

NOTICE OF THE PLANNING COMMITTEE/SPECIAL MEETING OF THE BOARD OF DIRECTORS

Tuesday, October 28, 2025 at 9:30 AM

AGENDA

LOCATIONS:

Open Session to start at or after 9:30 a.m.

Marin Water Board Room – 220 Nellen Avenue, Corte Madera, CA 94925

Public Participation:

The public may attend this meeting in-person or remotely using the following methods:

On a computer or smart device, go to: https://marinwater.zoom.us/j/86822995553

By phone, dial: 1-669-444-9171 and use Webinar ID: 868 2299 5553

HOW TO PROVIDE PUBLIC COMMENT:

During the Meeting: Typically, you will have 3 minutes to make your public comment, however, the chair may shorten the amount of time for public comment due to a large number of attendees. Furthermore, pursuant to Government Code, section 54954.2 (the Brown Act), the Board may not take action or discuss any item that does not appear on the agenda.

- -- In-Person Attendee: Fill out a speaker card and provide to the board secretary. List the number/letter (ex: 6a) of the agenda item(s), for which you would like to provide a comment. Once you're called, proceed to the lectern to make your comment.
- -- Remote Attendee: Use the "raise hand" button on the bottom of the Zoom screen. If you are joining by phone and would like to comment, press *9. The board secretary will use the last four digits of your phone number to call on you (dial *6 to mute/unmute).

In Advance of the Meeting: Submit your comments by email in advance of the meeting to boardcomment@marinwater.org. To ensure that your comment is provided to the Board of Directors prior to the meeting, please email your comment 24 hours in advance of the meeting start time. Comments received after this cut off time will be sent to the Board after the meeting. Please do not include personal information in your comment such as phone numbers and home addresses.

AGENDA ITEMS:

- 1. Call to Order and Roll Call
- 2. Adoption of Agenda

3. Public Comment on Non-Agenda Matters

This is the time when any person may address the Board of Directors on matters not listed on this agenda, but which are within the subject matter jurisdiction of the Board.

- **4.** Regular Items (9:35 a.m. Time Approximate)
 - <u>a.</u> Minutes of the Planning Committee Meeting/Special Meeting of the Board of Directors on September 23, 2025

RECOMMENDATION: Accept the minutes

 Capital Improvement Program - Kastania Pump Station Phase 2 Rehabilitation Project (D21027)

RECOMMENDATION: Review and comment on the Kastania Pump Station Phase 2 Rehabilitation Project

5. Public Hearing Item

a. 2025 Public Health Goals Triennial Report

RECOMMENDATION: Conduct public hearing to review and comment on the Public Health Goal Report

6. Upcoming Meeting

The next Planning Committee Meeting/Special Meeting of the Board of Directors is scheduled for Thursday, November 13, 2025.

7. Adjournment (10:30 a.m. – Time Approximate)

ADA NOTICE AND HEARING-IMPAIRED PROVISIONS

In accordance with the Americans with Disabilities Act (ADA) and California Law, it is Marin Water's policy to offer its public programs, services, and meetings in a manner that is readily accessible to everyone, including those with disabilities. If you are an individual with a disability and require a copy of a public hearing notice, an agenda, and/or agenda packet in an appropriate alternative format, or if you require other accommodations, please contact the Board Secretary/ADA Coordinator at 415.945.1448, at least two business days in advance of the meeting. Advance notification will enable Marin Water to make reasonable arrangements to ensure accessibility.

Information agendas are available for review at the Civic Center Library, Corte Madera Library, Fairfax Library, Mill Valley Library, Marin Water Administration Building, and <u>marinwater.orq</u>.

Posted: 10-24-2025

Section 4. Item #a.

STAFF REPORT

Meeting Type: Planning Committee/Board of Directors

Title: Minutes of the Planning Committee Meeting/Special Meeting of the Board of

Directors on September 23, 2025

From: Terrie Gillen, Board Secretary

Through: Ben Horenstein, General Manager

Meeting Date: October 28, 2025

TYPE OF ITEM: X Approve Review and Comment

RECOMMENDATION: Accept the minutes

SUMMARY: There was a Planning Committee Meeting/Special Meeting of the Board of Directors on

September 23, 2025. Staff is requesting that the minutes from that meeting be accepted.

DISCUSSION: None.

ENVIRONMENTAL REVIEW: Not applicable.

FISCAL IMPACT: None.

