
			13C4-Perfluorooctanesulfonic acid	2023/03/05		91	%	50 - 150
			13C4-Perfluorooctanoic acid	2023/03/05		95	%	50 - 150
			13C5-Perfluorononanoic acid	2023/03/05		93	%	50 - 150
			13C5-Perfluoropentanoic acid	2023/03/05		99	%	50 - 150
			13C8-Perfluorooctane Sulfonamide	2023/03/05		89	%	50 - 150
			1802-Perfluorohexanesulfonic acid	2023/03/05		97	%	50 - 150
			D3-MeFOSA	2023/03/05		73	%	50 - 15
			D3-MeFOSAA	2023/03/05		84	%	50 - 15
			D5-EtFOSA	2023/03/05		76	%	50 - 15
			D5-EtFOSAA	2023/03/05		83	%	50 - 15
			D7-MeFOSE	2023/03/05		85	%	50 - 150
			D9-EtFOSE	2023/03/05		80	%	50 - 150
			Perfluorobutanoic acid (PFBA)	2023/03/05	0.0015 U, MDL=0.0015		ug/L	
			Perfluoropentanoic acid (PFPeA)	2023/03/05	0.0025 U, MDL=0.0025		ug/L	
			Perfluorohexanoic acid (PFHxA)	2023/03/05	0.0038 U, MDL=0.0038		ug/L	
			Perfluoroheptanoic acid (PFHpA)	2023/03/05	0.0018 U, MDL=0.0018		ug/L	
			Perfluorooctanoic acid (PFOA)	2023/03/05	0.0030 U, MDL=0.0030		ug/L	
			Perfluorononanoic acid (PFNA)	2023/03/05	0.0021 U, MDL=0.0021		ug/L	
			Perfluorodecanoic acid (PFDA)	2023/03/05	0.0016 U, MDL=0.0016		ug/L	
			Perfluoroundecanoic acid (PFUnA)	2023/03/05	0.0024 U, MDL=0.0024		ug/L	
			Perfluorododecanoic acid (PFDoA)	2023/03/05	0.0029 U, MDL=0.0029		ug/L	
			Perfluorotridecanoic acid (PFTRDA)	2023/03/05	0.0026 U, MDL=0.0026		ug/L	
			Perfluorotetradecanoic acid(PFTEDA)	2023/03/05	0.0016 U, MDL=0.0016		ug/L	
			Perfluorobutanesulfonic acid (PFBS)	2023/03/05	0.0021 U, MDL=0.0021		ug/L	
			Perfluoropentanesulfonic acid PFPes	2023/03/05	0.0023 U, MDL=0.0023		ug/L	

Bureau Veritas Job #: C351279 Report Date: 2023/04/21 Apex Laboratories Client Project #: A3B0674

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
Satori		~~ . 1hc	Perfluorohexanesulfonic acid(PFHxS)	2023/03/05	0.0022 U, MDL=0.0022	75 Necovery	ug/L	QC LITTIES
			Perfluoroheptanesulfonic acid PFHpS	2023/03/05	0.0039 U, MDL=0.0039		ug/L	
			Perfluorooctanesulfonic acid (PFOS)	2023/03/05	0.0035 U, MDL=0.0035		ug/L	
			Perfluorononanesulfonic acid (PFNS)	2023/03/05	0.0037 U, MDL=0.0037		ug/L	
			Perfluorodecanesulfonic acid (PFDS)	2023/03/05	0.0048 U, MDL=0.0048		ug/L	
			Perfluorooctane Sulfonamide (PFOSA)	2023/03/05	0.0034 U, MDL=0.0034		ug/L	
			EtFOSA	2023/03/05	0.0095 U, MDL=0.0095		ug/L	
			MeFOSA	2023/03/05	0.0084 U, MDL=0.0084		ug/L	
			EtFOSE	2023/03/05	0.0070 U, MDL=0.0070		ug/L	
			MeFOSE	2023/03/05	0.0073 U, MDL=0.0073		ug/L	
			EtFOSAA	2023/03/05	0.0046 U, MDL=0.0046		ug/L	
			MeFOSAA	2023/03/05	0.0045 U, MDL=0.0045		ug/L	
			4:2 Fluorotelomer sulfonic acid	2023/03/05	0.0033 U, MDL=0.0033		ug/L	
			6:2 Fluorotelomer sulfonic acid	2023/03/05	0.0015 U, MDL=0.0015		ug/L	
			8:2 Fluorotelomer sulfonic acid	2023/03/05	0.0031 U, MDL=0.0031		ug/L	
			Hexafluoropropyleneoxide dimer acid	2023/03/05	0.0052 U, MDL=0.0052		ug/L	
			4,8-Dioxa-3H-perfluorononanoic acid	2023/03/05	0.0027 U, MDL=0.0027		ug/L	
			9CI-PF3ONS (F-53B Major)	2023/03/05	0.0043 U, MDL=0.0043		ug/L	
			11Cl-PF3OUdS (F-53B Minor)	2023/03/05	0.0035 U, MDL=0.0035		ug/L	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) The extracted internal standard analyte exhibited high recovery and as such, may not have allowed for accurate recovery correction of the associated native compound. For results that were not detected (ND), this potential high bias has no impact.
- (2) EMPC / NDR Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.
- (3) Extracted internal standard analyte recovery was below the defined lower control limit (LCL) which may result in increased variability of the associated native analyte result (PFTeDA, PFTrDA). La récupération de l'analyte standard interne extrait était inférieure à la limite de contrôle inférieure définie (LCL), ce qui peut entraîner une variabilité accrue du résultat de l'analyte natif associé (PFTeDA, PFTrDA).

Bureau Veritas Job #: C351279 Apex Laboratories
Report Date: 2023/04/21 Client Project #: A3B0674

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Angel Guerrero, Supervisor, Ultra Trace Analysis, HRMS and SVOC

Colm McNamara, Senior Analyst, Liquid Chromatography

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

SUBCONTRACT ORDER

Apex Laboratories A3B0674

SKM

AUK 2/21/23

SENDING LABORATORY:

Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223

Phone: (503) 718-2323 Fax: (503) 336-0745

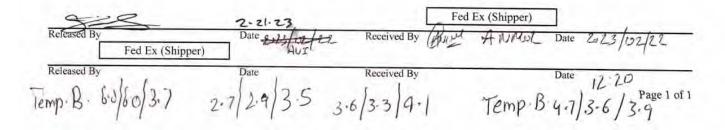
Project Manager: Philip Nerenberg

RECEIVING LABORATORY:

BV Labs / Maxxam

C/O FEDEX DEPOT 299 Cayuga Rd

Cheektowaga, NY 14225 Phone :(800) 668-0639


Fax: (905) 332-9169

Sample Name: MW1-20230220-GW-7	0	Water	Sampled: 02/20/23 10:26	(A3B0674-01)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB)	03/06/23 17:00	02/20/24 10:26		
1668C PCB Congeners (SUB)	03/06/23 17:00	02/20/24 10:26		
1699 Insecticides/Pesticides (SUB)	03/06/23 17:00	02/27/23 10:26	waters	
537M - PFOAs (SUB)	03/06/23 17:00	02/27/23 10:26		
Containers Supplied:				
(F)Other-Non Preserved				
(G)Other-Non Preserved				
(Q)1 L Amber Glass - Non Preserved				
(R)1 L Amber Glass - Non Preserved				
(S)1 L Amber Glass - Non Preserved		-	4	
(T)1 L Amber Glass - Non Preserved				

Sample Name: MW2-20230220-GW-60		Water	Sampled: 02/20/23 14:41	(A3B0674-02)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB)	03/06/23 17:00	02/20/24 14:41		
1668C PCB Congeners (SUB)	03/06/23 17:00	02/20/24 14:41		
1699 Insecticides/Pesticides (SUB)	03/06/23 17:00	02/27/23 14:41	waters	
537M - PFOAs (SUB)	03/06/23 17:00	02/27/23 14:41		
Containers Supplied:				
(F)Other-Non Preserved			2	2-Feb-23 12:20
(G)Other-Non Preserved				The state of the second
(Q)1 L Amber Glass - Non Preserved			Lori Du	
(R)I LAmber Glass - Non Preserved				51279
(S)1 L Amber Glass - Non Preserved			CJ.	312/9
(T)1 L Amber Glass - Non Preserved			KSS	ENV-1648

Standard TAT

WATCH HULD TIMES

APPENDIX D DATA VALIDATION MEMORANDA

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. M0830.03.006 | DECEMBER 16, 2022 | CITY OF ST. HELENS

Maul Foster & Alongi, Inc. (MFA), conducted an independent Stage 2A review of the quality of analytical results for a 50-part incremental sampling methodology (ISM) sediment sample collected by MFA from the wastewater treatment lagoon located at 451 Plymouth Street, St. Helens, Oregon, on August 10, 2022.

Apex Laboratories, LLC (Apex), Bureau Veritas (BV), and Weck Laboratories, Inc. (Weck), performed the analyses. MFA reviewed Apex report number A2H0382 and BV report number C2O0154. Portions of samples submitted to Apex were subcontracted to BV for dioxins and furans analysis and to Weck for chlorinated herbicides analysis. BV results were reported in C2O0154 and Weck analytical results were appended to Apex report A2H0382. The analyses performed and sample analyzed are listed below.

Analysis	References
Chlorinated herbicides	EPA 8151A
Diesel- and oil-range hydrocarbons	NWTPH-Dx
Dioxins and furans	EPA 8290A, EPA 1613B
Gasoline-range hydrocarbons	NWTPH-Gx
Hexavalent chromium	EPA 7196A
Organochlorine pesticides	EPA 8270E
Organophosphorus pesticides	EPA 8270E
Percent moisture	Carter, 2008
Percent solids	EPA 8000D
Polychlorinated biphenyls as congeners	EPA 1668C
Per- and polyfluoroalkyl substances	ASTM D7968-17A
Semivolatile organic compounds	EPA 8270E
Total metals	EPA 6020B
Volatile organic compounds	EPA 8260D, EPA 8260D-SIM

Notes

ASTM = ASTM International.

EPA = U.S. Environmental Protection Agency.

NWTPH = Northwest Total Petroleum Hydrocarbons.

SIM = selected ion monitoring.

Sample Analyzed

Reports A2H0382, C2O0154

DU1-20220810-ISM-COMP

DATA QUALIFICATION

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) guidelines for data review (EPA 2014, 2020a, 2020b, 2020c) and appropriate laboratory- and method-specific guidelines (Apex 2022, BV 2021, EPA 1986, Weck 2020).

Data validation procedures were modified, as appropriate, to accommodate quality control requirements for methods that EPA data review procedures do not specifically address (e.g., Northwest Total Petroleum Hydrocarbons [NWTPH]-Dx).

Based on the results of the data quality review procedures described below, the data, with the appropriate final data qualifiers assigned, are considered acceptable for their intended use. Final data qualifiers represent qualifiers originating from the laboratory and accepted by the reviewer, and data qualifiers assigned by the reviewer during validation.

Final data qualifiers:

- I = result is estimated.
- R = result is rejected. The analyte may or may not be present in the sample.
- U = result is non-detect at the estimated detection limit (EDL), laboratory detection limit (LDL), method detection limit (MDL), or method reporting limit (MRL).
- UJ = result is non-detect with an estimated LDL or MRL.

According to report A2H0382, the NWTPH-Dx diesel-range hydrocarbons result for sample DU1-20220810-ISM-COMP and the associated laboratory duplicate sample (22H0779-DUP1) was flagged by Apex as having a chromatographic pattern that did not resemble the diesel fuel standard used for quantitation. The result was reported as diesel-range hydrocarbons instead of a specific fuel product; thus, qualification was not required.

According to report A2H0382, the EPA Method 8270E 3,3'-dichlorobenzidine result for sample DU1-20220810-ISM-COMP was flagged by Apex as estimated due to known erratic recoveries. Apex noted that the analyte may not have passed all quality control requirements for the method. The result has been qualified by the reviewer with R.

Report	Sample	Component	Original Result (ug/kg)	Qualified Result (ug/kg)
A2H0382	DU1-20220810- ISM-COMP	3,3'- Dichlorobenzidine	2,830 U	2,830 R

Notes

R = result is rejected. The analyte may or may not be present in the sample.

U = result is non-detect at the laboratory detection limit.

ug/kg = micrograms per kilogram.

According to report A2H0382, Apex noted that the EPA Method 7196A hexavalent chromium analysis for sample DU1-20220810-ISM-COMP included compensation for background color and/or sample turbidity, in accordance with the analytical method. Qualification was not required.

Positive identification of 2,3,7,8-TCDF cannot be achieved using typical EPA Method 1613B analytical columns; therefore, 2,3,7,8-TCDF results detected above the MRL are confirmed by analysis with a second column having 2,3,7,8-TCDF resolution capacity. The confirmation analysis is referenced by BV to both EPA Methods 8290A and 1613B. In report C2O0154, the following 2,3,7,8-TCDF result was confirmed by second column analysis and is considered the result of record:

Report	Sample	Component	Primary Analysis (pg/g)	Confirmation Analysis (pg/g)	Result of Record (pg/g)
C2O0154	DU1-20220810- ISM-COMP	2,3,7,8-TCDF	58.3	59.5	59.5
Note					

pg/g = picograms per gram.

According to report C2O0154, the ASTM International (ASTM) Method D7968-17A perfluorohexanesulfonic acid (PFHxS) result for sample DU1-20220810-ISM-COMP was flagged by BV as estimated due to exceedance of confirmation criteria. The result has been qualified by the reviewer with J, as shown in the following table:

Report	Sample	Component	Original Result (ug/kg)	Qualified Result (ug/kg)
C2O0154	DU1-20220810- ISM-COMP	PFHxS	3.5	3.5 J

Notes

J = result is estimated.

ug/kg = micrograms per kilogram.

SAMPLE CONDITIONS

Sample Custody

Sample custody was appropriately documented on the chain-of-custody (COC) forms accompanying the reports.

According to the subcontract COC form provided with report C2O0154, cooler custody seals were not observed on the sample coolers received by BV on August 23, 2022.

Holding Times

According to report A2H0382, the EPA Method 8260D-SIM analysis of sample DU1-20220810-ISM-COMP was performed two days after the 14-day method-recommended holding time. All associated results were non-detect and have been qualified by the reviewer

L:\Projects\0830.03 City of St. Helens\06_Scope 1B\Draft Documents\Phase IB Report\Appendix D - DVM\DVM_StHelens_Scope1B_Aug2022.docx

with R. The same analytes were also analyzed by EPA Method 8260D within the method-recommended holding time and were included in report A2H0382 to provide an unqualified analytical dataset. The EPA Method 8260D results will be used as the results of record. The EPA Method 8260D-SIM and 8260D data qualification and use is summarized in the following table:

Report A2H0382							
Sample	Component	EPA 8260D-SIM Original Result (ug/kg)	EPA 8260D-SIM Qualified Result (ug/kg)	EPA 8260D Result of Record (ug/kg)			
	Benzene	36.5 U	36.5 R	182 U			
	Toluene	182 U	182 R	911 U			
	Ethylbenzene	91.1 U	91.1 R	456 U			
	m,p-Xylene	182 U	182 R	911 U			
	o-Xylene	91.1 U	91.1 R	456 U			
	1,2,4-Trimethylbenzene	182 U	182 R	911 U			
	1,3,5-Trimethylbenzene	182 U	182 R	911 U			
	Chloroform	182 U	182 R	911 U			
	1,2-Dibromo-3-chloropropane	91.1 U	91.1 R	4,560 U			
	1,2-Dibromoethane	36.5 U	36.5 R	911 U			
	1,1-Dichloroethane	36.5 U	36.5 R	456 U			
DU1-	1,2-Dichloroethane	36.5 U	36.5 R	456 U			
20220810-	1,1-Dichloroethene	72.9 U	72.9 R	456 U			
ISM-COMP	cis-1,2-Dichloroethene	36.5 U	36.5 R	456 U			
	trans-1,2-Dichloroethene	36.5 U	36.5 R	456 U			
	1,2-Dichloropropane	36.5 U	36.5 R	456 U			
	cis-1,3-Dichloropropene	36.5 U	36.5 R	911 U			
	trans-1,3-Dichloropropene	36.5 U	36.5 R	911 U			
	Methyl tert-butyl ether	36.5 U	36.5 R	911 U			
	Tetrachloroethene	583 U	583 R	456 U			
	1,1,2,2-Tetrachloroethane	91.1 U	91.1 R	911 U			
	Trichloroethene	36.5 U	36.5 R	456 U			
	1,2,3-Trichloropropane	91.1 U	91.1 R	911 U			
	Vinyl chloride	182 U	182 R	456 U			
	1,1,2-Trichloroethane	91.1 U	91.1 R	456 U			

Note

EPA = U.S. Environmental Protection Agency.

R = result is rejected. The analyte may or may not be present in the sample.

SIM = selected ion monitoring.

U = result is non-detect at the laboratory detection limit.

ug/kg = micrograms per kilogram.

According to report A2H0382, the EPA Method 8270E organochlorine pesticide analysis was performed by Apex 33 days after the 14-day method-recommended holding time. Apex noted that the ISM-processed sample had been frozen at -18 degrees Celsius to extend the holding

time and when accounting for the time spent in frozen storage, the 14-day holding time had been met. The reviewer confirmed that the total amount of time that the sample spent in standard storage (at 4 degrees Celsius) was fewer than 14 days. Qualification based on holding time exceedance was not required.

According to the general comments provided with report C2O0154, ASTM D7968-17A batch 8213841 analysis for sample DU1-20220810-ISM-COMP was performed 9 days after the method-recommended holding time of 28 days. BV noted that a reanalysis was required for quality control purposes. BV also noted that due to their chemical nature, PFAS compounds are chemically and biologically stable in the environment, resist typical environmental degradation, and that reanalysis outside of the method-defined holding time should not have a significant impact on the data. The reviewer noted that there are no EPA guidelines for validation of PFAS analytical results. The associated sample results have been qualified with J for detected results and UJ for non-detect results.

Report	Sample	Component	Original Result (ug/kg)	Qualified Result (ug/kg)
		PFTrDA	3.9	3.9 J ^(a)
	DU1- 20220810- ISM-COMP	PFTeDA	2.2	2.2 J ^(a)
		PFOSA	0.20 U	0.20 UJ ^(a)
C2O0154		EtFOSA	0.31 U	0.31 UJ ^(a)
		MeFOSA	0.39 U	0.39 UJ ^(a)
		EtFOSE	1.7	1.7 J ^(a)
		MeFOSE	3.6	3.6 J

Notes

J = result is estimated.

U = result is non-detect at the method detection limit.

ug/kg = micrograms per kilogram.

UJ = result is non-detect with an estimated method detection limit.

^(a)Result is also qualified based on labeled surrogate exceedance. Final qualification is shown.

The remaining extractions and analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

The reviewer confirmed with the MFA field sampler that sample DU1-20220810-ISM-COMP was collected as a 50-part ISM sample from St. Helens wastewater lagoon decision unit 1. Apex performed representative sampling methodology processing, as requested on the COC form provided with report A2H0382. Apex noted that the sample was processed prior to extraction and analysis; the reviewer confirmed representative sampling methodology was performed consistent with standard ISM guidance. Apex air-dried and ground the entire dried sample to 70-micron particle size. The reviewer confirmed with Apex that dried fragments of the sample were examined for debris and large pieces of visible trash had been removed prior to grinding. Gravel and sticks were not observed in the sample. Apex noted in a separate email communication that small particles of plastic and synthetic fibers had been observed in the L:\Projects\0830.03 City of St. Helens\06_Scope 1B\Draft Documents\Phase IB Report\Appendix D - DVM\DVM_StHelens_Scope1B_Aug2022.docx

dried material, and at MFA's request, these small particles were retained and processed with the sample. The ground material was mixed and then subsampled for analysis. A separate 50-part ISM sample container with methanol preservative was submitted for NWTPH-Gx, EPA Method 8260D, and EPA Method 8260D-SIM analysis.

According to the general comments section of report C2O0154, the sample cooler received by BV on August 23, 2022, had an average temperature of 10.5 degrees Celsius. A temperature blank was also present and had an acceptable average temperature at 4.1 degrees Celsius. The reviewer confirmed that wet ice was also present in the cooler upon receipt. Based on the acceptable temperature blank temperature, qualification was not required. A second sample cooler received by BV on September 15, 2022, with the portion of sample provided for EPA Method 1668C polychlorinated biphenyl congener analysis had an average cooler temperature of 15.2 degrees Celsius. BV noted on the COC form that a temperature blank was not found. The reviewer confirmed that wet ice was present in the cooler when BV received it. Based on the presence of wet ice and known polychlorinated biphenyl congener thermal stability, the reviewer determined that qualification was not necessary.

The remaining samples were preserved and stored appropriately.

REPORTING LIMITS

Apex and Weck reported non-detect results to LDLs. Apex also raised some LDLs to MRLs, and these results are discussed below. BV reported non-detect EPA Method 1613B and 1668C results to EDLs and ASTM D7968-17A results to MDLs. Results detected between LDLs, EDLs, or MDLs and the associated MRLs were flagged by the laboratories with J as estimated. Samples requiring dilutions because of high analyte concentrations and/or matrix interferences were reported with raised detection and/or reporting limits. BV labeled MRLs as reporting detection limits.

The reviewer confirmed that NWTPH-Gx and EPA Method 8260D results were reported with a base dilution factor of 50 and EPA Method 8260D-SIM results were reported with a base dilution factor of 100 due to dilutions required for analysis.

According to report A2H0382, Apex raised NWTPH-Gx gasoline-range hydrocarbon and EPA Method 8260D bromomethane and 2-hexanone LDLs to MRLs. The reviewer confirmed that the gasoline-range hydrocarbon LDL had been raised due to matrix interference and that the bromomethane and 2-hexanone LDLs had been raised due to interference from coeluting organic compounds. No qualification was required.

According to report A2H0382, the EPA Method 8270E organophosphorus pesticide analysis of sample DU1-20220810-ISM-COMP and the associated laboratory duplicate was performed at a dilution of 40 due to requirements for sample preparation and/or analysis. The reviewer confirmed with Apex that the dilution was required due to matrix interference. LDLs for merphos, ethyl parathion, tetrachlorvinphos, and trichloroate were additionally raised by Apex to MRLs due to interference from coeluting organic compounds. The reviewer confirmed that LDLs for coumaphos, merphos, methyl parathion, monocrotophos were also raised to MRLs by Apex due to interference from coeluting organic compounds. No qualification was required.

L:\Projects\0830.03 City of St. Helens\06_Scope 1B\Draft Documents\Phase IB Report\Appendix D - DVM\DVM_StHelens_Scope1B_Aug2022.docx

According to report A2H0382, EPA Method 8270E organochlorine pesticide LDLs for dieldrin, endosulfan I, and endosulfan II for sample DU1-20220810-ISM-COMP were raised by Apex to the detected sample concentration due to interference from coeluting organic compounds. No qualification was required.

According to report A2H0382, the EPA Method 7196A analysis was performed at a dilution of 50. The reviewer confirmed that the dilution was performed due to matrix interference. No qualification was required.

According to report A2H0382, the EPA Method 8151A analysis was performed at a dilution of 10 due to matrix interference. The reviewer confirmed that Weck also diluted the sample prior to extraction due to matrix interference. No qualification was required.

BLANKS

Method Blanks

Laboratory method blanks are used to assess whether laboratory contamination was introduced during sample preparation and analysis. Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the laboratory method blanks were associated with all samples prepared in the analytical batch.

According to report A2H0382, the EPA Method 8260D-SIM batch 22H0946 laboratory method blank (22H0946-BLK1) had a detection of toluene between the LDL and MRL, at a concentration of 2.96 micrograms per kilogram, and a detection of tetrachloroethene above the MRL, at a concentration of 13.4 micrograms per kilogram. The associated sample results were non-detect; thus, qualification was not required.

According to report C2O0154 the EPA Method 1613B batch 8212445 laboratory method blank total HxCDD EDL was raised to 0.424 picograms per gram due to an estimated maximum potential concentration detection. The reviewer confirmed that the total HxCDD estimated maximum potential concentration was below the MRL. The reviewer applied validation guidance based on laboratory method blank evaluation of OCDD and OCDF so qualification was not required.

According to report C2O0154, the EPA Method 1668C batch 8239765 laboratory method blank analysis detected 3,3'-DiCB-11, TriCB-20+28, TetraCB-44+47+65, PentaCB-90+101+113, PentaCB-110+115, 2,3',4,4',5-PentaCB-118, HexaCB-129+138+163, HexaCB-147+149, and HexaCB-153+168 between EDLs and MRLs, ranging from concentrations of 0.00027 nanograms per gram to 0.00323 nanograms per gram. All associated sample results were detected above MRLs and significantly greater than the laboratory method blank concentrations; thus, qualification was not required.

All remaining laboratory method blank results were non-detect to LDLs, EDLs, or MDLs for all target analytes.

Equipment Rinsate Blanks

Equipment rinsate blanks are used to evaluate field equipment decontamination. These blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

Trip Blanks

Trip blanks are used to evaluate whether volatile organic compound contamination was introduced during sample storage and shipment between the sampling location and the laboratory.

Trip blank samples were not submitted for analysis. The associated sample was non-detect for all volatile organic compounds.

LABORATORY CONTROL SAMPLE AND LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

A laboratory control sample (LCS) and a laboratory control sample duplicate (LCSD) are spiked with target analytes to provide information about laboratory precision and accuracy. The LCS and LCSD samples were extracted and analyzed at the required frequency. LCSD results were not reported by Apex; batch precision was evaluated with laboratory duplicate sample results. BV labeled LCS and LCSD results as "spiked blank" and "spiked blank dup" results, respectively.

According to report A2H0382, the EPA Method 8260D batch 22H0476 LCS (22H0476-BS1) exceeded the upper percent recovery acceptance limit of 120 percent for acetone, bromomethane, chloroethane, and 2,2-dichloropropane, ranging from 122 percent to 139 percent. The associated sample results were non-detect; thus, qualification was not required. The LCS results for 2-hexanone and naphthalene were below the lower percent recovery acceptance limit of 80 percent, at 76 percent and 67 percent, respectively. Apex noted that MRL sensitivity had been confirmed for these two analytes. The associated sample LDL for 2-hexanone had been raised to the MRL by Apex. The reviewer raised the associated sample LDL for naphthalene to the MRL and qualified both the 2-hexanone and naphthalene results, which were non-detect, with UJ, at the MRL.

Report	Sample	Component	Original Result (ug/kg)	Qualified Result (ug/kg)
4.01.100.00	DU1-20220810-	2-Hexanone	18,200 U	18,200 UJ
A2H0382	ISM-COMP	Naphthalene	1,820 U	3,650 UJ

Notes

U = result is non-detect at the laboratory detection limit or method reporting limit. ug/kg = micrograms per kilogram.

According to report A2H0382, the EPA Method 8260D-SIM batch 22H0946 LCS (22H0946-BS1) exceeded the upper percent recovery acceptance limit of 120 percent for L:\Projects\0830.03 City of St. Helens\06_Scope 1B\Draft Documents\Phase IB Report\Appendix D - DVM\DVM_StHelens_Scope1B_Aug2022.docx

UJ = result is non-detect with an estimated method reporting limit.

tetrachloroethane, at 136 percent. The associated sample result was non-detect; thus, qualification was not required. The LCS result for 1,1-dichlorothene was below the lower percent recovery acceptance limit of 80 percent, at 67 percent. Apex noted that the associated sample result may be biased low. The associated sample result was already qualified by the reviewer as rejected based on analysis after the holding time; additional qualification was not required.

According to report A2H0382, the EPA Method 8270E batch 22H0777 LCS (22H0777-BS1) result for 3,3'-dichlorobenzidine exceeded the upper percent recovery acceptance limit of 121 percent, at 282 percent. Apex had also flagged the associated sample result as estimated based on known erratic quality control. The associated sample result is discussed by the reviewer in the Data Qualifications section above; additional qualification was not required.

All remaining LCS and LCSD results were within acceptance limits for percent recovery and relative percent difference (RPD).

LABORATORY DUPLICATE RESULTS

Laboratory duplicate results are used to evaluate laboratory precision. All laboratory duplicate samples were prepared and analyzed at the required frequency. When laboratory duplicate sample results were not reported, batch precision was evaluated with matrix spike (MS) and matrix spike duplicate (MSD) sample results.

Laboratory duplicate results greater than five times the MRL were evaluated using laboratory RPD control limits. Laboratory duplicate results less than five times the MRL, including non-detects, were evaluated using a control limit of the MRL of the parent sample; the absolute difference of the laboratory duplicate sample result and the parent sample result or the MRL for non-detects was compared to the MRL of the parent sample.

All laboratory duplicate results, including those flagged by the laboratory, met RPD acceptance criteria.

MATRIX SPIKE AND MATRIX SPIKE DUPLICATE RESULTS

MS and MSD results are used to evaluate laboratory precision and accuracy as well as the effect of the sample matrix on sample preparation and analysis. When MS and MSD results were not reported, batch precision and accuracy were evaluated with laboratory duplicate and LCS results, respectively.

When MS and MSD were prepared from samples with high concentrations of target analytes, associated MS and/or MSD percent recovery and/or RPD control limit exceedances did not require qualification because spike concentrations could not be accurately quantified. High concentrations of target analytes are defined as four times the spike amount for all analyses.

When MS and MSD were prepared with samples from unrelated projects, the MS and/or MSD percent recovery and/or RPD control limit exceedances did not require qualification because these sample matrices were not representative of project sample matrices.

According to report A2H0382, Apex flagged the EPA Method 8260D batch 22H0476 MS (22H0476-MS1) because the associated parent sample was received by Apex at a temperature outside of the recommended storage temperature range. The MS was prepared with a sample from an unrelated project; thus, qualification was not required.

According to report A2H0382, a MS was not reported for EPA Method 8270E batch 22H0777 or 22H0778 because high dilutions had been required for analysis for the sample used to prepare the MSs; expected MS spike concentrations were below LDLs, so analyte recovery could not be calculated. Batch accuracy was evaluated with LCS results.

According to report A2H0382, the EPA Method 7196A batch 22H0747 MS (22H0747-MS1) had no hexavalent chromium recovery. A second MS (22H0747-MS2) that was analyzed at a higher dilution also had no hexavalent chromium recovery. Apex noted that MS recoveries were likely caused by reducing conditions present in the sample. Apex analyzed a post-digestion MS (22H0747-PS1), where the digested sample was spiked with hexavalent chromium prior to analysis. The post-digestion MS had acceptable hexavalent chromium recovery; thus, the associated sample result, which was non-detect, was qualified by the reviewer with UJ, as shown in the following table.

Report	Sample	Component	Original Result (mg/kg)	Qualified Result (mg/kg)
A2H0382	DU1-20220810- ISM-COMP	Hexavalent chromium	10.7 U	10.7 UJ

Notes

U = result is non-detect at the laboratory detection limit.

mg/kg = milligrams per kilogram.

UJ = result is non-detect with an estimated laboratory detection limit.

According to report A2H0382, EPA Method 8151A batch W2H1928 MS (W2H1928-MS1) results for 2,4-D, 2,4-DB, 2,4,5-T, 2,4,5-TP, dalapon, dicamba, MCPP, pentachlorophenol, and pichloram were below lower percent recovery acceptance limits or were non-detect. The associated surrogate percent. Weck noted that the low MS and surrogate recoveries were likely caused by matrix interference. The associated MSD (W2H1928-MSD1) had acceptable percent recoveries for all chlorinated herbicides, ranging from 30 percent to 118 percent, and the surrogate, at 67 percent. The associated sample surrogate recovery was acceptable, at 67 percent, which indicates that matrix interference may have been minimal; however, based on the variable MS and MSD recoveries, all associated sample results, which were non-detect, have been qualified by the reviewer with UJ, as shown in the following table. MS and MSD RPDs provided by Weck appeared to be incorrect and so were recalculated by the reviewer. All MS and MSD RPDs exceeded the RPD control limit of 25 percent. The associated sample was non-detect for all chlorinated herbicides, so additional qualification based on MS and MSD RPD was not required.

Report	Sample	Component	Original Result (ug/kg)	Qualified Result (ug/kg)
		2,4-D	330 U	330 UJ
		2,4-DB	580 U	580 UJ
		2,4,5-T	150 U	150 UJ
		2,4,5-TP (Silvex)	180 U	180 UJ
	DU1-20220810- ISM-COMP	Dalapon	260 U	260 UJ
A 01 10200		Dicamba	240 U	240 UJ
A2H0382		Dichloroprop	240 U	240 UJ
		Dinoseb	83 U	83 UJ
		МСРА	54,000 U	54,000 UJ
		МСРР	140,000 U	140,000 UJ
		Pentachlorophenol	230 U	230 UJ
		Picloram	220 U	220 UJ

Notes

U = result is non-detect at the method detection limit.

UJ = result is non-detect with an estimated method detection limit.

All remaining MS and MSD results were within acceptance limits for percent recovery and RPD.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance for individual samples. The laboratory appropriately documented and qualified surrogate outliers. The reviewer took no action on surrogate percent recoveries associated with high sample dilutions. The reviewer confirmed that batch quality assurance/quality control results for samples with surrogate outliers were within acceptance limits.

All remaining surrogate results were within percent recovery acceptance limits.

LABELED ANALOG RECOVERY RESULTS

According to report C2O0154, ASTM D7968-17A, EPA Method 1613B, and EPA Method 1668C samples were spiked with carbon-13 labeled standards to quantify the relative response of analytes in each sample. For EPA Method 1613B, a chlorine-37 labeled standard was also used to evaluate the efficiency of the extract cleanup process.

According to report C2O0154, ASTM D7968-17A, EPA Method 1613B, and EPA Method 1668C labeled standard percent recovery acceptance limits were not shown for sample DU1-20220810-ISM-COMP. The reviewer confirmed with BV that all sample DU1-20220810-ISM-COMP labeled standard percent recovery acceptance limits were shown with quality control

ug/kg = micrograms per kilogram.

results and that all percent recovery exceedances were noted. No additional action was required.

According to report C2O0154, EPA Method 1668C labeled standard 13C-2,2'6,6'-TetraCB-54 and ¹³C-2,2'-DiCB-4 results for the batch 8239765 laboratory method blank were flagged by BV as meeting method criteria. The review confirmed with BV that the labeled standard acceptance limits had been expanded based on labeled standard recovery in the LCS. The associated samples and LCS had acceptable labeled analog standard recoveries; thus, qualification was not required.

According to report C2O0154, the ASTM D7968-17A labeled standards ¹³C₂-perfluorotetradecanoic acid (PFTeDA), ¹³C₈-perfluorooctane sulfonamide (PFOSA), d3-N-methyl perfluorooctane sulfonamide (MeFOSA), d5-N-ethyl perfluorooctane sulfonamide (EtFOSE) were below lower percent recovery acceptance limits of 50 percent, at 38 percent, 27 percent, 23 percent, 18 percent, and 17 percent, respectively, for sample DU1-20220810-ISM-COMP. The results were confirmed by reanalysis and are likely related to matrix interference. BV noted that PFTrDA sample results were also associated with the PFTeDA surrogate. The associated sample results have been qualified with J for detected results and UJ for non-detect results. All associated results were also qualified based on holding time exceedance, which is discussed in the Holding Times section above. Additional qualification was not required, but a summary of qualified results is presented for clarity:

Report	Sample	Component	Original Result (ug/kg)	Qualified Result (ug/kg)
		Perfluorotridecanoic acid (PFTrDA)	3.9	3.9 J ^(a)
		Perfluorotetradecanoic acid (PFTeDA)	2.2	2.2 J ^(a)
		Perfluorooctane sulfonamide (PFOSA)	0.20 U	0.20 UJ ^(a)
C2O0154 DU1- 20220810- ISM-COMP	20220810-	N-Ethyl perfluorooctane sulfonamide (EtFOSA)	0.31 U	0.31 UJ ^(a)
	13/41-00/411	N-Methyl perfluorooctane sulfonamide (MeFOSA)	0.39 U	0.39 UJ ^(a)
		N-Ethyl perfluorooctane sulfonamido ethanol (EtFOSE)	1.7	1.7 J ^(a)

Notes

J = result is estimated.

U = result is non-detect at the method detection limit.

ug/kg = micrograms per kilogram.

UJ = result is non-detect with an estimated method detection limit.

(a) Result is also qualified based on holding time exceedance. Final qualification is shown.

All remaining labeled standard recoveries were within acceptance limits.

CONTINUING CALIBRATION VERIFICATION RESULTS

Continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy through the end of the sample batch. The laboratories did not report CCV

results, but appropriately flagged results associated with CCV exceedances. Surrogate or batch quality control results flagged by the laboratory based on CCV exceedances but meeting percent recovery and/or RPD acceptance criteria required no action from the reviewer.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. Duplicate and triplicate samples were not submitted for analysis.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies.

Chemical names provided in this report can be found in the referenced analytical methods or the United States National Institutes of Health National Library of Medicine PubChem database https://pubchem.ncbi.nlm.nih.gov/.

Report A2H0382 was amended and reissued by Apex on December 12, 2022, to include LDLs for EPA Method 8151A results and to correct the EPA Method 8270E merphos result for sample DU1-20220810-ISM-COMP.

According to the COC form provided with report A2H0382, EPA Method 8151A chlorinated herbicide analysis was requested twice for sample DU1-20220810-ISM-COMP. The reviewer confirmed that the second analysis had been requested in error and that along with the first request for EPA Method 8151A, the remaining analytical methods on the COC form represented the complete list of required laboratory analyses. No additional action was required.

According to the COC form provided with report A2H0382, EPA Method 537 modified was requested for the per- and polyfluoroalkylated substances analysis; however, ASTM Method D7968-17A was performed. The reviewer confirmed that ASTM Method D7968-17A was an appropriate analytical method for the analysis. No additional action was required.

According to the COC form provided with report A2H0382, EPA Method 1699 modified was requested for the organochlorine pesticide analysis; however, EPA Method 8270E was ultimately performed. The reviewer confirmed that EPA Method 8270E was an appropriate analytical method for the analysis. No additional action was required.

C2O0154 was revised and reissued by BV on November 16, 2022, with a correction to sample name DU1-20220810-ISM-COMP.

No additional issues were found.

REFERENCES

Apex. 2022. Quality Systems Manual. Rev. 10. Apex Laboratories, LLC: Tigard, OR. June 20.

BV. 2021. Corporate Quality Manual. Rev. 22. Bureau Veritas: Mississauga, ON, Canada. September 7.

EPA. 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA publication SW-846. 3rd ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase II (2019), VII phase I (2019), and VII phase II (2020).

EPA. 2014. R10 Data V alidation and Review Guidelines for Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran Data (PCDD/PCDF) using Method 1613B and SW846 Method 8290A. EPA-910-R-14-003. U.S. Environmental Protection Agency, Region 10 Office of Environmental Assessment. Seattle, WA. May.

EPA. 2020a. National Functional Guidelines for Inorganic Superfund Methods Data Review. EPA 542-R-20-006. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.

EPA. 2020b. National Functional Guidelines for Organic Superfund Methods Data Review. EPA 540-R-20-005. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.

EPA. 2020c. National Functional Guidelines for High Resolution Superfund Methods Data Review. EPA 542-R-20-007. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.

Weck. 2020. Quality Assurance Manual. Rev. 20.6. Weck Laboratories, Inc.: Industry, CA. April 17.

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. M0830.03.006 | JUNE 7, 2023 | CITY OF ST. HELENS

Maul Foster & Alongi, Inc. (MFA), conducted an independent Stage 2A review of the quality of analytical results for groundwater, sediment, and associated quality control samples collected by MFA in January and February 2023 from the wastewater treatment lagoon located at 451 Plymouth Street, St. Helens, Oregon.

Apex Laboratories, LLC (Apex), Bureau Veritas (BV), and Weck Laboratories, Inc. (Weck), performed the analyses. MFA reviewed Apex report numbers A3A1010, A3B0217, A3B0522, and A3B0674. Portions of samples submitted to Apex were subcontracted to BV for dioxins and furans, polychlorinated biphenyl, and per- and polyfluoroalkylated substance analyses and to Weck for chlorinated herbicides analysis. MFA reviewed BV reports C338911, C338927, C347690, C347713, and C351279. Weck analytical results were appended to Apex reports. The analyses performed and the samples analyzed are listed in the following tables. Not all samples were analyzed for all the methods listed below.

Analysis	References
Chlorinated herbicides	EPA 8151A
Diesel- and oil-range hydrocarbons	NWTPH-Dx
Dioxins and furans	EPA 1613B, EPA 8290A
Gasoline-range hydrocarbons	NWTPH-Gx
Hexavalent chromium (sediment)	EPA 7196A
Hexavalent chromium (water)	EPA 218.6
Organochlorine pesticides (sediment)	EPA 8270E
Organochlorine pesticides (water)	EPA 1699
Organophosphorus pesticides	EPA 8270E
Percent moisture	Carter, 2008
Percent solids	EPA 8000D
Polychlorinated biphenyls as congeners	EPA 1668C
Per- and polyfluoroalkyl substances (sediment)	ASTM D7968-17A
Per- and polyfluoroalkyl substances (water)	EPA 537.1
Semivolatile organic compounds	EPA 8270E
Total metals	EPA 6020B
Volatile organic compounds	EPA 8260D, EPA 8260D-SIM

Notes

ASTM = ASTM International.

EPA = U.S. Environmental Protection Agency.

NWTPH = Northwest Total Petroleum Hydrocarbons.

SIM = selected ion monitoring.

Samples Analyzed					
Reports A3A1010, C338927, C347690,	Reports A3B0217, C338911	Reports A3B0522, C347713			
MFA-B1-20230130-21.9 ^(a)	MFA-B3A-20230207-GW-36.0	MW3-20230214-GW-35			
MFA-B3-20230131-31.0 ^(a)	Field Blank	MW3-20230214-GW-35-DUP			
MFA-B2-20230131-23.0 ^(a)	Trip Blank	MW5-20230214-GW-40			
MFA-B4-20230202-SL-26.5 ^(a)		MW4-20230214-GW-40			
MFA-B5-20230203-SL-27.0 ^(a)		MW6-20230214-GW-40.25			
MFA-B1-B5-COMP-SL ^(b)		Field Blank-02			
MFA-B1-B5-COMP-SL-PRO ^(c)		Trip Blank			
Reports A3B0674, C351279					
MW1-20230220-GW-70					
MW2-20230220-GW-60					
Trip Blank					

Notes

DATA QUALIFICATION

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) guidelines for data review (EPA 2014, 2020a, 2020b, 2020c) and appropriate laboratory- and method-specific guidelines (Apex 2022, BV 2021, EPA 1986, Weck 2020).

Data validation procedures were modified, as appropriate, to accommodate quality control requirements for methods that EPA data review procedures do not specifically address (e.g., Northwest Total Petroleum Hydrocarbons [NWTPH]-Dx).

Based on the results of the data quality review procedures described below, the data, with the appropriate final data qualifiers assigned, are considered acceptable for their intended use. Final data qualifiers represent qualifiers originating from the laboratory and accepted by the reviewer, and data qualifiers assigned by the reviewer during validation.

Final data qualifiers:

- J = result is estimated.
- J+ = result is estimated but may be biased high.
- J- = result is estimated but may be biased low.
- R = result is rejected. The analyte may or may not be present in the sample.

^{-- =} no value.

⁽a) Discrete sample submitted to laboratory for compositing.

⁽b)Sample composited by Apex Laboratories, LLC for gasoline-range hydrocarbon and volatile organic compound analysis and composited by Bureau Veritas for per- and polyfluoroalkylated substance analysis.

⁽c)Sample composited by Apex Laboratories, LLC and analyzed for all except per- and polyfluoroalkylated substances.

- U = result is non-detect at the estimated detection limit (EDL), laboratory detection limit (LDL), method detection limit (MDL), or method reporting limit (MRL).
- UI = result is non-detect with an estimated EDL, LDL, or MRL.
- UK = result is non-detect at the estimated maximum potential concentration.

According to report A3A1010, the NWTPH-Dx diesel-range hydrocarbon result for sample MFA-B1-B5-COMP-SL-PRO and the associated laboratory duplicate sample (23B07695-DUP1) were flagged by Apex as elevated because of the presence of individual analyte peaks within the diesel hydrocarbon quantitation range that were not representative of diesel fuel. Apex also noted that the diesel-range hydrocarbon chromatographic pattern was similar to weathered diesel, mineral oil, or a related component. The reviewer qualified the associated sample result with J+ as shown in the following table. The result was also qualified by the reviewer as estimated in the Holding Times section below based on holding time exceedance; the reviewer determined that a final qualification of J+ based on both holding time and the chromatographic pattern was appropriate.

Report	Sample	Component	Original Result (mg/kg)	Qualified Result (mg/kg)
A3A1010	MFA-B1-B5-COMP- SL-PRO	Diesel-range hydrocarbons	26,100	26,100 J+ ^(a)

Notes

J+ = result is estimated but may be biased high. mg/kg = milligrams per kilogram.

(a) Final qualification of J+ based on both chromatographic pattern and holding time exceedance.

According to report A3A1010, Apex flagged all 3,3'-dichlorobenzidine results for sample MFA-B1-B5-COMP-SL-PRO and associated quality control samples as estimated based on known erratic recovery. The reviewer qualified the sample result with UJ in the following table. The result was also qualified by the reviewer as estimated in the Holding Times section below based on holding time exceedance; the reviewer determined that a final qualification of UJ based on both holding time and known erratic recovery was appropriate.

Report	Sample	Component	Original Result (ug/kg)	Qualified Result (ug/kg)
A3A1010	MFA-B1-B5-COMP- SL-PRO	3,3'-Dichlorobenzidine	3,960 U	3,960 UJ ^(a)

Notes

ug/kg = micrograms per kilogram.

UJ = result is non-detect with an estimated laboratory detection limit.

(a) Final qualification of UJ based on both known erratic recovery and holding time exceedance.

According to reports A3B0217, A3B0522, and A3B0674, Apex flagged all results detected between MDLs or LDLs and MRLs with Ja. The reviewer qualified these results with J. Results that were additionally qualified by the review are discussed in this validation report.

According to report A3A1010, Apex noted that EPA Method 7196A analysis of sample MFA-B1-B5-COMP-SL-PRO included compensation for background color and/or turbidity, and that this was performed in accordance with the analytical method. No qualification was required.

According to report C338927, the ASTM International (ASTM) Method D7968-17A PFHxS result for sample MFA-B1-B5-COMP-SL was flagged by BV as estimated due to exceedance of ion ratio confirmation criteria. The result has been qualified by the reviewer with J, as shown in the following table:

Report	Sample	Component	Original Result (ug/kg)	Qualified Result (ug/kg)
C338927	MFA-B1-B5-COMP-SL	PFHxS	2.2	2.2 J

Notes

J = result is estimated.

ug/kg = micrograms per kilogram.

In accordance with EPA Region 10 guidance for dioxin and furan data validation (EPA 2014) and EPA national functional guidelines for high-resolution Superfund methods data review (EPA 2020a), the reviewer qualified EPA Method 1613B results because of laboratory EMPC detections. The reviewer applied the same guidance to EPA Method 1613B, 1664C and 1699 results that were flagged by BV as EMPCs.

The following results were identified by BV as EMPCs and were reported by BV as non-detect at the EMPC value. The reviewer qualified results identified as EMPCs with UK, as shown in the following table.

Report	Sample	Analyte	Units	Original Results	Qualified Results
		Aldrin		0.19 U	0.19 UK
		beta-BHC		0.13 U	0.13 UK
C338911	MFA-B3A-20230207- GW-36.0	Dieldrin	ng/L	0.090 U	0.090 UK
	O 11 00.0	Endosulfan sulfate		0.091 U	0.091 UK
		Methoxychlor		1.8 U	1.8 UK
C347690	MFA-B1-B5-COMP- SL-PRO	1,2,3,7,8,9-HxCDF	pg/g	0.453 U	0.453 UK
C347713	MW4-20230214- GW-40	OCDD	ng/L	4.17 U	4.17 UK
		TetraCB-(45)+(51)		0.020 U	0.020 UK
	MW1-20230220-	PentaCB- (90)+(101)+(113)	,,	0.016 U	0.016 UK
C351279	GW-70	22'466'-PentaCB-(104)	pg/L	0.016 U	0.016 UK
		22'33'566'-HeptaCB- (179)		0.013 U	0.013 UK
		beta-BHC	ng/L	0.020 U	0.020 UK

 $L:\Projects\0830.03\ City\ of\ St.\ Helens\06_Scope\ 1B\Draft\ Documents\Phase\ IB\ Report\Appendix\ D-DVM\DVM_StHelens_Scope\1B_Jan\2023.docx$

Report	Sample	Analyte	Units	Original Results	Qualified Results
	MW2-20230220-	23'44'-TetraCB-(66)		0.011 U	0.011 UK
	GW-60	HexaCB-(128)+(166)		0.011 U	0.011 UK

Notes

ng/L = nanograms per liter.

pg/g = picograms per gram.

pg/L = picograms per liter.

U = result is non-detect at the laboratory detection limit.

UK = result is non-detect at the estimated maximum potential concentration.

Positive identification of 2,3,7,8-TCDF cannot be achieved using typical EPA Method 1613B analytical columns; therefore, 2,3,7,8-TCDF results detected above the MRL are confirmed by analysis with a second column having 2,3,7,8-TCDF-resolution capacity. The confirmation analysis is referenced by BV to both EPA Methods 8290A and 1613B. In report C338911, the following 2,3,7,8-TCDF result was confirmed by second-column analysis and is considered the result of record:

Report	Sample	Component	Units	Primary Analysis	Confirmation Analysis	Result of Record
C338911	MFA-B3A- 20230207-GW-36.0	2,3,7,8-TCDF	pg/L	48.6	51.5	51.5
C347690	MFA-B1-B5-COMP- SL-PRO	2,3,7,0-ICDF	pg/g	498	440	440

Note

pg/g = picograms per gram.

pg/L = picograms per liter.

SAMPLE CONDITIONS

Sample Custody

According to reports C338927, C347690, and C347713, BV recorded sample receipt date and time on only the first page of multi-page chain-of-custody (COC) forms. The reviewer confirmed that all samples recorded on the COC forms had been received at the time recorded on the first page.

Sample custody was appropriately documented on the remaining COC forms accompanying the reports.

Holding Times

According to report A3A1010, Apex extracted sample MFA-B1-B5-COMP-SL-PRO for NWTPH-Dx, EPA Method 8270E semivolatile organic compounds, and EPA Method 8270E organophosphorus pesticides analyses eight days after the 14-day method-recommended extraction holding time. Apex extracted sample MFA-B1-B5-COMP-SL-PRO for EPA Method 8270E organochlorine pesticides 17 days after the 14-day method-recommended L:\Projects\0830.03 City of St. Helens\06_Scope 1B\Draft Documents\Phase IB Report\Appendix D - DVM\DVM_StHelens_Scope1B_Jan2023.docx

holding time. The reviewer determined extraction holding times based on the earliest collection date of the composited component samples, which was January 30, 2023. The reviewer confirmed that, after the final composite component sample was received by Apex on February 6, 2023, all five component samples were air dried, which took approximately three days. Samples were then frozen at -18 degrees Celsius until the morning of the extraction date. All associated sample results have been qualified by the reviewer as estimated, with UJ applied to non-detect results and J applied to detected results. Results already qualified by Apex as estimated based on detection below the MRL did not require additional qualification.

Report	Sample	Analysis	Original Results	Qualification
		NWTPH-Dx	Non-Detect	ΠΊ
	NVVIFH-DX	Detect	J	
	MFA-B1-B5-COMP- SL-PRO	EPA 8270E (SVOCs)	Non-Detect	ΟJ
A3A1010			Detect	J
ASATOTO		EPA 8270E (OP Pest)	Non-Detect	UJ
			Detect	J
		EPA 8270E	Non-Detect	ΠΊ
		(OC Pest)	Detect	J

Notes

EPA = U.S. Environmental Protection Agency.

J = result is estimated.

NWTPH = Northwest Total Petroleum Hydrocarbon.

OC Pest = organochlorine pesticide.

OP Pest = organophosphorus pesticide.

SVOC = semivolatile organic compound.

UJ = result is non-detect with an estimated laboratory detection limit.

All remaining extractions and/or analyses were performed within the recommended holding times.

Preservation and Sample Storage

According to report A3A1010, samples MFA-B1-20230130-21.9, MFA-B3-20230131-31.0, MFA-B2-20230131-23.0, MFA-B4-20230202-SL-26.5, and MFA-B5-20230203-SL-27 were collected from January 30, 2023, to February 3, 2023, and submitted by MFA field staff to Apex in four sample delivery groups. Apex composited the five samples based on instructions provided on the COC form. A description of the composting process is summarized below:

According to report A3A1010, composite sample MFA-B1-B5-COMP-SL was prepared by Apex by combining equal volumes of methanol from the methanol-preserved volatile organics analysis containers for samples MFA-B1-20230130-21.9, MFA-B3-20230131-31.0, MFA-B2-20230131-23.0, MFA-B4-20230202-SL-26.5, and MFA-B5-20230203-SL-27. Sample MFA-B1-B5-COMP-SL was analyzed for NWTPH-Gx, EPA Method 8260D, and EPA Method 8260D-SIM. Apex noted that an average of discrete sample dry weights was used to calculate NWTPH-Gx, EPA Method 8260D, and EPA Method 8260D-SIM dry weight results.

According to report A3A1010, sample MFA-B1-B5-COMP-SL-PRO was prepared by Apex by combining equal weights of sample material from samples MFA-B1-20230130-21.9, MFA-B3-20230131-31.0, MFA-B2-20230131-23.0, MFA-B4-20230202-SL-26.5, and MFA-B5-20230203-SL-27. The composited sample was air dried, ground to approximately 70-micron particle size with a zirconia puck mill, and mixed to distribute the material prior to analysis. The sample name was appended with -PRO by Apex to distinguish the compositing processes. The reviewer referenced the Apex-modified sample name in the data validation report for clarity; however, sample name MFA-B1-B5-COMP-SL will be used for final reporting purposes.

According to report C338927, samples MFA-B1-20230130-21.9, MFA-B3-20230131-31.0, MFA-B2-20230131-23.0, MFA-B4-20230202-SL-26.5, and MFA-B5-20230203-SL-27.0 were air-dried and then composited by BV as requested on the original COC. The composited sample was assigned sample name MFA-B1-B5-COMP-SL.

According to the cooler receipt form provided with report A3B0217, all volatile organic analysis (VOA) containers received for sample MFA-B3A-20230207-GW-36.0 contained visible sediment. Qualification based on the presence of sediment was not required.

According to report A3B0217, the NWTPH-Gx, EPA Method 8260D, and EPA Method 8260D-SIM analyses of sample MFA-B3A-20230207-GW-36.0 were performed with a sample composited from multiple VOA containers due to the presence of sediment in the sample containers. The reviewer confirmed that the composite sample was prepared by pouring samples from the original VOA containers. Because sample preparation required opening the discrete sample VOAs, the results have been qualified by the reviewer as estimated. All associated non-detect sample results have been qualified with UJ and all associated detected sample results have been qualified with J, as shown in the following table. Results also flagged as estimated due to detection below the MRL did not require additional qualification.

Report	Sample	Analysis	Original Results	Qualification
		NWTPH-Gx	Detect	J
		NWIFH-GX	Non-Detect	UJ
A3B0217	145 A BOA 00000007 CW 27 O	EPA 8260D	Detect	J
ASBUZ17	MFA-B3A-20230207-GW-36.0		Non-Detect	UJ
		EPA 8260D-SIM	Detect	J(a)
		EPA 0200D-31M	Non-Detect	UJ

Notes

EPA = U.S. Environmental Protection Agency.

J = result is estimated.

NWTPH = Northwest Total Petroleum Hydrocarbon.

SIM = selected ion monitoring.

UJ = result is non-detect with an estimated laboratory detection limit.

^(a)EPA Method 8260D-SIM chloroform result qualified based on a trip blank detection; the final qualification is shown in the Trip Blanks section below.

According to report A3B0522, Apex flagged the NWTPH-Dx results for sample MW5-20230214-GW-40 because the sample was received by Apex with incomplete preservation. The sample pH was adjusted by Apex prior to extraction; thus, qualification was not required.

The remaining samples were preserved and stored appropriately.

REPORTING LIMITS

Apex reported results to LDLs. Weck reported results to MDLs. Samples that required dilutions because of high analyte concentrations, matrix interferences, and/or dilutions necessary for preparation and/or analysis were reported with raised LDLs, MDLs, and MRLs. Apex and Weck qualified results between the LDL or MDL and the MRL with J, as estimated.

According to report A3A1010, the sample MFA-B1-B5-COMP-SL-PRO LDLs for EPA Method 8270E organophosphorus pesticides coumaphos, merphos, ethyl parathion, tetrachlorvinphos, and trichloronate and the LDLs for EPA Method 8270E organochlorine pesticides alpha-hexachlorocyclohexane (reported by Apex as alpha-BHC), beta-hexachlorocyclohexane (reported by Apex as beta-BHC), 2,4'-DDD, heptachlor, dieldrin, endosulfan I, and endosulfan II were raised to MRLs because of interference from coeluting organic compounds present in the sample. No qualification was necessary.

According to report A3A1010, the EPA Method 7196A sample MFA-B1-B5-COMP-SL-PRO LDL and MRL were raised because the sample required a 1:50 dilution for analysis. The reviewer confirmed that the dilution was required due to matrix interference. No qualification was required.

According to report A3B0522, all EPA Method 8151A sample extracts were diluted 1:5 prior to analysis due to matrix interference. Additionally, EPA Method 218.6 hexavalent chromium analysis was performed at 1:5 dilution for samples MW5-20230214-GW-40, MW4-20230214-GW-40, and MW6-20230214-GW-40.25 due to matrix interference. No qualification was required.

According to the case narrative provided with report C338911, BV performed all analyses for sample MFA-B3A-20230207-GW-36.0 at a 1:10 dilution because of matrix interferences. No qualification was required.

BLANKS

Method Blanks

Laboratory method blanks are used to assess whether laboratory contamination was introduced during sample preparation and analysis. Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the laboratory method blanks were associated with all samples prepared in the analytical batch. Where an analyte was detected in both a sample and its associated blank, sample results were qualified if the concentration was less than five times the laboratory method blank concentration for organic method analyses or less than ten times the laboratory method blank concentration for inorganic method analyses. Non-detect sample results and sample results greater than five times the laboratory method blank (for organic methods) or ten times (for inorganic methods) did not require qualification.

According to report A3B0522, the EPA Method 8270D batch 23B0739 laboratory method blank (23B0739-BLK1) had detections of merphos and tetraethyl pyrophosphate (reported by Apex as TEPP) between the LDL and MRL, at 0.491 micrograms per liter (ug/L) and 0.346 ug/L, respectively. The associated sample results were non-detect; thus, qualification was not required.

According to report C338911, the EPA Method 1699 batch 8503096 laboratory method blank had a detection of endrin between the MDL and MRL, at 0.061 nanograms per liter. The associated sample result was detected above the MRL and was greater than five times the laboratory method blank concentration; thus, qualification was not required.

According to reports C338911, C347713, and C351279, the EPA Method 1668C batch 8533813 laboratory method blank had several detections between EDLs and MRLs, as well as some detections above MRLs. The reviewer qualified sample concentrations detected below MRLs and less than five times the laboratory method blank concentrations with UJ at the reported sample concentrations. The reviewer qualified sample concentrations detected above MRLs, below the laboratory method blank concentration, and less than five times the laboratory method blank concentration with U at the reported sample concentration. Sample concentrations detected above MRLs, above laboratory method blank concentrations, and less than five times the laboratory method blank concentration were qualified by the reviewer with J+. Associated non-detect sample results did not require qualification. The laboratory method blank results for tetraCB-(44)+(47)+(65) and HeptaCB-(171)+(173) were flagged by BV as non-detect and EMPCs. The reviewer confirmed that the associated tetraCB-(44)+(47)+(65) and HeptaCB-(171)+(173) sample results were non-detect and at detection limits that were higher than that of the laboratory method blank; qualification was not required based on the laboratory method blank EMPC results.

Report	Sample	Analyte	Method Blank Result (ng/L)	Original Result (ng/L)	Qualified Result (ng/L)
		3,3'-DiCB-(11)	0.0834 J	0.78 J	0.78 UJ
		PentaCB-(90)+(101)+(113)	0.206	0.43 J	0.43 UJ
C338911	MFA-B3A- 20230207-	PentaCB-(110)+(115)	0.122	0.49 J	0.49 UJ
C330911	GW-36.0	23'44'5-PentaCB-(118)	0.0962 J	0.127 J	0.127 UJ
		HexaCB-(129)+(138)+(163)	0.201	0.52 J	0.52 UJ
		HexaCB-(153)+(168)	0.237	0.32 J	0.32 UJ
		3,3'-DiCB-(11)	0.0834 J	0.118 J	0.118 UJ
		TriCB-(20) + (28)	0.0548	0.0125 J	0.0125 UJ
	MW3-	TriCB-(21)+(33)	0.0405 J	0.0078 J	0.0078 UJ
C347713	20230214-	24'5-TriCB-(31)	0.0613	0.012 J	0.012 UJ
	GW-35-DUP	22'55'-TetraCB-(52)	0.15	0.02 J	0.02 UJ
		TetraCB-(61)+(70)+(74)+(76)	0.115 J	0.026 J	0.026 UJ
		23'44'-TetraCB-(66)	0.0394 J	0.0093 J	0.0093 UJ

Report	Sample	Analyte	Method Blank Result (ng/L)	Original Result (ng/L)	Qualified Result (ng/L)
		PentaCB- (86)(87)(97)(109)(119)(125)	0.068 J	0.0152 J	0.0152 UJ
		PentaCB-(90)+(101)+(113)	0.206	0.0361 J	0.0361 UJ
		22'35'6-PentaCB-(95)	0.21	0.033 J	0.033 UJ
		PentaCB-(110)+(115)	0.122	0.0241 J	0.0241 UJ
		23'44'5-PentaCB-(118)	0.0962 J	0.0144 J	0.0144 UJ
		HexaCB-(129)+(138)+(163)	0.201	0.025 J	0.025 UJ
		HexaCB-(147)+(149)	0.274	0.0323 J	0.0323 UJ
		HexaCB-(153)+(168)	0.237	0.0253 J	0.0253 UJ
		HeptaCB-(180)+(193)	0.0737 J	0.0089 J	0.0089 UJ
		2,4'-DiCB-(8)	0.0062 J	0.0086 J	0.0086 UJ
	MW5-	3,3'-DiCB-(11)	0.0834 J	0.117 J	0.117 UJ
	20230214- GW-40	TriCB-(20) + (28)	0.0548	0.0084 J	0.0084 UJ
		PentaCB-(90)+(101)+(113)	0.206	0.013 J	0.013 UJ
		3,3'-DiCB-(11)	0.0834 J	0.0738 J	0.0738 UJ
		TriCB-(20) + (28)	0.0548	0.0095 J	0.0095 UJ
	MW4-	24'5-TriCB-(31)	0.0613	0.0076 J	0.0076 UJ
	20230214-	PentaCB-(90)+(101)+(113)	0.206	0.018 J	0.018 UJ
	GW-40	PentaCB-(110)+(115)	0.122	0.015 J	0.015 UJ
		HexaCB-(147)+(149)	0.274	0.013 J	0.013 UJ
		HexaCB-(153)+(168)	0.237	0.0128 J	0.0128 UJ
		2,4'-DiCB-(8)	0.0062 J	0.0203 J	0.0203 UJ
		3,3'-DiCB-(11)	0.0834 J	0.139 J	0.139 UJ
		4,4'-DiCB-(15)	0.011 J	0.0092 J	0.0092 UJ
		TriCB-(18)+(30)	0.0176 J	0.0131 J	0.0131 UJ
		TriCB-(21)+(33)	0.0405 J	0.0168 J	0.0168 UJ
		344'-TriCB-(37)	0.0127 J	0.0101 J	0.0101 UJ
		22'55'-TetraCB-(52)	0.15	0.038 J	0.038 UJ
	MW6-	TetraCB-(61)+(70)+(74)+(76)	0.115 J	0.047 J	0.047 UJ
	20230214- GW-40.25	23'44'-TetraCB-(66)	0.0394 J	0.0204 J	0.0204 UJ
		TetraCB-(49)+TetraCB-(69)	0.051 J	0.017 J	0.017 UJ
		PentaCB-(90)+(101)+(113)	0.206	0.0692 J	0.0692 UJ
		22'35'6-PentaCB-(95)	0.21	0.058	0.058 U
		233'44'-PentaCB-(105)	0.0276 J	0.0178 J	0.0178 UJ
		PentaCB-(110)+(115)	0.122	0.0521 J	0.0521 UJ
		23'44'5-PentaCB-(118)	0.0962 J	0.0314 J	0.0314 UJ
		HexaCB-(129)+(138)+(163)	0.201	0.056 J	0.056 UJ

Report	Sample	Analyte	Method Blank Result (ng/L)	Original Result (ng/L)	Qualified Result (ng/L)
		22'33'46'-HexaCB-(132)	0.0682	0.019 J	0.019 UJ
		HexaCB-(135)+(151)	0.143	0.038 J	0.038 UJ
		22'3455'-HexaCB-(141)	0.0545	0.014 J	0.014 UJ
		HexaCB-(147)+(149)	0.274	0.063 J	0.063 UJ
		HexaCB-(153)+(168)	0.237	0.0594 J	0.0594 UJ
		22'33'456'-HeptaCB-(174)	0.0523	0.0101 J	0.0101 UJ
		22'33'566'-HeptaCB-(179)	0.0419 J	0.009 J	0.009 UJ
		HeptaCB-(180)+(193)	0.0737 J	0.018 J	0.018 UJ
		22'344'5'6-HeptaCB-(183)	0.0419 J	0.009 J	0.009 UJ
		22'34'55'6-HeptaCB-(187)	0.085	0.0191 J	0.0191 UJ
		2,4'-DiCB-(8)	0.0062 J	0.0091 J	0.0091 UJ
		3,3'-DiCB-(11)	0.0834 J	0.365	0.365 J+
		4,4'-DiCB-(15)	0.011 J	0.0138 J	0.0138 UJ
		TriCB-(18)+(30)	0.0176 J	0.0123	0.0123 U
	MW1- 20230220- GW-70	TriCB-(20) + (28)	0.0548	0.0059 J	0.0059 UJ
		TriCB-(21)+(33)	0.0405 J	0.0038 J	0.0038 UJ
		24'5-TriCB-(31)	0.0613	0.0114 J	0.0114 UJ
		22'55'-TetraCB-(52)	0.15	0.031 J	0.031 UJ
		TetraCB-(61)+(70)+(74)+(76)	0.115 J	0.032 J	0.032 UJ
		PentaCB- (86)(87)(97)(109)(119)(125)	0.068 J	0.026 J	0.026 UJ
		22'35'6-PentaCB-(95)	0.21	0.052	0.052 U
		233'44'-PentaCB-(105)	0.0276 J	0.01 J	0.01 UJ
C351279		PentaCB-(110)+(115)	0.122	0.046 J	0.046 UJ
		23'44'5-PentaCB-(118)	0.0962 J	0.031 J	0.031 UJ
		HexaCB-(129)+(138)+(163)	0.201	0.061 J	0.061 UJ
		HexaCB-(135)+(151)	0.143	0.037 J	0.037 UJ
		HexaCB-(147)+(149)	0.274	0.072 J	0.072 UJ
		HexaCB-(153)+(168)	0.237	0.062 J	0.062 UJ
		HeptaCB-(180)+(193)	0.0737 J	0.023 J	0.023 UJ
		22'34'55'6-HeptaCB-(187)	0.085	0.022 J	0.022 UJ
		3,3'-DiCB-(11)	0.0834 J	0.102 J	0.102 UJ
		TriCB-(20) + (28)	0.0548	0.0077 J	0.0077 UJ
	MW2-	TriCB-(21)+(33)	0.0405 J	0.0047 J	0.0047 UJ
	20230220- GW-60	234'-TriCB-(22)	0.0213	0.007 J	0.007 UJ
		24'5-TriCB-(31)	0.0613	0.0148 J	0.0148 UJ
		344'-TriCB-(37)	0.0127 J	0.0077 J	0.0077 UJ

 $[\]label{lem:lems_objects_0830.03} L:\Projects\\\0830.03\ City\ of\ St.\ Helens\\\06_Scope\ 1B\\\Draft\ Documents\\\Phase\ IB\ Report\\\Appendix\ D-DVM\\\DVM_StHelens_Scope\ 1B_Jan\ 2023.docx$

Report	Sample	Analyte	Method Blank Result (ng/L)	Original Result (ng/L)	Qualified Result (ng/L)
		22'55'-TetraCB-(52)	0.15	0.049 J	0.049 UJ
		TetraCB-(61)+(70)+(74)+(76)	0.115 J	0.058 J	0.058 UJ
		22'33'6-PentaCB-(84)	0.024	0.019 J	0.019 UJ
		PentaCB- (86)(87)(97)(109)(119)(125)	0.068 J	0.05 J	0.05 UJ
		PentaCB-(90)+(101)+(113)	0.206	0.12 J	0.12 UJ
		22'35'6-PentaCB-(95)	0.21	0.104	0.104 U
		233'44'-PentaCB-(105)	0.0276 J	0.0196 J	0.0196 UJ
		PentaCB-(110)+(115)	0.122	0.102	0.102 UJ
		23'44'5-PentaCB-(118)	0.0962 J	0.0617 J	0.0617 UJ
		HexaCB-(129)+(138)+(163)	0.201	0.139 J	0.139 UJ
		22'33'46'-HexaCB-(132)	0.0682	0.044 J	0.044 UJ
		HexaCB-(135)+(151)	0.143	0.076 J	0.076 UJ
		22'33'66'-HexaCB-(136)	0.0455 J	0.023 J	0.023 UJ
		22'3455'-HexaCB-(141)	0.0545	0.029 J	0.029 UJ
		22'34'55'-HexaCB-(146)	0.031 J	0.018 J	0.018 UJ
		HexaCB-(147)+(149)	0.274	0.134	0.134 U
		HexaCB-(153)+(168)	0.237	0.125	0.125 U
		HexaCB-(156)+(157)	0.0088 J	0.0098 J	0.0098 UJ
		233'44'6-HexaCB-(158)	0.0167 J	0.0113 J	0.0113 UJ
		22'33'44'5-HeptaCB-(170)	0.0208 J	0.0163 J	0.0163 UJ
		22'33'456'-HeptaCB-(174)	0.0523	0.0298 J	0.0298 UJ
		22'33'45'6'-HeptaCB-(177)	0.0308 J	0.019 J	0.019 UJ
		22'33'566'-HeptaCB-(179)	0.0419 J	0.0204 J	0.0204 UJ
		HeptaCB-(180)+(193)	0.0737 J	0.0498 J	0.0498 UJ
		22'344'5'6-HeptaCB-(183)	0.0419 J	0.0193 J	0.0193 UJ
		22'34'55'6-HeptaCB-(187)	0.085	0.038 J	0.038 UJ

Notes

J = result is estimated.

J+ = result is estimated with a potential high bias.

ng/L = nanograms per liter.

U = result is non-detect with a raised reporting limit.

UJ = result is non-detect with an estimated detection limit.

According to report C347713, the EPA Method 1699 batch 8513671 laboratory method blank had a detection of 4,4'-DDE and endrin between EDLs and MRLs, at 0.012 nanograms per liter (ng/L) and 0.083 ng/L, respectively. Associated samples with 4,4'-DDE or endrin detections were qualified in the following table. Associated non-detect results did not require qualification.

Report	Sample	Analyte	Method Blank Result (ng/L)	Original Result (ng/L)	Qualified Result (ng/L)
	MW3-20230214-GW-35	Endrin	0.083 J	0.048 J	0.048 UJ
	MW5-20230214-GW-40	4,4'-DDE	0.012 J	0.012 J	0.012 UJ
		Endrin	0.083 J	0.189 J	0.189 UJ
C347713	MW4-20230214-GW-40	Endrin	0.083 J	0.101 J	0.101 UJ
		4,4'-DDE	0.012 J	0.012 J	0.012 UJ
		Endrin	0.083 J	0.133 J	0.133 UJ
	MW6-20230214-GW-40.25	4,4'-DDE	0.012 J	0.019 J	0.019 UJ

Notes

J = result is estimated.

ng/L = nanograms per liter.

UJ = result is non-detect with an estimated detection limit.

