

BOARD OF WATERWORKS COMMISSIONERS AGENDA

March 27, 2023 at 3:30 PM

Water Utility Admin Office, 72 Park Avenue, Sheboygan WI

Persons with disabilities who need accommodations to attend this meeting should contact the Sheboygan Water Utility, (920) 459-3805. Persons other than commission, committee, and board members who wish to participate remotely shall provide notice to the Utility at 920-459-3805 at least 24 hours before the meeting so that the person may be provided a remote link for that purpose.

OPENING OF MEETING

1. Pledge of Allegiance

MINUTES

2. Approve minutes of the February 20, 2023 meeting

REPORTS

- 3. Financial reports and approval of vouchers
- 4. Superintendent's report including operations, construction-maintenance, and customer relations/fiscal

ITEMS FOR DISCUSSION AND POSSIBLE ACTION

- 5. Review proposed US Cellular rental agreement update
- 6. Approval of Indiana Ave water main and water service project
- 7. Approval for purchase of replacement filter actuators
- 8. Approval for purchase of phosphate bulk storage tank
- 9. Approval for purchase of replacement UV backup batteries
- 10. Update on PFOS/PFOA monitoring
- <u>11.</u> Approval of backwash tank flow meter
- <u>12.</u> Approval for purchase of replacement computers
- 13. Review filter replacement study

PERSONNEL

14. Review covid leave status

NEXT MEETING

15. Next meeting will take place on: April 17, 2023

ADJOURN

16. Motion to Adjourn

In compliance with Wisconsin's Open Meetings Law, this agenda was posted in the following locations more than 24 hours prior to the time of the meeting:

City Hall • Mead Public Library Sheboygan County Administration Building • City's website

REPORT OF BILLING

FEBRUARY 2023

Quarterly Metered*		<u>2023</u>	<u>2022</u>	Increase or (Decrease)
(Dist III - south of Union Ave)	Residential	226,005.40	218,483.31	7,522.09
	Multi-Family	28,347.10	27,260.80	1,086.30
	Commercial	35,746.48	31,090.83	4,655.65
	Industrial	18,042.71	16,604.55	1,438.16
	Public	<u>9,508.19</u>	<u>8,620.59</u>	<u>887.60</u>
	Subtotal	317,649.88	302,060.08	15,589.80

* Billing for scheduled district only for the three preceding months usage.

Public Fire Protection	69,641.10	68,729.20	911.90
Monthly Metered	<u>369,986.60</u>	<u>381,452.19</u>	<u>(11,465.59)</u>
Sheboygan Net	757,277.58	752,241.47	5,036.11
Sheboygan Falls	47979.85	52678.48	(4,698.63)
Kohler	<u>27934.21</u>	<u>30885.16</u>	<u>(2,950.95)</u>
Total	833,191.64	835,805.11	(2,613.47)

Total accumulative billing for 2023 is \$1,596,771.38. An increase of \$33,040.41 from 2022 accounted for as follows:

	2023-Total Year to Date
Sheboygan	41,430.47
Sheboygan Falls	(6,348.19)
Kohler	<u>(2,041.87)</u>
	33,040.41

Total bills mailed February, 2023:

6,636

Residential	6,044		
Multi-Family	91	Multi-Family	9
Commercial	325	Commercial	20
Industrial	45	Industrial	66
Public	27	Public	9
Quarterly	6,532	Monthly	104

CASH RESERVE

February 28, 2023

Ending balance on report for January 31, 2023	13,040,099.47
Plus: Receipts Misc Receipts Direct Pay Receipts Stop Loss Reimbursement Money Market/CDARs Investment Interest	246,377.80 12,046.57 369,032.30 - 5,493.38
Minus: Disbursements - vendors and payroll Bank Service Fees Health & Dental Claims/Adm Costs NSF Checks & Customer Refunds Invoice Cloud/Paymentech Deposit Fees Reallocate Sewer/Garbage - payments Reallocate Sewer/Garbage - monthly SDWL LSL Reimbursement SDWL RWI Reimbursement Automated Credit Card Payments Postage Utility Water Payments	(2,273,766.82) (403.87) (80,044.28) (1,200.46) (8,404.90) 747.71 698.21 - - (5,450.31) (5,428.76) (3,293.50)
Note: The above amount includes:	<u> </u>
Bond Reserve Fund	644,319.88
LSL Revolving Loan Fund	202,106.25
Money Market Investment	4,007,070.32
ARPA Money Market Restricted - RWI	3,379,086.10
Total	\$ 8,232,582.55
General Unrestricted Operating Cash	3,063,919.99

APPROVAL OF VOUCHERS February 28, 2023

Total Of The General Vouchers	\$ 2,058,453.07
Gross Payroll	\$ 201,421.98
Net Payroll	\$ 122,593.16

BOARD OF WATER COMMISSIONERS

PRESIDENT

SECRETARY

MEMBER

SUPERINTENDENT

February 2023

OPERATIONS' DEPARTMENT MONTHLY REPORT

		HIGH	LIFT	LO	N LIFT	2023 VS 2022
PUMPAGE	Т	2022	2023	2022	2023	HL
Total in MC	ì	353.356	320.848	354,732	330.397	-9.20%
Daily Average (MG)	12 620	11 477	12 669	11 800	
Max Day (MG)	13 987	12 848	13 984	13 127	2023 \/S 2021
Max. Day (MO)	10.001	12.040	10.004	10.121	2020 VO 2021 HI
Gal/KwF	1	1 185 1 157		4 824	4 892	-2.88%
Gai/Itwi	1	1,105	1,107	4,024	4,032	-2.0070
ELECTRICAL COSTS						
	-	202	2		2023	
A. Pumping:		KwH	\$	KwH	\$	
High Lif	t	296,051	\$23,921.17	274,500	\$24,057.31	
Low Lif	t	73,034	\$5,901.20	67,102	\$5,880.85	
Wash Pump 1		3,500	\$282.80	3,500	\$306.74	
Georgia St. Bstr		47 700	\$4 931 36	52 500	\$5 583 37	
Wilgus Ave. Bstr	•	2 800	\$377.63	3 100	\$442.09	
EE Pit / Bstr		5.401	\$693.16	5.973	\$811.95	
Frie Ave Bstr	•	0	\$0.00	11 200	\$2 035 13	\$/KwH
	Sub Total	428 486	\$36,107,32	417 875	\$39,117,45	11 1%
	ous rolui	120,100	<i></i>	,0.0	<i>ttttttttttttt</i>	
B. Treat./Fiscal/Misc.	T	KwH	\$	KwH	\$	
Office & Maint. Bldg		4,601	\$479.78	4,589	\$636.59	
Filter Plant / Pump Station /	2nd Service	56,415	\$5,051.01	64,298	\$6,126.82	
•				· · · ·		\$/KwH
	Sub Total	61,016	\$5,530.79	68,887	\$6,763.41	8.3%
	-					
C. Distribution:		KwH	\$	KwH	\$	
Taylor Hill Tank	(2,381	\$318.68	3,612	\$500.89	
Kohler Meter Pi	t	0	\$0.00	0	\$0.00	
EE Towe	r	1,852	\$252.66	1,466	\$216.78	
Washington (PRV) Pi	t	1,338	\$197.00	1,305	\$205.36	
	Out Tatal	5 574	¢700.04	C 202	¢000.00	¢///1
Total Electrical Costs	Sub Total	5,57 I	\$/ 00.34	0,303	\$923.03 ¢46.902.90	⊅/KW⊟ 10.9%
	j	495,073	\$42,406.45	493,145	\$40,803.89	10.6%
Electrical Cost / MG)		\$120.01		\$145.04	
		202	2		2023	
	т		2 Cost	CCE Llood	Cost	
Dreduction Facility		001 USeu	¢1 700 41	001 USeu	¢0.000.07	
Production Facility	/	2,406	\$1,798.41	2,130	\$2,020.37	
	1	3,091	\$2,003.40 \$125.07	3,069	\$2,947.04	
Erio Avo Betr	•	102	\$100.97	353	¢358.02	
Wildus Ave Retr		452	ψ302.40 \$73.47		φ 3 30.02	
Office & Maint Rida	•	1 260	\$1 020 78	1 425	\$1 372 60	\$/CCF
Total Natural Gas Costs		7 976	\$6.254.51	6,997	\$6.698.72	22.1%
Natural Gas Cost / MC		1,010	\$17.70	0,001	\$20.85	
	-		ψ17.70	L	ψ20.00	ŀ
	_	202	2		2023	
CHEMICAL COSTS	T	Lbs. Used	Cost	Lbs. Used	Cost	
Alum	 1	81,457	\$14,784.45	71,318	\$14,370.58	11.0%
Carbor	1	0	\$0.00	0	\$0.00	#DIV/0!
Chlorine	9	5,729	\$8,478.92	5,194	\$10,543.82	37.2%
Fluoride	e	1,739	\$2,417.21	1,474	\$2,979.69	45.4%
KMnO4		0	\$0.00	0	\$0.00	#DIV/0!
Cationic Polyme	r	1,371	\$2,125.21	0	\$0.00	#DIV/0!
Liquid Phosphate	9	3,064	\$4,834.99	3,621	\$11,076.64	93.9%
Total Chemical Costs			\$32,640.78		\$38,970.73	19.4%
Chemical Cost / MG			\$92.37		\$121.27	
			A04 004		AAA	10 7 10/
		Grand Total	\$81,301.74		\$92,473.33	13.74%
I otal Cost / MG \$230.08 \$287.76						25.07%
VTD HI 2023 ve 2022	-6 33%			13 /03	January 30, 2022	ſ
VTD HL 2023 VS 2022	-0.33 /0			9 20/	January 30, 2023	
. 10 112 2020 93 2021	-2.37/0			0.204	Junuary 1, 2023	
NOTE:					2023	11 399

11D 11E 2025 V3 2021	-2.34/8		5.234	January 1, 2025	
					YTD HL Ave Day
NOTE:				2023	11.399
Electrical costs include an All	iant Energy 8.3%	6 rate increase approved by PSC.	Not	2022	12.187
all WPS bills available.				2021	11.677

		COM	PARATIVE SUMMAR	RY OF PLANT OPER	RATIONS]	
			February 2022	vs	February 2023	-	
Pumping Record	High	Lift			Low	Lift	
	2022	2023	Diff.] [2022	2023	Diff.
Tot. Water in MG	353.356	320.848	-9.20%	Tot. Water in MG	354.732	330.397	-6.86%
Daily Average	12.620	11.477	-9.06%	Daily Average	12.669	11.800	-6.86%
Maximum Day	13.987	12.848	-8.14%	Maximum Day	13.984	13.127	-6.13%
Ninimum Day	9.989	9.477	-5.13%	Ninimum Day	9.866	9.843	-0.23%
By Natural Gas	2.433	274 500	_7.28%	By Natural Gas	2.433	67 102	-10.97%
Gals, per KWH	1,185	1,157	-2.33%	Gals, per KWH	4.824	4 892	1.40%
Power \$ / KWH	\$0.08080	\$0.08764	8.47%	Power \$ / KWH			
Power \$ / MG	\$67.70	\$74.86	\$7.16	Power \$ / MG	\$16.64	\$17.80	\$1.16
Tot. Power \$/MG	\$121.26	\$146.91	\$25.65	Tot. Power \$/MG			
Treatment Chem.	Lbs. l	Jsed				Cost	
Total Lbs.	2022	2023	Diff.	Total Cost	2022	2023	Diff.
Alum	81,457	71,318	-12.45%	Alum	\$14,784.45	\$14,370.58	(\$413.87)
Carbon			#DIV/0!	Carbon	\$0.00	\$0.00	\$0.00
Chlorine	5,729	5,194	-9.34%	Chlorine	\$8,478.92	\$10,543.82	\$2,064.90
KMnO4	0	0	#DIV/0!	KMnO4	\$0.00	\$0.00	\$0.00
Polymer	1,371	0	-100.00%	Polymer	\$2,125.21	\$0.00	(\$2,125.21)
Liquid Phosphate Lb/ MG:	3,004	3,021	10.1070	Cost / MG:	ə4,004.99	\$11,070.04	φ0,241.00
Alum	229.6	215.9	-6.00%	Alum	\$41.68	\$43.49	\$1.82
Carbon	0.0	0.0	#DIV/0!	Carbon	#DIV/0!	#DIV/0!	#DIV/0!
Chlorine	16.2	15.7	-2.66%	Chlorine	\$23.90	\$31.91	\$8.01
KMnO4	0.0	0.0	#DIV/0!	KMnO4	#DIV/0!	#DIV/0!	#DIV/0!
Liquid Phosphate	8.6	11.0	26.88%	Liquid Phosphate	\$13.63	\$33.53	\$19.90
Fluoride:	2022	2023		Fluoride:	2022	2023	
Total Lbs.	1,739	1,474	-15.24%	Cost	\$2,417.21	\$2,979.69	\$562.48
mg/l applied as F	0.67	0.74		Cost/MG	\$6.85	\$9.29	\$2.44
Av. Res. Plt. Tap	0.72	0.71					
Water Quality:	Ra	w			TAI	P	
	2022	2023]	2022	2023	1
Turbidity	14.10	16.70		Turbidity	0.050	0.040	
рН	8.20	8.26		pН	7.47	7.55	
Alkalinity	119.0	114.5		Alkalinity	103.8	102.0	
MF (E-Coli)	0.3	1.3		Plate Count	0.00	0.00	
I emperature	32.7	33.8		Collert	0	0	
Av Elt Run/brs	1.77	2.32		CL Res	<u> </u>	35.7	
Av. ROF / MG	1.43	1.35		Ornes.	0.09	0.33	<u>_</u>
			1				
Natural Gas:		-					
	2022	2023		1	2022	2023	Diff.
Nat. Gas Heating	6,861	4,729	Plant & South Basin	1	\$5,208.32	\$4,503.42	(\$704.90)
Nat. Gas Pumping	68	490		J	\$51.98	\$464.59	\$412.61
		Cost					
#2 Cas Dum-		COSI		Natural Gas CCF			
#3 Gas Pump	117.8	¢170.74	₽4,900.U1	5,219			
#4 Gas Puillp #7 Gas Pump	100.0	φ170.74 <u></u> \$04.85	1				
Electric Generator	92.0	\$87.26	1				
Pumping totals	489.8	\$464.59]				