ATTACHMENT(S):

1. Draft September 23, 2025 Minutes of the Planning Committee Meeting/Special Meeting of the Board of Directors

DEPARTMENT OR DIVISION	DIVISION MANAGER	APPROVED
Communications & Public Affairs Department	Sui Fillen	De Harende n
	Terrie Gillen	Ben Horenstein
	Board Secretary	General Manager

Attachment 1

NOTICE OF THE PLANNING COMMITTEE/SPECIAL MEETING OF THE BOARD OF DIRECTORS

Tuesday, September 23, 2025 at 9:30 AM

MINUTES

LOCATIONS:

Open Session to start at or after 9:30 a.m.

Marin Water Board Room – 220 Nellen Avenue, Corte Madera, CA 94925

Public Participation:

The public attended this meeting in-person or remotely using the following methods: on a computer or smart device, https://marinwater.zoom.us/j/86822995553, or by phone, 1-669-444-9171 using Webinar ID #: 868 2299 5553.

AGENDA ITEMS:

1. Call to Order and Roll Call

Chair Russell called the meeting to order at 9:30 a.m.

DIRECTORS PRESENT

Matt Samson

Jed Smith

Ranjiv Khush

Larry Russell

DIRECTOR ABSENT

Diana Maier

2. Adoption of Agenda

Director Smith made the motion to adopt the agenda. Vice Chair Khush seconded the motion.

There were no public comments.

Voting Yea: Directors Samson, Smith, Khush, and Russell

3. Public Comment on Non-Agenda Matters

There were no public comments.

4. Regular Items

a. Minutes of the Planning Committee Meeting on August 26, 2025

RECOMMENDATION: Accept the minutes

Director Smith made the motion to accept the minutes. Director Samson seconded the motion.

There were no public comments.

Voting Yea: Director Samson, Smith, Khush, and Russell

b. Renewal of Geographic Information System (GIS) Enterprise License Agreement

RECOMMENDATION: Review and comment on the proposed Geographic Information System (GIS) Enterprise License Renewal

Finance Director Bret Uppendahl and Information Systems Analyst III Mariette Shin presented this item.

Discussion ensued

There were no public comments.

c. Bon Tempe Water Treatment Plant - Backwash Valves Replacement Project (D23008)

RECOMMENDATION: Review and comment on the proposed contract award for the Bon Tempe Treatment Plant - Backwash Valves Replacement Project

Engineering Design Manager Zak Talbott and Assistant Engineer Ava Pridgeon presented this item.

Discussion followed.

There were no public comments.

d. Water Efficiency Master Plan Year in Review

RECOMMENDATION: Review and comment on the Water Efficiency Master Plan Year in Review

Section 4. Item #a.

Water Resources Director Paul Sellier and Water Efficiency Manager Carrie Pollard presented this item.

Discussion between the directors and staff occurred throughout the presentation.

There were three (3) public comments.

e. Roads and Trails On-Call Maintenance Contract (CN-2057), FY26-28

RECOMMENDATION: Review and comment on the Roads and Trails On-Call Maintenance Contract (CN-2057), FY26-28

Watershed Resources Director Shaun Horne and Environmental Planner Carly Blanchard presented this item.

Discussion followed.

There were no public comments.

5. Upcoming Meeting

Chair Russell announced that the next Planning Committee Meeting/Special Meeting of the Board of Directors will take place on Tuesday, October 28, 2025.

6. Adjournment

There being no further business, the Planning Committee Meeting/Special Meeting of the Board of Directors adjourned at 10:51 a.m.

Board Secretary	

Section 4. Item #b.

STAFF REPORT

Meeting Type: Planning Committee/Board of Directors

Title: Capital Improvement Program - Kastania Pump Station Phase 2 Rehabilitation

Project (D21027)

From: Alex Anaya, Director of Engineering

Through: Ben Horenstein, General Manager

Meeting Date: October 28, 2025

TYPE OF ITEM: Approve X Review and Comment

RECOMMENDATION: Review and comment on the Kastania Pump Station Phase 2 Rehabilitation

Project

SUMMARY: The Kastania Pump Station Phase 2 Rehabilitation Project will install a new pump and motor at Kastania Pump Station and a new pressure relief valve and discharge tank at Ignacio Pump Station. On November 18th, the District will open construction bids for the project. District Staff will make a recommendation for project approval and contract award at a future regularly scheduled Board meeting.