According to reports C347713 and C351279, the EPA Method 1613B batch 8524619 laboratory method blank had a detection of OCDD between the EDL and MRL, at 2.48 picograms per liter. Associated samples were qualified as shown in the following table.

Report	Sample	Analyte	Method Blank Result (pg/L)	Original Result (pg/L)	Qualified Result (ng/L)
	MW3-20230214-GW-35		2.48 J	2.11 J	2.11 UJ
C347713	MW3-20230214-GW-35-DUP	OCDD		3.24 J	3.24 UJ
	MW6-20230214-GW-40.25			7.62 J	7.62 UJ
C351279	MW2-20230220-GW-60			3.63 J	3.63 UJ

Notes

J = result is estimated.

pg/L = picograms per liter.

UJ = result is non-detect with an estimated detection limit.

According to report C347690, the EPA Method 1613B batch 8520730 laboratory method blank had detections of OCDD and OCDF between the EDL and MRL, at 0.514 picograms per gram (pg/g) and 0.268 pg/g, respectively. Additionally, BV raised the EDL for 1,2,3,4,6,7,8-Hepta CDD to 0.201 pg/g due to an EMPC detection. The associated sample results were all detected above the MRL at concentrations greater than five times the laboratory method blank detections and EMPCs. No qualification was required.

According to report C347690, the EPA Method 1668C batch 8576352 laboratory method blank had several detections between EDLs and MRLs, ranging from 0.0002 nanograms per gram to 0.0108 nanograms per gram. All associated sample results were detected at concentrations greater than five times the laboratory method blank concentrations; thus, qualification was not required.

According to report C351579, the EPA Method 1699 batch 8523575 laboratory method blank had a detection of endrin between the EDL and MRL, at 0.063 ng/L. Associated samples with

L:\Projects\0830.03 City of St. Helens\06_Scope 1B\Draft Documents\Phase IB Report\Appendix D - DVM\DVM_StHelens_Scope1B_Jan2023.docx

endrin detections were qualified in the following table. Associated non-detect results did not require qualification.

Report	Sample	Analyte	Method Blank Result (ng/L)	Original Result (ng/L)	Qualified Result (ng/L)
C347713	MW1-20230220-GW-70	Endrin	0.063 J	0.093 J	0.093 UJ

Notes

J = result is estimated.

ng/L = nanograms per liter.

UJ = result is non-detect with an estimated detection limit.

All remaining laboratory method blank results were non-detect to EDLs, LDLs, MDLs, or MRLs.

Equipment Rinsate Blanks

Equipment rinsate blanks are used to evaluate field equipment decontamination. These blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

Field Blanks

Field blanks are used to assess if contamination from field conditions was introduced during sampling, preservation, and shipment to the laboratory. Field blank samples were submitted with sample delivery groups A3B0217 and A3B0522 and subcontracted by Apex to BV for EPA Method 537.1 analysis. The results were reported in C338911 and C347713. The field blank was non-detect to EDLs for all per- and polyfluoroalkylated substance analytes.

Trip Blanks

Trip blanks are used to evaluate whether volatile organic compound contamination was introduced during sample storage and during shipment between the sampling location and the laboratory.

Trip blank samples (identified with sample name Trip Blank) were submitted with sample delivery groups A3B0217, A3B0522, and A3B0674 for EPA Method 8260D and 8260D-SIM analyses. According to reports A3B0217, A3B0522, and A3B0674, all trip blank samples had EPA Method 8260D-SIM detections of chloroform. Associated non-detect sample results did not require qualification. The sample MFA-B3A-20230207-GW-36.0 chloroform detection was also qualified based on sample preparation. The reviewer determined that final qualification with J+ based on both sample preparation and trip blank detection was appropriate. The final associated detected sample results were qualified by the reviewer in the following table.

Report	Sample	Analyte	Trip Blank Result (ug/L)	Original Result (ug/L)	Qualified Result (ug/L)
A3B0217	MFA-B3A-20230207-GW-36.0	Chloroform	0.0693 J	0.122	0.122 J+(a)
A3B0674	MW1-20230220-GW-70	Chloroform	0.202	0.0838 J	0.100 U

Notes

J = result is estimated.

J+ = result is estimated, but the result may be biased high.

U = result is non-detect at the reported sample value.

ug/L = micrograms per liter.

(a)Qualified based on both sample preparation and trip blank detection.

The remaining trip blank results were non-detect to LDLs.

LABORATORY CONTROL SAMPLE AND LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

A laboratory control sample (LCS) and a laboratory control sample duplicate (LCSD) are spiked with target analytes to provide information about laboratory precision and accuracy. The LCS and LCSD samples were extracted and analyzed at the required frequency. When LCSD results were not reported by the laboratory, batch precision was evaluated with laboratory duplicate sample results. BV labeled LCS and LCSD results as spiked blank and spiked blank dup results, respectively.

According to report A3A1010, the EPA Method 8260D batch 23B0290 LCS (23B0290-BS1) exceeded upper percent recovery acceptance limits of 120 percent for acetone, acrylonitrile, bromochloromethane, bromomethane, 2-butanone, 1,2-dichloroethane, and vinyl chloride, ranging from 123 percent to 209 percent. The associated sample results were non-detect; thus, qualification was not required. The LCS also had a result for chloroethane that was below the lower percent recovery acceptance limit of 80 percent, at 77 percent. Apex noted that reporting limit sensitivity was confirmed for chloroethane and it was reported with the LDL raised to the MRL. The reviewer qualified the associated sample result with UJ.

Report	Sample	Component	Original Result (ug/kg)	Qualified Result (ug/kg)
A3A1010	MFA-B1-B5-COMP- SL-PRO	Chloroethane	5,330 U	5,330 UJ

Notes

ug/kg = micrograms per kilogram.

UJ = result is non-detect with an estimated laboratory detection limit.

U = result is non-detect at the method reporting limit.

According to report A3A1010, the EPA Method 8270E batch 23B0782 LCS (23B0782-BS1) and LCSD (23B0782-BSD1) results for 3,3'-dichlorobenzidine exceeded the upper percent recovery acceptance limit of 121 percent, at 189 percent and 184 percent, respectively. The associated sample result, which was non-detect, did not require qualification based on the LCS and LCSD percent recoveries. Apex also flagged the 3,3'-dichlorobenzidine LCS result due to

known erratic recovery; this flag and the associated data qualification are discussed in the Data Qualification section above.

According to report A3B0217, the EPA Method 8260D batch 23B0344 LCS (23B0344-BS1) results for chloroethane and trichlorofluoromethane were above the upper percent recovery acceptance limit of 120 percent, at 139 percent and 133 percent, respectively. The associated sample results were non-detect; thus, qualification was not required.

According to report A3B0217, the EPA Method 8260D batch 23B0509 LCS (23B0509-BS1) results for bromomethane, chloroethane, and trichlorofluoromethane were above the upper percent recovery acceptance limit of 120 percent, at 121 percent, 175 percent, and 137 percent, respectively. The associated sample results were non-detect; thus, qualification was not required.

According to report A3B0217, the EPA Method 8270D batch 23B0481 LCS (23B0481-BS1) acenaphthene, 1-methylnaphthalene, 2-methylnaphthalene, dibenzofuran, 2-chloronaphthalene, 1,2,4-trichlorobenzene, 4-bromophenyl phenyl ether, 4chlorophenyl phenyl ether, 1,2-dichlorobenzene, 1,3-dichlorobenzene, dichlorobenzene were below lower percent recovery acceptance limits, ranging from 24 percent to 48 percent. The associated LCSD results were within percent recovery acceptance limits. An associated detected sample result was qualified by the reviewer with J.. The associated non-detect sample results were qualified with UJ. The LCS and LCSD 3,3'dichlorobenzidine results exceeded upper percent recovery acceptance limits of 129 percent, at 182 percent and 189 percent, respectively. Apex also flagged these LCS and LCSD 3,3'dichlorobenzidine results as estimated because they were associated with a continuing calibration verification result that exceeded upper control limits and 3,3'-dichlorobenzidine has known erratic recoveries. The associated sample results have been qualified by the reviewer with UJ. The LCS and LCSD exceeded relative percent difference (RPD) control limits of 30 percent for several semivolatile organic compounds, ranging from 32 percent to 45 percent. The associated sample results were either non-detect or were detected below the MRL and already flagged as estimated; thus, qualification based on RPD control limit exceedances was not required.

Report	Sample	Analyte	Original Result (ug/L)	Qualified Result (ug/L)
		Acenaphthene	0.0128 U	0.0256 UJ
		1-Methylnaphthalene	0.0256 U	0.0513 UJ
		2-Methylnaphthalene	0.0256 U	0.0513 UJ
		Naphthalene	0.0256 U	0.0513 UJ
A3B0217	MFA-B3A-	Dibenzofuran	0.0128 U	0.0256 UJ
ASBUZ17	20230207-GW-36.0	2-Chloronaphthalene	0.0128 U	0.0256 UJ
		1,2,4-Trichlorobenzene	0.0321 U	0.0641 UJ
		4-Bromophenyl phenyl ether	0.0321 U	0.0641 UJ
		4-Chlorophenyl phenyl ether	0.0321 U	0.0641 UJ
		3,3'-Dichlorobenzidine	0.641 U	0.641 UJ

Report	Sample	Analyte	Original Result (ug/L)	Qualified Result (ug/L)
		1,2-Dichlorobenzene	0.0321 U	0.0641 UJ
		1,3-Dichlorobenzene	0.0432 J	0.0432 J-
		1,4-Dichlorobenzene	0.0321 U	0.0641 U

J = result is estimated.

J- = result is estimated but may be biased low.

U = result is non-detect at the laboratory detection limit.

ug/L = micrograms per liter.

UJ = result is non-detect with an estimated laboratory detection limit.

According to reports C338911, C347713, and C351279, the EPA Method 1668C batch 8533813 LCS and LCSD were reported by BV with several polychlorinated biphenyl (PCB) congener results that had calculated percent recoveries but no control limits. The reviewer confirmed that LCS and LCSD quality control limits were reported for only a selected list of PCB congeners and that, due to limitations of the laboratory's reporting system, the entire list of PCB congeners had been reported. No additional action was required.

According to reports A3B0522 and A3B0674, the EPA Method 8260D batch 23B0828 LCS (23B0828-BS1) results for bromomethane, carbon tetrachloride, chloroethane, dichlorodifluoromethane, and trichlorofluoromethane were above the upper percent recovery acceptance limit of 120 percent, ranging from 121 percent to 169 percent. The associated sample results were non-detect; thus, qualification was not required. The LCS also had results for 2-hexanone and naphthalene below the lower percent recovery acceptance limit of 80 percent, at 79 percent and 75 percent, respectively. Apex noted that reporting limit sensitivity was confirmed for these compounds, and they were reported with LDLs raised to MRLs. These associated sample results were non-detect and have been qualified by the reviewer with UJ.

Report	Sample	Analyte	Original Result (ug/L)	Qualified Result (ug/L)
	MW3-20230214-GW-35	2-Hexanone	10.0 U	10.0 UJ
	MVV3-20230214-GVV-33	2-Hexanone 10.0 U Naphthalene 2.00 U 2-Hexanone 10.0 U Naphthalene 2.00 U Naphthalene 2.00 U Naphthalene 2.00 U Naphthalene 2.00 U Naphthalene 2.00 U Naphthalene 2.00 U Naphthalene 2.00 U Naphthalene 2.00 U Naphthalene 2.00 U Naphthalene 2.00 U	2.00 U	2.00 UJ
	MW3-20230214-GW-35-DUP	2-Hexanone	10.0 U	10.0 UJ
		Naphthalene	2.00 U	2.00 UJ
	MWE 00000014 CW 40	2-Hexanone	10.0 U	10.0 UJ
A 200500	MW5-20230214-GW-40	Naphthalene	2.00 U	2.00 UJ
A3B0522		2-Hexanone	10.0 U	10.0 UJ
	MW4-20230214-GW-40	Naphthalene	2.00 U	2.00 UJ
	MANAY 2022221 A CAN 40 25	2-Hexanone	10.0 U	10.0 UJ
	MW6-20230214-GW-40.25	Naphthalene	2.00 U	2.00 UJ
	Trin Dlavels	2-Hexanone	10.0 U	10.0 UJ
	Trip Blank	Naphthalene	2.00 U	2.00 UJ

Report	Sample	Analyte	Original Result (ug/L)	Qualified Result (ug/L)
		2-Hexanone	10.0 U	10.0 UJ
A3B0674	MW1-20230220-GW-70	Naphthalene	2.00 U	2.00 UJ
	MW0 00000000 CW (0	2-Hexanone	10.0 U	10.0 UJ
	MW2-20230220-GW-60	Naphthalene	2.00 U	2.00 UJ
	Tain Diamele	2-Hexanone	10.0 U	10.0 UJ
	Trip Blank	Naphthalene	2.00 U	2.00 UJ

U = result is non-detect at the method reporting limit.

ug/L = micrograms per liter.

UJ = result is non-detect with an estimated method reporting limit.

According to report A3B0522, the EPA Method 8270E batch 23B0761 LCS (23B0761-BS1) and LCSD (23B0761-BSD1) results for 1-methylnaphthalene, 2-methylnaphthalene, hexachloroethane, naphthalene, hexachlorobutadiene, 2-chloronaphthalene, trichlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, and 1,4-dichlorobenzene were below lower percent recovery acceptance limits, ranging from 14 percent to 39 percent. The LCSD result for hexachlorocyclopentadiene was also below the lower percent recovery acceptance limit of 10 percent, at 9 percent. Associated non-detect sample results have been qualified by the reviewer with R and associated detected results, including those detected below MRLs, have been qualified by the reviewer with J-, as shown in the table below. These sample results were also associated with base/neutral EPA Method 8270E surrogate percent recovery exceedances; the reviewer determined that LCS and LCSD-based qualifications have precedence over those applied based on surrogate percent recovery exceedances. These qualified results are considered final and are shown in the following table:

Report	Sample	Analyte	Original Result (ug/L)	Qualified Result (ug/L)
	1-Methylnaphthalene	0.0239 J	0.0239 J-	
		2-Methylnaphthalene	0.0192 U	R
		Naphthalene	0.0722	0.0722 J-
		Hexachlorobutadiene	0.0358 J	0.0358 J-
	MW3-20230214- GW-35	Hexachlorocyclopentadiene	0.0481 U	R
		Hexachloroethane	0.0378 J	0.0378 J-
A3B0522		2-Chloronaphthalene	0.0513	0.0513 J-
A3B0322		1,2,4-Trichlorobenzene	0.0240 U	R
		1,2-Dichlorobenzene	·	R
		1,3-Dichlorobenzene		0.0950 J-
		1,4-Dichlorobenzene	0.0240 U	R
		1-Methylnaphthalene	0.0189 U	R
	MW3-20230214- GW-35-DUP	2-Methylnaphthalene	0.0189 U	R
	27, 66 267	Naphthalene	0.0362 J	0.0362 J-

 $L:\Projects\\\0830.03\ City\ of\ St.\ Helens\\\06_Scope\ 1B\\\Draft\ Documents\\\Phase\ IB\ Report\\\Appendix\ D-DVM\\\DVM_StHelens\\\Scope\ 1B_Jan2023.docx$

Report	Sample	Analyte	Original Result (ug/L)	Qualified Result (ug/L)
		Hexachlorobutadiene	0.0236 U	R
		Hexachlorocyclopentadiene	0.0472 U	R
		Hexachloroethane	0.0236 U	R
		2-Chloronaphthalene	0.0206	0.0206 J-
		1,2,4-Trichlorobenzene	0.0236 U	R
		1,2-Dichlorobenzene	0.0236 U	R
		1,3-Dichlorobenzene	0.0939	0.0939 J-
		1,4-Dichlorobenzene	0.0236 U	R
		1-Methylnaphthalene	0.0235 U	R
		2-Methylnaphthalene	0.0235 U	R
		Naphthalene	0.0235 U	R
		Hexachlorobutadiene	0.0118 U	R
		Hexachlorocyclopentadiene	0.0294 U	R
	MW5-20230214- GW-40	Hexachloroethane	0.0588 U	R
	GW-40	2-Chloronaphthalene	0.0294 U	R
		1,2,4-Trichlorobenzene	0.0118 U	R
		1,2-Dichlorobenzene	0.0294 U	R
		1,3-Dichlorobenzene	0.108	0.108 J-
		1,4-Dichlorobenzene	0.0294 U	R
		1-Methylnaphthalene	0.0247 U	R
		2-Methylnaphthalene	0.0247 U	R
		Naphthalene	0.0247 U	R
		Hexachlorobutadiene	0.0309 U	R
		Hexachlorocyclopentadiene	0.0617 U	R
	MW4-20230214- GW-40	Hexachloroethane	0.0309 U	R
	OVV-40	2-Chloronaphthalene	0.0123 U	R
		1,2,4-Trichlorobenzene	0.0309 U	R
		1,2-Dichlorobenzene	0.0309 U	R
		1,3-Dichlorobenzene	0.122	0.122 J-
		1,4-Dichlorobenzene	0.0309 U	R
		1-Methylnaphthalene	0.0222 U	R
		2-Methylnaphthalene	0.0222 U	R
		Naphthalene	0.0222 U	R
	MW6-20230214-	Hexachlorobutadiene	0.0278 U	R
	GW-40.25	Hexachlorocyclopentadiene	0.0556 U	R
		Hexachloroethane	0.0278 U	R
		2-Chloronaphthalene	0.0255	0.0255 J-
		1,2,4-Trichlorobenzene	0.0278 U	R

Report	Sample	Analyte	Original Result (ug/L)	Qualified Result (ug/L)
		1,2-Dichlorobenzene	0.0278 U	R
		1,3-Dichlorobenzene	0.0919	0.0919 J-
		1,4-Dichlorobenzene	0.0278 U	R

J = result is estimated.

J- = result is estimated but may be biased low.

R = result is rejected. The analyte may or may not be present in the sample.

U = result is non-detect at the laboratory detection limit.

ug/L = micrograms per liter.

According to report A3B0522, the EPA Method 8270D batch 23B0761 LCS (23B0761-BS1) and LCSD (23B0761-BSD1) results for 3,3'-dichlorobenzidine exceeded the upper percent recovery acceptance limit of 129 percent, at 159 percent and 151 percent, respectively. The results were also flagged by Apex as estimated because they were associated with continuing calibration verification that exceeded upper control limits and this chemical has known erratic recoveries. The associated 3,3'-dichlorobenzidine sample results were non-detect and have been qualified by the reviewer with UJ, as shown in the following table. The 3,3'-dichlorobenzidine results were also associated with EPA Method 8270E base/neutral surrogate percent recovery exceedances; the reviewer determined that qualifications based on LCS and LCSD percent recovery have precedence over those applied based on surrogate percent recovery exceedances. These qualified results are considered final and are shown in the following table:

Report	Sample	Analyte	Original Result (ug/L)	Qualified Result (ug/L)
	MW3-20230214-GW-35		0.495 U	0.495 UJ
	MW3-20230214-GW-35-DUP		0.485 U	0.485 UJ
A3B0522	MW5-20230214-GW-40	3,3'-Dichlorobenzidine	0.532 U	0.532 UJ
	MW4-20230214-GW-40		0.568 U	0.568 UJ
	MW6-20230214-GW-40.25		0.575 U	0.575 UJ

Notes

U = result is non-detect at the laboratory detection limit.

ua/L = micrograms per liter.

UJ = result is non-detect with an estimated laboratory detection limit.

According to report A3B0522, the EPA Method 8151A batch W3B1728 LCSD result for acifluorfen exceeded the upper percent recovery acceptance limit of 134 percent, at 150 percent and the LCS and LCSD exceeded the RPD control limit of 25 percent, at 34 percent. The associated sample results were non-detect; thus, qualification was not required.

According to report A3B0674, the EPA Method 8270D-SIM batch 23C0033 LCS (23C0033-BS1) result for 1,1,2,2-tetrachloroethane exceeded the upper percent recovery acceptance limit of 120 percent, at 126 percent. The associated sample results were non-detect; thus, qualification was not required.

According to report A3B0674, the EPA method 8270E batch 23B0916 LCS (23B0916-BS1) and LCSD (23B0916-BSD1) 3,3'-dichlorobenzidine results exceeded upper percent recovery acceptance limits of 129 percent, at 187 percent and 188 percent, respectively. Apex also flagged the LCS and LCSD 3,3'-dichlorobenzidine results as estimated because they were associated with continuing calibration verification that exceeded upper control limits and noted that 3,3'-dichlorobenzidine has known erratic recoveries. The associated 3,3'dichlorobenzidine sample results were non-detect and have been qualified by the reviewer with UI as shown in the following table. The LCSD also had results for hexachlorobutadiene, hexachloroethane, 1,24-trichlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, and 1,4dichlorobenzene below lower percent recovery acceptance limits, ranging from 17 percent to 55 percent. The batch 23B0916 LCS results were within percent recovery acceptance limit, but were also significantly low; thus, the associated sample results, which were non-detect, have been qualified by the reviewer with R, as shown in the following table. The LCS and LCSD exceeded the RPD control limit of 30 percent for N-nitrosodimethylamine and pyridine at 55 percent and 41 percent, respectively. The associated samples were non-detect for Nnitrosodimethylamine and pyridine; thus, qualification was not required.

Report	Sample	Analyte	Original Result (ug/L)	Qualified Result (ug/L)
		Hexachlorobutadiene	0.0253 U	R
		Hexachloroethane	0.0253 U	R
		1,2,4-Trichlorobenzene	0.0253 U	R
	MW1-20230220- GW-70	3,3'-Dichlorobenzidine	0.505 U	0.505 UJ
	SW 70	1,2-Dichlorobenzene	0.0253 U	R
		1,3-Dichlorobenzene	0.0253 U	R
A 2D0/74		1,4-Dichlorobenzene	0.0253 U	R
A3B0674		Hexachlorobutadiene	0.0266 U	R
		Hexachloroethane	0.0266 U	R
		1,2,4-Trichlorobenzene	0.0266 U	Result (ug/L) R R R O.505 UJ R R R
	MW2-20230220- GW-60	3,3'-Dichlorobenzidine	0.532 U	0.532 UJ
	011 00	1,2-Dichlorobenzene	0.0266 U	R
		1,3-Dichlorobenzene	0.0266 U	R
		1,4-Dichlorobenzene	0.0266 U	R

Notes

R = result is rejected. The analyte may or may not be present in the sample.

U = result is non-detect at the laboratory detection limit.

ug/L = micrograms per liter.

UJ = result is non-detect with an estimated method reporting limit.

According to report C347690, the EPA Method 1668C batch 8576352 LCS and LCSD exceeded RPD control limits of 30 percent for HexaCB-(128)+(166) and 22'345'6-HexaCB-(144), and 22'344'56-HeptaCB-(181), at 157 percent, 156 percent, and 194 percent respectively. The reviewer confirmed that these three PCB compounds were not part of the LCS and LCSD percent recovery evaluation but had been included in the final report with percent recoveries and RPDs due to reporting system constraints. All associated sample results were also qualified L:\Projects\0830.03 City of St. Helens\06_Scope 1B\Draft Documents\Phase IB Report\Appendix D - DVM\DVM_StHelens_Scope1B_Jan2023.docx

by the reviewer based on labeled internal standard recovery, as discussed in the Labeled Analog Recovery Results section; additional qualification was not required.

All remaining LCS and LCSD results were within acceptance limits for percent recovery and relative percent difference (RPD).

LABORATORY DUPLICATE RESULTS

Laboratory duplicate results are used to evaluate laboratory precision. All laboratory duplicate samples were prepared and analyzed at the required frequency. When laboratory duplicate sample results were not reported, batch precision was evaluated with LCS and LCD results and/or matrix spike (MS) and matrix spike duplicate (MSD) sample results.

Laboratory duplicate results greater than five times the MRL were evaluated using laboratory RPD control limits. Laboratory duplicate results less than five times the MRL, including non-detects, were evaluated using a control limit of the MRL of the parent sample; the absolute difference of the laboratory duplicate sample result and the parent sample result, or the MRL for non-detects, was compared to the MRL of the parent sample.

According to report A3A1010, Apex noted that an NWTPH-Gx and EPA Method 8260D batch 23B0290 laboratory duplicate (23B0290-DUP1) was prepared by subsampling from the sample container within 48 hours of sample collection. The laboratory duplicate was prepared with a sample from an unrelated project and no qualification was required. All laboratory duplicate results met the acceptance criteria.

MATRIX SPIKE AND MATRIX SPIKE DUPLICATE RESULTS

Matrix spike (MS) and matrix spike duplicate (MSD) results are used to evaluate laboratory precision, accuracy, and the effect of the sample matrix on sample preparation and analysis. When MS and MSD results were not reported, batch precision and accuracy were evaluated with laboratory duplicate, LCS, and LCSD results.

When MS and MSD were prepared from samples with high concentrations of target analytes, associated MS and/or MSD percent recovery and/or RPD control limit exceedances did not require qualification because spike concentrations could not be accurately quantified. High concentrations of target analytes are defined as four times the spike amount for all analyses.

When MS and MSD were prepared with samples from unrelated projects, the MS and/or MSD percent recovery and/or RPD control limit exceedances did not require qualification because these sample matrices were not representative of project sample matrices.

According to report A3A1010, the EPA Method 8270E batch 23B0782 MS (23B0782-MS1) had several results that were non-detect or were below lower percent recovery acceptance limits. The reviewer confirmed that the MS had been analyzed at a 1:40 dilution, so many of the results were not detected or were at or near the MRL. Based on the MS dilution, qualification of the associated sample results was not required.

According to report A3A1010, the EPA Method 8270E batch 23B0783 MS (23B0783-MS1) had several results that were non-detect or were below lower percent recovery acceptance limits. The reviewer confirmed that the MS had been analyzed at a 1:40 dilution, so the expected MS results were below LDLs. Based on the MS dilution, qualification of the associated sample results was not required.

According to report A3A1010, an EPA Method 8270E batch 23C0074 MS was not reported because there was significant interference from organic compounds that were present in the sample used to prepare the MS.

According to report A3A1010, the EPA Method 6020B batch 23B0914 MS (23B0914-MS1) result for antimony was below the lower percent recovery acceptance limit of 75 percent, at 71 percent. The reviewer qualified the associated sample result with J-.

Report	Sample	Analyte	Original Result (mg/kg)	Qualified Result (mg/kg)
A3A1010	MFA-B1-B5-COMP-SL-PRO	Antimony	0.944	0.944 J-

Notes

J- = result is estimated but may be biased low. mg/kg = milligrams per kilogram.

According to reports A3B0217 and A3B0522, the EPA Method 8260D-SIM batch 23B0743 MS (23B0743-MS1) had several results below lower percent recovery acceptance limits, ranging from 66 percent to 78 percent. The associated sample results were non-detect. The reviewer raised the associated sample LDLs to MRLs and qualified the results with UJ, as shown in the following table:

Report	Sample	Analyte	Original Result (ug/L)	Qualified Result (ug/L)
		Ethylbenzene	0.0500 U	0.100 UJ
		m,p-Xylene	0.100 U	0.200 UJ
		o-Xylene	0.0500 U	(ug/L) 0.100 UJ 0.200 UJ 0.100 UJ 0.100 UJ 0.100 UJ 0.0200 UJ
A3B0522	MW6-20230214-GW- 40.25	1,2,4-Trimethylbenzene	0.0500 U	
	40.20	1,3,5-Trimethylbenzene	0.0500 U	0.100 UJ
		1,2-Dibromoethane	0.0100 U	0.0200 UJ
		1,1,2-Trichloroethane	0.0100 U	0.0200 UJ

 $\mbox{\bf U}$ = result is non-detect at the laboratory detection limit.

ug/L = micrograms per liter.

UJ = result is non-detect with an estimated method reporting limit.

According to report A3B0674, the EPA Method 8260D-SIM MS (23C0033-MS1) exceeded upper percent recovery acceptance limits for benzene, chloroform, 1,1-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, 1,2-dichloropropane, and vinyl chloride, ranging from 128 percent to 163 percent. The associated sample result for benzene has been qualified by the reviewer with J. The remaining associated sample results were non-detect and so did not require qualification.

Report	Sample	Analyte	Original Result (ug/L)	Qualified Result (ug/L)
A3B0674	MW2-20230220-GW-60	Benzene	0.176	0.176 J
	<u> </u>			

Notes

J = result is estimated.

ug/L = micrograms per liter.

The remaining MS and MSD results were within acceptance limits for percent recovery and RPD.

LABELED ANALOG RECOVERY RESULTS

According to reports C338911, C338927, C347713, C347690, and C351279, the samples were spiked with carbon-13 labeled standards to quantify the relative response of analytes in each sample for the ASTM D7968-17A, EPA Method 537.1, EPA Method 1613B, EPA Method 1668C, and EPA Method 1699 analyses.

According to report C338911, the EPA Method 537.1 labeled standard ¹³C₂-PFTeDA was below lower percent recovery acceptance limits of 50 percent, at 46 percent, for sample MFA-B3A20230207-GW-36.0. The reviewer confirmed with BV that the samples were not reanalyzed to confirm the recoveries and that the recoveries demonstrated sufficient instrument sensitivity. BV noted that the associated analytes, PFTrDA and PFTeDA may have had increased variability. The associated sample results were non-detect and have been qualified by the reviewer with UJ, as shown in the following table.

Report	Sample	Component	Original Result (ug/L)	Qualified Result (ug/L)
C338911	MFA-B3A-20230207-GW-36.0	PFTrDA	0.0026 U	0.0026 UJ
	WIFM-D3M-2U23U2U/-GW-30.U	PFTeDA	0.0016 U	0.0016 UJ

U = result is non-detect at the estimated detection limit. ua/L = micrograms per liter.

UJ = result is non-detect with an estimated detection limit.

According to reports C338911, C347713, and C351279 the EPA Method 1668C batch 8533813 LCS labeled standards C₁₃-2,44'-TriCB-(28), C₁₃-233'44'-PentaCB-(105), C₁₃-23'44'5-PentaCB-(118), C₁₃-2'344'5-PentaCB-(123), C₁₃-33'44'5-PentaCB-(126), and C₁₃-344'-TriCB-(37), and the LCSD labeled standards C₁₃-4-MonoCB-(3), C₁₃-233'44'-PentaCB-(105), and C₁₃-33'44'5-PentaCB-(126) were flagged by BV as estimated with high bias due to association with an internal standard that exceeded upper recovery acceptance limits. All labeled standard results were within percent recovery acceptance limits; thus, qualification was not required.

According to reports C338911 and C347713, the EPA Method 1668C batch 8533813 laboratory method blank labeled standards C₁₃-233'44'-PentaCB-(105) and C₁₃-33'44'5-PentaCB-(126) exceeded upper recovery acceptance limits of 145 percent, at 146 percent and 151 percent, respectively. The laboratory method blank had some detected results, which are addressed in the Method Blanks section above. No additional action was required.

According to report C338927, the ASTM D7968-17A labeled standards ¹³C₂-PFDA and ¹³C₂-PFTeDA were below lower percent recovery acceptance limits of 50 percent, at 47 percent and 37 percent, respectively, for sample MFA-B1-B5-COMP-SL. The reviewer confirmed with BV that the internal standard recoveries demonstrated sufficient instrument sensitivity to report the associated sample results. BV noted that the associated analytes, PFDA, PFDS, PFTrDA, and PFTeDA may have had increased variability. The sample results have been qualified by the reviewer with J for detected results, as shown in the following table. Results already flagged by BV as estimated due to detection below the MRL did not require additional qualification but are included in the table for clarity.

Report	Sample	Component	Original Result (ug/kg)	Qualified Result (ug/kg)
C338927 MFA-B1		PFDA	1.5	1.5 J
	AAFA DI DE COAAD SI	PFDS	0.92 J	0.92 J ^(a)
	MFA-B1-B5-COMP-SL	PFTrDA	0.61 J	0.61 J ^(a)
		PFTeDA	0.46 J	0.46 J ^(a)

Notes

J = result is estimated.

MRL = method reporting limit.

ug/kg = micrograms per kilogram.

©Result qualified as estimated based on detection below the MRL. Additional qualification not required.

According to report C347690, most EPA Method 1668C labeled standards associated with the analysis of sample MFA-B1-B5-COMP-SL-PRO had results below lower percent recovery acceptance limits, ranging from 5.0 percent to 39 percent. Due to significantly low recovery of labeled standards C₁₃-2-MonoCB-(1) and C₁₃-22'-DiCB-(4), at 5.0 percent, BV did not report the associated mono- and di-chlorinated PCB congeners (PCB-001 through PCB-014). The reviewer confirmed that the low recoveries were caused by matrix interference, and that the sample had been re-extracted and reanalyzed to confirm the matrix interference. BV also attempted additional extract cleanup. Due to widespread internal standard recovery issues, all associated detected sample results were qualified by the reviewer with J- and all non-detect results were qualified with R.

Report	Sample	Analysis	Original Results	Qualification
C347690	MFA-B1-B5-COMP-SL-	EPA 1668C	Detected	J-
C34/670	PRO	EFA 1000C	Non-detect	R

Notes

J- = result is estimated but may be biased low.

R = result is rejected. The analyte may or may not be present in the sample.

According to report C347690, the EPA Method 1613B batch 8520730 MS labeled standards C₁₃-123678 HxCDD and C₁₃-123678 HxCDF exceeded upper percent recovery acceptance limits, at 137 percent, and 125 percent, respectively. The reviewer confirmed that the MS had been prepared by BV with a sample from an unrelated project. No qualification was required.

According to report C347690, the EPA Method 1668C batch 8576352 laboratory method blank labeled standard C₁₃-22'44'66'-HexaCB-(155) result was below the lower percent recovery acceptance limit of 40 percent, at 37 percent. The reviewer confirmed that the remaining hexachlorobiphenyl labeled standards had acceptable percent recoveries. Qualification of sample results based on the laboratory method blank labeled standard recovery was not required.

According to report C347713, the EPA Method 537.1 labeled standards D₃-MeFOSA and D₅-EtFOSA were below lower percent recovery acceptance limits of 50 percent, at 44 percent and 43 percent, respectively, for sample MFA-20230214-GW-40 and both were at 47 percent for sample MW4-20230214-GW-40. BV noted that the associated analytes, MeFOSA and EtFOSA may have had increased variability. The associated sample results were non-detect and have been qualified by the reviewer with UJ, as shown in the following table.

Report	Sample	Component	Original Result (ug/L)	Qualified Result (ug/L)
	A45 A 5 0000001 A CVV 40	MeFOSA	0.0084 U	0.0084 UJ
C247712	MFA5-20230214-GW-40	EtFOSA	0.0095 U	0.0095 UJ
C347713	AAFA A 2022221 A CVA/ AD	MeFOSA	0.0084 U	0.0084 UJ
	MFA4-20230214-GW-40	EtFOSA	0.0095 U	0.0095 UJ

 $L:\Projects\0830.03\ City\ of\ St.\ Helens\06_Scope\ 1B\Draft\ Documents\Phase\ IB\ Report\Appendix\ D-DVM\DVM_StHelens_Scope\1B_Jan\2023.docx$

U = result is non-detect at the estimated detection limit. ug/L = micrograms per liter.

UJ = result is non-detect with an estimated detection limit.

According to report C347713, the EPA Method 1668C labeled standard ¹³C₁₂-22'6-TriCB-(19) results for samples MW3-20230214-GW-35-DUP and MW4-20230214-GW-40 were below lower percent recovery acceptance limits of 40 percent, at 35 percent and 39 percent, respectively. The reviewer confirmed with BV that the internal standard recoveries demonstrated sufficient instrument sensitivity to report the associated sample results. The associated non-detect results were qualified by the reviewer with UJ. The associated detected sample results were already flagged by BV as estimated due to detection below the MRL; additional qualification of detected sample results was not required. The qualified results are shown in the following table:

Report	Sample	Component	Original Result (ng/L)	Qualified Result (ng/L)
		22'6-TriCB-(19)	0.017 U	0.017 UJ
		234'-TriCB-(22)	0.0060 U	0.0060 UJ
		235-TriCB-(23)	0.0061 U	0.0061 UJ
	MW3-20230214-GW-35-DUP	236-TriCB-(24)	0.0074 U	0.0074 UJ
		23'4-TriCB-(25)	0.0061 U	0.0061 UJ
		TriCB-(26)+(29)	0.0056 U	0.0056 UJ
		23'6-TriCB-(27)	0.0069 U	0.0069 UJ
C347713	1000 100 100 100 100 100 100 100 100 10	22'6-TriCB-(19)	0.019 U	0.019 UJ
		TriCB-(21)+(33)	0.0076 U	0.0076 UJ
		234'-TriCB-(22)	0.0076 U	0.0076 UJ
		235-TriCB-(23)	0.0077 U	0.0077 UJ
	MW4-20230214-GW-40	236-TriCB-(24)	0.0094 U	0.0094 UJ
		23'4-TriCB-(25)	0.0078 U	0.0078 UJ
		TriCB-(26)+(29)	0.0071 U	0.0071 UJ
		23'6-TriCB-(27)	0.0088 U	0.0088 UJ

Notes

ng/L = nanograms per liter.

U = result is non-detect at the estimated detection limit.

UJ = result is non-detect with an estimated detection limit.

According to report C347713, the EPA Method 1699 labeled standard ¹³C₁₀-heptachlor results for samples MW3-20230214-GW-35, MW3-20230214-GW-35-DUP, MW4-20230214-GW-40, and the MS prepared with sample MW3-20230214-GW-35-DUP exceeded the upper percent recovery acceptance limit of 120 percent, at 164 percent, 160 percent, and 125 percent, respectively. The labeled standard ¹³C-methoxychlor results for samples MW3-20230214-GW-35 and MW3-20230214-GW-35-DUP also exceeded the upper percent recovery acceptance limit of 120 percent, both at 140 percent. The associated non-detect sample results did not require qualification. The associated detected sample results were qualified by the reviewer with J+ in the following table:

Report	Sample	Component	Original Result (ng/L)	Qualified Result (ng/L)
C247712	MW3-20230214-GW-35	Mathawahlar	0.085 J	0.085 J+
C347713	MW3-20230214-GW-35-DUP	Methoxychlor	0.065 J	0.065 J+

J = result is estimated.

J+ = result is estimated but may be biased high.

ng/L = nanograms per liter.

According to report C351279, the EPA Method 1699 labeled standard ¹³C-methoxychlor result for the batch 8523575 MS prepared with sample MW1-20230220-GW-70 exceeded the upper percent recovery acceptance limit of 120 percent, at 125 percent. The ¹³C-methoxychlor recovery for sample MW1-20230220-GW-70 was within percent recovery acceptance limits; thus, qualification was not required.

According to report C351279, the EPA Method 537.1 labeled standard ¹³C₂-PFTeDA was below lower percent recovery acceptance limits of 50 percent, at 45 percent, for the batch 8534937 laboratory method blank. BV indicated that the associated laboratory method blank PFTeDA and PFTrDA results may have increased variability. The laboratory method blank was non-detect for PFTeDA and PFTrDA and the associated sample had acceptable labeled standard recovery; thus, qualification was not required.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance for individual samples for organic analyses.

The laboratory appropriately documented and qualified surrogate outliers. When surrogate percent recoveries were outside of acceptance limits because of dilutions necessary to quantify high concentrations of target analytes, qualification by the reviewer was not required. The reviewer confirmed that batch quality control results for samples with surrogate outliers were within acceptance limits.

The reviewer associated EPA Method 8270E acid-fraction surrogates phenol-d6, 2-fluorophenol, and 2,4,6-tribromophenol with all phenolic semivolatile organic compounds, benzoic acid, and benzyl alcohol. The base/neutral fraction surrogates nibrobenzene-d5, 2-fluorobiphenyl, and p-terphenyl were associated with all remaining semivolatile organic compounds.

According to report A3B0217, the EPA Method 8270E base/neutral surrogate 2-fluorobiphenyl result for sample MFA-B3A-20230207-GW-36.0 was below the lower percent recovery acceptance limit of 44 percent, at 40 percent. The remaining two base/neutral surrogate results were within percent recovery acceptance limits; thus, qualification was not required.

According to report A3B0522, samples MW3-20230214-GW-35 and MW3-20230214-GW-35-DUP had EPA Method 8270E nibrobenzene-d5 and 2-fluorobiphenyl surrogate results

that were below lower percent recovery acceptance limits, ranging from 27 percent to 42 percent. Because two of the three base/neutral surrogates for each sample exceeded percent recovery acceptance limits, all associated base/neutral semivolatile organic compound results are considered estimated. The reviewer qualified non-detect results with UJ and detected results with J-. The sample results that were also associated LCS and LCSD percent recovery exceedances were previously qualified by the reviewer in the Laboratory Control Sample and Laboratory Control Sample Duplicate Results section above; the LCS and LCSD qualifications take precedent over surrogate qualifications and are considered final; additional qualifications were not required for these compounds. The following results were qualified by the reviewer:

	MW3-2023	0214-GW-35	MW3-202302	14-GW-35-DUP
Analyte	Original Result (ug/L)	Qualified Result (ug/L)	Original Result (ug/L)	Qualified Result (ug/L)
Acenaphthene	0.0419	0.0419 J-	0.0167	0.0167 J-
Acenaphthylene	0.034	0.034 J-	0.0129	0.0129 J-
Anthracene	0.0165	0.0165 J-	0.00943 U	0.00943 UJ
Benz(a)anthracene	0.00962 U	0.00962 UJ	0.00943 U	0.00943 UJ
Benzo(a)pyrene	0.0144 U	0.0144 UJ	0.0142 U	0.0142 UJ
Benzo(b)fluoranthene	0.0144 U	0.0144 UJ	0.0142 U	0.0142 UJ
Benzo(k)fluoranthene	0.0144 U	0.0144 UJ	0.0142 U	0.0142 UJ
Benzo(g,h,i)perylene	0.00962 U	0.00962 UJ	0.00943 U	0.00943 UJ
Chrysene	0.00962 U	0.00962 UJ	0.00943 U	0.00943 UJ
Dibenz(a,h)anthracene	0.00962 U	0.00962 UJ	0.00943 U	0.00943 UJ
Fluoranthene	0.024	0.024 J-	0.0106	0.0106 J-
Fluorene	0.0586	0.0586 J-	0.0201	0.0201 J-
Indeno(1,2,3-cd)pyrene	0.00962 U	0.00962 UJ	0.00943 U	0.00943 UJ
Phenanthrene	0.00962 U	0.00962 UJ	0.00943 U	0.00943 UJ
Pyrene	0.00962 U	0.00962 UJ	0.00943 U	0.00943 UJ
Carbazole	0.0178	0.0178 J-	0.0142 U	0.0142 UJ
Dibenzofuran	0.0174	0.0174 J-	0.00943 U	0.00943 UJ
Bis(2-ethylhexyl)phthalate	0.192 U	0.192 UJ	0.189 U	0.189 UJ
Butyl benzyl phthalate	0.192 U	0.192 UJ	0.189 U	0.189 UJ
Diethylphthalate	0.192 U	0.192 UJ	0.189 U	0.189 UJ
Dimethylphthalate	0.192 U	0.192 UJ	0.189 U	0.189 UJ
Di-n-butylphthalate	0.192 U	0.192 UJ	0.189 U	0.189 UJ
Di-n-octyl phthalate	0.192 U	0.192 UJ	0.189 U	0.189 UJ
N-Nitrosodimethylamine	0.024 U	0.024 UJ	0.0236 U	0.0236 UJ
N-Nitroso-di-n-propylamine	0.024 U	0.024 UJ	0.0236 U	0.0236 UJ
N-Nitrosodiphenylamine	0.0257	0.0257 J-	0.0236 U	0.0236 UJ
Bis(2-Chloroethoxy) methane	0.0623	0.0623 J-	0.0257	0.0257 J-
Bis(2-Chloroethyl) ether	0.0407	0.0407 J-	0.0236 U	0.0236 UJ

	MW3-2023	0214-GW-35	MW3-202302	14-GW-35-DUP
Analyte	Original Result (ug/L)	Qualified Result (ug/L)	Original Result (ug/L)	Qualified Result (ug/L)
2,2'-Oxybis(1-Chloropropane)	0.0264	0.0264 J-	0.0236 U	0.0236 UJ
Hexachlorobenzene	0.0179	0.0179 J-	0.00943 U	0.00943 UJ
4-Bromophenyl phenyl ether	0.0493	0.0493 J-	0.0236 U	0.0236 UJ
4-Chlorophenyl phenyl ether	0.0507	0.0507 J-	0.0236 U	0.0236 UJ
Aniline	0.0481 U	0.0481 UJ	0.0472 U	0.0472 UJ
4-Chloroaniline	0.024 U	0.024 UJ	0.0236 U	0.0236 UJ
2-Nitroaniline	0.192 U	0.192 UJ	0.189 U	0.189 UJ
3-Nitroaniline	0.192 U	0.192 UJ	0.189 U	0.189 UJ
4-Nitroaniline	0.192 U	0.192 UJ	0.189 U	0.189 UJ
Nitrobenzene	0.0962 U	0.0962 UJ	0.0943 U	0.0943 UJ
2,4-Dinitrotoluene	0.0962 U	0.0962 UJ	0.0943 U	0.0943 UJ
2,6-Dinitrotoluene	0.0962 U	0.0962 UJ	0.0943 U	0.0943 UJ
Isophorone	0.0272	0.0272 J-	0.0236 U	0.0236 UJ
Azobenzene	0.024 U	0.024 UJ	0.0236 U	0.0236 UJ
Bis(2-Ethylhexyl) adipate	0.240 U	0.24 UJ	0.236 U	0.236 UJ
1,2-Dinitrobenzene	0.240 U	0.240 UJ	0.236 U	0.236 UJ
1,3-Dinitrobenzene	0.240 U	0.240 UJ	0.236 U	0.236 UJ
1,4-Dinitrobenzene	0.240 U	0.240 UJ	0.236 U	0.236 UJ
Pyridine	0.0962 U	0.0962 UJ	0.0943 U	0.0943 UJ

J- = the result is estimated but may be biased low.

U = result is non-detect at the estimated detection limit.

ug/L = micrograms per liter.

UJ = result is non-detect with an estimated detection limit.

All remaining surrogate results were within percent recovery acceptance limits.

INITIAL AND CONTINUING CALIBRATION VERIFICATION RESULTS

Initial calibration verification and continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy prior to analysis and through the end of analysis of a sample batch. The laboratories did not report CCV results, but appropriately flagged results associated with CCV exceedances. Surrogate or batch quality control results flagged by the laboratory based on CCV exceedances but meeting percent recovery and/or RPD acceptance criteria required no action from the reviewer.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. The following field duplicate and parent sample pair were submitted for analysis:

 $L:\Projects\\\0830.03\ City\ of\ St.\ Helens\\\06_Scope\ 1B\\\Draft\ Documents\\\Phase\ IB\ Report\\\Appendix\ D-DVM\\\DVM_StHelens\\\Scope\ 1B_Jan2023.docx$

Reports	Parent Sample	Field Duplicate Sample
A3B0522, C347713	MW3-20230214-GW-35	MW3-20230214-GW-35-DUP

MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the MRL or 50 percent RPD for results that are greater than five times the MRL. RPD was not evaluated when both results in the sample pair were non-detect. When one result in the sample pair was non-detect, RPD was evaluated using the EDL, LDL, MDL or MRL of the non-detect result. Field duplicate results that exceeded the acceptance criteria were qualified by the reviewer with J for detected results and UJ for non-detect results, as shown in the following table. All detected EPA Method 1668C sample MW3-20230214-GW-35-DUP results were qualified by the reviewer in the Method Blanks section above. These results are included in the table below with final qualifiers based on both laboratory method blank and field blank qualification. Results already reported as estimated due to detection below the MRL did not require additional qualification but are included in the table below for clarity.

Report	Sample	Analyte	RPD (%)	Original Result (ng/L)	Qualified Result (ng/L)
	MW3-20230214-GW-35	Anglyta I ··· = I	0.0032 U	0.0032 UJ	
	MW3-20230214-GW-35-DUP	3,3-DICB-(11)	189	0.118 J	0.118 UJ ^(a)
	MW3-20230214-GW-35	TriCB (20) + (20)	11/	0.0033 U	0.0033 UJ
	MW3-20230214-GW-35-DUP	IIICD-(20) + (20)	110	0.0125 J	0.0125 UJ ^(a)
	MW3-20230214-GW-35	24'5 TriCP (21)	114	0.0032 U	0.0032 UJ
	MW3-20230214-GW-35-DUP	24 3-111Cb-(31)	110	0.0120 J	0.0120 UJ ^(a)
	MW3-20230214-GW-35		111	0.0074 U	0.0074 UJ
	MW3-20230214-GW-35-DUP	(61)+(70)+(74)+(76)	111	0.0260 J	0.0260 UJ ^(a)
	MW3-20230214-GW-35	- 1	122	0.0074 U	0.0074 UJ
	MW3-20230214-GW-35-DUP		132	0.0361 J	0.0361 UJ ^(a)
C347713	MW3-20230214-GW-35	22'35'6-PentaCB-	100	0.0099 U	0.0099 UJ
C34//13	MW3-20230214-GW-35-DUP	(95)	100	0.033 J	0.033 UJ ^(a)
	MW3-20230214-GW-35	PentaCB-	112	0.0067 U	0.0067 UJ
	MW3-20230214-GW-35-DUP	(110)+(115)	113	0.0241 J	0.0241 UJ ^(a)
	MW3-20230214-GW-35	23'44'5-PentaCB-	100	0.0048 U	0.0048 UJ
	MW3-20230214-GW-35-DUP	(118)	100	0.0144 J	0.0144 UJ ^(a)
	MW3-20230214-GW-35	HexaCB-	100	0.0075 U	0.0075 UJ
	MW3-20230214-GW-35-DUP	(129)+(138)+(163)	108	0.025 J	0.025 UJ ^(a)
	MW3-20230214-GW-35	Hove CP (147) (140)	100	0.0071 U	0.0071 UJ
	MW3-20230214-GW-35-DUP	nexucb-(14/j+(149)	128	0.0323 J	0.0323 UJ ^(a)
	MW3-20230214-GW-35	HovaCP (152)±(1/0)	102	0.0060 U	0.0060 UJ
	MW3-20230214-GW-35-DUP		123	0.0253 J	0.0253 UJ ^(a)

Report	Sample	Analyte	RPD (%)	Original Result (ng/L)	Qualified Result (ng/L)
--------	--------	---------	------------	------------------------------	-------------------------------

J = result is estimated.

ng/L = nanograms per liter.

RPD = relative percent difference.

U = result is non-detect at the estimated detection limit.

UJ = result is non-detect with an estimated detection limit.

^(a)Result also qualified as non-detect based on laboratory method blank detection, as described in the Method Blanks section above.

All remaining field duplicate results met the RPD acceptance criteria.

DATA PACKAGE

The data package was reviewed for transcription errors, omissions, and anomalies.

According to report A3A1010, sample MFA-B1-20230130-21.9 was recorded on the COC form as MFA-B1-2023013-21.9. The sample name was corrected by MFA project manager request after samples had been received by Apex. No additional action was required.

The reviewer confirmed that, for report A3A1010, the EPA Method 8151A chlorinated herbicide analysis was canceled for composite sample MFA-B1-B5-COMP-SL-PRO because insufficient sample material was available for the analysis.

Report A3B0522 was amended and reissued on May 2, 2023, to replace EPA Method 8270E results that had been extracted after the method-recommended holding time (batch 23B0895) with results from the original extraction and analysis (batch 23B0761) that were extracted within the holding time but had low LCS recoveries. The results associated with batch 23B0761 were reported and are qualified in the Laboratory Control Sample and Laboratory Control Sample Duplicate Results section above.

Report C338927 was reissued by BV on April 20, 2023, to correct an internal standard reference.

According to report C338927, a sample identified as MFA-SL-Composite was listed on the COC form but was crossed out and annotated by Apex that it would be shipped the following week. The reviewer confirmed that this sample had not been included in the C338927 sample delivery group. The reviewer confirmed that compositing instructions were provided to BV in a separate email communication, in which BV was instructed to composite samples MFA-B1-20230130-21.9, MFA-B3-20230131-31.0, MFA-B2-20230131-23.0, MFA-B4-20230202-SL-26.5, and MFA-B5-20230203-SL-27.0, name the composite sample as MFA-B1-B5-COMP-SL, and air dry the composited sample prior to ASTM D7968-17A extraction and analysis. Percent moisture of the composited sample was also performed by BV for dry-weight reporting purposes.

According to report C347690, the COC form referenced samples MFA-B1-20230130-21.9, MFA-B3-20230131-31.0, MFA-B2-20230131-23.0, MFA-B4-20230202-SL-26.5, and MFA-B5-20230203-SL-27.0, which had already been received by BV with sample delivery group

C338927. These sample names were appropriately crossed out and annotated by Apex as having already been received by BV. The reviewer confirmed that only one sample MFA-SL-Composite After Processing was included in the sample delivery group for report C347690. Report C347690 was reissued by BV on June 6, 2023, to correct sample ID MFA-SL-Composite After Processing to MFA-B1-B5-COMP-SL-PRO.

Report C347713 was reissued on May 17, 2023, to include the complete list of EPA Method 537.1 per- and polyfluoroalkylated substances.

No additional issues were found.

REFERENCES

Apex. 2022. Quality Systems Manual. Rev. 10. Apex Laboratories, LLC: Tigard, OR. June 20.

BV. 2021. Corporate Quality Manual. Rev. 22. Bureau Veritas: Mississauga, ON, Canada. September 7.

EPA. 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA publication SW-846. 3rd ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase III (2019), VII phase I (2019), and VII phase II (2020).

EPA. 2014. R10 Data Validation and Review Guidelines for Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran Data (PCDD/PCDF) using Method 1613B and SW846 Method 8290A. EPA-910-R-14-003. U.S. Environmental Protection Agency, Region 10 Office of Environmental Assessment. Seattle, WA. May.

EPA. 2020a. National Functional Guidelines for Inorganic Superfund Methods Data Review. EPA 542-R-20-006. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.

EPA. 2020b. National Functional Guidelines for Organic Superfund Methods Data Review. EPA 540-R-20-005. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.

EPA. 2020c. National Functional Guidelines for High Resolution Superfund Methods Data Review. EPA 542-R-20-007. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.

Weck. 2020. Quality Assurance Manual. Rev. 20.6. Weck Laboratories, Inc.: Industry, CA. April 17.

APPENDIX E PHOTO LOG

Project Name: Phase IB Environmental Investigation

Project Number: M0830.03.006
Location: St. Helens, Oregon

Photo No. 1. Description

ISM sampling set up: a ponar sampler is attached to a wench line on the front of a small barge.

Photo No. 2. Description

Shallow lagoon sludge sample retained inside ponar sampler.

Project Name: Phase IB Environmental Investigation

Project Number: M0830.03.006
Location: St. Helens, Oregon

Photo No. 3. Description

Representative photo of shallow lagoon sludge collected with ponar, emptied into a stainless steel bowl.

Photo No. 4. Description

50-point ISM shallow lagoon sludge sample at lab prior to drying.

Project Name: Phase IB Environmental Investigation

Project Number: M0830.03.006
Location: St. Helens, Oregon

Photo No. 5. Description

Representative photo of deeper sludge at boring MFA B-1.

Photo No. 6. Description

Representative photo of deeper sludge at boring MFA B-3.

Project Name: Phase IB Environmental Investigation

Project Number: M0830.03.006
Location: St. Helens, Oregon

Photo No. 7. Description

Boring MFA B-3A.
Representative sand layers where the reconnaissance groundwater sample was collected are shown to the far right in the top two cores tubes and to the far left in the bottom core tube. The underlying silt is at the right in the bottom core tube.

Photo No. 8. Description

Representative photo of silt in boring MFA B-4.

Photo No. 9. Description

Weathered basalt bedrock at refusal depth in boring MFA B-1.

Photographs

Project Name: Phase IB Environmental Investigation

Project Number: M0830.03.006
Location: St. Helens, Oregon

Photo No. 10.

Description

Vesicular basalt at refusal depth in boring MFA B-2.

Photo No. 11. Description

Vesicular basalt at refusal depth in boring MFA B-5.

Photographs

Project Name: Phase IB Environmental Investigation

Project Number: M0830.03.006
Location: St. Helens, Oregon

Photo No. 12. Description Barge and direct-push drilling rig set-up.

APPENDIX F GRI REPORT

Preliminary Phase I Geotechnical Investigation Wastewater Lagoon Repurposing

City of St. Helens, Oregon

September 15, 2023

Prepared for

Maul Foster & Alongi, Inc. 3140 NE Broadway Street Portland, OR 97232

Prepared by

16520 SW Upper Boones Ferry Road, Suite 100 Tigard, OR 97224-7661 (503) 641-3478 | www.gri.com

TABLE OF CONTENTS

1		INTRODUCTION	1
2		PROJECT DESCRIPTION	1
3		SITE DESCRIPTION	3
	3.1	General	3
	3.2	Geologic Setting	3
	3.3	Geologic Reconnaissance	4
4		SUBSURFACE CONDITIONS	5
	4.1	General	5
	4.2	Soils	6
	4.3	Groundwater	8
5		CONCLUSIONS AND RECOMMENDATIONS	8
	5.1	General	8
	5.2	Seismic Considerations	9
	5.3	Embankment Stability Under Seismic Loading	16
	5.4	Embankment Stability Under Static Loading	19
	5.5	Settlements	19
	5.6	Groundwater Management	21
	5.7	Foundation Support	21
		Workplan for Phase II Geotechnical Investigation	
6		LIMITATIONS	
7		REFERENCES	25
TA	BLE	S S	
	le 5		
	le 5		11
Tab	le 5	'	
Tab	le 5	5-4: Concept-Level DSM Columns Improvement Block Dimensions	19
FIG	iUR	RES	
Fig	ure	1: Vicinity Map	
Fig	ure	2: Site Map	
Fig	ure	3: Results of the Dynamic Response Analysis for V _s Profile 1	
Fig	ure 4	4: Results of the Dynamic Response Analysis for V _s Profile 2	
Fig	ure	5: Permanent Seismic Displacement Curves	

FIGURES (continued)

Figure 6: Cross Section A-A' (Seismic, Partially Softened Undrained Shear Strength)

Figure 7: Cross Section A-A' (Seismic, Softened Undrained Shear Strength)

Figure 8: Cross Section B-B' (Seismic, Partially Softened Undrained Shear Strength)

Figure 9: Cross Section B-B' (Seismic, Softened Undrained Shear Strength)

Figure 10: Cross Section C-C' (Seismic, Partially Softened Undrained Shear Strength)

Figure 11: Cross Section C-C' (Seismic, Softened Undrained Shear Strength)

APPENDICES

Appendix A: Existing Conditions Survey (AKS Engineering and Forestry, 2019)

Appendix B: Field Explorations and Laboratory Testing

Appendix C: Site-Specific Geologic Hazards

Appendix D: Earth Dynamics LLC – Geophysical Exploration for St. Helens Water Treatment Plant

Appendix E: Maul Foster & Alongi Boring Logs (2019 and 2023)

Appendix F: Maul Foster & Alongi – Atterberg Limits Results (2023)

Appendix G: Shannon and Wilson Exploration Logs (1968 and 1969)

Appendix H: U.S. Department of Agriculture Soil Map

Appendix I: Geoprofessional Business Association Guidance Document

1 INTRODUCTION

At your request, GRI completed a preliminary Phase I geotechnical investigation as part of the Oregon Department of Environmental Quality (DEQ) Phase I Site Characterization for the proposed Wastewater Lagoon Repurposing in St. Helens, Oregon. The Vicinity Map, Figure 1, shows the general location of the site. The purpose of our investigation was to evaluate subsurface conditions at the site and develop preliminary geotechnical conclusions and recommendations for site improvements associated with filling in the existing wastewater treatment plant (WWTP) lagoon as part of the Phase I Site Characterization, along with recommendations for additional geotechnical explorations and analysis for Phase II Site Characterization. The investigation included a review of available geologic and geotechnical information for the area, subsurface explorations, laboratory testing, and engineering analyses. This report describes the work accomplished and provides our preliminary conclusions and recommendations regarding foundation support, slope stability, seismic design considerations, and ground improvement.

In addition, GRI reviewed boring logs completed by Maul Foster & Alongi, Inc. (MFA) as part of their work for the Phase I Site Characterization and older boring and test-pit logs completed prior to construction of the Aeration Lagoon.

2 PROJECT DESCRIPTION

The proposed project includes repurposing the existing 43-acre WWTP as a sediment disposal facility for the City of St. Helens (City). As part of the plan, the existing lagoon will be drained, and the solids from it will be collected and stored in cells within the facility. The lagoon will be partially to fully filled with sediment, soil, and the City's wastewater treatment sludge as fill material. Imported materials will likely be delivered to the site by barges that dock at either the existing Boise Cascade dock structure south of the lagoon or a new dock structure near the existing Boise Cascade dock, and/or by train and truck.

Based on review of MFAs October 5, 2020, report titled "Preliminary Conceptual Site Development Plan," the existing lagoon will be dredged to about elevation 10 feet (North American Vertical Datum of 1988 [NAVD88]) with cut slopes of 2H:1V (Horizontal to Vertical) on the west side of the excavation and cut slopes of 3H:1V on the north, east, and south sides of the excavation. All elevations referenced in this report refer to NAVD88 unless otherwise stated. As part of the excavation, the previously installed PVC liner located over a portion of the bottom of the lagoon will be removed, and the lagoon will be drained to allow sludge removal and filling. A layer of clean soil or sand fill will be installed at the bottom of the excavation and overlain by a Geosynthetic Clay Liner (GCL). Above the GCL, a 60-mil High-Density Polyethylene (HDPE) linear or low-density polyethylene geomembrane liner would be installed and overlain by a drainage rock layer, covered by

a non-woven geotextile fabric separation layer, and then capped with a layer of clean sand prior to filling.

The team is proposing excavating and filling the lagoon in two phases. The initial phase, Design Phase 1, will include excavating and filling the southern portion, approximately 1,700 feet of the lagoon (approximate fill area of 19 acres), with fill to about elevation 35 feet. The west, south, and east sides of Phase 1 would be supported by the existing sidewalls of the lagoon and levee. The north side of the fill area will be supported by a geotube cutoff berm. The cutoff berm would be installed from elevation 10 feet to elevation 35 feet in a generally east-west direction along the entire width of the lagoon and would be constructed with top dimensions of about 25 feet wide and sideslopes of 3H:1V. The berm would be constructed of geotubes, permeable engineered textile bags into which sludge materials from the lagoon would be pumped and allowed to drain, which would require maintaining groundwater levels below the bottom of the geotubes during construction. The concept drawings indicate the geotubes would be installed in an overlapping pyramid structure. The new GCL liner would be constructed below the bottom of the berm, and the HDPE liner would extend up the south face of the berm.

Phase 2 excavation and filling will begin following completion of Phase 1 filling. As part of Phase 2, the northern 30 acres of the lagoon to the north of the cutoff berm will be excavated and backfilled, similar to Phase 1. Following excavation and dewatering, the GCL cap installed for Phase 2 would be tied into the GCL liner installed in Phase 1. The HDPE liner would be installed over the bottom of the Phase 2 excavation and up the north side of the geotube berm. Following filling of the northern 30 acres to elevation 35 feet additional filling will be completed over the entire footprint of the previous lagoon to raise grades in the northern portion of the lagoon to a top elevation of 66 feet and grades in the Phase 1 area to a top elevation 54 feet. Final slopes for the project have not been finalized but will be less than 5H:1V above the existing east and south levee.

As part of Phase 1 and 2 filling, a dewatering system that includes horizontal drainage layers with vertical sumps would be installed to collect and discharge leachate from the fill materials placed as fill. The top of the fills will be capped with a non-woven geotextile-fabric backed GCL and geosynthetic membrane to limit water infiltration. In addition, the top of the fill will be sloped to drain, and a pipe collection system is planned on the west side of the lagoon to collect groundwater from the basalt surface to the west. Control of groundwater has not been evaluated at this time but will be an important consideration for final design of the project.

Following filling to final grades, the facility will be repurposed by the City as a park. Park improvements may include an amphitheater, ball fields, paved access roads and parking lots, and ancillary buildings.

3 SITE DESCRIPTION

3.1 General

The WWTP is bordered by S 6th Street to the north, residential developments and grassy fields to the west, the Cascade Tissue Group mill (formerly Boise Cascade) to the south, and the Multnomah Channel to the east. The majority of the site is occupied by the large WWTP lagoon. The WWTP is located adjacent to the northern edge of the lagoon. Based on review of existing as-built drawings, the bottom of the WWTP lagoon is at about elevation 7 feet (vertical datum unknown). An impoundment levee is located along the eastern edge of the lagoon, with a top-of-levee elevation of about elevation 34 feet. The levee is about 10 feet wide at the top, surfaced with asphalt concrete (AC) pavement, and is used as an access road for vehicular traffic for plant operations. The levee side slopes are surfaced with large, angular basalt fragments with side slopes of about 2H:1V on the eastern (Multnomah Channel) side of the levee. An abandoned rail line is located at the toe of the eastern side of the levee, over about the southern 2,200 feet of the levee. A heavily wooded strip of land separates the rail line from the Multnomah Channel. On the western (lagoon) side of the levee, slopes of the levee range from about 3H:1V above elevation 20 feet to about 5.5H:1V below elevation 20 feet. The bottom of the lagoon is partially lined with a PVC liner. An existing, near-vertical basalt cliff is located on the west side of the lagoon, with elevations above the cliff ranging from about elevation 80 feet towards the northern end of the lagoon to about elevation 35 feet near the southwest end of the lagoon. An existing condition survey of the project site completed by AKS Engineering & Forestry, LLC is provided in Appendix A.

3.2 Geologic Setting

The project site is located on the western bank of the Multnomah Channel near the confluence with the Columbia River, just downstream of the entrance to Scappoose Bay. Warrior Point, the northernmost tip of Sauvie Island, is located beyond the mouth of Multnomah Channel to the east. The Cascadia Subduction Zone (CSZ) and associated Cascadia fold and fault belt are approximately 120 miles to the west. Published geologic mapping indicates the western portion of the project site is underlain by the Sentinel Bluffs member of the Grand Ronde Basalt, which is part of the Columbia River Basalt Group (Evarts, 2004). The Sentinel Bluffs member is in turn underlain by the Winter Water Basalt Group, shown in cross section to underlie the eastern portion of the project site (beyond the extent of mapped Sentinel Bluffs), which is mantled by Quaternary-age alluvium at the surface. A narrow strip of artificial fill is mapped along the eastern boundary of the WWTP lagoon (west of the alluvium), coincident with the location of the retention berm/levee. A

northwest-southeast-trending fault is shown on the geologic map (Evarts, 2004) approximately 1.5 miles northeast of the site; however, this fault is not included in the USGS Quaternary Fold and Fault Database (USGS, 2006). The closest identified Quaternaryage fault is the Portland Hills Fault, located approximately 13.5 kilometers southwest of the site (USGS, 2006). No mapped or historic landslides were identified at the project site or in the immediate vicinity on the Oregon Department of Geology and Mineral Industries (DOGAMI) statewide landslide hazard database (SLIDO). DOGAMI is the state agency responsible for geologic hazard mapping in Oregon. Landslide hazard ratings at the site range from low (landsliding unlikely) to high (landsliding likely), with areas of greater hazard generally corresponding to areas of steeper relief, such as the western portion of the project site (Burns and Watzig, 2014).

3.3 Geologic Reconnaissance

An Oregon-registered geologist from GRI conducted a walking geologic reconnaissance of the project site on September 23, 2019. GRI conducted the reconnaissance to evaluate surface conditions at the site for obvious indications of potential slope instability and other geologic hazards relative to the site. The following text summarizes observations made on site.

An impoundment levee is present along the northern portion of the site and extends approximately 0.5 miles to the southwest, then extends approximately 0.1 mile to the west along the southern end of the site. An inlet approximately 100 feet to 250 feet wide from the Multnomah Channel is located near the northeastern corner of the lagoon, within about 100 feet of the bottom of the levee. The ground surface east of the levee is relatively flat to gently undulating and is about 230 feet to 250 feet wide, with ground surface elevations ranging from about elevation 15 feet to 25 feet to the crest of the Multnomah Channel. Dense vegetation, including grasses, shrubs, and young to mature trees, covers the ground surface. An abandoned rail track runs along the base of the levee in a generally northeast-southwest direction.

A steeply sloping to near-vertical rock cliff is located along the western edge of the lagoon; the western portion of the project site is shown on the geologic map as Sentinel Bluffs basalt. Elevations along the top of the cliff range from about elevation 80 feet near the northern end of the lagoon to about elevation 35 feet near the southern end of the lagoon. The ground surface above the rock cliff is vegetated with grass and mature trees, with visible basalt outcrops. Portions of the near-vertical cliff face in the northern portion of the site exhibited evidence of past rockfall events (accumulated talus material at the base of the cliff and possible source areas visible on the cliff face). A historical topographic map reviewed by GRI identified the project site as a quarry, and past quarrying at the site may have influenced the cliff face slopes. Obvious evidence of large-scale, active, deep-seated

slope instability was not observed at the site. GRI observed areas of ponded water and hummocky topography above the cliffs, possibly a result of near-surface bedrock. A drainage channel enters the lagoon near the southwestern corner of the site, with water levels in the drainage channel apparently controlled by a weir system.

4 SUBSURFACE CONDITIONS

4.1 General

Subsurface materials and conditions at the site were investigated during two separate mobilizations. During the initial mobilization between July 29 and August 2, 2019, two mud-rotary borings, designated B-1 and B-2, and three cone penetration test (CPT) probes, designated CPT-1 through CPT-3, were completed. The borings were advanced to depths ranging from about 156.5 feet to 201.5 feet, and the CPT probes to depths ranging from about 22 feet to 158 feet. During the second mobilization between February 27, 2023, and March 2, 2023, one mud-rotary boring, designated B-3, was completed to a depth of approximately 261.5 feet. Approximate locations of the explorations performed for this investigation are provided on the Site Map, Figure 2. Logs of the borings and CPT probes are provided on Figures 1B through 7B. The field and laboratory programs conducted to evaluate the physical engineering properties of the materials encountered in the explorations are described in Appendix B. The terms and symbols used to describe the soils and rocks encountered in the explorations are defined in Tables 1B through 4B and on the attached legend. A resistivity and seismic refraction survey, completed by Earth Dynamics LLC, is provided in Appendix D. The locations of the geophysical profile lines are shown on Figure 2.

In addition, GRI reviewed available geotechnical data from MFA for their recent work on site for the Phase I Site Characterization and Shannon and Wilson's logs provided in the January 26, 1972, construction plans for the WWTP lagoon. Figure 2 shows the locations of the nearby borings, and logs of the borings are provided in Appendices E and G, respectively. Atterberg Limits testing completed by GRI on samples of soil collected during MFA's recent explorations within the lagoon is provided in Appendix F. The subsurface conditions encountered in the previous borings are in general agreement with the subsurface information obtained during our recent investigation.

GRI also reviewed the U.S. Department of Agriculture (USDA) Web Soil Survey Map covering the project area and the surrounding vicinity, which includes soil survey areas within Clark County, Washington (Version 17, September 16, 2019), Cowlitz County, Washington (Version 20, September 16, 2019), and Columbia County, Oregon (Version 16, September 10, 2019). The USDA map provided in Appendix H indicates the project site east of the lagoon and impoundment berm is mantled by *Sauvie silt loam*, while the area west of the lagoon is described as *Rock outcrop – Xerumbrepts complex, undulating surface*.

The mapped USDA soil units generally agree with GRI's observations and review of surface and subsurface conditions at the project site.