February 2023

		3/1/2023	2/1/2023				3/1/2023	2/1/2023	
% Run	Elapsed Time:	•			_				
49.1%	No. 6 Pump	71,046.8	70,716.8	330.0	SLUDGE	No. I Hour Meter	0.0	0.0	0
3.55%	Wash Pump Meter	5,666.59	5,642.73	23.86	SYSTEM	No. 2 Mag Meter	7,551,679	7,144,639	407,040
0.6%	No. 7 Pump	795.1	791.1	4.0		Recycle Meter (Rese	et to zero each mor	nth)	407,040
0.0%	No. 8 Pump	59,540.3	59,540.3	0.0				· _	
99.4%	No. 9 Pump	26,165.0	25,497.0	668.0					
1.0%	Wash Pump 2	92	85	7	Power Cost	\$0.0876405	Bill >>>>	\$39,438.22	
	No. 1 Prime Pump	1,048.5	1,047.7	0.8		0.40407	KWH >>>	450,000	
	No. 2 Prime Pump	1,125.3	1,123.9	1.4	Init. Chg.	\$35,967.66		Low L. KWH	67,102
						\$	KWH	L.L. Cost \$	\$5,880.85
Kw/Hr run	Watthour Meters:	•			Kohler Pit			High L. KWH	274,500
146.7	Wash Pump 1	1291.1	1286.1	3,500	Horizon	\$407.58	2,754	H.L. Cost \$	\$24,057.31
64.4	No. 9 Pump	5907.61	5864.59	43,022	Taylor	\$500.89	3,612		
#DIV/0!	No. 8 Pump	6837.1	6837.1	0	ALT. 72 Park	\$404.07	1,000	Total Cost	\$29,938.17
73.0	No. 6 Pump	1528.2	1442.2	24,080	Geo. Ave.	\$5,583.37	52,500	L	
137.8	Wash Pump 2	9.637	8.833	965	Wilgus Ave.	\$442.09	3,100		
539.7	No. 1 Pump	9443.776	9314.751	129,025	EE Pit	\$811.95	5,973		
237.6	No. 2 Pump	4854.237	4850.707	3,530	EE Tower	\$216.78	1.466	Plant Costs	\$6,126,82
298.8	No. 3 Pump	605,435	502.087	103.348	Washington	\$205.36	1,305		
#DIV/0!	No. 4 Pump			0	Office	\$636.59	4,589		
480 7	No. 5 Pump	11 228 848	11 190 251	38 597	Frie Ave	\$2 035 13	11 200		
	iter e i unip	11,2201010	11,100.201	00,001	Total	\$47 211 47	497 899		
	Garage (MWatt/Hrs.)	1,086.45	1,083.07	3,380]	v , -	101,000		
	Power Co. (Step #3)	39,594	39,252	410,400	7				
	Left Meter - OUTSIDE				_				
	Volume Used:								
	Nat. Gas (Correct)	45,578,104	45,404,886	217,735	SUMMARY				
					-	HIGH I	LIFT	LOW LI	FT
						2022	2023	2022	2023
	Elapsed Time:				Tot. Pump	353.356	321.356	354.732	330.397
	Emer. Generator	1,071.1	1,066.5	4.6	Daily Ave.	12.620	11.477	12.669	11.800
	•				Max. Day	13.987	12.848	13.984	13.127
% Run	Elapsed Time:				Min. Day	9.989	9.477	9.866	9.843
35.6%	No. 1 Pump	17.512.5	17.273.4	239.1	By Nat. Gas	2.433	3.667	2,433	2,166
2.2%	No 2 Pump	20 714 26	20 699 40	14.86	Power KWH	296 051	274 500	73 034	67 102
51.5%	No 3 Elec Pump	2 074 4	1 728 5	345.9	Gals/KWH	1185	1157	4824	4892
0.6%	No 3 Nat Gas Pump	564 0	560.2	3.8	Cost/KWH	\$0.08080	\$0 08764	******	*****
0.0%	No 4 Flec Pump	0.00	0.00	0.0	Cost/MG	\$67.70	\$74.86	\$16.64	\$17.80
0.6%	No 4 Nat Gas Pump	67 7	63.7	4.0	Tot Cost/MG	\$121.26	\$146.91	******	******
11.9%	No 5 Pump	23 480 390	23 400 090	80.300		÷.21.20	÷	ļļ	
0.2%	LIV Building Generator	141 /	130.8	1.6	-				
0.270	S v Dulluling Generator	141.4	139.0	1.0	_				

Item 4.

Item 4.

Filter Plant Maintenance Completed For Febru	ary 2023
--	----------

Subject	StartDate	EndDate	Description Yellow indicates days operating or running labs			
Intake Icing operations	1-Feb-23		Suction well/intake icing operations			
Intake valves	1-Feb-23		Got intake valves 30 I 36 free and working, Powered actuators, exercised valves in manual and remote			
Greased south flocs	1-Feb-23		Greased south basin floc 1 -2 I 3			
South basin effluent analyzer	1-Feb-23		Cleaned south basin analyzer, flushed lines, flushed pump and recalibrated			
South basin turbidity meter	1-Feb-23		Cleaned south basin turbidity meter			
#6 filter vacuum	2-Feb-23		Vacuumed out #6 filter with crew vacuum trailer, lot of wet filter media under caps			
Rate of flow decant valve	2-Feb-23		Rate of flow decant valve is sticking closed when running south basin sludge cycle and blowing fuses			
Filter garbage and cardboard	2-Feb-23		Removed filter plant garbage and cardboard			
BW basin rate of flow	3-Feb-23		BW basin rate of flow valve failing to open and not fully opening when decanting.			
Horizon reagents	3-Feb-23		Replaced reagents at Horizon tower			
Taylor hill	3-Feb-23		Brought reagents to taylor hill reservoir, checked dog house and pumped water from pipe gallery below			
Georgia pump station	3-Feb-23		Maintenance checks and new reagents, checked emergency generator for proper coolant temp			
Erie pump station	3-Feb-23		Maintenance checks at Erie pump station, need to bring new reagents following week			
8 inch sludge valve	6-Feb-23		8 inch sludge valve stuck, pit had frozen layer on top, exercised valve and flushed valve 2 times, working again			
Rate of flow valve sticking	6-Feb-23		Rate of flow valve on back wash basin stuck closed again, exercised valve in manual and placed back in remote, working as intended			
East UV Ballast alarms	6-Feb-23		East UV ballast alarms going off, failure to communicate, trouble shooting issue			
Tools for filter #6 inspection	6-Feb-23		Gathering equipment and tools needed for filter #6 inspection			
January maintenance report	6-Feb-23		January maintenance report sent to Bill			
Erie reagents	7-Feb-23		Replaced Erie reagents and pump station maintenance checks			
Fueled plant truck	7-Feb-23		Fueled plant truck			
Set up for filter #6 inspection	7-Feb-23		Set up for filter #6 inspection			
Josh sick time	7-Feb-23		Josh sick time			
East UV ballast #1	8-Feb-23		East UV ballast #1 located in main UV PLC cabinet failed and was replaced			
#5 filter new pressure gauge	8-Feb-23		Installed new pressure gauge on filter #5			
trouble shoot east UV	8-Feb-23		Trouble shooting issues with east UV SCADA screen, faults and alarms, waiting for reply from Trojan company			
Dan operate 1st shift	9-Feb-23	9-Feb-23	Dan covering 1st shift operations			
Filter pressure gauges	10-Feb-23		Installed filter pressure gauges 1 - 8			
Filter plant Garbage	10-Feb-23		Removed filter plant garbage and cardboard			
Menards	10-Feb-23		Menards for pipe fittings for pressure gauges			
Dakota supply group	10-Feb-23		_ Dakota supply group for braided rubber hose			
Erie reservoir	10-Feb-23		Erie reservoir changed reagents and maintenance checks on equipment and building			
Fluoride bulk feed hose	10-Feb-23		_ Huoride bulk tank pump feed hose replaced			
Fluoride pump hose	10-Feb-23		Lluoride feed pump NP hose changed			
Filter #4 pressure test	13-Feb-23		_ Filter #4 pressure test			
Filter #5 pressure test	13-Feb-23		Liller #5 pressure test			
Filer #7 Pressure test	13-Feb-23		_ Filter # / pressure test			
#Il filter influent actuator	13-Feb-23		#11 filter influent actuator trouble shooting, powered actuator and exercised, actuator working, will continue to monitor			
Filter Gauge Install	14-Feb-23		Install new pressure gauges on filters 9, 10, and 11.			
Filter #9 Pressure Test	14-Feb-23		Perform filter #9 pressure test.			
Menards	14-Feb-23		Purchase 3/81 and 7/1 stainless steel plumbing supplies.			
Filter #1 Pressure Test	14-Feb-23		Filter #1 pressure test.			
Filter #2 Pressure Lest	14-Feb-23		Filter #2 pressure test.			
Filter #3 Pressure Test	14-Feb-23		Perform filter #3 pressure test.			
Light by wash pump 1	14-Feb-23		Replaced light by wash pump 1			
Light in new flash mix area	14-Feb-23		Replaced light in new flash mix area			
Filter #5 pressure test	15-Feb-23		Lefter #5 pressure test			
Filler #8 pressure test	15-Feb-23					
Filler #10 pressure test	15-Feb-23	+	I Filler # 10 pressure rest.			
Sludge Pump #1	15-Feb-23		Look for water leaking into sludge pit; found ½ lelbow leaking into sludge pit. Recommend pipe repair and inspect check valve.			
Pressure Lest Fliter #11	15-Feb-23	+	Perform pressure lest on tiller # 11.			
Tap Feed Line	10-FeD-23		I hush and clean tap water sample feed line.			
wash Line Flow Meter	16-Feb-23	+	Begin designing washine flow meter prackets.			
Iviaintenance Shop	10-FeD-23	47 5 1 00	Organize tools, sneive parts, and clean bench.			
Dan Operating 1st Shift	16-Feb-23	17-Feb-23	Dan covering first shift for Tyler.			

Lower Level Bathroom	16-Feb-23	Clean lower level bathroom and shower.
Low Lift Vacuum Pumps	17-Feb-23	Check small water leak by vacuum/prime system.
Wilgus Ave.	17-Feb-23	Check pump drives, walk grounds, and inspect heater operation.
Taylor Hill	17-Feb-23	Replace reagents, walk grounds, and inspect heater operation.
Erie Ave.	17-Feb-23	Check reagents, walk grounds, and inspect heater operation.
Georgia Ave.	17-Feb-23	Check reagents, walk grounds, and inspect heater operation.
Horizon Ave.	17-Feb-23	Check reagents, walk grounds, and inspect heater operation.
Filters 7 and 8	20-Feb-23	Clean influent solenoid valves and exercise for validation; everything worked okay today.
Fluoride feed hose	20-Feb-23	Fluoride feed hose on blue/white pump replaced
Greased #5 engine HL	20-Feb-23	Grease #5 high lift motor and pump
Garbage/Metal	20-Feb-23	Throw out garbage and metal.
Reservoirs camera installation	21-Feb-23	Linked up with JSM security to check reservoirs for possible security camera installation, all reservoirs except horizon
Repaired pressure relief #3 HL	21-Feb-23	Repaired cooling water line pressure relief by #3 high lift pump
#1 High Lift greased	21-Feb-23	#1 high lift and pump greased
#3 high lift greased	21-Feb-23	#3 High lift pump and motor greased
#2 High Lift Pump Greased	21-Feb-23	Grease high lift #2, install new pressure gauge, and clean cooling water feed lines.
Small Sump	22-Feb-23	Grease motor, inspect coupling, and clean case.
Large Sump	22-Feb-23	Grease motor, add bearing oil, and clean area.
High Lift 5	22-Feb-23	Check cooling water, grease pump/motor, and clean case.
High Lift Pump 4	22-Feb-23	Check engine oil, grease pump, inspect battery, etc.
snow day	23-Feb-23	Snow day
Dakota Supply Group	24-Feb-23	Purchase 1 13/161 plugs, 1 ½1 hole saw, hole saw drill, and price check stainless strut, threaded rod, nuts, washers, and clevis brackets.
Vacuum Pumps	24-Feb-23	Add grease to motor/pump, replace grease fitting on 2, inspect cooling water system, label, bleed gauges, and document maintenance performed: needs air vent rebuild.
Low Lift 9	24-Feb-23	Add grease to motor/pump, inspect cooling water system, label, bleed gauges, and document maintenance performed.
Low Lift 8	24-Feb-23	Add grease to motor/pump, inspect cooling water system, label, bleed gauges, and document maintenance performed.
Low Lift 7	24-Feb-23	Check oil in motor/pump/transmission, inspect cooling water system, label, bleed gauges, and document maintenance performed.
Low Lift 6	24-Feb-23	Add grease to motor/pump, inspect cooling water system, label, bleed gauges, and document maintenance performed.
Dakota Supply Group	24-Feb-23	Purchase/pickup low lift vacuum pump air vent repair kit.
Replaced Phosphate swan hoses	27-Feb-23	Replaced phosphate swan analyzer hoses in lab
Replaced phosphate reagents	27-Feb-23	Replaced phosphate swan analyzer reagents
trouble shoot DR5000	27-Feb-23	Trouble shoot on DR5000 liahtbulb issue
Pipe gallery hanger project	27-Feb-23	Assessment and recon on pipe gallery pipe hanger replacement.
Plant back in AUTO	27-Feb-23	Put plant back in auto, put pumps back in flow pace
Erie Ave.	27-Feb-23	Inspect roof leak: removed ice damn, placed catch buckets, inspect when safe/possible.
Fire Extinguisher Pickup	27-Feb-23	Pickup all remote station fire extinguishers for inspection.
CVMIC Excavation Training	28-Feb-23	Attend CVMIC excavation training.
Dorner Filter 8	28-Feb-23	Moved wash valve open/closed setpoints (was looking like 40% open on indicator), moved physical stop ¼ turn, suspect butterfly valve has pin issue.
Filter Backwash Basin Valve Dorner	28-Feb-23	Jason diagnosed fuse blowing issue possibly related to voltage; current read 472v, suspect generator causes spikes, moved pins from 460v to 480v.
Plant Operations	28-Feb-23	Discuss filter 8 wash valve replacement, actuator installs, UPS installations, DR5000 service, UV battery update, and filter wash flow meter.
Dakota Supply Group	28-Feb-23	Purchase 1 % I tap and acquire pricing for pipe gallery maintenance; stainless strut, threaded rod, and clevis pipe hanger.
Fire Extinguishers	28-Feb-23	Drop-off all remote station fire extinguishers for inspection.