DISCUSSION: The District supplies water to approximately 191,000 people throughout central and southern Marin County. Approximately 75 percent of the District's water supply comes from seven reservoirs within the Mount Tamalpais Watershed and in west Marin, and about 25 percent of the water supply is imported from the Sonoma County Water Agency (Sonoma Water) via the North Marin Aqueduct.

The Kastania Pump Station, located in Petaluma California, was built by the District in 1977 to increase flow and pressure in the North Marin Aqueduct and to offset the hydraulic impact of increased consumption of imported water by Petaluma and the North Marin Water District.

In 2004, the California Department of Transportation began planning its Marin-Sonoma Narrows US 101 highway-widening project (CalTrans MSN Project), which required the relocation of portions of the North Marin Aqueduct. This led to the development of North Marin Water District's Aqueduct Energy Efficiency Project (AEEP). The AEEP included installation of a new larger pipeline that would bypass the Kastania Pump Station and allow gravity flow to meet current demand. Upon completion of the AEEP in August 2015, the Kastania Pump Station was decommissioned.

In 2020 and 2021, Marin County and much of California faced an exceptional drought, and after two successive dry winters with significantly below average rainfall, District reservoir storage volumes were at historically low levels. In response to the emergency drought conditions in Marin County, the District pursued to rehabilitate and recommission the pump station. This booster pump station along the North Marin Aqueduct provides operational flexibility for the District to meet its imported water supply needs when they cannot be met by gravity flow through the North Marin Aqueduct.

In order to get the pump station in operation as expeditiously as possible, the District pursued rehabilitating and recommissioning the Kastania Pump Station with a two-phase approach. The first phase of the project was completed in 2021 and installed new yard piping to reconnect the Kastania Pump Station back to the North Marin Aqueduct. After piping was installed the District started and recommissioned the pump station.

In August 2023, the District began the design of the second phase of the Kastania Pump Station Phase 2 Rehabilitation Project. The scope of this phase of the project included an extensive rehabilitation of the pump station including the installation of a new electrical motor control center, variable frequency drives, pumps, motors, roof, pump station site drainage improvements and the addition of a new pressure relief valve and tank. The objective of this project was to enhance transmission system reliability.

Occurring simultaneously to the Kastania Pump Station Phase 2 design, the District was evaluating larger water storage and conveyance alternatives, and the Board selected the water conveyance Atmospheric River Capture Project as the preferred water supply alternative and directed staff to advance this project into design and environmental review. During the review of the Atmospheric River Capture Project, staff identified an opportunity to modify the Kastania Pump Station Phase 2 design to avoid investing in a pump station that would not fully serve the proposed Atmospheric River Capture Project in the future.

At the April 22, 2025 Planning Meeting, staff presented a scaled down scope of work of the Kastania Pump Station Phase 2 Project, which would allow the District to operate the first phase of the proposed Atmospheric River Capture Project, without making a costly investment at the Kastania Pump station that could require upsizing and full reconstruction in the future.

The scaled down Kastania Pump Station Phase 2 Project (Project) will install a single, new high efficiency pump and motor and new drainage features at Kastania Pump Station. The project will also install a new 16" pressure relief valve and 8,000 gallon pressure relief discharge tank at Ignacio Treatment Plant.

This Project will enhance transmission system reliability. The proposed project will increase the maximum flow rate from the existing 17.5 million gallons per day (MGD) via gravity up to 24 MGD with the use of the pump station. The District will continue to operate the system within contractual limits pursuant to the recently approved agreement with Sonoma Water, as well as its existing transmission agreement with the North Marin Water District. The Project's selected upgrades with new, modern equipment will increase the operational efficiency at Kastania Pump Station. The installation of the pressure relief valve at Ignacio Treatment Plant will protect both Ignacio Treatment Plant and the North Marin Aqueduct from high pressure surge during unplanned power failure events.

