City Manager Tom Moran

Port Director Joy Baker

Harbormaster Lucas Stotts

102 Division St. • P.O. Box 281 Nome, Alaska 99762 (907) 443-6619 Fax (907) 443-5473

NOME PORT COMMISSION
JOINT WORK SESSION WITH
NOME COMMON COUNCIL & NOME PLANNING COMMISSION
THURSDAY, July 19, 2018 @ 5:30 PM
COUNCIL CHAMBERS IN CITY HALL

AGENDA

UPDATE FROM U.S. ARMY CORPS OF ENGINEERS (USACE) ALASKA DISTRICT ON PORT OF NOME MODIFIED FEASIBILITY STUDY

STUDY PROGRESS

- o Alternatives Milestone Achievement
- Alternatives Update
- Budget
- Schedule
- Economics Analysis
- Environmental & Geotech Analysis
- Next Steps

Nome Port Commission
Jim West, Jr., Chairman
Charlie Lean, Vice Chairman
Derek McLarty
Shane Smithhisler
Scot Henderson
Russell Rowe
Gay Sheffield

Port of Nome Modification Feasibility Study Progress

Jenipher Cate, Alaska District Project Manager U.S. Army Corps of Engineers – Alaska District 19July2018

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation."

AGENDA

- Introductions
- Study Scope & Budget
- Study Overview
- Plan Formulation & Initial Screening
- Final Array of Alternatives
- Next Steps to Tentatively Selected Plan Milestone
- Conclusions, Discussion & Next Steps

PORT OF NOME MODIFICATION FEASIBILITY STUDY

SCHEDULE / MILESTONES 24-month

Milestone	Date
FCSA Execution	02 Feb 2018
Alternatives Milestone	27 Jun 2018
Tentatively Selected Plan	13 Nov 2018
Agency Decision Milestone	26 Mar 2019
MSC Transmittal of Final Report	21 Oct 2019
Chief's Report Signed	18 Feb 2020

BUDGET ~ \$2.9M

Year	Estimated Total Study Cost	Percentage	Non-Federal Cash	Federal Cash
FY18	\$ 1M	34%	\$ 0.5M	\$ 0.5M
FY19	\$ 2M	66%	\$ 1M	\$ 1M
Total	\$ 3M	100%	\$ 1.5M	\$ 1.5M

As of today

Federal: \$173K

Non-Federal: \$150K

Total: \$323K

City's Contribution

City has \$1.5M set aside through a State of Alaska legislative grant authorized in 2016.

Contributed to Date:

- \$150K FCSA Execution
- \$ 23K Balance owed through City FY18
- \$300K Funding cost-share through COE FY18
 \$473K

Planned In-Kind Credit:

- Vessel for Environmental Work, Summer 2018
- Third Party Economic Analysis (Consultant)
- Third Party Design Analysis (Consultant)
- Project Management/Coordination (City staff)

Problems
Opportunities

Objectives Constraints Existing Conditions

Future without Project Plan Formulation

Problem Statement

Vessel traffic in the Arctic, coupled with limited marine infrastructure and available draft in Nome and the region, results in:

- Operational inefficiencies
- Vessel damages
- Decreased safety
- Increased costs of goods and services
- Threats to the long-term viability of surrounding communities

Opportunities

- Ensure health and safety of smaller communities that rely on Nome
- Long-term economic growth and stability in Nome
- Improve navigation access to community
- Increase investment in infrastructure
- Decrease economic damages
- Reduce life safety risk
- · Improve system reliability
- Separate various types of harbor activities and associated foot traffic

Objectives:

Provide safe, reliable, resilient and efficient waterborne transportation systems for movement of commerce, national security, subsistence, and recreation to:

- Reduce draft limitations to increase fuel transport capabilities to better satisfy fuel demand
- Support multiple maritime missions: cargo transportation, search and rescue, emergency and oil spill response, natural resource exploration.
- Support access to natural resources for subsistence purposes within Nome and the region
- Allow for sufficient development of upland facilities
- National Ecosystem Restoration (NER) benefits

Constraints:

- Max depth of existing harbor limited to 28' due to sheet pile wall
- Minimize adverse impacts to:
 - Threatened and endangered species and essential fish habitat
 - Cultural resources, food security, and access to natural resources

