Planning Board Agenda

The regular meeting of the Livingston Planning Board is scheduled for August 16, 2023 at 5:30 PM in the Community Room of the City/County Building at 414 E. Callender Street. The meeting will be facilitated by Chair Stacy Jovick.

A virtual option will also be available: Join Zoom Meeting https://us02web.zoom.us/j/88152553941?pwd=MXBQaEZwYW9HOU9ZZGZGazNwa2tsZz09

Meeting ID: 881 5255 3941 Passcode: 906560 Call in: (669) 900-9128

- 1. Call to Order
- 2. Roll Call
- **3.** Approval of Minutes A. Approve April 19, 2023 minutes

4. General Public Comments

New Business
 A. Public Hearing for Mountain View Subdivision

6. Old Business

- 7. Board Comments
- 8. Adjournment

File Attachments for Item:

A. APRIL 19, 2023 MEETING MINUTES

Planning Board Minutes

The regular meeting of the Livingston Planning Board was held April 19, 2023 at 5:30 PM in the Community Room of the City/County Building at 414 E. Callender Street. This meeting was facilitated by Chair Stacy Jovick.

1. Call to Order (5:37 pm)

2. Roll Call (recording 0:13 mins)

In attendance: Board Members Stacy Jovick, Torrey Lyons, Mija Hamilton; Taya Cromley, Jessie Wilcox and Shannon Holmes (via zoom); Staff: Jennifer Severson.

3. Approval of March 15, 2023 Minutes (0:53 mins)

- Motion to approve by Barrett; second by Hamilton (3:33 mins)
- Motion passes 8-0
- Jovick requested additional discussion details be included in minutes, not just listing speaker names.

4. General Public Comments

• None

5. New Business

- A. Review and Discussion of Draft PUD Ordinance (Informational; no action required) (3:14 mins)
- Severson requested Board feedback on draft ordinance details
- Board discussed: minimum lot size for PUD 1.0 acre? should this be set in the ordinance or should there be no minimum size and let the market determine whether or not a PUD is worth it to a developer? potential for the City to re-evaluate and change PUD ordinance in the future; suggested 0.5 acre PUD size in zoning districts that allow most intensive development (Highway Commercial, CBD, Mixed Use) but 1 acre minimum lot size for other districts where less intensive development is allowed under zoning code such as RII-Medium Residential; tie increased PUD density allowance/ bonus to density allowed in base zoning district instead of superseding base zoning; administrative burden to process PUDs on smaller lot sizes; infrastructure challenges to development on larger vacant parcels on outskirts of the city; residential-only PUDs vs. requirement for mixed use in all PUDs? Policy to require PUD Ordinance to come back before advisory boards and City Commission in 1 year to review

Planning Board Minutes

effectiveness/ what works/ what doesn't; developer incentives- density bonus; height bonus vs. viewshed impacts; reduced impact fees; deed restrictions for developer bonuses; Potential formulas for public benefit vs. incentives to developer; tying development bonuses to base zoning; purview of planning board vs. zoning commission review; utility infrastructure demands of new development; traffic impacts and studies; City of Livingston development standards; calculated PUD demands vs City infrastructure capacity; PUD phasing;

6. Old Business

• None

7. Board Comments (1:42:20 mins)

- Public Works Project List
- Jovick asked about possibility of Major City Subdivisions/ Names can be added to City Street Sweeping Map
- Next Planning Board Meeting will be May 17, 2023

8. Adjournment (7:23 pm)

File Attachments for Item:

A. PUBLIC HEARING FOR MOUNTAIN VIEW SUBDIVISION

STAFF REPORT Mountain View Subdivision

PROPOSAL SUMMARY

Livingston West, LLC, owner of the property described as Parcel 1A of Certificate of Survey No. 2748RB (see Development Plan in Figure 1 below), located on the west end of Livingston near the Highway 10 West on-ramp at Interstate 90, is proposing to divide the subject property into 24 lots. The property surrounds the Printing for Less and FedEx facilities.

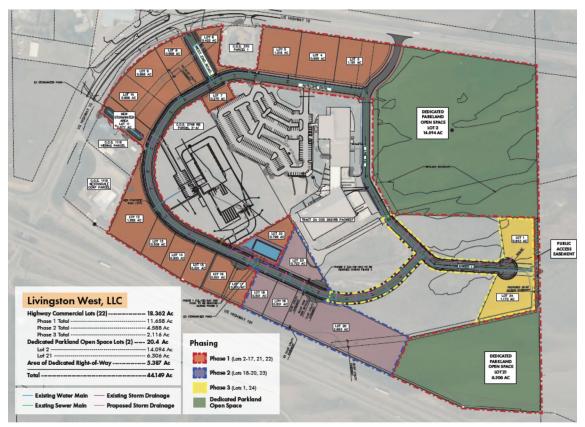


Figure 1. Development Plan

BACKGROUND

The subject property was annexed by the City of Livingston in 2004 and is zoned Highway Commercial. As defined in the Livingston Municipal Code Art II, Sec 30.30, the Highway Commercial zoning district is intended to provide areas for residential structures, commercial and service enterprises which serve the needs of the tourist, traveler, recreationalist or the general traveling public. Areas designated as Highway Commercial should be located in the vicinity of freeway interchanges, intersections on limited access highways, or adjacent to primary and secondary highways. The subject property is also located in an area designated as Community Commercial on the Future Land Use Map included in the 2021 Growth Policy (see Figure 2 below). Community Commercial land use designation accommodates medium to large scale wholesale, retail, lodging, offices, and service establishments typically located along major corridors that can function independent of adjoining development and/or require individual access to public rights-of-way.

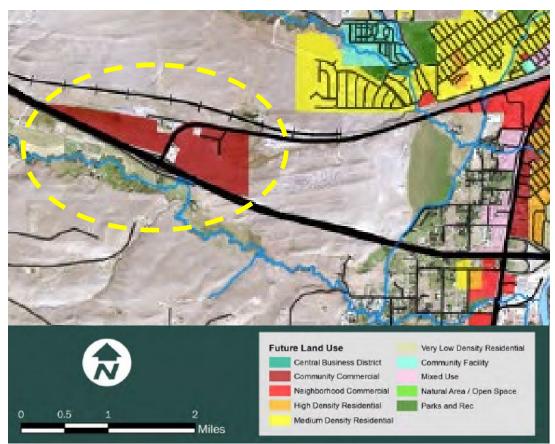


Figure 2. Future Land Use Map

REFERRAL AGENCY RESPONSES

Livingston Public Works- comments were provided about the following: additional costs to the City associated with the proposed subdivision; street improvements and temporary safety measures between phase development; erosion control; water and sewer connection requirements for each subdivided lot; ownership and maintenance responsibilities for new public facilities; and staff review of stormwater and street plans for phases 2 and 3. Recommendations were made for: a new sewer main near Kenyon Noble as recommended in the Wastewater Preliminary Engineering Report;

POA covenant revisions; a water and sewer easement across Lot 12 for future services to an adjacent parcel.

Livingston Fire and Rescue- no concerns; approve of the new line extensions for many of the hydrants shown on the plans.

Northwestern Energy- comments confirmed their ability to provide electric and natural gas services to the proposed subdivision and requested the applicant initiate contact to plan utility design and locates before finalizing lot development.

Montana State Historic Preservation Office (SHPO)- comments confirmed the absence of previously recorded cultural resource sites within the designated area and, provided there is no disturbance to structures over 50 years of age, there is a low likelihood cultural resources will be impacted by the proposed subdivision and a cultural resource inventory is unwarranted at this time.

No Concerns- Livingston Building and Police Departments

No Responses to Developer Inquiry Received- MT Fish, Wildlife and Parks; MT Department of Transportation; Windrider Transit; Park Electric Cooperative; Lumen; and the US Postal Service

FINDINGS OF FACT

The Montana Code Annotated (MCA) Section 76-3-608 requires the decision by a governing body to approve, conditionally approve or deny a proposed subdivision to be based on the specific, documentable, and clearly defined impact on the following primary criteria.

(Staff Responses in *italics*)

A. Effect on Agriculture

Agriculture is defined as the production of food, feed, and fiber commodities, livestock and poultry, bees, fruits and vegetables, and sod, ornamental, nursery, and horticultural crops that are raised, grown, or produced for commercial purposes.

- Would the subdivision remove agricultural or timberlands with significant existing or potential production capacity?
 No. Staff has not identified existing agricultural or timberland resources on this site.
- Would the subdivision remove from production agricultural lands that are critical to the area's agricultural operations? No. Staff has not identified any current or previous agricultural production on the subject property.

3) Would the subdivision create significant conflict with nearby agricultural operations (e.g. creating problems for moving livestock, operating farm machinery, maintaining water supplies, controlling weeds, applying pesticides or would the subdivision generate nuisance complaints due to nearby agricultural operations)? Staff has not identified or been notified of any intensive agricultural activities

B. Effect on Agricultural Water User Facilities

in the immediate area.

Agricultural water user facilities are defined as any part of an irrigation system used to produce an agricultural product on property used for agricultural purposes.

 Would the subdivision create a significant conflict with agricultural water user facilities (e.g. creating problems for operating and maintaining irrigation systems or creating nuisance complaints due to safety concerns, noise, etc.)? No. Staff has not identified any agricultural water user facilities on the subject property and no conflict is anticipated.

C. Effect on Local Services

Local services are defined as all services provided by any local government unit having jurisdiction over the subdivision as well as those commonly provided by private entities to similar properties in the vicinity.

1) What additional or expanded public services and facilities would be demanded to serve this subdivision?

The following additional or expanded public services and utilities would be necessary to serve the proposed subdivision: water, sanitary sewer, garbage collection, streets and sidewalks, street lights, stormwater facilities, police, fire, and emergency medical services (EMS).

a) What additional costs would result for services such as streets, law enforcement, parks and recreation, fire protection, water, sewer and solid waste, schools and busing (including additional personnel, equipment, construction and maintenance costs)?

The cost of fire and police services will increase proportionally to population growth in the City; however, the amount attributed to this development is integrated into the City's current Impact Fee Schedule, which was updated in 2021. New and expanded public infrastructure associated with the proposed subdivision will be constructed and paid for by private parties. Ownership and maintenance of public infrastructure dedicated to the City will be the responsibility of the City. As stated in the Public Works referral dated July 19, 2023 (attached), the developer covenants must be updated to indicate developer responsibility for sidewalk construction costs. Until the proposed subdivision lots are developed, it is unknown whether the proposed subdivision will have residential development. Similarly, it is unknown whether future housing would include residents with school age children requiring busing for school.

b) Who would bear these costs?

Taxes on new construction will be paid into the City's General Fund and Impact Fees will be charged at the time building permit(s) are issued for new development on the subdivided lots. The applicant is required to improve PFL Way from the fire hydrant at the end of the existing pavement past Antelope Drive, and must bear the cost of constructing these improvements. Once construction is complete, the City will assume responsibility for maintenance of water and sewer infrastructure, streets, streetlights, and sidewalks.

As noted in the Public Works referral, the City will absorb additional costs associated with the Starlo Booster Station for pumping water and providing fire flows to new development in the proposed subdivision.

The applicant has proposed to dedicate stormwater facilities and open space associated with the new subdivision; however, the Public Works Director has requested- and staff recommends- that the Property Owners Association (POA) maintain ownership and maintenance responsibilities for stormwater facilities. The Public Works Director and staff also recommend the applicant be required to deed restrict the subdivision open space/ parklands for public use but have the POA assume ownership and maintenance responsibilities.

Garbage Service will be paid by user fees incurred by the individual lot owners when contracting for service.

c) Can the service providers meet the additional costs given legal and other constraints?

Yes. The City's impact fees are designed to off-set the increase in capital expenditures for public services and will be paid as each subdivided lot is developed. Increased tax revenue generated by new development on the lots will also be directed into the City's General Fund.

2) Would the subdivision allow existing services, through expanded use, to operate more efficiently or make the installation or improvement of services feasible? The adjacent FedEx facility recently extended water and sewer mains to the edge of Hwy 10 that could accommodate future service to additional annexed property across the Highway as well as the proposed subdivision lots as they are developed.

As stated in the Public Works referral letter, the sewer main near Kenyon Noble is a high-risk area with clay tile and capacity issues for future flows. A 15-inch main replacement is recommended in the Wastewater Collection Preliminary Engineering Report (PER).

- 3) What are the present tax revenues received from the unsubdivided land by the County, City and Schools? *The 2022 tax bills for the subject property totaled \$17,614.*
- 4) What would be the approximate revenues received by each above taxing authority when the subdivision is improved and built upon? It is impossible to estimate future tax revenue on developed lots without knowing the types and scale of that development. However, the applicant has estimated that annual tax revenues to the City of Livingston could be as much as \$200,000 at full build out of the subdivision. This estimate was calculated using the State of Montana tax rate of 1.35% and the City of Livingston mill rate of 0.58606 as applied to the acreage and estimated taxable value of potential development for each lot. Furthermore, based on that estimate of the City's potential tax revenue, the additional potential tax revenues for the County and School District could be upwards of \$300,000.
- 5) Would new taxes generated from the subdivision cover additional public costs? Because the subject property is zoned Highway Commercial, with the potential for both higher density residential development as well as commercial uses, staff anticipates it is likely that the property tax revenue generated by new development will cover additional public costs. Impact fees will apply to new development in the subdivision and the developed lots must also pay into the City's street and light maintenance districts.
- 6) Would any special improvement districts be created which would obligate the City fiscally or administratively?