MONTHLY DISTRIBUTION DEPARTMENT REPORT

February 2023

Distribution System Maintenance:

- Repaired water main break at N 25th St, South of Saemann Avenue.
- Poured temporary service hole repair patch for water main break.
- Completed hydrant checks.
- Trucked out spoils.
- Hauled in fill to replenish stock.

Taps:

- 1" tap at 1419 N 16th St. LSL was removed from system.
- 1" tap at 804 S 16th St. LSL was removed from system.

Building/Grounds Maintenance:

- General shop maintenance and cleaning.
- Snow removal at all Water Utility sites.
- Remodel occurred within garage and shop space.
- New breakroom was constructed on mezzanine of garage for C/M crew.
- Power supply for garage and shop area was upgraded.
- Pipe yard area was organized.

Equipment Maintenance:

• Performed routine maintenance and repairs on construction equipment and vehicle fleet.

Engineering:

- Indiana Avenue project was bid out as part of DPW Street Reconstruction Project.
- Design work occurred for N 20th St. LSL Project.
- Continued work on a GIS database and map to show water service material information for all Utility accounts.
- Project and property identifications for Michigan Ave and North 12th St. LSL projects.
- Monthly map and database updates.

Distribution System -- February 2023

Street Valves and Hydrant Valves Installed (includir	ng water main projects and	d others)		
Location	Date Installed	Size ("), Jt	Installed By	Туре
Total Valves Installed = 0				
Street Valves and Hydrant Valves Removed				1
Location	Installed	Abandoned	Туре	
Total Valves Removed = 0				
Street Valves and Hydrant Valves Abandoned				
Location	Installed	Abandoned		
Total Valves Abandoned = 0				
Street Valves and Hydrant Valves Maintained	TT			1
Location	Maintained	Size	By	
Total Valves Maintained = 0				
Hydrants Installed (including water main projects and	l others)			[
Location	Installed	Tr Size	Valve	By
Total Hydrants Installed = 0				
Hydrants Removed (including water main projects and	d others)			1
Location	Installed	Removed	Hyd Valve?]
Total Hydrants Removed $= 0$				
Hydrants Abandoned (including water main projects a	and others)			
	Installed	Abandoned	Tr Size	Hyd Valve?
Total Hydrants Abandoned = 0				
Hydrants Maintained/Moved (including water main p	projects and others)			
Location	Installed	Maintained		
Total Hydrants Maintained/Moved = 0				
W to Mate David				
water Main Breaks	Data	Sizo		
Location	2/4/2023	6"		
inorm 25th Succi, South of Saemann Ave.	21712023	v		

Number of Water Main Breaks= 1

SUMMARY

Number of feet of 4 inch water main installed	0.0	water main
Number of feet of 6 inch hydrant lead installed	0.0	
Number of feet of 6 inch water main installed	0.0	
Number of feet of 8 inch water main installed	0.0	
Number of feet of 12 inch water main installed	0.0	
Number of feet of 16 inch water main installed	0.0	
Number of feet of 20 inch water main installed	0.0	
Number of feet of 24 inch water main installed	0.0	
Number of feet of water main abandoned or removed	0.0	
Number of water main breaks repaired	1	
Number of hydrants installed	0	hydrants
Number of hydrants removed or abandoned	0	
Number of hydrants maintained or moved	0	
Number of street valves installed	0	valves
Number of hydrant valves installed	0	
Number of street valves removed or abandoned	0	
Number of hydrant valves removed or abandoned	0	
Number of valves maintained	0	
Number of water connections installed	2	

PAYMENT TRANSACTIONS

COLLECTIONS District 1

\$1,084,084 Total Billed

\$199,254

Outstanding After Due Date

1460

Past Due Letters Mailed

152 Disconnection Letters Mailed

g **Properties Disconnected**

\$82,827 **Outstanding At**

Month End

PAYMENTS BY SOURCE

	February	February
	2022	2023
Payment Window (Cash/Check)	339	342
Drop Box Payments	195	143
Electronic Payments	3620	3967
Mail Payments	1796	1639
Total Payments	5950	6091
Payments Returned NSF	15	

UTILITY BILLS

Total Paperless 1,227

Total Emailed Statements 3,533

FEBRUARY 2023

16

Item 4.

Item 4.

774 Total Followers

2022 Visits in February: 3,119 Top Page Viewed: **Pay Your Bill**

WEBSITE VISITORS

3,268

ADDITIONAL CR/F ACTIVITIES FEBRUARY

- Service Techs (STs) continue their work replacing and testing water meters.
- LST and STs continued work creating program to test meters with the new Portable Large Meter Testing Device.
- USS issued bills to District 3 and Monthly customers.
- Submitted annual report to WDNR for Cross Connection Control.
- Attended kickoff meeting with InfoSend for the outsourcing and printing of Utility Bills.
- CR/F Supervisor, LST, and STs attended excavation and behavior-based safety training with CIVMIC.
- USS, LSLBS and LST attended online Badger Meter Beacon training.
- ST attended WIAWWA Distribution Seminar.

February 2023

19

To: Joe Trueblood, Utility Superintendent

From: Dave McMillan, Distribution Supervisor

Subject: Indiana Avenue- South 17th Street to South 24th Water Main and Water Service Replacement

The Water Utility has budgeted for a water main and water service replacement project on Indiana Avenue from South 17th Street to South 24th Street. The project was bid in conjunction with the City of Sheboygan's Street Reconstruction Project. Dorner Inc. was the low bidder on the project. See below for the bid results on the project.

			Dorner Inc.	
Item Description	UofM	Quantity	Unit Price	Extension
Mobilization (SWU Items)	LS	1	\$4,500.00	\$4,500.00
Construction Staking (SWU Items)	LS	1	\$2,300.00	\$2,300.00
12-in PVC Water Main, Furnish & Install	LF	1340	\$170.00	\$227,800.00
12-in DIP Water Main, with Nitrile Gaskets, Furnish & Install	LF	660	\$220.00	\$145,200.00
8-in PVC Water Main, Furnish & Install	LF	320	\$140.00	\$44,800.00
6-in PVC Water Main, Furnish & Install	LF	58	\$180.00	\$10,440.00
6-in DI water main & hydrant lead, furnish & install	LF	120	\$158.00	\$18,960.00
12-in Valve and Box, Furnish & Install	EA	9	\$5,100.00	\$45,900.00
8-in Valve and Box, Furnish & Install	EA	4	\$2,910.00	\$11,640.00
6-in Valve and Box, Furnish & Install	EA	6	\$2,075.00	\$12,450.00
Fire Hydrant, Furnish & Install	EA	6	\$6,300.00	\$37,800.00
1-1/2-in Stone Foundation, Delivered and Placed	CY	300	\$0.01	\$3.00
Temporary Water Supply	LS	1	\$2,500.00	\$2,500.00
Manual Air Relief Assembly, Furnish & Install	EA	1	\$1,615.00	\$1,615.00
Long Water 1-in Service Replacement, Main to Curb Stop, Furnish & Install	LS	8	\$3,000.00	\$24,000.00
Short Water 1-in Service Replacement, Main to Curb Stop, Furnish & Install	LS	5	\$1,275.00	\$6,375.00
1-in Water Service Replacement, Curb Stop to Meter Setting, Furnish & Install	LS	14	\$3,115.00	\$43,610.00
Copper Reconnect	EA	15	\$715.00	\$10,725.00
Meter Setting Rebuild	EA	15	\$525.00	\$7,875.00
Electrical Grounding	EA	28	\$525.00	\$14,700.00
8-in DIP Water Main, with Nitrile Gaskets, Furnish and Install	LF	80	\$155.00	\$12,400.00
6-in DIP Water Main, with Nitrile Gaskets, Furnish and Install	LF	12	\$240.00	\$2,880.00
			Total	\$688.473.00

Date:	March 13, 2023
To:	Joe Trueblood, Utility Superintendent
From:	Bill Swearingen, Operations Supervisor
Subject:	Filter Effluent Electric Actuators (Filters 1-6)

I would like to recommend replacing filter's 1-6 rate of flow electric actuators originally installed in 2002. These actuators are installed on the filter effluent piping and control the flow through the filter beds via SCADA. Filter 7 rate of flow actuator was problematic and was replaced 2017. Filters 8-11 rate of flow actuators would be scheduled for replacement in 2024.

The attached proposal includes programming, startup, and installation services.

2023 Budget Item:	\$45,000.00		
Items		Unit	<u>Total</u>
(6) Filter Effluent Actu	ators	\$7,682.00	\$46,091.00

DORNER QUOTATION

	Date:	3/7/2023
To: Sheboygan Water Utility	Proposal No.	Q524aush
Ref: Filter ROF Valve 1-6 Actuator Replacement	Page:	one of one
Attn: Andy Wellman & Bill Swearingen	Industry Code:	4952

FOB: Pre-Pay & Add Terms: N30 Delivery: 12-14 weeks Make Order To: Dorner Company N61 W23043 Silver Spring Dr. Sussex, WI 53089

Phone No: (262) 932-2100

Sales Contact: Gordie Hoeft

Prepared By: Pete Pronold

ltem	Quan.	Description	Unit Price	Total
1	6	Replacement Auma SAR07.6-26B/GS63.3/AC01.2 electric actuator for use with Filter 1-6 rate of flow 12" Bray 30 butterfly valve. Dorner automation tags are 32436, 32437, 32438, 32439, 32440, 32441, Auma SO A02-6436. Pricing includes (2) two Dorner Service Technicians to remove existing actuators and install new actuators as described above. NOTE: All field wiring is by others.	\$ 7,682	\$ 46,091
		Auma electric actuator with features below		
		Modulating service		
		460/60/3 power		
		Six programmable relays		
		Space heater in switch compartment		
		Side mounted handwheel override		
		Aumatic controls including solid state starters, power supply, phase disciminator, local control station, 20 X 4 character LED display		
		Positioner - 4-20 ma input signal		
		24 VDC control voltage		
		MWG position transmitter		
		Double seal terminal compartment		
		60 second speed of operation		
		GS63.3 gearbox with indicator		
		NEMA 6P enclosure		
		Total		\$ 46,091

Notes: Prices quoted are FOB Factory with freight pre-pay & add. Quote valid for 30 days. Any applicable taxes are not included in the above pricing. Delivery times are estimated and are not guaranteed.

Date:	March 13, 2023
То:	Joe Trueblood, Utility Superintendent
From:	Bill Swearingen, Operations Supervisor
Subject:	Phosphate system upgrade (additional bulk tanks)

The original phosphate bulk storage tank was built in 1994 and replaced in 2017 with a new bulk storage tank system that included 3 plastic vertical storage tanks that are manifolded together. Current total bulk storage capacity is 1,500 gallons (500-Gallon Each).

As the utility continues to improve and optimize its corrosion control treatment through additional lead testing, it's apparent that additional bulk storage is necessary to maintain a required 30-day bulk storage capacity. I would like to recommend adding two 500-gallon storage tanks to the bulk storage system, increasing the capacity to 2,500 gallons. Water utility staff will complete installation work.

2023 Budget Item: \$12,000.00

ltem	<u>Unit</u>	<u>Total</u>
(2) 500 Gallon Bulk Tanks	\$3,034.85	\$6,069.70
Piping/Fittings Materials		

QUOTATION NO. 330164 HDSFM D/B/A USABLUEBOOK PO Box 9004 Page 1 Gurnee, IL 60031-9004 Toll free: 1-800-548-1234 02/21/23 Fax: (847) 689-3030 Ship-to: Bill-to: 15976 1 SHEBOYGAN WATER UTILITY SHEBOYGAN WATER UTILITY C/O OPERATIONS DEPT 72 PARK AVE 72 PARK AVE SHEBOYGAN WI 53081-2958 SHEBOYGAN, WI 53081 USA USA REFERENCE # | EXPIRES |SLSP|TERMS |WH |FREIGHT|SHIP VIA _____ CASE TA-7277 |03/23/23 |BKA |NET 30 |01 |FXD/PPD VENDOR'S CHOICE QUOTED BY: BKA QUOTED TO: ANDY WELLMAN _____ ITEM DESCRIPTION QUANTITY UM PRICE UM EXTENSION Vertical Bulk Storage Tank 2 EA 1495.95 EA 2991.90 73799 500-Gallon 46 x 76 APPROXIMATE LEAD TIME 5-6 WEEKS ARAD ARO FREIGHT: \$430.00 SUBJECT TO FUEL SURCHARGE CHEMICAL: ORTHOPHOSPHATE TO PLACE AN ORDER FOR A CUSTOM TANK: 1. EMAIL A SIGNED COPY OF THE QUOTE AND PURCHASE ORDER (IF REQUIRED) TO CUSTOMERSERVICE@USABLUEBOOK.COM 2. ALSO, INCLUDE A SIGNED COPY OF THE TANK DRAWING WITH ALL DESIRED FITTING LOCATIONS AND ANY OTHER CHANGES THAT NEED TO BE MADE. 3. IN SOME INSTANCES A MANUFACTURER'S CAD DRAWING MUST BE APPROVED. IN THIS CASE THE CAD DRAWING MUST BE REVIEWED AND APPROVED BEFORE TANK MANUFACTURING BEGINS. CAD DRAWINGS GENERALLY TAKE 1-2 WEEKS TO COMPLETE. 4. CUSTOM TANKS WILL NOT BE SENT TO PRODUCTION UNTIL A SIGNED DRAWING HAS BEEN RECEIVED. PLEASE ALLOW 5-6 WEEKS FOR DELIVERY AFTER DRAWING APPROVAL A.R.O. A COPY OF THE TANK DRAWING HAS BEEN SENT WITH THE QUOTE PLEASE SIGN AND RETURN THE DRAWING WITH YOUR ORDER TO APPROVE THE FITTING SCHEDULE. THE CUSTOMER IS RESPONSIBLE FOR OFFLOADING UPON DELIVERY THE APPROXIMATE WEIGHT OF TANK IS 100 POUNDS EACH **** IMPORTANT **** **** IMPORTANT **** **** IMPORTANT **** TANKS MUST BE FULLY INSPECTED PRIOR TO SIGNING FOR DELIVERY. _____ CONTINUED