SCREENING CRITERIA FOR MEASURES

Criteria	Definition	Metric
Effectiveness	Does this measure work towards addressing at least one of the planning objectives? Does it meet ALL objectives? If so, it's a standalone alternative.	Y/N
Constructability	Can it be built from a technical standpoint given existing site conditions?	Y/N
Acceptability	Is it legal and does it meet policy/guidelines? May also consider political or social acceptability.	Y/N
Avoids Constraints	Does the measure avoid or minimize the impacts outlined in the planning constraints?	Y/N

STRUCTURAL MEASURES IDENTIFIED AND RETAINED

Inner Harbor

Deepen basin to -12' MLLW (due to existing sheet pile)

Outer Harbor

- Deepen basin (>22' MLLW with Max at -28' MLLW)
- Increase entrance width by modifying breakwater and / or causeway
- Add more dock space to causeway
- Salvage and relocate east breakwater aligned with F-Street
- Convert portion or all of east breakwater to a causeway with docks
- Increase small boat moorage opportunity

New Deep-Water Basin

- Extend causeway with dock(s) to deeper water
- Dredge deep-water basin (>28'MLLW), turning basin, and entrance channel as needed for design vessel
- Add marine header with pipeline to land-based storage

Dredged Material Disposal Options

- Beach nourishment east of Harbor as is current O&M Corps practice
- On-land use as recently done by the Port
- Off-shore zone can still be considered

NON-STRUCTURAL MEASURE IDENTIFIED

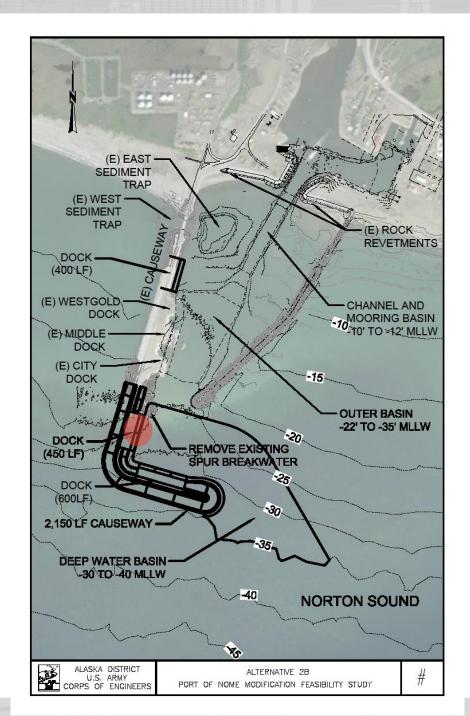
Measures	Retained	Screening Considerations
Creative navigation/mooring options	Ongoing	Best Practice Plan (BPP)
Prioritizing vessel operational needs	Ongoing	BPP
Vessel rafting	Ongoing	Attempting to reduce
Time constraints on dock access	Ongoing	Attempting to reduce
Usage of new areas for shore access	Ongoing	Attempting to reduce
Revision to PONSDP to address congestion/delays	Ongoing	BPP

SCREENING CRITERIA FOR ALTERNATIVES

Criteria	Definition	Metric
Completeness	Does the alternative meet all study objectives	Y/N
First Cost	Rough order of magnitude estimate	H/M/L
Maintenance Costs	Rough order of magnitude estimate	H/M/L
Acceptability	Is it socially acceptable and legal?	Y/N
Avoids Constraints	Does the measure avoid or minimize the impacts outlined in the planning constraints?	Y/N

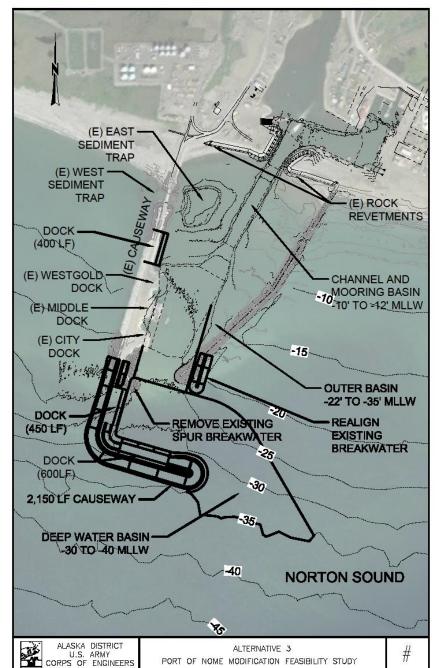
Note: Approximately 10 to 12 alternatives were developed during the charette. Various alternatives had common themes and measures.