No. Staff does not anticipate the creation of a special improvement district for the area within the subdivision. However, staff is recommending a waiver of protest requirement for an SID for the subdivided lots. This waiver will apply to a future project to create pedestrian/bicycle connectivity from this subdivision to the City's existing trail system to the east.

D. Effect on the Natural Environment

The natural environment is defined as the physical conditions that exist within a given area.

- 1) How would the subdivision affect surface and groundwater, soils, slopes, vegetation, historical or archaeological features, and visual features within the subdivision or on adjacent lands?
 - a) Would any stream banks be altered, streams rechanneled or any surface water contaminated from run-off carrying sedimentation or other pollutants? *No streams exist within the area proposed for subdivision. Erosion Control installed in accordance with the MT Stormwater Pollution Prevention Plan (SWPPP) will help prevent sediment migration during runoff.*

b) Would groundwater supplies likely be contaminated or depleted as a result of the subdivision?

Future development on the proposed subdivision lots will supplied by City water mains and is not anticipated to affect groundwater quantity. A Geotechnical Report was prepared by Terracon in May 2021 on the adjacent FedEx property (see pages 83-153 in the application materials PDF) that confirmed groundwater depth is between 6 and 15 feet below pre-development site grades. Although the report does not include the area proposed for subdivision, it is likely similar conditions may exist as on the adjacent FedEx site. The report recommends that individual contractors should be made aware of the possibility of encountering groundwater during construction.

- c) Would construction of streets or building sites result in excessive cuts and fills on steep slopes or cause erosion on unstable soils? No. The Stormwater Management Plan was designed to comply with the City's Public Works and MT DEQ standards. As stated above, erosion control must be installed as required per the MT Stormwater Pollution Prevention Plan (SWPPP).
- d) Would significant vegetation be removed causing soil erosion or bank instability? No. As noted above, Erosion Control is required per the SWPPP and proper construction techniques, per the City's Public Works Design Standards, are expected to mitigate potential erosion and soil migration caused by runoff.
- e) Would significant historical or archaeological features be damaged or destroyed by the subdivision?

Based on the attached letter from the Montana State Historic Preservation Office dated June 8, 2023, although there have been a few previously conducted cultural resource inventories in the area, there have been no previously recorded cultural resource sites in the area. Therefore, staff does not anticipate any significant historical or archaeological features will be impacted by the proposed subdivision.

f) Would the subdivision be subject to natural hazards such as flooding, rock, snow or land slides, high winds, severe wildfires or difficulties such as shallow bedrock, high water table, unstable or expansive soils, or excessive slopes? None of the listed hazards have been identified within the area proposed for subdivision and staff does not anticipate the proposed subdivision will be subject to these hazards. Building permits are required for structures built during future development, ensuring all buildings conform to the International Building Code.

E. Effect on Wildlife and Wildlife Habitat

Wildlife and Wildlife Habitat are defined as living things that are neither human nor domesticated and the physical surroundings required for their existence.

1) How would the subdivision affect critical wildlife areas such as big game wintering range, migration routes, nesting areas, wetlands or other important habitat?

The proposed subdivision contains wetland areas, as shown on the preliminary plat, that will be protected during and after construction of the subdivision. A Wetland Delineation Study was conducted in September 2019 by Sundog Ecological, Inc. (Appendix E in the application materials) for the eastern half of the proposed subdivision that delineates the wetland and surface water areas that exist on the eastern half of the subject property. Effects on the quality and quantity of wetland and surface water will be mitigated by designing around these areas to the greatest extent possible and as required by local, State, and Federal regulations and adherence to the SWPPP.

The proposed subdivision has not been previously formally identified as big game wintering range or migration routes. The applicant has solicited comments from Montana Fish Wildlife and Parks, but none have been received at this time; however, the Wetland Delineation Study confirmed that no critical habitats for federally listed Threatened and Endangered Species exist in the area delineated as wetlands on the subject property.

The application states the Mountain View Subdivision will comply with Park County Weed Control District requirements. Following preliminary plat approval, a weed management plan application and 3-year monitoring contract will be submitted to the district and a noxious weed management plan will be developed with the Park County Weed Control Board to prevent invasive weeds from adversely affecting native vegetation.

2) How would pets or human activity affect wildlife? Although the potential for human/ wildlife interaction may exist if future development includes residential uses, staff anticipates potential conflicts would likely be minimal and limited to the open space areas. The applicant has included a suggestion for pets to be leashed while in these areas.

F. Effect on Public Health and Safety

Public Health and Safety is defined as a condition of well-being wherein risk of injury to the community at large is minimized.

- 1) Would the subdivision be subject to hazardous conditions due to high voltage lines, airports, highways, railroads, high-pressure gas lines, or adjacent industrial uses? No new access points to Highway 10 are proposed and nearby active rail lines are located more than 300 feet away and across the highway from the proposed subdivision.
- 2) What existing uses may be subject to complaints from residents of the subdivision? *There are no existing uses on the subject property as it is currently vacant.*
- 3) What public health or safety hazards, such as dangerous traffic or fire conditions, would be created by the subdivision?

An all-weather access road between Antelope Drive and PFL Way must be constructed as part of Phase 1 improvements to provide maintenance and emergency access until future phases and streets are constructed to complete the internal road network. The Public Works director has requested the applicant provide dead end barricades at the cul de sacs for each phase of development to prevent the public from accessing the all-weather road.

A Traffic Study was prepared by Sanderson Stewart in May 2023 (Application Materials Appendix D) to determine impacts of the proposed subdivision on the surrounding transportation network. Because the exact nature of future development on subdivided lots is unknown, the study looked at various types of uses that may be expected to determine trip generation estimates. The study notes that at full buildout, the subdivision is projected to generate a total of 9,991 gross average weekday trips with 866 trips generated during the AM peak hour and 754 trips generated during the PM peak hour. Based on the analysis in the traffic study, it is anticipated the high volume of trips added to the network by the proposed Mountain View Subdivision are projected to trigger the warrants for turn lanes into the site access intersections from Highway 10; however, the final decision to install any turn lanes shall be made by MDT after evaluation of impacts to other aspects of the intersections or adjacent intersections.

As stated in MCA Section 76-3-608.1, a governing body may not deny approval of a proposed subdivision based solely on the subdivision's impacts on educational services or based solely on parcels within the subdivision having been designated as wildland-urban interface parcels. The governing body shall issue written findings of fact that weigh the criteria A-F discussed above

STAFF RECOMMENDATION

Based upon the Findings of Fact as evaluated above, staff recommends that the Planning Board recommend **conditional approval** of the Mountain View Subdivision to the City Commission. The following conditions of approval are recommended:

- 1. The subdivider will sign a waiver of protest of SID for all lots in this subdivision. This waiver will apply to a future project to create pedestrian/bicycle connectivity from this subdivision to the City's existing trail system.
- 2. All infrastructure will comply with the City of Livingston Public Works Design Standards and Specifications.
- 3. Street lights will be required within this development. Type and spacing will be per existing City specifications.

- 4. All outdoor lighting in this development must be night-sky friendly and
- 5. The developer covenants must be updated to indicate developer responsibility for sidewalk construction costs.
- 6. Storm water design will meet all applicable DEQ standards. The Property Owners Association (POA) must maintain ownership and maintenance responsibilities for stormwater facilities once constructed.
- 7. The applicant is required to deed restrict the subdivision open space/ parklands for public use and the POA must assume ownership and maintenance responsibilities.

must be approved by the City prior to installation.

- 8. Erosion Control must be installed in accordance with the MT Stormwater Pollution Prevention Plan (SWPPP).
- 9. Development must comply with Park County Weed Control District requirements.
- 10. The subdivider will be responsible for all required street signing to include traffic control signs as well as street name signs. All signs will be built and installed according to City specifications. Painting of curbs at fire hydrants will also be required.
- 11. The applicant is required to improve PFL Way from the fire hydrant at the end of the existing pavement past Antelope Drive, and must bear the cost of constructing these improvements.
- 12. The applicant must install provide dead end barricades at the cul de sacs for each phase of development to prevent the public from accessing the all-weather road.
- 13. An all-weather access road between Antelope Drive and PFL Way must be constructed as part of Phase 1 improvements to provide maintenance and emergency access until future phases and streets are constructed to complete the internal road network.
- 14. Building permits are required for structures built during future development, ensuring all buildings conform to the International Building Code.
- 15. A Montana licensed engineer, or his supervised representative, will be required to be on site during utility construction.

- 16. If a utility reimbursement plan is requested by the developer, it must be submitted to, and approved by, the City prior to beginning construction.
- 17. Any improvement agreement(s) for deferred infrastructure construction need to be reviewed and approved by the City prior to the beginning of construction.

FOR YOUR INFORMATION: the sewer main near Kenyon Noble is a high-risk area with clay tile and capacity issues for future flows. A 15-inch main replacement is recommended in the Wastewater Collection PER.

LETTER OF TRANSMITTAL

To: Jennifer Severson		Date:	June 21, 2023			
Planning Director		Project No:	18005.05			
City of Livingston		Project:	Mountain View Subdivision			
		Reference:	Preliminary P	lat Application		
🗆 By Mail	Next Day Air	- 🛛 🖾 Deli	🛛 Delivered By Hand 🛛 🗆 To Pick Up			
Attachments:						
□ SID Pre-Creation Exhibits		Contract Docume	ents 🗆	Prints		
□ Plans/Specifications □ Cha		Change Order	\boxtimes	Plat Submittal		
□ Shop Drawings		Estimate		Other		

MESSAGES:

The following materials are for the Mountain View Major Subdivision Preliminary Plat application:

- I. Application Binder
- 2. Civil Sheets
- 3. Preliminary Plat
- 4. Flash Drive with digital copies of all plans and documents

Signed: XMMV (Sumner Anacker, Project Engineer

106 East Babcock, Suite L1 | Bozeman, Montana 59715 | Phone 406.522.9876 | Fax 406.922.2768 | SandersonStewart.com

MOUNTAIN VIEW MAJOR SUBDIVISION PRELIMINARY PLAT APPLICATION

Project No. 18005.05

Livingston West LLC Box 500 Emigrant, MT 59027

Placemaking

Infrastructure Engineering

Surveying + Mapping

Community Planning

Landscape Architecture

Branding + Visualization June 21, 2023

MOUNTAIN VIEW MAJOR SUBDIVISION PRELIMINARY PLAT APPLICATION TABLE OF CONTENTS

EXECUTIVE SUMMARY

- Cover Letter
- Completed Preliminary Plat Application
- Checklist of Submittal Materials
- Application Review Fee

APPLICATION NARRATIVE

- Introduction
- Site Location
- Existing Conditions
- Zoning & Land Use
- Overall Development Plan
- Grading & Drainage Plan
- Proposed Subdivision Improvements
- Growth Policy Alignment
- DRC Additional Information
- Public Agency Review
- Private Service Provider Review
- Summary of Probable Impacts & Mitigation

EXHIBITS

- 1. Vicinity Map
- 2. Overall Development Plan
- 3. Active Transportation Plan

PLANS & PLAT

Civil Engineering Plans

- C1.1 Cover
- C1.2 Legend
- C2.1 Exiting Conditions
- C3.1 Overall Site Plan
- C4.1 Utility Plan
- C5.1 Stormwater & Drainage Plan
- C6.1 Details

Preliminary Plat

- Sheet 1 of 2 Cover & Certificates
- Sheet 2 of 2 Lot Layout

APPENDICES

- A. Preliminary Stormwater Report
- B. Preliminary Sewer & Water Design Report
- C. Subdivision Improvements
- D. Mountain View Subdivision Traffic Impact Study
- E. Wetland Delineation Report
- F. Public Agency Review
- G. Private Service Providers Review
- H. Covenants, Conditions, and Restrictions Summary

June 21, 2023

Billings Bozeman Fort Collins

Jennifer Severson Planning Director City of Livingston 220 E. Park Street Livingston, MT 59047

Reference: Mountain View Subdivision Preliminary Plat Submittal Project No. 18005.05

Jennifer:

On behalf of Andrew Field and Livingston West LLC, attached is a Preliminary Plat application for the Mountain View Subdivision. The proposed subdivision includes 24 lots, including two open space lots, and public right-of-way for subdivision streets and utilities.

We are submitting one printed copy and digital copy of the preliminary plat application for your review. The following documentation is included in the application:

- I. Cover Letter
- 2. Completed Preliminary Plat Application
- 3. Checklist of Submittal Materials
- 4. Application Review Fee
- 5. Application Narrative
- 6. Vicinity Map
- 7. Overall Development Plan
- 8. Active Transportation Plan
- 9. Preliminary Civil Plan Set
- 10. Preliminary Plat
- 11. Stormwater Overview
- 12. Water & Sewer Overview
- 13. Subdivision Improvements
- 14. Traffic Trip Generation Analysis
- 15. Summary of Probable Impacts
- 16. Wetlands Report
- 17. Public Agency Review
- 18. Private Service Providers Review
- 19. Covenants, Conditions & Restrictions Summary

ENDURING COMMUNITY DESIGN

Please let me know if you have any questions or need additional information, please feel free to contact me at (406) 922-4311 or cnaumann@sandersonstewart.com.