4.2 Soils

For the purpose of discussion, the materials disclosed by the investigation have been grouped into the following major units based on their physical characteristics and engineering properties:

- a. FILL
- b. SAND
- c. SILT
- d. BASALT

The following paragraphs provide a description of the soil units and a discussion of the groundwater conditions at the site.

a. FILL

Boring B-1 was drilled next to existing railroad tracks and encountered about 10 inches of crushed rock at the ground surface. Probes CPT-2 and CPT-3 were drilled through crushed-rock surfacing, and CPT-1 was drilled through an existing AC-surfaced parking lot. The thickness of fill in the CPT probes was not measured.

b. SAND

Sand was encountered at the ground surface in boring B-3 and below the crushed-rock surfacing or pavement in explorations B-1 and CPT-1 through CPT-3 and extends to depths ranging from about 13.8 feet to 25 feet. The sand is gray to brown, fine to medium grained, and contains a variable silt content ranging from trace to some silt. Wood debris was encountered within the sand in boring B-1 below a depth of about 17.5 feet. Based on SPT N-values and CPT tip-resistance values, the relative density of the sand typically ranges from loose to medium dense.

c. SILT

Silt was encountered at the ground surface in boring B-2 and beneath the sand in explorations B-1, B-3, and CPT-1 through CPT-3 and extends to depths ranging from about 21.5 feet to 261.5 feet. Borings B-1 and B-3 were terminated in the silt at a depth of about 201.5 feet and 261.5 feet, respectively. The silt is brown to gray and contains variable percentages of clay and sand, ranging from a trace of clay to clayey and a trace of fine-grained sand to sandy. The silt generally contains wood debris or organics. A 12-foot-thick layer of silty sand was encountered at a depth of about 138 feet in boring B-1; 5-foot to 7-foot-thick layers of silty sand were encountered in boring B-2 at depths of about 70 feet and 145 feet; a 5-foot-thick layer of silty sand was encountered at a depth of 165 feet in

boring B-3; a 1-inch-thick layer of sand was encountered at a depth of about 38 feet in boring B-3; 1-inch thick interbedded layers of sand were encountered between 47 feet and 48.5 feet in boring B-3; and interbedded layers of sand were encountered within the silt below depths of about 65 feet in probe CPT-3. An approximately 5-foot-thick and 2-inch-thick layer of very stiff, fine-grained ash was encountered at a depth of 75 feet and 80.5 feet, respectively, in boring B-3. Based on SPT N-values, Torvane shear-strength values, and CPT tip-resistance values, the relative consistency of the silt ranges from very soft to hard and is generally soft to medium stiff. Below a depth of 115 feet in boring B-3, the relative consistency of the silt typically ranges from very stiff to hard. Atterberg-limits testing completed on samples of silt is summarized on Figures 13B through 19B and indicates the silt has a low to high plasticity.

Consolidation tests were conducted on samples of silt and indicate the soil is normally to slightly overconsolidated and has a moderate to high compressibility in the normally consolidated range of stresses and a low compressibility in the preconsolidated range of stresses; see Figures 20B through 28B. Secondary compression testing completed on samples of silt from borings B-1 and B-3 indicates a low to moderate rate of secondary compression in both the preconsolidated and normally consolidated ranges of stresses. The results of the secondary compression tests are shown on Figures 29B and 30B.

Two multistage, triaxial shear-strength tests indicate this soil unit exhibits an effective angle of internal friction, ϕ' , of about 34°, as indicated on Figures 31B and 32B. In addition, strain-controlled cyclic direct simple shear (DSS) testing was completed on samples of silt from a depth of approximately 39 feet in boring B-1, approximately 64 feet in boring B-2, and approximately 36 feet and 61 feet in boring B-3. The samples were tested at cyclic shear strains varying from 0.5% to 1.6%, and the tabulated results are provided in Appendix B.

d. BASALT

Basalt was encountered beneath the silt in explorations B-2 and CPT-1 through CPT-3. These explorations were terminated in the basalt at depths ranging from about 22 feet to 158 feet. The basalt encountered in boring B-2 is dark gray and predominantly decomposed, with slightly weathered inclusions. The basalt is very soft to soft (R1 to R2). Geophysical testing completed near the toe of the east side of the levee indicates basalt was interpreted at about elevation -50 feet over the southern 600 feet of the lagoon. Further to the north, the depth to basalt increases significantly to elevations on the order of elevation -350 feet between borings B-1 and B-3. The depth to basalt then decreases rapidly to about elevation -100 feet about 50 feet to the north of boring B-1. Additional geophysical testing completed about 150 feet and 250 feet to the east of the railroad tracks interpreted basalt at about elevation -100 feet to elevation -150 feet over the

southern about 1300 feet of the profiles and deeper than elevation -200 feet over the northern about 900 feet of the profiles.

4.3 Groundwater

The borings were completed using mud-rotary drilling techniques, which do not allow an accurate measurement of the groundwater level during drilling. Pore-pressure dissipation testing completed in probes CPT-1 through CPT-3 indicates groundwater at depths ranging from about 1.7 feet to 10.4 feet (elevation 21.4 feet to elevation 12.1 feet) below the ground surface; see Figures 8B through 12B. Based on information provided by MFA, the 100-year flood elevation for the site ranges from about elevation 23.3 feet to elevation 24.7 feet. We anticipate groundwater closely reflects water levels in the nearby Columbia River and Multnomah Channel. However, shallow perched groundwater conditions may develop in the fill during periods of prolonged precipitation. It is our understanding that water levels within the existing, partially PVC-lined wastewater lagoon are generally maintained at about elevation 28 feet.

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 General

Based on the explorations and geophysical testing completed for this investigation and review of existing subsurface information, the eastern portion of the lagoon near the existing containment levee is underlain by a variable thickness of sand, underlain by a significant thickness of highly compressible alluvial silt. Interbedded layers of sand were encountered within the silt between depths of about 65 feet and 152 feet. The silt is underlain by basalt. The depth to basalt from the toe of the levee varies significantly across the length of the site and ranges from a depth of about 23 feet and 63 feet near the northern and southern ends of the levee, respectively, to over 350 feet deep about 500 feet south of the northern edge of the lagoon. The western edge of the lagoon consists of a near-vertical basalt cliff. The depth of basalt slopes downward from west to east across the lagoon.

Our preliminary studies indicate the existing, loose to medium-dense, unimproved sand and low-plasticity silt below the groundwater level have the potential to liquefy or strain soften during a design-level earthquake. Liquefaction and soil strain softening of these unimproved soils would result in reduced soil strength and potentially significant settlement. Without the use of ground improvement to improve the existing soil conditions, this reduction in soil strength would also result in seismic instability of the proposed embankment slope during a design-level earthquake. Our studies indicate ground-improvement methods can be used to improve the seismic stability of the proposed fills. In addition, the existing, unimproved alluvial soils are highly compressible, and the placement of new fill is estimated to result in significant total and differential

short-term (primary) and long-term (secondary) settlements. Additional settlement and slope stability of the fill soils will also be a geotechnical design consideration and will be highly dependent on placement and compaction methods for new fills in the lagoon.

The proposed excavation levels (described in the Project Description) relative to the fluctuation of groundwater and Columbia River and Multnomah Channel levels are anticipated to be a significant design and construction consideration for the project. The following sections of this report provide our preliminary conclusions and recommendations for conceptual-level design of the facility.

5.2 Seismic Considerations

5.2.1 Site-Response Analysis

5.2.1.1 General

We understand the seismic design for the project is being completed in accordance with RCRA Subtitle D (258), Seismic Design Guidance for Municipal Solid Waste Landfill Facilities. This document requires the seismic design for landfill facilities to consider an earthquake event that has a 10% probability of being exceeded in 250 years (i.e., an average return period of 2,373 years).

A site-specific site response analysis was completed for the project using nonlinear total stress analysis procedures as part of this investigation. The dynamic site-response modeling primarily consists of three primary components: 1) review of U.S. Geological Survey (USGS) Probabilistic Seismic Hazard Analysis to support selection of target response spectra at the base of the soil column; 2) selection and scaling of ground-motion acceleration time histories to match the target response spectra over the period range of interest; and 3) one-dimensional site-response modeling to evaluate the site-specific influence of subsurface conditions on the resulting ground motions. The results from the site response analysis include peak acceleration, stress, and strain profiles. The peak acceleration provides an indication of the maximum expected ground motion that could occur during a seismic event. The stress and strain profiles offer insights into how the soil would deform under various loading conditions, which is critical for designing structures that can withstand these forces.

5.2.1.2 Development of Target Spectra

The site-response analysis requires developing target spectra at the base of the soil column (hereafter referred to as "target bedrock spectra") prior to selecting and scaling the input earthquake-acceleration time histories. As previously discussed, the RCRA Subtitle D standard requires seismic evaluation to be considered for an earthquake event with 2,373 years of return period, which corresponds to the ground motion with a 10% probability of exceedance in 250 years. This ground motion is comparable to the ASCE 7

probabilistic earthquake with a 2% probability of exceedance over 50 years (equivalent to a return period of 2,475 years). Therefore, the target spectrum was derived for a 2,475-year return period based on 2014 USGS Unified Hazard Tool (UHT) for Site Class B/C boundary conditions was used for this study. Table 5-1 summarizes the site-specific uniform hazard spectral values at the project site utilized as target bedrock spectra.

Table 5-1: SITE-SPECIFIC 2,475-YEAR SPECTRAL VALUES FOR B/C BOUNDARY CONDITION

Period, sec	Spectral Acceleration, g 2,475-yr
PGA	0.41
0.1	0.87
0.2	0.90
0.3	0.75
0.5	0.55
0.75	0.43
1	0.34
2	0.19
3	0.13
4	0.09
5	0.07

5.2.1.3 Ground-Motion Selection and Scaling

For the site-response analysis, a suite of seven recorded horizontal ground-motion acceleration time histories were selected from earthquakes having magnitudes, frequency contents, and spectral shapes consistent with those that control the target spectrum. The 2014 USGS deaggregation of probabilistic ground motions at the site indicates the CSZ interface and crustal sources are the primary contributors to the potential seismicity of the site. Therefore, crustal and subduction-zone earthquake records were selected and scaled to the target spectrum for use in the site-response modeling. The selected time histories used for the site-response modeling are summarized in Table 5-2.

Table 5-2: SUMMARY OF GROUND-MOTION RECORDS SELECTED FOR SITE-RESPONSE ANALYSES

No.	Earthquake and Year	Mag. M _W	Station Name	Record ID	Record Source	Seed Record PGA, g	Sampling Frequency, Hz	Record Length, sec	Scaling Factor
1	Tohoku 2011	9.0	lwaki	FKS011EW	KNET	0.33	100	300	1.1
2	Tohoku 2011	9.0	Sawara	CHB004NS	KNET	0.29	100	300	1.4
3	Maule 2010	8.8	Santiago La Florida	SlaFloridaNS	RENADIC	0.25	200	208	2.2
4	Maule 2010	8.8	Santiago Centro	SCentroEW	RENADIC	0.22	200	205	1.9
5	Michoacan 1985	8.1	CaletaDeCampos	CaletaDeCamposNS	UNR	0.14	200	51	3.1
6	lwate 2008	6.9	IWT010	IWT010NS	PEER	0.28	100	238	1.5
7	Chuetsu- oki 2007	6.8	Joetsu Ogataku	65011EW	PEER	0.20	100	60	1.8

Following selection of the time histories, the input bedrock motions were linearly modified using amplitude scaling so that the mean response spectra of the recordings reasonably matched the target bedrock spectrum. The amplitude scaling process involves selecting a single scaling factor for each time history and multiplying the entire acceleration time history by this factor so its response spectrum approximates the input target spectra.

5.2.1.4 Modeling Method

The site-response modeling was performed using a 1D, non-linear, site-response analysis in the DEEPSOIL program (Hashash et al., 2016) developed by the University of Illinois. The program employs a time-domain site-response analysis capable of incorporating the non-linear hysteretic soil behavior that is observed during cyclic loading and unloading. The program computes the dynamic response of a layered soil profile to vertically propagating shear waves using a built-in total stress or effective stress analysis option. The program uses the pressure-dependent modified hyperbolic constitutive model initially developed by Kondner and Zelasko (1963; Modified Kondner and Zelasko [MKZ] model) and the General Quadratic/Hyperbolic (GQ/H) strength-controlled constitutive model recently introduced by Groholski et al. (2015). The GQ/H model allows the shear strength at failure to be defined while still providing the flexibility to represent small-strain soil behavior. Therefore, the GQ/H material model was used since it provides a better approximation of

modulus reduction and damping and higher levels of shear strain approaching the ultimate shear strength while still maintaining small-strain nonlinearity.

The GQ/H parameters are generally obtained by fitting the hyperbolic model to published empirical modulus reduction and damping curves such as Vucetic and Dobry (1991), EPRI (1993), and Darendeli (2001). The conventional approach for defining unloading-reloading criteria and behavior under general cyclic-loading conditions (hysteretic damping) is based on the Masing criteria (Masing, 1926) and extended Masing criteria (Pyke, 1979; and Vucetic, 1990). An exact match of the target modulus reduction and damping curves is not concurrently possible using the Masing or extended Masing rules (i.e., one must match the target modulus reduction curve as accurately as possible and accept the misfit of damping or optimize the fit of both simultaneously). Phillips and Hashash (2009) developed an alternative non-Masing model by introducing a reduction factor that effectively alters the Masing rules and allows for both modulus reduction and damping curves to be fitted simultaneously. This model is implemented in DEEPSOIL as the Modulus Reduction and Damping Factor (MRDF) Pressure-Dependent Hyperbolic model (Phillips and Hashash, 2009).

In general, DEEPSOIL allows the user to create a discretized soil profile and input a variety of soil-modeling parameters derived from subsurface and laboratory testing and established correlations in geotechnical literature. The selected suite of scaled earthquake records is then input into the program and propagated up through the soil column to the ground surface.

5.2.1.5 Input Simplified Soil Profile and Dynamic Properties

Two simplified subsurface profiles were developed at the project site for the existing site conditions based on the subsurface exploration and laboratory testing programs completed for the project, supplemented with available subsurface information for the project area. Profile 1 was developed at cross section B-B' (Figure 2) based on boring MW-4 and CPT-3, while profile 2 was developed at cross-section C-C' (Figure 2) based on boring MW-3 and CPT-2. The shear wave velocity measurements were conducted for CPT-2 probe, and the shear wave velocity for the CPT-3 probe was derived based on correlation with tip resistances measured during testing. The elastic half-space boundary condition at the base of the model was assumed for profiles 1 and 2 at depths of about 160 feet and 60 feet, respectively. The half-space boundary condition at the base of the model was represented by a visco-elastic boundary with a unit weight of 130 pounds per cubic foot (pcf) and a shear-wave velocity of 2,500 feet/second.

The dynamic properties of each soil layer were estimated using published relationships on similar materials and local experience. The total stress analyses were completed using

modified EPRI (1993) and Vucetic and Dobry (1991) modulus and damping curves. The sand layers encountered throughout the soil profile were assigned the depth-dependent EPRI (1993) deep cohesionless soil modulus and damping curves that account for the effects of confining pressure. The silty and clayey layers were assigned the plasticity index-dependent Vucetic and Dobry (1991) modulus and damping curves.

5.2.1.6 Results of the Site Response Analysis

The site-response analyses for the two profiles were completed using a suite of scaled ground-motion records listed in the preceding tables and the generalized soil profiles developed for the site. The results of the analyses are presented on Results of the Dynamic Response Analysis for V_s Profile 1, Figure 3 and Results of the Dynamic Response Analysis for V_s Profile 2, Figure 4. The figures show the profiles of the maximum acceleration, maximum normalized shear stress, and maximum shear strain with depth for individual earthquake motions (shown in gray) and their mean values (shown in black). The maximum acceleration and normalized shear stress profiles are mostly observed to vary with depth between 0.2 and 0.4. The maximum shear strain values are generally observed to be less than 1.2%.

5.2.2 Liquefaction, Cyclic Softening and Liquefaction-induced Settlements

Liquefaction is a process through which saturated non-plastic to low-plasticity silts and granular materials, such as sand, temporarily lose strength during and immediately after a seismic event. Liquefaction occurs as seismic shear stresses propagate through saturated soil and distort the soil structure, causing loosely packed groups of particles to contract or collapse. If drainage is impeded and cannot occur quickly, the collapsing soil structure increases the porewater pressure between the soil grains. If the porewater pressure increases to a level approaching the weight of the overlying soil, the soil temporarily behaves as a viscous liquid rather than a solid.

Cyclic softening is a term that describes a relatively gradual and progressive increase in shear strain with load cycles. Excess pore pressures may increase due to cyclic loading but will generally not approach the total overburden stress. Shear strains accumulate with additional loading cycles, but an abrupt or sudden decrease in shear stiffness is not typically expected. Settlement due to post-seismic consolidation can occur, particularly in lower-plasticity silts. Large shear strains can develop, and strength loss related to soil sensitivity may be a concern.

The potential for liquefaction and/or cyclic softening is typically evaluated by comparing the cyclic shear stresses induced within a soil profile during an earthquake to the ability of the soils to resist these stresses. In this procedure, earthquake-induced shear stress is characterized by the cyclic stress ratio (CSR), and soil resistance is characterized by the cyclic resistance ratio (CRR). The CSR can be estimated based on empirical correlations or

the results of site-response modeling. The CRR of soils is dependent on several factors, including the number of loading cycles, relative density, confining stress, plasticity, natural water content, stress history, age, depositional environment (fabric), and composition. The CRR of soils is evaluated using in situ testing in conjunction with laboratory index testing, which may also include monotonic and cyclic laboratory strength tests. The CRR for sandy soils is typically estimated based on soil shear strength as characterized by SPT N-values or CPT probe tip resistances, with various corrections to account for fines contents and other factors. For clay-like soils, the cyclic resistance is typically evaluated using estimates of the undrained shear strength, overconsolidation ratio (OCR), and sensitivity, or directly from cyclic laboratory tests.

The factor of safety against liquefaction and/or cyclic softening is calculated as the ratio of the CRR to CSR on a layer-by-layer basis within the soil profile. As the factor of safety decreases to 1.0, there is an increased risk of liquefaction or soil-strength loss. For the purpose of these evaluations, we assumed a groundwater elevation of about 9 feet, which corresponds to a depth of about 25 feet at borings MW-3 and MW-4 locations. For this project, the CSR profiles were developed based on the results of the site-response analyses performed using the DEEPSOIL program. The DEEPSOIL analyses normally yield the maximum computed shear stress normalized by the initial vertical effective stress (τ_{max}/σ'_{v}). The DEEPSOIL normalized shear stress was multiplied by 0.65 to convert to an equivalent uniform value (i.e., representative value) of CSR.

Our liquefaction analyses indicate the sandy soils below the groundwater surface are generally susceptible to liquefaction. The maximum depth of liquefaction and risks to a project can be a topic of debate since the case histories used to develop the simplified procedure are limited to a depth of about 60 feet. The risks of liquefaction and the resulting consequences at these greater depths are not well understood. For the purposes of this study, we have assumed that the potential for additional vertical settlements due to liquefaction of the silty sand underlying the alluvium below 90 feet is unlikely.

In addition, as part of our seismic studies, GRI conducted static and cyclic DSS testing to evaluate the static and seismic behaviors of the silt soils that underlie the project site. The cyclic DSS tests were conducted in our laboratory to evaluate the cyclic resistance, degradation potential, and post-cyclic behavior of the silt. The laboratory testing program focused on a series of static and cyclic DSS tests with supporting standard indexes and consolidation tests. Based on the laboratory test results, the silt encountered at depths of about 35 feet and 60.5 feet in boring B-3, and our interpretation of the OCR profile for the silt at 39 feet in boring B-1 and 64 feet in boring B-2, is slightly overconsolidated with an estimated OCR of 1.5. Strain-controlled cyclic DSS testing at shear strains ranging from 0.5% to 1.6% was completed on samples of the silt. The cyclic DSS testing identified a

potential reduction in shear strength (softening) of the silt soils below the groundwater level during a design-level seismic event at shear strains that we anticipate could occur during a design-level seismic event (less than 1.6% strain). The post-cyclic shear strengths used in our analysis were based on 3% strain to reduce deformation. The testing completed to date indicates the measured reduction in shear strength is significantly less than would be anticipated for low-plasticity silts based on conventional methods for predicting strength loss where the silts would be considered sand like. However, we recommend additional cyclic DSS testing be completed as the project progresses. The results of the cyclic DSS testing are provided in Appendix B.

The potential of liquefaction-induced settlement of sand-like soils was estimated using an empirical approach method described by Yoshimine et al. (2006), which is based on case histories of areas that have experienced liquefaction. Using this procedure, we estimate up to 10 inches of free-field liquefaction settlement at the site. This seismically induced settlement excludes additional vertical settlements that may occur due to the lateral spreading hazard or cyclic softening of the fine-grained soils that should be further evaluated as part of the Phase II geotechnical investigation.

5.2.3 Newmark Slope Deformation Analyses

The Newmark rigid-block analysis (Newmark, 1965) provides an estimation of the anticipated horizontal slope movements based on a double integration of the duration that the acceleration time history of the slide mass exceeds a specific yield acceleration (ky). In general, this decoupled analysis involves: (1) a dynamic response analysis to compute the "average" accelerations experienced by the slide mass, followed by (2) a displacement analysis using the Newmark (1965) double-integration procedure with the average acceleration time history as the input motion. The average acceleration computed in the first step is commonly referred to as the horizontal equivalent acceleration (HEA) time history and represents a spatial average of the accelerations acting on the slide mass (i.e., horizontal shear-stress time history normalized by the total vertical overburden stress).

The potential seismic displacement was developed for cross-sections B-B' and C-C' (Figure 2). The critical pseudo-static surfaces for each cross-sections B-B' and C-C' were initially determined based on conventional limit equilibrium analysis. Subsequently, HEA time histories were computed along the critical failure surface using site-response analysis, and the HEA time history was directly input into a Newmark seismic-displacement analysis to calculate the permanent seismic displacement as a function of the seismic yield acceleration. Permanent Seismic Displacement Curves, Figure 5 shows the resulting displacement curves versus yield acceleration (Ky) for cross-sections B-B' and C-C'. As described in Section 5.4.2, an allowable slope deformation of 24 inches was assumed for

this initial phase I geotechnical analysis. As shown on the figure, the yield acceleration corresponding to the 24-inch allowable deformation is approximately 0.07g.

5.3 Embankment Stability Under Seismic Loading

5.3.1 General

GRI evaluated embankment stability under seismic loading conditions for three cross sections, identified as cross sections A-A', B-B', and C-C' on Figure 2. As an initial check of post-earthquake stability, the models were run with a pseudo-static acceleration, k_{h_t} , of zero. The models were run assuming a drained soil strength parameter, ϕ' of 28° for the dredged fill placed within the lagoon. In addition, the models assumed a liquified soil strength, $S_u/\sigma_{v'}=0.1$ for the submerged sand soils below the groundwater surface base on the simplified procedure by Idriss and Boulanger (2008) and undrained soil strengths, $S_u/\sigma_{v'}$ varying between 0.17 and 0.20 for the submerged silt. The $S_u/\sigma_{v'}$ of 0.17 is based on the average post-cyclic DSS testing completed for the project, and the $S_u/\sigma_{v'}$ of 0.20 is based on a 20% reduction in the full undrained shear strength to account for cyclic softening assuming the silts exhibit a *clay-like* behavior (Idriss and Boulanger 2008) based on 3% strain to limit deformations. Factors of safety of less than 1.0 were obtained, indicating a high risk of flow failure and that methods to improve the shear strength of the soil, such as ground improvement, will be required to improve the seismic slope stability.

5.3.2 Seismic Slope Stability Modeling with Ground Improvement

Ground improvement will be required on the channel side of the existing east side levee to improve seismic slope stability and reduce the risk of large slope movements or flow failures. For our Phase I geotechnical investigation, it is our understanding that about 24 inches of seismic slope movement is acceptable for the embankments. This allowable slope movement will need to be further analyzed during our Phase II geotechnical investigation. As discussed in the Newmark Slope Deformation section, a Newmark Analysis was completed to evaluate a yield acceleration (ky) equivalent to 24 inches of slope movement. Our analysis indicates a mean yield acceleration of 0.07 g, which corresponds to approximately 24 inches of seismically induced lateral deformation in the embankment.

Due to the high fines content of the soils in the depths of interest, deep cement-soil-mixed columns (DSM) were considered for preliminary ground improvement design. The composite shear strength of the ground improvement buttress can be estimated by combining the shear strengths of the treated and untreated soils. The treated soil strength can be estimated as the product of the ground-improvement area replacement ratio and the 365-day shear strength of the ground-improvement columns. The untreated soils

(between the ground improvement grids) were assigned a conservative shear strength of 500 pounds per square foot (psf).

For our preliminary seismic analysis, we assumed a 28-day compressive strength of the DSM columns of 200 pounds per square inch (psi) and an area replacement ratio of about 35%. In accordance with the guidelines established by the Federal Highway Administration (FHWA) design manual (Bruce et al., 2013), we estimate a composite shear strength of the DSM improved block of at least 5,725 psf.

GRI re-evaluated embankment stability under seismic loading conditions for the three cross sections, identified as cross sections A-A', B-B', and C-C' on Figure 2 previously discussed above. The models were run assuming a drained soil strength parameter, of of 28° for the dredged fill, a liquified soil strength, $S_u/\sigma_v = 0.1$ for the submerged sand soils below the groundwater surface, and a composite shear strength of 5,725 psf for the DSM improved block. Each model was run assuming two soil conditions for the submerged silt. The two conditions analyzed included 1) an undrained soil shear strength, $S_u/\sigma_v = 0.20$ for the saturated silts below the groundwater level based on a 20% reduction from the full undrained soil shear strength and 2) an average cyclic-softened undrained soil strength, $S_{\rm u}/\sigma_{\rm v'}=0.17$ for the silts encountered below the groundwater level based on cyclic DSS testing at shear strains between 0.5% and 1.6%. The intention of the two conditions analyzed was to develop a profile based on the average results of the cyclic DSS testing as well as a potential "best case" profile if the majority of the silt encountered at the site is shown to have higher plasticity and therefore a reduced risk of cyclic softening based on additional testing as part of the Phase II geotechnical investigation. We anticipate modeling completed as part of the Phase II geotechnical investigation could also include several undrained soil strength, S_u/σ_v values within each model if more refined soil profiles are developed following completion of additional subsurface explorations and laboratory testing.

The soil parameters used in the global slope-stability modeling are presented with the seismic stability models provided on Slope Stability Model, Figures 6 through 11. For the models, a factor of safety against instability for seismic loading conditions was computed for potential failure surfaces that could extend beyond the toe of the existing levee along the east side of the lagoon. The computed factor of safety against instability is defined as the ratio of the forces (or moments) tending to resist failure to the forces (or moments) tending to cause failure. A ground improvement buttress located on the channel side of the east levee was modeled and then widened towards the channel and deepened until a minimum factor of safety of 1.0 was obtained for failures occurring upslope of the existing toe of the levee on the east side of the lagoon. As previously discussed, this approach assumes deformations through the lagoon of up to 24 inches are acceptable during the

design-level seismic event. It should be noted that greater movements will occur on the channel side of the levee.

The ground improvement block dimensions required to limit slope movement of the proposed embankment to about 24 inches in the models are provided on Figures 6 through 11 and are summarized in Table 5-3, below.

Table 5-3: MODELED DSM COLUMNS IMPROVEMENT BLOCK DIMENSIONS

Cross Section	Average Silt Shear Strength, $S_u/s_{v'}$	DSM Block Width, ft	DSM Block Depth, ft
A-A'	0.20	155	280
A-A'	0.17	255 ^(a)	295
B-B'	0.20	65	165
B-B'	0.17	100	165
C-C'	0.20	15	55
C-C'	0.17	25	65

Note:

a. Ground Improvement extends at least 5 feet below the existing levee along the east side of lagoon.

It should be noted that the softened silt profile at cross section A-A' required installation of ground improvements beneath the existing levee. DSM columns are typically installed on level ground, and this configuration would likely require the removal of a portion of the existing levee to allow installation of ground improvements.

The modeling approach used for this phase of work does not inherently address overturning. For this reason, we recommend assuming the block width is at least one-half of the block height. Initial models were also completed with no restrictions on the potential slope failure depths. As part of the Phase II geotechnical investigation, we recommend completing more robust modeling, such as finite difference or finite element numerical modeling, to better model the ground improvement in a deep, relatively soft soil profile. Based on past experience, we anticipate that this additional modeling could result in a significant reduction in ground improvement. It should also be noted that ground improvement depths greater than about 150 feet will limit ground improvement types and costs will increase significantly. Table 5-4 presents assumed ground improvement widths and depths for this phase of the project. These dimensions should be re-evaluated as part of the Phase II geotechnical investigation.

Table 5-4: CONCEPT-LEVEL DSM COLUMNS IMPROVEMENT BLOCK DIMENSIONS

Cross Section	DSM Block Width, ft	DSM Block Depth, ft
A-A'	150	150
B-B'	100	150
C-C'	35	65

As part of the Phase II geotechnical investigation, additional explorations, including borings and CPT probes, should be completed within the lagoon and east and south of the existing lagoon berm to evaluate the depth to basalt, soil properties, and layering of soils above the basalt. The work should include additional cyclic DSS testing to further evaluate potential softening of the submerged silt. In addition, Atterberg Limits testing completed on samples obtained from MFA's borings completed within the lagoon indicates the soils beneath the lagoon may have higher plasticity than the soils encountered on the channel side of the berm and should be further evaluated as part of the Phase II geotechnical investigation. Additional discussion regarding the proposed Phase II investigation is provided in Section 5.9.

5.4 Embankment Stability Under Static Loading

It is anticipated that the dredged spoils used to fill the lagoon will be saturated and highly variable. Depending on pretreatment prior to placement, compacting these dredged soils as structural fill will likely be impractical. As previously discussed, our seismic slope stability models were completed assuming a long-term drained soil strength parameter, ϕ' of 28° for the dredged fill assuming the subsurface drainage program planned for this project will be drained to reduce the risk of excess pore pressure generation and reduction of strength during a design-level earthquake. A geotube cutoff berm is proposed between the Phase 1 and Phase 2 site filling. The proposed location and dimensions of the cutoff berm are discussed in the Project Description section of this report. The engineering properties of the geotubes will require further evaluation prior to slope stability evaluation. As part of the Phase II geotechnical investigation, the process for fill placement, excess water removal, compaction, geotube properties, and geotube performance requirements will need to be further evaluated prior to completion of static slope stability modeling of the geotube berm and existing levee during and after site filling.

5.5 Settlements

The proposed construction sequence assumes up to 56 feet of fill will be required to achieve a final site grade of about elevation 66 feet. The majority of new fill will consist of sediment, soil, and the City's wastewater treatment sludge. As part of the Phase II geotechnical investigation, the processes for fill placement, compaction, and settlement monitoring will need to be further evaluated. As described previously, it is anticipated that

the dredged spoils used to fill the lagoon will be saturated and highly variable, and that initially compacting these dredged soils as structural fill will likely be impractical. For this Phase I geotechnical investigation, we have assumed the fill will be placed with limited compactive effort and will have an average unit weight of 100 pcf following placement.

Settle3D software by Rocscience, Inc., was utilized to model the proposed fill heights. The models were constructed for three separate loading conditions. The three conditions analyzed included 1) areal settlements following Phase 1 filling to elevation 35 feet for the southern 19 acres of the lagoon; 2) areal settlements following Phase 2 filling to elevation 66 feet with maximum sideslopes of 10H:1V, 12H:1V, 12H:1V and 3H:1V on the east, south, west, and north sides of the fill, respectively; and 3) following final grading to level the fill area at about the maximum fill levels placed as part of the Phase 2 filling but with sideslopes of 5H:1V or flatter along the east side of the filled area.

The models estimate up to about 1.5 feet, 7.5 feet, and 9 feet of total settlement following Phase 1 filling, Phase 2 filling, and final site grading, respectively. Based on the limited number of explorations that extend below a depth of about 120 feet, zones of sandier and/or stiffer silt soils may be present below this depth. If these sandier or stiffer soils are consistently located below 120 feet across the deeper portions of the site, our models indicate the settlement estimates provided above would be reduced by about 2 feet for the Phase 2 filling and final site grading, respectively.

As previously mentioned, the depth to basalt increases from west to east across the lagoon. For the northern portion of the lagoon, basalt was encountered at elevations ranging from about elevation 3.5 feet to elevation 11 feet for the western approximately two-thirds of the lagoon. East of the east levee, towards the north end of the lagoon, geophysical testing indicates basalt may be encountered at elevations on the order of elevation -350 feet. This significant elevation change was observed over a horizontal distance of about 500 feet. Explorations completed between these areas were drilled to elevations of about -104 feet to -109.5 feet and did not encounter basalt. For preliminary design, we recommend assuming the basalt depth may drop nearly vertical within the northeast portion of the existing lagoon. Since negligible settlements are estimated in portions of the lagoon where fill is placed directly on basalt, we estimate differential settlements may approach the total settlement estimates discussed above for all three models.

For the Phase II geotechnical investigation, additional borings and CPTs should be completed in the eastern portion of the lagoon, with particular emphasis on the northeastern portion of the lagoon to evaluate the depth to basalt and identify potential sandier layers that would allow additional drainage paths to increase the time rate of

consolidation of the soils. Time rates of settlement estimates and a settlement monitoring program will be evaluated as part of the Phase II geotechnical investigation following completion of additional explorations within the lagoon.

A Geosynthetic Clay Liner (GCL) and a 60-mil HDPE, or linear low-density polyethylene geomembrane liner, are planned along the bottom of the lagoon at about elevation 10 feet. In addition, a geotube cutoff berm is proposed in an east-west direction across the bottom of the lagoon, separating the northern and southern portions of the lagoon. The total settlements and differential settlements discussed above are applicable to these planned improvements. As part of the Phase II geotechnical investigation, differential and total settlement tolerances for these improvements will require further evaluation. However, we anticipate these settlement estimates will be excessive for these improvements, and additional measures such as a surcharge program or ground improvement within the lagoon could be required to reduce these settlements. A surcharge program and ground improvement design will be evaluated as part of the Phase II geotechnical investigation to reduce these differential settlements.

5.6 Groundwater Management

A Geosynthetic Clay Liner (GCL) and a 60-mil HDPE, or linear low-density polyethylene geomembrane liner, are planned along the bottom of the lagoon at about elevation 10 feet. The ordinary high water (OHW) for the project site was not available at the time of this report. Based on information provided by MFA, the 100-year flood elevation for the site ranges from about elevation 23.3 feet to elevation 24.7 feet. We anticipate groundwater closely reflects water levels in the nearby Columbia River and Multnomah Channel. We anticipate filling the lagoon with sediment above the 100-year flood elevation will take several years to complete. Based on the depth of excavation, the installation of an HDPE liner, and water levels in the nearby Multnomah channel, we anticipate significant risks of floating the HDPE liner when river levels exceed fill levels within the lagoon. Considerations for potentially flooding the lagoon to maintain equivalent groundwater levels on both sides of the lagoon or raising the bottom elevation of the HDPE liner may be required to reduce the risk of floating the liner and should be further analyzed during the Phase II geotechnical investigation. In addition, groundwater levels during geotube construction and dewatering of the soils within the tube will need to be kept below the level of the tubes to allow geotube dewatering.

5.7 Foundation Support

As previously discussed, the site is underlain by a significant thickness of compressible silt soils. In addition, up to 56 feet of potentially uncontrolled fill is planned to be placed on the site. Our experience indicates foundations supported on uncontrolled fill can experience excessive total and differential settlement that can lead to structural distress to

the buildings. Additional geotechnical explorations should be completed to assist in evaluating settlement implications for new buildings that may be part of a future site condition. For preliminary design, we anticipate new buildings will be supported on a deep-foundation system such as steel-pipe piles driven to the basalt or ground improvement consisting of deep soil mixing.

5.8 Workplan for Phase II Geotechnical Investigation

5.8.1 General

We recommend completion of an additional geotechnical field exploration program and engineering analyses to support advancement of the Phase II geotechnical investigation and to inform the appropriate level of seismic mitigation needed for design of the wastewater lagoon repurposing facility. Supplemental subsurface explorations consisting of CPTs and borings are recommended to further characterize the soil properties and subsurface profile. Specifically, we recommend CPT explorations be completed to further delineate the thickness and engineering properties of the silt soils and depth to basalt. In addition to CPT explorations, borings should be completed to obtain relatively undisturbed samples of silt for additional laboratory analysis. A limited suite of cyclic testing of the silty soils was completed for this phase of work. Additional cyclic testing will be an important consideration in estimating the seismic performance of the site. For our Phase II Geotechnical Investigation, we recommend the following field exploration and laboratory testing programs.

5.8.2 Recommended Phase II Subsurface Explorations

We recommend subsurface materials and conditions for the Phase II geotechnical site investigation be evaluated with eight mud-rotary borings and 11 CPT probes. We recommend three of the borings and five of the CPT probes be completed in the eastern portion of the lagoon to evaluate the depth to basalt and engineering properties of the soils above the basalt. These explorations will require the use of a barge for completion. We recommend three of the borings and three of the CPT probes be completed near the toe of the eastern side of the levee and one boring be completed on the south side of the levee on the south side of the lagoon. Finally, we recommend the completion of three CPT probes and one boring about halfway between the existing railroad tracks and Multnomah Channel. Shear-wave velocity testing should be completed in one of the CPT probes where basalt is anticipated to be encountered at significant depth. The borings and CPT probes should extend to the top of basalt. In the mud-rotary borings, samples should be collected using a standard split-spoon sampler and/or undisturbed Shelby tube sampler at 5-foot intervals of depth up to 100 feet and 10-foot intervals of depth below 100 feet. The borings and CPT probes should be well spaced to provide information on the depth to basalt and subsurface conditions above the basalt.

5.8.3 Recommended Phase II Laboratory Testing

Laboratory tests will be conducted to provide data on the important physical characteristics of the subsoils, which are essential for engineering studies and analyses. The laboratory tests will include standard classification tests, such as natural water content and unit weight determinations, as well as strength and consolidation testing. The latter will provide the qualitative data necessary for the various foundation design studies, such as foundation types and estimated settlements. In addition, we recommend cyclic direct simple shear tests be performed on six additional soil samples to further evaluate static and seismic shear strengths.

5.8.4 Additional Phase II Field Investigation Activities

The bathymetry of the small channel near the northeastern edge of the lagoon should be gathered to facilitate slope stability modeling.

6 LIMITATIONS

This report presents the results of a preliminary Phase I geotechnical investigation of the proposed St. Helens Wastewater Lagoon Repurposing. The information presented herein is preliminary and provides our general conclusions regarding the feasibility of the project with respect to the observed site conditions. This information is intended for planning and preliminary estimation purposes. A more detailed geotechnical investigation, including subsurface explorations, laboratory testing, and engineering analyses, should be completed as part of the Phase II geotechnical investigation in order to further evaluate the appropriate level of seismic mitigation needed to accommodate the lagoon repurposing design.

We have included the Geoprofessional Business Association (GBA) guidance document "Important Information about This Geotechnical-Engineering Report/Geoenvironmental Report" to assist you and others in understanding the use and limitations of this report, included as Appendix I. We recommend you read this document.

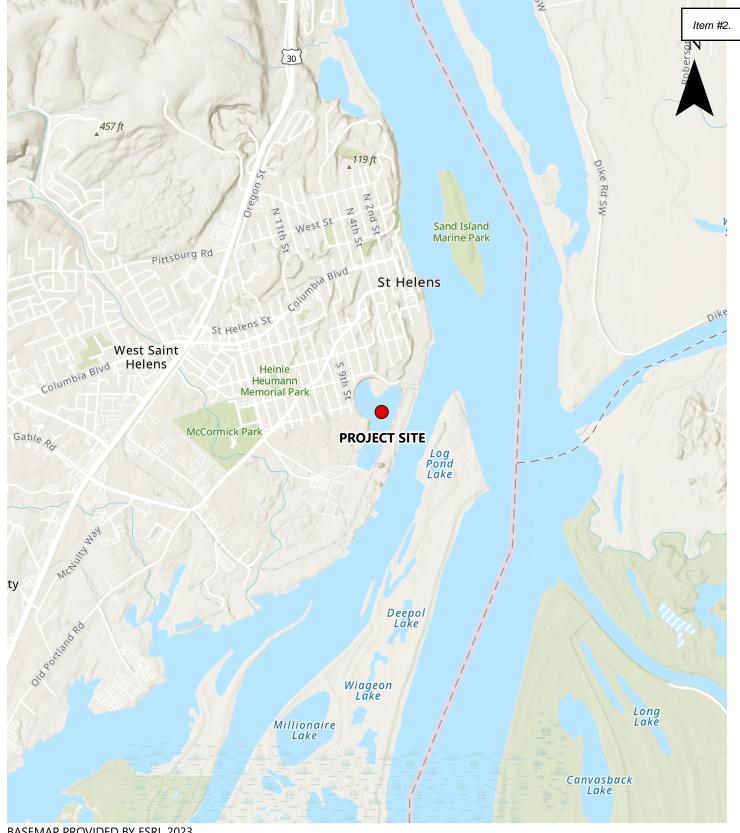
Please contact the undersigned if you have any questions about our preliminary design recommendations.

Submitted for GRI,

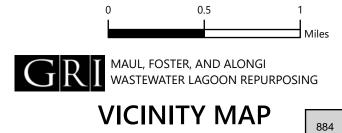
CERTIFIED
OREGON
GEORGE A FREITAG
Renews 02/2024
Renews 02/2024
Renews 12/2023
Renews 12/2023

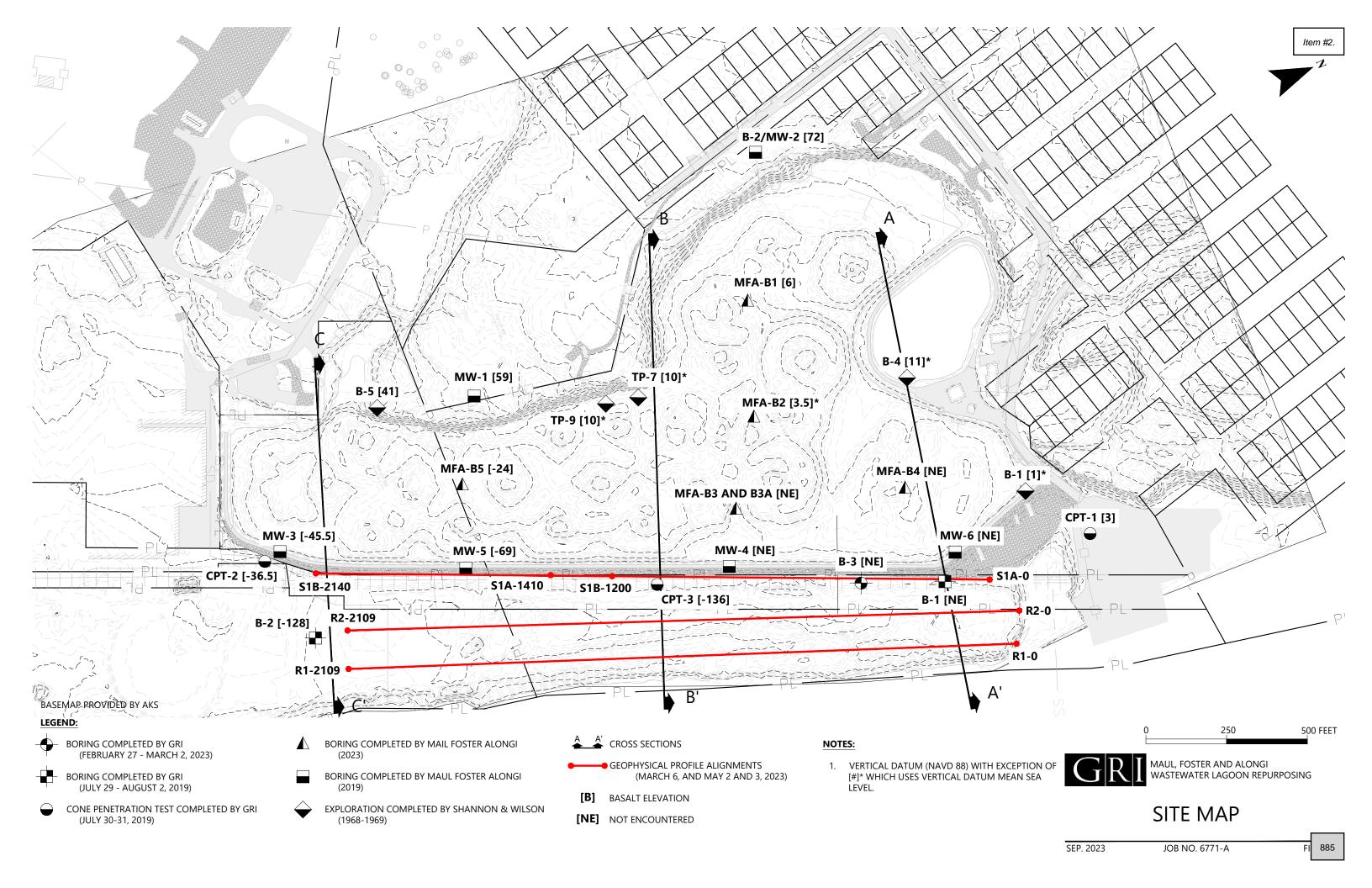
Scott M. Schlechter, PE, GE Principal George A. Freitag, CEG Principal Brian J. Bayne, PE Associate

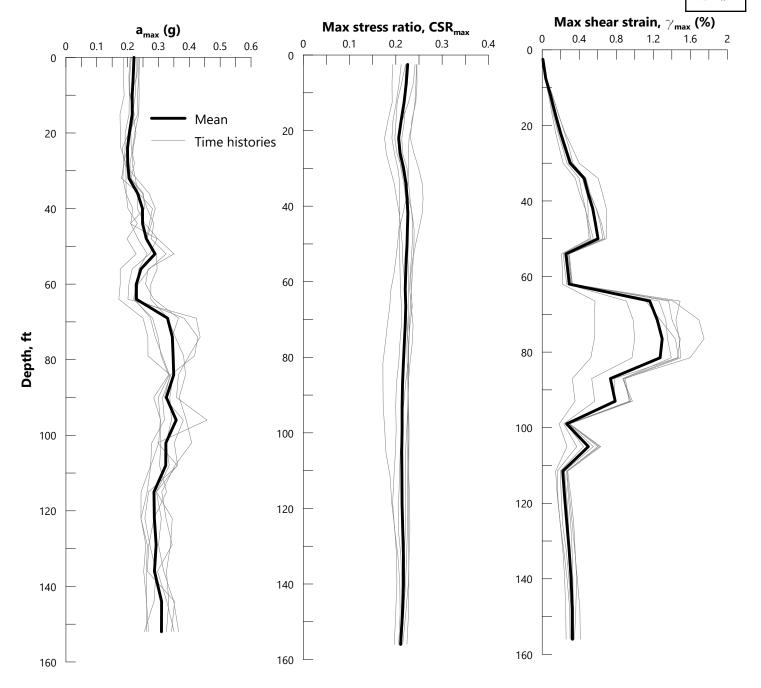
This document has been submitted electronically.

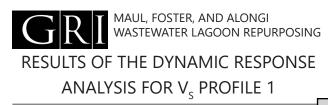


7 REFERENCES

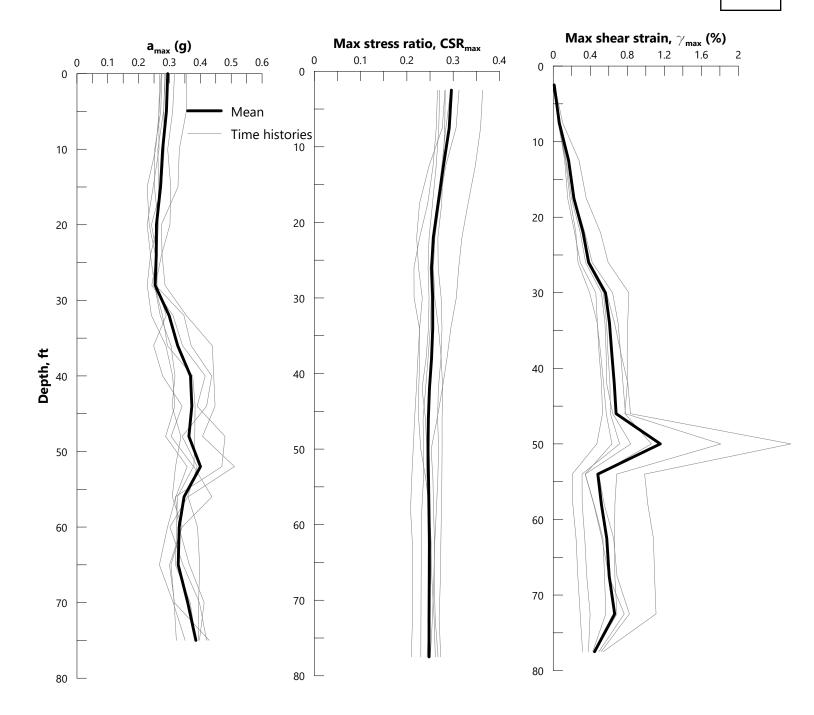

- Burns, W. J., and Watzig, R. J., 2014, Statewide landslide information database for Oregon, release 3.4 (SLIDO-3.4): Oregon Department of Geology and Mineral Industries.
- Bruce, M.C., Berg, R.R., Collin, J. G., Filz, G. M., Terashi, M., and Yang, D.S, October 2013, Federal Highway Administration Design Manual: Deep Mixing for Embankment and Foundation Support, Federal Highway Administration, FHWA-HRT-13-046.
- Darendeli, M., 2001, Development of a New Family of Normalized Modulus Reduction and Material Damping Curves, University of Texas at Austin, PhD dissertation.
- Electric Power Research Institute (EPRI), 1993, Guidelines for site-specific ground motions, Palo Alto, California, TR-102293.
- Evarts, R. C., 2004, Geologic Map of the St Helens Quadrangle, Columbia County, Oregon and Cowlitz and Clark Counties, Washington. USGS Scientific Investigations Map 2834, scale: 1:24,000.
- Groholski, D. R., Hashash, Y. M. A., Musgrove, M., Harmon, J., and Kim, B., 2015, Evaluation of 1-D non-linear site response analysis using a general quadratic/hyperbolic strength-controlled constitutive model, 6ICEGE: 6th International Conf. on Earthquake Geotechnical Engineering, Christchurch, New Zealand.
- Hashash, Y. M. A., Musgrove, M.I., Harmon, J.A., Groholski, D.R., Phillips, C.A., and Park, D., 2016, DEEPSOIL 6.1, User Manual, p. 125.
- Idriss, I.M., and Boulanger, R.W., 2008, Soil liquefaction during earthquakes: Earthquake Engineering Research Institute (EERI), MNO-12 p. 226
- Kondner, R. L., and Zelasko, J. S., 1963, Hyperbolic stress-strain formulation of sands, Second pan American Conference on Soil Mechanics and Foundation Engineering, Sao Paulo, Brazil, pp. 289-324.
- Masing, G., 1926, Eigenspannungen and verfertigung beim messing, Proc., 2nd Int. Congress on Applied Mech., Zurich, Switzerland.
- Newmark, N.M., 1965, Effects of earthquakes on dams and embankments, in Geotechnique 15, 139-159.
- Phillips, C., and Hashash, Y. M. A., 2009, Damping formulation for non-linear 1D site response analyses: Soil Dynamics and Earthquake Engineering 29(7), pp. 1,143-1,158.

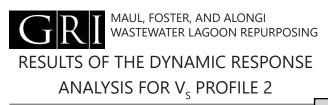

- Pyke, R., 1979, Nonlinear soil model for irregular cyclic loadings: J. Geotech. Eng. Div. 105, pp. 715-726.
- U.S. Geological Survey, 2006, Quaternary fault and fold database for the United States, accessed 9/30/2019, from USGS web site: http://earthquake.usgs.gov/hazards/qfaults/.
- Vucetic, M., 1990, Normalized behavior of clay under irregular cyclic loading: Canadian Geotech. J. 27, pp. 29-46.
- Vucetic, M., and Dobry, R., 1991, Effect of soil plasticity on cyclic response: Journal of Geotechnical Engineering, ASCE, vol. 117, no. 1, pp. 89-107.
- Yoshimine, M., Nishizaki, H., Amano, K., and Hosono, Y., 2006, Flow deformation of liquefied sand under constant shear load and its application to analysis of flow slide of infinite slope: Soil Dynamics and Earthquake Engineering, v. 26, no. 2-4, pp. 253-264.



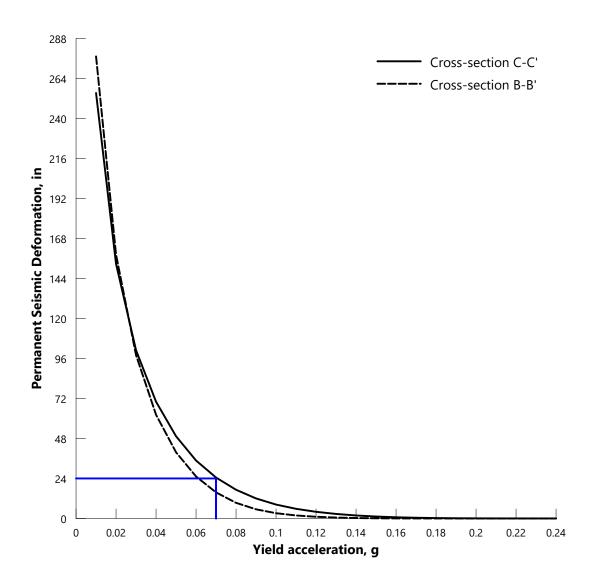

BASEMAP PROVIDED BY ESRI, 2023

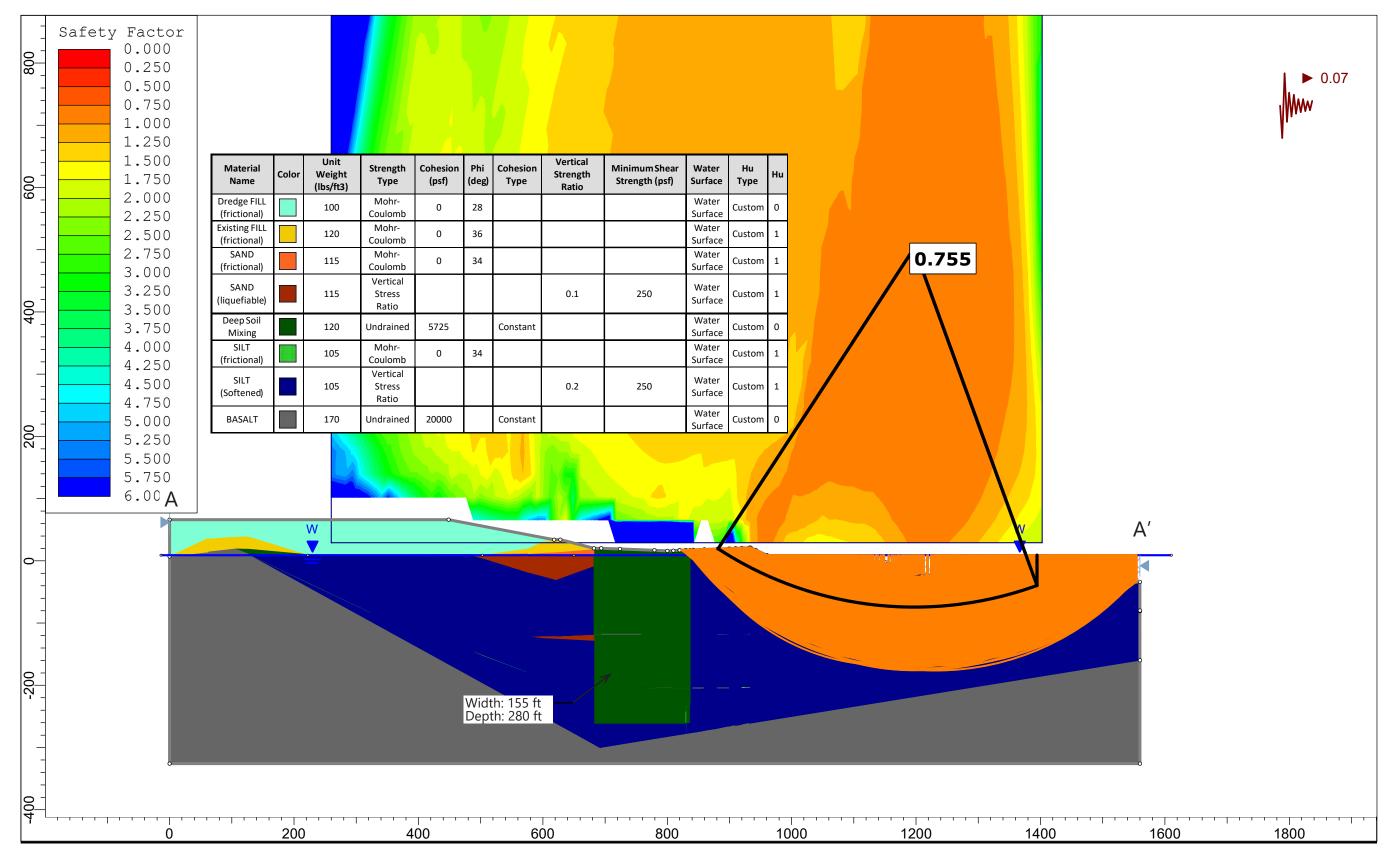
SEP. 2023 JOB NO. 6771-A FIG. 1

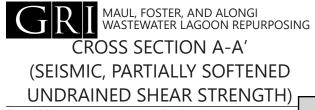




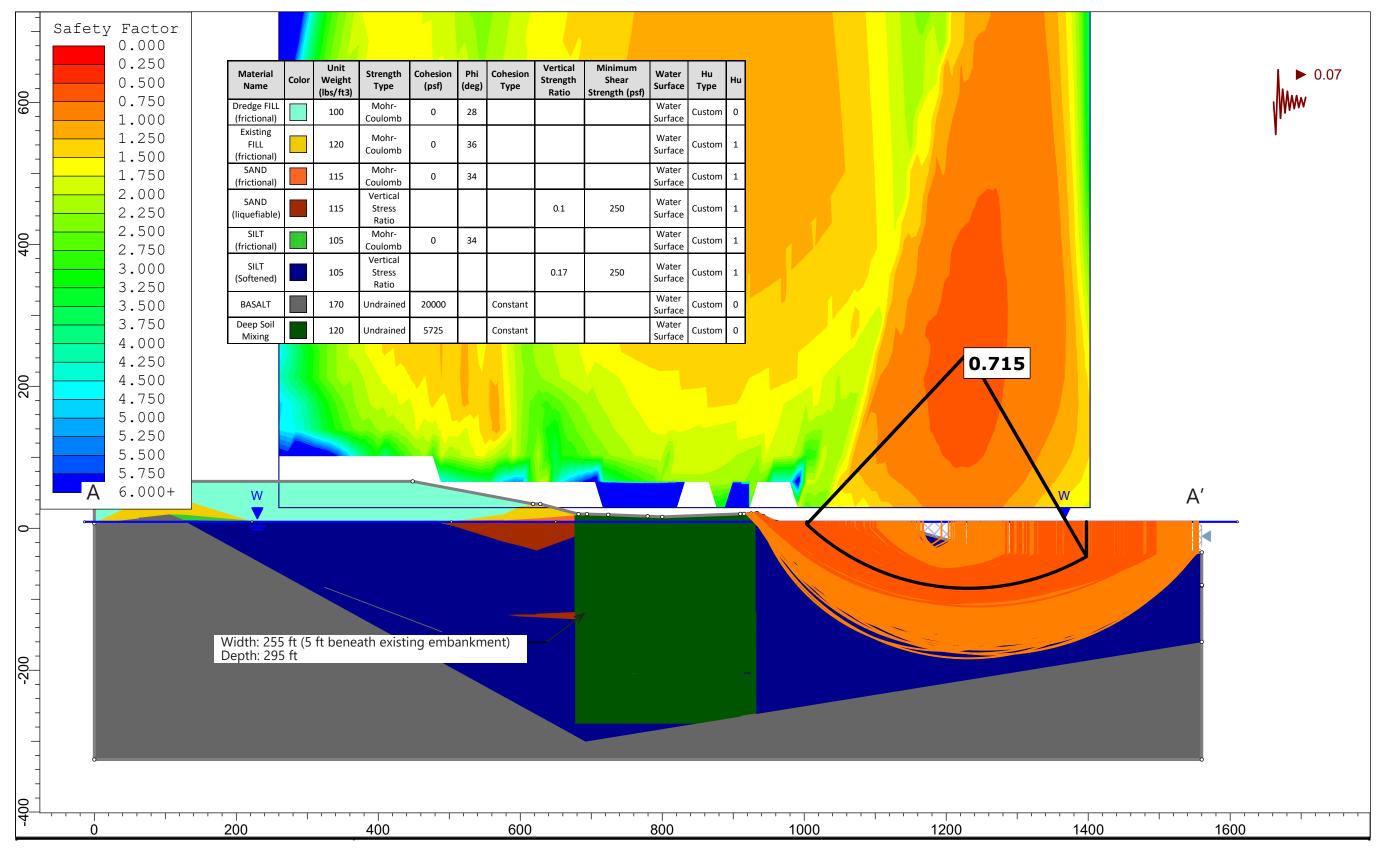
SEP. 2023 JOB NO. 6771-A

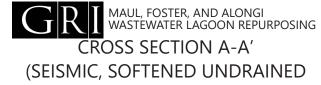

FIG.


SEP. 2023 JOB NO. 6771-A


FIG.

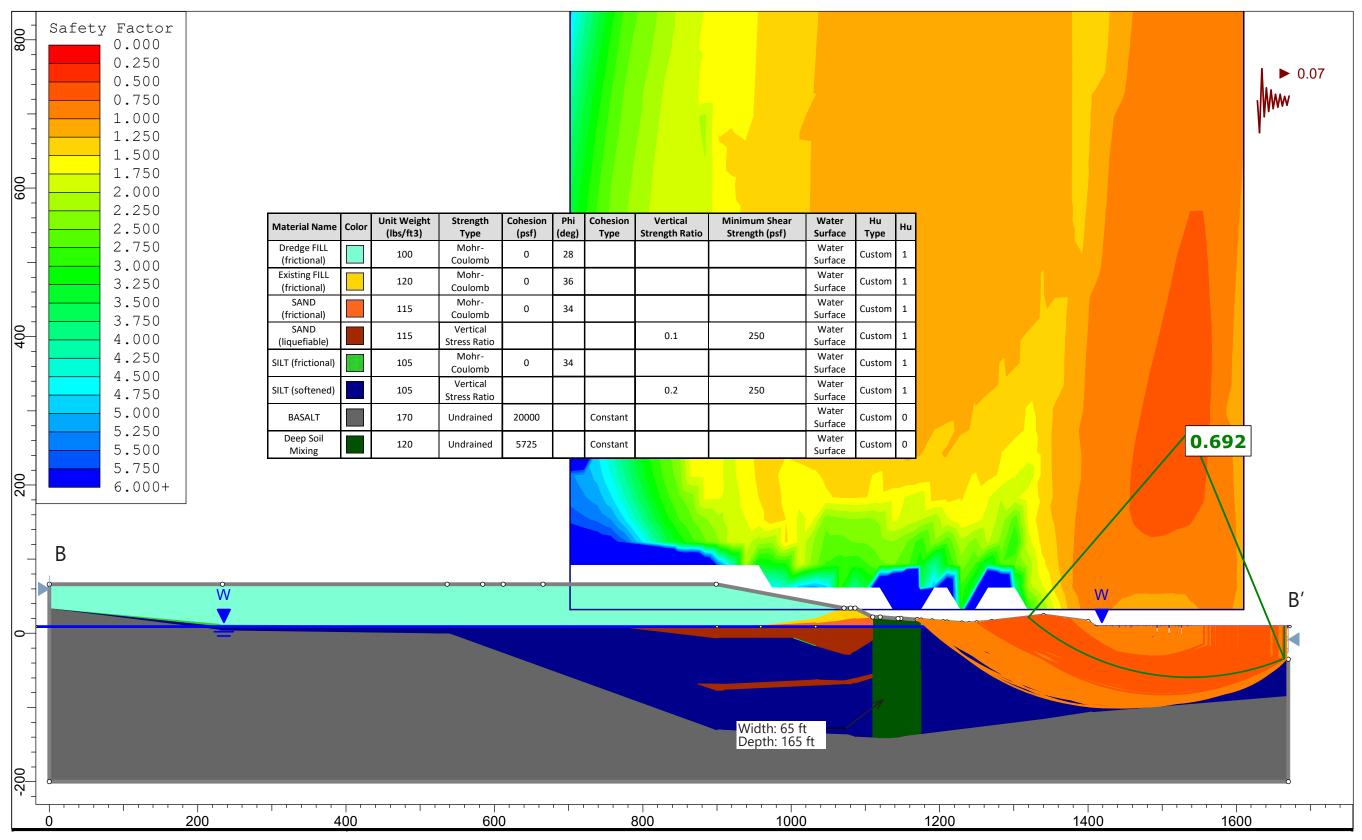
SEP. 2023 JOB NO. 6771-A

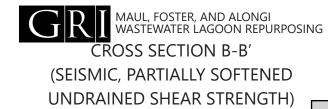




SEP. 2023 JOB NO. 6771-A

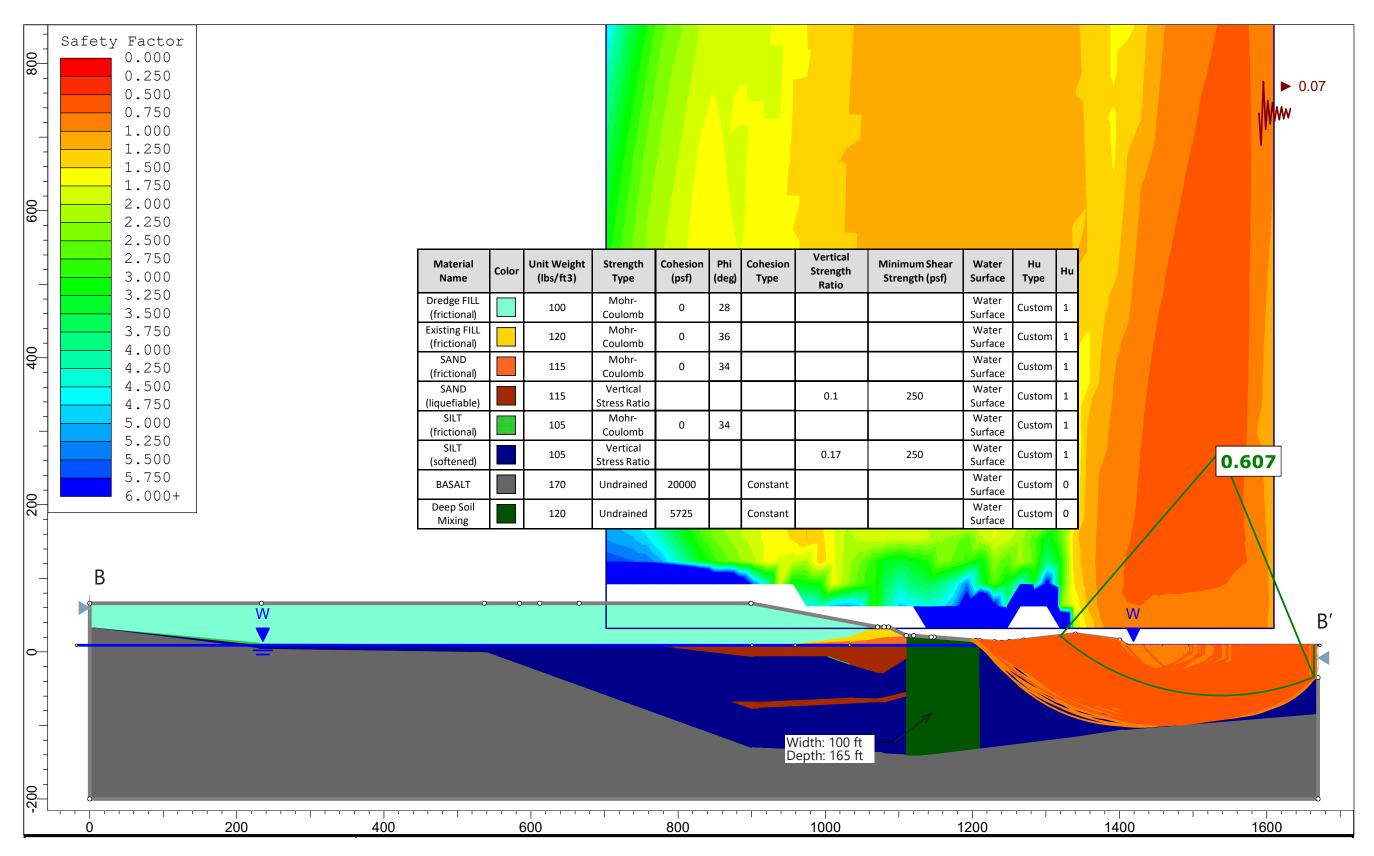
889



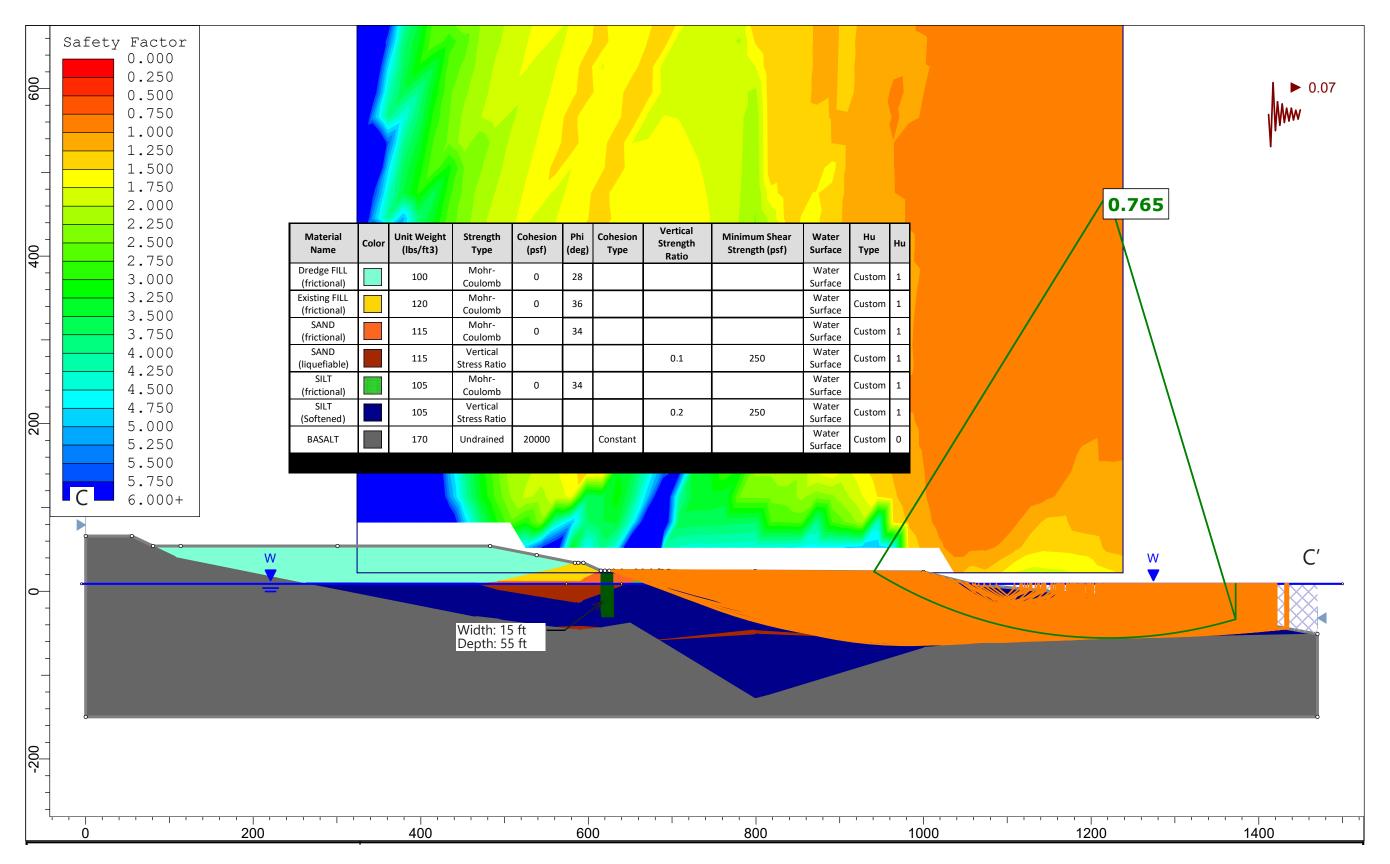

SHEAR STRENGTH)