QUOTATION HDSFM D/B/A USABLUEBOOK				N	NO. 330164	
PO Box 9004					Page 2	
	Gurnee, 11 600 Toll free: 1-800 Fax: (847) 60	031-9004 0-548-1234 89-3030				02/21/23
Ship-	-to: 1	Bill-	-to:	1597	76	
SHEBO	DYGAN WATER UTILITY	SHEBO	DYGAN	WATER UI	TLI	TY
72 P/	ARK AVE	72 PA	ARK A	VE		
SHEBO USA	JYGAN WI 53081-2958	SHEBO USA	JYGAN	, WI 5308	31	
REFERENCE	# EXPIRES SLSP TERMS	========= WH H	FREIG	======= HT SHIP \ 	==== /IA	
CASE TA-72	277 03/23/23 BKA NET 30	01 H	FXD/P	PD VENDOF	r's	CHOICE
QUOTED BY	BKA QUOTED TO: ANDY WELLMAN	=========	=====		====	=======
======== ITEM	DESCRIPTION	======================================	===== UM	PRICE	==== UM	EXTENSION
=======================================	DAMAGES MUST BE NOTED ON THE SH	======================================	===== , OF	======== LADING.	====	
	ANY CLAIMS FOR DAMAGES THAT DON	'T HAVE A S	SIGNE	D DAMAGEI	BI	LL
	OVERFLOW					
23071	Bulkhead-Screw On Tank Fitting	4	EA	214.35	EA	857.40
23079	Viton Gaskets for Screw On	4	EA	120.75	EA	483.00
23070	Bulkhead 2" Tank Fitting Bulkhead-Screw On Tank Fitting	1	EA	174.35	EA	174.35
23078	1-1/2" Factory Installed Viton Gaskets for Screw On	1	EA	79.95	EA	79.95
	Bulkhead 1-1/2" Tank Fitting					
23070	Bulkhead-Screw On Tank Fitting	2	EA	174.35	EA	348.70
23078	Viton Gaskets for Screw On	2	EA	79.95	EA	159.90
	Bulkhead 1-1/2" Tank Fitting DRAIN					-
23068	Bulkhead-Screw On Tank Fitting	3	EA	131.15	EA	393.45
23076	Viton Gaskets for Screw On	3	EA	50.35	EA	151.05
	Bulkhead 1" Tank Fitting					
Please r	note that your order may be subjected at the time your order	ect to appl	licab	le taxes	bas	sed
=========			=====		====	
	CONTINUED					
 ==========						

ltem 8.

QUOTATION HDSFM D/B/A USABLUEBOO PO Box 9004 Gurnee, IL 60031-9 Toll free: 1-800-540 Fax: (847) 689-30 Ship-to: 1	NO. 330164 DK Page 3 9004 3-1234 02/21/23 030 Bill-to: 15976				
SHEBOYGAN WATER UTILITY C/O OPERATIONS DEPT 72 PARK AVE SHEBOYGAN WI 53081-2958 USA	SHEBOYGAN WATER UTILITY 72 PARK AVE SHEBOYGAN, WI 53081 USA				
REFERENCE # EXPIRES SLSP TERMS	WH FREIGHT SHIP VIA				
CASE TA-7277 03/23/23 BKA NET 30	01 FXD/PPD VENDOR'S CHOICE				
QUOTED BY: BKA QUOTED TO: ANDY WELLMAN					
ITEM DESCRIPTION QUA	ANTITY UM PRICE UM EXTENSION				
847-689-3030. We will process your order promptly and fax a confirmation so you know we have it. If you prefer to call your order in or have additional questions or concerns, you may contact our Customer Service Department @ 800-548-1234. Please note any changes to the quantities or shipping address. Thanks for choosing USABlueBook.					
Authorization Signature PO Nu	umber (if required)				
=====================================	C TAX FREIGHT TOTAL				
5639.70 .00	0 .00 430.00 6069.70				
=====================================					

ltem 8.

Date:	March 15, 2023
To:	Joe Trueblood, Utility Superintendent
From:	Bill Swearingen, Operations Supervisor
Subject:	UV System Battery Backups Upgrades

The UV system's battery backups have been in service since 2016. Eaton Corp. conducted an onsite survey of the battery backup system and is recommending UPS System preventative maintenance, with a full battery system update/replacement. The battery update includes installation of (36) new 5X8 batteries per manufacturers replacement schedule and recycling of old batteries. Work is performed by Eaton electrical service technician.

2023 Budget Item: \$10,000.00

Item	Total
UPS Preventive Maintenance	
Turnkey Battery Update/Recycling	\$22,117.26

Item 9.

Eaton UPS Service Cart: 385146 Cart Date: 03/06/2023 (Effective until 04/05/2023) Bret Quinnell, Eaton Corporation W126N7250 Flint Dr Menomonee Falls, WI 53051 6084950197 Email: bretsquinnell@eaton.com

Prepared For: Billing Contact: Bill Swearingen, Billing Company: Sheboygan Water Utility 72 PARK AVE Sheboygan, WI 53081 920-459-3812 Email: billswearingen@sheboyganwater.org For Covered Equipment at Site: Site Contact: Bill Swearingen, Site Company: Sheboygan Water Utility 72 PARK AVE Sheboygan, WI 53081 920-459-3812 Email: billswearingen@sheboyganwater.org

Battery Type, Quantity

VRLA Sealed, 36

We are pleased to provide the following services proposal for your power quality equipment. Please refer to the Scopes of Work (SOW) for descriptions of service coverage and exclusions. Eaton Corporation terms and conditions (Eaton Corp. Service Agreement T-0 attachment) govern this proposal, and any purchase order submitted to Eaton pursuant thereto. Additional or different terms proposed by Buyer, whether in its purchase order or otherwise, shall not be binding upon Eaton Corporation and are hereby rejected unless expressly agreed to in writing by Eaton Corporation. Eaton Corporation cannot be held liable, and Buyer shall not be entitled to any damages and/or indemnifications, in case Eaton Corporation is prevented, hindered or delayed from or in performing any of its obligations resulting from the impact of the outbreak of COVID-19 for reasons not attributable to Eaton Corporation.

Serial NumberNew/RenewalModel DescriptionEJ406UXX01N93PM-60-100

Quantity 1, Eaton 93PM-60-100, VRLA Sealed, 36

 1x per term: UPS Preventive Maintenance, Business Hours (5x8) (0006NXXX-0160)

Battery Replacement Items

• Full battery update. 5X8 Battery Replacement. Includes all 36 new batteries. Turnkey installation. Eaton will bring batteries to site on day of job. Includes battery replacement and recycling of old batteries.

Grand Total Price:

\$22,117.26

Coverage Type

- Non Contract Payment Terms: Net 30 days, Billing Cycle: Upon Completion
- Service quotes valued at less than \$5,000 may be subject to Eaton's prepayment requirement. Prepayment may be made via credit card, ACH transaction or a check mailed to Eaton prior to order acceptance. All credit card transactions with Eaton will incur a 3.5% service fee.
- Important Tax Notice: Tax is not included in the above purchase price. All orders will be subject to all applicable sales tax unless a current tax exemption certificate is on file covering the state shown in the ship-to address or service equipment location.
- To purchase (renew) your service contract, please sign and date below.
- Return all attachments with purchase order for Eaton products to:
 - Eaton Corporation, 8609 Six Forks Road, Raleigh, NC 27615, Tel 800/843-9433, Fax 800/228-1899.
 - o Make Payments for Eaton products to: Eaton Corporation, 29085 Network Place, Chicago, IL 60673-1290

Accepted By: Name Print Name: Title

Date

Purchase Order Number

Did you know? Eaton has PredictPulse remote monitoring and a suite of professional assessment and testing services (Load Bank, IR Scan, PQ Meter) that take traditional preventive maintenance to the next level by proactively identifying issues for greater peace of mind. Learn more at Eaton.com/UPSservices

Date:	March 23, 2023
То:	Joe Trueblood, Utility Superintendent
From:	Bill Swearingen, Operations Supervisor
Subject:	PFAS Monitoring Updates

Currently, the utility is participating in Wisconsin Department of Natural Resources PFAS testing, specifically PFOA and PFOS contaminants, which are a subset of PFAS compounds. As you are aware, PFAS (polyfluoroalkyl substances) are manmade synthetic chemical compounds and exist in industrial and consumer products. These chemicals do not readily breakdown in the environment. Historically, test results in Lake Michigan and drinking water have been found to be at very low levels and well below health advisory standards. WDNR current Maximum Contaminant Level for PFOA and PFOS is 0.000070 mg/L (70 parts per trillion). This level is set for the combined concentration of PFOA and PFOS.

The utility has tested for 18 PFAS contaminants and 16 were not detectable:

- Perfluorooctanoic acid (PFOA) *
- Perfluorooctanesulfonic acid (PFOS) *
- Perfluorobutanesulfonic acid (PFBS)
- Perfluoroheptanoic acid (PFHpA)
- Perfluorohexanesulfonic acid (PFHxS)
- Perfluorononanoic acid (PFNA)
- Perfluorodecanoic acid (PFDA)
- Perfluorohexanoic acid (PFHxA)
- Perfluorododecanoic acid (PFDoA)
- Perfluorotridecanoic acid (PFTrDA)
- Perfluoroundecanoic acid (PFUnA)
- N-ethyl Perfluorooctanesulfonamidoacetic acid
- N-methyl Perfluorooctanesulfonamidoacetic acid
- HFPO-DA/GenX
- ADONA
- 9CI-PF3ONS/F-53B Major
- 11CI-PF3OUdS/F-53B Minor
- Perfluorotetradecanoic acid (PFTeDA)
- ⁶ Our 2023 first quarter test results for PFOA and PFOS are detectable at 1.9 part per trillion.

Recently, the US EPA released a draft Maximum Contaminant Level (MCL) standard of 4.0 parts per trillion for both PFOA and PFOS. The proposed regulation is under public review with the US EPA, before developing into a final regulation.

Following mandatory WDNR PFAS quarterly monitoring, the utility will also participate in US EPA Unregulated Contaminant Monitoring Rule (UCMR) testing. The Utility has participated in UCMR testing since early 2000s. The UCMR system generates a new list of contaminants identified for monitoring and the monitoring program is administered by the Environmental Protection Agency via Wisconsin Department of Natural Resources. This testing will begin in October 2024. The utility will collect samples and testing for 29 PFAS compounds and one metal compound (lithium).

Date:	March 23, 2023
To:	Joe Trueblood, Utility Superintendent
From:	Bill Swearingen, Operations Supervisor
Subject:	Backwash Tank Flow Meter

During filter study workshops, CDM Smith recommended a flow meter be installed on the existing backwash system as an improvement in measuring filter backwash loading rates. Energenecs identified that an Ultrasonic transit time flowmeter clamp-on version would be suitable for this application. Energenec's Service Tech (assisted by OM Techs) successfully installed a demo unit on existing backwash water line on March 13, 2023.

The unit has proven to be reliable and accurate. I would like to recommend moving forward with purchasing the new head unit which would replace the demo unit.

Energenecs Process. Control. Service.

Order Number: 0038049 Order Date: 3/13/2023 Salesperson: Gary W. Dean

QUOTE

Sold To : Sheboygan Water Utility 72 Park Avenue Sheboygan, WI 53081-2958

Ship To :

Sheboygan Water Utility 72 Park Avenue Attn: Andy Wellman Tag: Washwater flow meter Sheboygan, WI 53082

Confirm To: Andrew	Wellman	Customer Nu	umber : SHE00	8	Expected [Date: 4/13/20)23
Customer P.O. QUOTE: Andy Wellman	Ship VIA UPS GROUNE)	Terms Net 30 D	ays		Order Type :	SRV
Item Code		Unit	Ordered	Shipped	Back Order	Cost/Unit	Amount
9W4BA 1-AALHFPDACA	ACAEA 1	EACH	1.00	0.00	0.00	9,300.00	9,300.00
Prosonic FI Ultrasonic t Clamp-on v Application: measureme process wa Mounting w Maintenanc Corrosion-n 4-line displa ∷ Clamp-or ∷ Wastewa AA Approv L Power S H Output F Display P Transm D Electric AC Sensor A Proces AC Cable: AE I nstalla A 1 Device	ow W 400, 9VV4 ransit time flowr rersion. Bidirectional flo ent for water+ water and hydropo rithout process in ee-free installatic esistant transmi ay, touch control in device for Wat ater with web ser val; Transmitter; Supply: 100-240 ; Input: 4-20mA r; Operation: 4-li nitter Housing: R cal Connection: Version: C-100 s Temperature: 15m/45ft, -40 ation Set: DN200 e Model: 1	BA 1, 1 set neter astewater and wer plants. nterruption. in. tter version. er + ver. Sensor: Non-h VAC/24VAC/D HART, pulse/f ne ilium.; touch cemote, alu, co Thread NPT1/2 (1 MHz) -20 80oC, -4 . 80oC, -40 D-DN600, 8"-24 HOUR	azardous area OC req., switch outp n control bated 2 4 176oF 176oF 176oF	out 0.00	0.00	135.00	135.00
Labor					,		
CS / install / startup	/ two-way flow	strap on flow	meter billed at	t T&M.			
ZONE 1		EACH	1.00	0.00	0.00	85.00	85.00
Trip Charge							
							Continued

700 East Milan Drive Saukville, Wisconsin 53080 262-377-6360 Fax 262-377-1515 e-mail: info@energenecs.com • web: www.energenecs.com

Order Number: 0038049 Order Date : 3/13/2023 Salesperson: Gary W. Dean

Sold To : Sheboygan Water Utility 72 Park Avenue Sheboygan, WI 53081-2958 QUOTE

Ship To : Sheboygan Water Utility 72 Park Avenue Attn: Andy Wellman Tag: Washwater flow meter Sheboygan, WI 53082

Confirm To: Andrew We	ellman	Customer Ni	umber : SHEOC	8	Expected D	ate: 4/13/20	23
Customer P.O. QUOTE: Andy Wellman	Ship VIA UPS GROUND		Terms Net 30 D	Days		Order Type :	SRV
Item Code		Unit	Ordered	Shipped	Back Order	Cost/Unit	Amount
/MISC SUPPLIES - SERV		EACH	1.00	0.00	0.00	0.00	0.00
Misc Supplies	s - SRV						
Misc tech supplies de	termined by as	signed tech					
/FREIGHT		EACH	1.00	0.00	0.00	0.00	0.00
Freight and H	landling						
UPS Gr. PP & Add / (35	5 days)						

Convenience Fee of 3.5% will be added to all invoices paid by credit card.		Net Order:	9,520.00
Quotes and S	Sales Orders will be converted to an Invoice.	Less Discount:	0.00
Do not pay off a Quote or Sales Order.		Sales Tax:	0.00
Harvest	Zoho	Order Total:	9,520.00

OnTech Laptop Purchase

3/27/2023

The attached proposal is for the purchase of a laptop for the GIS/Civil Engineering Technician. This laptop will be used as a remote workstation. The laptop can run all required Engineering related software.