Sincerely,

Chris Naumann Associate | Senior Planner Sanderson Stewart 106 East Babcock Street Suite L1 Bozeman MT 59715 <u>cnaumann@sandersonstewart.com</u> 406-922-4311 (d) 406-570-5758 (m) City of Livingston Department of Planning 220 E. Park St. Livingston, MT 59047 (406)222-4903 planning@livingstonmontana.org

City of Livingston Subdivision Preliminary Plat Instructions

Subdivision review is required to divide any parcel of land within the City of Livingston that does not meet the criteria for a subdivision exemption as listed in 76-3-2 MCA. Subdivisions require a three-step application process prior to final approval:

- Pre-Application •
- Preliminary Plat Application
- Final Plat Application

Preliminary Plats require a public hearing before the Planning Board for a recommendation to the City Commission, and are approved or denied by the City Commission. All subdivision applications are evaluated by the Planning Board and City Commission based upon the following criteria listed in Section III.B.6 of the Subdivision Regulations for major subdivisions or Section IV.B.6 for minor subdivisions:

- Provides easements for the location and installation of any planned utilities. •
- Provides legal and physical access to each parcel within the subdivision and the notation of that access on the applicable plat and any instrument transferring the parcel.
- Assures that all required public improvements will be installed before final plat approval, or • that their installation after final plat approval will be guaranteed.
- Complies with the requirements of 76-3-504 MCA, regarding the disclosure and disposition of water rights.
- Complies with the Subdivision Regulations.
- Complies with the applicable Zoning Regulations. •
- Complies with the Montana Subdivision and Platting Act. •

The Preliminary Application shall be submitted to the Planning Department. The Planning Department may forward the application to local, state, and federal agencies as necessary to ensure a comprehensive review of the project. It is required that you submit and receive an approved Subdivision Pre-Application prior to submitting a Preliminary Plat Application.

Submittal Requirements (listed in Section III.B.1 of the Subdivision Regulations for major subdivisions or Section IV.B.1 for minor subdivisions):

- ~ Two (2) copies of the Completed Application Form.
 - Three (3) copies of the Preliminary Plat, which:
 - Contains the required information for preliminary plats.
 - Conforms to the Design and Improvement Standards in Section VI of the Subdivision Regulations.
 - Conforms to the requirements of the Zoning Regulation. •

- Conforms to the requirements of the Public Works Design Standards and Specifications Policy.
- A summary of probable impacts of the Subdivision.
 Proof that the subdivider has submitted for review of the subdivider has submi
 - Proof that the subdivider has submitted for review copies of the subdivision application and environmental assessment, if applicable, to the public utilities and agencies of local, state, and federal government identified during the pre-application meeting or subsequently identified as having a substantial interest in the proposed subdivision.
- Additional relevant and reasonable information as identified by the Development Review Committee during the pre-application meeting:
- The Preliminary Plat Application Review Fee.

All documents other than the preliminary plat shall be submitted on either 8 ¹/₂" x 11" or 11" x 17" paper. Additionally, digital copies of the submittal in PDF file format are required.

25

City of Livingston Department of Planning 220 E. Park St. Livingston, MT 59047 (406)222-4903 planning@livingstonmontana.org

City of Livingston Subdivision Preliminary Plat Application

- 1. Property Owner Name: Livingston West, LLC (c/o Andrew Field)
- 2. Location of Property

	General Location: Northeast of the interse	ction of I-90 and	Highway 10
	Address: TBD Antelope Drive and TBD PFL Way		
	Subdivision: N/A	Lot: <u>N/A</u>	Block: N/A
	Zoning District: HC		
3.	Contact Information		
	Property Owner		

Home Address: Andrew Field PO Box 500
Emigrant, MT 59027
Phone Number: 406-223-7077
Email Address: asfield@gmail.com
Primary Contact/ Applicant
Name: Sumner Anacker, PE Sanderson Stewart
Address: 106 E Babcock Street, Suite L1
Bozeman, MT 59715
Phone Number: 406-922-4314
Email Address: sanacker@sandersonstewart.com
Secondary Contact
Name: Richard Smith
Address:
Phone Number:
Email Address: resmith@rj-development.net

4. Project Information

 Type of Subdivision:
 Major
 Subsequent Minor
 Minor

 Proposed Subdivision Name:
 Mountain View Subdivision

 Brief Description of Project:
 Subdivision of Tract 1-A of COS 2748RB

 into 24 lots (including dedicated parkland open space) with street, storm, water, and

 sanitary sewer improvements

 Proposed Use(s):
 Highway Commercial

 Number of Lots:
 24

 Number of Phases:
 3

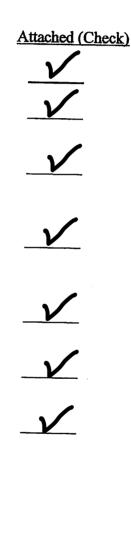
I hereby certify that the information included in this application is true and accurate.

Applicant's Signature

6/21/23

Date

APPENDIX B


LIST OF SUBMITTAL MATERIAL

(Based on City of Livingston Subdivision Regulations)

PRELIMINARY PLAT

The following materials shall be submitted with all applications for Preliminary Plat approval:

- 1. Three (3) copies of the preliminary plat in 24" x 36" format.
- 2. Eight (8) copies of the preliminary plat in 11" x 17" format.
- 3. The required review fee.
- 4. A vicinity sketch showing conditions on adjacent land including:
 - a. Approximate locations, size and depth of existing or proposed sanitary and storm sewers, water mains, fire hydrants, gas, electric, telephone lines and streetlights.
 - b. Ownership of lands immediately adjacent the subdivision and all public and private streets leading to the subdivision.
 - c. Locations of buildings, structures, power lines and other improvements and nearby land uses.
 - d. The existing zoning of the subdivision and of adjacent lands within 500 feet.
- 5. A complete grading and drainage plan designed to handle runoff from a 10 year, 6 hour storm and containing the following:
 - a. Location and details, accurately dimensioned, of all existing and proposed drainage structures to include courses, elevations, grades and cross sections of streets, bridges, ditches, culverts, retention areas and other drainage improvement.

- a. Ground contours with intervals of 2 feet where the average slope is under 10% and 5 feet where average slope is 10% or greater.
- b. Information describing the ultimate destinations of storm water from the subdivision and the effect of the runoff on down-slope drainage structures.
- c. Describe construction procedures, slope protection and reseeding methods to minimize erosion.
- 6. A list of the proposed subdivision improvements shall be submitted and shall include the following items:
 - Provide design specifications for all streets and alleys. Include information on all drainage structures, street signs, sidewalks, and street lights.
 - b. Indicate the solid waste collection and disposal facilities proposed for the subdivision.
 - c. Show fire hydrant locations and spacing.
 - d. Describe all utilities to be installed and which entities will be providing the services.
 - e. Indicate parkland to be dedicated or amount of cash-in-lieu of land to be donated, if applicable.
 - f. Indicate how mail delivery will be handled within the subdivision.
- 7. Overall Development Plan: When a tract of land is to be subdivided in phases, the subdivider must provide an overall development plan indicating the intent for the entire development. The preliminary plat submission and other supplements must include the entire development and be in compliance with the procedures and standards contained in the Livingston Subdivision Regulations. Plat review will be based on the overall development.

- (iii) Unless the subdivision will be served by a community sewer or water system, each lot in the cluster must be a minimum of one acre in size.
- (iv) Multiple adjacent tracts of record may be aggregated to create a single parcel for the purpose of creating a cluster development.
- b. Park dedication requirements are waived for clustered subdivisions created under this section.

X. ADMINISTRATIVE PROVISIONS

X-A. Fee Schedule

To cover costs of reviewing plans, advertising, holding public hearings, and other activities associated with the review of a subdivision proposal, the subdivider shall pay a non-refundable fee at the time of application for preliminary plat approval. The fees, payable to the City, are as follows:

Minor Subdivisions

Preliminary Plat Final Plat/Summary review Subsequent Minor

\$600.00 plus \$20 per lot \$400.00 \$800.00 plus \$40 per lot

Major Subdivisions

Preliminary Plat Final Plat

\$800.00 plus \$40 per lot \$400.00 plus \$20 per lot

Subdivision by Rent or Lease and Condominiums

Preliminary Review (five or fewer units) Final Review

\$600.00 plus \$20 per unit \$400.00

Preliminary Review (over five units) Final Review

\$800.00 plus \$20 per unit \$400.00 plus \$20 per unit

X-B. Variances

X-B-1. Variances Authorized

The governing body may grant variances from Section VI, Design and Improvement Standards, of these regulations when, due to the characteristics of land proposed for subdivision, strict compliance with these standards would result in undue hardship and

\$800 + <u>\$40/lot *24 lots</u> \$1,760.00

Billings Bozeman Fort Collins

June 21, 2023 Project No. 18005.05

MOUNTAIN VIEW MAJOR SUBDIVISION PRELIMINARY PLAT APPLICATION APPLICATION NARRATIVE

INTRODUCTION

On behalf of Livingston West, LLC, Sanderson Stewart is submitting this Preliminary Plat Application for the proposed Mountain View Subdivision. This highway commercial subdivision is within the City of Livingston. The project would create 24 lots including dedicated parkland open space and public right-of-way totaling 43.879 acres. These new lots are currently served by the City of Livingston water and sanitary sewer systems.

The subdivision will be accessed from Highway 10 via PFL Way, Antelope Drive, and West End Road. It is generally located on Section 22 of Township 02 South Range 09 East. See Exhibit A: Vicinity Map.

SITE LOCATION

The proposed Mountain View Subdivision is located on 43.879 acres of land to the east of the interchange of Interstate 90 and Highway 10. More specifically, the project is located on Parcel I-A of COS 2748RB, situated in the NW 1/4 of Section 22, Township 02 South, and Range 09 East in the City of Livingston, Park County, Montana. See Exhibit A: Vicinity Map.

EXISTING CONDITIONS

Structures

There are no existing structures within Parcel I-A of COS 2748RB.

Public Infrastructure

Mountain View Subdivision includes the existing paved roadway on Antelope Drive and PFL Way.

There is a completed 10-inch public sewer main which follows the roadways along its entire length, continuing to the southeast where the sewer main leaves the subdivision. There is a 12-inch public water main that follows the existing roadways. A 12-inch public water main is also now complete, paid for with private funds, and follows the new roadway within the subdivision with the associated water services, valves, and hydrants. Storm drainage is generally collected in the roadway gutters and conveyed through storm drainage infrastructure to a temporary onsite detention pond located on Antelope Drive. All existing public infrastructure is shown on the Civil Engineering Plans and the Preliminary Plat.

Private Utilities

There is an existing overhead power line with a 30' wide easement at the southern corner of the subdivision. In addition, there are several underground utility lines with 10' easements running through multiple lots of the subdivision. All existing private utility easements are shown on the Civil Engineering Plans and the Preliminary Plat.

Private Utility Easement

There are two existing 20' underground electric easements shown on the existing Certificates of Survey with "exact location undetermined". One is on Tract 3-AI of COS 2748RB per Recorded Document No. 426785 and the other is on Tract 2-A of COS 2621RB per Recorded Document Nos. 333214 and 406962. Neither of these easements are part of this subdivision.

There is an existing 40' utility easement bisecting Lots 6, 8-11 for overhead power and communication lines on Tract 1-A of COS 2748RB per Recorded Document No. 87649.

There is an existing 30' utility easement for overhead power and communication lines running along Lots 20, 21, and 24 on Tract I-A of COS 2748RB per Recorded Document No. 335670.

There is one existing 60' public access and utility easement shown on Tract 1-A of COS 2748RB and proposed Mountain View Subdivision Lot 3 per Roll 219, Page 1501 and Roll 223, Page 56 as originally located on COS 1941. It is the intent of the applicant to verify this easement is no longer in use and vacate the easement prior to Final Plat.

Topography

The land is primarily characterized by rolling hills and grassland, with a large wetland area located in the northeast quadrant of the subdivision and steeper hill areas located in the southeast corner of the subdivision.

ZONING & LAND USE

Highway Commercial

All the land in the proposed subdivision is currently zoned as Highway Commercial within the City of Livingston city limits. Therefore, all the proposed subdivision lots are subject to the Highway Commercial zoning designation. Highway Commercial is defined by the City of Livingston as:

31

"a district intended to provide areas for residential structures, commercial and service enterprises which serve the needs of the tourist, traveler, recreationalist or the general traveling public. Areas designated as Highway Commercial should be located in the vicinity of freeway interchanges, intersections on limited access highways, or adjacent to primary and secondary highways."

Future development within Mountain View subdivision will be required to meet the Highway Commercial zoning requirements. Zoning designations can be seen on Exhibit B: Overall Development Plan.

OVERALL DEVELOPMENT PLAN

General Description

All future lot developments will be subject to the Property Owners Association design review process, be held to the Highway Commercial zoning requirements, and submitted to the City for formal site plan review and approval.