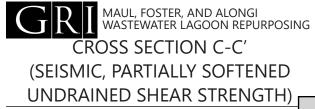
SEP. 2023

JOB NO. 6771-A

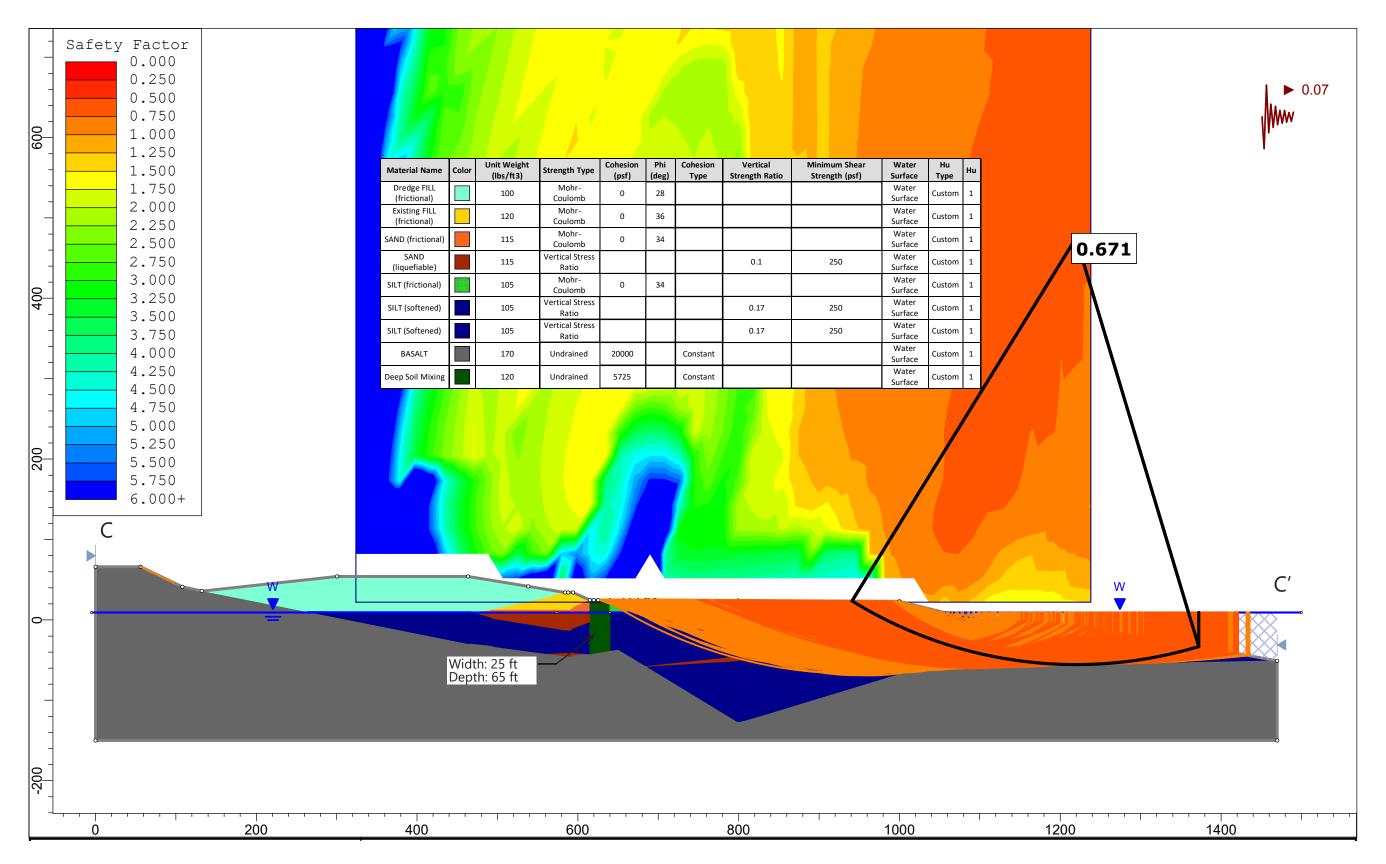

FIG 890

SEP. 2023 JOB NO. 6771-A


891



SEP. 2023 JOB NO. 6771-A


FIG 892

SEP. 2023 JOB NO. 6771-A

893

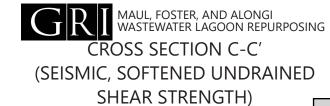
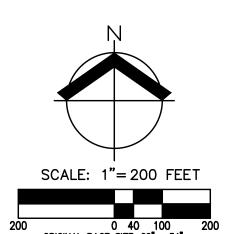


FIG 894

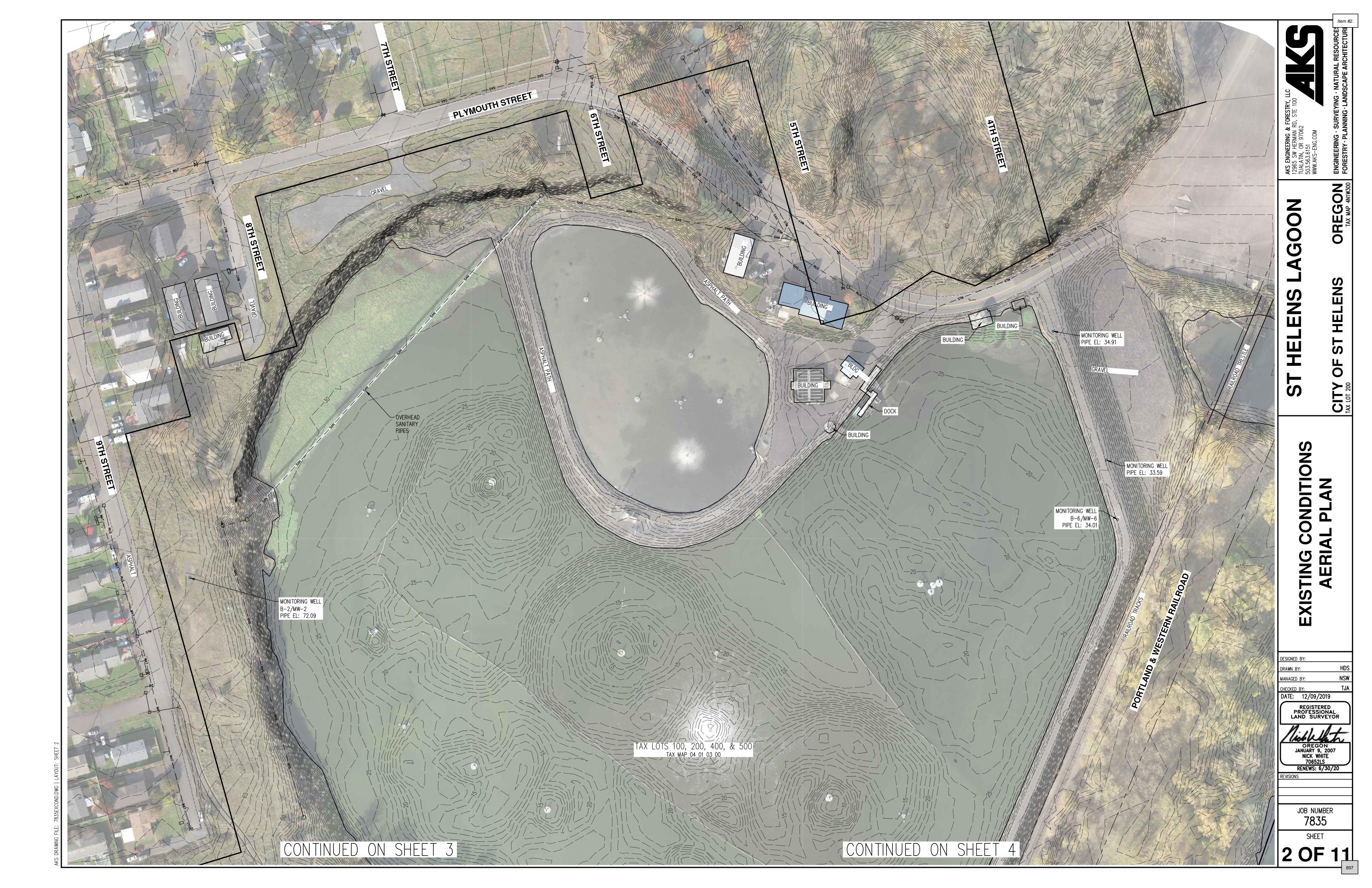


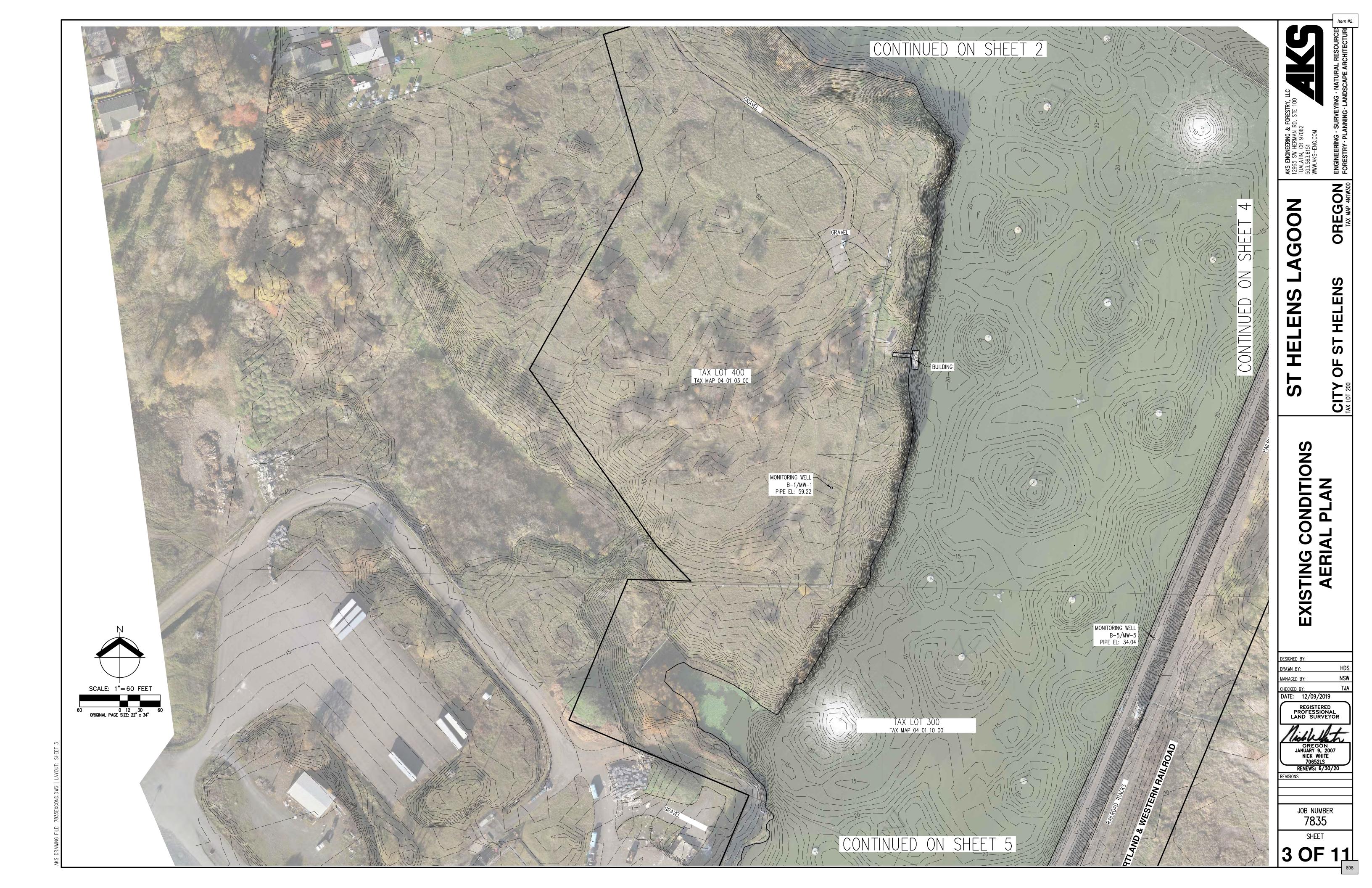
APPENDIX A

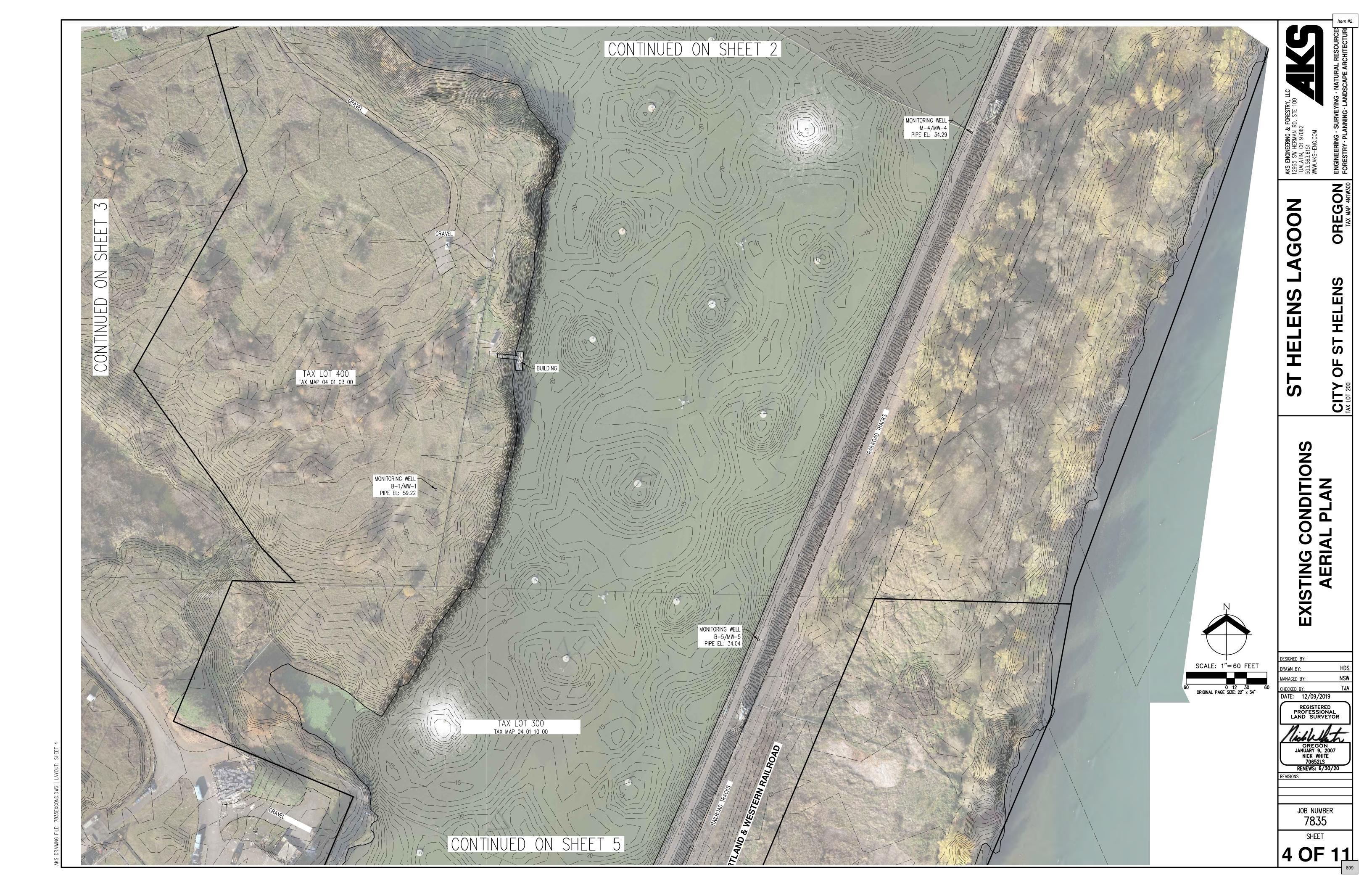
Existing Conditions Survey (AKS Engineering and Forestry, 2019)

- NOTES:

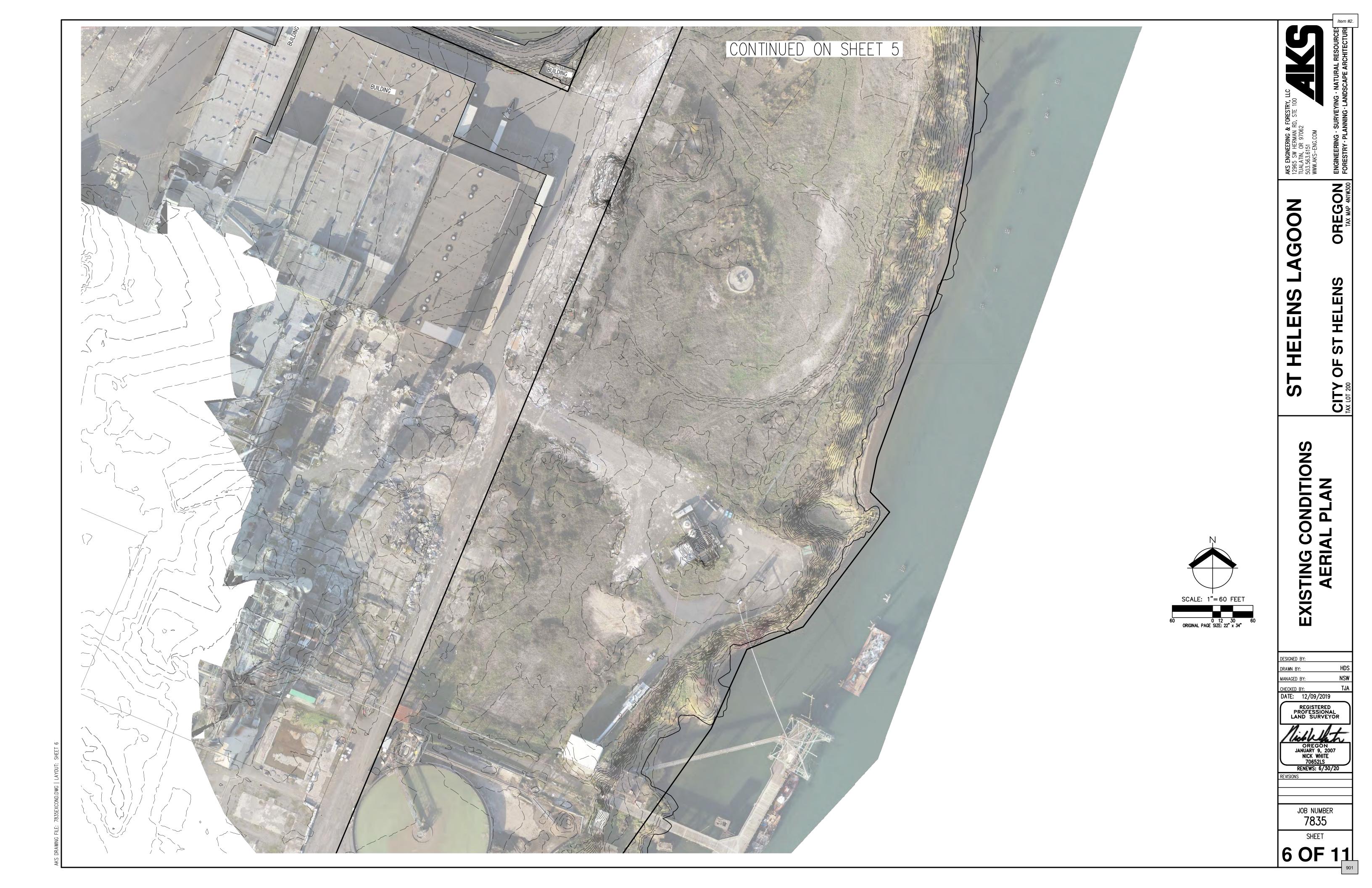
 1. UTILITIES SHOWN ARE BASED ON UNDERGROUND UTILITY LOCATE MARKINGS AS PROVIDED BY OTHERS, PROVIDED PER UTILITY LOCATE TICKET NUMBER 19311213. THE SURVEYOR MAKES NO GUARANTEE THAT THE UNDERGROUND LOCATES REPRESENT THE ONLY UTILITIES IN THE AREA. CONTRACTORS ARE RESPONSIBLE FOR VERIFYING ALL EXISTING CONDITIONS PRIOR TO BEGINNING CONSTRUCTION.
- 2. FIELD WORK WAS CONDUCTED NOVEMBER 2019.
- 3. VERTICAL DATUM: ELEVATIONS ARE BASED ON NGS BENCHMARK NO. RD4218. LOCATED AT THE NW CORNER OF THE LAGOON. ELEVATION = 78.3 FEET (NAVD 88).
- 4. THIS IS NOT A BOUNDARY SURVEY TO BE RECORDED WITH THE COUNTY. BOUNDARIES ARE PRELIMINARY AND SHOULD BE CONFIRMED WITH THE STAMPING SURVEYOR PRIOR TO RELYING ON FOR DETAILED DESIGN OR CONSTRUCTION. THE BOUNDARY SHOWN HEREON IS PARTIALLY BASED ON GIS DATA FROM THE CITY OF ST. HELENS WEBSITE AND SHOULD BE USED FOR VISUAL PURPOSES
- 5. CONTOUR INTERVAL IS 1 FOOT.
- 6. BATHYMETRIC INFORMATION WAS PROVIDED BY MAUL FOSTER & ALONGI, INC. AND COMBINED WITH LIDAR DATA FROM THE STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES
- 4. HORIZONTAL DATUM: A LOCAL DATUM PLANE DERIVED FROM STATE PLANE OREGON NORTH 3601 NAD83(2011)EPOCH: 2010.0000
 BY MULTIPLYING BY A PROJECT MEAN GROUND COMBINED SCALE
 FACTOR OF 1.0000328962 AT A CENTRAL PROJECT POINT WITH
 INTERNATIONAL FOOT STATE PLANE GRID COORDINATES
 N805128.443 E7614876.336 AND A MERIDIAN CONVERGENCE ANGLE OF -1'38'04" STATE PLANE COORDINATES WERE DERIVED FROM GPS OBSERVATIONS USING THE ORGN NETWORK. DISTANCES SHOWN ARE INTERNATIONAL FOOT GROUND VALUES.

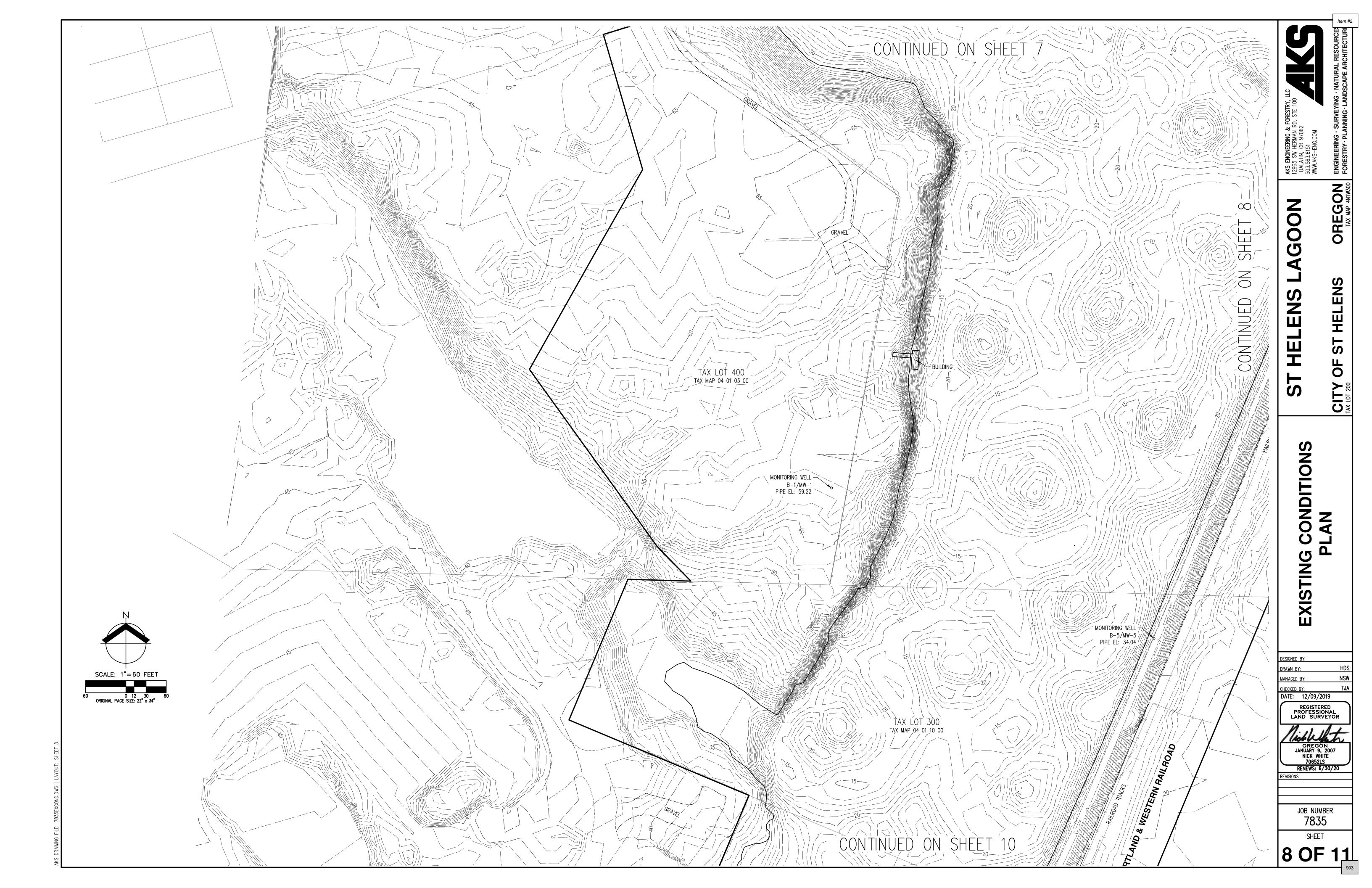



ENS


DATE: 12/09/2019


JOB NUMBER **7835**


SHEET



APPENDIX B

Field Explorations and Laboratory Testing

APPENDIX B

FIELD EXPLORATIONS AND LABORATORY TESTING

B.1 FIELD EXPLORATIONS

B.1.1 General

Subsurface materials and conditions at the site were investigated by GRI during two separate mobilizations. During the initial mobilization between July 29 and August 2, 2019, two mud-rotary borings, designated B-1 and B-2, and three cone penetration test (CPT) probes, designated CPT-1 through CPT-3, were completed. During the second mobilization between February 27 and March 2, 2023, one mud-rotary boring, designated B-3, was completed. The locations of the borings and probes are shown on Figure 2. The above fieldwork is discussed in more detail below.

B.1.2 Mud-Rotary Borings

Borings B-1 through B-3 were advanced to depths ranging from about 156.5 feet to 261.5 feet using mud-rotary drilling techniques using a CME 55 HT or CME 850 track-mounted drill rig provided and operated by Western States Soil Conservation, Inc., of Hubbard, Oregon. Disturbed samples were obtained from the borings at about 2.5-foot intervals of depth to a depth of about 15 feet, 5-foot intervals from 15 feet to 80 feet of depth, and 5-foot to 10-foot intervals below 80 feet of depth. Boring B-3 was blind-drilled from a depth of 221.5 feet to 260 feet. Disturbed samples were obtained using a 2-inch outsidediameter (O.D.) standard split-spoon sampler. Standard Penetration Tests (SPT) were conducted by driving the sampler into the soil a distance of 18 inches using a 140-pound hammer dropped 30 inches. The number of blows required to drive the standard splitspoon sampler the last 12 inches is known as the Standard Penetration Resistance, or SPT N-value. The SPT N-values provide a measure of the relative density of granular soils and the relative consistency of cohesive soils. Samples obtained from the borings were placed in airtight jars and returned to our laboratory for further classification and testing. In addition, relatively undisturbed samples were collected by pushing a 3-inch-O.D. Shelby tube into the undisturbed soil a maximum distance of 24 inches using the hydraulic ram of the drill rig. The soil exposed in the ends of the Shelby tubes was examined and classified in the field. After classification, the tubes were sealed with rubber caps and returned to our laboratory for further examination and testing. All samples were returned to our laboratory for further examination and testing.

Logs of the mud-rotary borings are provided on Figures 1B through 3B. Each log presents a descriptive summary of the various types of materials encountered in the boring and notes the depth at which the materials and/or characteristics of the materials change. To the right of the descriptive summary, the numbers and types of samples taken during the

drilling operation are indicated. Farther to the right, SPT N-values are shown graphically along with the natural moisture contents, Torvane shear-strength values, fines contents, Atterberg-limits determinations, and dry densities of soil samples. The terms and symbols used to describe the soil and rock encountered in the borings are defined in Tables 1B and 2B and the attached legend.

B.1.3 Cone Penetrometer Test Probes

Probes CPT-1 through CPT-3 were advanced to depths of about 21.2 feet to 158 feet, where refusal installation conditions were encountered, using a truck-mounted electrical cone provided and operated by Oregon Geotechnical Explorations, Inc., of Keizer, Oregon. During a CPT, a steel cone is forced vertically into the soil at a constant rate of penetration. The force required to cause penetration at a constant rate can be related to the bearing capacity of the soil immediately surrounding the point of the penetrometer cone. This force is measured and recorded every 4 inches. In addition to the cone measurements, measurements are obtained of the magnitude of force required to force a friction sleeve attached above the cone through the soil. The force required to move the friction sleeve can be related to the undrained shear strength of fine-grained soils. The dimensionless ratio of sleeve friction to point-bearing capacity indicates the type of soil penetrated. The cone penetration resistance can be used to evaluate the relative consistency or density of cohesionless and cohesive soils, respectively. In addition, a piezometer fitted between the cone and the sleeve measures changes in water pressure as the probe is advanced and can also be used to measure the depth of the top of the groundwater surface. CPT-1 included shear-wave velocity testing. For this test, an accelerometer is placed in the cone equipment, which allows measurement of the arrival times of shear waves at the cone base from impulses generated at the ground surface that can then be used to calculate shearwave velocities in the soil profile. The logs of CPTs are provided on Figures 4B through 7B. The shear-wave velocity measurements for CPT-2 are provided on Figure 6B. Graphical data from pore-pressure dissipation tests are provided on Figures 8B through 12B. Interpretations of the soil types encountered by the probe are shown graphically on the logs. Guidelines for the classification of soils in the CPT probe are provided in Table 3B.

B.2 LABORATORY TESTING

B.2.1 General

All samples obtained from the field were returned to our laboratory, where the physical characteristics of the samples were noted and the field classifications modified where necessary. At the time of classification, the natural moisture content of each soil sample was determined. Additional testing included Torvane shear strength, dry unit weight, washed-sieve analysis (percent passing the U.S. No. 200 sieve), Atterberg limits, one-dimensional consolidation, unconfined compression strength, triaxial compression testing,

and cyclic direct simple shear (DSS) testing. The following paragraphs describe the testing program in more detail.

B.2.2 Natural Moisture Content

Natural moisture content determinations were made in conformance with ASTM International (ASTM) D2216. The results are shown on Figures 1B through 3B and summarized in Table 4B.

B.2.3 Torvane Shear Strength

The approximate undrained shear strengths of relatively undisturbed, fine-grained soil samples were determined using a Torvane shear device. The Torvane is a hand-held apparatus with vanes that are inserted into the soil. The torque required to fail the soil in shear around the vanes is measured using a calibrated spring. The results of the Torvane shear-strength test are summarized on Figures 1B through 3B.

B.2.4 Dry Unit Weight

The dry unit weight of undisturbed soil samples was determined in the laboratory in accordance with ASTM D2937 by cutting a cylindrical specimen of soil from a Shelby tube sample. The dimensions of the specimen were carefully measured, the volume calculated, and the specimen weighed. After oven-drying, the specimen was reweighed and the water content was calculated. The dry unit weight was then computed. The dry unit weight is shown on Figures 1B through 3B and summarized in Table 4B.

B.2.5 Washed-Sieve Analysis

Washed-sieve analyses were performed on selected samples of the soil to assist in their classification. The test is performed by taking a sample of known dry weight and washing it over a No. 200 sieve. The material retained on the sieve is oven-dried and weighed. The percentage of material passing that passes the No. 200 sieve is then calculated. The results are summarized on Figures 1B through 3B and in Table 4B.

B.2.6 Atterberg Limits

Atterberg limits tests were performed on 28 samples of the fine-grained soil in substantial conformance with ASTM D4318. The test data are shown on Figures 1B through 3B and summarized in Table 4B. The results are also shown graphically on Figures 13B through 19B.

B.2.7 One-Dimensional Consolidation

One-dimensional consolidation testing was performed in accordance with ASTM D2435 to obtain data on the compressibility characteristics of nine relatively undisturbed samples of fine-grained soil. Test results are summarized on Figures 20B through 28B in the form

of a curve showing effective stress versus percent strain. The initial moisture content and unit weight of the sample are also provided on the figure.

B.2.8 Unconfined Compression

An unconfined compression test was performed on a selected sample of silt. The test was conducted in accordance with ASTM D2166. The test results are summarized below.

Davina	Campla	Donath 64	Unandinal Community Strongth and	Hadrainad Chasa Caranash and
Boring	Sample	Deptn, ft	Unconfined Compressive Strength, psf	Undrained Snear Strength, psr
B-1	S-10	28.3	1,270	635

B.2.9 Triaxial Compression Test

Two isotropically consolidated, undrained (CIU) triaxial compression tests with porepressure measurements were performed on selected samples of soil from borings B-1 and B-2. Samples for these tests were collected with a relatively undisturbed 2.85-inch insidediameter (I.D.) Shelby tube. The specimens were extruded from the tubes, the ends of the sample were trimmed square, and the samples were encapsulated in a protective rubber membrane and mounted into a triaxial cell. Vertical filter paper drains were placed on the sides of each sample to enhance drainage and reduce the equalization time of straininduced pore pressures.

Upon completion of sample preparation, the samples were saturated under an effective confining pressure of approximately 1 psi to 2 psi, with a back pressure of at least 40 psi to achieve timely saturation. Subsequently, the effective confining stress was increased, and the sample was allowed to consolidate with the drainage line open. Following consolidation, the drainage line was closed, and the sample was sheared undrained at a constant rate of strain while measurements were made of axial load, axial strain, and shear-induced pore pressure. The peak deviator stress (σ_1 - σ_3) was selected as the point of failure for each stage on the Mohr-Coulomb envelope.

The test results are summarized on Figures 31B and 32B. A graphical summary of deviator stress, effective stress ratio, and change in pore pressure versus axial strain is shown on the left side of the figure. Farther to the right, on the top half of the figure, is the modified Mohr-Coulomb envelope based on maximum effective shear stress and the corresponding effective normal stress at failure. A summary of the test data, including sample identification and initial and final moisture content of the samples, is tabulated below the modified Mohr-Coulomb plot.

B.2.10 Cyclic Direct Simple Shear

Strain-controlled, cyclic DSS tests were performed in conformance with standard of practice and ASTM D6528 on relatively undisturbed soil samples extruded from a Shelby

tube. The test provides data on the cyclic resistance, degradation potential, and post-cyclic behavior of the underlying fine-grained soils, which is necessary for seismic and slope-stability studies. The cyclic tests were completed at a frequency of 0.1 Hz, and the post-cyclic shear-strength tests were completed at a shear-strain rate of 5%/hour. The results of the cyclic DSS tests are tabulated below.

Boring	Depth, ft	Confining Pressure ⁽¹⁾ , psf	Overconsolidation Ratio (OCR)	Shear Strain, %	Ru at 60 Cycles	Max Ru at 200 Cycles	Static Shear Strength, psf	Post Cyclic Shear Strength, psf	Post- cyclic/Static Su/ s _v At 3% Strain
B-1	39.0	2,500	1.5 ^(2,3)	Static	N/A	N/A	930	N/A	0.25
B-1	39.2	2,500	1.5 ^(2,3)	0.5	0.35	0.42	N/A	1,040	0.25
B-1	39.8	2,500	1.5 ^(2,3)	0.8	0.59	0.64	N/A	1,000	0.23
B-1	39.6	2,500	1.5 ^(2,3)	1.6	0.84	0.88	N/A	965	0.19
B-1	39.4	7,500	1.0 ⁽⁴⁾	0.8	0.32	0.39	N/A	2,023	0.21
B-2	64.3	3,500	1.5 ^(2,3)	Static	N/A	N/A	1,240	N/A	0.25
B-2	64.0	3,500	1.5 ^(2,3)	0.8	0.42	0.45	N/A	1,200	0.25
B-2	63.8	3,500	1.5 ^(2,3)	1.6	0.78	0.85	N/A	1,110	0.21
B-2	63.6	3,500	3.1 ⁽⁵⁾	1.6	0.26	0.39	N/A	2,330	0.47
B-3	36.7	2,350	1.5 ^(2,3)	Static	N/A	N/A	928	N/A	0.22
B-3	35.5	2,350	1.5 ^(2,3)	0.8	0.56	0.63	N/A	940	0.19
B-3	36.4	2,350	1.5 ^(2,3)	1.2	0.78	0.84	N/A	1,027	0.13
B-3	36.25	2,350	1.5 ^(2,3)	1.6	0.83	0.89	N/A	921	0.15
B-3	60.9	3,500	1.5 ^(2,3)	Static	N/A	N/A	1,174	N/A	0.19
B-3	61.2	3,500	1.5 ^(2,3)	0.6	0.35	0.40	N/A	1,200	0.18
B-3	60.4	3,500	1.5 ^(2,3)	0.8	0.40	0.45	N/A	1,017	0.13
B-3	61.2	3,500	1.5 ^(2,3)	1.2	0.57	0.67	N/A	1,267	0.16
B-3	60.2	3,500	1.5 ^(2,3)	1.6	0.72	0.79	N/A	932	0.16

Notes:

- 1) Confinement pressure was equivalent to existing overburden pressure with the exception of B-1 at 39.4 ft, which was consolidated to a confinement pressure of approximately 3 times the overburden pressure.
- 2) OCR interpolated from consolidation testing.
- 3) Specimen consolidated to existing overburden pressure and then tested.
- 4) Specimen consolidated to confining pressure and then tested at confining pressure.
- 5) Specimen consolidated to 11,000 psf and then tested at confining pressure.

Table 1B GUIDELINES FOR CLASSIFICATION OF SOIL

Description of Relative Density for Granular (Coarse-Grained) Soil

Relative Density	Standard Penetration Resistance (N-values) blows/foot	3-Inch Sampler (140-lb Hammer) (N-values) blows/foot	3-Inch Sampler (300-lb Hammer) (N-values) blows/foot
Very Loose	0 - 4	0 - 11	0 - 4
Loose	4 - 10	11 - 26	4 - 10
Medium Dense	10 - 30	26 - 74	10 - 30
Dense	30 - 50	74 - 120	30 - 47
Very Dense	over 50	over 120	over 47

Description of Relative Consistency for Cohesive (Fine-Grained) Soils

Consistency	Standard Penetration Resistance (N-values) blows per ft	3-Inch Sampler (140-Ib Hammer) (N- values) blows/foot	3-Inch Sampler (300-lb Hammer) (N-values) blows/foot	Torvane or Undrained Shear Strength, tsf
Very Soft	0 - 2	0 - 3	0 - 2	less than 0.125
Soft	2 - 4	3 - 6	2 - 5	0.125 - 0.25
Medium Stiff	4 - 8	6 - 12	5 - 9	0.25 - 0.50
Stiff	8 - 15	12 - 25	9 - 19	0.50 - 1.0
Very Stiff	15 - 30	25 - 65	19 - 31	1.0 - 2.0
Hard	over 30	over 65	over 31	over 2.0

Grain-Size Classification	Modifier for Subclassification				
Boulders: >12 inches		Primary Constituent SAND or GRAVEL	Primary Constituent SILT or CLAY		
Cobbles:	Adjective	r Material (By Weight)			
3 inches - 12 inches	trace:	5 - 15 (sand, gravel)	5 - 15 (sand, gravel)		
Gravel:	some:	15 - 30 (sand, gravel)	15 - 30 (sand, gravel)		
1/4 inch - 3/4 inch (fine) 3/4 inch- 3 inches (coarse)	sandy, gravelly:	30 - 50 (sand, gravel)	30 - 50 (sand, gravel)		
Sand:	trace:	<5 (silt, clay)			
No. 200 - No. 40 sieve (fine)	some:	5 - 12 (silt, clay)	Relationship of clay and		
No. 40 - No. 10 sieve (medium) No. 10 - No. 4 sieve (coarse) Silt/Clay:	silty, clayey:	12 - 50 (silt, clay)	silt determined by plasticity index test		
Pass No. 200 sieve					

Table 2B

GUIDELINES FOR CLASSIFICATION OF ROCK

Relative Rock Weathering Scale

Term	Field Identification
Fresh	Crystals are bright. Discontinuities may show some minor surface staining. No discoloration in rock fabric.
Slightly Weathered	Rock mass is generally fresh. Discontinuities are stained and may contain clay. Some discoloration in rock fabric. Decomposition extends up to 1 in. into rock.
Moderately Weathered	Rock mass is decomposed 50% or less. Significant portions of rock show discoloration and weathering effects. Crystals are dull and show visible chemical alteration. Discontinuities are stained and may contain secondary mineral deposits.
Predominantly Decomposed	Rock mass is more than 50% decomposed. Rock can be excavated with geologist's pick. All discontinuities exhibit secondary mineralization. Complete discoloration of rock fabric. Surface of core is friable and usually pitted due to washing out of highly altered minerals by drilling water.
Decomposed	Rock mass is completely decomposed. Original rock "fabric" may be evident. May be reduced to soil with hand pressure.

Relative Rock Hardness Scale

Term	Hardness Designation	Field Identification	Approximate Unconfined Compressive Strength
Extremely Soft	R0	Can be indented with difficulty by thumbnail. May be moldable or friable with finger pressure.	< 100 psi
Very Soft	R1	Crumbles under firm blows with point of a geology pick. Can be peeled by a pocketknife and scratched with fingernail.	100 - 1,000 psi
Soft	R2	Can be peeled by a pocketknife with difficulty. Cannot be scratched with fingernail. Shallow indentation made by firm blow of geology pick.	1,000 - 4,000 psi
Medium Hard	R3	Can be scratched by knife or pick. Specimen can be fractured with a single firm blow of hammer/geology pick.	4,000 - 8,000 psi
Hard	R4	Can be scratched with knife or pick only with difficulty. Several hard hammer blows required to fracture specimen.	8,000 - 16,000 psi
Very Hard	R5	Cannot be scratched by knife or sharp pick. Specimen requires many blows of hammer to fracture or chip. Hammer rebounds after impact.	> 16,000 psi

RQD and Rock Quality

Relation of RQD and Rock Quality						
RQD (Rock Quality Designation), %	Description of Rock Quality					
0 - 25	Very Poor					
25 - 50	Poor					
50 - 75	Fair					
75 - 90	Good					
90 - 100	Excellent					

Terminology for Planar Surface								
Joints and Bedding Fractures Spacing								
Laminated	Very Close	< 2 in.						
Thin	Close	2 in. – 12 in.						
Medium	Moderately Close	12 in. – 36 in.						
Thick	Wide	36 in. – 10 ft						
Massive	Very Wide	> 10 ft						

Table 3B

CONE PENETRATION TEST (CPT) CORRELATIONS

Cohesive Soils

Cone Tip Resistance, tsf	Consistency
<5	Very Soft
5 to 15	Soft to Medium Stiff
15 to 30	Stiff
30 to 60	Very Stiff
>60	Hard

Cohesionless Soils

Cone Tip Resistance, tsf	Relative Density
<20	Very Loose
20 to 40	Loose
40 to 120	Medium
120 to 200	Dense
>200	Very Dense

Reference

Kulhawy, F. H., and Mayne, P. W., 1990, Manual on Estimating Soil Properties for Foundation Design, Electric Power Research Institute, EL-6800.

Table 4B SUMMARY OF LABORATORY RESULTS

Sample Information			n		Atterberg Limits				
Location	Sample	Depth, ft	Elevation, ft	Moisture Content, %	Dry Unit Weight, pcf	Liquid Limit, %	Plasticity Index, %	Fines Content, %	Soil Type
B-1	S-2	5.0	15.0	22					SAND
	S-3	7.5	12.5	19				6	SAND
	S-4	10.0	10.0	27					SAND
	S-5	12.5	7.5	30				4	SAND
	S-6	15.0	5.0	29					SAND
	S-7	17.5	2.5	28				7	SAND
	S-8	20.0	0.0	29				7	SAND
	S-9	25.0	-5.0	57					SILT
	S-10	28.3	-8.3	55	68				SILT
	S-10	29.5	-9.5	52				96	SILT
	S-11	30.0	-10.0	52		56	16	94	SILT
	S-12	35.0	-15.0	50					SILT
	S-13	38.5	-18.5	46	75				SILT
	S-13	39.5	-19.5	46		46	3	81	SILT
	S-14	40.0	-20.0	51		51	9		SILT
	S-15	45.0	-25.0	50				82	SILT
	S-16	49.5	-29.5	49				81	SILT
	S-17	50.0	-30.0	47		51	9		SILT
	S-18	55.0	-35.0	51					SILT
	S-19	60.0	-40.0	49		44	11	72	SILT
	S-20	65.0	-45.0	51					SILT
	S-21	70.0	-50.0	42					SILT
	S-22	75.0	-55.0	54		44	11	62	Sandy SILT
	S-23	80.0	-60.0	37		48	7		SILT
	S-24	90.0	-70.0	45					SILT
	S-25	100.0	-80.0	52		53	20	96	SILT
	S-27	120.0	-100.0	48					SILT
	S-28	130.0	-110.0	68		68	15	97	SILT
	S-29	140.0	-120.0	33				27	Silty SAND
	S-30	150.0	-130.0	39					SILT
	S-31	160.0	-140.0	38		35	1	82	SILT
	S-33	180.0	-160.0	42		41	5	96	SILT
	S-35	200.0	-180.0	42					SILT
B-2	S-1	3.5	20.5	76					Clayey SILT
	S-3	7.0	17.0	48				92	Clayey SILT
	S-4	10.0	14.0	44		47	18		Clayey SILT
	S-5	14.5	9.5	50					Clayey SILT
	S-6	15.0	9.0	50					Clayey SILT
	S-7	20.0	4.0	52				86	Clayey SILT
	S-8	24.3	-0.3	53	70			97	Clayey SILT

Table 4B SUMMARY OF LABORATORY RESULTS

Sample Information						Atterbe	rg Limits		
Location	Sample	Depth, ft	Elevation, ft	Moisture Content, %	Dry Unit Weight, pcf	Liquid Limit, %	Plasticity Index, %	Fines Content, %	Soil Type
B-2	S-9	25.0	-1.0	55		57	18		Clayey SILT
	S-10	30.0	-6.0	53					Clayey SILT
	S-12	35.0	-11.0	48					SILT
	S-13	40.0	-16.0	50					SILT
	S-15	45.0	-21.0	68					SILT
	S-16	50.0	-26.0	68		87	47	97	SILT
	S-18	55.0	-31.0	82					SILT
	S-19	60.0	-36.0	52					SILT
	S-20	63.4	-39.4	47	78			84	SILT
	S-20	64.0	-40.0	48		50	16	78	SILT
	S-21	65.0	-41.0	46		55	11		SILT
	S-22	70.0	-46.0	37				29	Silty SAND
	S-23	75.0	-51.0	41		43	4		SILT
	S-24	80.0	-56.0	41					SILT
	S-25	85.0	-61.0	46				61	SILT
	S-26	90.0	-66.0	48		54	7		SILT
	S-27	95.0	-71.0	45					SILT
	S-28	100.0	-76.0	56		56	9		SILT
	S-29	105.0	-81.0	51					SILT
	S-30	115.0	-91.0	40		42	5		SILT
	S-31	125.0	-101.0	37				64	SILT
	S-32	135.0	-111.0	37					SILT
	S-33	145.0	-121.0	37					Silty SAND

Table 4B
SUMMARY OF LABORATORY RESULTS

Sample Information							rg Limits		
Location	Sample	Depth ft	Elevation, ft	Moisture Content. %	Dry Unit Weight, pcf	Liquid Limit. %	Plasticity Index, %	Fines Content, %	Soil Type
B-3	S-1	5.0	14.0	23					SAND
	S-2	10.0	9.0	25				5	SAND
	S-3	15.0	4.0	28					SAND
	S-4	20.0	-1.0	29					Clayey SILT
	S-6	27.0	-8.0	55		59	27	83	Clayey SILT
	S-7	30.0	-11.0	54					Clayey SILT
	S-8	35.0	-16.0	47	75				Clayey SILT
	S-8	35.5	-16.5	48				82	Clayey SILT
	S-9	37.0	-18.0	51		41	9	88	Clayey SILT
	S-10	40.0	-21.0	51					SILT
	S-12	47.0	-28.0	50		46	13	80	SILT
	S-13	55.0	-36.0	45					SILT
	S-14	60.0	-41.0	53	69				SILT
	S-15	65.0	-46.0	63		51	15	93	SILT
	S-16	70.0	-51.0	49					SILT
	S-17	75.0	-56.0	43					PEAT
	S-17b	75.5	-56.5	62					PEAT
	S-18	80.0	-61.0	58					SILT
	S-19	85.0	-66.0	45		41	5	90	SILT
	S-21	90.0	-71.0	46					SILT
	S-22	95.0	-76.0	43					SILT
	S-23	100.0	-81.0	41					SILT
	S-24	105.0	-86.0	48					SILT
	S-25	110.0	-91.0	42		36	8	89	SILT
	S-26	115.0	-96.0	38					SILT
	S-27	120.0	-101.0	48					SILT
	S-28	125.0	-106.0	40					SILT
	S-29	130.0	-111.0	55					SILT
	S-30	135.0	-116.0	34				61	Sandy SILT
	S-31	140.0	-121.0	47					SILT
	S-32	145.0	-126.0	45		41	12	89	SILT
	S-34	150.0	-131.0	39					SILT
	S-35	155.0	-136.0	35				68	Sandy SILT
	S-36	160.0	-141.0	30					Sandy SILT
	S-37	165.0	-146.0	32					Silty SAND
	S-38	170.0	-151.0	35					SILT
	S-39	175.0	-156.0	46		43	11	96	SILT
	S-40	180.0	-161.0	46					SILT
	S-41	185.0	-166.0	31					SILT
	S-42	190.0	-171.0	41					SILT

Table 4B **SUMMARY OF LABORATORY RESULTS**

Sample Information				Atterberg Limits						
Location	Sample	Depth, ft	Elevation, ft	Moisture Content, %	Dry Unit Weight, pcf		Plasticity Index, %	Fines Content, %	Soil Type	
B-3	S-44	210.0	-191.0	36					SILT	
	S-44b	211.0	-192.0	32					SILT	
	S-45	220.0	-201.0	39					SILT	
	S-46	260.0	-241.0	37					SILT	

SOIL SYMBOLS

Symbol **Typical Description** LANDSCAPE MATERIALS FILL GRAVEL; clean to some silt, clay, and sand Sandy GRAVEL; clean to some silt and clay Silty GRAVEL; up to some clay and sand Clayey GRAVEL; up to some silt and sand SAND; clean to some silt, clay, and gravel Gravelly SAND; clean to some silt and clay Silty SAND; up to some clay and gravel Clayey SAND; up to some silt and gravel SILT; up to some clay, sand, and gravel Gravelly SILT; up to some clay and sand Sandy SILT; up to some clay and gravel Clayey SILT; up to some sand and gravel CLAY; up to some silt, sand, and gravel Gravelly CLAY; up to some silt and sand Sandy CLAY; up to some silt and gravel Silty CLAY; up to some sand and gravel **PEAT**

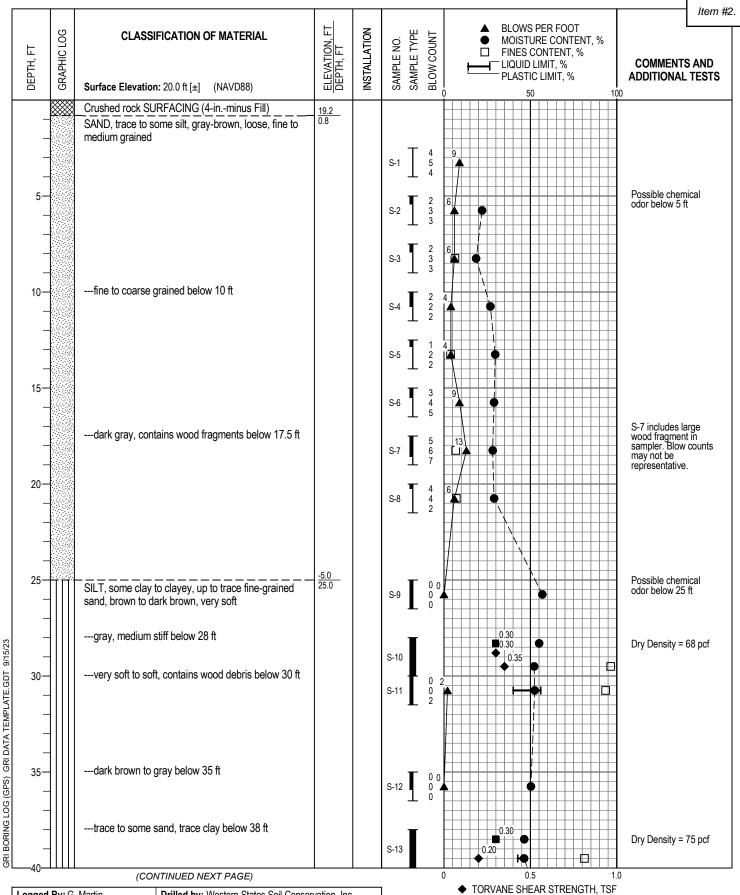
BEDROCK SYMBOLS

Symbol	Typical Description
+++++++++	BASALT
	MUDSTONE
	SILTSTONE
	SANDSTONE

SURFACE MATERIAL SYMBOLS

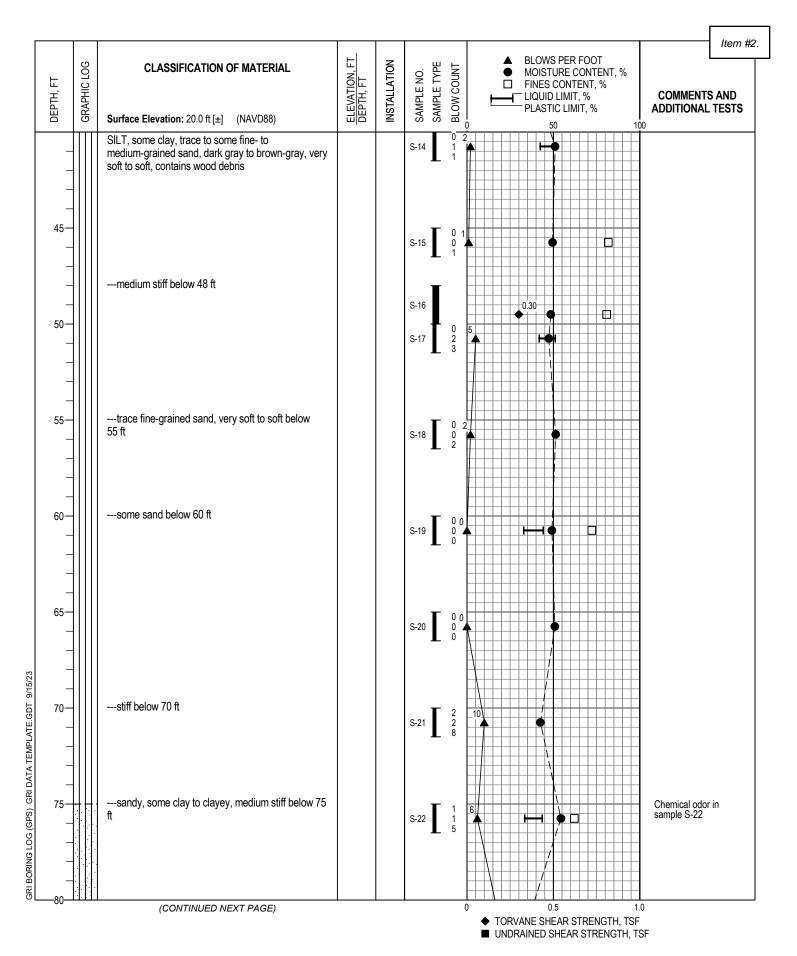
Symbol	Typical Description
	Asphalt concrete PAVEMENT
	Portland cement concrete PAVEMENT
600	Crushed rock BASE COURSE

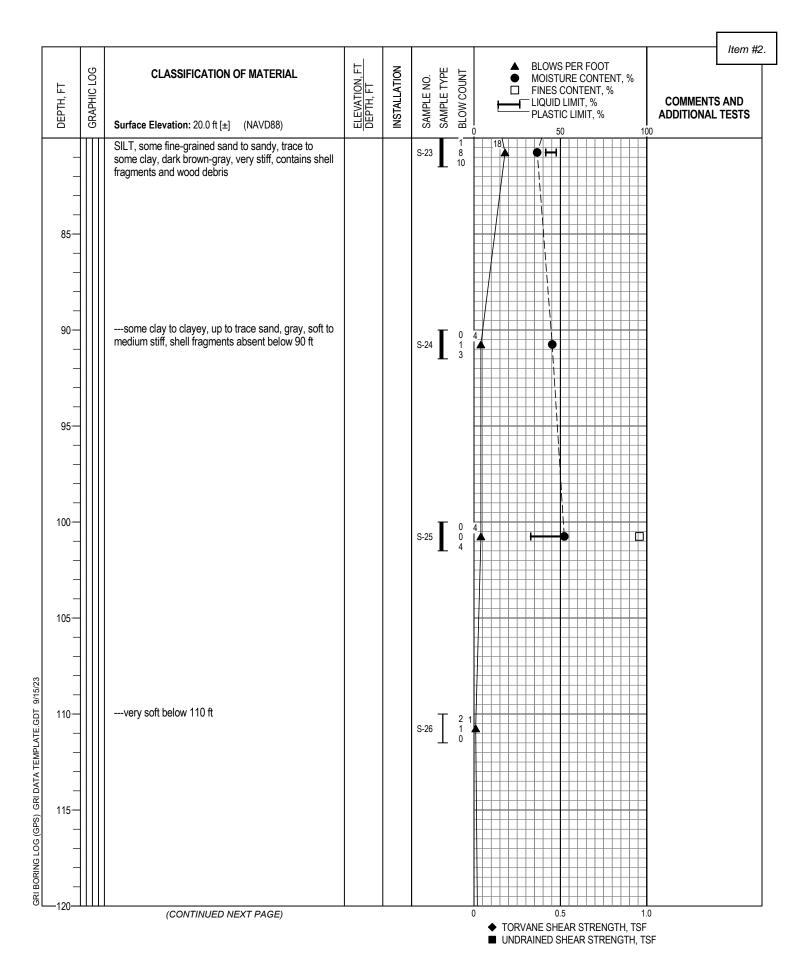
SAMPLER SYMBOLS

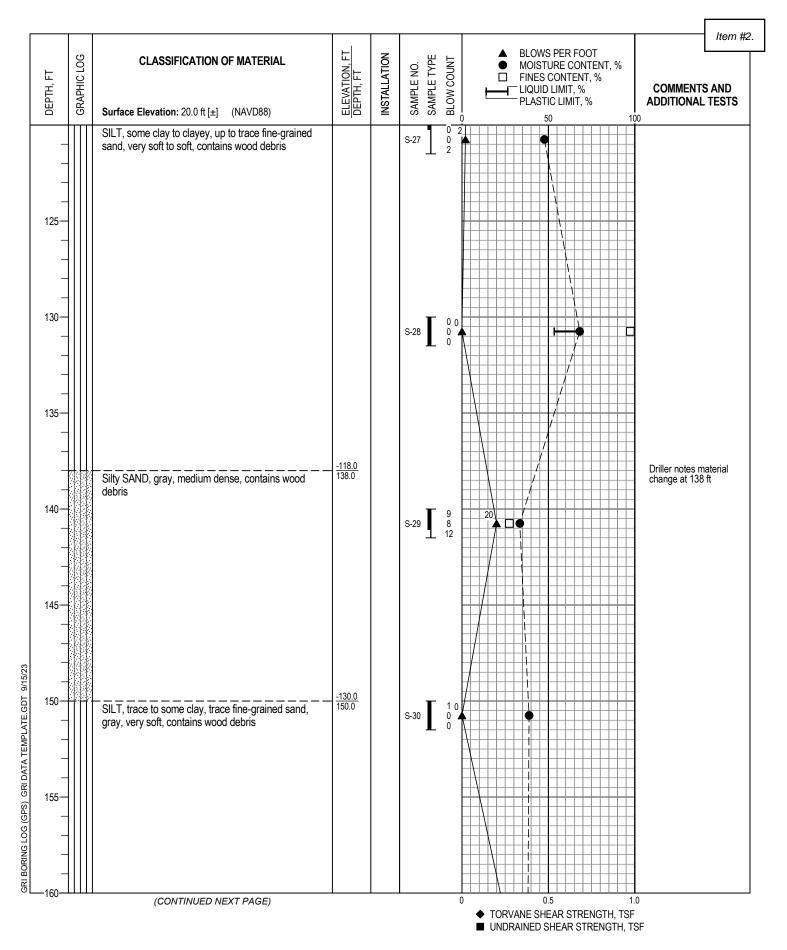

Symbol	Sampler Description
Ī	2.0 in. O.D. split-spoon sampler and Standard Penetration Test with recovery (ASTM D1586)
lacksquare	Shelby tube sampler with recovery (ASTM D1587)
${\rm I\hspace{1em}I}$	3.0 in. O.D. split-spoon sampler with recovery (ASTM D3550)
lacksquare	Grab Sample
	Rock core sample interval
	Sonic core sample interval
	Push probe sample interval

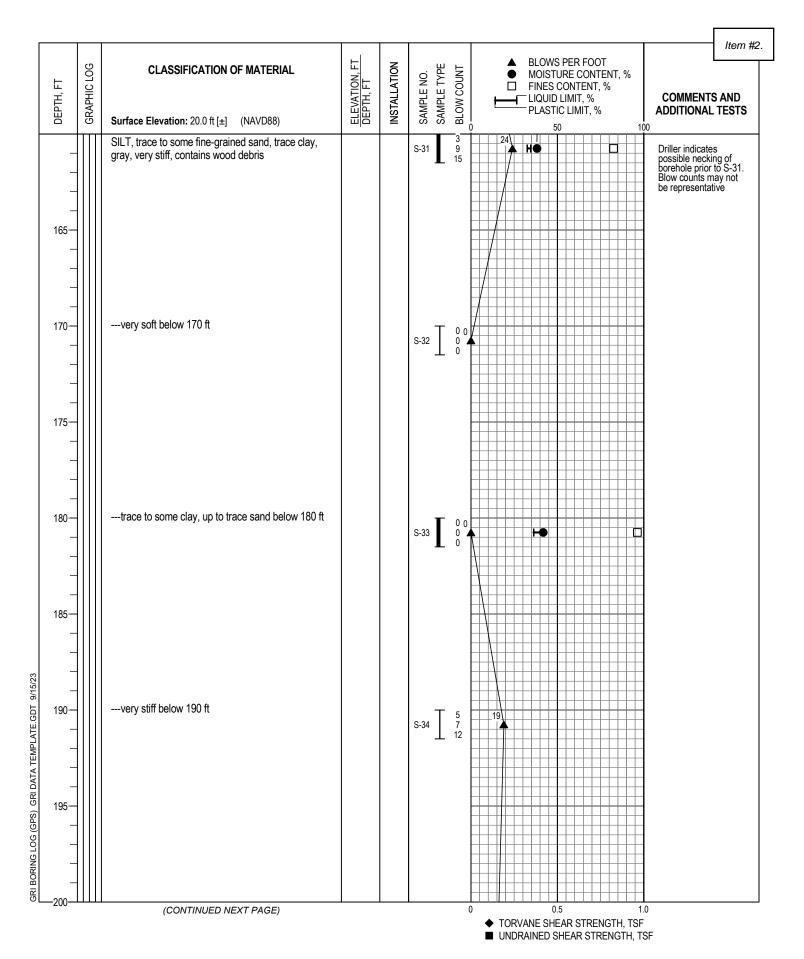
INSTALLATION SYMBOLS

Symbol	Symbol Description
	Flush-mount monument set in concrete
	Concrete, well casing shown where applicable
	Bentonite seal, well casing shown if applicable
	Filter pack, machine-slotted well casing shown where applicable
	Grout, vibrating-wire transducer cable shown where applicable
P	Vibrating-wire pressure transducer
	1-indiameter solid PVC
	1-indiameter hand-slotted PVC
	Grout, inclinometer casing shown where applicable


FIELD MEASUREMENTS

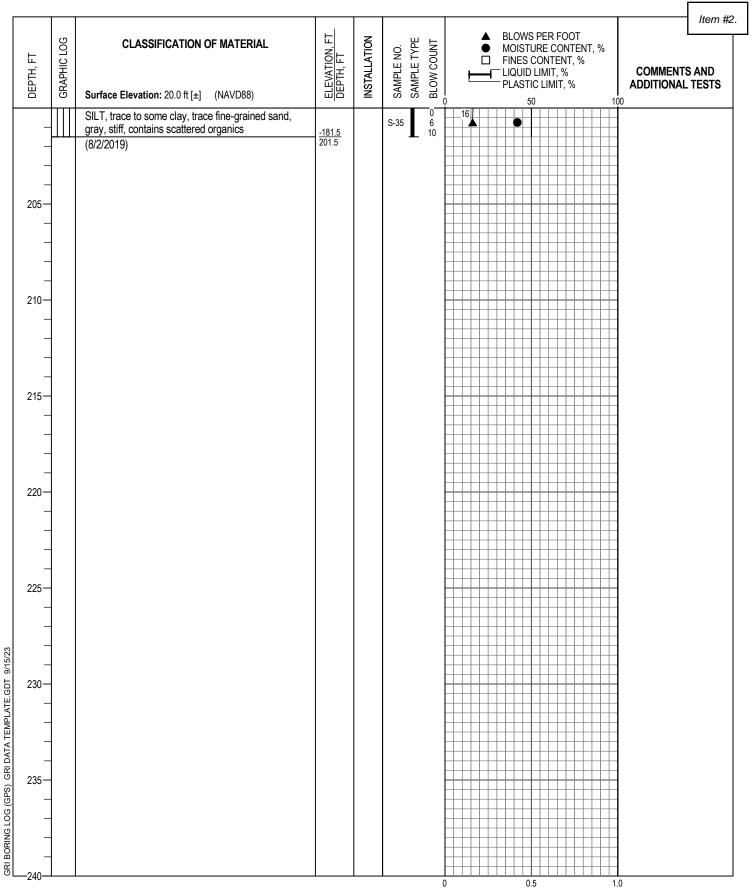

I ILLD IVIL	TILED WIEASOKEWENTS					
Symbol	Typical Description					
$\bar{\Delta}$	Groundwater level during drilling and date measured					
Ā	Groundwater level after drilling and date measured					
	Rock/sonic core or push probe recovery (%)					
	Rock quality designation (RQD, %)					