Proposal Total: \$3,099

Menomonee Falls, Wiscons

NIT I

Item 12.

www.ontech.com (262) 522-8560

Hardware

Description	Price Qty	Ext. Pric
Dell Precision 5770 17" Mobile Workstation Full HD Plus - 1920 x 1200 - Intel Core i7 12th Gen i7-12800H Tetradeca-core (14 Core) 2.40 GHz - 32GB (2x16GB) Total RAM - 512GB SSD NVMe - Titan Gray - Intel Chip - Win 10 Pro 64-bit (includes Win 11 Pro License) - NVIDIA RTX A3000 with 12 GB - 1 Year Hardware Service with Onsite/In-Home Service After Remote Diagnosis	\$3,099.00 1	\$3,099.0
	Subtotal:	\$3,099.0
	Imili	
		(Beep
	or the second	
And		
		34

Menomonee Falls, Wiscons

Wiscons^{Item 12.} www.ontech.com

(262) 522-8560

New - Engineering Laptop

Quote Information:

Quote #: 012774

Quote Summary

Version: Delivery Date: Expiration Date: **City of Sheboygan Water Utility** 72 Park Ave Sheboygan, WI 53081 Tamara Scheuren (920) 459-3800 tamarascheuren@sheboyganwater.o rg

Prepared by:

City of Sheboygan Water Utility

Ontech Systems Inc.

Jackie Buehler (262) 522-8560 x100 jackie@ontech.com

Description		Amount
Hardware		\$3,099.00
	Total:	\$3,099.00

For full quote view with product descriptions, warranty information and disclaimers, please review PDF.

Note: Quote is valid for 15 days.

Taxes, shipping, handling and other fees may apply. We reserve the right to cancel orders arising from pricing or other errors.

Prepared for:

Note: Please do not pay from quote, invoice to follow.

Ontech Systems Inc.

Signature		Signature:	
Name:	Jackie Buehler	Name:	Tamara Scheuren
Title:	Inside Sales/Office Manager	Date:	
Date:	03/15/2023		

OnTech Computer Purchase

3/27/2023

The attached proposal is for the purchase of computers, equipment, and estimated labor to deploy. The computers needing replacement were deployed in March of 2017 and are now six years old.

- 1- Replacement Computer for Lead Service Line and Billing Specialist
- 3- Replacement Computers for the Utility Support Specialists
- 1- Replacement Monitor for Utility Accountant
- 2- Replacement Monitors for Utility Support Specialists

Proposal Total: \$10,177
Menomonee Falls, Wiscons

Item 12.

www.ontech.com (262) 522-8560

Hardware

Description		Price	Qty	Ext. Price
Dell OptiPlex 7000 Desktop Computer - Intel Core i7 12th Gen i7-12700 Dodeca-core (12 Core) 2.10 GHz - 32 GB RAM DDR4 SDRAM - 512 GB M.2 PCI Express NVMe 3.0 x4 SSD - Small Form Factor - Black - Intel Chip - Windows 10 Pro - Intel UHD Graphics 770 DDR4 SDRAM - DVD-Writer - English Keyboard - 260 W		\$1,699.00	4	\$6,796.00
ViewSonic 27" 1080p IPS Monitor with Adaptive Sync, HDMI, DisplayPort, and VGA - 27" Monitor - IPS Technology - Full HD 1920 x 1080p - 16.7 Million Colors - Adaptive Sync - 250 Nit - 7ms - 75Hz Refresh Rate - HDMI - VGA - DisplayPort - Speaker	27 ViewSonic 🎎	\$169.00	3	\$507.00
StarTech.com Travel A/V adapter: 3-in-1 DisplayPort to VGA DVI or HDMI converter - Connect a DisplayPort-equipped PC to an HDMI, VGA, or DVI Display - Connect Laptop to TV - DisplayPort to DVI - DisplayPort to VGA - DisplayPort to HDMI - DP to DVI - DP to VGA - DP to HDMI	C	\$49.00	6	\$294.00
PC Mover		Sub	ototal:	\$7,597.00

	1 1 1 1 1 1		
Description	Price	Qty	Ext. Price
PCmover 11 Enterprise VLA L1 Full (EN) PCmover 11 Enterprise VLA L1 Full (EN) 5-25 User License	\$45.00	4	\$180.00

Description			Price	Qty	Ext. Price
Services				THE R	
		中國十四十五百	Suc	ototal:	\$180.00

Estimated Installation & Configuration: 12-16 Hours	\$150.00 16	\$2,400.00
Note: this is a time estimate that will be invoiced separately during our semi-monthly billing for actual time of service.		
	Subtotal:	\$2,400.00

37

Menomonee Falls, Wiscons

Item 12.

www.ontech.com (262) 522-8560

Replacement PCs with New Displays & Licensing

Tamara Scheuren

(920) 459-3800

rg

Quote Information:

Prepared for:

Quote #: 012570

Version: Delivery Date: Expiration Date: **City of Sheboygan Water Utility** 72 Park Ave Sheboygan, WI 53081

tamarascheuren@sheboyganwater.o

Prepared by:

Ontech Systems Inc.

Sam DuKatz (262) 522-8560 sam@ontech.com

Quote Summary

	A 1 THE COMPANY AND AND AND AN A 1 THE AND A 1 THE AND A 1		
Description			Amount
Hardware			\$7,597.00
PC Mover			\$180.00
Services			\$2,400.00
THE THINK THE HOLE		Total:	\$10,177.00

For full quote view with product descriptions, warranty information and disclaimers, please review PDF.

Note: Quote is valid for 15 days.

Taxes, shipping, handling and other fees may apply. We reserve the right to cancel orders arising from pricing or other errors.

Note: Please do not pay from quote, invoice to follow.

Ontech Systems Inc.

Signature: Signature: Name: Sam DuKatz Name: Title: Sales Support Specialist Date: Date: 03/15/2023

City of Sheboygan Water Utility

Charles and a state where the

Tamara Scheuren

To: Sheboygan Water Utility

From: CDM Smith Inc.

Date: March 20, 2023

Subject: WTP Filter Rehabilitation and Underdrain Evaluation- Updated Memorandum

ES.0 Executive Summary

The Sheboygan Water Utility (Utility) commissioned CDM Smith to evaluate alternatives for rehabilitating existing filters following the failed underdrain media support caps. This memorandum provides a summary of the rehabilitation alternatives, projected costs, non-cost evaluation of underdrain options, and recommendations.

Following a detailed evaluation of underdrain options and consideration of non-cost factors, the two stainless steel underdrain options are being considered for design and construction. The Utility will also consider ways to incorporate air scour in a future filter retrofit.

1.0 Background

The Sheboygan Water Utility (Utility) owns and operates a water treatment plant (WTP) that serves the City of Sheboygan, City of Sheboygan Falls, and Village of Kohler. The WTP has a design capacity of 36 million gallons per day (MGD) with an average flow of 13 MGD. The WTP treats raw water from Lake Michigan with a series of treatment steps, including alum/polymer coagulation, rapid mixing, flocculation, sedimentation, tri-media filtration, and disinfection using UV and chlorine.

1.1 Current Filter Operation

The WTP has eleven (11) granular-media filters, with the following dimensions:

- Filter Nos, 1 through 9 each have a surface area of approximately 698 square feet. Each filter is divided into two cells (11.25 feet by 31 feet each cell) by a center gullet.
- Filter Nos. 10 and 11 have a surface area of approximately 1,040 square feet. Each filter is divided into two cells (17.33 feet by 30 feet each cell) by a center gullet.

Typical filter run times between backwashes are reported to be approximately 150 hours in the winter and 100 – 125 hours in the summer. Media is cleaned through a conventional backwash procedure that includes surface wash (with surface sweeps) followed by low-rate and high-rate backwash. Backwash water is supplied from a washwater tank, using chlorinated water. The backwash process is controlled manually by Utility staff. A valve on the washwater supply to each filter is modulated to control the flow of backwash water into the filters.

Filter Media Analysis

The filter media profile appears to produce excellent water quality, and CDM Smith recommends maintaining the same profile. The current media profile is shown below:

- Filter Nos, 1 through 9:
 - 16 inches of anthracite
 - 12 inches of sand
 - 3 ¹/₂ inches of garnet sand
 - 2 inches of garnet gravel
- Filter Nos. 10 and 11:
 - 8 inches of anthracite
 - 12 inches of sand
 - 3 ¹/₂ inches of garnet sand
 - 2 inches of garnet gravel

The Utility collected filter media samples from Filter No. 6. **Table 1-1** shows the results of the filter media analysis conducted by Bowser-Morner, Inc. Six samples were collected each from sand and anthracite layers. The results appear to shows that the media is starting to show sign of its age. The uniformity coefficient is above the AWWA recommended value and above CDM Smith's specification. It is CDM Smith's recommendation that the media be replace with the same existing profile when the underdrains are replaced. Appendix A includes the media sample analysis results provided by the Utility.

Table 1-1. Analysis	s of Filter	Media Samples
---------------------	-------------	---------------

	Anthracite		Silica Sand		
Property	AWWA B100-16	Sheboygan Filter	AWWA B100-16	Sheboygan Filter	
Specific Gravity	> 1.4	1.70 – 1.85	> 2.5	2.65 – 2.75	
Acid Solubility	< 5%	2.4% - 3.7%	< 5%	1.6% - 1.9%	
Effective Size, mm	0.60 - 1.60	0.56 – 0.93	0.35 – 0.65	0.31 - 0.34	
Uniformity Coefficient	≤1.7	1.4 - 2.1	≤1.7	1.8	
Mohs Hardness	>2.7	3	N/A	7	
Elemental Analysis		N/A		s analyzed, the of Calcium ranged The Aluminum in the n 4.8% to 5.6%.	

1.2 Previous Filter Rehabilitations

Filter Nos. 1 through 9 were renovated in phases between 1996 and 1999. The renovation included new filter underdrains, new media, and new surface wash sweeps. The installed underdrains were Universal Type S plastic (HDPE) block underdrains manufactured by Leopold, now known as Xylem Leopold (Leopold). The underdrains included an IMS (Integral Media Support) Cap media support layer. With a thickness of approximately 1-inch, the IMS Cap takes less space than traditional gravel media support which has a thickness of approximately 12 inches. The IMS Cap allowed space for increased depth of filter media within the filter cells than if traditional gravel support media was used. The IMS caps were constructed by sintering plastic beads to create a complex path that prevents media entry into the underdrain.

Filter Nos. 10 and 11 were renovated in 2002. The renovation included new filter underdrains, new media, and new surface wash sweeps. The installed underdrains were Leopold Universal Type SL plastic (HDPE) block underdrains and included the use of IMS caps.

Following an underdrain failure in Filter No. 11 in 2007, the underdrains and media in this filter were replaced in kind. Following an underdrain failure in Filter No. 10 in 2018, the underdrains and media in this filter were replaced using Leopold Type XA plastic (HDPE) block underdrains. The new underdrains installed in Filter No. 10 included the IMS 200 media support cap. While similar in function to the original IMS cap, the IMS 200 cap is constructed differently, which provides for more control of the media retention slot sizing. The IMS 200 caps appear to be less susceptible to plugging than the original IMS caps.

1.3 2022 Filter Underdrain Failure

During a filter inspection in August 2022 various sink holes were observed in the top of the media in Filter No. 5, suggesting a potential breech in the underdrain system. Utility staff arranged for the media to be removed from both cells of Filter No. 5. Inspection of the filter underdrain system found split IMS caps on two of the underdrains along with signs of sealant failure at the ends of most of the caps. These signs indicated a suspected plugging of the IMS caps, as have been seen at many other water treatment plants that utilize this filter underdrain product. Two representative IMS caps were removed from Filter No. 5 and sent to Leopold for autopsy analysis. The testing conducted by Leopold confirmed that the IMS caps within Filter No. 5 were plugged.

Utility staff procured new IMS 200 caps from Leopold to replace the existing IMS caps within Filter No. 5 as an interim solution. Utility staff completed all necessary underdrain preparations and installed the replacement IMS 200 caps within Filter No. 5. Utility staff procured and installed new filter media and returned Filter No. 5 to service on December 12, 2022.

1.4 Filter Underdrain Rehabilitation

Following the 2022 failure of Filter No. 5, Utility staff conducted pressure monitoring of all the filter basins at the Sheboygan WTP which identified that nearly all the filters are showing some degree of increased pressure that is expected to be the result of plugging of the IMS caps. Filter No. 6 in

particular is showing higher than expected pressure, and the Utility is moving forward with cap replacement.

As a result of these failures and concerns, the Utility commissioned CDM Smith to evaluate alternative underdrains with the intent to move forward with a new underdrain system.

3.0 Underdrain Manufacturer Workshops

To gather information for determining the best path forward for rehabilitating the filters, CDM Smith led virtual workshops with three leading underdrain manufacturers (AWI, Roberts and Leopold) and the Utility on November 10 and 11, 2022.

The manufacturers presented options for underdrain configurations that could be applied to the rehabilitation of the filters. Following these presentations, CDM Smith provided further recommendations regarding which underdrain configurations should be allowed for bidding.

3.1 AWI – Stainless Steel Underdrains

AWI presented their Phoenix underdrain with separate air and water chambers. This underdrain is stainless steel with punched media retention slots and does not require support gravel. **Figure 3-1** shows a sample of the underdrain lateral.