Current Ownership

Livingston West, LLC owns the land comprising the proposed Mountain View Subdivision is as shown on the attached Exhibit B.

Lot Layout

Mountain View Subdivision will be subdivided into 24 lots that will range from 0.27 acres to 14.1 acres. Two of the lots, totaling approximately 20.4 acres, will be designated as open space parkland and dedicated to the City of Livingston. The remaining lots will range from 0.270 acres to 1.230 acres.

Final Plat Phasing

The subdivision will be final platted in three phases. The first final plat phase will consist of lots 2-17, 21, and 22. Phase two will consist of lots 18-20 and 23. Phase three will consist of lots 1 and 24. The lot layout and phasing can be seen in Exhibit B: Overall Development Plan and the Preliminary Plat.

Dedicated Open Space Parkland

Lots 2 and 21, totaling approximately 20.4 acres, will be designated as open space parkland, which equates to 47% of the entire subdivision. Lot 2 is in the northeast corner of the subdivision and includes a substantial amount of wetland area. Lot 21 is in the southeastern corner of subdivision and primarily consists of hilly grassland. The proposed dedicated open space parkland lots can be seen in Exhibit B: Overall Development Plan and on the Preliminary Plat.

GRADING & DRAINAGE PLAN

General Description

The roadway extensions will generally follow the existing drainage patterns and slope towards the southeast to the existing wetlands. Roadways will be sloped to drain to the associated gutters and conveyed through storm drainage infrastructure toward the proposed detention pond. The proposed lots will drain towards the new streets and will be conveyed along swales following the proposed roadways. These swales will convey the runoff towards the proposed detention pond. As development occurs on the lots, the swales will be filled as the property owners will be required to mitigate runoff within their site. With Phase 3, a new detention basin will be constructed to store and convey the pre-development peak flows. The proposed grading and drainage are shown on the Civil Engineering Plans. For more drainage information see Appendix A: Preliminary Stormwater Report.

PROPOSED SUBDIVISION IMPROVEMENTS

General Improvements

The proposed general improvements of the Mountain View Subdivision, most of which have already been completed, include streets, street signage, boulevards, sidewalks, and street lighting. All these improvements will be designed to meet the requirements established in the City of Livingston Public Works Design Standards and Specifications Policy including the corresponding Modifications to Montana Public Works Standards. As such all sidewalks will be ADA compliant and all street lighting will meet the requirements of the Night Sky Protection Act. All the proposed subdivision improvements are listed in Appendix C: Subdivision Improvements.

Streets

The proposed street improvements for the Mountain View Subdivision includes a 1,100 LF extension of Antelope Drive, a 740 LF extension of PFL Way, and an additional 320 LF roadway (Street 1) to provide access to the remaining lots within the subdivision. The proposed street improvements are shown on the Civil Engineering Plans and the Preliminary Plat.

Potential Alley Access

Due to the proposed small lot layout of this highway commercial subdivision and applicant's not knowing the precise usage of each lot, the applicability of alleyways cannot be determined at this time. If multiple lots were used for a single development a common drive and/or alleyways could possibly be incorporated into the site plan design.

Streets and Roads Improvements

"VI-A-8.b. Alleys, designed in accordance with Table I, shall be provided in all residential subdivisions. Alleys will also be the preferred method for providing utility and garbage pick-up access in non-residential subdivisions."

While alleys are preferred in non-residential subdivisions, they are likely not feasible due to the narrow lot configuration. In lieu of alleys, utility easements have been proposed along the front of each lot adjacent to the existing and proposed streets. Adequate garbage collection access

will be proposed as part of the future site planning process as each lot prepares for development.

Stormwater

A preliminary drainage report summarizing the design of the future stormwater system associated with the Mountain View Major Subdivision is provided in Appendix A: Preliminary Stormwater Report. The report presents a summary of calculations performed to quantify the necessary storm drainage improvements. The storm drain system has been and will continue to be designed to meet the requirements in The City of Livingston Design Standards and Specification Policy (DSSP) of February 2021.

There will be one (1) stormwater detention pond in the southeast portion of the subdivision to treat runoff from the street network. There will be one (1) stormwater detention pond located on Lot 11 near Highway 10 to treat existing predevelopment storm flows from Jesson property to the west northwest. The proposed stormwater facility easements are shown on the Civil Engineering Plans and the Preliminary Plat. For more stormwater information see Appendix A: Preliminary Stormwater Report.

Sewer & Water

A preliminary report summarizing the design of the existing sanitary sewer and water main installations associated with the Mountain View Major Subdivision is provided in Appendix B: Preliminary Sewer & Water Report. The project will utilize existing sanitary sewer and water, as well as provide water service stubs and sanitary stubs to serve future developments within a portion of the subdivision. The provided report summarizes the water and sewer main design and capacity calculations for the water and sewer services to the theoretical future development.

Parkland Dedication

The proposed Mountain View subdivision includes over 20 acres of open space to be dedicated to the City of Livingston as parkland. The proposed parkland is characterized by rolling grassland and a large wetland area that merit being preserved and made available for public use and enjoyment.

Dedicated parkland is included in the proposed subdivision as Lots 2 and 21. The proposed dedication equates to parkland per Ordinance No. 2069 Sec. VI-A-16.b. - "Standards for Parkland Dedication – provides for the preservation of a physical amenity such a as a meadow, stand of trees, significant wildlife habitat or a wildlife corridor, a scenic hillside with slopes less than 25%, a stream or significant water body, an area of riparian resource."

As such, the proposed open space parkland dedication meets the requirements established in MCA 76-3-621.

GROWTH POLICY ALIGNMENT

The proposed development aligns with many elements of the Growth Policy.

Population & Community Character

Land Use

Goal 3.1: Prioritize infill over expansion by taking advantage of existing and planned infrastructure, such as transportation, energy, water, and sewer facilities.

The proposed Mountain View Subdivision represents the continuation of infill of this property that was annexed into the City of Livingston over 15 years ago. This subdivision will take advantage of the existing water, sewer, and transportation infrastructure that is sized to accommodate this anticipated growth.

Natural Resources Goal 4.3: Protect and manage natural resources, open spaces, and wildlife.

The proposed Mountain View preliminary plat proposes to formally dedicate over 20 acres of open space parkland, over half of which contains important wetland habitat for a variety of flora and fauna.

Housing Goal 5.1: Provide housing options to meet the needs of all residents.

Mountain View subdivision will provide the opportunity for housing development should the subsequent owners choose to develop that type of use.

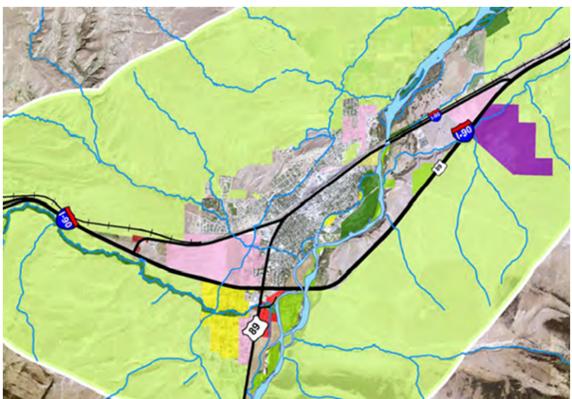
Economy

Goal 6.1: Strengthen and diversify Livingston's economy by supporting industries and initiatives that increase employment opportunities and personal income.

The Highway Commercial zoning will allow Mountain View subdivision to be developed with a variety of businesses that will not only create a diversity of new jobs but also service Livingston's tourism economy.

Local Services

Transportation


Goal 8.2: Create a complete and well-maintained transportation network within the City.

The Mountain View preliminary plat application identifies opportunities to enhance the City's multimodal active transportation network with potential bus route service, internal sidewalks and trails, and a shared use path connection leading east.

Public Facilities Goal 9.1: Develop infrastructure to enhance community services and improve public safety for Livingston residents.

The impact fees paid by future development of the proposed subdivision lots will provide revenues to fund offsite community infrastructure improvements.

The 2021 City of Livingston Growth Policy prescribes a future land use of "Mixed Use" for the undeveloped properties between the proposed subdivision and Highway 89. This designation indicates that continued development in the area is planned and supported.

2021 Livingston Growth Policy | Appendix A: Extra-Territorial Jurisdiction Plan | Exhibit 2.9

DRC ADDITIONAL INFORMATION

Active Transportation

At the request of the City of Livingston staff, active transportation and transit locations are conceptually proposed in the Mountain View Subdivision plan. A future bus route is anticipated to circumnavigate the subdivision along Antelope Drive and PFL Way to serve the public transportation needs of PFL, FedEx, and any future development within the subdivision. There could be multiple bus stops along the route on Antelope Drive and one bus shelter on PFL Way. Conceptually, a shared use path designed for cyclists and pedestrians will be located along Highway 10 and will extend into Mountain View Subdivision along PFL Way. Sidewalks will

border all new streets in the subdivision to complete the pedestrian network. A natural surface trail could be extend into Lot 2 to access the wetlands and open space. These multimodal facilities can be seen in Exhibit C: Active Transportation Plan.

Traffic Trip Generation

At the request of the City of Livingston staff, a preliminary traffic trip generation analysis was produced for the proposed Mountain View subdivision. The analysis concluded:

"The preceding analysis has shown that construction of the facility will generate a modest volume of new traffic demand for area streets and intersections. . . Future (2027) scenario capacity results are projected to be similar to existing conditions (2022 results)" With that, the West Park Street/US 10 intersection observes the biggest difference in projected 95th percentile vehicle queuing. Under current conditions, the AM peak hour projected 95th percentile queuing is up to 7 vehicles and the PM peak hour projected queuing is up to 13 vehicles. At full buildout (2027) conditions, the AM peak projected 95th percentile queuing is up to 9 vehicles and the PM peak hour projected 95th percentile queuing is up to 9 vehicles and the PM peak hour projected 95th percentile queuing is up to 9 vehicles and the PM peak hour projected 95th percentile queuing is up to 9 vehicles and the PM peak hour projected 95th percentile queuing is up to 9 vehicles and the PM peak hour projected 95th percentile queuing is up to 9 vehicles and the PM peak hour projected 95th percentile queuing is up to 9 vehicles and the PM peak hour projected 95th percentile queuing is up to 9 vehicles and the PM peak hour projected 95th percentile queuing is up to 9 vehicles and the PM peak hour projected 95th percentile queuing is up to 9 vehicles and the PM peak hour projected 95th percentile queuing is up to 9 vehicles and the PM peak hour projected queuing is up to 19 vehicles.

The complete analysis is included in Appendix D: Traffic Trip Generation Analysis

Covenants, Conditions, and Restrictions

Although not required to be submitted until Final Plat, the applicant has provided a summary of the draft Covenants, Conditions, and Restrictions (CC&R), at the request of City of Livingston staff. In addition to standard CC&R provisions, those for the proposed subdivision include wildlife-friendly fencing, wildlife-proof trash storage, and an Owners Association Design Review Committee.

A summary of the Mountain View Subdivision Covenants, Conditions, and Restrictions are included in Appendix H.

PUBLIC AGENCY REVIEW

At request of City of Livingston staff, formal letters were sent to three public agencies to solicit their review and comments on the proposed Mountain View Subdivision. The three public agencies included Montana Department of Transportation, Montana Fish, Wildlife, and Parks, and the State Historic Preservation Officer. These letters and any received comments are included as Appendix F: Public Agency Review.

PRIVATE SERVICE PROVIDER REVIEW

Letters were sent to five private service providers to solicit their review and comments on the proposed Mountain View Subdivision on request of City of Livingston staff. The five service providers included NorthWestern Energy, Park Electric Cooperative, CenturyLink, Windrider

public bus Service provider, and the United States Postal Service. These letters and any received comments are included as Appendix G: Private Service Provider Review.

SUMMARY OF PROBABLE IMPACTS & MITIGATION

As required by the City of Livingston Subdivision Regulations Section III B-6 this application includes a summary of probable impact. The impacts addressed include Agriculture, Ag Water, Local Services, Natural Environment, Wildlife & Habitat, and Public Health & Human Safety.

1. IMPACTS ON AGRICULTURE

A. Would the subdivision remove agricultural or timberlands with significant existing or potential production capacity?

No. There are no current agricultural or timberland resources on this site.

B. Would the subdivision remove from production agricultural lands that are critical to the area's agricultural operations?

No. There is no agricultural production on this site now or in the past. There are no agricultural water user facilities on this site.

C. Would the subdivision create significant conflict with nearby agricultural operations (e.g. creating problems for moving livestock, operating farm machinery, maintaining water supplies, controlling weeds, applying pesticides or would the subdivision generate nuisance complaints due to nearby agricultural operations)?

No. The proposed subdivision would not create conflicts with nearby agricultural operations.

2. IMPACT ON AGRICULTURAL WATER USER FACILITIES

A. Would the subdivision create a significant conflict with agricultural water user facilities (e.g. creating problems for operating and maintaining irrigation systems or creating nuisance complaints due to safety concerns, noise, etc.)?

No. The subdivision would not create conflicts with agricultural water user facilities.