◆ TORVANE SHEAR STRENGTH, TSF
 ■ UNDRAINED SHEAR STRENGTH, TSF



G|R|I

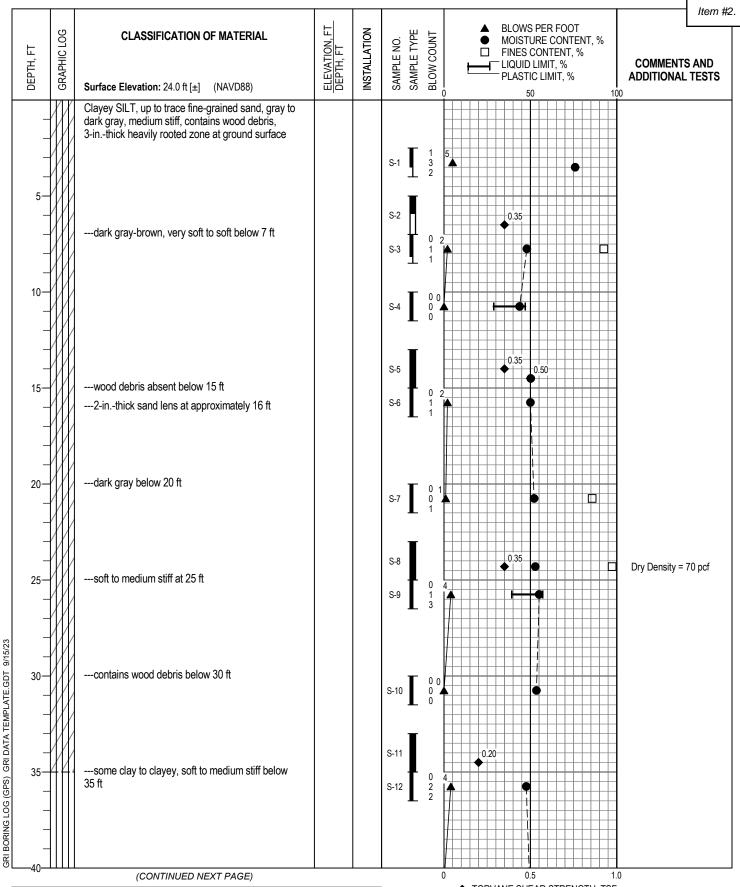
SEP. 2023 JOB NO. 6771-A



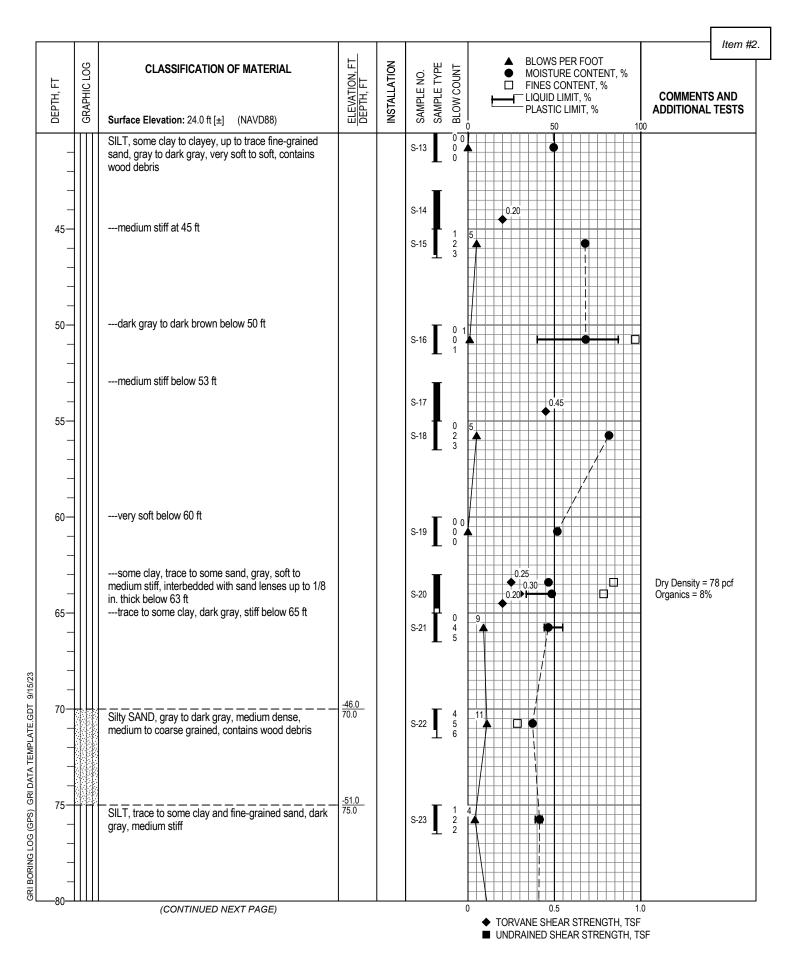
GRI BORING B-1

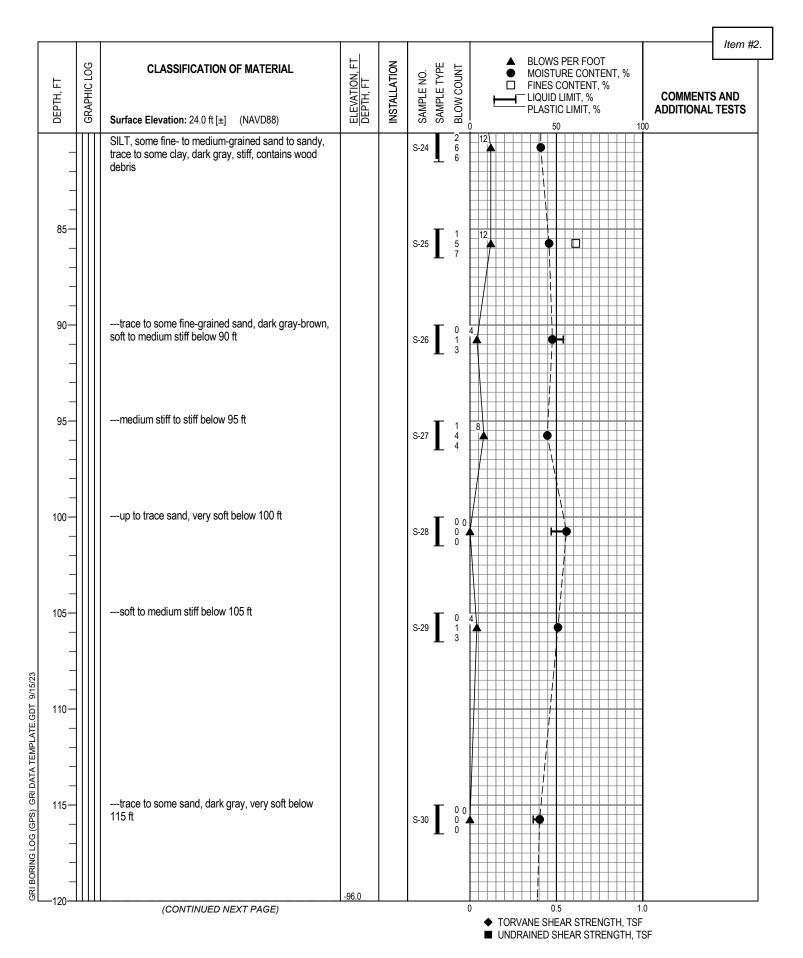
SEP. 2023

JOB NO. 6771-A

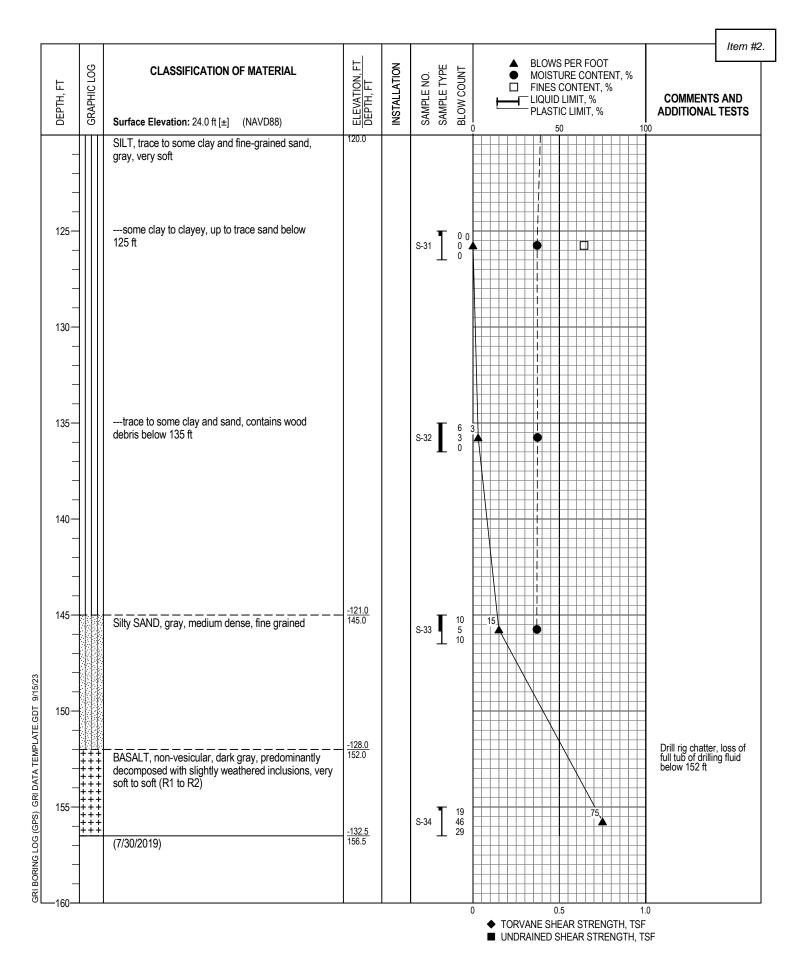

925

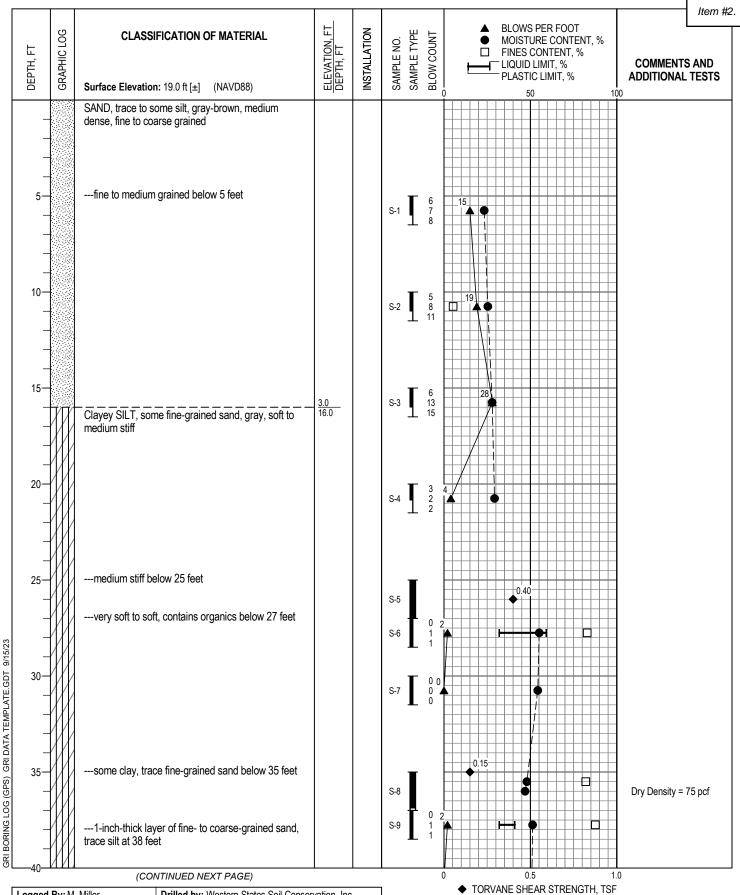
◆ TORVANE SHEAR STRENGTH, TSF


■ UNDRAINED SHEAR STRENGTH, TSF



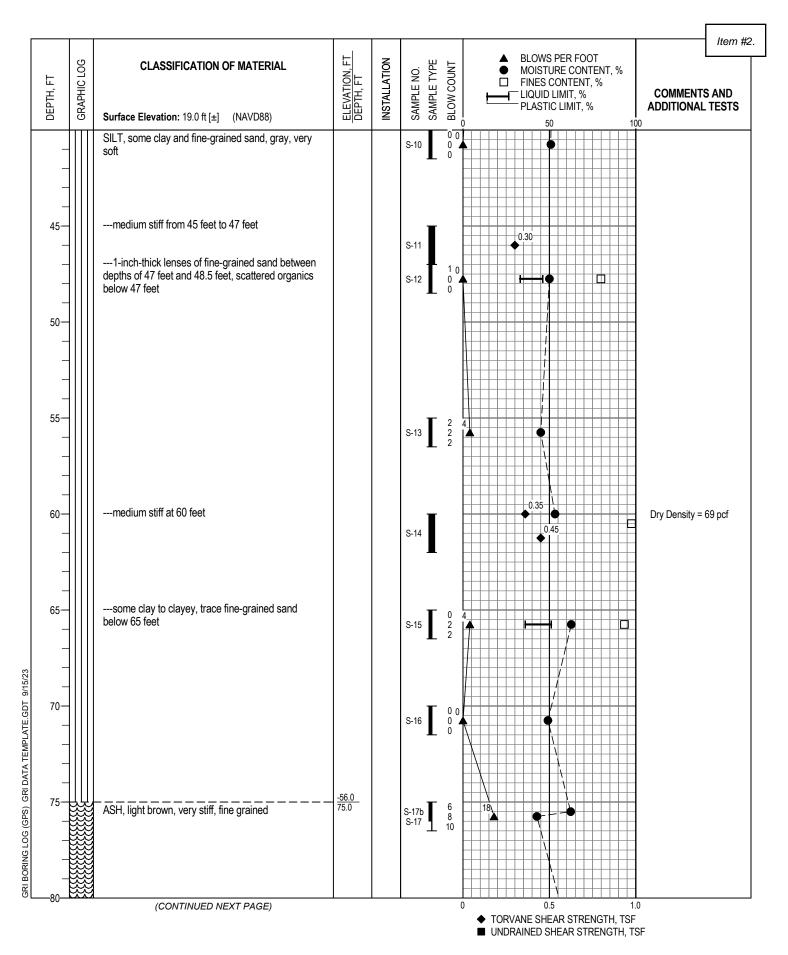
◆ TORVANE SHEAR STRENGTH, TSF■ UNDRAINED SHEAR STRENGTH, TSF

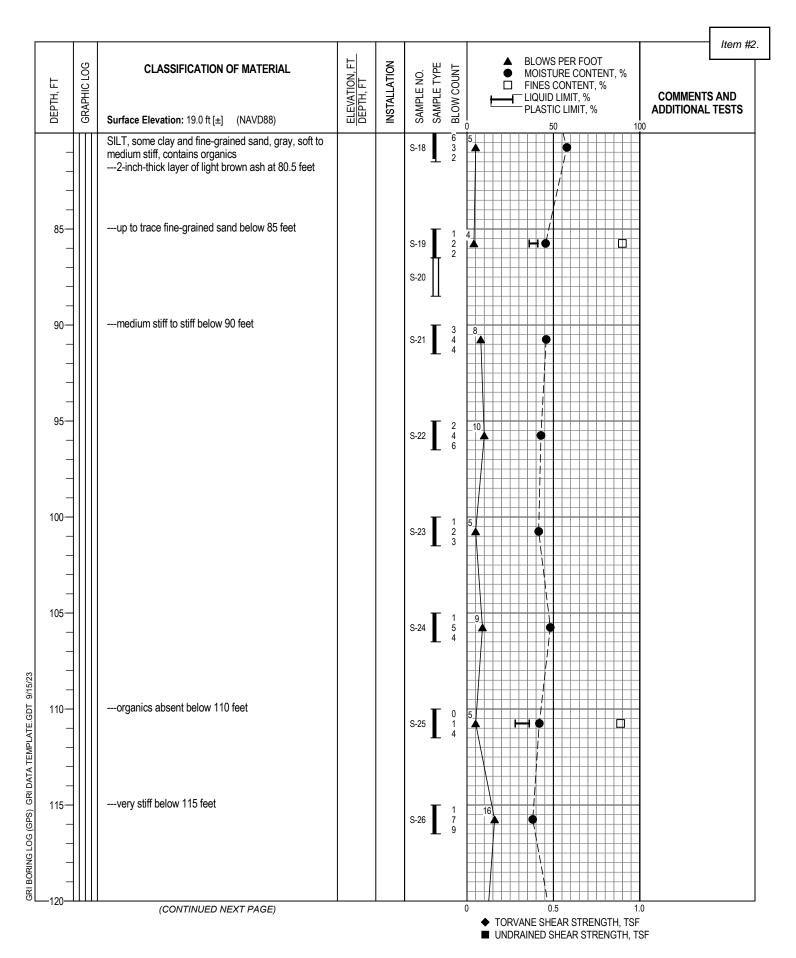


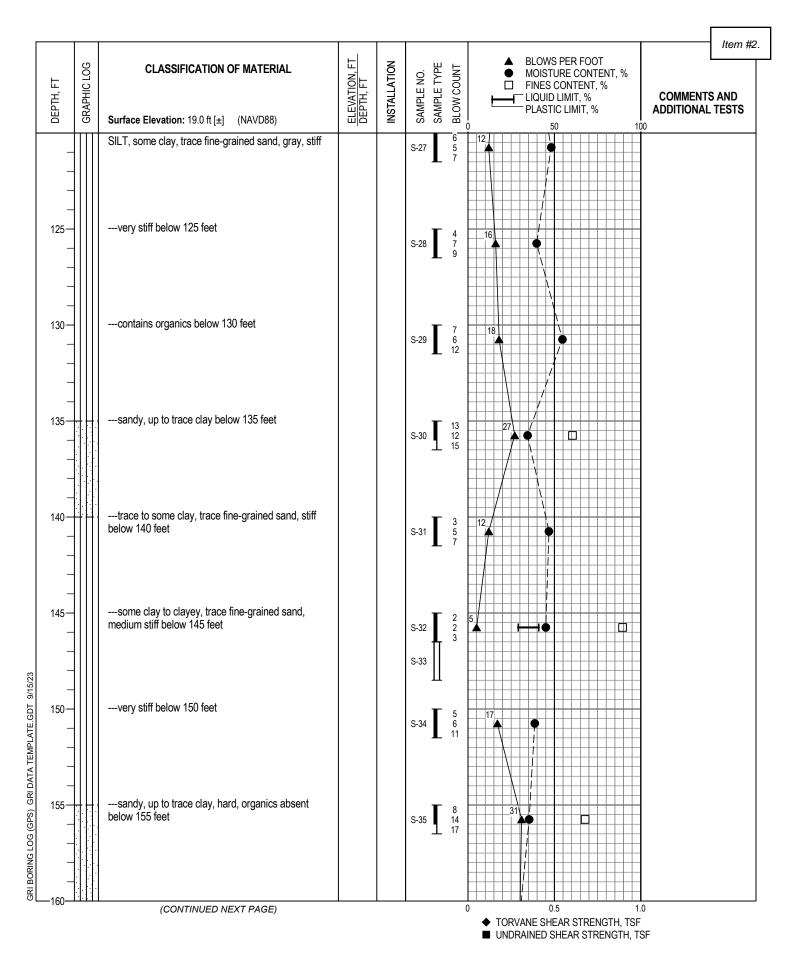


GRI

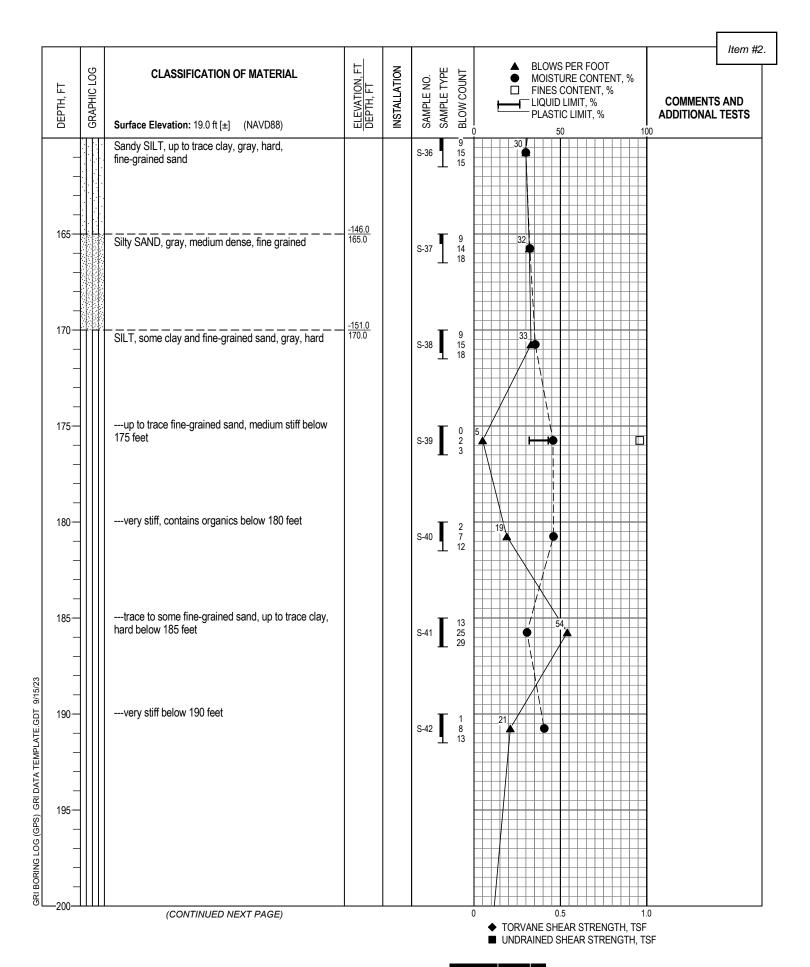
BORING B-2

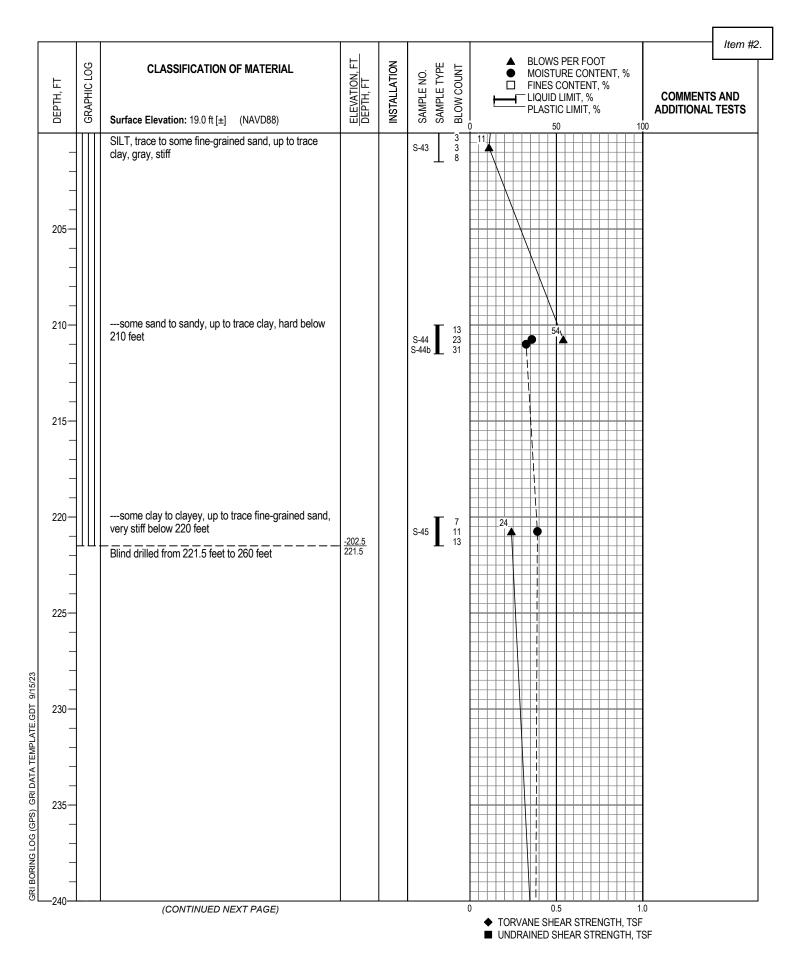

SEP. 2023 JOB NO. 6771-A

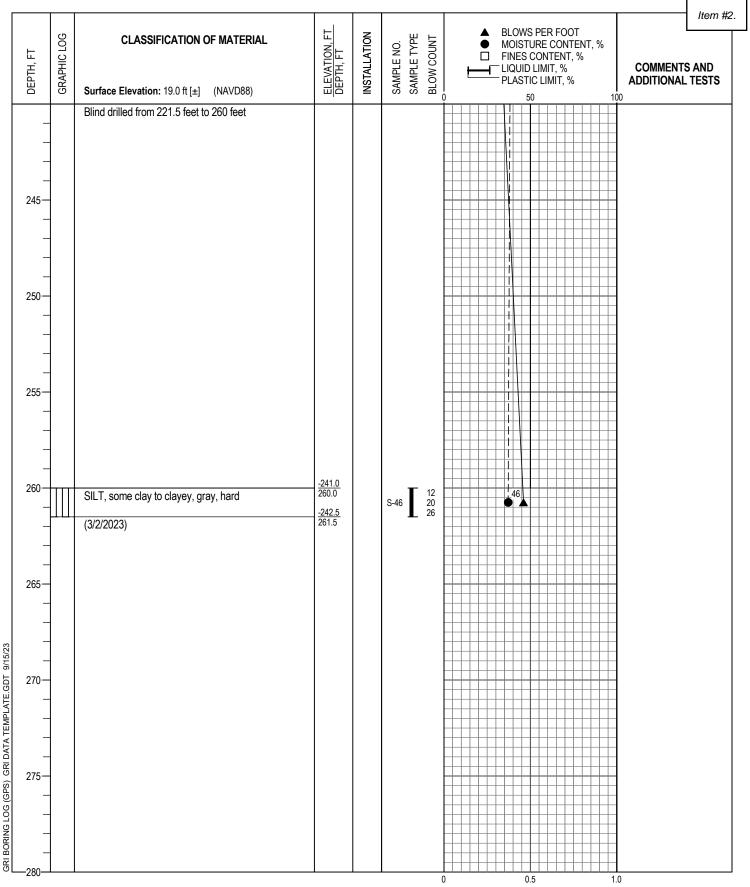

930



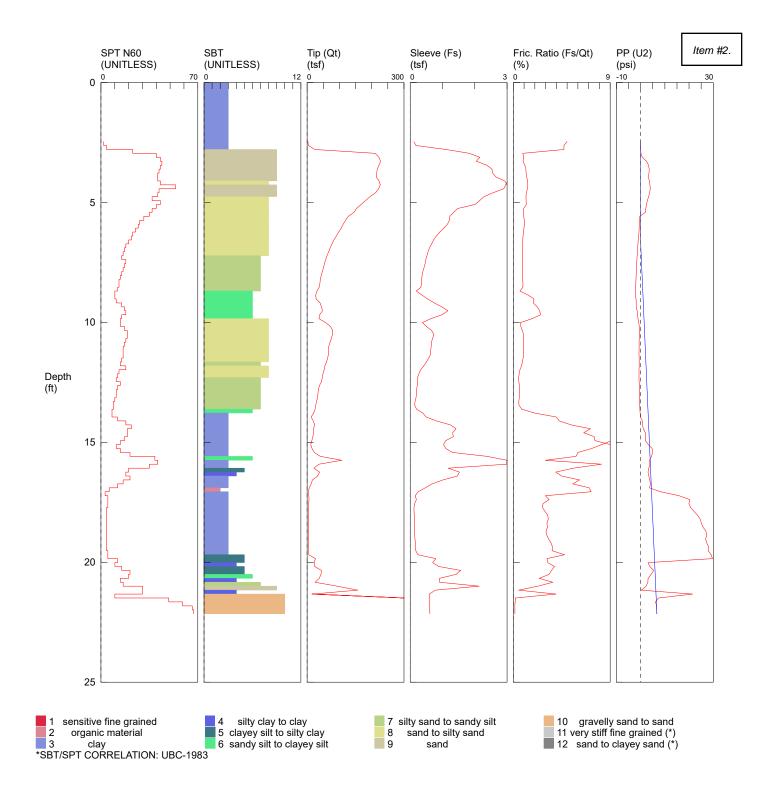
■ UNDRAINED SHEAR STRENGTH, TSF





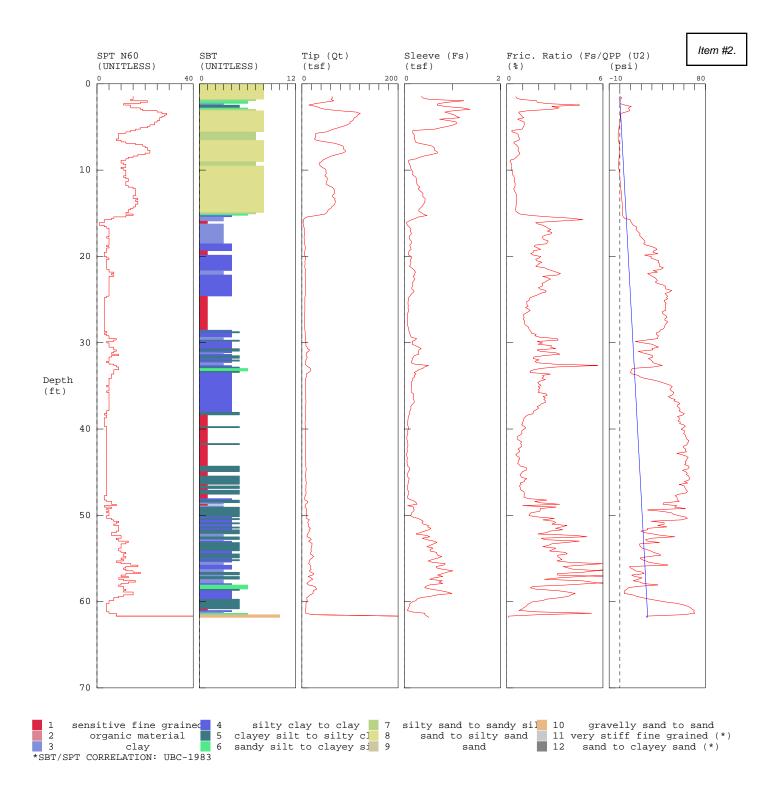


G|R|I



- ◆ TORVANE SHEAR STRENGTH, TSF
- UNDRAINED SHEAR STRENGTH, TSF

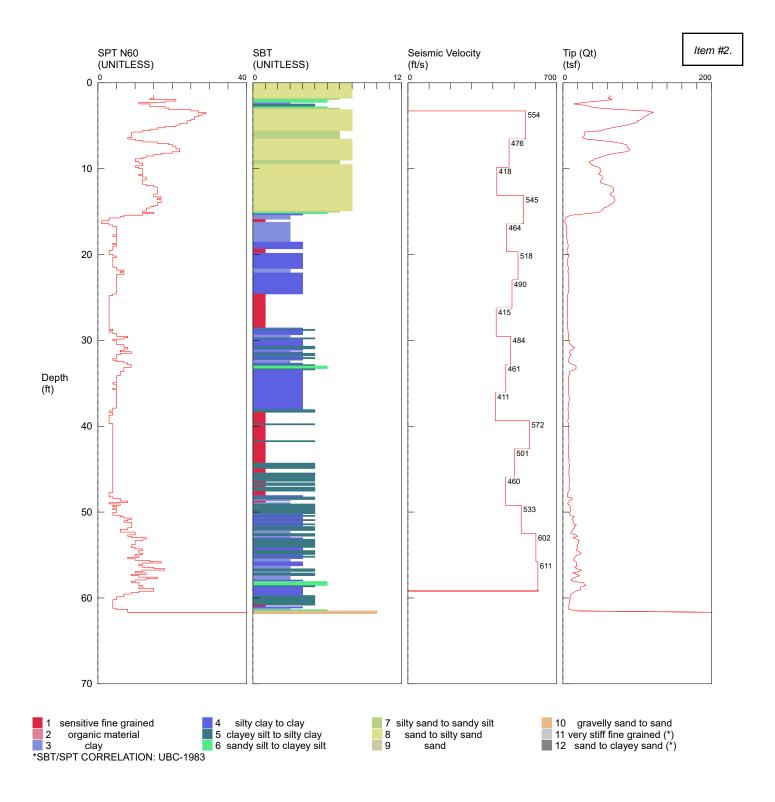
BORING B-3



Observed By: G. Martin		Advanced By: Oregon Geotechnical Explorations, Inc.		
Date Started: 07/30/19 Ground Surface Elevation: 25ft (NAVD 88)				
Coordinates: Not Available				

CONE PENETRATION TEST CPT-1

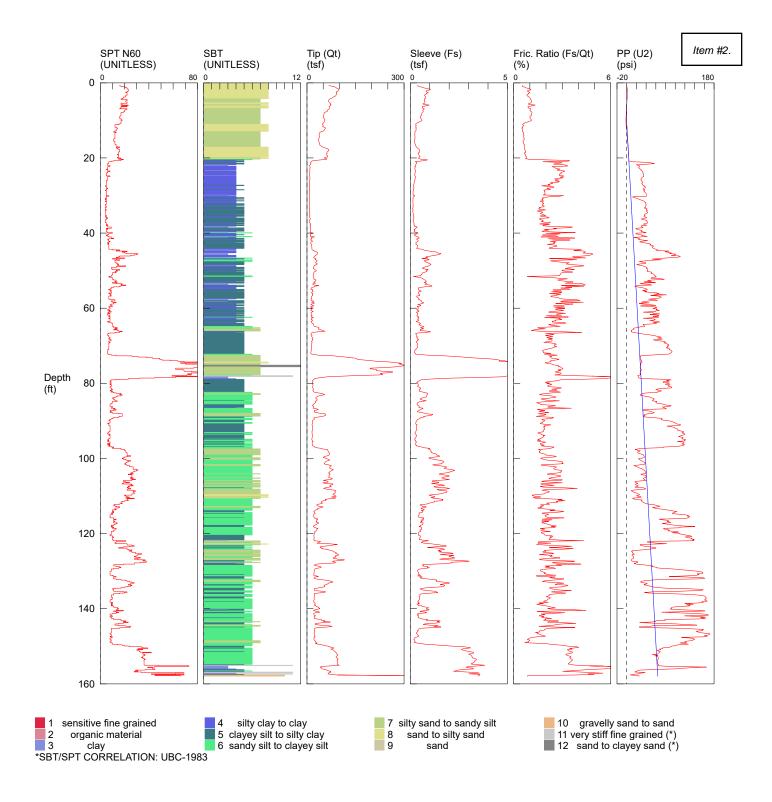
SEP. 2023 JOB NO. 6771-A FIG. 4 938



Observed By: G. Martin		Advanced By: Oregon Geotechnical Explorations, Inc.		
Date Started: 07/30/19	07/30/19 Ground Surface Elevation: 25ft (NAVD 88)			
Coordinates: Not Available	9			

CONE PENETRATION TEST CPT-2

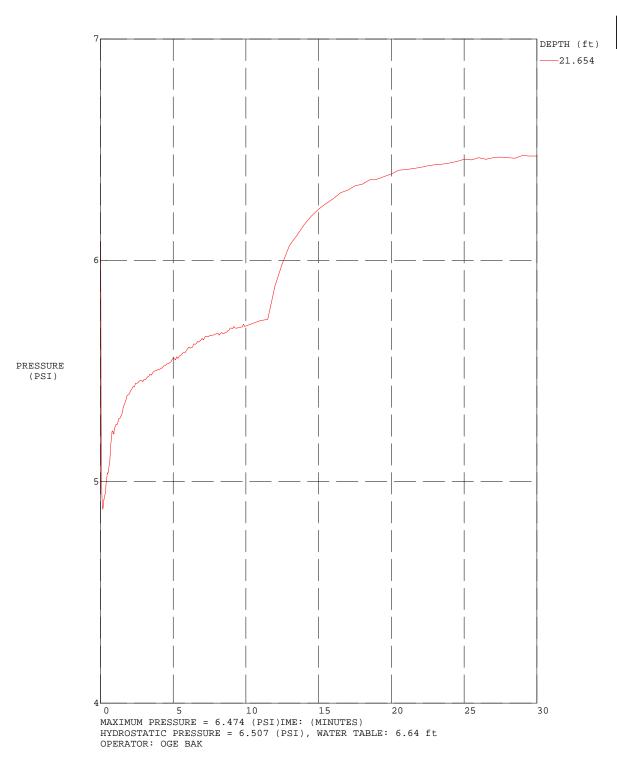
SEP. 2023 JOB NO. 6771-A FIG. 939


Observed By: G. Martin		Advanced By: Oregon Geotechnical Explorations, Inc.	
Date Started: 07/30/19	07/30/19 Ground Surface Elevation: 22ft (NAVD 88)		
Coordinates: Not Available	9		

CONE PENETRATION TEST CPT-2

(SEISMIC VELOCITY PROFILE)

SEP. 2023 JOB NO. 6771-A FIG. 6 940

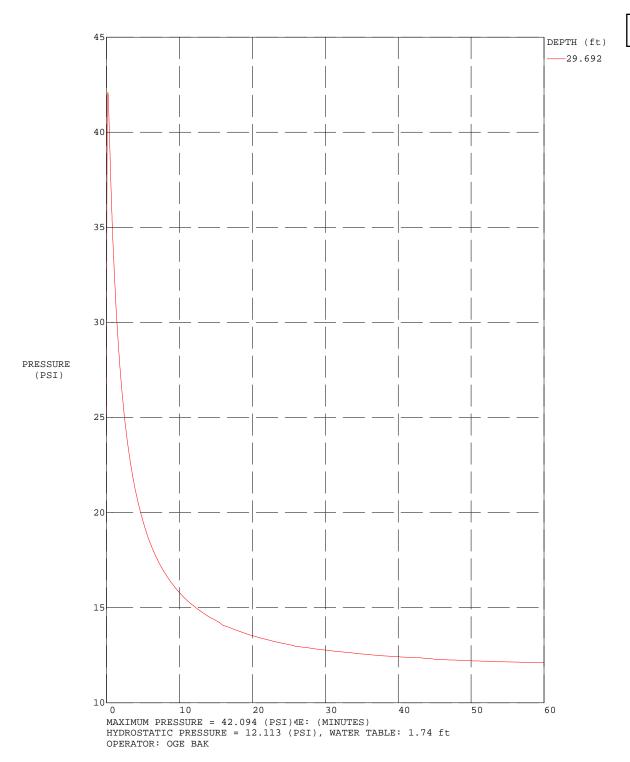

Observed By: G. Mart	n	Advanced By: Oregon Geotechnical Explorations, Inc.		
Date Started: 07/31/1	ate Started: 07/31/19 Ground Surface Elevation: 25ft (NAVD 88)			
Coordinates: Not Available				

CONE PENETRATION TEST CPT-3

SEP. 2023 JOB NO. 6771-A FIG. 941

Observed By: G. Martin Advanced By: Oregon Geotechnical Explorations, Inc. Date Started: 07/30/19 Ground Surface Elevation: 25ft (NAVD 88)

Coordinates: Not Available

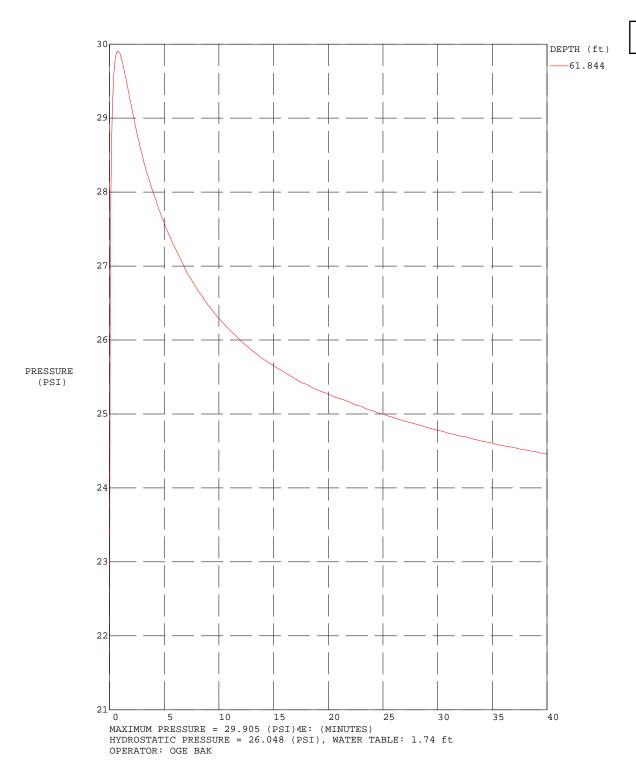


CONE PENETRATION TEST CPT-1 (PORE PRESSURE DISSIPATION)

SEP. 2023 JOB NO. 6771-A FIG.

942

Observed By: G. Martin Advanced By: Oregon Geotechnical Explorations, Inc. Date Started: 07/30/19 Ground Surface Elevation: 25ft (NAVD 88)


Coordinates: Not Available

CONE PENETRATION TEST CPT-2 (PORE PRESSURE DISSIPATION)

SEP. 2023 JOB NO. 6771-A

Item #2.

Observed By: G. Martin Advanced By: Oregon Geotechnical Explorations, Inc. Date Started: 07/30/19 Ground Surface Elevation: 25ft (NAVD 88)

Coordinates: Not Available

CONE PENETRATION TEST CPT-2 (PORE PRESSURE DISSIPATION)

SEP. 2023 JOB NO. 6771-A FIG. 1(

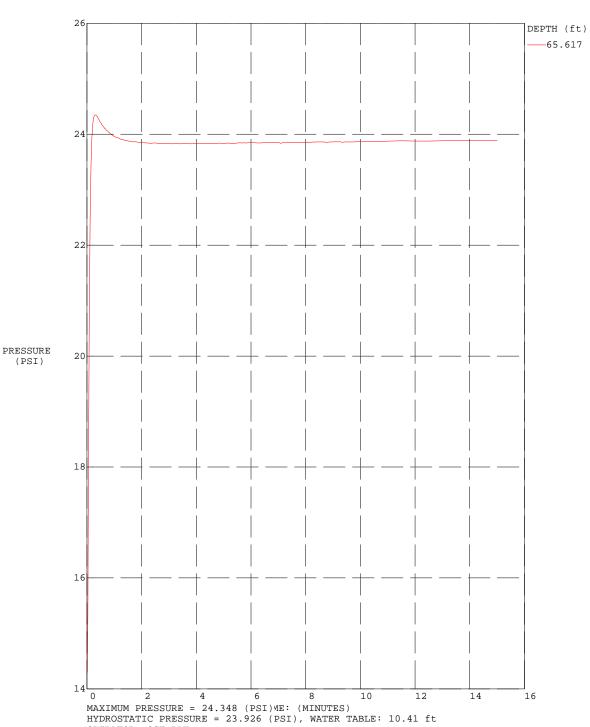
Item #2.

Observed By: G. Martin

Advanced By: Oregon Geotechnical Explorations, Inc.

Date Started: 07/31/19 | Ground Surface Elevation: 22ft (NAVD 88)

Coordinates: Not Available



CONE PENETRATION TEST CPT-3

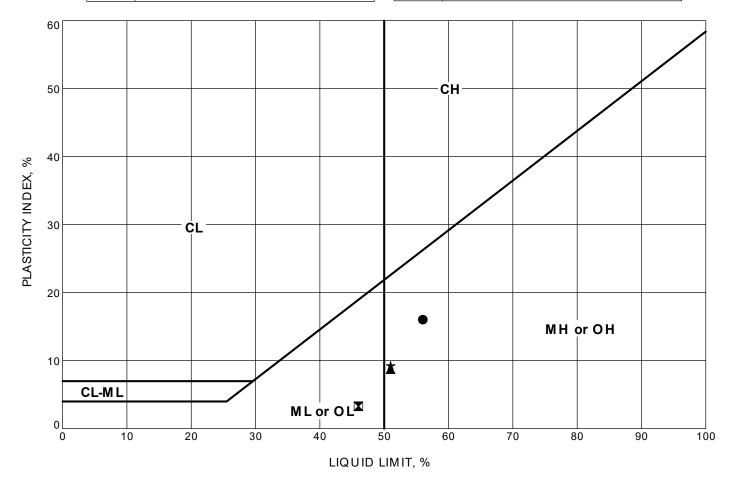
(PORE PRESSURE DISSIPATION)

SEP. 2023 JOB NO. 6771-A FIG. 1 945

Item #2.

OPERATOR: OGE BAK

Observed By: G. Martin Advanced By: Oregon Geotechnical Explorations, Inc. Date Started: 07/31/19 Ground Surface Elevation: 22ft (NAVD 88) Coordinates: Not Available

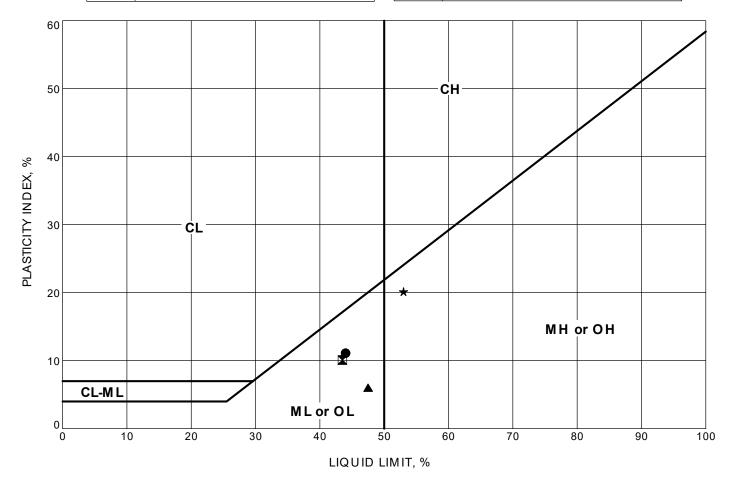


CONE PENETRATION TEST CPT-3 (PORE PRESSURE DISSIPATION)

SEP. 2023 JOB NO. 6771-A FIG. 12 946

GROUP	UNIFIED SOIL CLASSIFICATION
SYMBOL	FINE-GRAINED SOIL GROUPS
	ORGANIC SILTS AND ORGANIC SILTY
OL	CLAYS OF LOW PLASTICITY
	INORGANIC CLAYEY SILTS TO VERY FINE
ML	SANDS OF SLIGHT PLASTICITY
	INORGANIC CLAYS OF LOW TO MEDIUM
CL	PLASTICITY

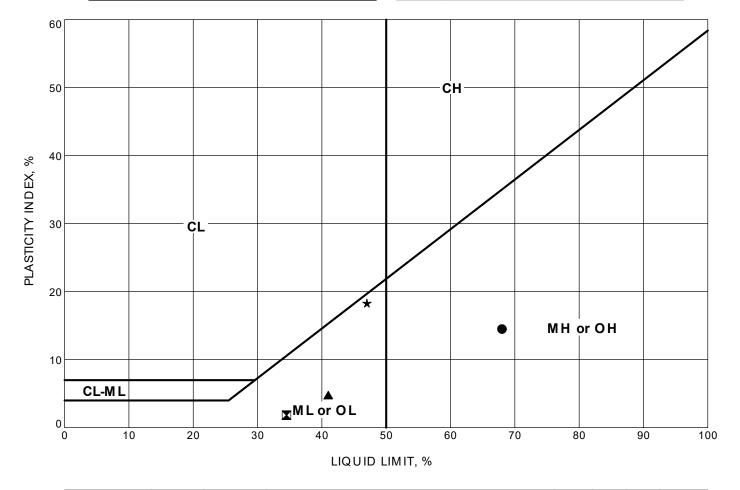
GROUP	UNIFIED SOIL CLASSIFICATION
SYMBOL	FINE-GRAINED SOIL GROUPS
	ORGANIC CLAYS OF MEDIUM TO HIGH
ОН	PLASTICITY, ORGANIC SILTS
мн	INORGANIC SILTS AND CLAYEY SILT
СН	INORGANIC CLAYS OF HIGH PLASTICITY



	Location	Sample	Depth, ft	Classification	LL	PL	PI	MC, %
•	B-1	S-11	30.0	SILT, some clay to clayey, up to a trace of fine-grained sand, brown to dark-brown	56	40	16	52
	B-1	S-13	39.5	SILT, some fine-grained sand, trace clay, gray	46	43	3	46
•	B-1	S-14	40.0	SILT, some clay, trace to some fine- to medium-grained sand, dark gray to brown-gray	51	42	9	51
*	B-1	S-17	50.0	SILT, some clay, trace to some fine- to medium-grained sand, dark gray to brown-gray	51	42	9	47

GROUP	UNIFIED SOIL CLASSIFICATION
SYMBOL	FINE-GRAINED SOIL GROUPS
	ORGANIC SILTS AND ORGANIC SILTY
OL	CLAYS OF LOW PLASTICITY
	INORGANIC CLAYEY SILTS TO VERY FINE
ML	SANDS OF SLIGHT PLASTICITY
	INORGANIC CLAYS OF LOW TO MEDIUM
CL	PLASTICITY

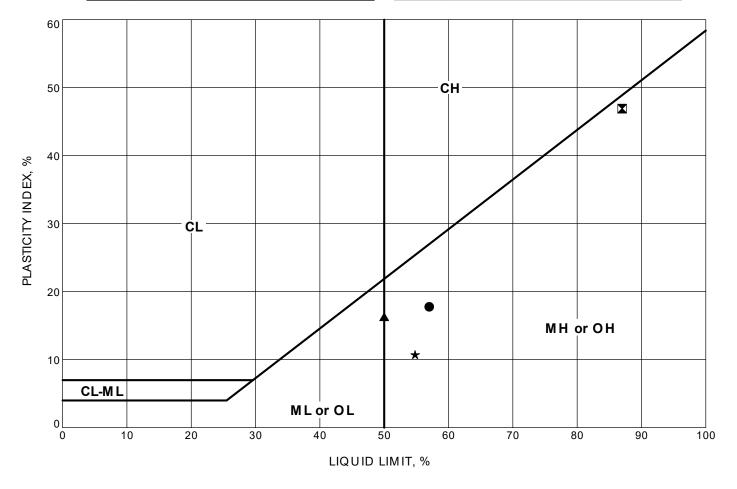
GROUP	UNIFIED SOIL CLASSIFICATION
SYMBOL	FINE-GRAINED SOIL GROUPS
	ORGANIC CLAYS OF MEDIUM TO HIGH
ОН	PLASTICITY, ORGANIC SILTS
мн	INORGANIC SILTS AND CLAYEY SILT
СН	INORGANIC CLAYS OF HIGH PLASTICITY



	Location	Sample	Depth, ft	Classification	Ц	PL	PI	MC, %
•	B-1	S-19	60.0	SILT, some clay and fine-grained sand, dark gray	44	33	11	49
	B-1	S-22	75.0	Sandy SILT, some clay to clayey, dark gray, fine-grained sand	44	33	11	54
•	B-1	S-23	80.0	SILT, some fine-grained sand to sandy, trace to some clay, dark brown-gray	48	41	7	37
*	B-1	S-25	100.0	SILT, some clay to clayey, up to trace fine-grained sand, gray	53	33	20	52

GROUP	UNIFIED SOIL CLASSIFICATION
SYMBOL	FINE-GRAINED SOIL GROUPS
	ORGANIC SILTS AND ORGANIC SILTY
OL	CLAYS OF LOW PLASTICITY
	INORGANIC CLAYEY SILTS TO VERY FINE
ML	SANDS OF SLIGHT PLASTICITY
	INORGANIC CLAYS OF LOW TO MEDIUM
CL	PLASTICITY

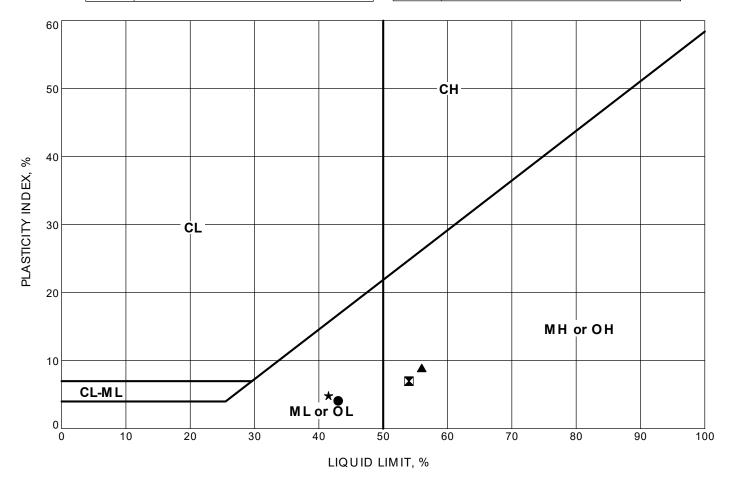
GROUP SYMBOL	UNIFIED SOIL CLASSIFICATION FINE-GRAINED SOIL GROUPS
ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
мн	INORGANIC SILTS AND CLAYEY SILT
СН	INORGANIC CLAYS OF HIGH PLASTICITY



	Location	Sample	Depth, ft	Classification	LL	PL	PI	M C, %
•	B-1	S-28	130.0	SILT, some clay to clayey, up to trace fine-grained sand	68	53	15	68
	B-1	S-31	160.0	SILT, trace to some fine-grained sand, trace clay, gray	35	33	1	38
•	B-1	S-33	180.0	SILT, trace to some clay, up to trace fine-grained sand, gray	41	36	5	42
*	B-2	S-4	10.0	Clayey SILT, up to trace fine-grained sand, dark gray-brown	47	29	18	44

GROUP	UNIFIED SOIL CLASSIFICATION
SYM BO L	FINE-GRAINED SOIL GROUPS
	ORGANIC SILTS AND ORGANIC SILTY
OL	CLAYS OF LOW PLASTICITY
	INORGANIC CLAYEY SILTS TO VERY FINE
ML	SANDS OF SLIGHT PLASTICITY
	INORGANIC CLAYS OF LOW TO MEDIUM
CL	PLASTICITY

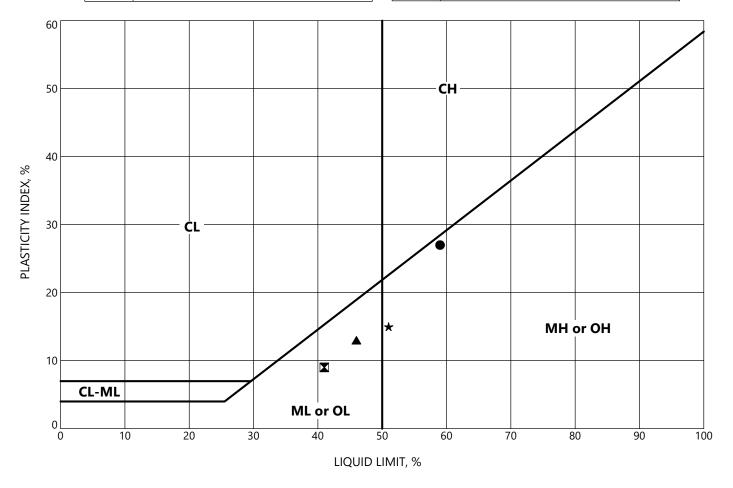
GROUP SYMBOL	UNIFIED SOIL CLASSIFICATION FINE-GRAINED SOIL GROUPS
ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
мн	INORGANIC SILTS AND CLAYEY SILT
СН	INORGANIC CLAYS OF HIGH PLASTICITY



	Location	Sample	Depth, ft	Classification	Ц	PL	PI	MC, %
•	B-2	S-9	25.0	Clayey SILT, up to trace fine-grained sand, dark gray	57	39	18	55
	B-2	S-16	50.0	Clayey SILT, up to trace fine-grained sand, dark gray to dark brown	87	40	47	68
•	B-2	S-20	64.0	SILT, some clay, trace to some fine-grained sand, gray	50	34	16	48
*	B-2	S-21	65.0	SILT, trace to some clay and fine-grained sand, dark gray	55	44	11	46

GROUP UNIFIED SOIL CLASSIFICATION			
SYMBOL	FINE-GRAINED SOIL GROUPS		
	ORGANIC SILTS AND ORGANIC SILTY		
OL	CLAYS OF LOW PLASTICITY		
	INORGANIC CLAYEY SILTS TO VERY FINE		
ML	SANDS OF SLIGHT PLASTICITY		
	INORGANIC CLAYS OF LOW TO MEDIUM		
CL	PLASTICITY		

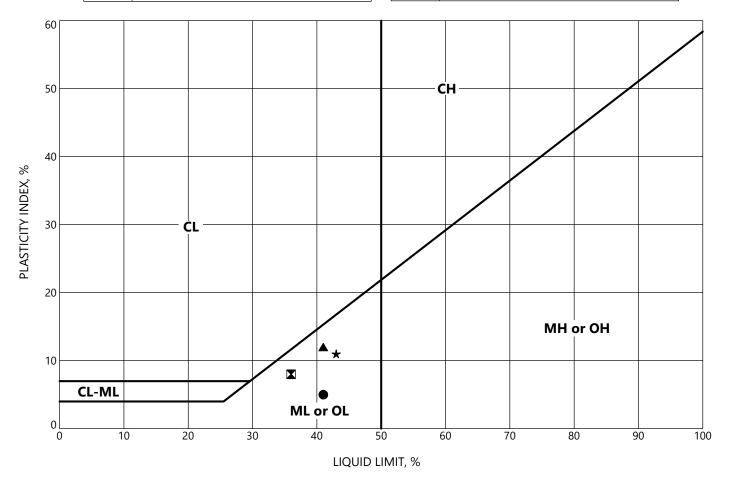
GROUP	UNIFIED SOIL CLASSIFICATION
SYMBOL	FINE-GRAINED SOIL GROUPS
	ORGANIC CLAYS OF MEDIUM TO HIGH
ОН	PLASTICITY, ORGANIC SILTS
мн	INORGANIC SILTS AND CLAYEY SILT
СН	INORGANIC CLAYS OF HIGH PLASTICITY



	Location	Sample	Depth, ft	Classification	Ц	PL	PI	MC, %
•	B-2	S-23	75.0	SILT, trace to some clay and fine-grained sand, dark gray	43	39	4	41
	B-2	S-26	90.0	SILT, trace to some clay and fine-grained sand, dark gray-brown	54	47	7	48
•	B-2	S-28	100.0	SILT, trace to some clay, up to trace fine-grained sand, dark gray-brown	56	47	9	56
*	B-2	S-30	115.0	SILT, trace to some clay and fine-grained sand, dark gray	42	37	5	40

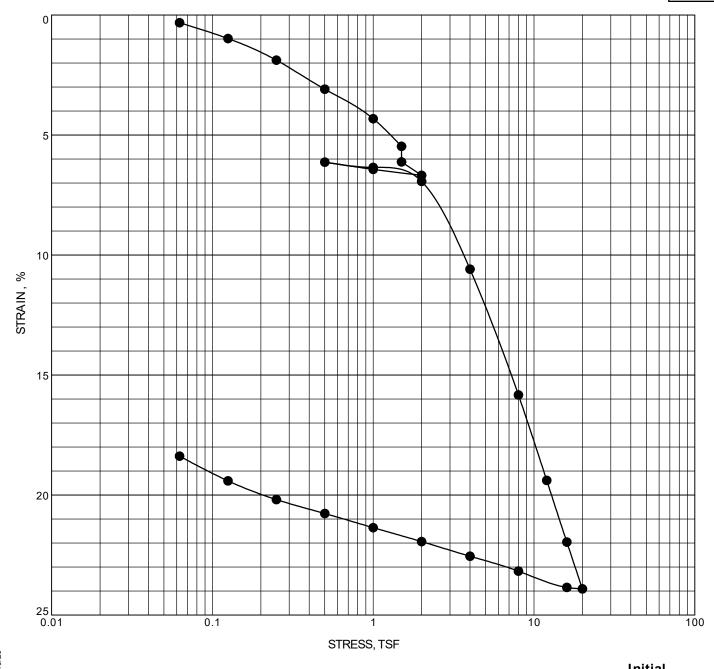
GROUP SYMBOL	UNIFIED SOIL CLASSIFICATION FINE-GRAINED SOIL GROUPS
OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
ML	INORGANIC CLAYEY SILTS TO VERY FINE SANDS OF SLIGHT PLASTICITY
CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY

GROUP SYMBOL	UNIFIED SOIL CLASSIFICATION FINE-GRAINED SOIL GROUPS
ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
МН	INORGANIC SILTS AND CLAYEY SILT
СН	INORGANIC CLAYS OF HIGH PLASTICITY

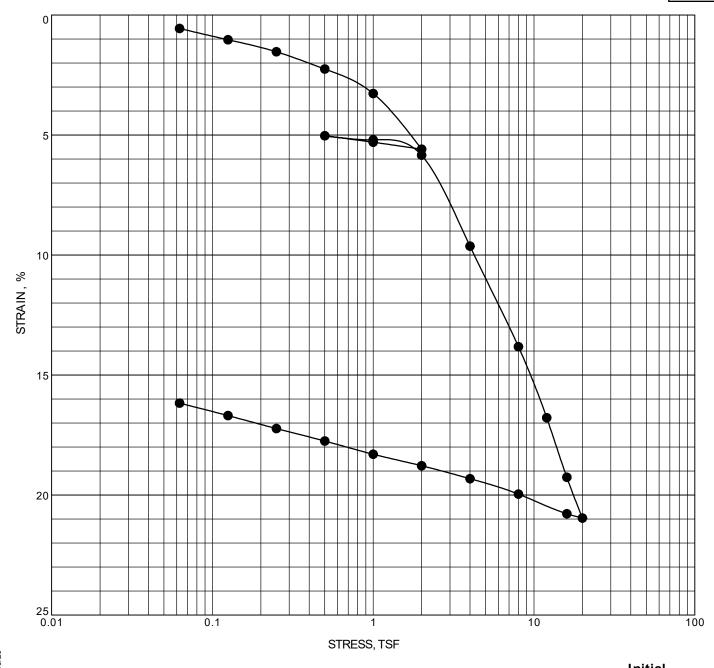

	Location	Sample	Depth, ft	Classification	LL	PL	PI	MC, %
•	B-3	S-6	27.0	Clayey SILT, some fine-grained sand, gray	59	32	27	55
	B-3	S-9	37.0	SILT, some clay, trace fine-grained sand, gray	41	32	9	51
•	B-3	S-12	47.0	SILT, some clay, trace fine-grained sand, gray	46	33	13	50
*	B-3	S-15	65.0	SILT, some clay to clayey, trace fine-grained sand, gray	51	36	15	63

SEP. 2023 JOB NO. 6771-A

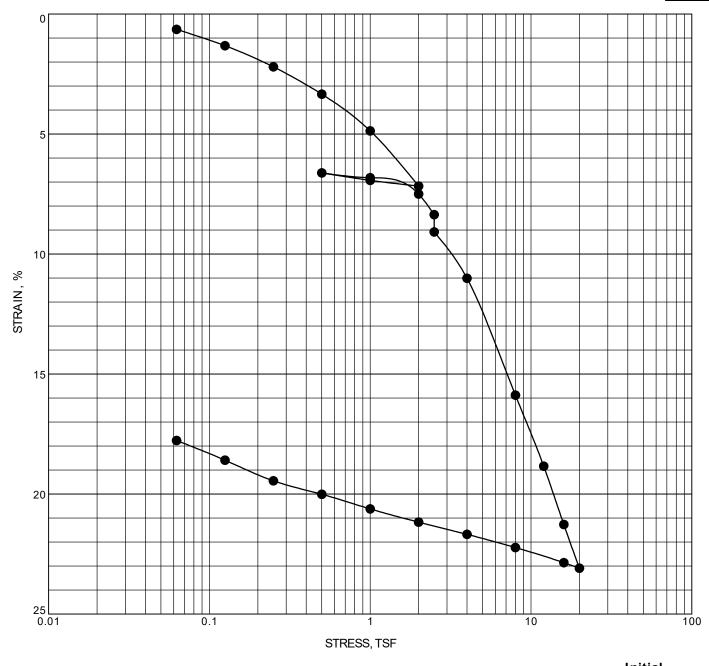
GROUP SYMBOL	UNIFIED SOIL CLASSIFICATION FINE-GRAINED SOIL GROUPS
OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
ML	INORGANIC CLAYEY SILTS TO VERY FINE SANDS OF SLIGHT PLASTICITY
CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY

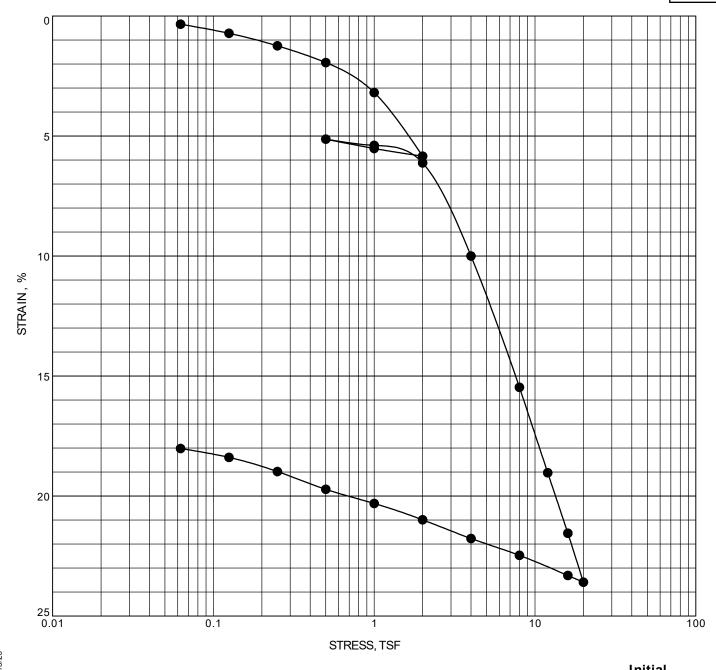

GROUP SYMBOL	UNIFIED SOIL CLASSIFICATION FINE-GRAINED SOIL GROUPS
ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
МН	INORGANIC SILTS AND CLAYEY SILT
СН	INORGANIC CLAYS OF HIGH PLASTICITY

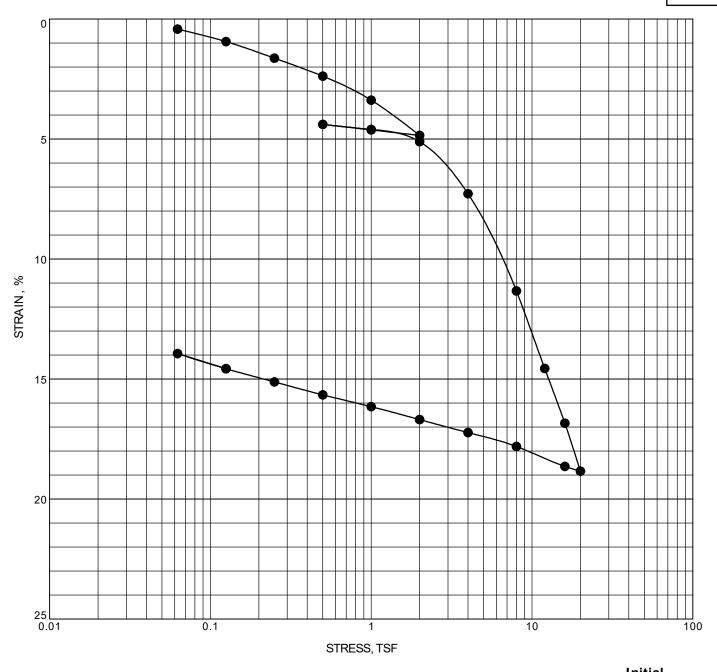
	Location	Sample	Depth, ft	Classification	LL	PL	PI	MC, %
•	B-3	S-19	85.0	SILT, some clay, up to trace fine-grained sand, gray SILT, some clay, trace fine-grained sand, gray		36	5	45
	B-3	S-25	110.0			28	8	42
•	B-3	S-32	145.0	SILT, some clay to clayey, trace fine-grained sand, gray		29	12	45
*	B-3	S-39	175.0	SILT, some clay, trace fine-grained sand, gray	43	32	11	46

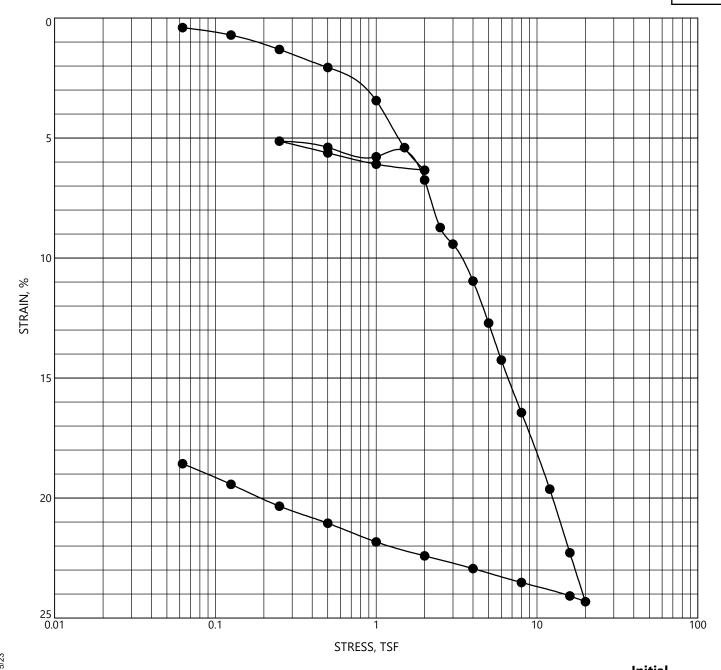


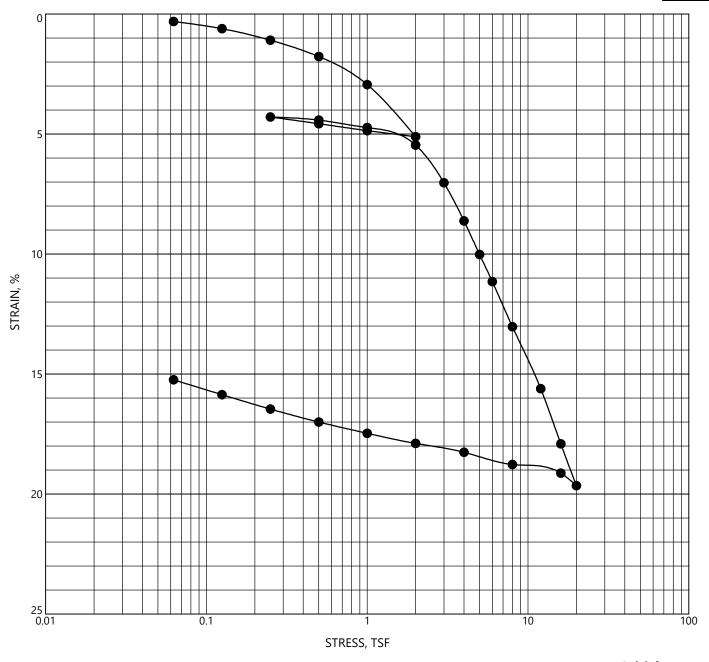
FIG

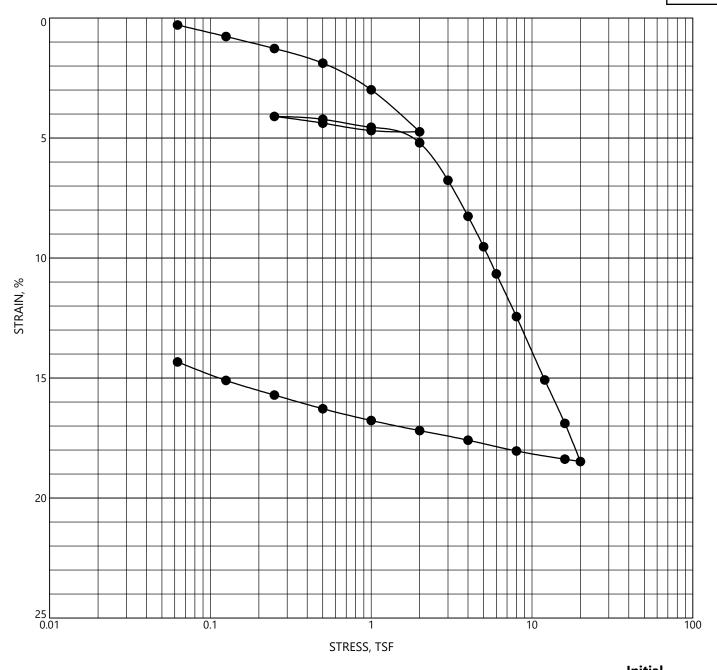

					Initial			
	Location	Sample	Depth, ft	Classification	γ _d , pcf	MC, %		
•	B-1	S-10	29.8	SILT, some clay to clayey, up to trace fine-grained sand, gray, medium stiff	68	53		

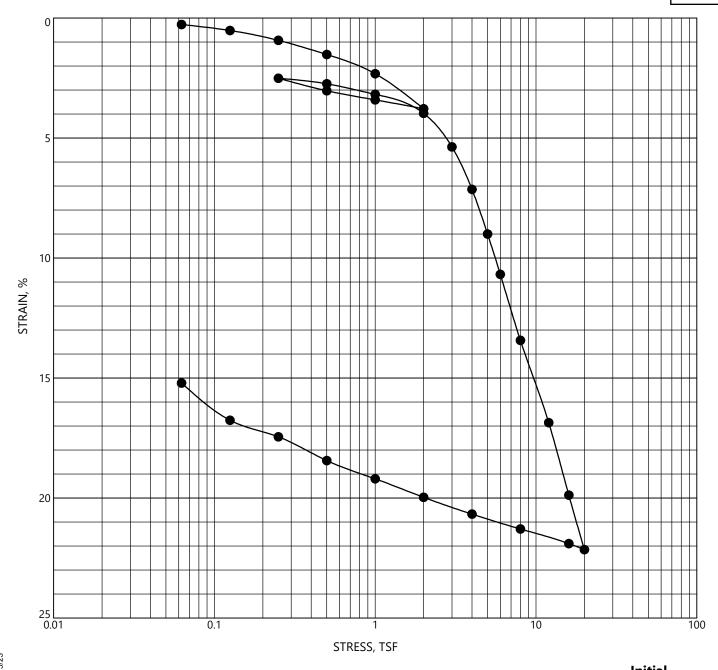

					initiai		
		Location	Sample	Depth, ft	Classification	γ _a , pcf	M C, %
•		B-1	S-13	38.8	SILT, some fine-grained sand, trace clay, gray, soft to medium stiff	75	46

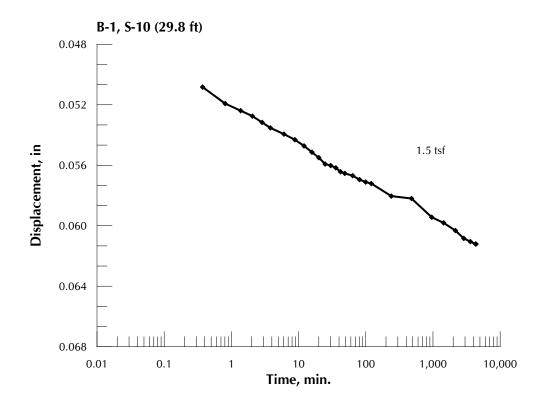

					ını	tiai
	Location	Sample	Depth, ft	Classification	γ _d , pcf	M C, %
•	B-1	S-16	49.8	SILT, some clay, trace to some fine- to medium-grained sand, dark gray to brown-gray, medium stiff	70	50

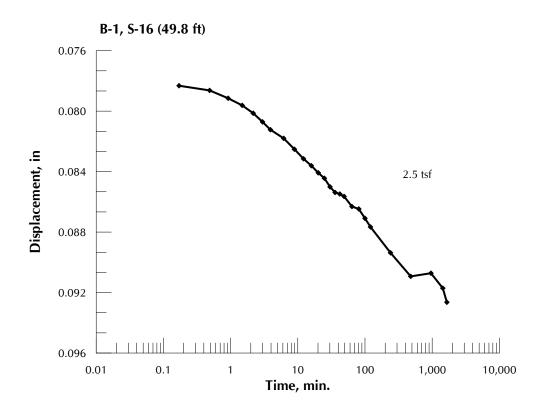

					initiai	
	Location	Sample	Depth, ft	Classification	γ _a , pcf	M C, %
•	B-2	S-5	14.8	Clayey SILT, up to trace fine-grained sand, gray, medium stiff	74	50


					Ini	tiai	
		Location	Sample	Depth, ft	Classification	γ _a , pcf	M C, %
		B-2	S-20	63.5	SILT, some clay, trace to some fine-grained sand, gray, soft to medium stiff	78	47

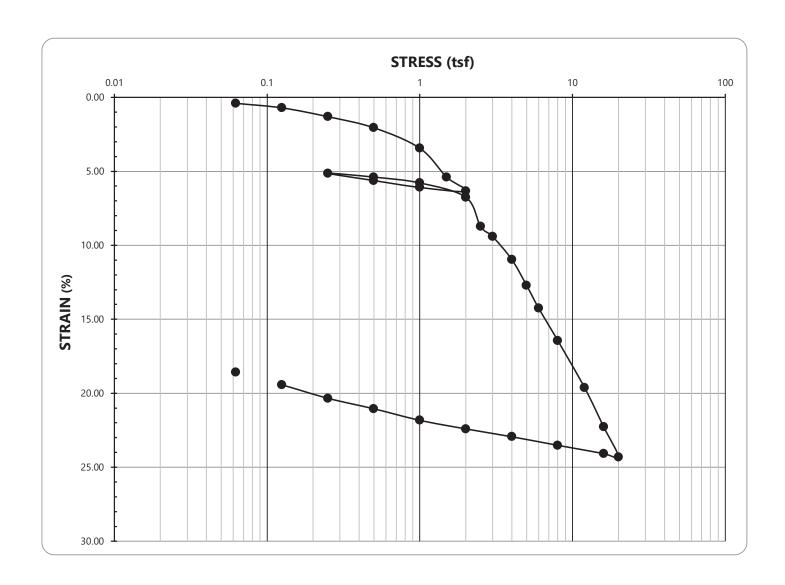

				ini	initiai	
Location	Sample	Depth, ft	Classification	γ _a , pcf	MC, %	
B-3	S-5	25.5	Clayey SILT, some fine-grained sand, gray	67	56	

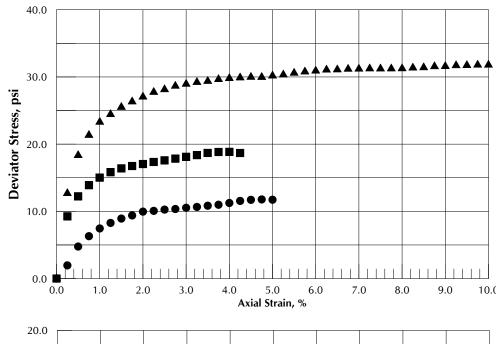

					Init	Initial	
	Location	Sample	Depth, ft	Classification	γ _d , pcf	MC, %	
•	B-3	S-8	35.3	SILT, some clay, trace fine-grained sand, gray	74	48	

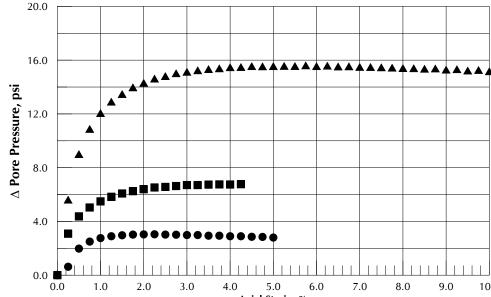

				initiai	
Location	Sample	Depth, ft	Classification	γ _a , pcf	MC, %
B-3	S-11	46.0	SILT, some clay, trace fine-grained sand, gray	76	46

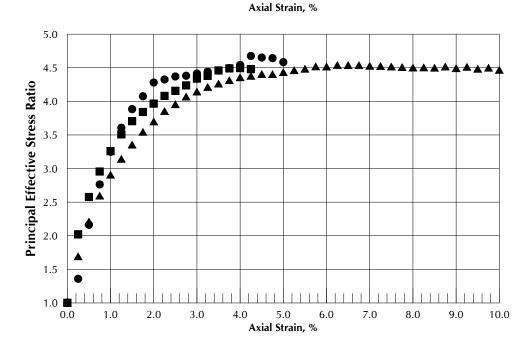


				ini	initiai	
	Location	Sample	Depth, ft	Classification	γ _a , pcf	MC, %
	B-3	S-14	60.5	SILT, some clay and fine-grained sand, gray	70	54






SECONDARY COMPRESSION



SECONDARY COMPRESSION

	Stage 1	Stage 2	Stage 3
Test Symbol			
Boring No.	B-1	B-1	B-1
Sample No.	S-10	S-10	S-10
Depth, ft	29	29	29
Vertical Effective Consolidati	on875	1,750	3,500
Stress, psf			
Sample Height, in.	6.0	5.7	5.5
Initial Sample Diameter, in.	2.85		
Dry Unit Wt, pcf	68.3		
W.C.% before test	55		
W.C.% after test			41
Strain Rate, %/hr	1	1	1

Soil Classification: SILT, some clay, gray, medium stiff

TYPE OF TEST:

■ CU □ CD □ UU ■ UNDISTURBED REMOLDED PRESATURATED BACK PRESSURE

FAILURE CRITERIA: MAXIMUM DEVIA-

TOR STRESS

REMARKS: TAN $\alpha' = SIN \varphi'$

 $a' = c' COS \phi' (psi)$

 $\alpha' = 32.3^{\circ}$

 $\varphi' = 34.3^{\circ}$

c' = 0.20 psi

a' = 0.16 psi

(CU MULTI-STAGE TEST)

TRIAXIAL SHEAR STRENGTH **TEST**

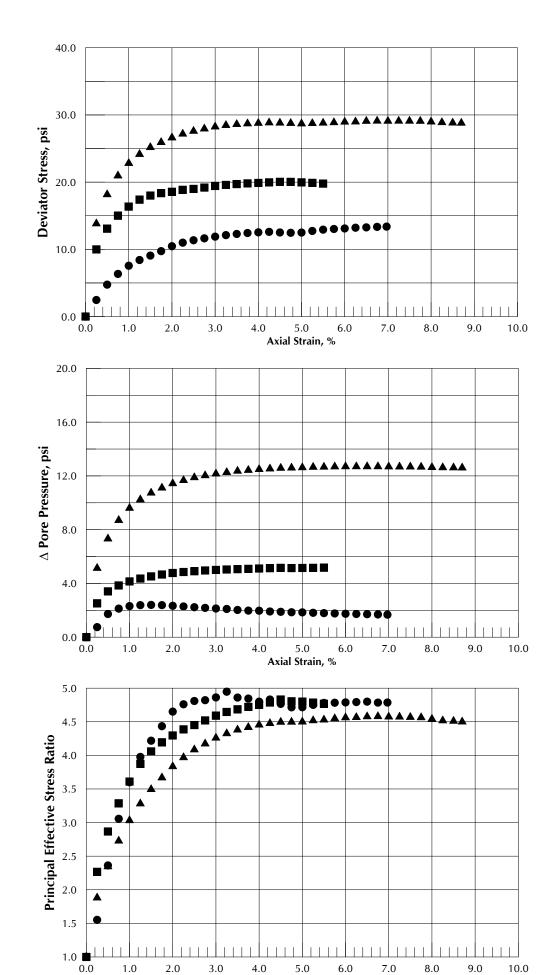
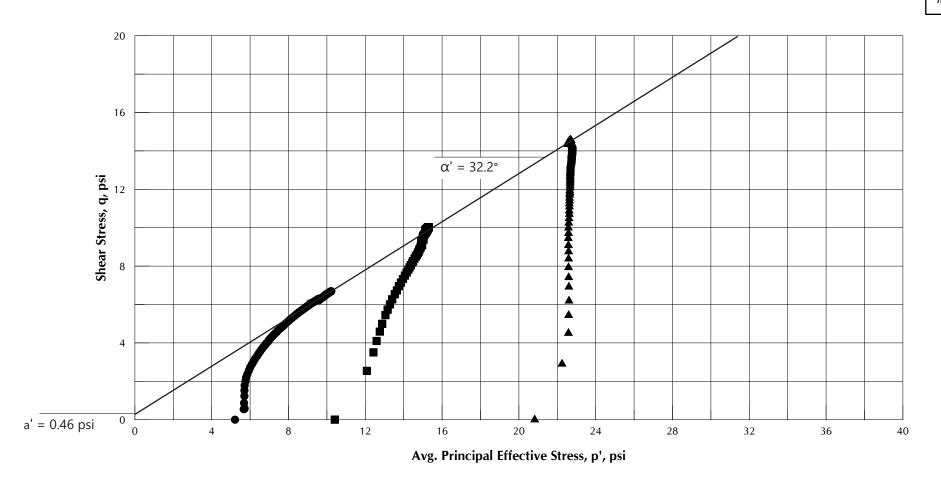

(BORING B-1, SAMPLE S-10)

FIG.