Figure 3-1: AWI Phoenix Underdrain Lateral

This underdrain is installed with grout strips over the flume and anchor bolts across the length of the lateral. This reduces installation schedule since it does not require grout to be applied over the filter slab. The lateral does not lay flush on the filter floor. The distribution orifices are custom cut based on hydraulic modeling to optimize uniform distribution throughout the filter. The laterals are manufactured in the US.

This underdrain is compatible with air scour; the connection to the air header for this configuration utilized flexible tubing, while the rest of the piping was stainless steel. **Figure 3-2** shows how air and water move through the underdrains.

Figure 3-2: Air and water distribution through AWI Phoenix laterals.

AWI's Phoenix underdrain is made in three difference heights: Ultra Low Profile, Low Profile, and High Volume. With the lower profile options, the maximum length of the lateral is more limited than the high volume option. Additionally, the headloss would be greater in the same application for a ultra-low then for low profile or high volume. Based on the length of the filters AWI recommends the low profile lateral. However, with the low profile option, the headloss through the underdrain would be much higher than for the comparable underdrains from the other manufacturers. For this reason, the high volume option may be considered instead as it has a lower headloss than the low profile.

3.2 Roberts – Stainless Steel Underdrains

Roberts presented their Trilateral underdrains with options for combined and separated air and water chambers. Drawings for this design are included in **Appendix B**. These underdrains are stainless steel with punched retention slots and do not require support gravel but may be used with it. The Trilateral product with separate air and water chambers is a new offering from Roberts and does not have many installations; however, the technology is similar to the AWI Phoenix product. **Figure 3-3** shows an installation of the Roberts stainless trilateral underdrain.

Figure 3-3: Roberts Trilateral Stainless-steel underdrain installation

This stainless-steel underdrain installation requires a level floor. The laterals are then mechanically anchored and bolted flush onto the floor. This system is also compatible with air scour and uses entirely stainless-steel piping and the laterals themselves are made with 14-gauge stainless steel. The punched media retention orifices feature a winged shape, each orifice being connected to the lateral on three sides.

3.3 Leopold – Plastic Underdrains

Leopold presented their Type XA, Type SA, and Type 360 underdrains, all plastic underdrains of varying shapes. Types XA and SA were presented with or without an IMS® 200 media support cap, which requires support gravel if the cap is omitted. The Type 360 underdrains were as a new product designed with orifices for air and water on all sides of the raised underdrain. The Type S was originally installed in the Utility's filters with older sintered bead media support cap design, or

the original IMS® cap. This media support cap has had failures in other installations and has been replaced by a media support cap with laser cut slots. **Figures 3-4** shows the Type XA underdrain block. The Type 360 is shown in **Figure 3-5**.

Figure 3-4: Type XA underdrain without cap

Figure 3-5: Type 360 underdrain

The Type XA block is newer and has a lower profile than the Type S, leaving more room for media above. The Type XA also has a structure underneath that allows greater uplift resistance in the grout installation. The Type XA can be used with air scour, using the IMS® cap or gravel for media retention. The plastic block installation requires grout poured under and around the plastic blocks to form a monolithic structure regardless of the underdrain block type. This installation may be considered more challenging than the installation for the stainless-steel options. Additionally, single laterals cannot be removed for repair or inspection without taking all underdrains out of the filter.

The Type 360 is installed similarly to the stainless steel laterals presented by other manufacturers, with anchored bolts to hold down the laterals instead of the grout used for the plastic block products. There are orifices on all sides of the lateral for air and water to pass through and these orifices are sized to retain the media in the filter. This underdrain product is new and does not have many installations. Due to this limited experience with the Type 360 product, the Type XA product will be the focus for comparison to other underdrains.

4.0 Findings and Discussion

Following the underdrain manufacturer workshops, CDM Smith developed a table of non-cost factors to be used in comparing the underdrain options presented. For each manufacturer, a preferred product for the Sheboygan WTP application was selected based on manufacturer recommendation for the application and CDM Smith experience with the product. For Leopold this was the Type XA Underdrain with IMS® 200 Media Support Cap, for AWI this would be the Low Profile Phoenix Underdrain (although the High Volume may be beneficial for lower headloss), and for Roberts the stainless-steel Trilateral with separate air and water chambers was selected for comparison. **Table 4-1** provides a comparison between the preferred products from each manufacturer.

Table 4-1. Summary of Preferred Underdrain Product from Each Manufacturer for Sheboygan WTP	
Application	

	Leopold	AWI	Roberts
Product	XA Underdrain with IMS [®] 200 Cap	Phoenix Low Profile	Trilateral SS
Material	HDPE	316L SS	316L SS
Description	Grout and mechanical hold-down anchor system	316L Stainless steel mechanical hold downs epoxy anchored into the filter box	316L Stainless steel mechanical hold downs epoxy anchored into the filter box
Lateral Height	10 3/8-inches	5 1/4 – inches	8 inches
Warranty	5 years	5 years	5 years
Advantages	- Familiar product/operation - Plastic material results in lower purchase cost for laterals.	 Could be installed in- house Can remove single lateral for repair Minimal risk of fouling Easier installation. Allows for more reliable quality control as mechanical anchors can be tested to verify correct installation. 	 Could be installed in- house Can remove single lateral for repair Minimal risk of fouling Easier installation Thicker gauge SS Allows for more reliable quality control as mechanical anchors can be tested to verify correct installation.
Disadvantages	 Cannot remove single lateral without impacting other laterals. More complex and labor- intensive installation that requires close quality control of grout and placement to be successful. 	 Dead space under lateral. Stainless steel material results in higher purchase price of laterals. Slight risk of corrosion 	 Stainless steel material results in higher purchase price of laterals. Slight risk of corrosion
Fail points	 Failure of media retention caps Sealant failure Relies on good quality and placement of grout (grout under tension) 	- Hold down anchor failure - Corrosion	- Hold down anchor failure - Corrosion
Headloss	32"	65"	32"
Uplift Pressure	Type XA is 30 psi. (IMS® 200 cap is 15 psi	2,400 PSF (16.7 psi)	1,200 PSF (8.3 psi) with 5/16" think plates between the laterals and 2,400 PSF (16.7 psi) with 1/2" plates
Number of Installations	Type S - >1,500 Type XA - >500	approximately 240	14

4.1 Additional Concerns and Recommendations for the Filter Underdrains

4.1.1 Potential for Backwash Flow Maldistribution

Maldistribution in the backwash supply could result in zones of higher backwash pressure and zones of poor backwashing. Modern filter installations can overcome these challenges through the following strategies:

- Use of varying sized openings/orifices in the center underdrain blocks to obtain a consistent backwash flow along the full length of the filter center backwash feed gullet;
- Use of influent flow baffles as the backwash water enters the gullet to reduce the influent water velocity;
- Use of computational fluid dynamic (CFD) modeling of the filter installation to design the location and size of the block openings and baffles;
- Post-installation backwash flow or piezometer testing to field verify the installation matches the results of the CFD design.

These strategies are applicable to all of the underdrain products being considered for the Sheboygan WTP and should be implemented regardless of which underdrain product is selected.

4.1.2 No Backwash Relief Piping

The Utility does have air relief venting, but currently there is no vent relief outlet for the backwash supply water piping at the filter gullet. Vent relief piping are typically added to reduce the potential for future catastrophic filter underdrain failures. The Utility did note that the maximum head available for backwash supply from the backwash tank is not high, and since there is no backwash pumping supply in this case, adding backwash relief piping is not as critical in this case.

4.1.3 Use of Air Scour In Lieu of Surface Wash for Auxiliary Wash

The addition of air scour to a filter backwash procedure has been shown to significantly improve the backwash cleaning effectiveness. The addition of air scour might provide a measurable benefit to the WTP in improved filter performance and lower backwash water use. Life-cycle cost evaluations conducted on other Midwestern water facilities locations have shown that operation and maintenance cost savings can off-set the capital cost associated with implementing air scour.

New air scour blowers, air scour header piping, and appurtenances would be required to implement air scour at WTP, but all underdrain options for retrofit are compatible with air scour.

4.2 Non-Cost Evaluation

CDM Smith prepared a matrix of criteria to be used to evaluate non-cost items about each potential underdrain product. **Table 4-2** shows this matric with scores filled in by Sheboygan staff in discussion with the CDM Smith team. The weighting of each sub criterium within the primary criteria and weighting of each primary criterium within the total score is also shown in the table. In this evaluation, AWI and Roberts ranked similarly, around 3.6, while Leopold ranked behind these two with a score of 2.3. Based on this non-cost evaluation, the top two vendors are used in the final cost or budgeting (Table 5-2).

Sheboygan Water Utility Filter Rehabilitation

March 20, 2023

Page 10

Table 4-2. Non-cost evaluation matrix of underdrain alternatives

		ι	Jnweighted	SC scores	Weighted PC Scores		Scores	
Primary Criteria (PC) and Weight	Sub-criteria (SC) and Weight	AWI	Roberts	Leopold	AWI	Roberts	Leopold	Reasoning for Score
Installation (30%)					1.29	1.095	0.765	
	Ease of Installation (25%)	4.7	4.1	2				Leopold requires the more grout and leveling
	Number of Installations (25%)	4	3	4.2				Leopold has the most installations, followed by AWI
	Ease of Repair /Replacement (25%)	4	3	1				Stainless Steel Underdrains can be removed as a single lateral
	Ability to add Air Scour (25%)	4.5	4.5	3				AWI and Roberts design for future air scour addition
Impact on Media/WQ (20%)					0.94	0.9	0.52	
	Height of Underdrain (and room for media and freeboard) (50%)	5	4.4	2.1				Based on lateral height and whether support gravel is needed
	Filter Performance /Longevity (50%)	4.4	4.6	3.1				Leopold has experienced more failures
Reliability and Performance (30%)					1.1	1.28	0.86	
	Potential Fail Points (33%)	3	4	1				Grout failure and clogging more likely with Leopold. Corrosion as a fail point for AWI and Roberts. Space under lateral as fail point for AWI.
	Headloss (33%)	4	4	4				Comparable headloss
	Material of Construction /Corrosion (33%)	4.1	4.8	3.6				Roberts provides stronger gauge stainless than AWI. Leopold is plastic.
Company Experience and Service Record (20%)					0.72	0.75	0.59	
	Experience (50%)	4.2	4.5	4.9				Leopold has most installations
	Service Record (50%)	3	3	1				AWI and Roberts Service not tested, but Leopold was challenging to work with in initial stages of filter failure
	Cumulative Weighted Score:				4.06	4.02	2.73	

5.0 Alternatives and Next Steps

The following is a summary of various alternatives to address the underdrains at the WTP. The description of each alternative includes advantages and disadvantages.

5.1 Alternative 1 Replace Existing Underdrains with new Leopold XA Plastic Block Underdrains

This alternative includes the removal and replacement of the existing underdrains with the latest version of the Leopold XA underdrain with IMS200 caps (shown in Figure **5-1**). Under this alternative, the existing underdrains would be demolished and removed from the filter basins. A bed of grout would be applied to the filter floor before the laterals (made of connected plastic blocks with IMS200® Caps factory installed on top of the blocks) are placed. A new mechanical anchoring system would be installed around the laterals. After 12 hours, grout would be placed to fill in the space around the laterals.

The advantages and disadvantages of this alternative include the following:

Alternative 2 Advantages:

• HDPE material used in Leopold's XA Plastic Block would eliminate concern about underdrain corrosion.

Alternative 2 Disadvantages:

- The installation process for this type of plastic underdrain is relatively complex. Close supervision would be required during installation of the underdrains and grout to ensure a complete and reliable underdrain system.
- While the XA underdrain has a lower profile than the existing Leopold S block, it is taller than
 either the AWI or Roberts options and thus would have less freeboard for media expansion
 than the other underdrain options.
- While this IMS200[®] Cap design appears to be less prone to plugging than the existing IMS[®] Caps, there is limited long-term data on the performance of this system, particularly for the treatment of Great Lakes water.

Figure 5-1. Type XA underdrain with IMS[®] 200 cap. 5.2 Alternative 2 Replace Existing Underdrain with New AWI Phoenix Stainless Steel Underdrain

This alternative includes the removal and replacement of the existing underdrains with new stainless steel underdrains. AWI Stainless steel laterals come in a trapezoidal (shown in **Figure 5-2**) shape. Direct media support is attained through the usage of a dual folded plate system with a series of bridge punches in the top plate. The double 90-degree plates create high shear velocity of the water passing through, thus minimizes fouling. Stainless steel laterals provide greater corrosion resistance than cast iron laterals that were once commonly used in filter underdrain designs. The risk of corrosion is low because the laterals are nearly always submerged. This is supported by field experience of AWI underdrains operating for many years with no signs of corrosion.

These underdrains have a simpler installation process than plastic block underdrains. A gasket atop grout strips seal off the flume, then concrete anchors and hold-down clamps are used to secure the

Figure 5-2. Stainless steel underdrain from AWI

lateral to the filter floor. The AWI Phoenix installation does not require grout poured to level the entire filter floor. Instead, the underdrains rest on the grout strips at each end, when a small space between the underdrain and the middle of the filter floor. The underdrains are held in place with mechanical anchoring.

Alternative 2 Advantages:

- The AWI Phoenix underdrain has the lowest profile among all three alternatives, leaving the most room for additional media or filter bed expansion.
- The installation process for the stainless steel underdrains is relatively simple allowing for quicker installation and filter downtime.
- Unlike plastic block underdrains, stainless steel underdrains can be readily removed for cleaning, inspection, and maintenance, if ever needed, and then reinstalled without impacts to the structural integrity of the system.

Alternative 2 Disadvantages:

 Stainless steel underdrains do face a slight risk of corrosion, although this has only been seen in rare instances and is typically related to filters that are kept out of service, without being submerged for long periods of time.

5.3 Alternative 3 Replace Existing Underdrains with New Roberts Trilateral Stainless Steel Underdrains

This alternative includes the removal and replacement of the existing underdrains with new stainless steel underdrains. The Roberts trilateral underdrain comes in a triangular (shown in **Figure 5-3**) shape. Direct media support is attained through the usage of a dual folded plate system with a series of punches in the top plate. Each of these punches is supported by the plate on three sides of the punch. The double 90-degree plates create high shear velocity of the water passing through, thus minimizes fouling. Stainless steel laterals provide greater corrosion resistance than cast iron laterals that were once commonly used in filter underdrain designs. The risk of corrosion is low because the laterals are nearly always submerged.