3. IMPACT ON LOCAL SERVICES

A. What additional or expanded public services and facilities would be demanded to serve this subdivision?

i. What additional costs would result for services such as streets, law enforcement, parks and recreation, fire protection, water, sewer and solid waste, schools and busing (including additional personnel, equipment, construction, and maintenance costs)?

All the public infrastructure associated with the proposed subdivision has or will be constructed and paid for by private parties. Once dedicated to the City, maintenance requirements would fall upon the City of Livingston. Public infrastructure will include streets, street lighting, sidewalks, water mains, sewer mains, stormwater mains and ponds.

See Appendix C: Subdivision Improvements for more detailed information.

Law enforcement and fire protection services have been provided to the area of the proposed subdivision by the City of Livingston since it was annexed nearly 20 years ago. Therefore, no additional costs or personnel should be required to continue these services.

The proposed open space parkland to be dedicated would need to be managed by the City. As established in Ordinance No. 2069, open space parklands "shall be managed to remain in a near natural state when it has been dedicated for preservation or conservation purposes." As such, the maintenance costs should be nominal.

Solid waste services are paid for by user 'tipping' fees that would be incurred by the property owners contracting for service.

It is unknown at this time whether the proposed subdivision will have any residential development. It is also unknown whether any future housing would include residents with school age children requiring busing for school.

ii. Who would bear these costs?

See responses above.

iii. Can the service providers meet the additional costs given legal and other constraints?

Yes. The additional public service maintenance costs will be covered by the impact fees paid by each developed site and the new additional tax revenue generated by

future development.

B. Would the subdivision allow existing services, through expanded use, to operate more efficiently or make the installation or improvement of services feasible?

Yes. The new sewer and water mains are designed to accommodate future development to the northwest and to be tied into the City's long term expansion plans to connect to the City's large tank reservoir to the north upon future construction of the West End Loop.

C. What are the present tax revenues received from the unsubdivided land by the County, City and Schools?

The current tax bills for the subject property is \$17,613.62 for the 2022 calendar year per the Park County Treasurer.

D. What would be the approximate revenues received by each above taxing authority when the subdivision is improved and built upon?

At full build out of the proposed subdivision, the estimated annual tax revenues to the City of Livingston would be nearly \$200,000. This estimate was calculated using the State of Montana tax rate of 1.35% and the City of Livingston mill rate of 0.58606 as applied to the acreage and estimated taxable value of potential development for each lot.

E. Would new taxes generated from the subdivision cover additional public costs?

Yes.

i. Would any special improvement districts be created which would obligate the City fiscally or administratively?

No. There is currently a TIF District on this property that is scheduled to expire in 2024.

F. Other Impacts on Local Services—Water Rights

Regarding the disclosure and disposition of water rights as required by 76-3-504, the current property and property owners, thus subdividers, do not own any surface water rights.

4. IMPACT ON NATURAL ENVIRONMENT

- A. How would the subdivision affect surface and groundwater, soils, slopes, vegetation, historical or archaeological features, and visual features within the subdivision or on adjacent lands?
 - i. Would any streambanks be altered, streams rechanneled or any surface water contaminated from run-off carrying sedimentation or other pollutants?

No. There are no streams on the proposed subdivision. Road drainage in the subdivision will be controlled by paved streets with concrete curb and gutter. Storm runoff will be collected by the gutters and transported to stormwater inlets. From the inlets, the stormwater will be conveyed to onsite stormwater detention ponds. Erosion of the road will be prevented due to the impervious paved surface. Erosion of the nonpaved right-of-way areas impacted during construction will be mitigated through reseeding affected areas after construction is complete. All phases of construction (public infrastructure and private development) will require DEQ Stormwater Pollution Prevention Plans to be approved and administered.

ii. Would groundwater supplies likely be contaminated or depleted as a result of the subdivision?

No. Groundwater supplies would not be depleted as the proposed lots will be connected to City of Livingston water mains. Contamination of groundwater is not expected with the uses allowed by Highway Commercial zoning and applicable City and DEQ water quality regulations.

iii. Would construction of streets or building sites result in excessive cuts and fills on steep slopes or cause erosion on unstable soils?

No. Grading in areas that will be affected during construction will be done as to not adversely affect adjacent lands with stormwater runoff from the subdivision. The stormwater management plan for the subdivision has been designed in accordance with the standards of the City of Livingston and the Montana Department of Environmental Quality Design Circular DEQ-8.

iv. Would significant vegetation be removed causing soil erosion or bank instability?

No. The soils located within the proposed subdivision are lean clay with sand and clayey sand. Historically, the area receives between 14 and 16 inches of rain per year. The effect on native dryland vegetation will be limited to the developed areas. Revegetation of affected areas will be done as development occurs.

v. Would significant historical or archaeological features be damaged or destroyed by the subdivision?

No. The State Historical Preservation Office previously reviewed the proposed subdivision and concluded:

"Based on previous survey within the project area we feel that there is a low likelihood cultural properties will be impacted. We, therefore, feel that a recommendation for a cultural resource inventory is unwarranted at this time."

The full response from the State Historical Preservation Office and a cultural assessment from 2004 prior to the construction of the Printing for Less building are provided in Appendix F: Public Agency Review.

vi. Would the subdivision be subject to natural hazards such as flooding, rock, snow or land slides, high winds, severe wildfires or difficulties such as shallow bedrock, high water table, unstable or expansive soils, or excessive slopes?

No.

The subdivision is not located within a floodplain. The nearest floodplain designation is along Billman Creek south of Interstate 90 and poses no hazard to the proposed subdivision.

The subject area does not have a history of rock, snow, or landslides.

All the structures built in the subdivision will conform to building standards which will prevent hazards caused by high winds that frequently occur in the area.

Wildfire in the area is not a high risk due to the lack of natural fuel and the availability of fire protection added by the development of the subdivision including the paved road that will serve as a fire break and the completed installation of numerous fire hydrants.

The geotechnical work performed in May 2021 by Terracon Consultants, Inc. for the FedEx project constructed by Ruedebusch Development & Construction identified soil depths ranging between 8 and 21 feet and water depths ranging from 6 to 15 feet below existing site grades.

The soils present are typical of the area and predominantly lean clay with sand. This soil type is not characterized as unstable or expansive in nature. Although moderately sloping in some areas, the topography of the site is not conducive to snow or rockslides. There are no excessive slopes on the property that may be a potential hazard.

vii. Other Natural Environment Impacts-Weed Management Plan

Mountain View subdivision will comply with Park County Weed Control District requirements. Following preliminary plat approval, a weed management plan application and 3-year monitoring contract will be submitted to the district and a noxious weed management plan will be developed with the Park County Weed Control Board. The subdivision will abide by the Montana County Weed Act (Title 7, Chapter 22, Sections 7-22-2101 through 7-22-2153).

5. IMPACTS ON WILDLIFE AND HABITAT

A. How would the subdivision affect critical wildlife areas such as big game wintering range, migration routes, nesting areas, wetlands or other important habitat?

The proposed subdivision contains wetland areas, as shown on the preliminary plat, that will be protected during and after construction of the subdivision. A wetland study was conducted by Sundog Ecological, Inc. and is contained in Appendix E: Wetland Delineation Report. This study delineates the wetland and surface water areas that exist on the development. Effects on the quality and quantity of wetland and surface water will be mitigated by designing around these areas to the greatest extent possible and as required by local, State, and Federal regulations.

The proposed subdivision has not been previously formally identified as big game wintering range or migration routes. The applicant has solicited comments from Montana Fish Wildlife and Parks, but none have been received at this time. See Appendix F: Public Agency Review for agency request for review documentation.

B. How would pets or human activity affect wildlife?

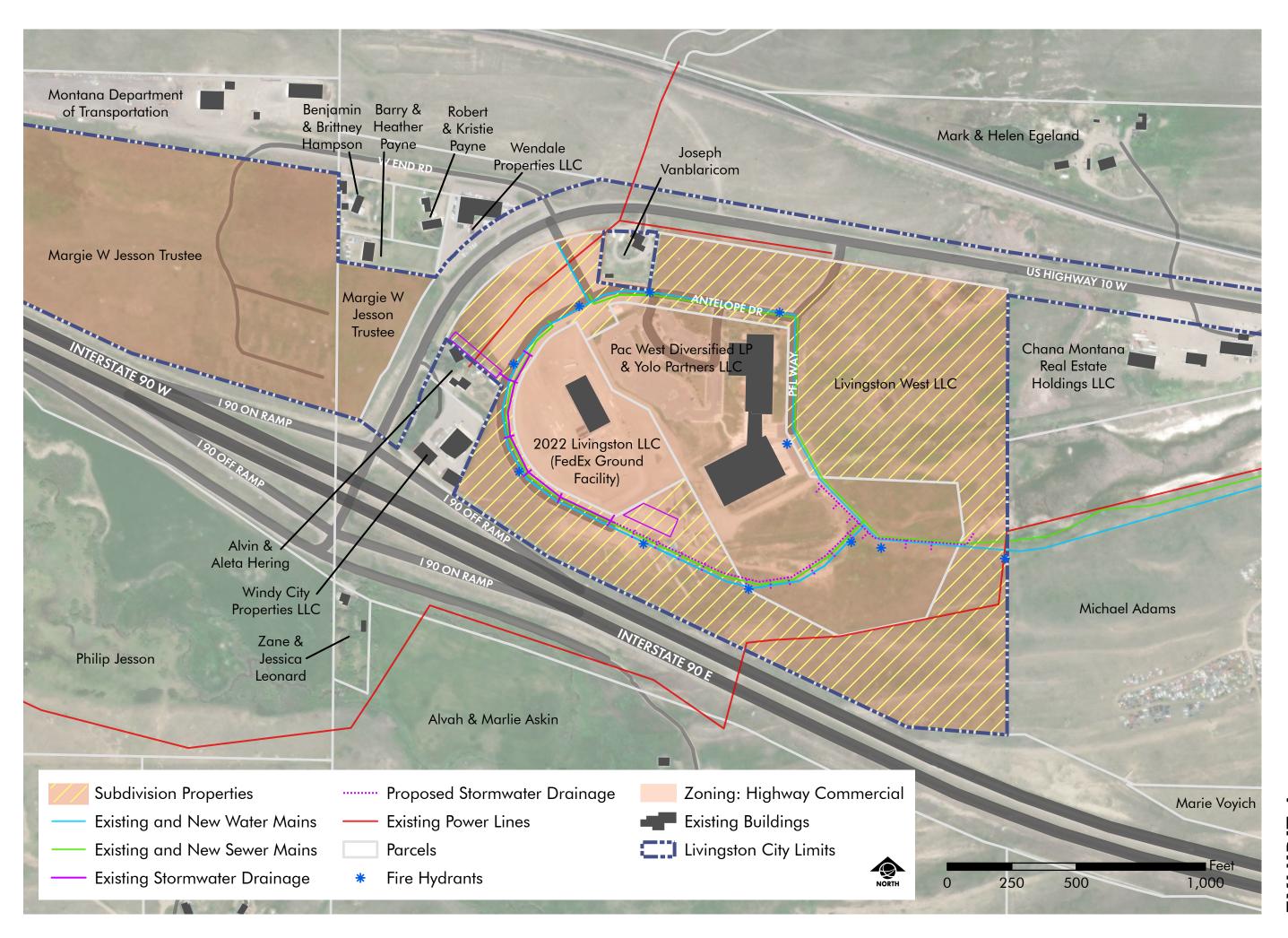
Pets and their owners will have access to the subdivision's private property, public sidewalks, any future trails, and the proposed dedicated open space parkland. It is suggested that pets be kept on leashes while in these areas. Wildlife will continue to be allowed access to proposed open spaces totaling approximately 20 acres.

6. IMPACTS ON PUBLIC HEALTH AND SAFETY

A. Would the subdivision be subject to hazardous conditions due to high voltage lines, airports, highways, railroads, high-pressure gas lines, or adjacent industrial uses?

No. The proposed Mountain View Subdivision Lots 12 - 21 are adjacent to the Montana Department of Transportation (MDT) Right of Way for Interstate 90. The proposed subdivision Lots 2 - 11 are adjacent to MDT Right of Way for State Highway 10. The proposed subdivision Lots 2 - 5 are approximately 500 feet from the Montana Rail Link railroad tracks to the north of Highway 10.