SEP. 2023

JOB NO. 6771-A

965

Axial Strain, %

	Stage 1	Stage 2	Stage
Test Symbol			
Boring No.	B-2	B-2	B-2
Sample No.	S-8	S-8	S-8
Depth, ft	24.5	24.5	24.5
Vertical Effective Consolidat	ion750	1,500	3,000
Stress, psf			
Sample Height, in.	6.0	5.6	5.4
Initial Sample Diameter, in.	2.85		
Dry Unit Wt, pcf	70.0		
W.C.% before test	53		
W.C.% after test			46
Strain Rate, %/hr	1	1	1

SILT, trace to some clay, gray, medium stiff **Soil Classification:**

TYPE OF TEST:

■ CU □ CD □ UU ■ UNDISTURBED REMOLDED

PRESATURATED **BACK PRESSURE**

FAILURE CRITERIA: MAXIMUM DEVIA-

TOR STRESS

REMARKS: TAN $\alpha' = SIN \varphi'$

 $a' = c' COS \phi' (psi)$

 $\alpha' = 32.2^{\circ}$

 $\varphi' = 34.2^{\circ}$

c' = 0.60 psi

a' = 0.46 psi

(CU MULTI-STAGE TEST) TRIAXIAL SHEAR STRENGTH **TEST**

(BORING B-2, SAMPLE S-8)

JOB NO. 6771-A SEP. 2023

APPENDIX C

Site-Specific Geologic Hazards

APPENDIX C

SITE-SPECIFIC GEOLOGIC HAZARDS

C.1 GENERAL

GRI completed a geologic hazards study for the proposed Wastewater Lagoon Repurposing in St. Helens to identify potential geologic and seismic conditions at the project site. This geologic hazard assessment of the project is generally intended to provide an assessment of the presence of geologic hazards and potential for earthquake damage based on preliminary investigations of the regional and site geology, subsurface conditions, and the potential for seismic shaking. The report sections below present discussions on tectonic, geologic, and seismic settings and primary geologic hazards of concern at the site.

C.2 TECTONIC AND GEOLOGIC SETTING

On a regional scale, the site lies at the northern end of the Willamette Valley, a broad, gently deformed, north-south-trending topographic feature separating the Coast Range to the west from the Cascade Mountains to the east. The site lies approximately 90 kilometers inland from the down-dip edge of the seismogenic extent of the CSZ, an active convergent-plate boundary along which remnants of the Farallon Plate (the Gorda, Juan de Fuca, and Explorer plates) are being subducted beneath the western edge of the North American continent. The subduction zone is a broad, eastward-dipping zone of contact between the upper portion of the subducting slabs of the Gorda, Juan de Fuca, and Explorer plates and the overriding North American Plate, as shown on the Tectonic Setting Summary, Figure 1C.

On a local scale, the site lies within the Portland Basin, a large, well-defined, northwest-trending structure characterized as a right-lateral pull-apart basin in the forearc of the CSZ. The local surface geology in close proximity to the site is shown on the Local Geologic Map, Figure 2C. The site is generally mantled with a relatively thin layer of wind-deposited silt, referred to as Portland Hills Silt. These deposits consist of well-sorted silt and fine-grained sand that, on exposed surfaces, weather to clayey silt. These deposits are underlain by a thick sequence of basalt lava flows of the Columbia River Basalt Group. The boundary between the overlying sedimentary materials and underlying basalt is unconformable, indicating a considerable period of time elapsed between the solidification of the last of the basalt flows and the deposition of the overlying sedimentary materials. During this period, the upper portion of the basalt was subjected to surficial processes, including erosion, mass wasting, and chemical and physical degradation. These processes resulted in severe, non-uniform weathering of the upper portions of the basalt.

The Portland Basin is bounded by high-angle, northwest-trending, right-lateral strike-slip faults considered to be seismogenic; however, the relationship between specific earthquakes and individual faults in the area is not well understood since few of these faults are expressed clearly at the ground surface. A limited number of intrabasin faults have been mapped based on stratigraphic offsets and geophysical evidence, and the site is located within 25 km of the inferred traces of the Portland Hills Fault, the East Bank Fault east of the site and the Oatfield Fault south of the site (Personius et al., 2003). The distribution of nearby Quaternary faults is shown on the Local Fault Map, Figure 3C.

C.3 SEISMIC SETTING

C.3.1 General

Because of the proximity of the site to the CSZ and its location within the Portland Basin, three seismic sources contribute to the potential for damaging earthquake motions at the site. Two of these sources are associated with tectonic activity related to the CSZ, including the interface subduction-zone events related to sudden slip between the upper surface of the Juan de Fuca Plate and lower surface of the North American Plate and subcrustal (Benioff zone) events related to deformation and volume changes within the deeper portion of the subducted Juan de Fuca Plate. The third source is associated with movement on relatively shallow faults within and adjacent to the Portland Basin. Each of these sources is considered capable of producing damaging earthquakes in the Pacific Northwest; however, there are no historical records of significant subcrustal earthquakes (M_W >6.0) in northwest Oregon and southwest Washington. Wong (2005) hypothesizes that due to subduction-zone geometry, geophysical conditions, and local geology, southwest Washington and northwest Oregon may not be subject to subcrustal earthquakes of significant magnitude.

Based on review of historical records and evaluation of USGS national seismic-hazard maps (NSHMs), the two primary types of seismic sources at the site are the CSZ interface and local crustal faults.

C.3.2 Cascadia Subduction Zone

Coastal paleoseismic evidence, offshore geological studies, and historical tsunami accounts indicate the CSZ is capable of producing large-magnitude, megathrust earthquakes (M_W 8 to M_W 9) at the interface between the Juan de Fuca and North American plates (Atwater et al. 1995, Goldfinger et al. 2012). Geological studies indicate these megathrust earthquakes have occurred repeatedly in the past 10,000 years (Walton et al., 2021). A combination of paleoseismic and geologic studies (Kelsey et al., 2005), and geodetic studies (Savage et al., 2000) indicate rate of strain accumulation consistent with the assumption that the CSZ is locked beneath offshore northern California, Oregon, Washington, and southern British Columbia (Fluck et al., 1997; Wang et al., 2001).

Numerous geological and geophysical studies suggest the CSZ may be segmented (Hughes and Carr, 1980; Weaver and Michaelson, 1985; Guffanti and Weaver, 1988; Goldfinger, 1994; Kelsey and Bockheim, 1994; Mitchell et al., 1994; Personius, 1995; Nelson and Personius, 1996; Witter, 1999), but the most recent studies suggest that for the last great earthquake in 1700, most of the subduction zone ruptured in a single M_W 9.0 earthquake (Satake et al., 1996; Atwater and Hemphill-Haley, 1997; Clague et al., 2000). There is consensus within the scientific community that the most recent great earthquake occurred along the CSZ in January 1700 (Atwater et al., 2015), based on paleoseismic evidence and historical records of an orphan-tsunami in Japan. Tsunami modeling completed for the 1700 orphan-tsunami indicated the 1700 earthquake ruptured the whole length of the CSZ and had a moment magnitude of about M_W 9.0 (Satake et al. 2003).

The average recurrence interval for a CSZ megathrust event is estimated to be around 350 years to 600 years based on prehistoric geologic evidence (Atwater and Hemphill-Haley 1997, Kelsey et al., 2002; Witter et al., 2003). Tsunami inundation in buried marshes along the Washington and Oregon coast and stratigraphic evidence from the Cascadia margin support these recurrence intervals (Kelsey et al., 2005; Goldfinger et al., 2003). Goldfinger et al. (2003, 2012, 2016) evaluated turbidite evidence at the heads of Cascadia submarine canyons, results of which indicated the occurrence of more than 40 great earthquakes over the past 10,000 years with partial or entire length rupture of the CSZ. About 20 of the earthquake events are associated with partial ruptures concentrated in the southern part of the margin and have estimated recurrence intervals of about 220 years to 320 years. About 19 of the events are associated with a rupture of the full CSZ, characterized by a moment magnitude (M_W) of about 8.5 to 9.1 or greater earthquake. Considering a combination of recent paleoseismic, geodetic, and geologic research, the average recurrence interval for a full-rupture CSZ earthquake is estimated to be about 500 years to 540 years (Walton et. al 2021).

The USGS probabilistic analysis assumes four potential locations (three alternative downdip edge options and one up-dip edge option) for the eastern edge of the earthquake rupture zone for the CSZ, as shown on Figure 4C. As discussed in Petersen et al. (2014), the 2014 USGS mapping effort represents the 2014 CSZ source model with the full-CSZ ruptures with moment magnitudes from M_W 8.6 to M_W 9.3, supplemented by partial ruptures with smaller magnitudes (M_W 8.0 to M_W 9.1). There is also a possibility of serial M_W 8 earthquakes that rupture the entire CSZ over a period of a few decades or less; however, this is not implemented in the current NSHMs. The partial ruptures were accounted for using a segmented model and an unsegmented model. The magnitude-frequency distribution showing the contributions to the earthquake rates from each of the models and how the estimated rates vary along the fault is presented on Figure 5C.

C.3.3 Local Crustal Event

Sudden crustal movements along relatively shallow, local faults in the project area, although rare, have been responsible for local crustal earthquakes. The precise relationship between specific earthquakes and individual faults is not well understood since few of the faults in the area are expressed at the ground surface and there is a limited history of crustal events in the region. The history of local seismic activity is commonly used as a basis for determining the size and frequency to be expected of local crustal events. Although the historical record of local earthquakes is relatively short (the earliest reported seismic event in the area occurred in 1920), it can serve as a guide for estimating the potential for seismic activity in the area.

The locations of and general information regarding Quaternary faults (i.e., those that have experienced movement during the last 1.6 million years and are considered potentially active) are available through the USGS Earthquake Hazards Program. The USGS Quaternary Fault and Fold Database shows the Portland Hills Fault as one of the closest shallow crustal faults located near the site. The Portland Hills Fault is a northwest-striking, reverse-oblique fault located about 18 kilometers south of the site that dips to the southwest beneath the eastern base of the Portland Hills. The length of the Portland Hills Fault is approximately 40 kilometers to 60 kilometers and has a characteristic earthquake magnitude of M_W 7.0.

C.4 GEOLOGIC HAZARDS

C.4.1 Ground Shaking Hazard

In general, the Pacific Northwest is a seismically active region where moderate to severe earthquakes are expected to cause strong ground shaking. As previously discussed, potential damaging earthquake motions at the site come from the Portland Hills Fault and the CSZ. In general, CSZ megathrust earthquakes typically result in ground shaking that lasts substantially longer than shallow crustal faults. The Seismic Design Guidance for Municipal Solid Waste Landfill facilities (RCRA Subtitle D) document generally specify the use of an earthquake event having a 10% probability of exceedance in 250 years (an average return period of 2,373 years) for seismic deign.

C.4.2 Fault Rupture Hazard

Identification of potentially active faults in the immediate vicinity of the project site is one of the key components of the geologic hazard study. There are about four faults (considered to have been active in the last 1.6 million years by the USGS) located within 30 kilometers of the site based on review of the USGS Quaternary Fault and Fold Database (i.e., Figure 3A shows the local faults in the vicinity of the site). However, there are no known or mapped potentially active faults within the specific project site. Therefore, the risk of fault surface rupture at the site is considered to be low. Several normal faults and fault splays are mapped south of the site.

C.4.3 Liquefaction, Cyclic Softening and Lateral Spread Hazards

Liquefaction is a process by which loose, saturated, granular materials, such as sand, and to a somewhat lesser extent, soft to medium-stiff, non-plastic and low-plasticity silts, temporarily lose strength during and immediately after a seismic event. Liquefaction occurs as seismic shear stresses propagate through a saturated soil and distort the soil structure, causing loosely packed groups of particles to contract or collapse. If drainage is impeded and cannot occur quickly, the collapsing soil structure increases the pore-water pressure between the soil grains. If the pore-water pressure increases to a level approaching the weight of the overlying soil, the soil temporarily behaves as a viscous liquid rather than a solid. Cyclic softening describes a relatively gradual and progressive increase in shear strain that occurs in normally consolidated to slightly overconsolidated, moderate-plasticity silts and clays as a result of seismic loading. Cyclic softening may result in elevated pore-water pressures and a reduction of shear strength of sensitive silts and clays. Due to the presence of loose to medium-dense sand and low-plasticity silt layers below the groundwater level identified in our recent explorations, it is our opinion there is a risk of liquefaction, cyclic softening and lateral spreading at the site. A detailed discussion on engineering analyses related to liquefaction and cyclic softening is included in the main text of the report.

C.4.4 Landslide Hazard

Landslides are defined as "the movement of a mass of rock, debris, or earth down a slope" (Cruden, 1991). Landslide hazard areas are defined as areas susceptible to strength failure of the underlying soil or rock and subsequent downhill movement of the debris. These areas are susceptible to landslides due to a combination of factors, including slope inclination, material type and strength characteristics, geologic structure, and presence of water. There are many different types of mass movement, including rockfalls, topples, slides, spreads, soil slumps, soil creep, and debris slides and flows. As the slope angle increases, the slope becomes more susceptible to landslides. Landslides can move very slowly in the case of soil creep or can move downhill extremely rapidly. Some of the most common causes of landslides are soils becoming saturated by water (e.g., rainfall, change in groundwater), earthquakes, or modification of existing slopes by construction activities. Modification of slopes or natural vegetation can lead to a reduction of slope stability both upslope and downslope of where the modifications take place.

The potential landslide hazard at the project site was evaluated by reviewing the SLIDO and lidar elevation published online by the Oregon Department of Geology and Mineral Industries (DOGAMI). SLIDO provides a statewide database of historical landslide records and information developed based on published geologic reports and geologic hazard studies by USGS, DOGAMI, and others. The landslide inventory map indicates a number of past landslides that occurred north of the site along Columbia River Highway. In general,

the landslide susceptibility map shows a potential of moderate to high landslides at the project site.

C.4.5 Volcanic Hazard

The Pacific Northwest region is home to a large number of active volcanoes along the Cascade Mountain Range. Mount St. Helens and Mount Hood are the two closest potentially active volcanos to the project site at approximate distances of 60 kilometers and 100 kilometers, respectively. The major explosive eruption of Mount St. Helens occurred on May 18, 1980, and killed 57 people. Mount Hood's last major eruption occurred about 200 years ago, while Mount St. Helens had two eruptive episodes in the past four decades: a sequence of explosive and dome-forming eruptions during 1980–1986, and a continuous dome-forming eruption during 2004–2008 (Dzurisin, 2018). The primary hazard from these volcanos to the project site is deposition of volcanic ash.

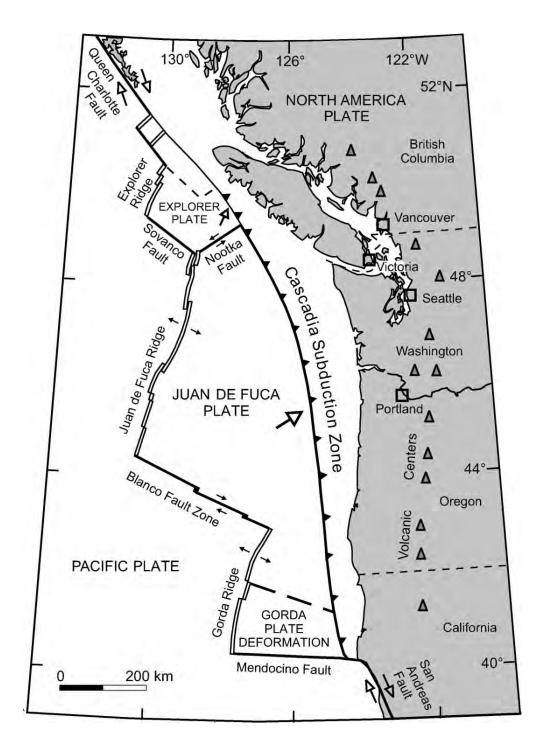
The project site is located within the Portland basin, which includes the Boring volcanic field. The Boring volcanic field constitutes more than 80 small volcanic vents and associated lava flows dispersed throughout the greater Portland-Vancouver metropolitan area (Evarts et al. 2009) which became active about 2.7 million years ago and last eruptions took place about 57,000 years ago. All existing Boring volcanic centers are considered to be extinct, and the probability of an eruption in the Portland/Vancouver metropolitan area is very low.

C.4.6 Other Hazards

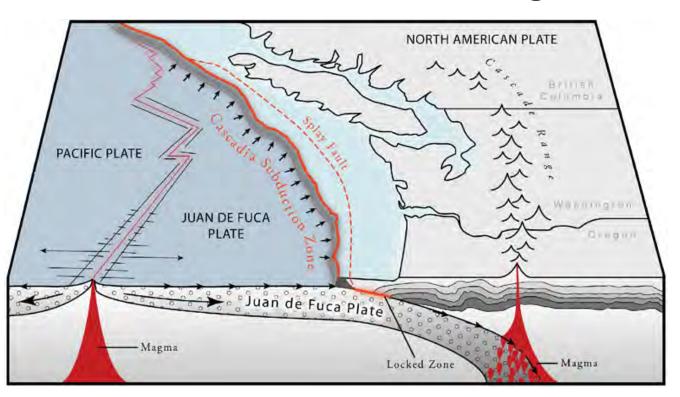
Although detailed tsunami modeling of the Columbia and Willamette rivers in response to a CSZ earthquake has not been completed, the limited tsunami modeling by Allan et al. (2018) indicates the risk of damage by tsunami is low due to the distance from the Pacific Ocean.

C.5 REFERENCES

- Allan, J., Zhang, J., O'Brien, F., and Gabel, L., 2018, Columbia River Tsunami Modeling: Toward Improved Maritime Planning Response, Oregon Department of Geology and Mineral Industries Special Paper 51.
- Atwater, B. F., Nelson, A. R., Clague, J. J., Carver, G. A., Yamaguchi, D. K., Bobrowsky, P. T., Bourgeois, J., Darienzo, M. E., Grant, W. C., Hemphill-Haley, E., Kelsey, H. M., Jacoby, G. C., Nishenko, S. P., Palmer, S. P., Peterson, C. D., and Reinhart, M. A., 1995, Summary of coastal geologic evidence for past great earthquakes at the Cascadia subduction zone: Earthquake Spectra, 11:1, pp. 1-18.
- Atwater, B. F., and Hemphill-Haley, E., 1997, Recurrence intervals for great earthquakes of the past 3,500 years at northeastern Willapa Bay, Washington, U.S. Geological Survey, Professional Paper 1576, 108 pages.
- Atwater, B. F., Musumi-Rokkaku, S., Satake, K., Tsuji, Y., Ueda, K., and Yamaguchi, D. K., 2015, The orphan tsunami of 1700—Japanese clues to a parent earthquake in North America, 2nd ed., U.S. Geological Survey, Professional Paper 1707, Seattle, University of Washington Press, 135 pages.
- Clague, J. J., Atwater, B. F., Wang, K., Wang, Y., and Wong, I., 2000, Penrose conference report--Great Cascadia earthquake tricentennial: GSA Today, v. 10, no. 11, pp. 14-15.
- Cruden, D. M., 1991, A very simple definition for a landslide, IAEG Bulletin, pp. 27–29.
- Dzurisin, D., 2018, Mount St. Helens retrospective: lessons learned since 1980 and remaining challenges, Frontiers in Earth Science, Vol.6, Article 142.
- Evarts, R. C., Conrey, R. M., Fleck, R. J., and Hagstrum, J. T., 2009, The Boring Volcanic Field of the Portland-Vancouver area, Oregon and Washington: Tectonically anomalous forearc volcanism in an urban setting, in O'Connor, J. E., Dorsey, R. J., and Madin, I. P., eds., Volcanoes to vineyards: Geologic field trips through the dynamic landscape of the pacific northwest: Geological Society of America Field Guide 15, doi: 10.1130/2009.fld015(13).
- Fluck, P., Hyndman, R. D., and Wang, K., 1997, Three-dimensional dislocation model for great earthquakes of the Cascadia subduction zone: Journal of Geophysical Research, v. 102, no. B9, pp. 20539-20550.

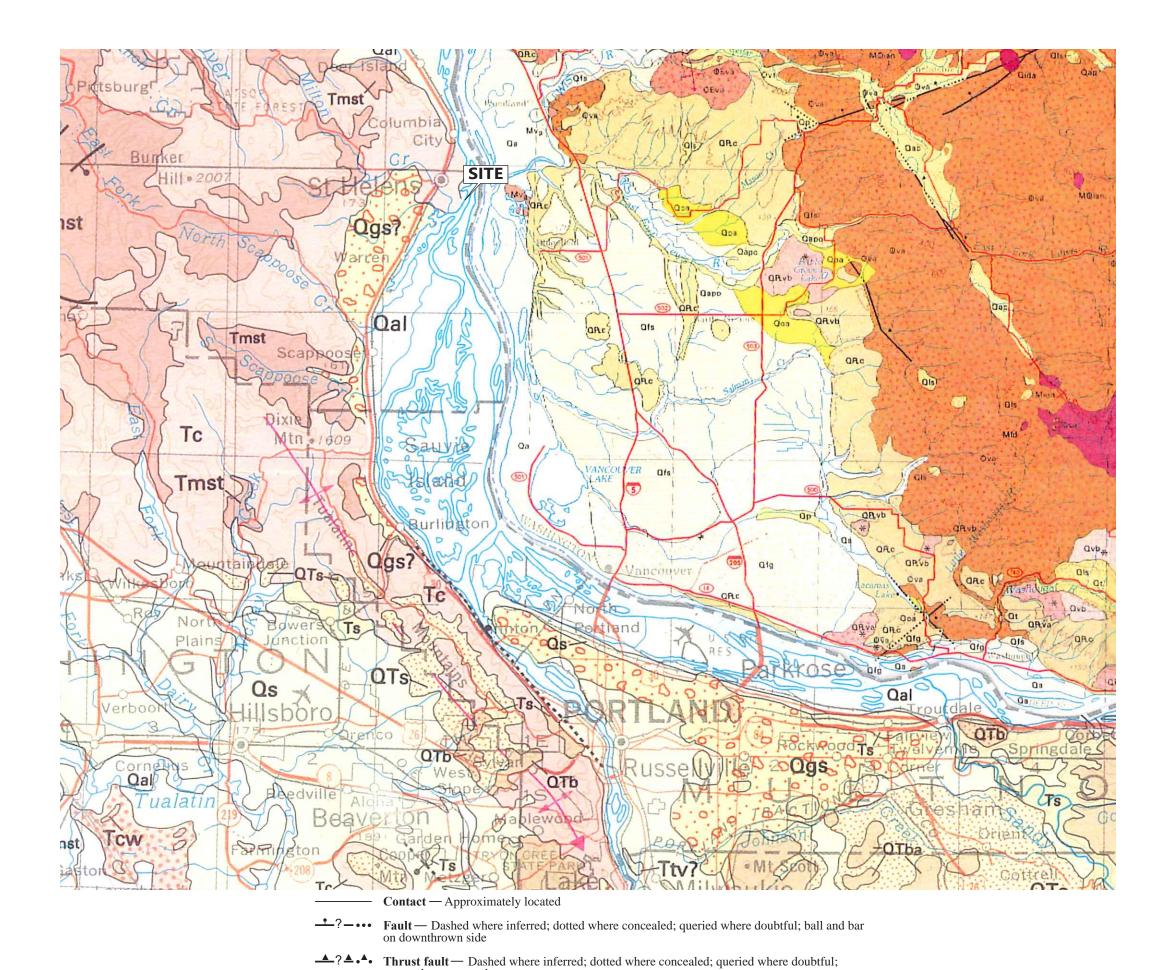

- Goldfinger, C., 1994, Active deformation of the Cascadia Forearc--Implications for great earthquake potential in Oregon and Washington, Oregon State University, unpublished dissertation.
- Goldfinger, C., Nelson, C. H., and Johnson, J. E., 2003, Holocene earthquake records from the Cascadia subduction zone and northern San Andreas fault based on precise dating of offshore turbidites: Annual Review of Earth and Planetary Sciences 31, pp. 555-577.
- Goldfinger, C., Nelson, C. H., Morey, A., Johnson, J. E., Gutierrez-Pastor, J., Eriksson, A. T., Karabanov, E., Patton, J., Gracia, E., Enkin, R., Dallimore, A., Dunhill, G., and Vallier, T., 2012, Turbidite event history: Methods and implications for holocene paleoseismicity of the Cascadia Subduction Zone, U.S. Geological Survey, Professional Paper 1661.
- Goldfinger, C., Galer, S., Beeson, J., Hamilton, T., Black, B., Romsos, C., Patton, J., Nelson, C. H., Hausmann, R., and Morey, A., 2017, The importance of site selection, sediment supply, and hydrodynamics: A case study of submarine paleoseismology on the northern Cascadia margin, Washington USA: Marine Geology, v. 384, pp. 4-16.
- Guffanti, M., and Weaver, C. S., 1988, Distribution of Late Cenozoic volcanic vents in the Cascade Range--Volcanic arc segmentation and regional tectonic considerations: Journal of Geophysical Research, v. 93, no. B6, pp. 6513-6529.
- Hughes, J. M., and Carr, M. J., 1980, Segmentation of the Cascade volcanic chain: Geology, v. 8, pp. 15-17.
- Kelsey, H. M., and Bockheim, J. G., 1994, Coastal landscape evolution as a function of eustasy and surface uplift rate, Cascadia margin, southern Oregon: Geological Society of America Bulletin, v. 106, pp. 840-854.
- Kelsey, H. M., Witter, R. C., and Hemphill-Haley, E., 2002, Pl.-boundary earthquakes and tsunamis of the past 5500 yr, Sixes River estuary, southern Oregon: Geological Society of America Bulletin, v. 114, no. 3, pp. 298-314.
- Kelsey, H. M., Nelson, A. R., Hemphill-Haley, E., and Witter, R. C., 2005, Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone: GSA Bulletin, v. 117, pp. 1009-1032.
- Mitchell, C. E., Vincent, P., Weldon, R. J. III, and Richards, M. A., 1994, Present-day vertical deformation of the Cascadia margin, Pacific Northwest, United States: Journal of Geophysical Research, v. 99, no. B6, pp. 12257-12277.

- Nelson, A. R., and Personius, S. F., 1996, Great-earthquake potential in Oregon and Washington--An overview of recent coastal geologic studies and their bearing on segmentation of Holocene ruptures, central Cascadia subduction zone, in Rogers, A.M., Walsh, T.J., Kockelman, W.J., and Priest, G.R., eds., Assessing earthquake hazards and reducing risk in the Pacific Northwest, U.S. Geological Survey, Professional Paper 1560, v. 1, pp. 91-114.
- Personius, S. F., 1995, Late Quaternary stream incision and uplift in the forearc of the Cascadia subduction zone, western Oregon: Journal of Geophysical Research, v. 100, no. B10, pp. 20193-20210.
- Personius, S.F., Dart, R.L., Bradley, L.A., and Haller, K.M., 2003, Map and data for Quaternary faults and folds in Oregon, U.S. Geological Survey, Open-File Report OF-2003-95.
- Petersen, M. D., Moschetti, M. P., Powers, P. M., Mueller, C. S., Haller, K. M., Frankel, A. D., Zeng, Y., Rezaeian, S., Harmsen, S. C., Boyd, O. S., Field, N., Chen, R., Rukstales, K. S., Nico, L., Wheeler, R. L., Williams, R. A., and Olsen, A. H., 2014, Documentation for the 2014 update of the United States national seismic hazard maps, U.S. Geological Survey, Open-File Report 2014–1091, 243 pages, http://dx.doi.org/10.3133/ofr20141091.
- Satake, K., Shimazaki, K., Tsuji, Y., and Ueda, K., 1996, Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700: Nature, v. 379, pp. 246-249.
- Satake, K., Wang, K., and Atwater, B.F., 2003, Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions: Journal of Geophysical Research, v. 108, no. B11, p. 2535, doi: 10.1029 /2003JB002521.
- Savage, J. C., Svarc, J. L., Prescott, W. H., and Murray, M. H., 2000, Deformation across the forearc of the Cascadia subduction zone at Cape Blanco, Oregon: Journal of Geophysical Research, v. 105, no. B2, pp. 3,095-3,102.
- Shimazaki, K., and Nakata, T., 1980, Time-predictable recurrence model for large earthquakes. Geophys. Res. Lett., v. 7, no. 4, pp. 279-282.
- Stein, S., Salditch, L., Brooks, E., Spencer, B., Campbell, M., 2017, Is the coast toast? Exploring Cascadia earthquake probabilities, The Geological Society of America, v. 27.



- Wang, Y., He, J., Dragert, H., and James, T. S., 2001, Three-dimensional viscoelastic interseismic deformation model for the Cascadia subduction zone: Earth, Planets and Space, v. 53, pp. 295-306.
- Weaver, C. S., and Michaelson, C. A., 1985, Seismicity and volcanism in the Pacific Northwest--Evidence for the segmentation of the Juan de Fuca Pl.: Geophysical Research Letters, v. 12, no. 4, pp. 215-218.
- Witter, R. C., 1999, Late Holocene Paleoseismicity, tsunamis and relative sea-level changes along the south-central Cascadia subduction zone, southern Oregon: University of Oregon, unpublished PhD dissertation, 178 pages.
- Witter, R. C., Kelsey, H. M., and Hemphill-Haley, E., 2003, Great Cascadia earthquakes and tsunamis of the past 6700 years, Coquille River estuary, southern coastal Oregon: Geological Society of America Bulletin 115, pp. 1,289-1,306.
- Walton, M., Staisch, L., Dura., T, Pearl, J., Sherrod, B., Gomberg, J., Engelhart, S., Tréhu, A., Watt, J., Perkins, J., Witter, R., Bartlow, N., Goldfinger, C., Kelsey, H., Morey, A., Sahakian, V., Tobin, H., Wang, K., Wells, R., Wirth, E, 2021, Toward an Integrative Geological and Geophysical View of Cascadia Subduction Zone Earthquakes, Annu. Rev. Earth Planet. Sci. 2021, v. 49, pp. 367-398.
- Wong, I., 2005, Low potential for large intraslab earthquakes in the central Cascadia Subduction Zone: Bulletin of the Seismological Society of America, v. 95, no. 5.

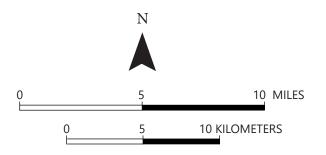
A) TECTONIC MAP OF PACIFIC NORTHWEST, SHOWING ORIENTATION AND EXTENT OF CASCADIA SUBDUCTION ZONE (MODIFIED FROM DRAGERT AND OTHERS, 1994)


Cascadia Subduction Zone Setting

CASCADIA SUBDUCTION ZONE SETTING, TSUNAMI INUNDATION MAPS, OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRY, 2013

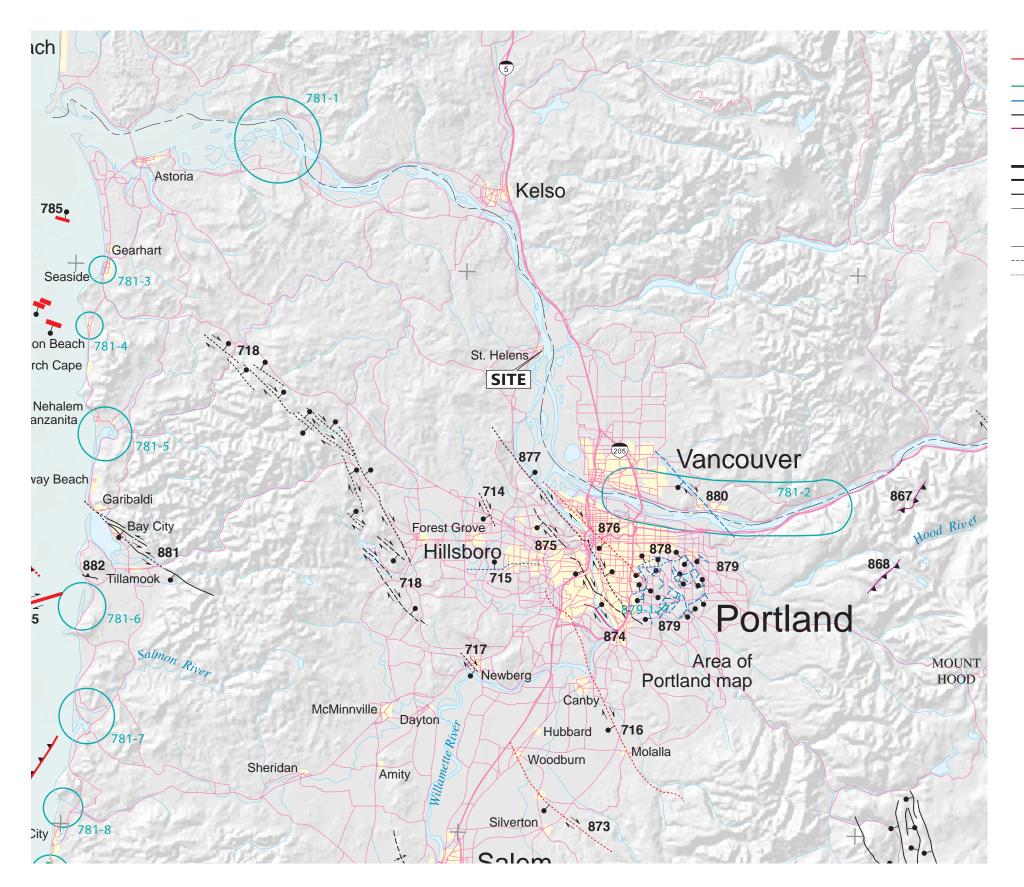
G|R|I

TECTONIC SETTING SUMMARY


sawteeth on upper plate

Strike and dip of bed

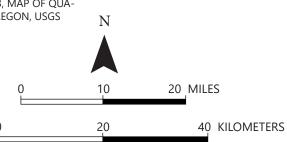
FROM:


WALSH, T.J., KOROSEC, M.A., PHILLIPS, W.M., LOGAN, R.L., AND SCHASSE, H.W., 1987, GEOLOGIC MAP OF WASHING-TON-SOUTHWEST QUADRANT; 1:250,000: WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES, 6M-34

WALKER, G.W., AND MACLEOD, N.S., 1991, GEOLOGIC MAP OF OREGON: U.S. GEOLOGICAL SURVEY

GRI REGIONAL GEOLOGIC MAP

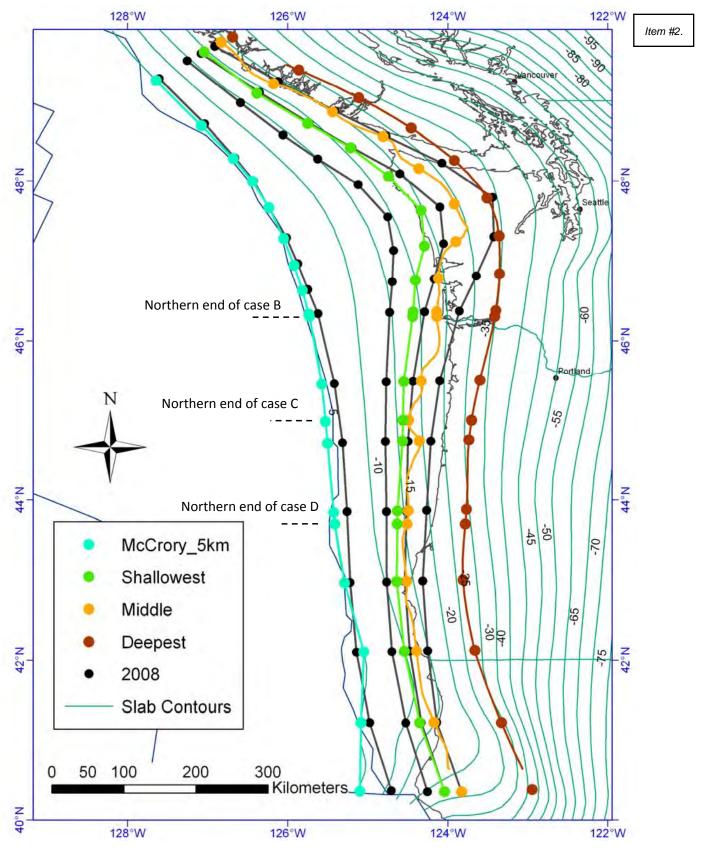
SEP. 2023 JOB NO. 6771-A



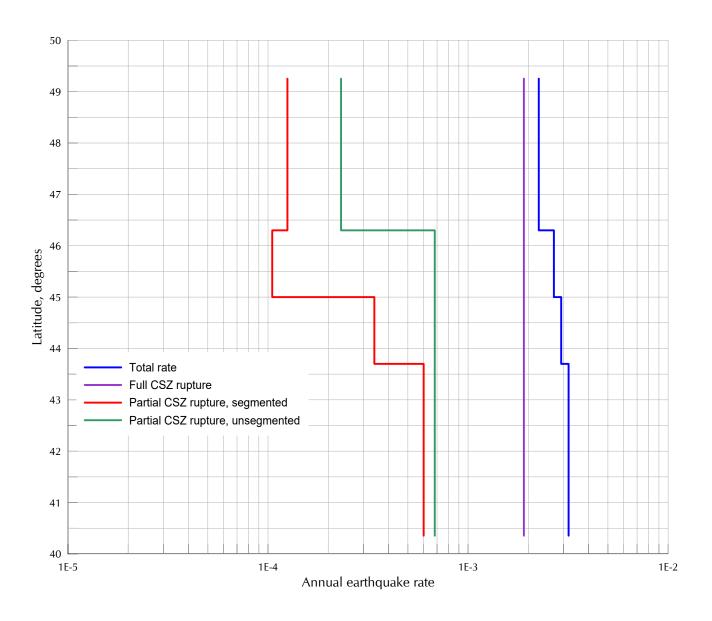
	TIME OF MOST RECENT SURFACE RUPTURE		STRUCTURE TYPE AND RELATED FEATUR
	Holocene (<10,000 years) or post last glaciation (<15,000 years; 15 ka);		Normal or high-angle reverse fault
	no historic ruptures in Oregon to date	-	Strike-slip fault
	Late Quaternary (<130,000; post penultimate glaciation)		Thrust fault
	Late and middle Quaternary (<750,000 years; 750 ka)	\rightarrow	Anticlinal fold
_	Quaternary, undifferentiated (<1,600,000 years; <1.6 Ma)	+	Synclinal fold
_	Class B structure (age or origin uncertain)	\rightarrow	Monoclinal fold
	OUR DATE	←—	Plunge direction of fold
,	SLIP RATE	1	Fault section marker
	>5 mm/year		
	1.0-5.0 mm/year		DETAILED STUDY SITES
	0.2-1.0 mm/year	731-2	Trench site
	<0.2 mm/year	781-2	Subduction zone study site
	TRACE		
	Mostly continuous at map scale		CULTURAL AND GEOGRAPHIC FEATURES
	Mostly discontinuous at map scale		Divided highway
	Inferred or concealed		Primary or secondary road
			Permanent river or stream
			Intermittent river or stream
			Permanent or intermittent lake

FAULT NUMBER	NAME OF STRUCTURE
714	HELVETIA FAULT
715	BEAVERTON FAULT
716	CANBY-MOLALLA FAULT
717	NEWBERG FAULT
718	GALES CREEK FAULT ZONE
719	SALEM-EOLA HILLS HOMOCLINE
864	CLACKAMAS RIVER FAULT ZONE
867	EAGLE CREEK THRUST FAULT
868	BULL RUN THRUST FAULT
872	WALDO HILLS FAULT
873	MOUNT ANGEL FAULT
874	BOLTON FAULT
875	OATFIELD FAULT
876	EAST BANK FAULT
877	PORTLAND HILLS FAULT
878	GRANT BUTTE FAULT
879	DAMASCUS-TICKLE CREEK FAULT ZONE
880	LACAMAS LAKE FAULT
881	TILLAMOOK BAY FAULT ZONE

NOTE: NOT ALL QUATERNARY FAULTS ARE SHOWN.


FROM: PERSONIUS, S.F., AND OTHERS, 2003, MAP OF QUATERNARY FAULTS AND FOLDS IN OREGON, USGS OPEN FILE REPORT OFR-03-095.

LOCAL FAULT MAP


SEP. 2023 JOB NO. 6771-A

GRI

LOCATION OF SURFACE TRACES FOR UP-DIP EDGE & THREE DOWN-DIP EDGE OPTIONS USED IN 2014 NSHMS (CHEN ET. AL 2014)

SEP. 2023 JOB NO. 6771-A FIC 981

REFERENCE:

PETERSEN, M.D., MOSCHETTI, M.P., POWERS, P.M., MUELLER, C.S., HALLER, K.M., FRANKEL, A.D., ZENG, Y., REZAEIAN, S., HARMSEN, S.C., BOYD, O.S., FIELD, N., CHEN, R., RUKSTALES, K.S., NICO, L., WHEELER, R.L., WILLIAMS, R.A., AND OLSEN, A.H., 2014, DOCUMENTATION FOR THE 2014 UPDATE OF THE UNITED STATES NATIONAL SEISMIC HAZARD MAPS: U.S. GEOLOGICAL SURVEY OPEN-FILE REPORT 2014–1091, 243 P.

VARIATION OF EARTHQUAKE RATES CASCADIA SUBDUCTION ZONE (CSZ)

FI 982

SEP. 2023 JOB NO. 6771-A

APPENDIX D

Earth Dynamics LLC - Geophysical Exploration for St. Helens Water Treatment Plant

Report on

Geophysical Exploration for St. Helens Water Treatment Plant St. Helens, OR

Report Date: May 25, 2023

Prepared for:

GRI 16950 SW Upper Boones Fry Tigard, OR 97224

Prepared by:

EARTH DYNAMICS LLC 2284 N.W. Thurman St. Portland, OR 97210 (503) 227-7659 Project No. 23207

1.0 - Introduction

GRI engaged Earth Dynamics LLC to conduct geophysical explorations in the vicinity of the St. Helens Water Treatment Plant in St. Helens, Oregon. The purpose of the explorations is to determine the depth to basalt bedrock at the site. These data are needed for site development.

This work was requested and authorized by Mr. Brian Bayne of GRI. The geophysical field work was conducted on March 6, May 2 and May 3, 2023 under the supervision of Mr. Daniel Lauer of Earth Dynamics LLC. Seismic refraction data were acquired along one profile and electrical resistivity data were acquired along two profiles. This report describes the methodology and results of the geophysical investigation.

2.0 - Method

2.1 - Seismic Refraction

The seismic velocity of soil and rock is a function of the density and elastic properties of the material. Therefore, variations in subsurface materials can be inferred from analysis of the seismic velocity. Application of the method is limited to areas where seismic velocity increases or is constant with depth. Low velocity zones, which are common in basalt, cannot be resolved with seismic refraction.

A seismic refraction exploration consists of measuring the time required for a seismic wave to travel from a seismic source to a receiving transducer. A sledgehammer, large weight dropped, or explosive device is typically used for the seismic source and vertical geophones are used as receiving transducers. A seismograph records signals from the geophones. By analyzing the arrival time of the seismic wave as a function of distance from the seismic source, the seismic velocities of the underlying soil/rock units and the depth to geologic contacts can be determined. The seismic refraction method requires that seismic sources be placed at each end of the geophone array. Intermediate and off end sources are also often used to increase resolution and penetration. The depth of penetration is typically one-quarter to one-third of the geophone array length, and lateral resolution is typically one-half of the geophone spacing.

The seismic refraction survey for this study was conducted using two Seismic Source 24-channel DAQ Link IV seismographs equipped with forty-eight vertical geophones. One-half to two pounds of Kine-Pak explosive was used as the seismic source at five shot points for each array.

The seismic data are analyzed using SeisOpt@2D Ver. 6.0 by Optim Software. SeisOpt@2D uses a forward modeling global optimization technique. The technique consists of creating a finite element velocity model through which travel

times are computed. The computed times are compared with the observed data. Thousands of iterations are completed to find the velocity model with the minimum travel time error. Comparison of the computed travel times to the measured values provides an indication of the validity of the model. Several velocity models are run using different grid resolution and depth values to obtain the best result for each data set. SeisOpt generates xyz data files that are input to Surfer® 17 for contouring, scaling, and data presentation. The SeisOpt modeling technique is generally superior to discrete layer modeling because lateral, as well as vertical variations can be resolved, and gradual increases in seismic velocity with depth can be quantified.

For this study, data were acquired for two profiles using a 48-channel geophone array. The profiles are identified as S1A and S1B. Details of the profile setups are summarized in Table 2-1.

Table 2-1. Seismic Refraction Profile Detail Summary

Geophone Spacing (ft)	Number of 48 channel Arrays	Nominal Profile Length (ft)	
30	1	1,410	
20	1	940	
_	Spacing (ft)	Spacing (ft) channel Arrays 30 1	

2.2 - Electrical Resistivity

Electrical resistivity is an intrinsic property of all materials. The properties that affect the resistivity of soil or rock include porosity, water content, composition (clay mineral and metal content), salinity of the pore water, and grain size distribution. Therefore, the electrical resistivity method is ideally suited to provide information for ground water surveys, alluvial stratigraphy, bedrock topography and identification of basalt interflows and weathered zones.

A Dipole-Dipole array was used for this study to acquire data for determination of a two-dimensional electrical resistivity image. In a Dipole-Dipole array, two current electrodes form a dipole at one end of the line and two potential electrodes form a second dipole at the other end of the line. An electric current of up to 2,000 mA is applied to the ground by the current electrodes. This applied current causes a potential field. The voltage associated with the potential field is measured by the potential electrodes. The spacing between the electrodes and the distance between the dipoles is varied to obtain data as a function of depth along the line.

For this study, an Advanced Geosciences, Inc. (AGI) SuperSting R8 equipped with a Sting/Swift automatic multi-electrode system was used to acquire resistivity data. The SuperSting R8 is programmed to automatically select current and potential electrode pairs to provide the desired spacing and separation. The data are stored in the SuperSting R8 and subsequently downloaded to a computer for processing and analysis.

The penetration depth and resolution of the resistivity technique depends upon the electrode spacing and overall profile length. The penetration depth is typically twenty percent of the array length, and the resolution is typically one half of the minimum electrode spacing.

This study includes two electrical resistivity profiles. The profiles are designated R1 and R2. The data for each profile were acquired using fifty-six electrodes spaced nineteen feet apart. The "roll-along" method is used to extend the profile length to 2,109 feet. The details of the profiles are summarized in Table 2-2.

Table 2-2. Summary of Resistivity Profiles.

Profile Designation	Electrode Spacing (ft)	Number of electrodes	Nominal Profile Length (ft)			
R1	19	112	2,109			
R2	19	112	2,109			

The resistivity data are analyzed using EarthImager software by AGI. EarthImager is a two-dimensional inversion program which was specifically designed for use with the AGI Sting/Swift system. Anomalous and unrealistic data points are removed prior to the inversion analysis. Anomalous data are typically due to low signal-to-noise ratio for the measured electric potential. The inversion program uses both finite-difference and finite-element forward modeling techniques. In the program, a non-linear least-squares optimization technique is used to automatically determine the best fit to the data.

The results of the inversion are presented as three contoured cross-sections. One cross-section shows the measured values of apparent resistivity. A second cross-section shows the computed apparent resistivity values which correspond to the computed model. The third cross-section is the computed model. Comparison of the measured to the computed apparent resistivity cross-sections provides an indication of the validity of the computed model. The computed model is then corrected for topography, and it is scaled for presentation.

2.2 - Location and Elevation Survey

Horizontal position data were obtained with a Trimble GEOXH 6000 GPS receiver equipped with a Tornado external antenna. The position data were post-processed to increase the accuracy of the GPS positions. Location data were recorded at the end points of each geophone array. Recorded GPS data are summarized in Table 2-3. The GPS data are displayed in degrees, decimal minutes Latitude and Longitude using the WGS 1984 datum. The elevations along each profile are extrapolated from GPS elevation data.

Table 2-3. GPS Position and Elevation Data for Profile Endpoints. (WGS 1984).

Profile Location	Latitude	Longitude
S1A – 0'	45° 51.3346'N	122° 47.8575′W
S1A – 1,410'	45° 51.1187'N	122° 47.9771'W
S1B – 1,200'	45° 51.1512'N	122° 47.9594'W
S1B – 2,140'	45° 51.0076'N	122° 48.0386'W
R1 - 0'	45° 51.3321'N	122° 47.8127'W
R1 – 2,109'	45° 51.0114'N	122° 47.9773'W
R2- 0'	45° 51.3440'N	122° 47.8363'W
R2 – 2,109'	45° 51.0167'N	122° 47.9947'W

3.0 - Results

The approximate locations of the geophysical profiles are shown in the Google Earth image in Figure 3-1. Computed seismic velocity models with interpreted geology for the seismic refraction profiles are contained in Appendix A. Computed electrical resistivity models are contained in Appendix B. Electrical resistivity model fit images are contained in Appendix C.

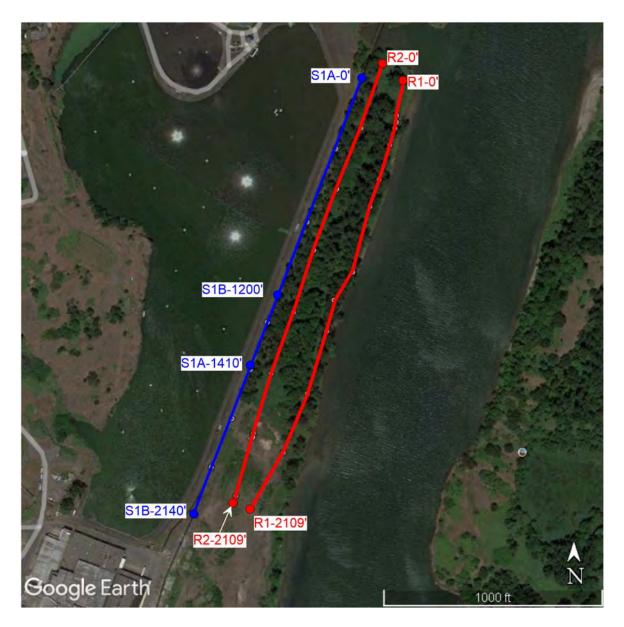


Figure 3-1. Site plan showing approximate locations of geophysical profiles.

4.0 - Discussion

4.1 - Seismic Refraction

The use of explosives as a seismic source provides sufficient energy to provide moderately good confidence in the first arrival picks along the long profiles and the seismic refraction data acquired in this study are generally of good quality.

Exploratory borings completed at the site by others indicate that there is good correlation between the seismic refraction models and the boring log data.

Earth Dynamics LLC has completed numerous seismic refraction studies in Portland and surrounding areas. In many cases it is observed that the minimum velocity of un-weathered and fractured basalt is greater than approximately 5,000 feet per second (ft/sec). Weathered, fractured and/or residual/decomposed basalt typically has a seismic velocity range of 3,000 to 5,000 ft/s. Soils and silts and other unconsolidated sediments typically have a seismic velocity less than 3,000 ft/s.

The interpreted geologic contacts are shown with dashed black lines on the seismic models in Appendix A. Question marks along the interpreted contact indicate that the contact in these areas is less certain. Material with a seismic velocity in the range of 1,000 – 5,000 ft/s is interpreted to be silty sand. Material with a seismic velocity greater than 5,000 ft/s is likely to be basalt bedrock.

The modeled elevation of the top of bedrock varies significantly along the length of Profile S1. From approximately S1-0' to S1-100' the model indicates that basalt may be at an elevation of -100 feet. The top of the basalt then dips steeply to the south. However, this area is near the edge of the model and the interpreted shallow elevation and the steep dip may be a modelling artifact. From S1-300' to S1-1000' the modelled basalt contact rises from an elevation of approximately - 320' to -120'. From S1-1000' to S1-2140' the basalt contact rises more gradually from elevation -120 to -50 feet.

4.2 – Electrical Resistivity

The data quality for the electrical resistivity profiles acquired at this site is very good. Very few data points were removed during the inversion process due to negative and anomalous values. The RMS error between the data and model fit for the profiles is less than ten percent.

The two-dimensional models for the resistivity profiles are contained in Appendix B. The profiles are annotated with interpreted contacts and possible lithologic units. The contacts are based on steep gradients in the modelled resistivity profiles.

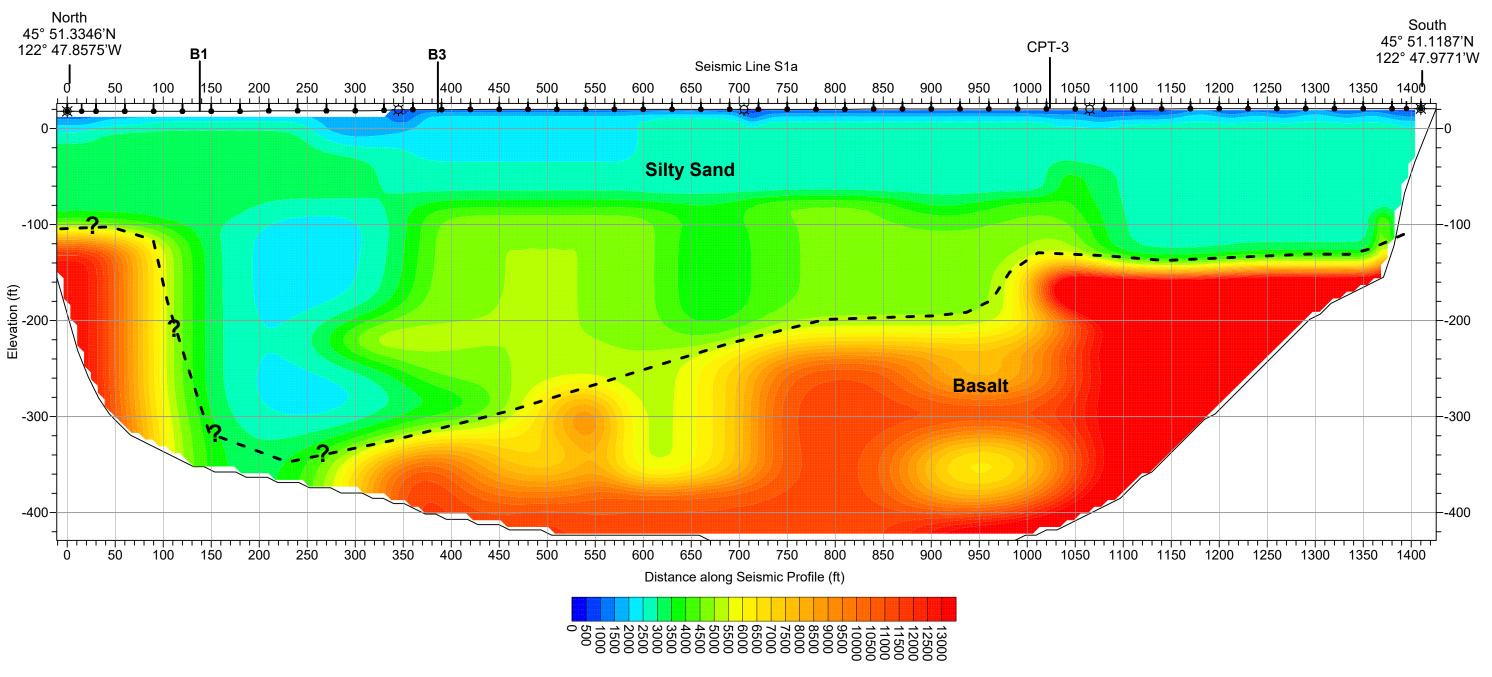
Both resistivity models suggest that basalt bedrock is present at an elevation of -100 to -150 feet in the southern portion of the profiles. The top of rock appears to be deeper than elevation -200 ft for the northern portion of each profile. The penetration depth of the electrical resistivity models is limited to approximately elevation -200 ft.

4.3 – Summary

The seismic refraction and electrical resistivity models both indicate that basalt may be present at elevation 100' to 150' at the southern portions of the profiles. The depth to the top of the basalt increases toward the north.

5.0 - Limitations

The inversion of seismic refraction and electrical resistivity data does not produce unique models. Theoretically, there are an infinite number of models that will fit the data as well as the models presented in this report. Further, many geologic materials have similar seismic velocity and electrical resistivity. We have presented models and interpretations which we believe to be the best fit given the geology and known conditions at the site. However, no warranty is made or intended by this report or by oral or written presentation of this work. Earth Dynamics LLC accepts no responsibility for damages because of decisions made or actions taken based upon this report.

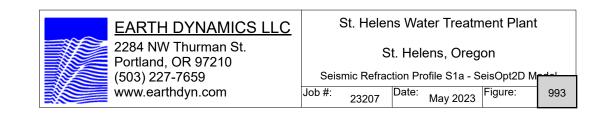

RESPECTFULLY SUBMITTED EARTH DYNAMICS LLC

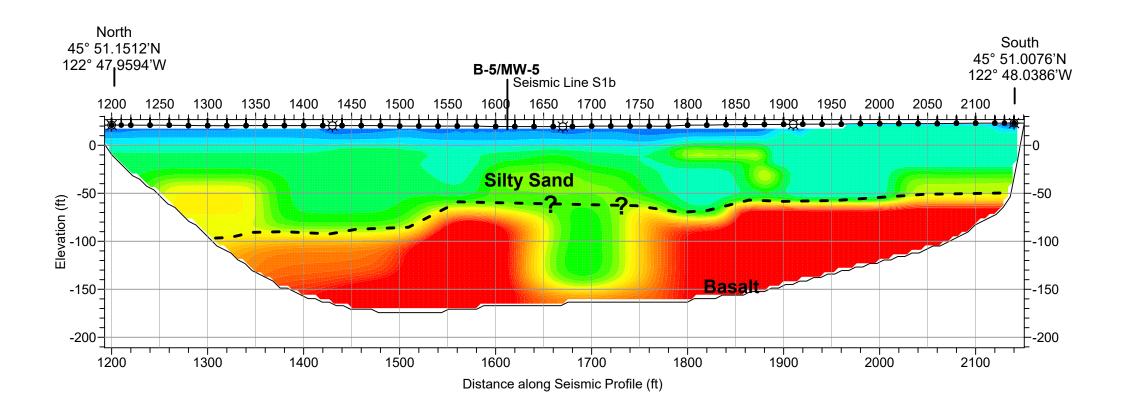
Daniel Lauer, M.S.

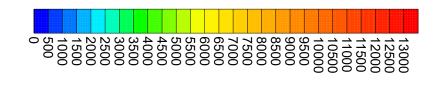
Partner - Senior Geophysicist

APPENDIX A

Seismic Refraction Profile Models


Shot point


Compressional wave Velocity (ft/s)


Geophone

Horizontal Scale: 1" = 100' Vertical Scale: 1" =100'

Elevations surveyed with level and rod and tied to GPS elevation (S1-0' = 3,228.4') . Horizontal Positions surveyed with Trimble GeoXH 6000 GPS Receiver (Differentially Corrected)

Compressional wave Velocity (ft/s)

Shot point

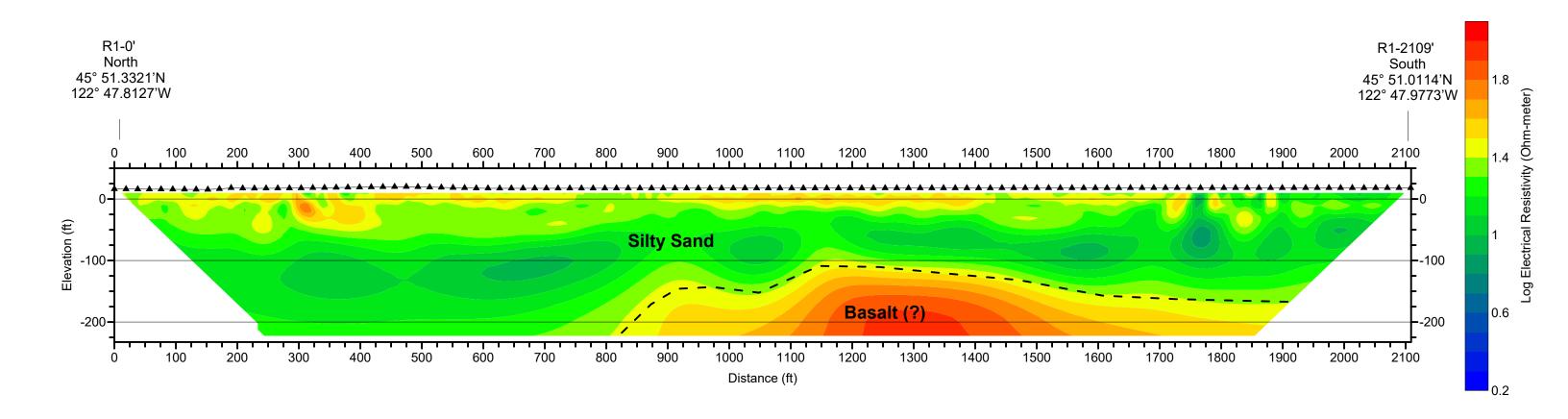
Geophone

Horizontal Scale: 1" = 100' Vertical Scale: 1" =100'

Elevations surveyed with level and rod and tied to GPS elevation (S1-0' = 3,228.4') . Horizontal Positions surveyed with Trimble GeoXH 6000 GPS Receiver (Differentially Corrected)

St. Helens Water Treatment Plant

St. Helens, Oregon


Seismic Refraction Profile S1b - SeisOpt2D M

Date: May 2023 Figure: 23207

APPENDIX B

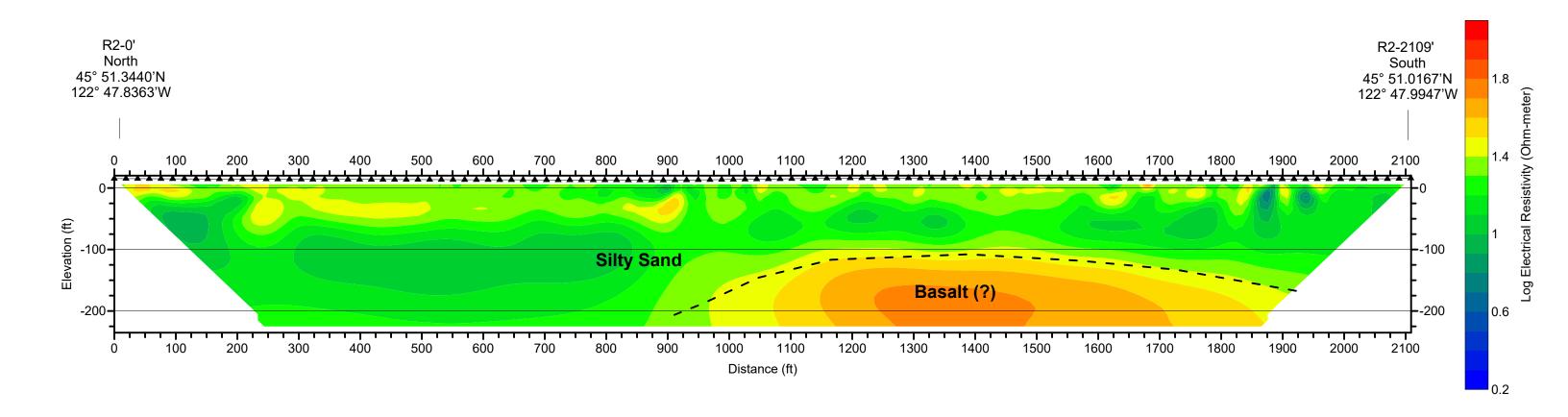
Resistivity Profile Models

Profile R1

▲ Electrode Location

Scale 1" = 150'

Horizontal Positions determined with a tape measure. Relative Elevations surveyed with level and rod. Profile endpoints surveyed with Trimble GeoXH 6000 GPS Receiver Elevations surveyed with Rod and Level. Elevation tied to Reported GPS Elevation at R1-0' = 16.4'.