Budget:

Engineer's Estimate: \$ 2,100,000
Contingency (10%): \$ 210,000
Materials/Prof. Fees \$ 587,077
District Labor/Inspection: \$ 550,000
Total Budget: \$ 3,447,077
Budget Category: A1A07

Project Implementation Schedule:

Project Advertisement:

Bid Opening:

Project Award:

Estimated Completion Date:

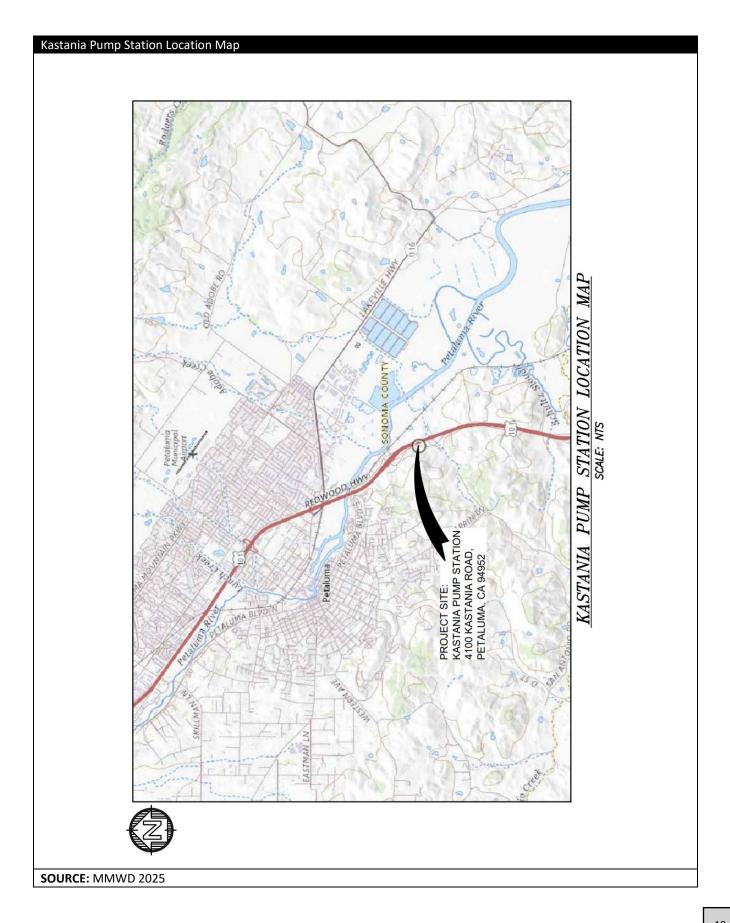
October 14, 2025

November 18, 2025

December 9, 2025

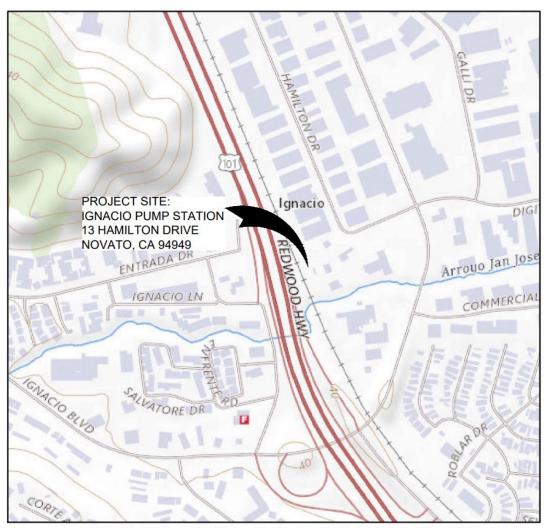
April 1, 2027

Duration: 478 days


District staff intend to make a recommendation for consideration of project approval and contract award for this item at a future regularly scheduled Board meeting.

ENVIRONMENTAL REVIEW: Consistent with prior environmental analysis of the Kastania Pump Station Rehabilitation Phase 1 Project, the Director of Engineering has found that the Project is Categorically Exempt pursuant to California Environmental Quality Act (CEQA) Guideline Sections 15301, Existing facilities. The project would also qualify for exemption pursuant to CEQA Guidelines 15302(c), Replacement or Reconstruction. The project qualifies for exemptions pursuant to Sections 15301 and 15302 (c) inasmuch as it includes the installing new equipment involving negligible or no expansion of capacity, as even with project enhancements total Sonoma Water usage is generally anticipated to remain consistent within historical and contractual limitations. Furthermore, no exceptions set forth in Section 15300.2 were found to be applicable.

FISCAL IMPACT: The total cost to complete the Kastania Pump Station Phase 2 Rehabilitation Project is estimated at \$3,447,077, inclusive of District Labor, professional fees, materials and contingency.


ATTACHMENT(S):

1. Site Map

Ignacio Pump Station Map

IGNACIO PUMP STATION LOCATION MAP
SCALE: NTS

SOURCE: MMWD 2025

Section 5. Item #a.