Installation of the Roberts Trilateral underdrain requires beginning with a level filter floor, which requires a pour of grout over the clean filter floor. Then the Trilateral underdrain rests flush on the bottom of the floor, held in place with a mechanical anchor system.

Figure 5-3. Stainless steel underdrain from Roberts Filter

The advantages and disadvantages of this alternative include the following:

Alternative 3 Advantages:

- The Roberts Trilateral has a lower profile than the Leopold XA Block underdrain.
- The installation process for the stainless steel underdrains is relatively simple allowing for quicker installation and filter downtime.
- Unlike plastic block underdrains, stainless steel underdrains can be readily removed for cleaning, inspection, and maintenance, if ever needed, and then reinstalled without impacts to the structural integrity of the system.

Alternative 3 Disadvantages:

 Stainless steel underdrains do face a slight risk of corrosion, although this has only been seen in rare instances and is typically related to filters that are kept out of service, without being submerged for long periods of time.

5.5 Conceptual Cost Comparison of Alternatives

Vendors for the alternatives in **Table 5-1** have provided budgetary level estimates for underdrain laterals for the Utility to consider. These estimates do not include the costs for new air scour blowers and header pipe. These costs also do not include installation. The actual cost of the recommended alternative will depend on actual labor and material costs, competitive market conditions, final project scope, implementation schedule, and other factors.

Alternatives	Budgetary Underdrain Equipment Estimate for 11 Filters
Leopold Type XA Underdrains with IMS [®] 200 Cap	\$1,000,000
Leopold Type 360 Underdrains	\$870,000
AWI Phoenix Low Profile Underdrains	\$1,900,000
Roberts Trilateral Underdrains ⁽³⁾	\$2,200,000

Table 5-1. Conceptual Equipment Costs of New Filter Underdrain Alternatives^(1, 2)

Notes:

(1) Costs do not include any costs for filter pipe gallery improvements.

(2) Costs are based budgetary level estimates provided by the vendors in late 2022 – early 2023. Above costs do not include construction, which can be lower for the stainless steel options.

(3) Roberts estimate was provided including media, for a total of \$2,988,625. They report that 73% of this total is for underdrains and the other 27% is the media.

Conceptual estimates the total project costs have been developed and are shown in **Table 5-2**. Based on the rankings from the non-cost comparison in **Table 4-2**, only stainless-steel underdrains from AWI and Roberts were considered moving forward. A contingency of 25% is added to the construction cost to cover undeveloped design details, such as installation of pressure monitoring devices for backwash water supply and installation of backwash vent line provisions. This 25% contingency also covers the development of a sequence of construction and associated site constraints.

A mark-up 15% is added to the construction cost for engineering design, construction management, administrative, and legal. A 10% mark-up is added to cover contractor's overhead and profit.

These contingencies and mark-ups are appropriate at a planning level to allow for unforeseen and undefined cost items. It is important to note that the cost estimates are in today's dollars (not escalated) and are preliminary planning-level costs based on information available at the time of the estimates and are "order of magnitude". The actual cost of the recommended alternative will depend on actual labor and material costs, competitive market conditions, final project scope, implementation schedule, and other factors. As a result, the final costs will most likely vary from the estimates presented herein. Finally, cost does not include engineering design or construction management.

Table 5-2. Conc	eptual Capital	Costs of Filter	Retrofit (1, 2, 3, 4)
-----------------	----------------	------------------------	-----------------------

	Conceptual Capital Costs per Filter	Conceptual Capital Costs for 11 Filters
Stainless Steel Underdrains	\$ 600,000	\$ 6,600,000
Install Air Scour Blower and Piping	Not Applicable	\$ 2,000,000
Install New Media	\$ 160,000	\$ 1,800,000
Total:		\$ 10,400,000

Notes:

(1) Costs do not include any costs for filter pipe gallery improvements.

(2) Costs are in today's dollars and have not been escalated.

(3) Costs include the mark-ups noted above

(4) Costs are based on cost information from recent similar projects.

5.6 **PFAS Regulations**

On March 14th, 2023, EPA proposed National Drinking Water Standards for six PFAS (PFOS, PFOA, PFNA, PFBS, PFHxS, and GenX). The draft rule proposes a combination of traditional Maximum Contaminant Levels (MCLs) and a novel Hazard Index (HI) concept.

The proposed MCLs and HI are as follows:

- 4.0 ng/L or ppt MCL PFOA
- 4.0 ng/L or ppt MCL PFOS
- 1.0 (unitless, NOT 1 ppt) Hazard Index (HI) for a mixture of PFNA, PFHxS, PFBS, and GenX

Based on historical testing done by the Utility, levels of PFOA and PFOS are below the proposed MCLs, however the Utility will continue to monitor for PFAS to confirm that it will comply with the proposed rules. There is currently a 60-day public comment period with the Final Rule anticipated to be released by early 2024. The proposed rule requires compliance 3 years after promulgation.

As part of this Filter Rehabilitation Project, the Utility will evaluate if a different media option should be considered to allow removal of PFAS.

5.7 Recommendations and Next Steps

In addition to underdrain and media replacement, CDM Smith also recommends the following additional steps:

- Continue to closely monitor filter operation, backwash pressure and other filter parameters until the filters are fully rehabilitated.
- Consider incorporating air scour and backwash supply modifications at the WTP as part of the filter rehabilitation project for operation and maintenance cost savings and improved filter performance.

Appendix A – Filter Media Analysis Results

Delivery Address: 4518 Taylorsville Rd • Dayton, Ohio 45424 Mailing Address: P.O. Box 51 • Dayton, Ohio 454 Item 13.

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To:Sheboygan Water UtilityAttn: Bill Swearingen72 Park Ave.Sheboygan, WI 53081

- Report Date:
 02/15/23

 Job No.:
 208715

 Report No.:
 118928

 No. of Pages:
 2
- Date Received:
 01/19/23

 Date Sampled:
 01/16/23

Project/Plant: Filter #6 Media Core Testing

Test Method: AWWA B100-16

Sample ID: Anthracite Sample 1 Top

USA Std.	Nominal, mm	Effective, mm	Percent Passing
#8	2.36	2.36	100.0
#10	2.00	2.004	99.6
#12	1.70	1.724	97.1
#14	1.40	1.369	78.1
#16	1.18	1.195	42.7
#18	1.00	1.003	17.5
#20	0.850	0.870	11.0
#25	0.710	0.715	10.1
#30	0.600	0.598	9.6
#35	0.500	0.500	7.6
#40	0.425	0.418	3.6
#45	0.355	0.353	1.8
#50	0.300	0.289	1.5
#60	0.250	0.242	0.8
Effective Size, mm:		0.69	
Uniformity Coefficient:		1.9	
Acid Solubility, %:			3.7
Specific Gravity, (Apparent):		t):	1.70
Moh's Hardness:		3	

Should you have any questions or if we may be of further service, please contact me at 937-236-8805, extension 322.

KAF/ras/drj 118928 1-File

1-billswearingen@sheboyganwater.org

Respectfully submitted, BOWSER-MORNER, INC.

Karl A. Fletcher Vice President Director of Laboratory Services

Tested By: RAS

Item 13. Delivery Address: 4518 Taylorsville Rd • Dayton, Ohio 45424 Mailing Address: P.O. Box 51 • Dayton, Ohio 4544

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To: Sheboygan Water Utility Attn: Bill Swearingen 72 Park Ave. Sheboygan, WI 53081

Report Date: 02/15/23 208715 Job No.: **Report No.:** 118929 No. of Pages: 2 Date Received:

- Project/Plant: Filter #6 Media Core Testing
- Test Method: AWWA B100-16

01/19/23 **Date Sampled:** 01/16/23

Sample ID: Anthracite Sample 2 Top

	the second se	the second se	
USA Std.	Nominal, mm	Effective, mm	Percent Passing
#10	2.00	2.004	100.0
#12	1.70	1.724	98.6
#14	1.40	1.369	82.6
#16	1.18	1.195	48.0
#18	1.00	1.003	16.7
#20	0.850	0.870	7.2
#25	0.710	0.715	5.8
#30	0.600	0.598	5.4
#35	0.500	0.500	4.7
#40	0.425	0.418	2.3
#45	0.355	0.353	0.8
#50	0.300	0.289	0.5
Effective Size, mm:		0.93	
Uniformity Coefficient:		1.4	
Acid Solubility, %:			2.8
Specific Gravity, (Apparent):		1.73	
Moh's Hardness:			3

Should you have any questions or if we may be of further service, please contact me at 937-236-8805, extension 322.

> Respectfully submitted, BOWSER-MORNER, INC.

Karl A. Fletcher Vice President **Director of Laboratory Services**

KAF/ras/drj 118929 1-File 1-billswearingen@sheboyganwater.org

Tested By: RAS

Delivery Address: 4518 Taylorsville Rd • Dayton, Ohio 45424 Mailing Address: P.O. Box 51 • Dayton, Ohio 454

AASHTO/ISO 17025 Accredited • USACE Validated

Item 13.

LABORATORY REPORT

Report To:Sheboygan Water UtilityAttn: Bill Swearingen72 Park Ave.Sheboygan, WI 53081

 Report Date:
 02/15/23

 Job No.:
 208715

 Report No.:
 118930

 No. of Pages:
 2

 Date Received:
 01/19/23

 Date Sampled:
 01/16/23

- Project/Plant: Filter #6 Media Core Testing
- Test Method: AWWA B100-16

Sample ID: Anthracite Sample 3 Top

	Naminal mus		
05A 510.	Nominai, mm	Effective, mm	Percent Passing
#8	2.36	2.36	100.0
#10	2.00	2.004	99.7
#12	1.70	1.724	98.4
#14	1.40	1.369	82.9
#16	1.18	1.195	50.3
#18	1.00	1.003	20.8
#20	0.850	0.870	11.5
#25	0.710	0.715	9.9
#30	0.600	0.598	8.5
#35	0.500	0.500	5.2
#40	0.425	0.418	2.4
#45	0.355	0.353	1.4
#50	0.300	0.289	1.0
#60	0.250	0.242	0.5
Effective Size, mm:			0.72
Uniformity Coefficient:			1.7
Acid Solubility, %:			2.8
Specific Gravity, (Apparent		t):	1.81
Moh's Hardness:			3

Should you have any questions or if we may be of further service, please contact me at 937-236-8805, extension 322.

KAF/ras/drj 118930 1-File

1-billswearingen@sheboyganwater.org

Respectfully submitted, BOWSER-MORNER, INC.

Karl A. Fletcher Vice President Director of Laboratory Services

Delivery Address: 4518 Taylorsville Rd • Dayton, Ohio 45424 Mailing Address: P.O. Box 51 • Dayton, Ohio 454 Item 13.

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Date Sampled:

02/15/23

208715

118931

01/19/23

01/16/23

2

Report To:	Sheboygan Water Utility	Report Date:
	Attn: Bill Swearingen	Job No.:
	72 Park Ave.	Report No.:
	Sheboygan, WI 53081	No. of Pages:
Project/Plant:	Filter #6 Media Core Testing	Date Received:

Test Method: AWWA B100-16

Sample ID: Anthracite Sample 4 Top

USA Std.	Nominal, mm	Effective, mm	Percent Passing
#8	2.36	2.36	100.0
#10	2.00	2.004	99.8
#12	1.70	1.724	96.7
#14	1.40	1.369	77.8
#16	1.18	1.195	47.2
#18	1.00	1.003	17.2
#20	0.850	0.870	10.6
#25	0.710	0.715	9.6
#30	0.600	0.598	8.3
#35	0.500	0.500	5.7
#40	0.425	0.418	3.0
#45	0.355	0.353	1.7
#50	0.300	0.289	1.2
#60	0.250	0.242	0.5
Effective Size, mm:		0.82	
Uniformity Coefficient:		1.5	
Acid Solubility, %:			2.4
Specific Gravity, (Apparent):		t):	1.85
Moh's Hardness:		3	

Should you have any questions or if we may be of further service, please contact me at 937-236-8805, extension 322.

Respectfully submitted, BOWSER-MORNER, INC.

Karl A. Fletcher Vice President Director of Laboratory Services

KAF/ras/drj 118931 1-File 1-billswearingen@sheboyganwater.org

Delivery Address: 4518 Taylorsville Rd • Dayton, Ohio 45424 Mailing Address: P.O. Box 51 • Dayton, Ohio 454

ltem 13.

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To:Sheboygan Water UtilityAttn: Bill Swearingen72 Park Ave.Sheboygan, WI 53081

 Report Date:
 02/15/23

 Job No.:
 208715

 Report No.:
 118932

 No. of Pages:
 2

 Date Received:
 01/19/23

 Date Sampled:
 01/16/23

Sample ID: Anthracite Sample 5 Top

Test Method: AWWA B100-16

Project/Plant: Filter #6 Media Core Testing

USA Std.	Nominal, mm	Effective, mm	Percent Passing
#8	2.36	2.36	100.0
#10	2.00	2.004	99.8
#12	1.70	1.724	98.4
#14	1.40	1.369	87.6
#16	1.18	1.195	60.6
#18	1.00	1.003	29.9
#20	0.850	0.870	17.4
#25	0.710	0.715	14.9
#30	0.600	0.598	11.7
#35	0.500	0.500	7.0
#40	0.425	0.418	3.5
#45	0.355	0.353	2.2
#50	0.300	0.289	1.4
#60	0.250	0.242	0.5
Effective Size, mm:			0.56
Uniformity Coefficient:		2.1	
Acid Solubility, %:			2.7
Specific Gravity, (Apparent)		t):	1.74
Moh's Hardness:			3

Should you have any questions or if we may be of further service, please contact me at 937-236-8805, extension 322.

KAF/ras/drj 118932

1-File

1-billswearingen@sheboyganwater.org

Respectfully submitted, BOWSER-MORNER, INC.

Karl A. Fletcher Vice President Director of Laboratory Services

Tested By: RAS

Delivery Address: 4518 Taylorsville Rd • Dayton, Ohio 45424 Mailing Address: P.O. Box 51 • Dayton, Ohio 4540

AASHTO/ISO 17025 Accredited • USACE Validated

Item 13.