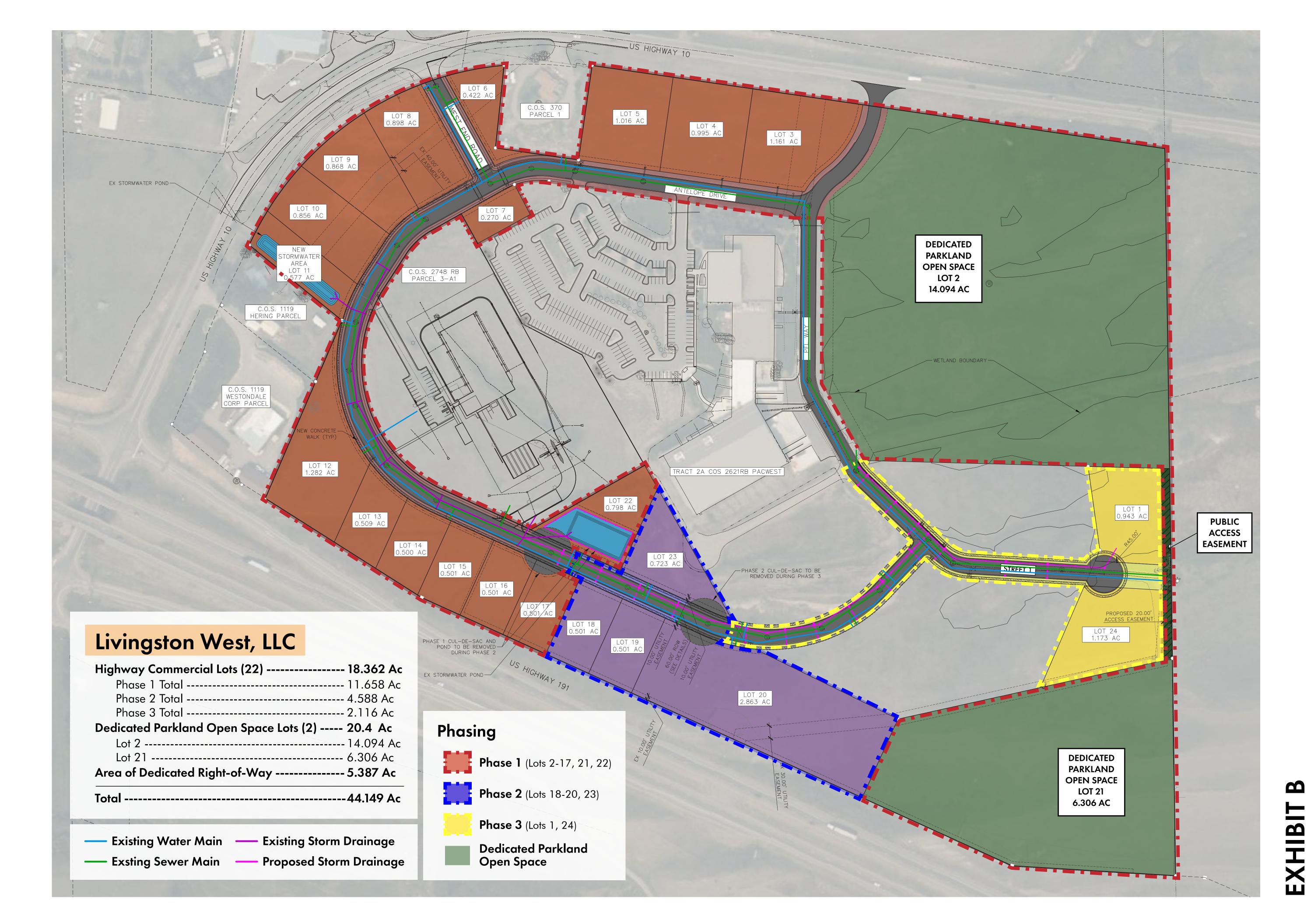
Despite the proximity of the proposed subdivision to the infrastructure referenced above, and because all the applicable setbacks are in place, the proposed Mountain View Subdivision would not be subject to hazardous conditions due to the adjacent infrastructure.


Some of the proposed subdivision lots will be adjacent to the Printing for Less facility and the FedEx Ground facility. These light industrial uses do not pose any hazardous conditions and have been constructed and will operate in accordance with the City of Livingston regulations that mitigate any hazards including noise.

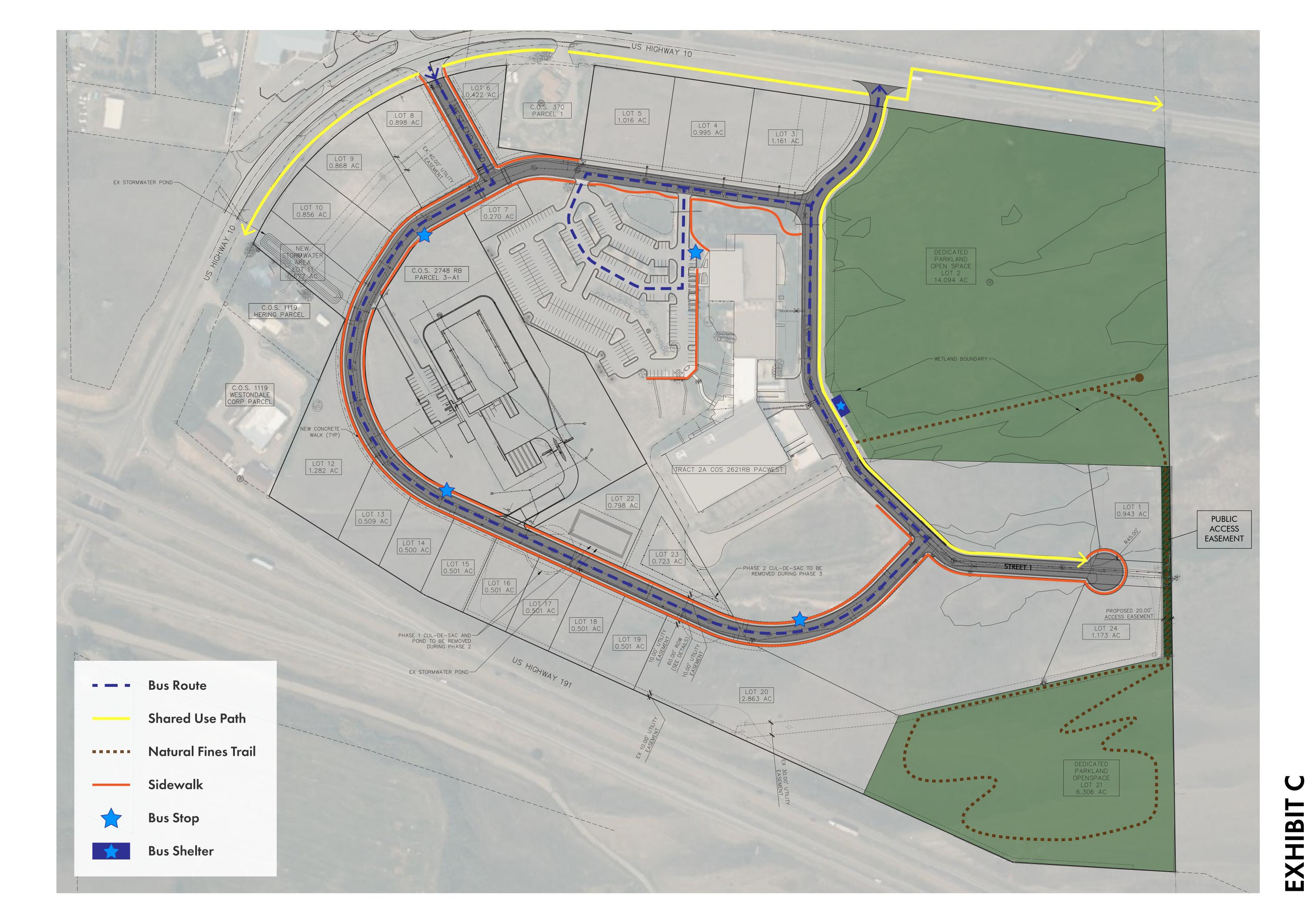
B. What existing uses may be subject to complaints from residents of the subdivision?

In theory any of the existing uses, public and private, may be subject to complaints from tenants or users of the proposed subdivision. The uses of potential concern, such as the highways and railroad, predate any development in the area and the characteristics of these uses are generally recognized and accepted. The CC&Rs will include a notice to possible purchasers of adjacent activities.

C. What public health or safety hazards, such as dangerous traffic or fire conditions, would be created by the subdivision?


The Mountain View Subdivision will not create any public health or safety hazards.

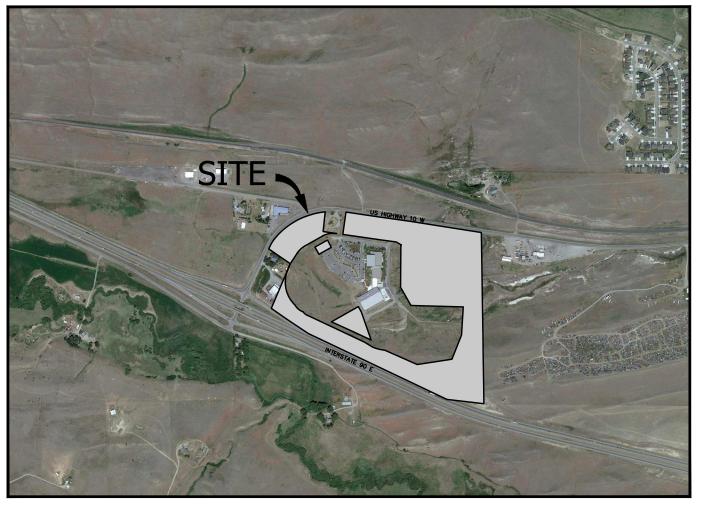
View Subdivision Mountain Vicinity Map **EXHIBIT A**

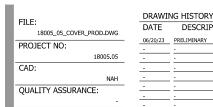

45

SANDERSON STEWART

Overall Development Plan

S S Ð \mathbf{O} Vov


Mountain View Subdivis Active Transportation Circulation


MOUNTAIN VIEW SUBDIVISION PROPOSED SITE & UTILITY IMPROVEMENTS FOR TRACT 1-A OF COS 2748RB LIVINGSTON, MONTANA

PREPARED FOR:

LIVINGSTON WEST, LLC **PO BOX 500** EMIGRANT, MT 59027

Sheet Title

C1.1 COVER

C3.1 SITE PLAN

C6.1 DETAILS

C4.1 UTILITY PLAN

C1.2 LEGEND, NOTES & ABBREVIATIONS C2.1 EXISTING SITE & DEMOLITION PLAN

C5.1 GRADING & STORM DRAINAGE PLAN

4

5 6 7

SCRIPTION	
NARY	3
	_
	_
-	

Enduring Community Design

C1.1

406.522.9876

sandersonstewart.com

	LINETYPES		ABBREVIATION
	EXISTING	PROPOSED	AC = FINISHED GRADE AT ASPHALT
SANITARY SEWER	SS SS	SS SS	BC = FINISHED GRADE AT BUILDING CORNER
STORM DRAIN	SD SD	<u> </u>	BRK = GRADE BREAK
WATER	w w	v v v	BFV = BUTTERFLY VALVE
CURB AND GUTTER			BVC = BEGIN VERTICAL CURVE
	EDGE_OF_EX_ASPHALT		CS = CURB STOP
	EDGE OF EX GRAVEL		EA = FINISHED GRADE AT EDGE OF ASPHALT
DGE OF GRAVEL			EC = FINISHED GRADE AT EDGE OF CONCRETE
ence – Barbwire ence – Chainlink/	x x	xx	EVC = END VERTICAL CURVE
WOVEN WIRE	OO	ooo	EW = FINISHED GRADE AT EDGE OF WALK
ENCE - VINYL	v v	vv	EX = APPROXIMATE EXISTING ELEVATION
ENCE - WOOD			FL = FINISHED GRADE AT FLOWLINE
IBER OPTIC	FO FO		FT = FEET
SAS PIPELINE	G G		FG = FINISHED GRADE
DIL PIPELINE	OIL OIL		GR = EXISTING GRADE AT GROUND
JNDERGROUND POWER	P P P	Р Р Р	GV = GATE VALVE
OVERHEAD POWER	OHP OHP	OHP OHP	HP = HIGH POINT
TELEPHONE	T T T	T T T	LF = LINEAL FOOT
TELEVISION/CABLE	TV TV	TV TV	LT = LEFT
CONTOUR	3157	3157	
DEMO AREA			(# KEYNOTE CALL OUT (SEE KEYNOTE LEGEND)
PROPOSED ASPHALT			<i>,</i>
PROPOSED CONCRETE			
ROPOSED GRAVEL			

- ▷ EXISTING WATER REDUCER PROPOSED WATER REDUCER
- \bowtie EXISTING WATER VALVE
- Η PROPOSED WATER VALVE
- Ω EXISTING FIRE HYDRANT
- PROPOSED FIRE HYDRANT
- *8 EXISTING CURB STOP
- ** PROPOSED CURB STOP
- Ð FIRE DEPT. CONNECTION
- ∅ EXISTING WATER MANHOLE

- W WATER METER
 - YARD HYDRANT
 - S EXISTING SANITARY SEWER MANHOLE
 - PROPOSED SANITARY SEWER MANHOLE
 - SANITARY SEWER CLEAN OUT
 - D EXISTING STORM DRAIN MANHOLE
 - PROPOSED STORM DRAIN MANHOLE
 - EXISTING CATCH BASIN

- TELEPHONE PEDESTAL
- C COMMUNICATIONS MANHOLE

TELEPHONE MANHOLE

- œ COMMUNICATIONS PEDESTAL
- FO FIBER OPTIC PEDESTAL
- G
- 0

 \bigcirc

Ξ

- PROPOSED CATCH BASIN
- ROOF DRAIN
- TELEPHONE BOX

SYMBOLS

- - E ELECTRIC PEDESTAL
- GAS MANHOLE
- GAS METER
- 00 GAS WELL
- ⋈ GAS VALVE
 - EJB ELECTRIC JUNCTION BOX

- Ρ TRANSFORMER
- E POWER MANHOLE
- EM POWER METER
- -O- POWER POLE
- ← GUYWIRE
- ☑ LIGHT POLE
- ---- SIGN
- BOLLARD ☐ EXISTING MONUMENT BOX
- PROPOSED MONUMENT BOX
- IRRIGATION BOX

- IRRIGATION VALVE \otimes
- BUSH
- * CONIFEROUS TREE
- 殽 DECIDUOUS TREE
- \otimes SIGNAL POLE
- FOUND CORNER MONUMENT AS NOTED 0
- SET CORNER MONUMENT, REBAR WITH CAP
- Ð BENCHMARK
- SECTION QUARTER CORNER
- SECTION CORNER
- NOTE:

COMPANIES BEFORE EXCAVATION FOR EXACT LOCATIONS.