STAFF REPORT

Meeting Type: Planning Committee/Board of Directors

Title: 2025 Public Health Goals Triennial Report

From: Paul Sellier, Director of Water Resources

Through: Ben Horenstein, General Manager

Meeting Date: October 28, 2025

X)

TYPE OF ITEM: Approve X Review and Comment

RECOMMENDATION: Conduct public hearing to review and comment on the Public Health Goal

Report

SUMMARY: Over the past three years, Marin Municipal Water District's drinking water has continued to meet or exceed all state and federal drinking water health standards. The Public Health Goals Report, published every three years, is a brief, written report in plain language that gives information on the detection of any contaminants above the Public Health Goals (PHGs) published by the California's Office of Environmental Health Hazard Assessment (OEHHA). The report must also list the detection of any contaminant above the Maximum Contaminant Level Goals (MCLGs) set by United States Environmental Protection Agency (U.S. EPA) for all other contaminants until such time as OEHHA has published PHGs for those contaminants.

The Public Health Goals Report differs from the Annual Water Quality Report (also referred to as the Consumer Confidence Report), the latter of which summarizes regulatory drinking water standards established by the U.S. EPA and/or California State Water Resources Control Board (SWRCB). PHGs and MCLGs are not regulatory standards, they are distinct from enforceable regulations like Maximum Contaminant Levels (MCLs) because they are based solely on health risk and do not consider technological or economic feasibility. Hexavalent chromium and *E. coli* were detected at levels below the regulatory standard (MCL) but exceeded the PHG and/or MCLG.

DISCUSSION: The California Health and Safety Code Section 116470(b) requires public water utilities with more than 10,000 service connections to prepare a brief written report every three years if a regulated drinking water contaminant is detected with levels that exceed the Public Health Goal (PHG) or the Maximum Contaminant Level Goal (MCLG). Both PHGs and MCLGs are the level of a chemical contaminant in drinking water that does not pose a significant risk to health and are non-enforceable. PHGs and MCLGs are not regulatory standards, they are distinct from enforceable regulations like Maximum Contaminant Levels (MCLs) because they are based solely on health risk and do not consider technological or economic feasibility. The State Water Resources Control Board

(SWRCB) sets drinking water standards for contaminants as close to the corresponding PHG or NICLG as is economically and technologically feasible. In some cases, it may not be feasible for SWRCB to set the drinking water standard for a contaminant at the same level as the PHG because the technology to treat the contaminant may not be available, or the cost of treatment may be very high. The SWRCB must consider these factors when developing drinking water standards. PHGs are established by the California Environmental Protection Agency's Office of Environmental Health Hazard Assessment (OEHHA), and MCLGs are health-based goals adopted by the U.S. EPA. This report is unique to California, and only contaminants with established primary drinking water standards and a PHG and/or MCLG as of December 31, 2024 are addressed in this report.

Maximum Contaminant Levels (MCLs) are enforceable drinking water standards established by the United States Environmental Protection Agency (USEPA) and/or California State Water Resources Control Board (SWRCB) and are set at conservative levels to provide protection to consumers. MCLs are required to be set at levels as close to the corresponding PHGs as technically and economically feasible, with the primary focus on protection of public health. PHGs and MCLGs, unlike MCLs, do not take into account the practical risk-management factors, including analytical detection capability, treatment technology availability, benefits and cost.

The District last prepared a Public Health Goal Triennial Report in 2022 for the prior three-year period. The

2025 Public Health Goal Triennial Report covers contaminants detected in the District's water supply during the 3-year period of January 1, 2022 through December 31, 2024 where the detected level of a contaminant exceeded the corresponding PHG or MCLG.

E. coli

From 2022 through 2024, the District collected an average of 152 Total Coliform/*E.Coli* samples a month, with a total of 5,478 samples collected over the 3 year period. Of these, one sample tested positive for *E.coli*. Follow-up resampling was negative for *E.Coli*, and therefore did not exceed the regulatory Maximum Contaminant Level (MCL). It is likely that the sample was inadvertently contaminated during the sample collection process.

The MCL for *E.Coli* was not exceeded as the follow-up investigation and sampling did not confirm the initial positive result. Therefore, no violation of the MCL for *E.Coli* occurred. OEHHA does not have an established PHG for *E.Coli*. The MCLG for *E.Coli* is zero (0). Exceeding zero *E.Coli* bacterial one time in the three-year period does not indicate the need for changes in the treatment process or other corrective action as there can be an occasional positive due to sampling or analytical error.