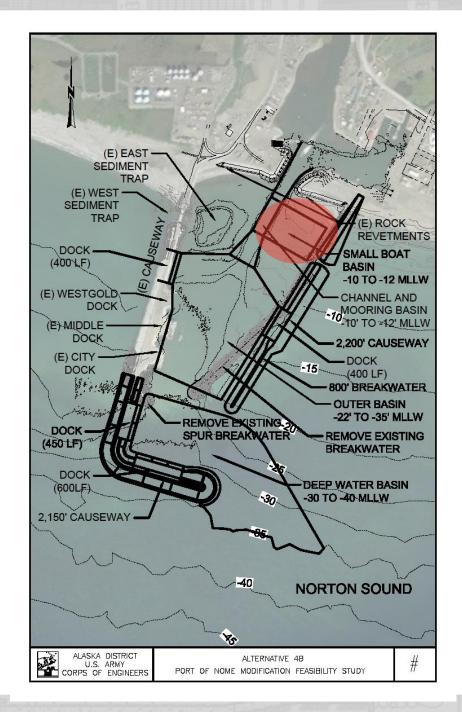
These initial alternatives were evaluated and grouped in to 7 alternatives for further evaluation. Of these, 3 have already been screened out as shown in the next slide.

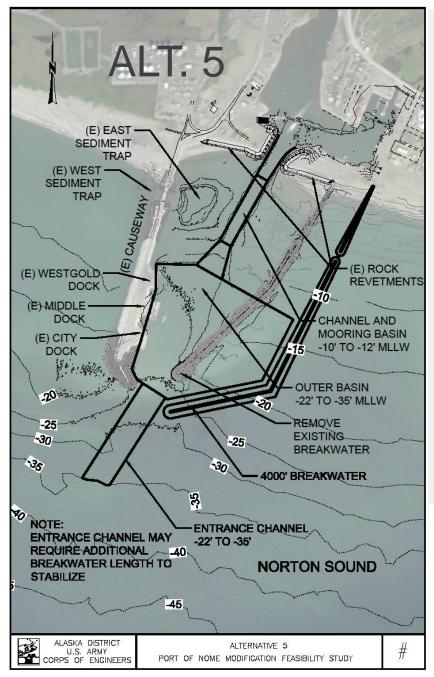

ALTERNATIVES SCREENING

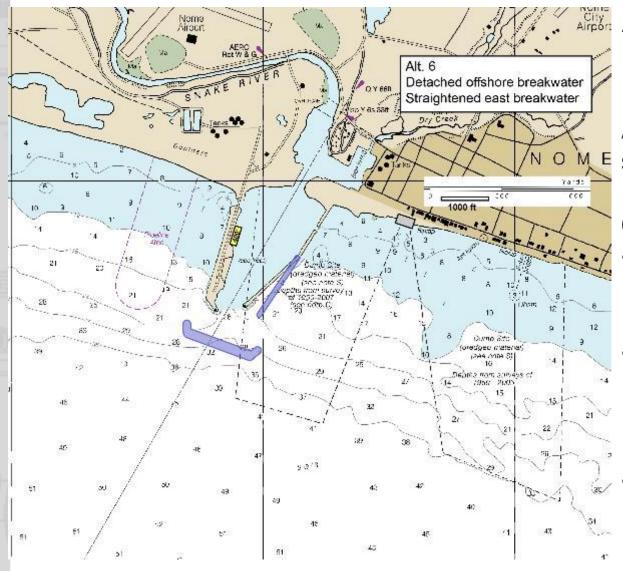
Alternatives	Carried Forward	Comments / Screening Considerations
Alt.1: No Action	Yes	Evaluated further in order to inform the FWOP condition.
Alts. 2: "L" Shaped Causeway Extension with Dock(s)	No	These alternatives are screened out because they do not increase the entrance width to the existing Outer Harbor
Alt. 3: "L" Shaped Causeway Extension with Increased Harbor Entrance Width	Yes	Same as Alts 2 but with Main Breakwater end modified to increase width of Outer Harbor entrance which has been identified as navigation concern
Alts. 4: Same as Alts 2 except: Portion of breakwater converted to causeway	Yes	Main difference is amount of breakwater converted to causeway
Alt. 5: Relocate Main Breakwater to east to create larger and deeper Outer Harbor	No	Current concept does not protect harbor entrance from waves and there is a high cost to salvage the existing breakwater. Bedrock may be encountered, and infilling of channel and basin likely excessive
Alt. 6: Detached Breakwater across Outer Harbor Entrance in Deepwater	No	High cost to construct in deep water, creates entrance navigation challenge, and does not meet most objectives
Alt. 7: Same as Alt. 5 except; Extend Causeway to deep water.	Yes	Shape of Causeway extension can be straight or an "L". Relocate east breakwater from Alt 5 can be a optimization.