MAY 2014.

-UNLESS OTHERWISE SPECIFIED, ALL CONSTRUCTION LAYOUT AND STAKING SHALL BE PERFORMED UNDER THE RESPONSIBLE CHARGE OF A LAND SURVEYOR LICENSED IN THE STATE WHERE THE PROJECT IS LOCATED AND BY A PARTY CHIEF OR ENGINEERING TECHNICIAN EXPERIENCED IN CONSTRUCTION LAYOUT AND STAKING TECHNIQUES AS ARE REQUIRED BY THE SPECIFIC TYPE OF WORK BEING PERFORMED.

ONS

PC = POINT OF CURVATURE
PI = POINT OF INTERSECTION
POC = POINT ON CURVE
PRC = POINT OF REVERSE CURVE
PT = POINT OF TANGENCY
PVI = POINT OF VERTICAL INTERSECTION
RED = REDUCER
RT = RIGHT
SD = STORM DRAIN
SDI = STORM DRAIN INLET
SDMH = STORM DRAIN MANHOLE
SRVC = SERVICE
SS = SANITARY SEWER
SSMH = SANITARY SEWER MANHOLE
TC = FINISHED GRADE AT TOP BACK OF CURB
TW = FINISHED GRADE AT TOP OF WALL
WTR = WATER
(TYP.) = TYPICAL

REVIEW FOR н ELIMINARY PR

-EXISTING UNDERGROUND INSTALLATIONS & PRIVATE UTILITIES SHOWN ARE INDICATED ACCORDING TO THE BEST INFORMATION AVAILABLE TO THE ENGINEER. THE ENGINEER DOES NOT GUARANTEE THE ACCURACY OF SUCH INFORMATION. SERVICE LINES (WATER, POWER, GAS, STORM, SEWER, TELEPHONE & TELEVISION) MAY NOT BE STRAIGHT LINES OR AS INDICATED ON THE PLANS. STATE LAW REQUIRES CONTRACTOR TO CALL ALL UTILITY

-ALL IMPROVEMENTS SHALL BE PERFORMED IN ACCORDANCE WITH MONTANA PUBLIC WORKS STANDARD SPECIFICATIONS 6TH EDITION, APRIL, 2010, AND THE CITY OF LIVINGSTON STANDARD MODIFICATIONS, APPROVED

49

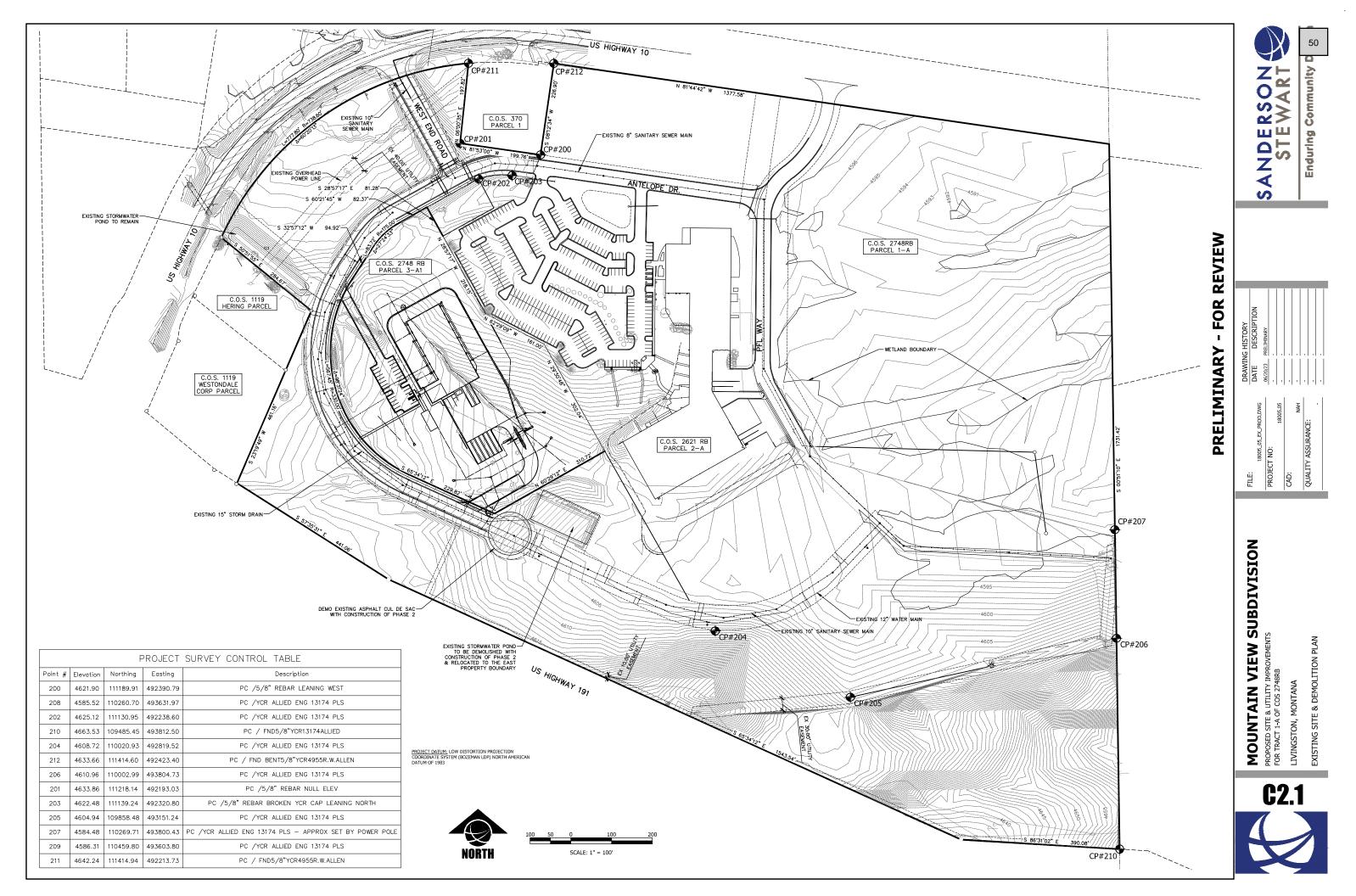
munity

Com

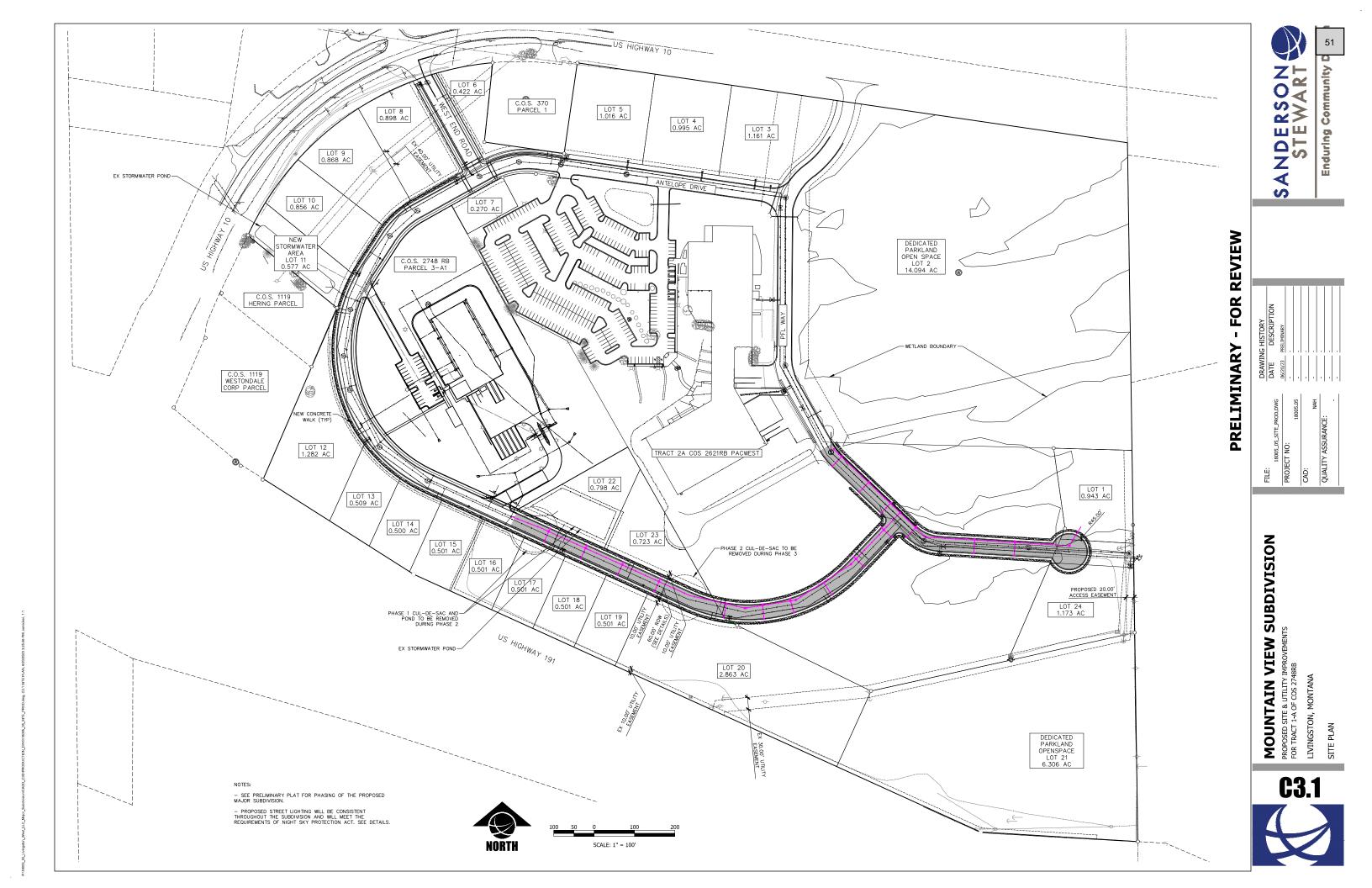
iduring

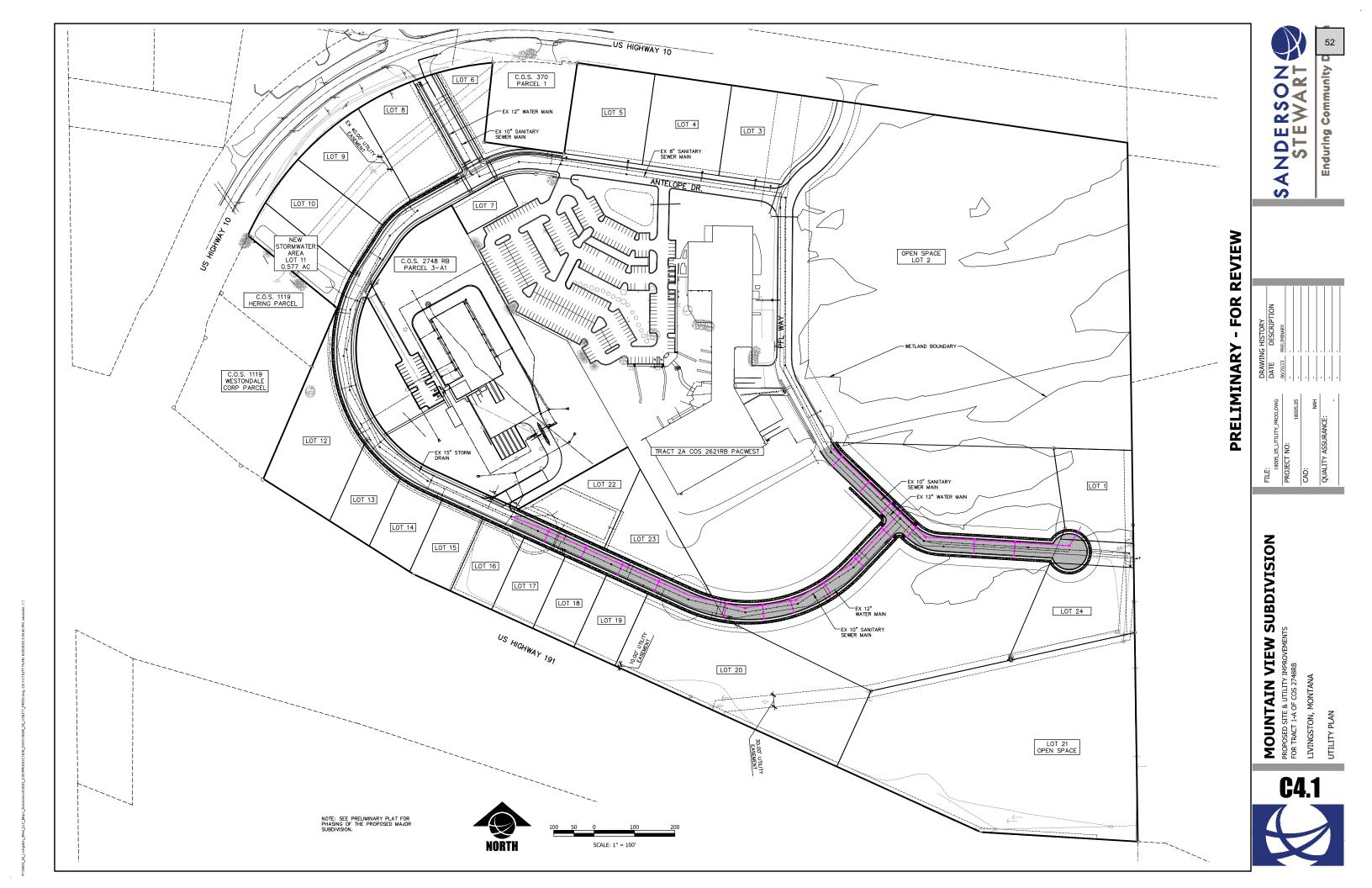
E.