The District has already implemented Best Available Technology as outlined in California Code of Regulations Title 22, Section 64447 to achieve compliance with the *E.Coli* MCL. These practices include disinfection and filtration of source water, maintenance of disinfectant residual throughout the distribution system, and maintenance of the distribution system, such as pipe replacement and repairs, flushing the distribution system, having a cross-connection program and maintaining positive pressure in the distribution system.

Hexavalent Chromium

Hexavalent chromium is a heavy metal that is found naturally occurring throughout the environment in rocks, plants, soil, and volcanic dust, and the major sources of hexavalent chromium in drinking water are erosion of natural deposits, transformation of naturally occurring trivalent chromium by natural processes and human activities such as discharges from electroplating factories, leather tanneries, wood preservation, chemical synthesis, and textile manufacturing factories. The MCL for hexavalent chromium is 10 micrograms per liter (ug/L) and went into effect in California on October 1, 2024. The PHG for hexavalent chromium in drinking water is set at 0.02 ug/L. The category of health risk for hexavalent chromium is carcinogenic. Carcinogenic risk means capable of producing cancer. Cancer risk at the PHG level is one excess cancer case per million population and, at the California MCL, is five excess cancer cases per ten thousand population, where the water is consumed daily for 70 years.

During the calendar years 2022 through 2024, the District collected annual compliance samples at the San Geronimo Treatment Plant (SGTP) Clearwell Effluent (CWE), Bon Tempe Treatment Plant (BTTP) CWE, and Ignacio Pump Station, which are considered entry points to the distribution system. A summary of hexavalent chromium results is shown in Table 1. Hexavalent chromium values for SGTP ranged from 0.15 to 0.41 ug/L. Values for BTTP ranged from 0.13 to 0.18 ug/L. Hexavalent chromium values for Ignacio Pump Station ranged from 0.38 to 0.5 ug/L.

Table 1: Summary of Hexavalent Chromium Detected

Sample Location	PHG (ug/L)	MCL (ug/L)	DLR (ug/L)	Detected	Average
				Range (ug/L)	Detected
					Value (ug/L)
San Geronimo	0.02	10	0.1	0.15 - 0.41	0.3
Treatment Plant					
Bon Tempe	0.02	10	0.1	0.13 - 0.18	0.16
Treatment Plant					
Ignacio Pump Station	0.02	10	0.1	0.38 - 0.5	0.42

DLR: Detection Limit for purposes of Reporting

The Best Available Technology (BAT) for removal of hexavalent chromium to levels at or below the MCL of 10 ug/L are reduction/coagulation/filtration, ion exchange, and reverse osmosis. For hexavalent chromium, the BAT is demonstrated to reduce the level to below the MCL, not the PHG. Verifying additional reduction (lower than the detection limit) is not possible, therefore, cost estimates would be highly speculative and possibly misleading. No changes to the treatment process are planned.

Summary

The District's drinking water quality meets all federal and state drinking water standard. The levels of constituents identified in this report are significantly below the MCLs established by EPA to provide safe drinking water.

Section 5. Item #a.

ENVIRONMENTAL REVIEW: Not applicable.

FISCAL IMPACT: None.

ATTACHMENT(S):

1. Table of MCLs, DLRs, and PHGs for Regulated Drinking Water Contaminants (ACWA 2025/SWRCB, November 2024)

MCLs, DLRs, and PHGs for Regulated Drinking Water Contaminants

Last Update: November 2024

This table includes:

- California's maximum contaminant levels (MCLs)
- Detection limits for purposes of reporting (DLRs)
- Public health goals (PHGs) from the Office of Environmental Health Hazard Assessment (OEHHA)
- The PHGs for NDMA, PFOA and PFOS (which are not yet regulated in California) are included at the bottom
 of this table.
- The Federal MCLs for PFOA and PFOS are also listed at the end of this table.

Units are in milligrams per liter (mg/L), unless otherwise noted.