St. Helens Water Treatment Plant St. Helens, Oregon

Resistivity Profile R1

#: 23207 Date: May, 2023 Figure:

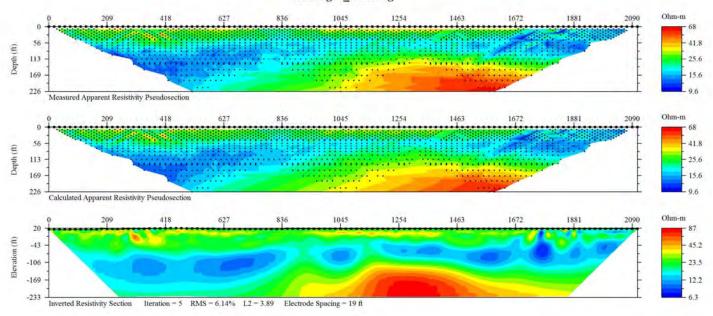
Profile R2

▲ Electrode Location

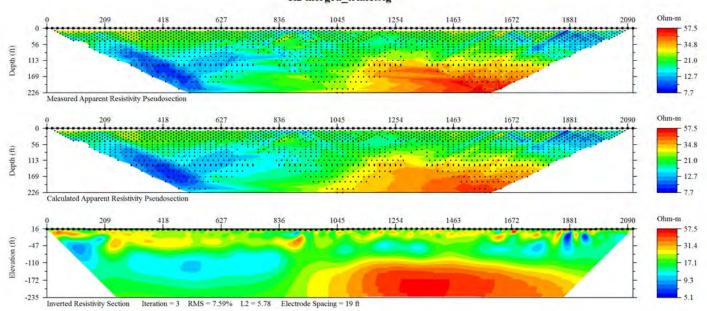
Scale 1" = 150'

Horizontal Positions determined with a tape measure. Relative Elevations surveyed with level and rod. Profile endpoints surveyed with Trimble GeoXH 6000 GPS Receiver Elevations surveyed with Rod and Level. Elevation tied to Reported GPS Elevation at R2-0' = 15.3'.

St. Helens Water Treatment Plant St. Helens, Oregon

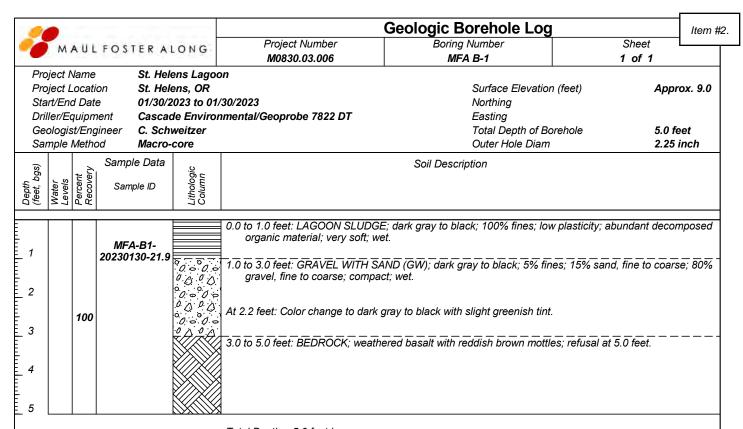

Resistivity Profile R2

#: 23207 Date: May, 2023 Figure:


APPENDIX C

Resistivity Data and Model Fit Profiles

R1merged_trial1.stg

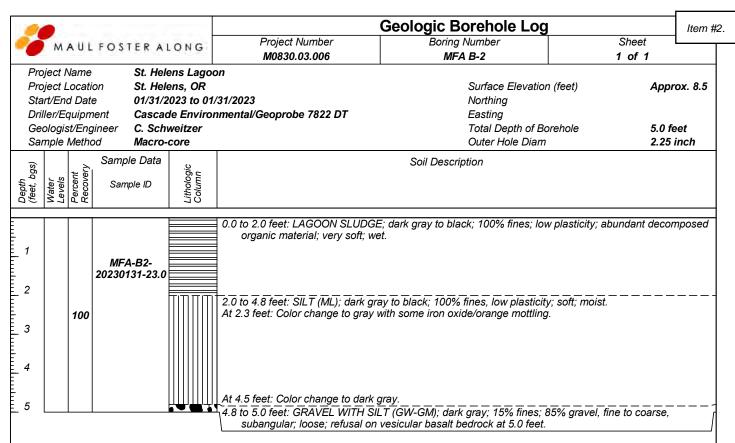

R2 merged_trial1.stg

APPENDIX E

Maul Foster & Alongi Boring Logs (2019 and 2023)

Total Depth = 5.0 feet bgs

NOTES:


1. Depths are relative to feet below top of the sludge at the lagoon bottom. 2. Lagoon water level elevation at time of drilling: 28 feet 3. Barge deck height above the lagoon: 2.5 feet. 4. Depth below deck to top of sludge: 21.5 feet. 5. Top of sludge surface elevation of 9.0 feet calculated as lagoon water level elevation (28 feet) plus barge deck height above water (2.5 feet) minus depth to top of sludge (21.5 feet). 6. ID = identification. 7. bgs = below ground surface.

Borehole Completion Details

0.0 to 5.0 feet below lagoon bottom: 2.25-inch borehole.

Borehole Abandonment Details

0.0 to 5.0 feet below lagoon bottom: Bentonite chips hydrated with potable water.

Total Depth = 5.0 feet bgs

NOTES:

1. Depths are relative to feet below top of the sludge at the lagoon bottom. 2. Lagoon water level elevation at time of drilling: 28 feet 3. Barge deck height above the lagoon: 2.5 feet. 4. Depth below deck to top of sludge: 22.0 feet. 5. Top of sludge surface elevation of 8.5 feet calculated as lagoon water level elevation (28 feet) plus barge deck height above water (2.5 feet) minus depth to top of sludge (22.0 feet). 6. ID = identification. 7. bgs = below ground surface.

Borehole Completion Details

0.0 to 5.0 feet below lagoon bottom: 2.25-inch borehole.

Borehole Abandonment Details

0.0 to 5.0 feet below lagoon bottom: Bentonite chips hydrated with potable water.

0						Geologic Borehole Log		Item
	M	AUL	FOSTER A	LONG	Project Number M0830.03.006	Boring Number MFA B-3	Sheet 1 of 6	
Project Name Project Location Start/End Date Driller/Equipment Geologist/Engineer Sample Method St. Helens Lago St. Helens, OR O1/31/2023 to 02 Cascade Enviro C. Schweitzer Macro-core					on Surface Elevation (feet) Ap			
(S)		7	Sample Data	ي		Soil Description		
Depth (feet, bgs)	Water Levels	Percent Recovery	Sample ID	Lithologic Column				
1			MFA-B3-		0.0 to 2.5 feet: LAGOON SLUDG. organic material; very soft; w	E; dark gray to black; 100% fines; low plastic et.	ity; abundant decon	nposed
2		100	20230131-31.0					
3					2.5 to 3.0 feet: SAND (SP); dark (3.0 to 14.5 feet: No recovery.	gray; 100% sand, fine to medium; loose; faint	t sheen; wet.	
4		0						
5								
6								
7 8		0						
9								
10								
11								
12		0						
13								
14								
10 11 12 13 14 15 16 17					14.5 to 17.5 feet: SILT (ML); gray rootlets; moist.	r; 100% fines, low plasticity; soft; trace organi	cs, plant matter, and	d
16								
17		60						
18					17.5 to 19.5 feet: No recovery.		_	
19								
20		80			19.5 to 23.5 feet: Same as above	from 14.5 to 17.5 feet.		_ 1

		Geologic Borehole Log				
MAULFOST	ERALONG	Project Number M0830.03.006	Boring Number MFA B-3	Sheet 2 of 6		
(feet, bgs) Water Water Levels Percent Recovery	1 gi	110000.00	Soil Description	2 07 0		
21 80 23 24		23.5 to 24.5 feet: No recover	y.			
25		24.5 to 27.5 feet: Same as all 27.5 to 29.5 feet: No recovery				
0		29.5 to 39.0 feet: Same as al	bove from 14.5 to 17.5 feet.			
33		39.0 to 39.5 feet: No recover	y. — — — — — — — — — — — — — — — — — — —			
40		39.5 to 54.0 feet: Same as al			1004	

				_	Geologic Borehole Log		Item #
•	MAUL	FOSTERA	LONG	Project Number M0830.03.006	Boring Number MFA B-3	Sheet 3 of 6	
, bgs)	s nt /ery	Sample Data	ogic nn		Soil Description		
Depth (feet, bgs)	Water Levels Percent Recovery	Sample ID	Lithologic Column				
43							
	100						
_44							
_45							
_46							
47	100						
_48							
49							
_50							
_51							
_52	90						
53							
_54				54.0 to 54.5 feet: No recovery.			
_55				54.5 to 68.5 feet: Same as abo	ve from 14.5 to 17.5 feet.		
56							
-							
_5/	100						
_58							
_59							
55 56 57 58 59 60 61 62 63 63							
61							
62	100						
63							
_64							10

90					Geologic Borehole Log				
9	MA	UL	FOSTER A	LONG	Project Number M0830.03.006	Boring Number MFA B-3	Sheet 4 of 6		
gs)		اخ ب	Sample Data	jic (Soil Description			
Depth (feet, bgs)	Water Levels	Percen	Sample ID	Lithologic Column					
		<u> </u>							
_65									
_66									
_67		100							
68									
- 69					68.5 to 68.7 feet: SAND (SP); dan	k gray; 100% sand, fine to medium; l	oose; moist.		
_09					68.7 to 74.0 feet: SILTY SAND (Si organics and rootlets, trace m	M); gray; 20% fines, low plasticity; 80 nedium gravels; moist to wet.	% sand, fine; loose; trace		
_70									
- 71									
-									
_72		90							
_73									
-									
_74 					74.0 to 74.5 feet: No recovery.				
75					74.5 to 77.5 feet: Same as above	from 68.7 to 74.0 feet.			
76									
F									
_77		100							
78					77.5 to 79.5 feet: Same as above	e from 14.5 to 17.5 feet with trace sa			
70									
_/9									
80 					79.5 to 94.5 feet: No recovery. Pu process.	shed drill point without collecting soi	l in order to speed up drillin	g	
81									
82		0							
83									
81									
85									
86		0							
<u>:</u> E								1006	

			T. J. J. J.		_	Geologic Borehole Log		Item #2
	MA	UL	FOSTER A	LONG	Project Number M0830.03.006	Boring Number MFA B-3	Sheet 5 of 6	
	Water Levels	Recovery	Sample Data Sample ID	Lithologic Column		Soil Description		
_88 _89		0						
_90 _91 _92 _93		o						
_95 _96 _97 _98		90			95.0 to 97.0 feet: SILTY SAND	ove from 14.5 to 17.5 feet with trace sand. O(SM); gray; 20% fines, low plasticity; 80% san ove from 14.5 to 17.5 feet. Ove from 14.5 to 17.5 feet.		
99 		0						
105 106 107 108		o						
		100		 	108.5 to 110.0 feet: Same as a	above from 14.5 to 17.5 feet.		100

						Geologic Borehole Log		Item #2
	M	AUL	FOSTER AL	ONG	Project Number M0830.03.006	Boring Number MFA B-3	Sheet 6 of 6	1
Depth (feet, bgs)	Water Levels	Percent Recovery	Sample Data Sample ID	Lithologic Column	Soil Description			
110		100						

Total Depth = 110.0 feet bgs

NOTES:

1. Depths are relative to feet below top of the sludge at the lagoon bottom. 2. Lagoon water level elevation at time of drilling: 28 feet 3. Barge deck height above the lagoon: 2.5 feet. 4. Depth below deck to top of sludge: 30.0 feet. 5. Top of sludge surface elevation of 0.5 feet calculated as lagoon water level elevation (28 feet) plus barge deck height above water (2.5 feet) minus depth to top of sludge (30.0 feet). 6. ID = identification. 7. bgs = below ground surface.

Borehole Completion Details

0.0 to 110.0 feet below lagoon bottom: 2.25-inch borehole.

Borehole Abandonment Details
0.0 to 110.0 feet below lagoon bottom: Bentonite chips hydrated with potable water.

100 3	0							Geologic Borehole Log		Iten
Project Location St. Helens, OR Surface Elevation (feet) Approx. 2. Start/End Date 0/06/2023 to 02/06/2023 Driller/Equipment Cascade Environmental/Geoprobe 7822 DT Easting Cologist/Engineers Cascade Environmental/Geoprobe 7822 DT Total Depth of Borehole 21.5 feet Sample Method Macro-core Quter Hole Diam 2.25 inch 2.5 inch Sample Method Sample Method Sample Method Sample Method Macro-core Outer Hole Diam 2.25 inch 2.5 inch		M	A U L	FOS	STER AL	ONG				
Sample ID Sample ID Sample ID So by by by by by by by by by by by by by	Pro Sta Drii Ge	oject L art/End ller/Ed ologis	iect Location t/End Date der/Equipment clologist/Engineer nple Method St. Helens, 02/06/2023 Cascade El C. Schweitz Macro-core				06/2023	Northing Easting Total Depth of Borehole 21.5		
100 100 100 100 100 100 100 100	(S)		7	;; Sa	mple Data	jc		Soil Description		
decomposed organic material; very soft; wet. 1.0 to 3.3 feet: SILT (ML); gray; 100% fines, low plasticity; soft; moist. 3.3 to 5.5 feet: SAND (SP); gray; 100% sand, fine to medium; loose; moist. 5.5 to 6.5 feet: No recovery. 1.1 (6.5 to 6.8 feet: SILT (ML); gray; 100% fines, low plasticity; trace organics and rootlets; soft; moist. 6.8 to 9.0 feet: SAND (SP); gray; 100% sand, fine to medium; loose; moist.	feet, bg	Water Levels	Percent Recover	Screen	Sample ID	Litholog Column				
2 100 3.3 to 5.5 feet: SAND (SP); gray, 100% sand, fine to medium; loose; moist. 60 5.5 to 6.5 feet: No recovery.	1						0.0 to 1.0 feet: LAGOON SLUD decomposed organic mate	OGE; dark gray to black; 100% fines; low plas rial; very soft; wet.	ticity; abundant	
5.5 to 6.5 feet: No recovery. 5.5 to 6.5 feet: SILT (ML); gray; 100% fines, low plasticity; trace organics and rootlets; soft; moist. 6.8 to 9.0 feet: SAND (SP); gray; 100% sand, fine to medium; loose; moist. 8 9 80 80 9.0 to 10.5 feet: SILT (ML); gray; 100% fines, low plasticity; trace organics and rootlets; soft; moist.	2		100				1.0 to 3.3 feet: SILT (ML); gray,	; 100% fines, low plasticity; soft; moist.		
5.5 to 6.5 feet: No recovery. 1						1111111111	3.3 to 5.5 feet: SAND (SP); gra	y; 100% sand, fine to medium; loose; moist.		
5.5 to 6.5 feet: No recovery.	5		60		MFA-B3A- 20230207-GW- 36.0					
MFA-B3A- 20230207-GW- 36.0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6		00				5.5 to 6.5 feet: No recovery.			
MFA-B3A-20230207-GW-36.0 9 0 0 0 10.5 feet: SILT (ML); gray; 100% fines, low plasticity; trace organics and rootlets; soft; moist.	7						6.5 to 6.8 feet: SILT (ML); gray,	; 100% fines, low plasticity; trace organics an	d rootlets; soft; mois	<u>st.</u>
10.5 to 11.5 feet: No recovery. 11.5 to 15.0 feet: Same as above from 9.0 to 10.5 feet. 15.0 to 16.5 feet: No recovery. 16.5 to 20.5 feet: Same as above from 9.0 to 10.5 feet.	8 9 10		80				9.0 to 10.5 feet: SILT (ML); gra		nd rootlets; soft; mo	<u>.</u>
17.5 to 15.0 feet: Same as above from 9.0 to 10.5 feet. 15.0 to 16.5 feet: No recovery. 16.5 to 20.5 feet: Same as above from 9.0 to 10.5 feet.	1					ТІППП	10.5 to 11.5 feet: No recovery.			
7	12					ПППП	11.5 to 15.0 feet: Same as abo	ve from 9.0 to 10.5 feet.		
7 16.5 to 20.5 feet: No recovery. 16.5 to 20.5 feet: Same as above from 9.0 to 10.5 feet. 10.5 feet.	13									
5	14		70							
7	15					ПППП	15.0 to 16.5 feet: No recovery.			
8 80 9	16									
9 80	17 18						1 16.5 to 20.5 feet: Same as abo	ive πom 9.0 to 10.5 feet.		
	19		80							
	20									,

						Geologic Borehole Log		Item #2
	М.	AULF	OSTER ALC	ONG	Project Number M0830.03.006	Boring Number MFA B-3A	Sheet 2 of 2	
Depth (feet, bgs)	Water Levels	Percent Recovery Screen Int.	Sample Data Sample ID	Lithologic Column		Soil Description		
_21		80			20.5 to 21.5 feet: No recovery.			

Total Depth = 21.5 feet bgs

NOTES:

- 1. Depths are relative to feet below top of the sludge at the lagoon bottom. 2. Lagoon water level elevation at time of drilling: 28 feet 3. Barge deck height above the lagoon: 2.5 feet. 4. Depth below deck to top of sludge: 28.0 feet. 5. Top of sludge surface elevation of 2.5 feet calculated as lagoon water level elevation (28 feet) plus barge deck height above water (2.5 feet) minus depth to top of sludge (28.0 feet). 6. ID = identification. 7. bgs = below ground surface.
- 8. Water level measured inside casing with an electric water level meter after sitting overnight to equilibrate. Lagoon water level elevation (28 feet); Casing height above lagoon water (4.9 feet); Depth of water level below casing (17.60 feet); Groundwater elevation = lagoon level (28 feet) plus PVC casing height above lagoon water level (4.9 feet) minus depth to water from top of casing (17.60 feet) = 15.3 feet

Borehole Completion Details

0.0 to 21.5 feet below lagoon bottom: 2.25-inch borehole.

Reconnaissance Well Completion Details

Temporary polyvinyl chloride well screen set from 6.0 to 10.0 feet below lagoon bottom.

Borehole Abandonment Details

0.0 to 21.5 feet below lagoon bottom: Bentonite chips hydrated with potable water.

						Geologic Borehole Log	J	Item #2.
	MA	ULF	OSTER AL	LONG	Project Number M0830.03.006	Boring Number MFA B-4	Sheet 1 of 6	
Pro Sta Dri Ge	oject Na oject Lo art/End i iller/Equ ologist/ mple M	cation Date iipmeni Engine	St. Hele 02/02/2 t Cascac	weitzer	on	Surface Elevation Northing Easting Total Depth of Bo Outer Hole Diam	n (feet) Appro	
Depth (feet, bgs)	Water Levels	Recovery	ample Data Sample ID	Lithologic Column		Soil Description		
1					0.0 to 2.0 feet: LAGOON SLUDGI organic material; very soft; we	E; dark gray to black; 100% fines; louet.	м plasticity; abundant decon	nposed
3		80 20	MFA-B4- 0230202-SL- 26.5		and rootlets; wet.	ay to black; 100% fines, low plasticit gray; 100% sand, fine to mediuml; lo		matter -
5					4.0 to 5.0 feet: No recovery. 5.0 to 6.5 feet: Same as above from			
6								
7 8 9	1	100			6.5 to 10.0 feet: SILT (ML); gray; rootlets; moist.	100% fines, low plasticity; soft; trace	organics, plant matter, and	
.GPJ 8/31/23					10.0 to 11.0 feet: SILTY SAND (S	M); gray; 20% fines, low plasticity; 8	.0% sand, fine, loose; moist (to wet.
12 HELENS					11.0 to 18.5 feet: Same as above	from 6.5 to 10.0 feet.		
0.50.0830.03.0 11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		100						
14 15								
©\TNID\:W.\GINT\G								
MFA BOREHOLE W/RECON SCREEN W/GINT/GINT/MPROJECTS/M0830.03.006 ST. HELENS.GPJ 8 10 01 11 12 11 11 11 11 11 11 11 11 11 11 11		70						
19 19 19 19 19 19 19 19 19 19 19 19 19 1					18.5 to 20.0 feet: No recovery.			
MFA 50								1011

					Geologic Borehole Log		Item
M.	AUL	FOSTER A	LONG	Project Number M0830.03.006	Boring Number MFA B-4	Sheet 2 of 6	
(feet, bgs) Water Levels	Percent Recovery	Sample Data Sample ID	Lithologic Column	MOCOU.OU	Soil Description	2 01 0	
			<u>. </u>	20.0 to 23.5 feet: Same as abo	ve from 6.5 to 10.0 feet.		
22 22 23 24	70			23.5 to 25.0 feet: No recovery.			
25				25.0 to 29.0 feet: Same as abo	ve from 6.5 to 10.0 feet.		
27 28 29	80						
30 31				29.0 to 30.0 feet: No recovery. 30.0 to 34.5 feet: Same as abo	ve from 6.5 to 10.0 feet.		- —
32	90			34.5 to 35.0 feet: No recovery.			
33 34 35 36 37 38 39 40	90			35.0 to 39.5 feet: Same as abo	ve from 6.5 to 10.0 feet.		
40				39.5 to 40.0 feet: No recovery. 40.0 to 44.5 feet: Same as abo	ve from 6.5 to 10.0 feet.		
1 1	90						

								Geologic Borehole Log] Item #
	MA	ULI	FOSTER A	LC	N	G	Project Number M0830.03.006	Boring Number MFA B-4	Sheet 3 of 6	
gs)		, <u>2</u> ,	Sample Data		zic			Soil Description		
Depth (feet, bgs)	Water Levels	Secove	Sample ID		itholog	Column				
				<u> </u>	П	Ш				
_43										
		90								
_44										
_45				F	ıπ	пп	44.5 to 45.0 feet: No recovery. 45.0 to 64.5 feet: Same as abo	vo from 6.5 to 10.0 foot		
46							45.0 to 04.5 feet. Same as abo	ve nom 0.5 to 10.6 leet.		
_+0										
_47										
- 48	1	100								
-										
_49										
_ _50										
_51										
_52										
53	1	100								
_00										
_54										
- _55										
_										
_56										
_57										
- 58		100								
_00										
_59										
_60										
-										
_61										
_62										
55 56 57 58 59 60 61 62 63 63		90								
_03										
_64										10

						Geologic Borehole Log		Item #2.
	MA	UL	FOSTER A	LONG	Project Number M0830.03.006	Boring Number MFA B-4	Sheet 4 of 6	
(8)		۶.	Sample Data	, j	1110000.000	Soil Description	4 0, 0	
Depth (feet, bgs)	Water Levels	Percent	Sample ID	Lithologic Column				
£ \$	2 3 0	ترد		70				
;		90			64.5 to 65.0 feet: No recovery. 65.0 to 69.5 feet: Same as above	e from 6 5 to 10 0 feet		
5 7 8		90			05.0 to 09.5 feet. Same as above	TION 0.3 to 10.0 leet.		
				ЩШШШ	69.5 to 70.0 feet: No recovery.			
	-	\dashv		ППППП	70.0 to 74.5 feet: Same as above	from 6.5 to 10.0 feet.		
		100						
					At 73.5 to 74.5 feet: Multiple thin	sand lenses.		
					74.5 to 75.0 feet: SILTY SAND (S moist.	SM); gray; 20% fines, low plasticity; 80	% sand, fine to medium; lo	ose;
					75.0 to 76.5 feet: Same as above	from 6.5 to 10.0 feet.		/
					76.5 to 76.8 feet: Same as above	from 74.5 to 75.0 feet. ; 100% fines, low plasticity; soft; mois		
		100			70.0 to 03.3 feet. SiET (WIL), gray	, 100 % Illies, low plasticity, soit, mot		
	-	\dashv						
		70						
				H1111111111	83.5 to 100.0 feet: No recovery. F	Pushed drill point without collecting so	oil in order to speed up drillii	ng
					process.			
	-	\dashv						
		,						
8 9 0 1 1 2 3 4 4 5 6		0						1014

					5	Geologic Borehole Log		Item #
	MA	UL	FOSTER A	LONG	Project Number M0830.03.006	Boring Number MFA B-4	Sheet 5 of 6	
Depth (feet, bgs)	Water Levels	sent overy	Sample Data Sample ID	Lithologic Column		Soil Description		
	Wate	Perc Recc	Sample ID	Colu				
_87								
_88		0						
_89								
90								
91								
92								
93		0						
94								
95								
_96								
_97		0						
_98								
_99								
<u>1</u> 00					100.0 to 104.0 feet: Same as a	bove from 76.8 to 83.5 feet.		
<u>1</u> 01								
<u>1</u> 02								
<u>1</u> 03		90						
104								
105					104.5 to 105.0 feet: No recover	ry.		
106					105.0 to 109.5 feet: Same as a	bove from 76.8 to 83.5 feet.		
_9899		90						
<u>1</u> 08								10

						Geologic Borehole Log		Item #.
9	M.	AUL	FOSTER AL	LONG	Project Number M0830.03.006	Boring Number MFA B-4	Sheet 6 of 6	
Depth (feet, bgs)	Water Levels	Percent Recovery	Sample Data Sample ID	Lithologic Column	WU03U.U3.UU0	Soil Description	0 01 0	
110		90			109.5 to 110.0 feet: No recovery.			

Total Depth = 110.0 feet bgs

NOTES:

1. Depths are relative to feet below top of the sludge at the lagoon bottom. 2. Lagoon water level elevation at time of drilling: 28 feet 3. Barge deck height above the lagoon: 2.5 feet. 4. Depth below deck to top of sludge: 24.5 feet. 5. Top of sludge surface elevation of 6.0 feet calculated as lagoon water level elevation (28 feet) plus barge deck height above water (2.5 feet) minus depth to top of sludge (24.5 feet). 6. ID = identification. 7. bgs = below ground surface.

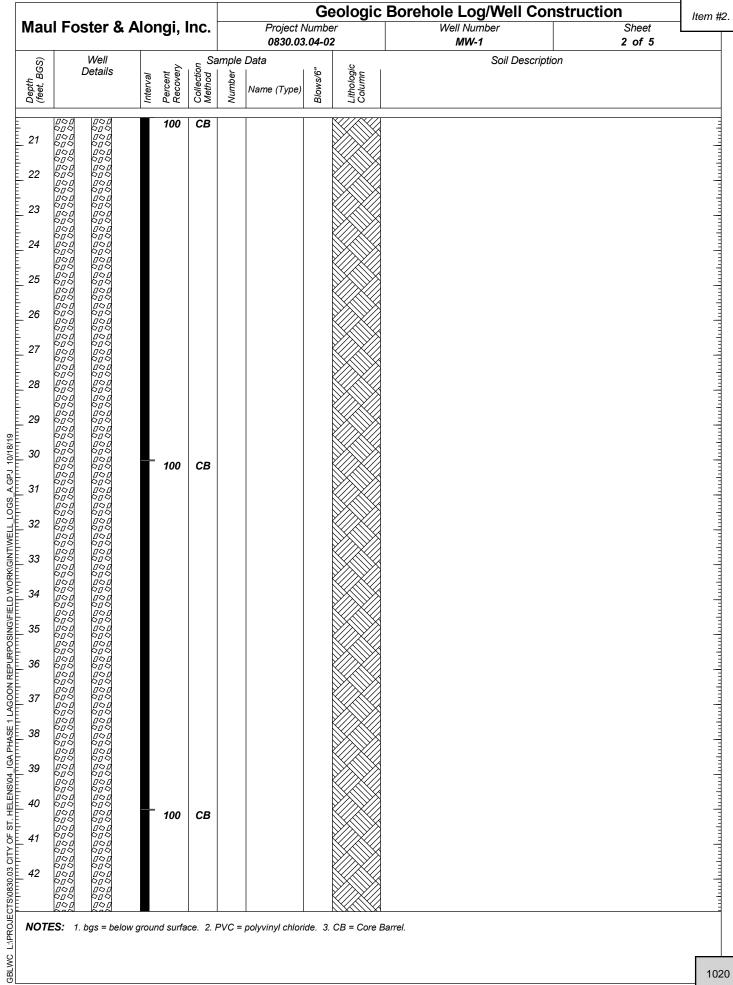
Borehole Completion Details

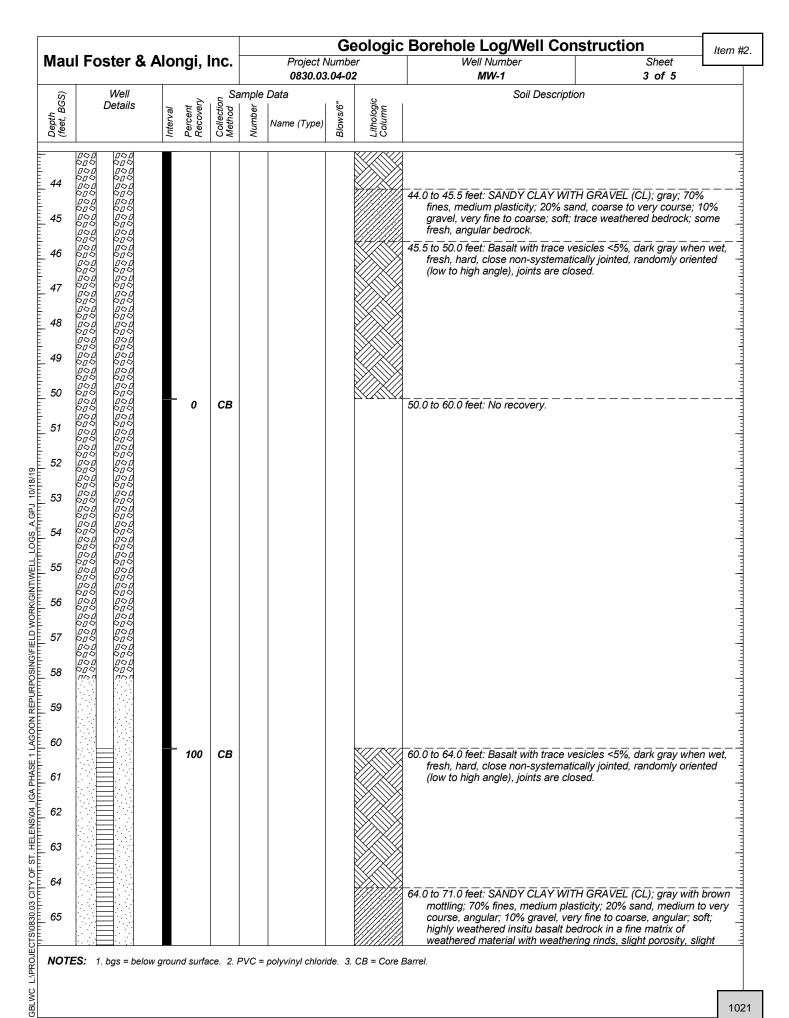
0.0 to 110.0 feet below lagoon bottom: 2.25-inch borehole.

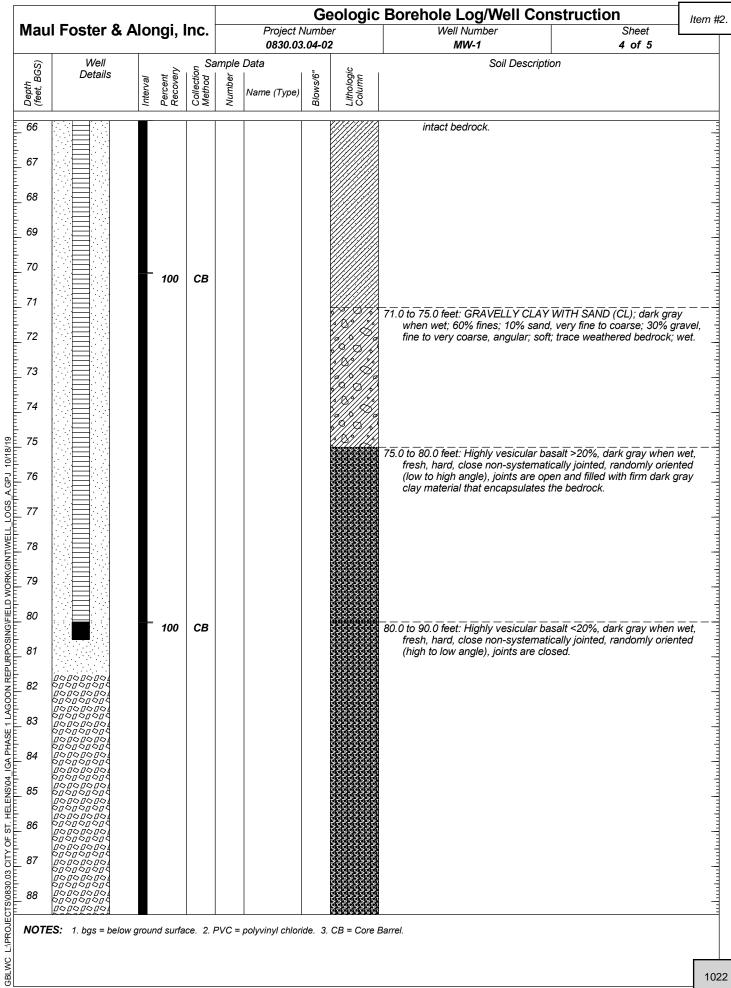
Borehole Abandonment Details
0.0 to 110.0 feet below lagoon bottom: Bentonite chips hydrated with potable water.

9						Geologic Borehole Log	24	Iten
	MA	ULFC	STERA	LONG	Project Number M0830.03.006	Boring Number MFA B-5	Sheet 1 of 2	
Pro Sta Dri Ge	art/End ller/Eq ologisi	ocation	St. Hel 02/03/2 Casca	de Envird weitzer	oon 2/06/2023 onmental/Geoprobe 7822 DT	Surface Elevation (feet) Northing Easting Total Depth of Borehole Outer Hole Diam		ox. 5.0 5 feet inch
Js)		Sa Sa	mple Data	ίς		Soil Description		
Depth (feet, bgs)	Water Levels	Recovery	Sample ID	Lithologic Column				
1					0.0 to 1.5 feet: LAGOON SLUDGE organic material; very soft; we	E; dark gray to black; 100% fines; low plastic tt.	ty; abundant decor	npose
2			MFA-B5- 230203-SL- 27.0			ray to black; 100% fines, low plasticity; soft;	moist.	
345	_				At 2.5 feet: Color change to gray.			
6 7 8 9		100						
10 11 12		60			At 11.0 feet: Color change to brown 12.0 to 14.0 feet: No recovery.	rnish gray.		
14 15	-				14.0 to 20.5 feet: SILT (ML); brown	nish gray; 100% fines, low plasticity; soft; mo	vist.	
13 14 15 16 17 18		100						
18					At 19.0 feet: Color change to gray.			
19	H			111111111				

Total Depth = 30.25 feet bgs

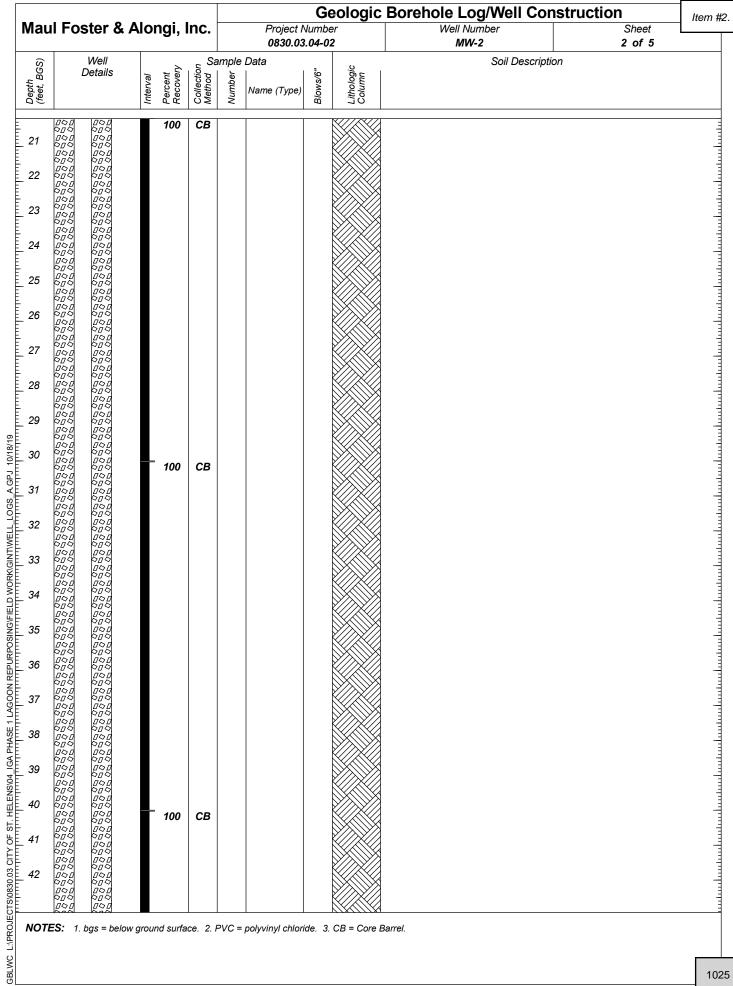

NOTES:

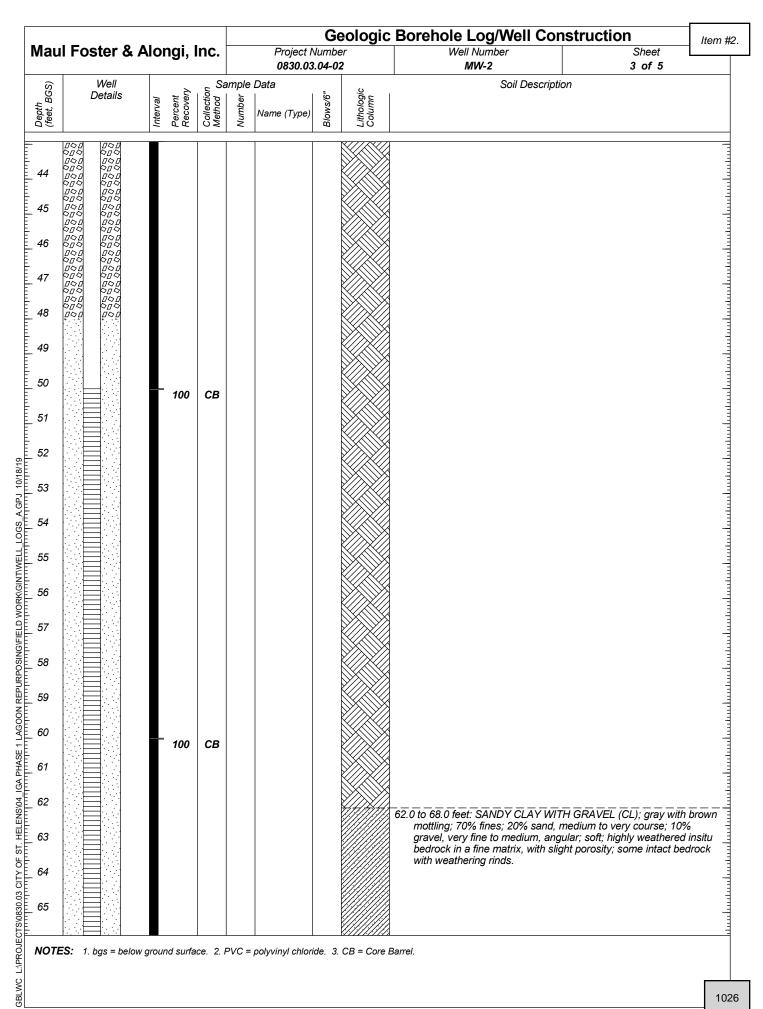

1. Depths are relative to feet below top of the sludge at the lagoon bottom. 2. Lagoon water level elevation at time of drilling: 28 feet 3. Barge deck height above the lagoon: 2.5 feet. 4. Depth below deck to top of sludge: 25.5 feet. 5. Top of sludge surface elevation of 5.0 feet calculated as lagoon water level elevation (28 feet) plus barge deck height above water (2.5 feet) minus depth to top of sludge (25.5 feet). 6. ID = identification. 7. bgs = below ground surface.

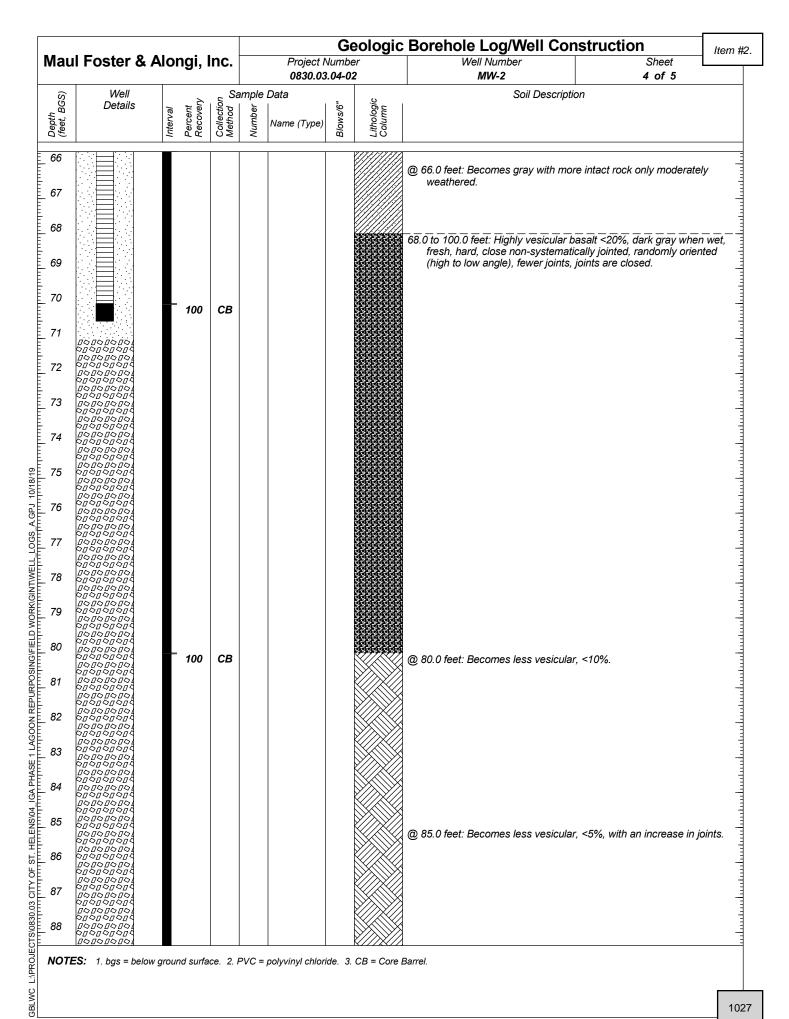

Borehole Completion Details
0.0 to 30.25 feet below lagoon bottom: 2.25-inch borehole.

<u>Borehole Abandonment Details</u> 0.0 to 30.25 feet below lagoon bottom: Bentonite chips hydrated with potable water.

Maul Foster &	Alonai Inc	Project Number	Borehole Log/Well Cons	Sheet	Iter
naar i ootoi a	Alongi, inc.	0830.03.04-02	MW-1	1 of 5	
Project Name Project Location Start/End Date Driller/Equipment Geologist/Engineer Sample Method Well	C. Schweitzer Core Barrel: Te	n-foot intervals.	TOC Elevation (fee Surface Elevation (Northing Easting Hole Depth Outer Hole Diam Soil Description	feet) 100.0- 6" to	
Depth (feet, BGS) Well Details	Interval Percent Recovery Collection Method	Name (Type) Blooks/C			
A	T 100 CB	PVC = polyvinyl chloride. 3. CB = Core B	0.0 to 44.0 feet: Basalt with trace vesic fresh, hard, close non-systematics (low to high angle), joints are close fresh.	ally jointed, randomly orien	

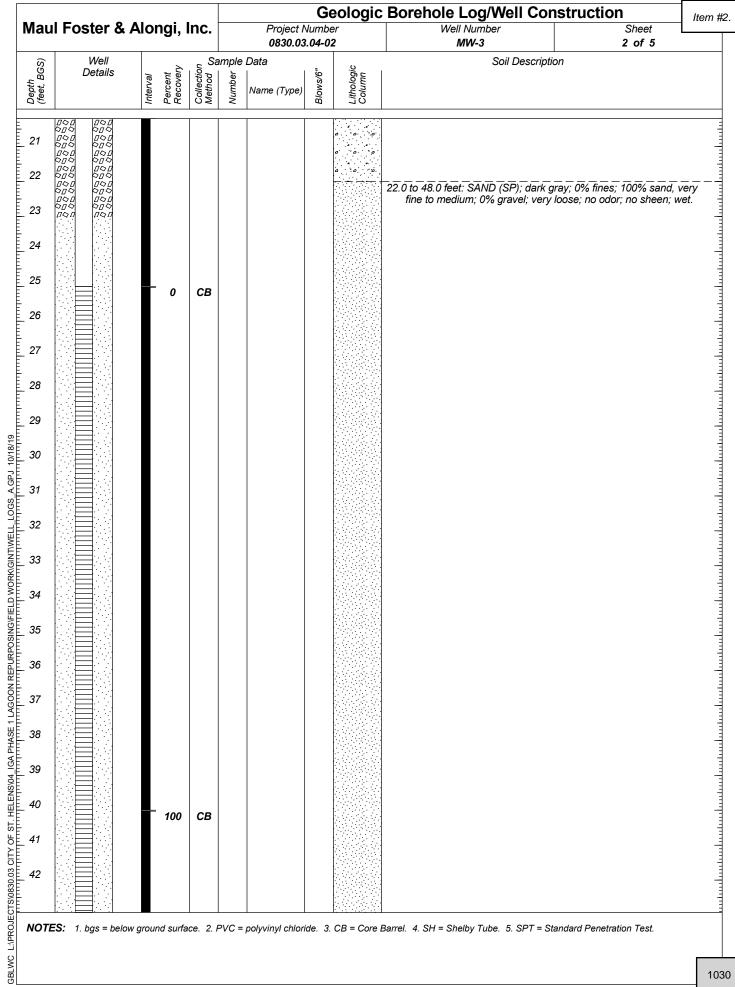

Mau	I Foster &	Alo	ngi, l	Inc.		Project N			Borehole Log/Well Cons	Sheet	Ite
						0830.03			MW-1	5 of 5	
Depth (feet, BGS)	Well Details	Interval	Percent Recovery	Collection Method &	ample Numper	Data Name (Type)	Blows/6"	Lithologic Column	Soil Description	n	
89											
90 91	00000000000000000000000000000000000000	Ī	100	СВ					@ 90.0 feet: Becomes less vesicular		- —
92 93											
94	0,00,00,00 0,00,00,00 0,00,00,00 0,00,00,00 0,00,00,00 0,00,00,00 0,00,00,00 0,00,00,00										
95 96	\$\\ \text{0}\\ 0								@ 95.0 feet: Becomes less vesicular	<5%, and increase in jointing	g.
97 98	00000000000000000000000000000000000000										
99											
									Total Depth = 100.0 feet bgs. Borehole Details: 0.0 to 80.0 feet bgs: 6-inch borehole. 80.0 to 100.0 feet bgs: 4-inch borehole. Borehole Completion Details: 0.0 to 5.0 feet bgs: Concrete. 5.0 to 58.0 feet bgs: Bentonite chips h 58.0 to 81.5 feet bgs: 12/20 Silica Sar 81.5 to 100.0 feet bgs: Bentonite chips. Monitoring Well Completion Well Tag Number: L133559 Flushmount monitoring well. 0.0 to 60.0 feet bgs: 2-inch-diameter, pipe. 60.0 to 80.0 feet bgs: 2-inch-diameter machine slot, pre-pack well screen. 80.0 to 80.5 feet bgs: 2-inch-diameter	nydrated with potable water. nd. s hydrated with potable wate schedule 40, PVC blank rise schedule 40, 0.010-inch	
NOTE	ES: 1. bgs = belo	w groui	nd surfa	ace. 2. I	PVC =	polyvinyl chlori	de. 3	3. CB = Core E	Barrel.		_

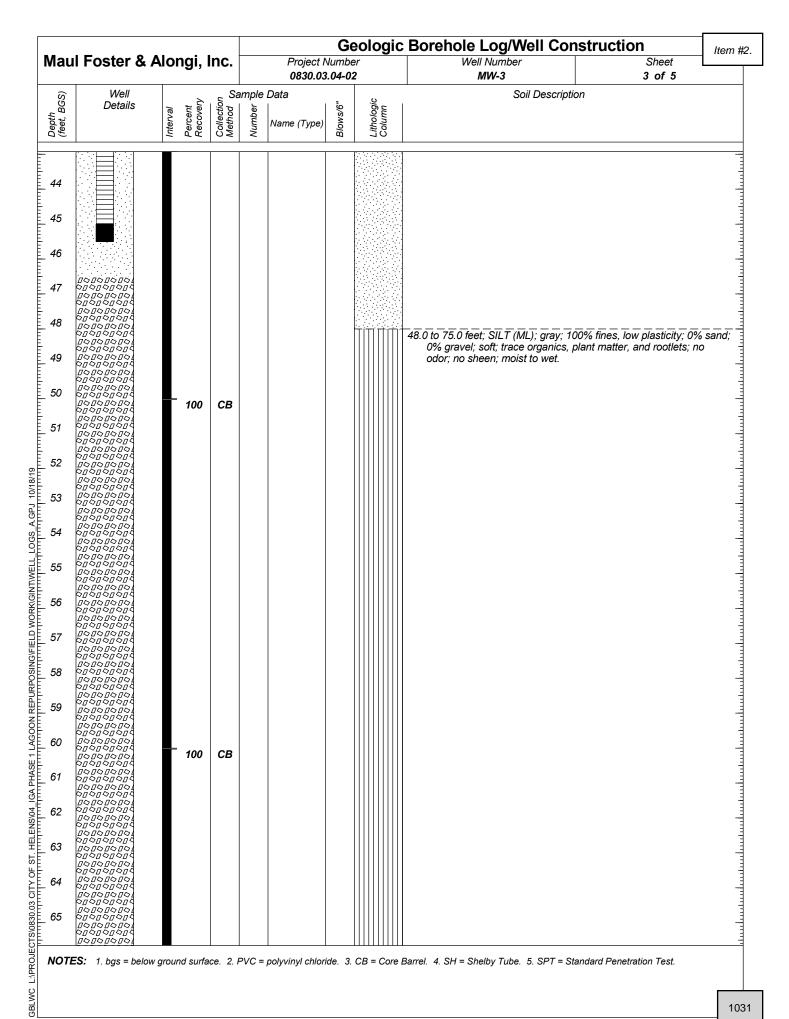

Borehole Details:

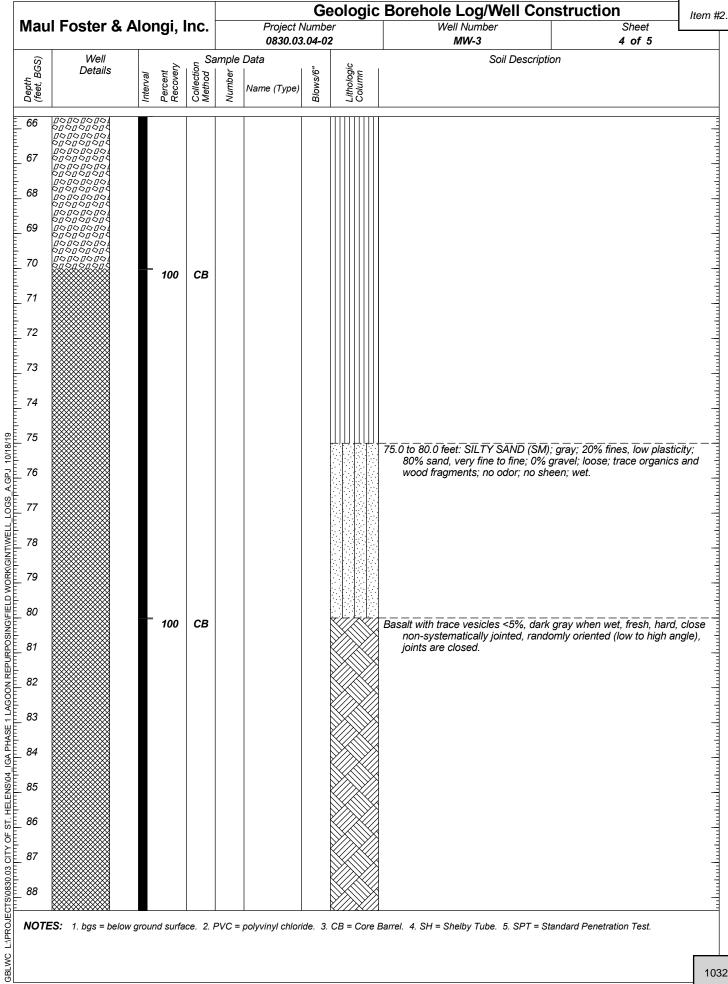

Borehole Completion Details:

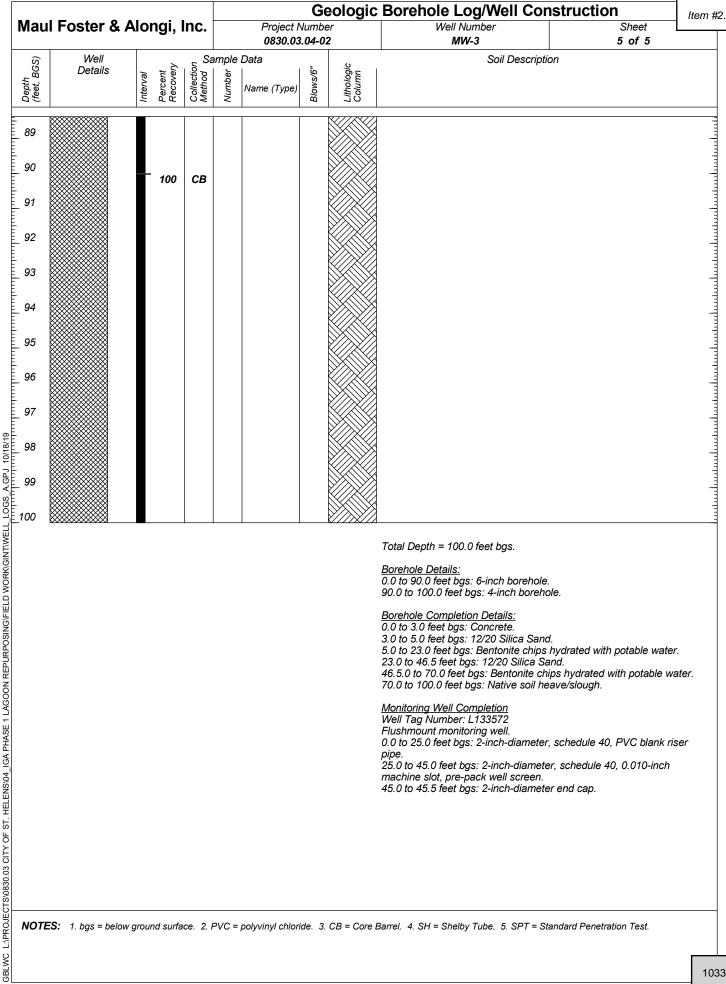
Geologic Borehole Log/Well Construction Item #2. Maul Foster & Alongi, Inc. Well Number Project Number Sheet 0830.03.04-02 MW-2 1 of 5 Project Name St. Helens Lagoon TOC Elevation (feet) Project Location Surface Elevation (feet) St. Helens Start/End Date 7/8/19 to 7/10/19 Northing Driller/Equipment Dan Rider/Terra Sonic Incorporated 150 CC Easting Geologist/Engineer C. Schweitzer Hole Depth 100.0-feet 6" to 4"-inch Sample Method Core Barrel: Ten-foot intervals. Outer Hole Diam Well Depth (feet, BGS) Sample Data Soil Description Lithologic Column Details Blows/6' Interval Name (Type) 0.0 to 62.0 feet: Basalt with trace vesicles <5%, dark gray when wet, 100 CB fresh, hard, close non-systematically jointed, randomly oriented (low to high angle), joints are closed. 2 3 5 6 10/18/19 A.GPJ 8 GBLWC L\PROJECTS\0830.03 CITY OF ST. HELENS\04 IGA PHASE 1 LAGOON REPURPOSING\FIELD WORK\GINT\WELL LOGS 9 10 100 CB 11 12 13 14 15 16 17 18 19 20

NOTES: 1. bgs = below ground surface. 2. PVC = polyvinyl chloride. 3. CB = Core Barrel.


Mau	ıl Foster &	Alo	ngi,	Inc.		Project N			Borehole Log/Well Co	Sheet	Iter
						0830.03			MW-2	5 of 5	
GS)	Well Details		± 5	Sé	ample	Data		o dic	Soil Descrip	tion	
Depth (feet, BGS)	Betano	Interval	Percent Recovery	Collection Method o	Number	Name (Type)	Blows/6"	Lithologic Column			
9 E		Ĭ,	A 8	ΰŠ	ž		B/	ÖË			
89	000000000										
00	000000000										
90											
	000000000		100	СВ							
91	000000000 000000000 000000000										
00											
92	000000000										
93	000000000 0000000000 000000000										
94	000000000										
	000000000 0000000000 000000000										
95											
96	000000000										
	000000000 000000000 00000000										
97	000000000 000000000 00000000										
98	00000000										
99											
99 100											
00											
									Total Depth = 100.0 feet bgs.		
									Borehole Details: 0.0 to 70.0 feet bgs: 6-inch borehol	e.	
									70.0 to 100.0 feet bgs: 4-inch borel	hole.	
									Borehole Completion Details: 0.0 to 2.0 feet bgs: Concrete.		
									2.0 to 48.0 feet bgs: Bentonite chip 48.0 to 71.0 feet bgs: 12/20 Silica S	s hydrated with potable water. Sand	
									71.0 to 100.0 feet bgs: Bentonite ch	hips hydrated with potable water	r.
									Monitoring Well Completion		
									Well Tag Number: L133560 Flushmount monitoring well.		
									0.0 to 50.0 feet bgs: 2-inch-diameter pipe.	er, schedule 40, PVC blank riser	r
									50.0 to 70.0 feet bgs: 2-inch-diame machine slot, pre-pack well screen.	ter, schedule 40, 0.010-inch	
									70.0 to 70.5 feet bgs: 2-inch-diame		
NOTE	ES: 1. bgs = belo	w grou	nd surfa	ace. 2. I	PVC =	polyvinyl chlori	de. 3	. CB = Core E	Barrel.		


Borehole Details:


Borehole Completion Details:


Monitoring Well Completion Well Tag Number: L133560

	Maul Fostor 8				Geologic Borehole Log/Well Construction						
	Mau	I Foster &	Alongi,	Inc.		Project I 0830.0 3			Well Number MW-3	Sheet 1 of 5	
_	Proj Star Drill Geo	iect Name iect Location t/End Date er/Equipment blogist/Engineer nple Method	St. Helens St. Helens 7/17/19 to Dan Riden C. Schwei Core Barre	7/17/19 /Terra tzer	9 Sonic	: Incorporate			TOC Elevation (fe Surface Elevation Northing Easting Hole Depth Outer Hole Diam	eet)	
ŀ		Well			ample				Soil Description		
	Depth (feet, BGS)	Details	Interval Percent Recovery	Collection Method C	Number 3	Name (Type)	Blows/6"	Lithologic Column	Con Docorpus	<i></i>	
SING/FIELD WORK/GINTWELL LOGS A.GPJ 10/18/19	1 2 3 4 5 6 7 7 9 10 11		100	CB					0.0 to 1.0 feet: SANDY GRAVEL (GV 80% gravel, fine to coarse, angu moist. 1.0 to 2.0 feet: GRAVELLY CLAY (C plasticity; 0% sand; 20% gravel, stiff; no odor; no sheen; moist. 2.0 to 5.0 feet: SAND WITH GRAVEL sand, very fine to coarse; 10% g angular; loose; trace cobbles; no stiff; no odor; no sheen; moist. 5.5 to 8.0 feet: SANDY CLAYEY GR. medium plasticity; 30% sand, me to coarse, angular; loose; trace of moist. 8.0 to 10.0 feet: GRAVELLY SAND (fine to coarse; 20% gravel, fine to trace silt clasts; no odor; no sheet.	lar; loose; no odor; no sheen; L); brown; 80% fines, medium very fine to medium, angular; L (SW); gray; 0% fines; 90% ravel, fine to very coarse, odor; no sheen; moist. L); brown; 80% fines, medium very fine to medium, angular; AVEL (GW); gray; 20% fines, edium to coarse; 50% gravel, cobbles; no odor; no sheen; SW); brown; 0% fines; 80% si o very coarse, angular; loose;	
GBLWC L:\PROJECTS\0830.03 CITY OF ST. HELENS\04_IGA PHASE 1 LAGOON REPURPOSING\FIEL	13 14 15 16 17 18 19		100	CB SPT			21, 11, 15		15.0 to 22.0 feet: SAND WITH GRAN sand, fine to medium; 10% grave loose; trace silt clasts; no odor; r	el, fine to very coarse, angular	
/C L:\PROJE	NOTE	ES: 1. bgs = below	w ground surfa	ace. 2. I	PVC =	polyvinyl chlor	ride. 3	. CB = Core I	Barrel. 4. SH = Shelby Tube. 5. SPT = St	andard Penetration Test.	
GBLM											1029

Total Depth = 100.0 feet bgs.

Borehole Details:

0.0 to 90.0 feet bgs: 6-inch borehole. 90.0 to 100.0 feet bgs: 4-inch borehole.

Borehole Completion Details:

0.0 to 3.0 feet bgs: Concrete. 3.0 to 5.0 feet bgs: 12/20 Silica Sand.

5.0 to 23.0 feet bgs: Bentonite chips hydrated with potable water.

23.0 to 46.5 feet bgs: 12/20 Silica Sand.

46.5.0 to 70.0 feet bgs: Bentonite chips hydrated with potable water.

70.0 to 100.0 feet bgs: Native soil heave/slough.

Monitoring Well Completion

Well Tag Number: L133572 Flushmount monitoring well.

0.0 to 25.0 feet bgs: 2-inch-diameter, schedule 40, PVC blank riser

pipe. 25.0 to 45.0 feet bgs: 2-inch-diameter, schedule 40, 0.010-inch

machine slot, pre-pack well screen.

45.0 to 45.5 feet bgs: 2-inch-diameter end cap.

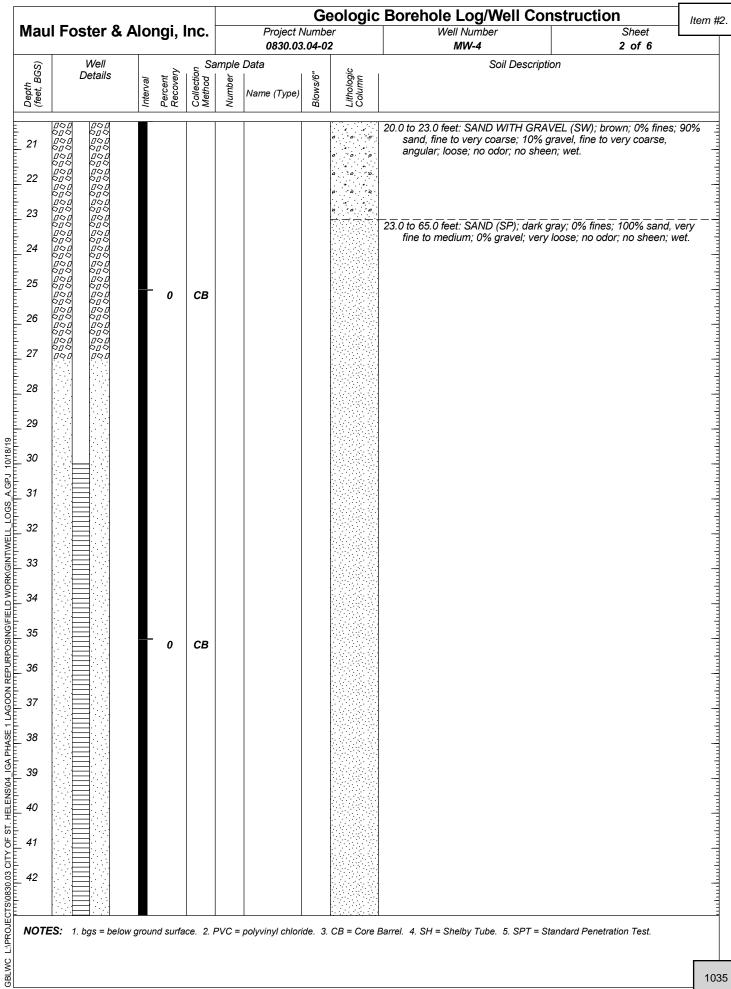
Geologic Borehole Log/Well Construction Item #2. Project Number Maul Foster & Alongi, Inc. Well Number Sheet 0830.03.04-02 MW-4 1 of 6 Project Name St. Helens Lagoon TOC Elevation (feet) Project Location St. Helens Surface Elevation (feet) Start/End Date 7/15/19 to 7/15/19 Northing Driller/Equipment Dan Rider/Terra Sonic Incorporated 150 CC Easting 120.0-feet Geologist/Engineer C. Schweitzer Hole Depth Sample Method Core Barrel: Ten-foot intervals. Outer Hole Diam 6" to 4"-inch Well Soil Description Sample Data BGS) Lithologic Column Details Percent Recovery Blows/6 Interval Depth (feet, E Name (Type) 0.0 to 2.0 feet: SANDY GRAVEL (GW); gray; 0% fines; 20% sand; 100 CB 80% gravel, fine to very coarse, angular; loose; no odor; no 1 sheen: moist. @ 1.5 feet: Becomes brown. 2 2.0 to 4.0 feet: GRAVELLY CLAY (CL); brown; 80% fines, medium plasticity; 0% sand; 20% gravel, very fine to medium, angular; 3 stiff; no odor; no sheen; moist. 4.0 to 8.5 feet: SAND WITH GRAVEL (SW); gray; 0% fines; 90% sand, very fine to coarse; 10% gravel, fine to very coarse, 5 angular; loose; trace cobbles; no odor; no sheen; moist. 100 CB @ 4.1 feet: Piece of black plastic. Shelby tube SH at 5.0 6 7 8 8.5 to 11.0 feet: GRAVELLY SAND (SW); gray; 0% fines; 70% sand, 9 very fine to coarse; 30% gravel, fine to very coarse, angular; loose; trace cobbles; no odor; no sheen; moist. 10 11 11.0 to 12.0 feet: SANDY CLAYEY GRAVEL (GW); brown; 20% fines, medium plasticity; 30% sand, medium to coarse; 50% gravel, very 12 fine to coarse, angular; loose; trace slightly weathered vesicular basalt cobbles; no odor; no sheen; moist. 12.0 to 13.0 feet: SANDY GRAVELLY CLAY (CL); brown fines with 13 gray sand; 50% fines, medium plasticity; 30% sand, very fine to medium; 20% gravel, very fine to medium, angular; very soft; no odor; no sheen; wet. 14 13.0 to 16.0 feet: GRAVELLY SAND (SW); gray; 0% fines; 80% sand, fine to coarse; 20% gravel, fine to very coarse, angular; loose; trace cobbles; no odor; no sheen; wet. 15 100 CB 25, SPT 21, 16 16 16.0 to 20.0 feet: SANDY GRAVEL WITH CLAY (GW); brown; 10% fines; 40% sand, fine to very coarse; 50% gravel, fine to very 17 coarse, angular; loose; some cobbles; no odor; no sheen; wet. 18 19 20

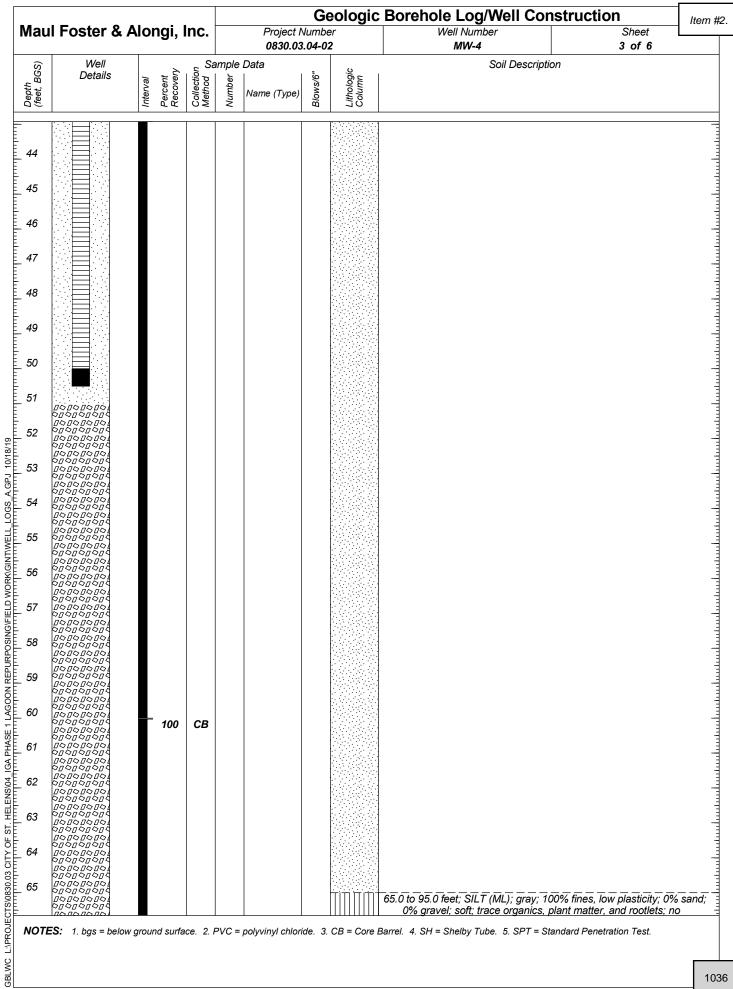
10/18/19

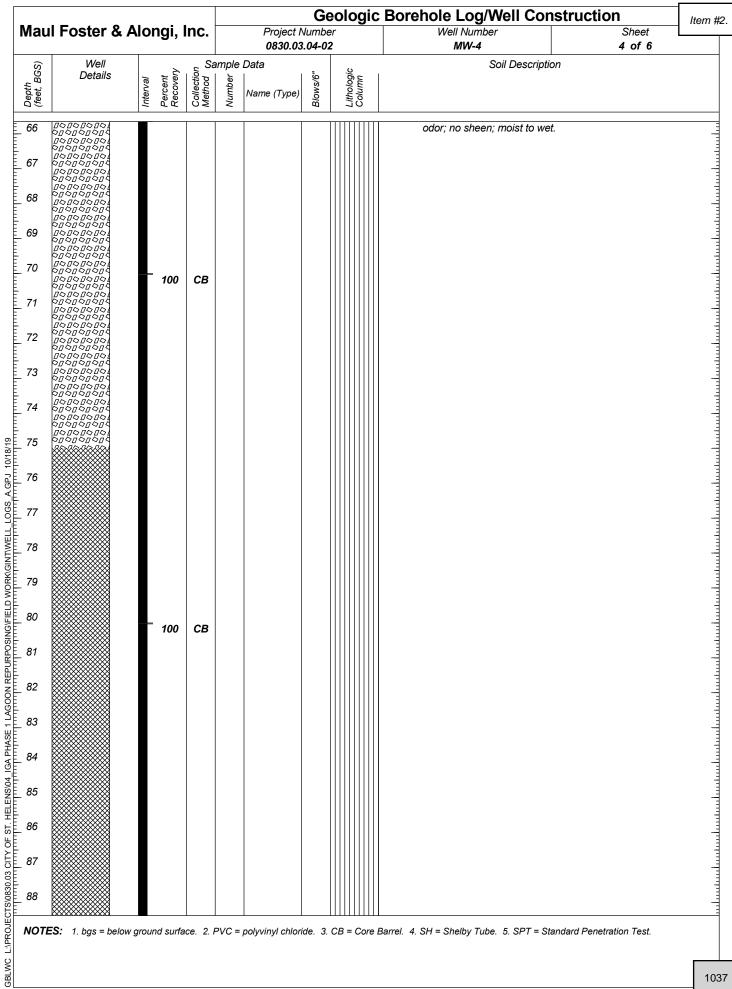
A.GPJ

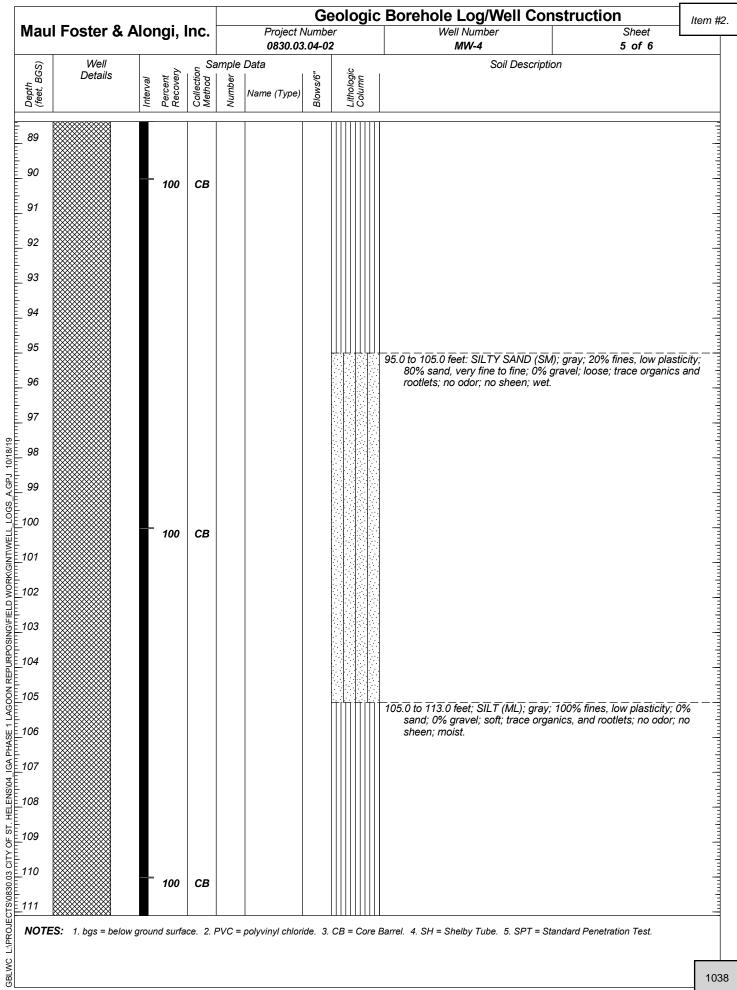
PHASE 1 LAGOON REPURPOSING\FIELD WORK\GINT\WELL_

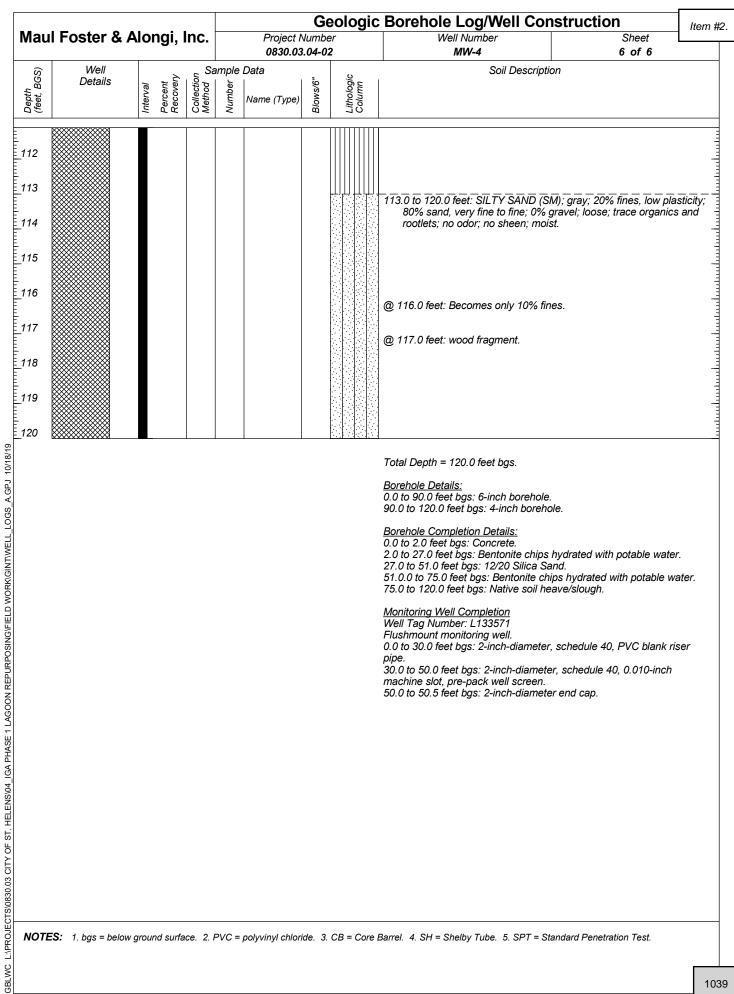
<u>B</u>


HELENS/04


ST


CITY OF


L:\PROJECTS\0830.03


GBLWC

Total Depth = 120.0 feet bgs.