LABORATORY REPORT

Report To:Sheboygan Water Utility
Attn: Bill Swearingen
72 Park Ave.
Sheboygan, WI 53081

Project/Plant: Filter #6 Media Core Testing

 Report Date:
 02/15/23

 Job No.:
 208715

 Report No.:
 118933

 No. of Pages:
 2

 Date Received:
 01/19/23

 Date Sampled:
 01/16/23

Test Method: AWWA B100-16 Sample ID: Anthracite Sample 6 Top

	-		
USA Std.	Nominal, mm	Effective, mm	Percent Passing
#8	2.36	2.36	100.0
#10	2.00	2.004	99.9
#12	1.70	1.724	98.8
#14	1.40	1.369	86.2
#16	1.18	1.195	53.5
#18	1.00	1.003	21.4
#20	0.850	0.870	10.3
#25	0.710	0.715	8.5
#30	0.600	0.598	8.0
#35	0.500	0.500	6.9
#40	0.425	0.418	3.6
#45	0.355	0.353	1.5
#50	0.300	0.289	1.0
#60	0.250	0.242	0.6
Effective Siz	ze, mm:		0.85
Uniformity C	Coefficient:		1.4
Acid Solubil	ity, %:		2.9
Specific Gra	ivity, (Apparen	t):	1.74
Moh's Hardr	ness:		3

KAF/ras/drj 118933 1-File 1-billswearingen@sheboyganwater.org

extension 322.

Respectfully submitted, BOWSER-MORNER, INC.

at 937-236-8805,

Karl A. Fletcher Vice President Director of Laboratory Services

Delivery Address: 4518 Taylorsville Rd • Dayton, Ohio 45424 Mailing Address: P.O. Box 51 • Dayton, Ohio 454

Item 13.

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To:	Sheboygan Water Utility		Report Date:	02/15/23
	Attn: Bill Swearingen		Job No.:	208715
	72 Park Ave.		Report No.:	118934
	Sheboygan, WI 53081		No. of Pages:	2
Project/Plant:	Filter #6 Media Core Testing	.*	Date Received:	01/19/23
Test Method:	AWWA B100-16		Date Sampled:	01/16/23

Sample ID: Sand Sample 1 Bottom

USA Std.	Nominal, mm	Effective, mm	Percent Passing
#8	2.36	2.36	100.0
#10	2.00	2.044	99.9
#12	1.70	1.703	99.6
#14	1.40	1.400	97.9
#16	1.18	1.200	94.5
#18	1.00	0.994	91.1
#20	0.850	0.870	89.7
#25	0.710	0.706	84.8
#30	0.600	0.605	60.8
#35	0.500	0.499	29.0
#40	0.425	0.414	20.0
#45	0.355	0.345	10.2
#50	0.300	0.297	4.6
#60	0.250	0.247	1.0
#70	0.212	0.212	0.4
Effective Siz	ze, mm:		0.34
Uniformity Coefficient:			1.8
Acid Solubility, %:			1.6
Specific Gravity, (Apparent):		2.75	
Moh's Hardness:			7
Aluminum, 9	%:		4.9
Calcium, %:			7.5

Should you have any questions or if we may be of further service, please contact me at 937-236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC.

Karl A. Fletcher Vice President **Director of Laboratory Services**

KAF/ras/drj	
-------------	--

118934

1-File

1-billswearingen@sheboyganwater.org

Tested By: RAS

Delivery Address: 4518 Taylorsville Rd • Dayton, Ohio 45424 Mailing Address: P.O. Box 51 • Dayton, Ohio 4540 Item 13.

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To:	Sheboygan Water Utility	Report Date:	02/15/23
	Attn: Bill Swearingen	Job No.:	208715
	72 Park Ave.	Report No.:	118935
	Sheboygan, WI 53081	No. of Pages:	2
Project/Plant:	Filter #6 Media Core Testing	Date Received:	01/19/23
Test Method:	AWWA B100-16	Date Sampled:	01/16/23

Sample ID: Sand Sample 2 Bottom

KAF/ras/drj 118935

1-billswearingen@sheboyganwater.org

1-File

USA Std.	Nominal, mm	Effective, mm	Percent Passing
#10	2.00	2.044	100.0
#12	1.70	1.703	99.4
#14	1.40	1.400	97.8
#16	1.18	1.200	95.9
#18	1.00	0.994	94.5
#20	0.850	0.870	93.8
#25	0.710	0.706	90.0
#30	0.600	0.605	68.6
#35	0.500	0.499	32.4
#40	0.425	0.414	22.2
#45	0.355	0.345	13.9
#50	0.300	0.297	6.8
#60	0.250	0.247	1.6
#70	0.212	0.212	0.6
Effective Size, mm:			0.32
Uniformity Coefficient:			1.8
Acid Solubility, %:			1.6
Specific Gravity, (Apparent):			2.75
Moh's Hardness:			7
Aluminum, %:			4.9
Calcium, %:			6.5

Should you have any questions or if we may be of further service, please contact me at 937-236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC.

Karl A. Fletcher Vice President Director of Laboratory Services

Tested By: RAS

Delivery Address: 4518 Taylorsville Rd • Dayton, Ohio 45424 Mailing Address: P.O. Box 51 • Dayton, Ohio 454 Item 13.

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To:	Sheboygan Water Utility	Report Date:	02/15/23
	Attn: Bill Swearingen	Job No.:	208715
	72 Park Ave.	Report No.:	118936
	Sheboygan, WI 53081	No. of Pages:	2
Project/Plant:	Filter #6 Media Core Testing	Date Received:	01/19/23
Test Method:	AWWA B100-16	Date Sampled:	01/16/23

Sample ID: Sand Sample 3 Bottom

USA Std.	Nominal, mm	Effective, mm	Percent Passing
#8	2.36	2.36	100.0
#10	2.00	2.044	99.8
#12	1.70	1.703	99.1
#14	1.40	1.400	96.6
#16	1.18	1.200	92.8
#18	1.00	0.994	89.5
#20	0.850	0.870	88.2
#25	0.710	0.706	84.7
#30	0.600	0.605	65.2
#35	0.500	0.499	30.9
#40	0.425	0.414	20.1
#45	0.355	0.345	11.7
#50	0.300	0.297	5.9
#60	0.250	0.247	1.4
#70	0.212	0.212	0.1
Effective Size, mm:			0.33
Uniformity Coefficient:			1.8
Acid Solubility, %:			1.8
Specific Gravity, (Apparent):			2.71
Moh's Hardness:			7
Aluminum, %:			5.0
Calcium, %:			6.4

Should you have any questions or if we may be of further service, please contact me at 937-236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC.

Karl A. Fletcher Vice President Director of Laboratory Services

KAF/ras/drj	
118936	
1-File	
4 In (11 a	2

1-billswearingen@sheboyganwater.org

Tested By: RAS

BOWSER-MORNER, INC.

Delivery Address: 4518 Taylorsville Rd • Dayton, Ohio 45424 Mailing Address: P.O. Box 51 • Dayton, Ohio 4540 Item 13.

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To:	Sheboygan Water Utility	Report Date:	02/15/23
	Attn: Bill Swearingen	Job No.:	208715
	72 Park Ave.	Report No.:	118937
	Sheboygan, WI 53081	No. of Pages:	2
Project/Plant:	Filter #6 Media Core Testing	Date Received:	01/19/23
Test Method:	AWWA B100-16	Date Sampled:	01/16/23

Sample ID: Sand Sample 4 Bottom

USA Std.	Nominal, mm	Effective, mm	Percent Passing
#10	2.00	2.044	100.0
#12	1.70	1.703	99.6
#14	1.40	1.400	97.7
#16	1.18	1.200	95.6
#18	1.00	0.994	93.7
#20	0.850	0.870	92.8
#25	0.710	0.706	89.6
#30	0.600	0.605	66.2
#35	0.500	0.499	29.8
#40	0.425	0.414	21.4
#45	0.355	0.345	13.4
#50	0.300	0.297	6.3
#60	0.250	0.247	1.6
#70	0.212	0.212	0.6
Effective Siz	ze, mm:	0.32	
Uniformity C	Coefficient:	1.8	
Acid Solubil	ity, %:	1.6	
Specific Gra	avity, (Apparen	2.74	
Moh's Hard	ness:	7	
Aluminum, ^o	%:	4.8	
Calcium, %:		6.4	

Should you have any questions or if we may be of further service, please contact me at 937-236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC.

Karl A. Fletcher Vice President Director of Laboratory Services

KAF/ras/drj 118937 1-File 1-billswearingen@sheboyganwater.org

All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only Of The Items Calibrated Or Tested. Unless Otherwise Agreed, Samples or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowsermorner.com/accreditations for review.

BOWSER-MORNER, INC.

Delivery Address: 4518 Taylorsville Rd • Dayton, Ohio 45424 Mailing Address: P.O. Box 51 • Dayton, Ohio 4540

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To: Sheboygan Water Utility **Report Date:** 02/15/23 Attn: Bill Swearingen Job No.: 208715 72 Park Ave. **Report No.:** 118938 Sheboygan, WI 53081 No. of Pages: 2 Project/Plant: Filter #6 Media Core Testing **Date Received:** 01/19/23 Test Method: AWWA B100-16 Date Sampled: 01/16/23

Sample ID: Sand Sample 5 Bottom

USA Std.	Nominal, mm	Effective, mm	Percent Passing
#8	2.36	2.36	100.0
#10	2.00	2.044	99.1
#12	1.70	1.703	98.2
#14	1.40	1.400	93.8
#16	1.18	1.200	85.4
#18	1.00	0.994	78.6
#20	0.850	0.870	76.4
#25	0.710	0.706	73.5
#30	0.600	0.605	58.7
#35	0.500	0.499	30.8
#40	0.425	0.414	19.7
#45	0.355	0.345	11.0
#50	0.300	0.297	5.8
#60	0.250	0.247	1.5
#70	0.212	0.212	0.6
Effective Size, mm:			0.34
Uniformity Coefficient:			1.8
Acid Solubility, %:			1.9
Specific Gravity, (Apparent):			2.70
Moh's Hardness:			7
Aluminum, %:			5.6
Calcium, %:			4.2

Should you have any questions or if we may be of further service, please contact me at 937-236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC.

Karl A. Fletcher Vice President **Director of Laboratory Services**

KAF/ras/drj 118938 1-File

1-billswearingen@sheboyganwater.org

All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only Of The Items Calibrated Or Tested. Unless Otherwise Agreed, Samples or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowsermorner.com/accreditations for review.

Item 13.

BOWSER-MORNER, INC.

Item 13.

02/15/23

208715

118939

01/19/23

01/16/23

2

INDEPENDENCE

Job No.:

Report Date:

Report No.:

No. of Pages:

Date Received:

Date Sampled:

Delivery Address: 4518 Taylorsville Rd • Dayton, Ohio 45424 Mailing Address: P.O. Box 51 • Dayton, Ohio 4540T

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Sheboygan Water Utility Attn: Bill Swearingen 72 Park Ave.

Sheboygan, WI 53081

Sand Sample 6 Bottom

Project/Plant: Filter #6 Media Core Testing

Test Method: AWWA B100-16

Sample ID:

Report To:

USA Std. Nominal, mm Effective, mm Percent Passing #8 2.36 2.36 100.0 #10 2.00 2.044 99.7 #12 1.70 1.703 98.9 #14 1.40 1.400 96.3 #16 1.18 1.200 93.1 #18 1.00 0.994 91.1 #20 0.850 0.870 90.3 #25 0.710 0.706 86.7 #30 0.600 0.605 67.9 #35 0.500 0.499 33.9 #40 0.425 0.414 22.3 #45 0.355 0.345 14.2 #50 0.300 0.297 7.6 #60 0.250 0.247 2.0 #70 0.212 0.212 1.2 #80 0.180 0.180 0.6 Effective Size, mm: 0.31 Uniformity Coefficient: 1.8

Should you have any questions or if we may be of further service, please contact me at 937-236-8805, extension 322.

KAF/ras/drj 118939 1-File 1-billswearingen@sheboyganwater.org

Acid Solubility, %:

Moh's Hardness:

Aluminum, %:

Calcium, %:

Specific Gravity, (Apparent):

Respectfully submitted,

1.7

2.65

7

5.0

6.3

BOWSER-MORNER, INC

Karl A. Fletcher Vice President Director of Laboratory Services

All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only Of The Items Calibrated Or Tested. Unless Otherwise Agreed, Samples or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowsermorner.com/accreditations for review.

Appendix B – Roberts Underdrain Drawings

NOTES:

1.

2.

NOTES:

- 1. BEFORE INSTALLATION, MAKES SURE WALL IS FLAT WITHIN $\pm 1/8$ ", MAKE SURE THE FLOOR IS LEVEL WITHIN $\pm 1/8$ ".
- 2.
- 3.
- PLACE SIKAFLEX-1A ON THE BACK SIDE OF NEOPRENE GASKET AND PLACE ON THE WALL AND FLOOR AROUND THE ANCHORS TO LINE UP WITH THE OUTER FLANGES OF THE FLUME BOX. 4.
- 5.
- 6. USE LEVELING GROUT TO LEVEL THE FLOOR AND COVER THE BOTTOM OF THE BOX WITH 1" OF GROUT.

7. LATERAL AND INSTALL LATERAL WITH BOLTS AND HARDWARE.

8. SECURE LATERAL TO THE FLOOR WITH HOLDDOWN CLIPS.

S286-M21

NOTES:

- 1. PLACE SIKAFLEX-1A ON THE BACK SIDE OF NEOPRENE GASKET AND PLACE ON THE FLOOR AROUND THE ANCHORS.
- 2. PLACE SIKAFLEX-1A ON GASKET AND PLACE BOX ONTO FLOOR.
- 3. USE LEVELING GROUT TO LEVEL THE FLOOR WITH 1" OF GROUT.
- 4. PUT SIKAFLEX ON THE BOTTOM OF THE LATERAL AND INSTALL LATERAL WITH BOLTS AND HARDWARE.
- 5. SECURE LATERAL TO THE FLOOR WITH HOLDDOWN CLIPS.

$$\frac{\text{SECTION K-K}}{\text{SCALE 3/8"} = 1'}$$