Chemicals with MCLs in 22 CCR §64431 – Inorganic Chemicals

Regulated Contaminant	MCL	DLR	PHG	Date of PHG
Aluminum	1	0.05	0.6	2001
Antimony	0.006	0.006	0.001	2016
Arsenic	0.010	0.002	0.000004	2004
Asbestos (MFL = million fibers per liter; for fibers >10 microns long)	7 MFL	0.2 MFL	7 MFL	2003
Barium	1	0.1	2	2003
Beryllium	0.004	0.001	0.001	2003
Cadmium	0.005	0.001	0.00004	2006
Chromium, Total	0.05	0.01	withdrawn Nov. 2001	1999
Chromium, Hexavalent	0.01	0.0001	0.00002	2011
Cyanide	0.15	0.1	0.15	1997
Fluoride	2	0.1	1	1997
Mercury (inorganic)	0.002	0.001	0.0012	1999 (rev2005)*
Nickel	0.1	0.01	0.012	2001
Nitrate (as nitrogen, N)	10 as N	0.4	45 as NO3 (=10 as N)	2018
Nitrite (as N)	1 as N	0.4	1 as N	2018
Nitrate + Nitrite (as N)	10 as N		10 as N	2018
Perchlorate	0.006	0.004	0.001	2015
Selenium	0.05	0.005	0.03	2010
Thallium	0.002	0.001	0.0001	1999 (rev2004)

 $[\]star$ OEHHA's review of this chemical during the year indicated (rev20XX) resulted in nochange in the PHG.

Radionuclides with MCLs in 22 CCR §64441 and §64443 - Radioactivity

Units are picocuries per liter (pCi/L), unless otherwise stated; n/a = not applicable

Regulated Contaminant	MCL	DLR	PHG	Date of PHG
Gross alpha particle activity - OEHHA concluded in 2003 that a PHG was notpractical	15	3	none	n/a
Gross beta particle activity - OEHHA concluded in 2003 that a PHG was notpractical	4 mrem/yr	4	none	n/a
Radium-226		1	0.05	2006
Radium-228		1	0.019	2006
Radium-226 + Radium-228	5			
Strontium-90	8	2	0.35	2006
Tritium	20,000	1,000	400	2006
Uranium	20	1	0.43	2001

Chemicals with MCLs in 22 CCR §64444 - Organic Chemicals

(a) Volatile Organic Chemicals (VOCs)

Regulated Contaminant	MCL	DLR	PHG	Date of PHG
Benzene	0.001	0.0005	0.00015	2001
Carbon tetrachloride	0.0005	0.0005	0.0001	2000
1,2-Dichlorobenzene	0.6	0.0005	0.6	1997 (rev2009)
1,4-Dichlorobenzene (p-DCB)	0.005	0.0005	0.006	1997
1,1-Dichloroethane (1,1-DCA)	0.005	0.0005	0.003	2003
1,2-Dichloroethane (1,2-DCA)	0.0005	0.0005	0.0004	1999 (rev2005)
1,1-Dichloroethylene (1,1-DCE)	0.006	0.0005	0.01	1999
Cis-1,2-Dichloroethylene	0.006	0.0005	0.013	2018
Trans-1,2-Dichloroethylene	0.01	0.0005	0.05	2018
Dichloromethane (Methylene chloride)	0.005	0.0005	0.004	2000
1,2-Dichloropropane	0.005	0.0005	0.0005	1999
1,3-Dichloropropene	0.0005	0.0005	0.0002	1999 (rev2006)
Ethylbenzene	0.3	0.0005	0.3	1997
Methyl tertiary butyl ether (MTBE)	0.013	0.003	0.013	1999
Monochlorobenzene	0.07	0.0005	0.07	2014
Styrene	0.1	0.0005	0.0005	2010
1,1,2,2-Tetrachloroethane	0.001	0.0005	0.0001	2003
Tetrachloroethylene (PCE)	0.005	0.0005	0.00006	2001
Toluene	0.15	0.0005	0.15	1999
1,2,4-Trichlorobenzene	0.005	0.0005	0.005	1999
1,1,1-Trichloroethane (1,1,1-TCA)	0.2	0.0005	1	2006
1,1,2-Trichloroethane (1,1,2-TCA)	0.005	0.0005	0.0003	2006
Trichloroethylene (TCE)	0.005	0.0005	0.0017	2009
Trichlorofluoromethane (Freon 11)	0.15	0.005	1.3	2014
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	1.2	0.01	4	1997 (rev2011)
Vinyl chloride	0.0005	0.0005	0.00005	2000
Xylenes	1.75	0.0005	1.8	1997

(b) Non-Volatile Synthetic Organic Chemicals (SOCs)