Note: All alternatives include increasing dredge depths to some degree and creating a deep water basin.







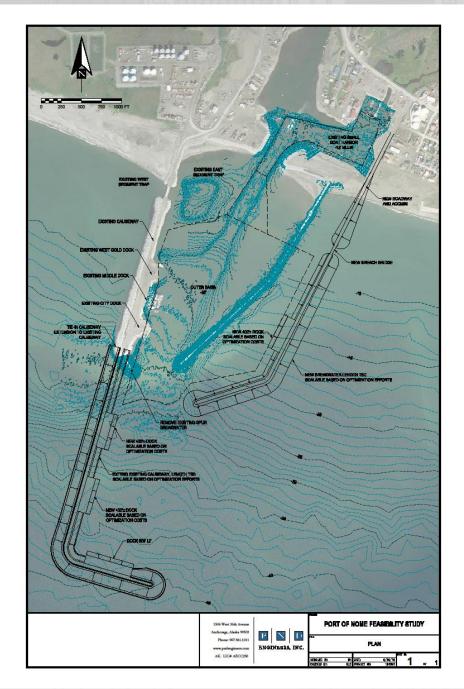


Early PDT comments suggest this alternative will be screened out before TSP.

- Current concept does not protect harbor entrance from waves
- There is a high cost to salvage the existing breakwater.
- Bedrock, if encountered, may increase dredge cost.
- O&M Dredging frequency maybe excessive
- Current docks would have to be reconstructed for dredge depths greater than -28 ft MLLW

Alrport ALT. 6

Detached Breakwater Alternative already screened out by PDT.


Concerns:

- Complicates

 navigation in and out
 of Outer Harbor
- Deep draft fuel tankers will still need to lighter or underwater pipeline constructed
- High cost to construct without meeting objectives

Entrance Channel Length @ -50' MLLW= 2,000' Length @ -55' MLLW= 5,200' Length @ -60' MLLW= 9,400 O&M dredging frequency could be cost prohibitive due to expected infilling rates

ALT. 7 ENTRANCE CHANNEL CONCEPT

Shows approximate entrance channel plan view depending on design vessel draft

LARGER OFFSHORE TANKER VESSEL

PATH FORWARD

- TSP Select a the best alternative for the study (Tentatively Selected Plan) based on Economic, CE/ICA, Environmental, and Hydrological data
- Finish coordination with State, Federal, Tribal, and Public entities
- Send feasibility study out for public comment (Jan-Feb 2019)

PATH TO TSP: DATA COLLECTION

FY18 Summer

- Update Bathymetry
- Determine Design Vessel calculate potential dredge depths/volumes
- Environmental Studies bottom substrate surveys
- Real Estate Plan Development

FY19 Winter/Spring

- Ship Simulation of Alternatives determine what alternatives will require tug-assist
- Plan Optimization

FY19 Summer

- Environmental Surveys Fish / Crab surveys
- Plan Optimization

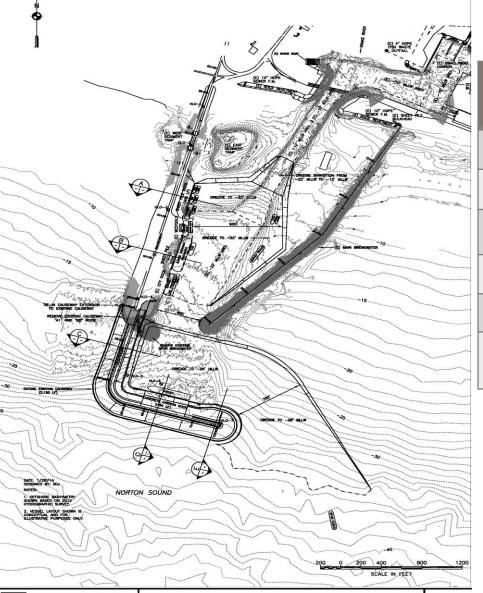
FY19 Fall / Winter Data Reduction/Analysis