Borehole Details:

0.0 to 90.0 feet bgs: 6-inch borehole. 90.0 to 120.0 feet bgs: 4-inch borehole.

Borehole Completion Details:

0.0 to 2.0 feet bgs: Concrete.

2.0 to 27.0 feet bgs: Bentonite chips hydrated with potable water.

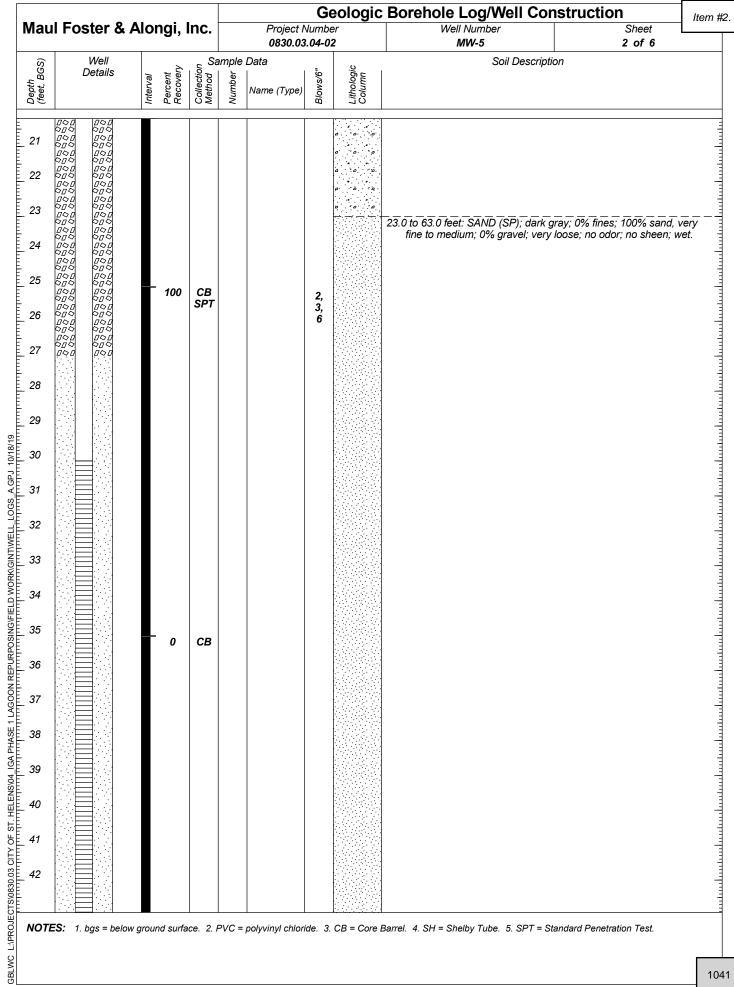
27.0 to 51.0 feet bgs: 12/20 Silica Sand.

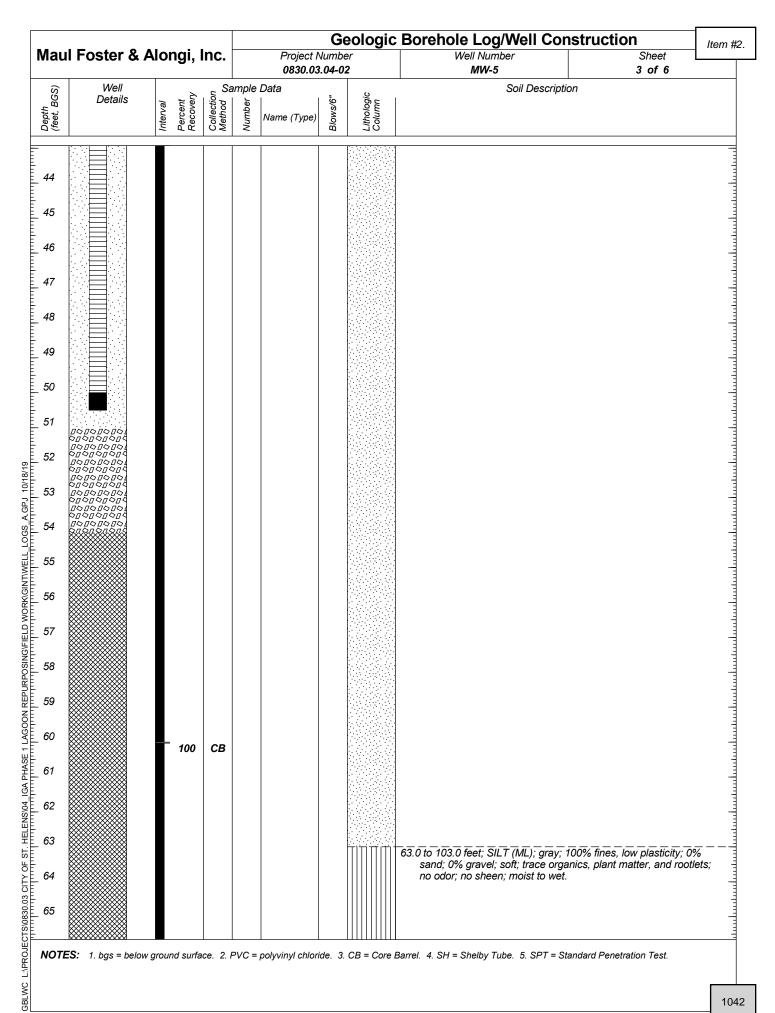
51.0.0 to 75.0 feet bgs: Bentonite chips hydrated with potable water.

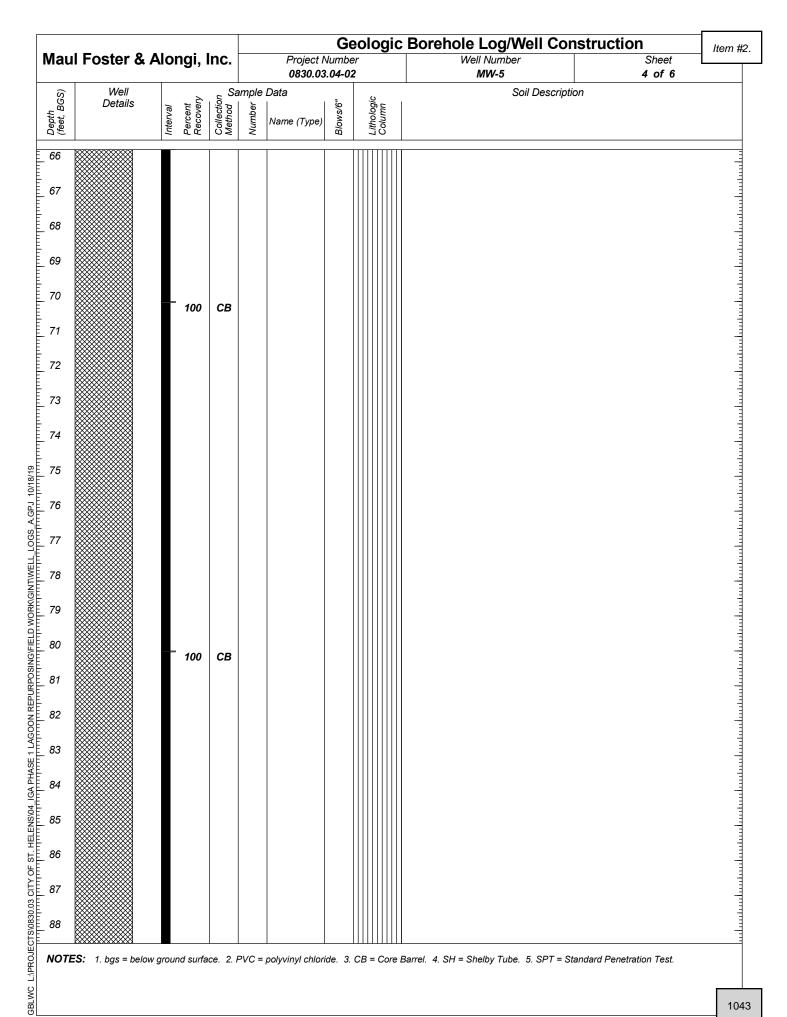
75.0 to 120.0 feet bgs: Native soil heave/slough.

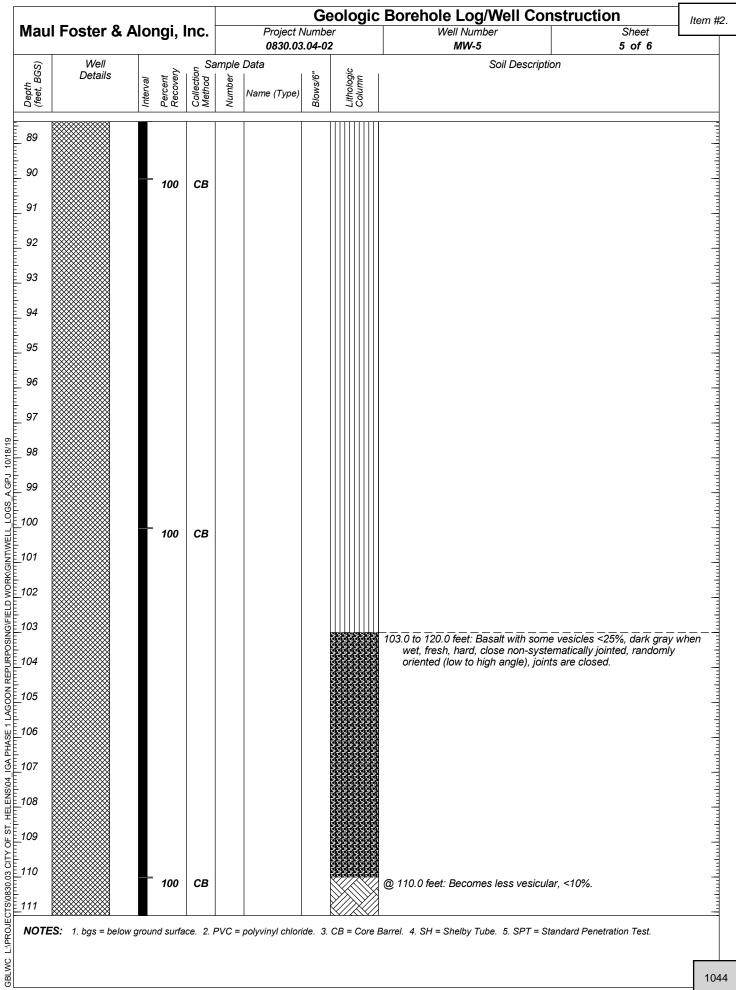
Monitoring Well Completion

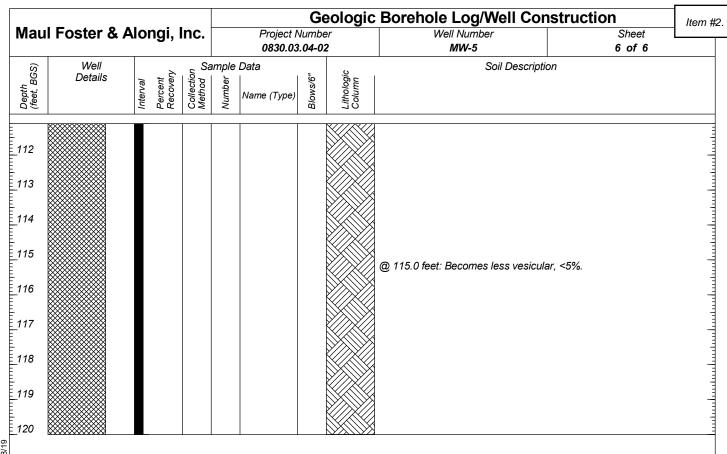
Well Tag Number: L133571 Flushmount monitoring well.


0.0 to 30.0 feet bgs: 2-inch-diameter, schedule 40, PVC blank riser


30.0 to 50.0 feet bgs: 2-inch-diameter, schedule 40, 0.010-inch


machine slot, pre-pack well screen.


50.0 to 50.5 feet bgs: 2-inch-diameter end cap.


					ction	Item :			
Mau	ıl Foster 8	& Alongi, I	nc.	Project 			Well Number MW-5	Sheet 1 of 6	
Proj Star Drill Geo	ject Name ject Location rt/End Date ler/Equipment plogist/Enginee mple Method	r C. Schweit	7/16/19 Terra : tzer	on			TOC Elevation (feet) Surface Elevation (feet) Northing Easting Hole Depth 120.0-fe		
	Well		S-0	mple Data			Soil Description		
Depth (feet, BGS)	Details	Interval Percent Recovery	Collection Method C	Name (Type)	Blows/6"	Lithologic Column			
1		100	СВ				0.0 to 2.0 feet: SANDY GRAVEL (GW); gray 80% gravel, fine to coarse, angular; loos moist.		
3							2.0 to 3.0 feet: GRAVELLY CLAY (CL); brov plasticity; 0% sand; 20% gravel, very fin stiff; no odor; no sheen; moist. 3.0 to 6.0 feet: SAND WITH GRAVEL (SW); sand, very fine to coarse; 10% gravel, fi angular; loose; trace cobbles; no odor; r	e to medium, angula gray; 0% fines; 90% ne to very coarse,	r;
5		100	CB SPT		10, 11, 15	o o o	@ 5.0 feet: Thin brown silt bed.		
8 9 10 10 11 11 11 11 11 11 11 11 11 11 11	200 000 000 000 000 000 000 000 000 000						6.0 to 9.0 feet: SANDY CLAYEY GRAVEL (medium plasticity; 30% sand, medium to fine to coarse, angular; loose; no odor; to 9.0 to 15.0 feet: GRAVELLY SAND (SW); gi	o coarse; 50% gravel no sheen; moist. ray, 0% fines; 80% sa	I, very
12							fine to coarse; 20% gravel, fine to very of trace cobbles; no odor; no sheen; moist		e;
17		100	СВ				15.0 to 16.0 feet: SANDY GRAVELLY CLAY gray sand and gravel; 50% fines, mediu very fine to medium; 20% gravel, fine to soft; no odor; no sheen; wet. 16.0 to 23.0 feet: SAND WITH GRAVEL (SV sand, fine to medium; 10% gravel, fine to loose; no odor; no sheen; wet.	m plasticity; 30% sar medium, angular; ve V); gray; 0% fines; 90	nd, ery
20						o o o			
20 NOTE	ES: 1. bgs = be	elow ground surfa	ce. 2. F	PVC = polyvinyl chlor	ride. 3	3. CB = Core	Barrel. 4. SH = Shelby Tube. 5. SPT = Standard F	Penetration Test.	

Total Depth = 120.0 feet bgs.

Borehole Details:

0.0 to 90.0 feet bgs: 6-inch borehole. 90.0 to 120.0 feet bgs: 4-inch borehole.

Borehole Completion Details:

0.0 to 5.0 feet bgs: Concrete.

5.0 to 27.0 feet bgs: Bentonite chips hydrated with potable water.

27.0 to 51.0 feet bgs: 12/20 Silica Sand.

51.0.0 to 54.0 feet bgs: Bentonite chips hydrated with potable water.

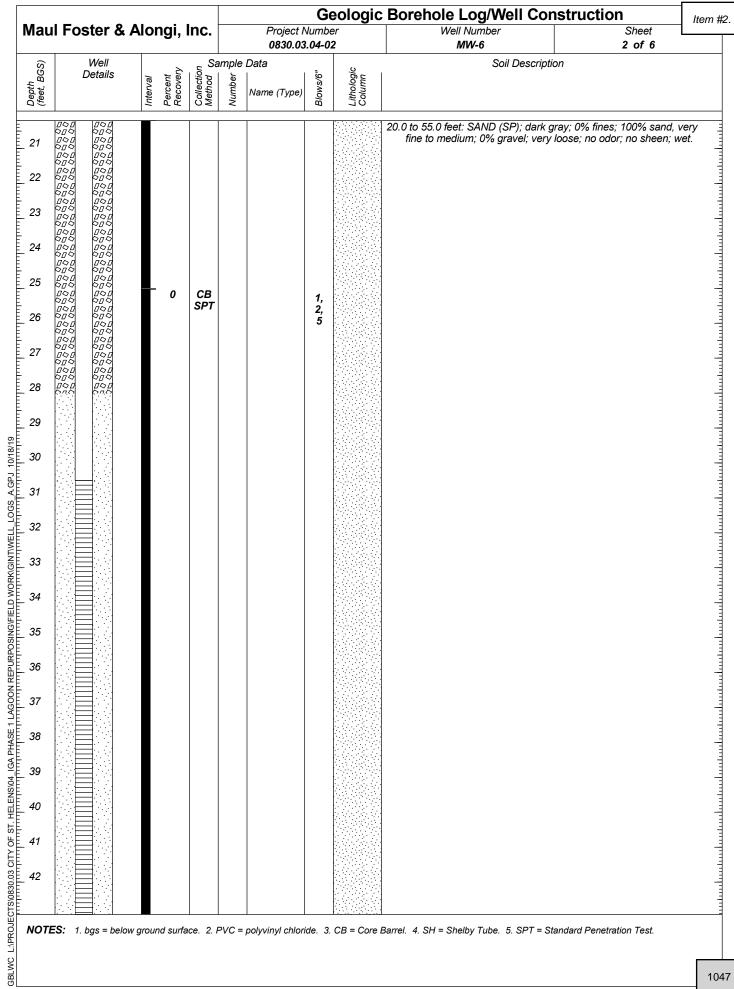
54.0 to 120.0 feet bgs: Native soil heave/slough.

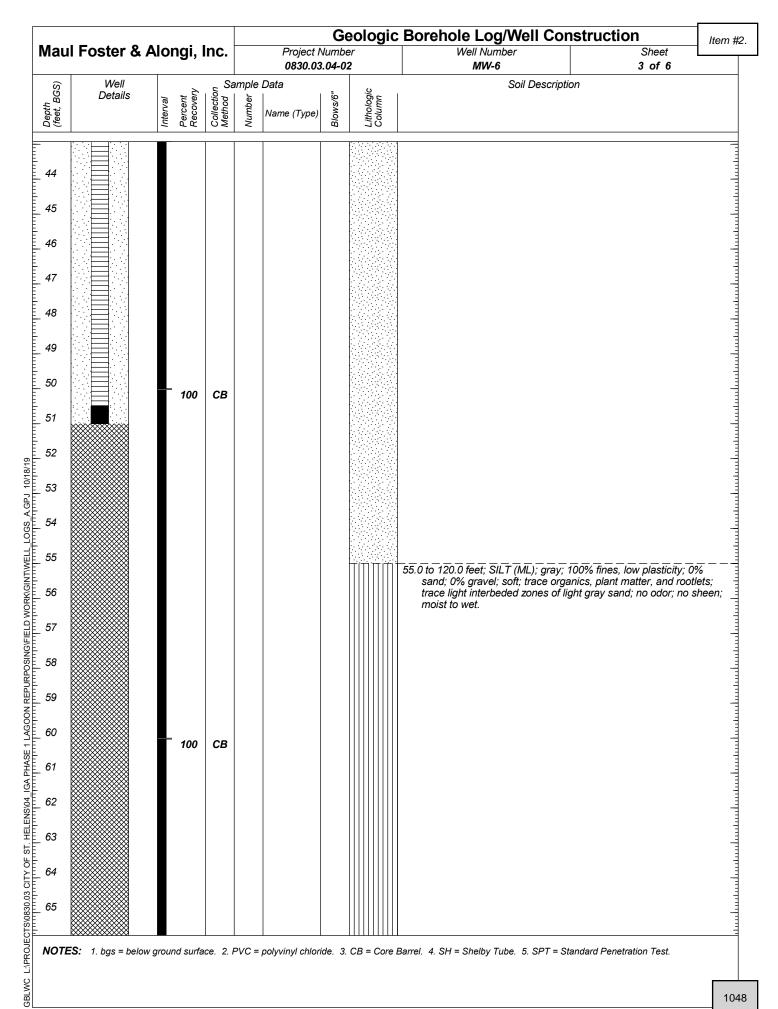
Monitoring Well Completion

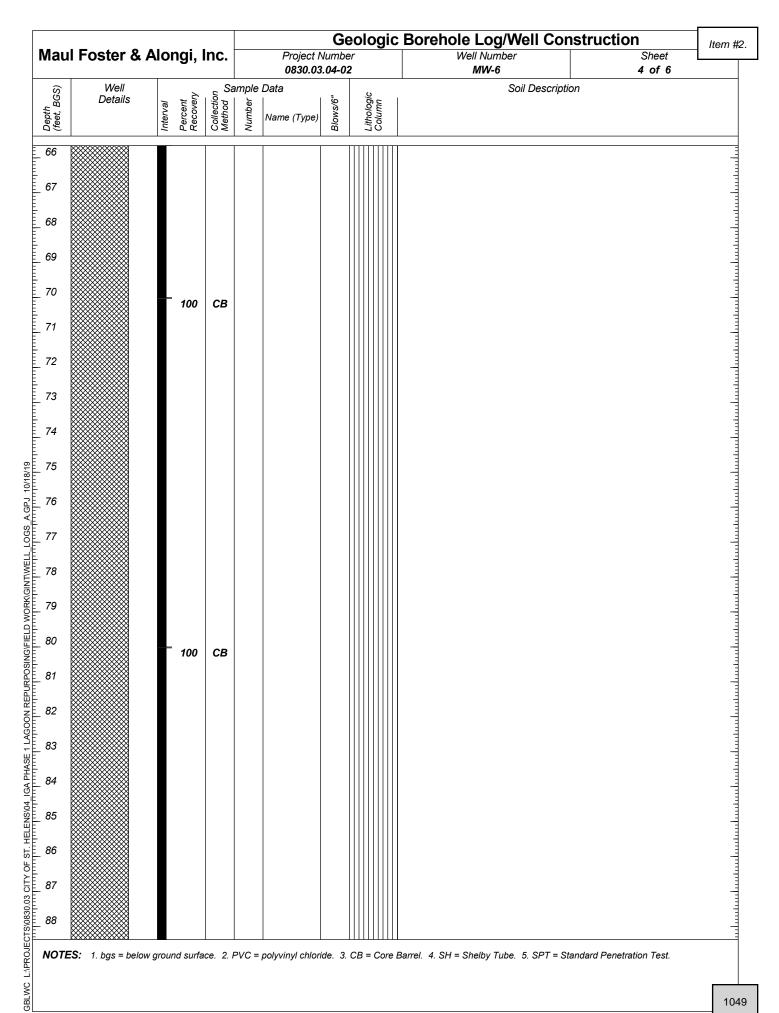
Well Tag Number: L133553 Flushmount monitoring well.

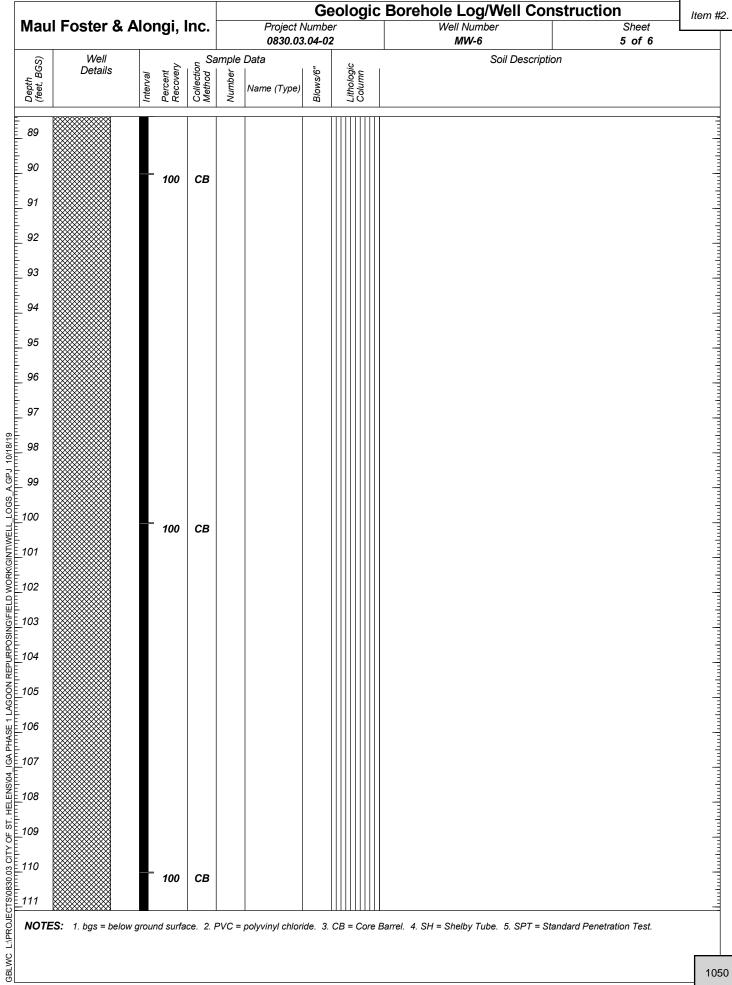
0.0 to 30.0 feet bgs: 2-inch-diameter, schedule 40, PVC blank riser

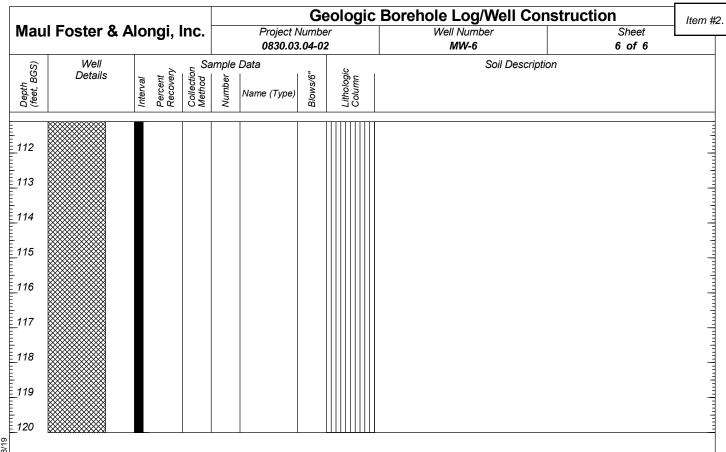
pipe


30.0 to 50.0 feet bgs: 2-inch-diameter, schedule 40, 0.010-inch


machine slot, pre-pack well screen.


50.0 to 50.5 feet bgs: 2-inch-diameter end cap.


NOTES: 1. bgs = below ground surface. 2. PVC = polyvinyl chloride. 3. CB = Core Barrel. 4. SH = Shelby Tube. 5. SPT = Standard Penetration Test.


								Borehole Log/Well Construction		Item #2	
	Maul Foster & Alongi, Inc.			lnc.		Project I 0830.0 3			Well Number MW-6	Sheet 1 of 6	
	Proj Star Drill Geo	iect Name iect Location t/End Date er/Equipment blogist/Engineer nple Method	ocation St. Helens If Date 7/11/19 to 7/12/19 Quipment Dan Rider/Terra Sonic Incorporated 150 CC t/Engineer C. Schweitzer						TOC Elevation (feet) Surface Elevation (feet) Northing Easting Hole Depth 120.0-feet Outer Hole Diam 6" to 4"-inc		
f	i i				ample				Soil Description		
	Depth (feet, BGS)	Details	Interval Percent Recovery	Collection Method C	Number	Name (Type)	Blows/6"	Lithologic Column			
	_ 1		100	СВ					0.0 to 4.0 feet: SANDY GRAVEL (GV 80% gravel, fine to very coarse, sheen; moist.		d;
	3								@ 2.5 feet: Becomes brown.		utuuluutu
	_ 4		100	СВ			6.		4.0 to 5.0 feet: GRAVELLY CLAY (C plasticity; 0% sand; 40% gravel, stiff; no odor; no sheen; moist. 5.0 to 6.0 feet: SANDY CLAYEY GR.	very fine to medium, angula	r; =
6	6			SPT			4, 5		sand and gravel; 20% fines, med medium to coarse; 50% gravel, v loose; fines in clumps; no odor; n 6.0 to 10.0 feet: SAND WITH GRAVI	very fine to coarse, angular; no sheen; moist.	
D WORK/GINT/WELL_LOGS_A.GPJ 10/18/19	7 - 8 - 9 - 10								sand, very fine to coarse; 10% g angular; loose; trace cobbles up moist.	ravel, fine to very coarse,	- 4
11-									10.0 to 11.0 feet: SILTY GRAVELLY fines, low plasticity; 50% sand, v fine to medium, angular; loose; to odor; no sheen; moist. 11.0 to 20.0 feet: GRAVELLY SAND fine to very coarse; 20% gravel, loose; trace cobbles up to 2 inch @ 13.0 feet: Becomes brown, with a	rery fine to medium; 20% grarace cobbles up to 3 inch; no (SW); gray; 0% fines; 80% fine to very coarse, angular; no odor; no sheen; moist.	avel, = = = = = = = = = = = = = = = = = = =
GBLWC L:\PROJECTS\0830.03 CITY OF ST. HELENS\04 IGA PHASE 1 LAGOON REPURPOSING\FIE	15 16 17 18	959 959 1041 1041 950 950 1050 950 1051 1051 1051 1051 1051 1051 1051 1051 1051 1051 1051 1051 1051 1051 1051 1051 1051 1051	100	CB SH		Shelby Tube at 15.0'			@ 16.0 feet: Becomes gray, with a the company of th	hin silt bed.	
CTS\0830.03 CITY	19 20	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00									
C L:\PROJE	NOTE	ES: 1. bgs = belo	w ground surfa	ce. 2.1	PVC =	polyvinyl chlor	ide. 3	. CB = Core I	Barrel. 4. SH = Shelby Tube. 5. SPT = St	andard Penetration Test.	
GBLW											104

Total Depth = 120.0 feet bgs.

Borehole Details:

0.0 to 120.0 feet bgs: 6-inch borehole.

Borehole Completion Details:

0.0 to 3.5 feet bgs: Concrete.

3.5 to 28.0 feet bgs: Bentonite chips hydrated with potable water.

28.0 to 51.0 feet bgs: 12/20 Silica Sand.

51.0 to 120.0 feet bgs: Native soil heave/slough.

Monitoring Well Completion Well Tag Number: L133558

Flushmount monitoring well.

0.0 to 30.5 feet bgs: 2-inch-diameter, schedule 40, PVC blank riser

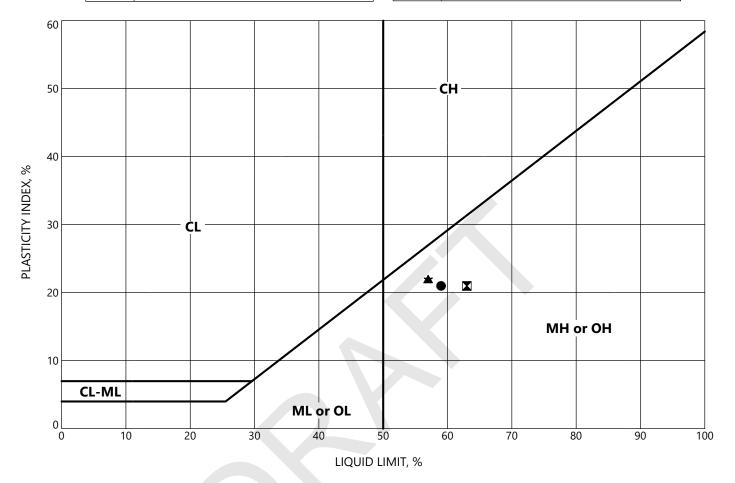
pipe.

30.5 to 50.5 feet bgs: 2-inch-diameter, schedule 40, 0.010-inch

machine slot, pre-pack well screen.

50.5 to 51.0 feet bgs: 2-inch-diameter end cap.

NOTES: 1. bgs = below ground surface. 2. PVC = polyvinyl chloride. 3. CB = Core Barrel. 4. SH = Shelby Tube. 5. SPT = Standard Penetration Test.

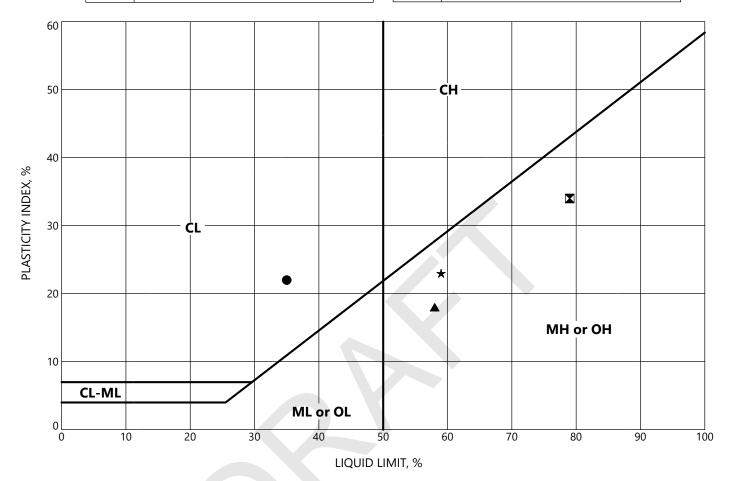


APPENDIX F

Maul Foster & Alongi - Atterberg Limits Results (2023)

GROUP SYMBOL	UNIFIED SOIL CLASSIFICATION FINE-GRAINED SOIL GROUPS
OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
ML	INORGANIC CLAYEY SILTS TO VERY FINE SANDS OF SLIGHT PLASTICITY
CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY

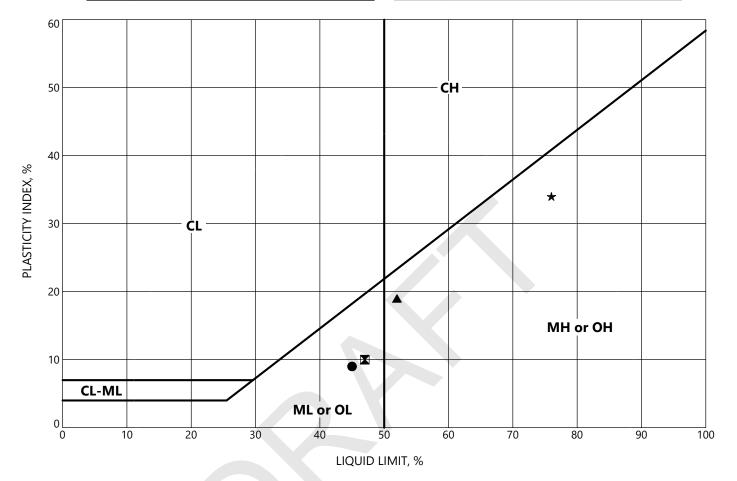
GROUP SYMBOL	UNIFIED SOIL CLASSIFICATION FINE-GRAINED SOIL GROUPS
ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
МН	INORGANIC SILTS AND CLAYEY SILT
СН	INORGANIC CLAYS OF HIGH PLASTICITY


	Location	Sample	Depth, ft	Classification	LL	PL	PI	MC, %
•	MFA B-3A		13.0	МН	59	38	21	59
×	MFA B-3		26.5	МН	63	42	21	57
•	MFA B-3		46.5	МН	57	35	22	54
*	MFA B-3		64.5	МН	57	35	22	52

1053

GROUP SYMBOL	UNIFIED SOIL CLASSIFICATION FINE-GRAINED SOIL GROUPS
OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
ML	INORGANIC CLAYEY SILTS TO VERY FINE SANDS OF SLIGHT PLASTICITY
CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY

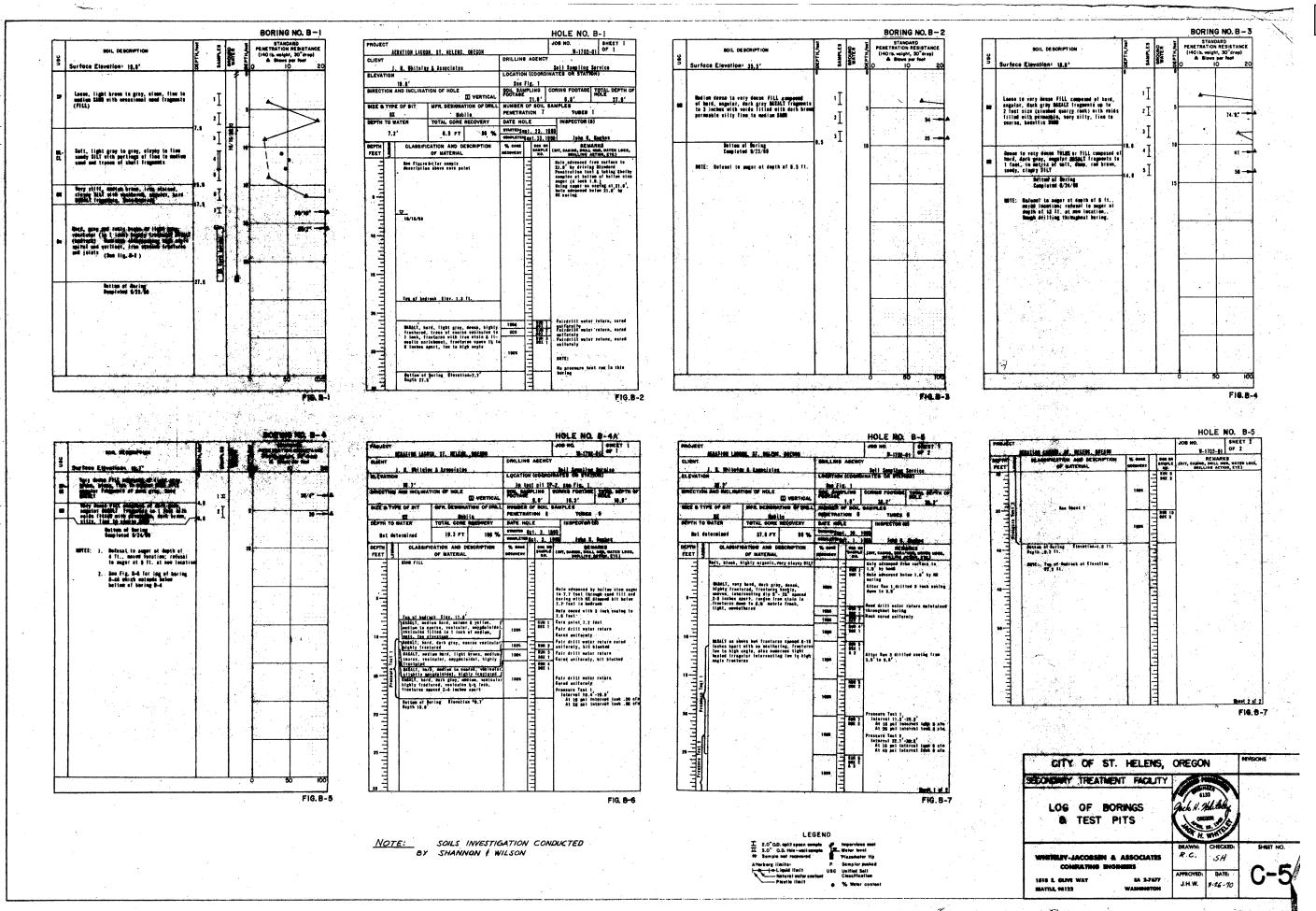
GROUP SYMBOL	UNIFIED SOIL CLASSIFICATION FINE-GRAINED SOIL GROUPS
ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
МН	INORGANIC SILTS AND CLAYEY SILT
СН	INORGANIC CLAYS OF HIGH PLASTICITY

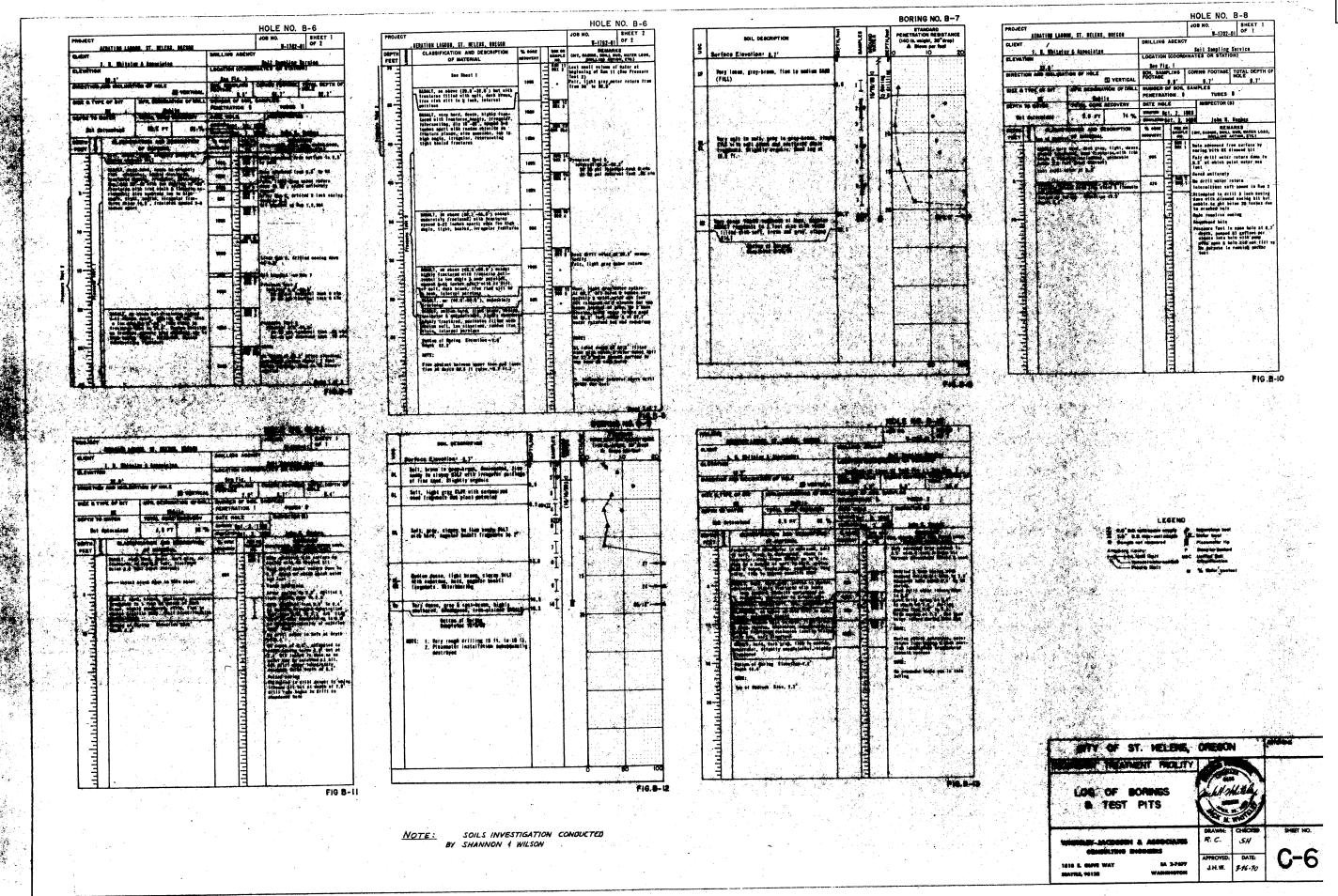


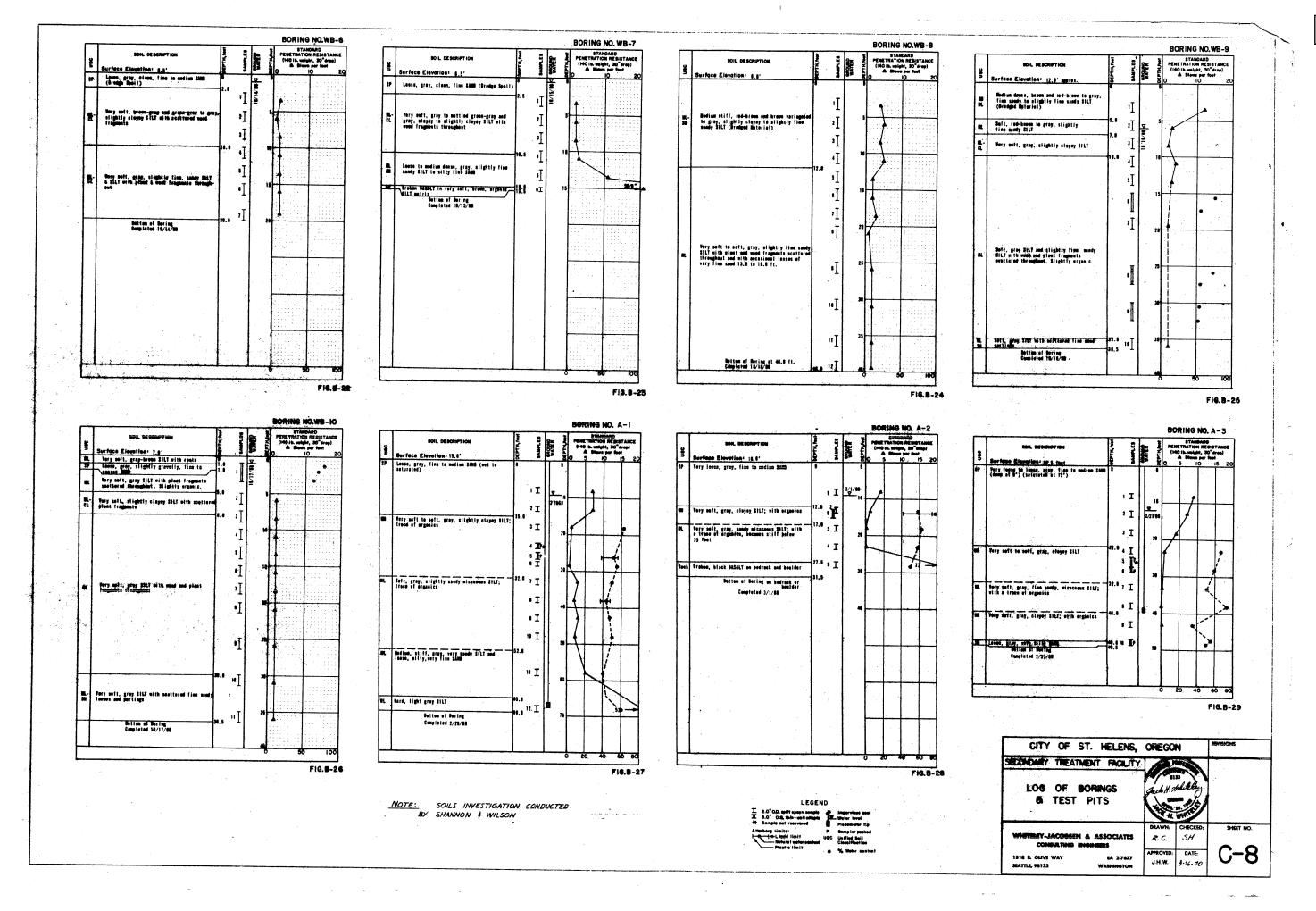
	Location	Sample	Depth, ft	Classification	LL	PL	PI	MC, %
•	MFA B-3		108.5	МН	35	13	22	45
×	MFA B-4		17.5	МН	79	45	34	78
•	MFA B-4		37.5	МН	58	40	18	53
*	MFA B-4		51.0	МН	59	36	23	56

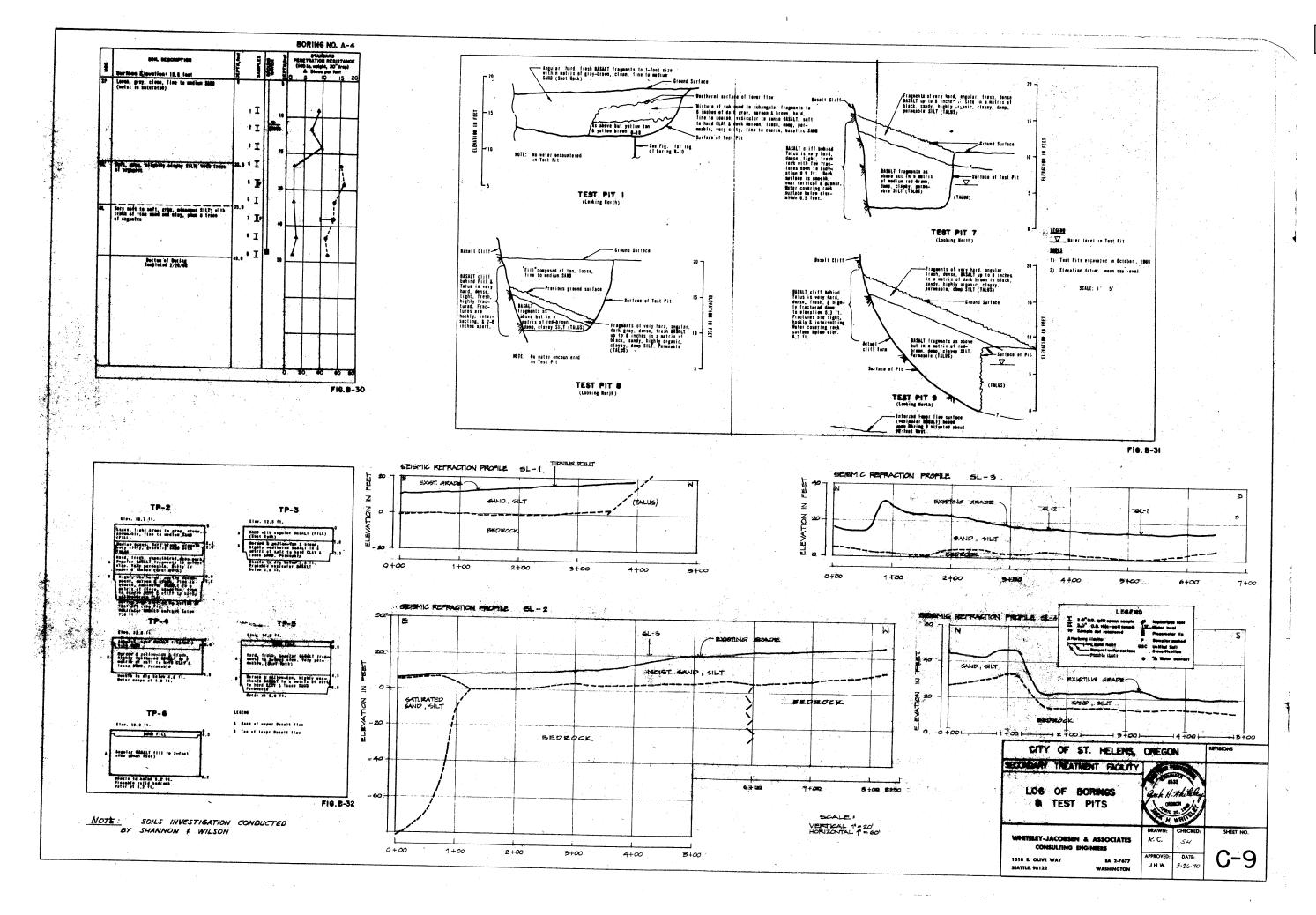
GROUP SYMBOL	UNIFIED SOIL CLASSIFICATION FINE-GRAINED SOIL GROUPS
OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
ML	INORGANIC CLAYEY SILTS TO VERY FINE SANDS OF SLIGHT PLASTICITY
CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY

GROUP SYMBOL	UNIFIED SOIL CLASSIFICATION FINE-GRAINED SOIL GROUPS
ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
МН	INORGANIC SILTS AND CLAYEY SILT
СН	INORGANIC CLAYS OF HIGH PLASTICITY

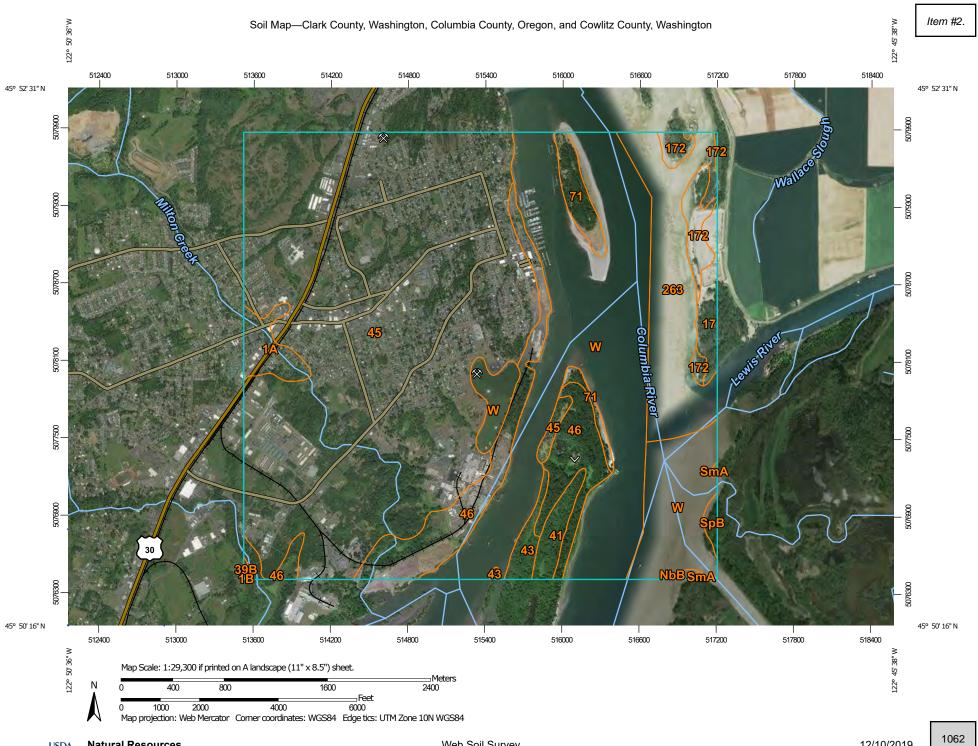

	Location	Sample	Depth, ft	Classification	LL	PL	PI	MC, %
•	MFA B-4		77.5	ML	45	36	9	44
	MFA B-4		101.5	ML	47	37	10	46
•	MFA B-5		9.5	МН	52	33	19	51
*	MFA B-5		22.5	МН	76	42	34	86






APPENDIX G

Shannon and Wilson Exploration Logs (1968 and 1969)



APPENDIX H

U.S. Department of Agriculture Soil Map

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Very Stony Spot

Stony Spot

Wet Spot Other

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at scales ranging from 1:20.000 to 1:24.000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Clark County, Washington Survey Area Data: Version 17, Sep 16, 2019

Soil Survey Area: Columbia County, Oregon Survey Area Data: Version 16, Sep 10, 2019

Soil Survey Area: Cowlitz County, Washington Survey Area Data: Version 20, Sep 16, 2019

Your area of interest (AOI) includes more than one soil survey area. These survey areas may have been mapped at different scales, with a different land use in mind, at different times, or at different levels of detail. This may result in map unit symbols, soil properties, and interpretations that do not completely agree across soil survey area boundaries.

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 29, 2015—Jun 11, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
NbB	Newberg silt loam, 3 to 8 percent slopes	2.4	0.1%
SmA	Sauvie silt loam, 0 to 3 percent slopes	2.3	0.1%
SpB	Sauvie silty clay loam, 0 to 8 percent slopes	8.3	0.3%
W	Water	151.5	4.8%
Subtotals for Soil Survey A	rea	164.6	5.2%
Totals for Area of Interest		3,165.1	100.0%

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
1A	Aloha silt loam, 0 to 3 percent slopes	45.5	1.4%
1B	Aloha silt loam, 3 to 8 percent slopes	0.1	0.0%
39B	Quafeno loam, 3 to 8 percent slopes	1.3	0.0%
41	Rafton silt loam	32.3	1.0%
43	Rafton-Sauvie-Moag complex	24.9	0.8%
45	Rock outcrop-Xerumbrepts complex, undulating	1,573.0	49.7%
46	Sauvie silt loam	247.9	7.8%
71	Xeropsamments, nearly level	50.3	1.6%
W	Water	702.2	22.2%
Subtotals for Soil Survey A	rea	2,677.4	84.6%
Totals for Area of Interest		3,165.1	100.0%

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
17	Caples silty clay loam, 0 to 3 percent slopes	37.8	1.2%		
172	Riverwash	55.1	1.7%		
263	Water	230.2	7.3%		
Subtotals for Soil Survey Area		323.1	10.2%		
Totals for Area of Interest		3,165.1	100.0%		

APPENDIX I

Geoprofessional Business Association Guidance Document

Important Information about This

Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will <u>not</u> be adequate to develop geotechnical design recommendations for the project.

Do <u>not</u> rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it;
 e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and* refer to the report in full.

You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- · the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- · the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept*

responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.*

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- · confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction-phase observations.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note*

conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures.* If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are not building-envelope or mold specialists.

Telephone: 301/565-2733

e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent or intentional (fraudulent) misrepresentation.

Phase 1C Scope of Work

St. Helens Waterfront Redevelopment— Lagoon Repurposing Project

Draft

February 27, 2024

Contents

1	Introduction	1
	Task 1—Market Study Update	
	Task 2—Geotechnical Studies	
	Task 3—Site Development Plan	
	Task 4—Risk Assessment and Air Modeling	
	Data Review and Emissions Estimation	
	Conceptual Site Model	3
	Data Evaluation and Risk Assessment	
	Task 5—Wastewater Treatment Plant Impact Analysis	
	Task 6-Permitting	
	Task 7-Phase 2 Work Plan Development	
3	·	

1 Introduction

This scope of work describes efforts to continue the Phase 1 Lagoon Repurposing initiated with funding from the April 10, 2019, State of Oregon Intergovernmental Agreement (IGA), and Phase 1B which was completed in 2022 and 2023 under a community resiliency grant from the Federal Emergency Management Agency (FEMA). Work completed under the Phase 1 scope included:

- Locations Restriction Report
- Phase 1 environmental and geotechnical site characterization
- Preliminary conceptual site development plan
- Preliminary risk assessment and air modeling
- Public engagement
- Initial governance assessment

Work completed under the phase 1B scope of work included:

- Supplemental geotechnical investigation
- Supplemental environmental investigation of lagoon

The next phase of the Lagoon Repurposing project (Phase 1C) will include additional geotechnical studies, evaluation of design alternatives based on the results of the Phase 1 and 1B site characterizations and investigations, market analysis update, advancement of the facility design, risk assessment and air modeling, wastewater treatment plant impact analysis, preparation of the Phase 2 work plan, and preparation and submittal of the solid waste permit application.

In addition to this scope of work, the City of St. Helens (the City) will continue to advance public engagement and governance processes. MFA is available to assist with these processes but scope to do so is not included herein.

2 Scope of Work

Summarized below are tasks that will define the scope of work.

Task 1—Market Study Update

The Market Study was initially prepared in 2016 to determine the economic viability of the Lagoon Repurposing Project. The plan was updated in 2021 to evaluate net present value calculations, as well as evaluate a new scenario that assumed clean fill was used for the project. Task 1 will incorporate estimated project costs based on the design elements that will be advanced as part of the site development plan (Task 3) and data collected in Phase 1 and 1B. Work items to be included in Task 1 are as follows:

- Evaluate and update assumptions and economic factors used in the 2016 market study and 2021 study update, and update as necessary
- Update design, construction, operation, and closure/post-closure costs with current-day values
- Update net present value calculations for 4 scenarios described in the 2021 study update
- Update tipping rate calculations

Task 2—Geotechnical Studies

Task 2 will expand on analysis and design that was completed in Phase 1 and 1B. Analysis will incorporate information gathered to date and seek to further evaluate the facility design based on current understanding of subsurface conditions. Work items to be included in Task 2 are as follows:

- Seismic analysis of the existing lagoon configuration (current condition)
- Complete total and differential settlement analysis of the existing containment berm based on updated design configuration
- Evaluate static slope stability of berms constructed for construction phasing
- Prepare cost estimates for ground improvements identified in the Phase 1B geotechnical report

Task 3—Site Development Plan

The Site Development Plan will advance the preliminary design prepared under Phase 1 to describe necessary engineering, environmental controls, and operational components as follows:

- Facility operations, material characteristics (sources, fees, capacity, etc.), access, and proposed facilities.
- Conceptual design drawings and preliminary specifications for major components of the facility.
- Site phasing for fill placement for the anticipated life of the facility. The facility is anticipated to be constructed in multiple phases to stage construction efforts and costs over time.
- Leachate management for the operational and post-closure stages, including leachate characterization and analysis of options for collection, removal, treatment, and disposal.
- Surface water management methods and facilities for stormwater runoff and run-on.
- Preliminary wetland impacts and mitigation.
- Subsurface gas management analysis will be performed to verify the assumption that gas generation from the proposed facility is not anticipated due to the nature of the fill materials (e.g., soil, sediment). Management measures, if any, will be incorporated.
- Environmental monitoring strategies will be developed at the conceptual level; a final monitoring plan will be prepared in Phase 2 of the project.
- Final closure plans and anticipated end use. This is anticipated to be conceptual in nature and may present multiple options for the site after closure.

- Leachate treatment and disposal feasibility study for treatment methods and disposal of leachate. This task may be completed as part of the Phase 2 assessment and final design pending approval by DEQ.
- Initial climate resiliency assessment of proposed facilities and design standards.
- Topographic and bathymetric surveys will be conducted to fill data gaps and support design.

Regulatory and stakeholder comments related to the documents completed and submitted under the Phase 1 and 1B will also be addressed under this task in order to finalize the Site Development Plan. This plan will be the basis of the solid waste permit application.

Task 4—Risk Assessment and Air Modeling

Under the Cleaner Air Oregon rules, a risk assessment will be required to evaluate the potential risks to human health from exposure to sediment and soil chemicals of concern (COCs) that may be handled at the facility. The risk assessment must address the potential for dust generation and volatilization of COCs such as polychlorinated biphenyls, semivolatile organic compounds, and volatile organic compounds to air during handling of sediment and soil (off-loading, handling, and placement). Work for this task will be completed according to the work plan developed under the Phase 1 scope of work (Maul Foster & Alongi, October 2, 2020).

Data Review and Emissions Estimation

Data from published sources, databases, and regulatory guidance will be evaluated in relation to anticipated COCs that could be received at the site. The following components will be part of the initial data review:

- Identify and assess chemical-specific information such as volatilization and toxicity factors for sediment COCs, including but not limited to polychlorinated biphenyls, semivolatile organic compounds, and volatile organic compounds.
- Review recent literature evaluating volatilization of COCs during sediment transportation, offloading, and placement activities.
- Review chemical properties and toxicity databases such as the U.S. Environmental Protection Agency's integrated risk information system.
- Review peer-reviewed scientific literature for toxicity factors if these are unavailable from state or federal databases.
- Determine potential dust and volatile loss to air of COCs during soil and sediment offload, handling, and placement, based on Portland Harbor Superfund Site sediment COC concentrations, expected soil contaminant concentrations, and chemical-specific properties. The evaluation will include estimating sediment concentrations for modeling based on available data that are representative of sites in the service area to be dredged.
- Develop an emissions inventory that covers off-loading, handling, and material placement.

Conceptual Site Model

The conceptual site mode developed in Phase 1 will be updated as the design advances through Phase 1C. Additional sediment data may also be incorporated as information becomes available

through current regional site investigations and off-site sediment project designs. The site model will include a qualitative description of site operations, methods of COC release, exposure pathways, receptor locations, and risk assessment procedures will be prepared for DEO review.

Data Evaluation and Risk Assessment

The work plan prepared in Phase 1 describes the sources of emissions, their release rates, locations, nearby downwash structures, source of meteorology, terrain, and receptor locations. A new risk assessment work plan will be prepared for Phase 1C that describes the COCs, risk assessment types, risk-based concentrations, exposure pathways, zoning, receptor assumptions, and risk assessment calculation methods. Once the work plan and modeling protocols are approved by the DEQ, the City will proceed with a risk assessment for the site that will establish the likelihood and degree, if any, of potential risks to residents and workers in the vicinity of the project. A draft risk assessment report will be submitted to the DEQ for review under this scope of work.

Task 5—Wastewater Treatment Plant Impact Analysis

The City operates its wastewater treatment plant under a National Pollutant Discharge Elimination System (NPDES) permit administered by the DEQ. Understanding potential impacts to the wastewater treatment systems are integral to facility analyses; establishing a plan for the plant is an early planning need. City personnel most familiar with the wastewater treatment systems will direct and guide this analysis. The Phase 1C objectives and scope below build on work completed to date. Objectives include:

- Assessing impacts to and options for wastewater treatment plant alterations and relocation.
- Assessing permit ramifications, identify processes with DEQ.
- Identifying options for interim operation of the plant and lagoon during fill operations.
- Preparing feasibility study and predesign for new treatment plant and associated improvements to City infrastructure.

The following tasks will be completed to gather information to inform the City on the best course of action to address impacts to the wastewater treatment plant:

- Identify impacts of the landfill development to system layout and operations.
- Identify/assess reconfiguration options and costs.
- Identify/assess relocation options and costs.
- Prepare feasibility study outlining options.
- Select option(s) for Phase 2.

An initial analysis has been prepared generally addressing impacts, reconfiguration options, and relocation options. Continuation of these efforts and further examination of the costs, schedule, and additional treatment system options, as well as funding analysis, will be performed in this scope of work.

Phase 2 will develop detailed options identified in Phase 1C, and work towards selection of a preferred alternative. The scope of this phase is contingent upon the selected options and is

expected to include the design of moderate to extensive system modifications and a new NPDES permit or amendment to the current permit.

Task 6—Permitting

The City will work with the DEQ and other stakeholders throughout the design to ensure fluidity with the facility development process. Regular communications and meetings are anticipated. The final DEQ Solid Waste permit application will include a compilation of the following information:

- Site Development Plan (Task 3)
- Signed Land Use Compatibility Statement
- Recommendation from the local solid waste planning authority
- Demonstration of need (market analysis)
- List of other needed permits
- Certificate of Business Registry
- Fees
- Other information requested by DEQ

In addition to DEQ Solid Waste permitting, a Joint Permit Application (JPA) submittal will be prepared to address federal and state regulations regarding aquatic resources (e.g. in-water construction, wetland impacts). One site-wide JPA will be prepared to obtain necessary approvals to construct the lagoon conversion facility and ancillary infrastructure and facilities. The JPA will include:

- Project characterization and alternatives analysis
- Biological evaluation for Endangered Species Act consultation with the National Marine Fisheries Service
- Water quality impacts assessment to the Oregon Department of Environmental Quality Water
 Ouality Division for Clean Water Act compliance
- Cultural resources evaluation for adherence to the Historic Preservation Act
- Wetland delineation and evaluation for compliance with Section 404 of the Clean Water Act
- Project mitigation status documentation
- Compiled design drawings and supporting information
- Federal, state, and local agency coordination

Task 7—Phase 2 Work Plan Development

Phase 2 of the Lagoon Repurposing project will include efforts to continue the design and permitting efforts through a final project design, final solid waste facility permit, and ancillary facilities design and permitting (support facilities, offload facilities). As part of the Phase 1C effort, a work plan will be prepared to identify and address data gaps, agency responses to the initial design submittal, and prepare a schedule and task list for completion of the project; the Phase 2 task (not currently scoped) will implement that work plan.

The Phase 2 Work Plan will identify tasks to prepare the following items:

- Final Design Report, 100% Design Plans and Specifications
- Final Risk Assessment
- Construction Work Plan addressing project team and organization, preparation of Quality Assurance/Quality Control Plans, and reporting requirements
- Operations Plan addressing long-term operation of the landfill facility
- Environmental Monitoring Plan
- Closure and Post Closure Plan
- Financial Assurance documentation

3 Budget and Deliverables

Task budget and deliverables are provided in the table below.

Task	Work Elements	Deliverables	Budget
Task 1—Market Study Update	Update project costs, assumptions, Net Present Value calculation	Market Study Update	\$43,700
Task 2—Geotechnical Studies	Seismic analysis of existing lagoon, seismic and settling calculations for facility	Geotechnical memorandum	\$109,300
Task 3—Site Development Plan	Facility operations, conceptual design, phasing, leachate management, surface water management, gas management, environmental monitoring, topographic survey	Site Development Plan	\$276,600
Task 4—Risk Assessment and Air Modeling	Update conceptual site model, data evaluation and risk assessment	Risk Assessment Report	\$141,100
Task 5—Wastewater Treatment Plant Impact Analysis	Assess operations and permit impacts of lagoon modification, identify options for modification and relocation of wastewater treatment facility	Wastewater Treatment Plant Impact Analysis Report	\$87,700
Task 6—Permitting	Solid waste permitting, In-water and aquatic resource permitting	Solid Waste Permit Application, Joint Permit Application	\$172,600
Task 7—Phase 2 Work Plan Development	Identify data gaps, prepare scope for Phase 2 site investigation and plans	Phase 2 Work Plan	\$32,200
		Total Estimated Cost:	\$863,200