Regulated Contaminant	MCL	DLR	PHG	Date of PHG
Alachlor	0.002	0.001	0.004	1997
Atrazine	0.001	0.0005	0.00015	1999
Bentazon	0.018	0.002	0.2	1999 (rev2009)
Benzo(a)pyrene	0.0002	0.0001	0.000007	2010
Carbofuran	0.018	0.005	0.0007	2016
Chlordane	0.0001	0.0001	0.00003	1997 (rev2006)
Dalapon	0.2	0.01	0.79	1997 (rev2009)
1,2-Dibromo-3-chloropropane (DBCP)	0.0002	0.00001	0.000003	2020
2,4-Dichlorophenoxyacetic acid (2,4-D)	0.07	0.01	0.02	2009
Di(2-ethylhexyl) adipate	0.4	0.005	0.2	2003
Di(2-ethylhexyl) phthalate (DEHP)	0.004	0.003	0.012	1997
Dinoseb	0.007	0.002	0.014	1997 (rev2010)
Diquat	0.02	0.004	0.006	2016
Endothal	0.1	0.045	0.094	2014
Endrin	0.002	0.0001	0.0003	2016
Ethylene dibromide (EDB)	0.00005	0.00002	0.00001	2003
Glyphosate	0.7	0.025	0.9	2007
Heptachlor	0.00001	0.00001	0.000008	1999
Heptachlor epoxide	0.00001	0.00001	0.000006	1999
Hexachlorobenzene	0.001	0.0005	0.00003	2003
Hexachlorocyclopentadiene	0.05	0.001	0.002	2014
Lindane	0.0002	0.0002	0.000032	1999 (rev2005)
Methoxychlor	0.03	0.01	0.00009	2010
Molinate	0.02	0.002	0.001	2008
Oxamyl	0.05	0.02	0.026	2009
Pentachlorophenol	0.001	0.0002	0.0003	2009
Picloram	0.5	0.001	0.166	2016
Polychlorinated biphenyls (PCBs)	0.0005	0.0005	0.00009	2007
Simazine	0.004	0.001	0.004	2001
Thiobencarb	0.07	0.001	0.042	2016
Toxaphene	0.003	0.001	0.00003	2003
1,2,3-Trichloropropane	0.000005	0.000005	0.000007	2009
2,3,7,8-TCDD (dioxin)	3x10 ⁻⁸	5x10 ⁻⁹	5x10 ⁻¹¹	2010
2,4,5-TP (Silvex)	0.05	0.001	0.003	2014

Copper and Lead, 22 CCR §64672.3

Values referred to as MCLs for lead and copper are not actually MCLs; instead, they are called "Action Levels" under the lead and copper rule

Regulated Contaminant	MCL	DLR	PHG	Date of PHG
Copper	1.3	0.05	0.3	2008
Lead	0.015	0.005	0.0002	2009

Chemicals with MCLs in 22 CCR §64533 – Disinfection Byproducts

Regulated Contaminant	MCL	DLR	PHG	Date of PHG
Total Trihalomethanes	0.080			
Bromodichloromethane		0.0010	0.00006	2020
Bromoform		0.0010	0.0005	2020
Chloroform		0.0010	0.0004	2020
Dibromochloromethane		0.0010	0.0001	2020
Haloacetic Acids (five) (HAA5)	0.060			
Monochloroacetic Acid		0.0020		
Dichloroacetic Adic		0.0010		
Trichloroacetic Acid		0.0010		
Monobromoacetic Acid		0.0010		
Dibromoacetic Acid		0.0010		
Bromate	0.010	0.0050**	0.0001	2009
Chlorite	1.0	0.020	0.05	2009

^{**}The DLR for Bromate is 0.0010 mg/L for analysis performed using EPA Method 317.0 Revision 2.0, 321.8, or 326.0.

Chemicals with PHGs established in response to DDW requests. These are not currently regulated drinking water contaminants.***

Regulated Contaminant	MCL	DLR	PHG	Date of PHG
N-Nitrosodimethylamine (NDMA)			0.000003	2006
Perfluorooctanoic acid (PFOA)***			0.00000007	2024
Perfluorooctane sulfonic acid (PFOS)***			0.000001	2024

^{***}PFOA and PFOS have US EPA MCLGs and MCLs.

PFOA - MCLG is zero. MCL is 4 ng/L

PFOS - MCLG is zero. MCL is 4 ng/L