- Alternative Evaluation
- Cost Engineering / Cost Risk Analysis

PATH TO TSP: ECONOMICS

NED Analysis Needs

- Commodity and Fleet
 - Analysis of historical data
 - Establish a baseline for forecasting
 - Develop commodity and fleet forecasts


If HarborSym analysis yields sufficient benefits:

- Port-specific data on small vessel damages via focus group collection
- Spreadsheet model will be developed to quantify additional benefits

If HarborSym analysis does not yield sufficient benefits:

- Evaluate need for port-specific data/focus group
- Forego spreadsheet model
- Begin Cost Effectiveness/Incremental Cost Analysis (CE/ICA) for Remote and Subsistence justification

PREVIOUS STUDY ROM COSTS & BENEFITS

PORT OF NOME ALTERNATIVE 1A

ALASKA DEEP DRAFT ARCTIC PORT FEASIBILITY STUDY

Scenario Name	20	015 Base Case
Present Value Benefits	\$	29,280,000
Average Annual Benefits	\$	1,220,000
Present Value Costs	\$	242,558,000
Average Annual Costs*	\$	10,109,000
Benefit to Cost Ratio		0.12
Net Annual NED Benefits	\$	(8,889,000)

Numbers were taken from 2015 Arctic Deep Draft Ports Study

*Recommended Plan for Nome Harbor Modification

FY15 Federal Discount Rate = 3.375%

1A-

ECONOMIC ANALYSIS SO FAR

- Data show:
 - The frequency of offshore anchoring has increased
 - The size of those vessels anchoring is increasing
- Current Analysis indicate similar NED benefits to previous study
 - Conducting HarborSym
 - Going to conduct CE/ICA analysis to determine regional viability

PATH TO TSP: ENVIRONMENTAL & CULTURAL RESOURCES

- Continued coordination with agencies
 - NMFS, USFWS, ADFG, SHPO
 - If certain alternatives appear likely, begin Memorandum of Agreement (MOA) coordination for cultural resources
- 11 July met with NMFS Habitat to identify data gaps, potential dredge disposal location, and project impacts on fish/crab habitat.
- An EA is anticipated. Coordination will clarify if any thresholds are met for an EIS prior to TSP

ENVIRONMENTAL DATA GAPS / CONCERNS

- Volume and composition of seabed material to be dredged, and ultimate dredged material placement.
 (e.g., will the beach nourishment site be adequate for construction needs, and will the dredged material be amenable to hydraulic transport?)
- Existing conditions of nearshore marine environment. Gold-dredging, subsistence crabbing, and possible crab nursery compete with project use of <40-ft MLLW zone, but little is known about this area.
- Benthic environment in offshore disposal areas.
 Much additional data needed if new MPRSA site must be opened.

PROJECT CHALLENGES/ISSUES

- •Federal project may be justified with non-NED benefits as outlined in Section 2006 of WRDA '07 and Section 2105 of WRRDA '14.
- CE/ICA metric determination
 - Definition of Region
- Design vessel and associated project dredge depths
- Bedrock depth potentially shallow enough in Outer Harbor to limit conversion to a deep draft basin
- •24-month schedule is assertive

LOW

- Moratorium on benthic trawling in region
- Moratorium on commercial fishery in high Arctic (not in region)
- Ship simulation IDs no need for tug
- Changes in Arctic traffic or oil industry activities

HIGH / INSTRUMENTAL

- 24-month schedule is assertive
- Bedrock depth potentially shallow enough in Outer Harbor to limit conversion to a deep draft basin

MEDIUM

- Discovery of human remains or subterranean features
- Disposal location/method
- No site-specific geotechnical data for new main breakwater alignment
- Geotechnical investigation in PED results in unexpectedly high dredge costs

RISK ITEMS

QUESTIONS?

Jenipher Cate, Project Manager Alaska District U.S. Army Corps of Engineers

USACE PLANNING ASSOCIATES PROGRAM DEEP DRAFT NAVIGATION ECONOMICS

HarborSym Corporate Model

A discrete event Monte-Carlo simulation model designed to facilitate economic analyses of proposed navigation improvement projects in coastal harbors.

Capabilities:

- Calculates vessel transiting time in harbor
- Captures inefficient delay times
- Calculates transportation cost from prior/next port and overseas distance
- Incorporates risk and uncertainty