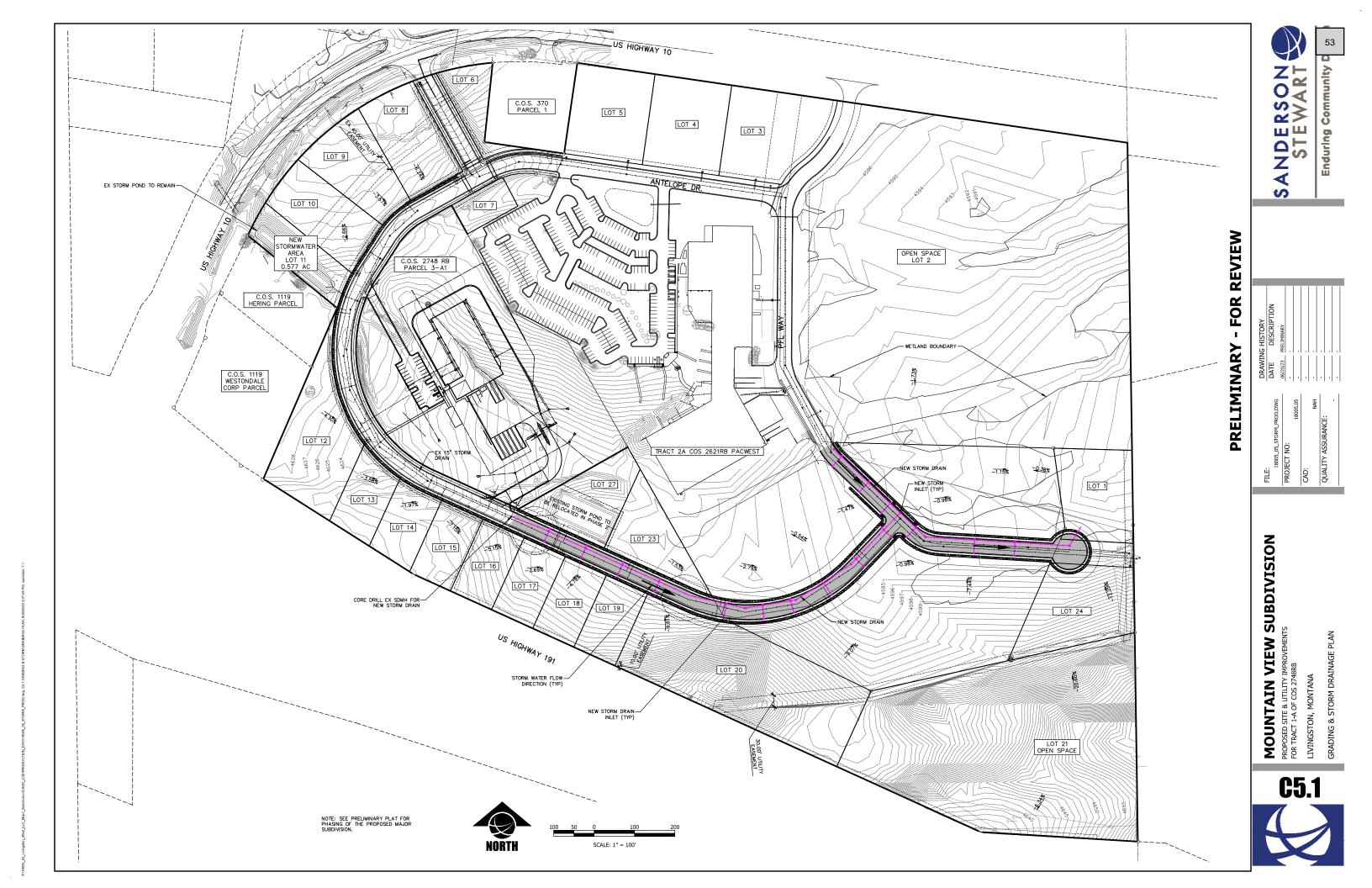
ART

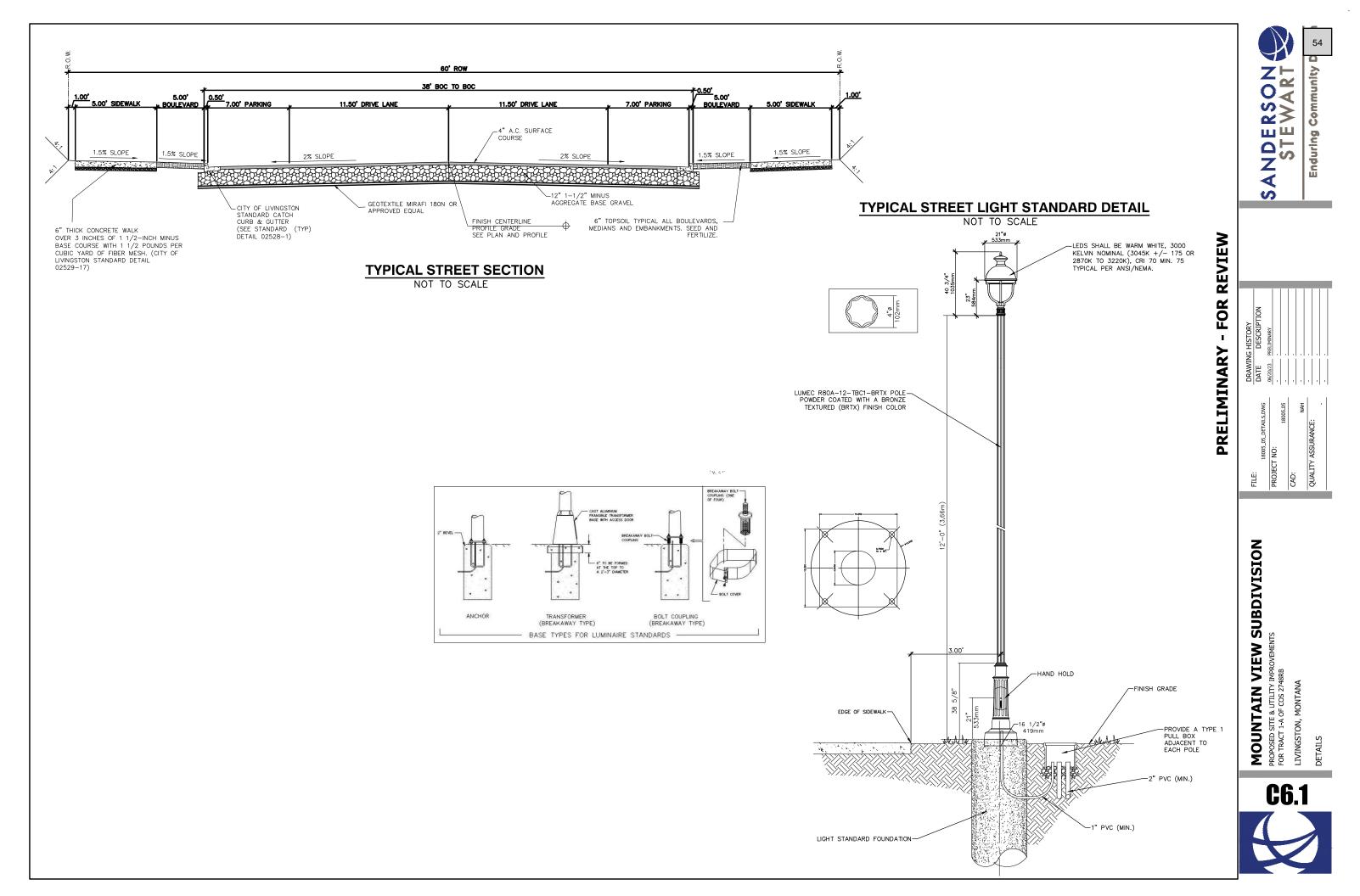

S.

шШ

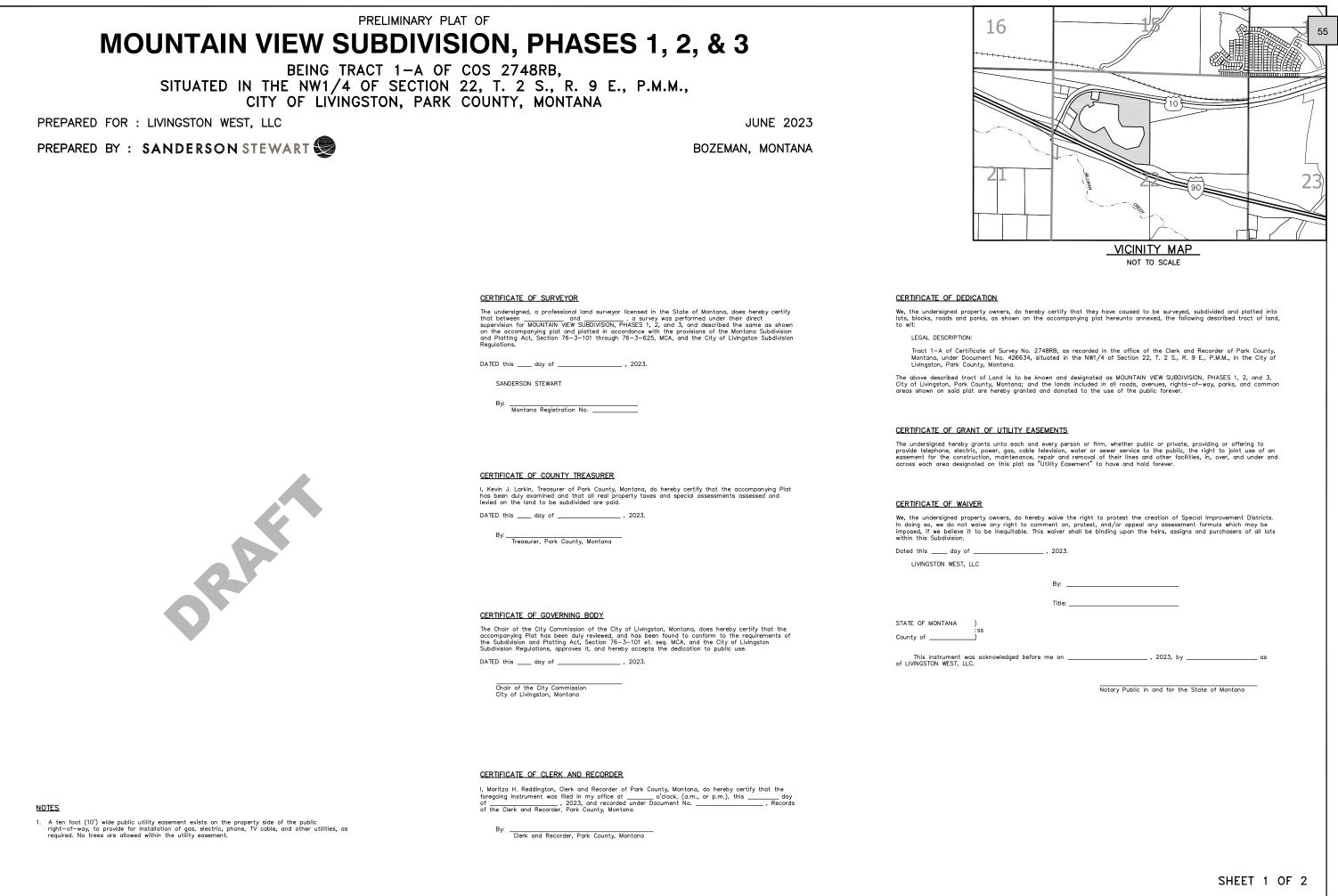

S

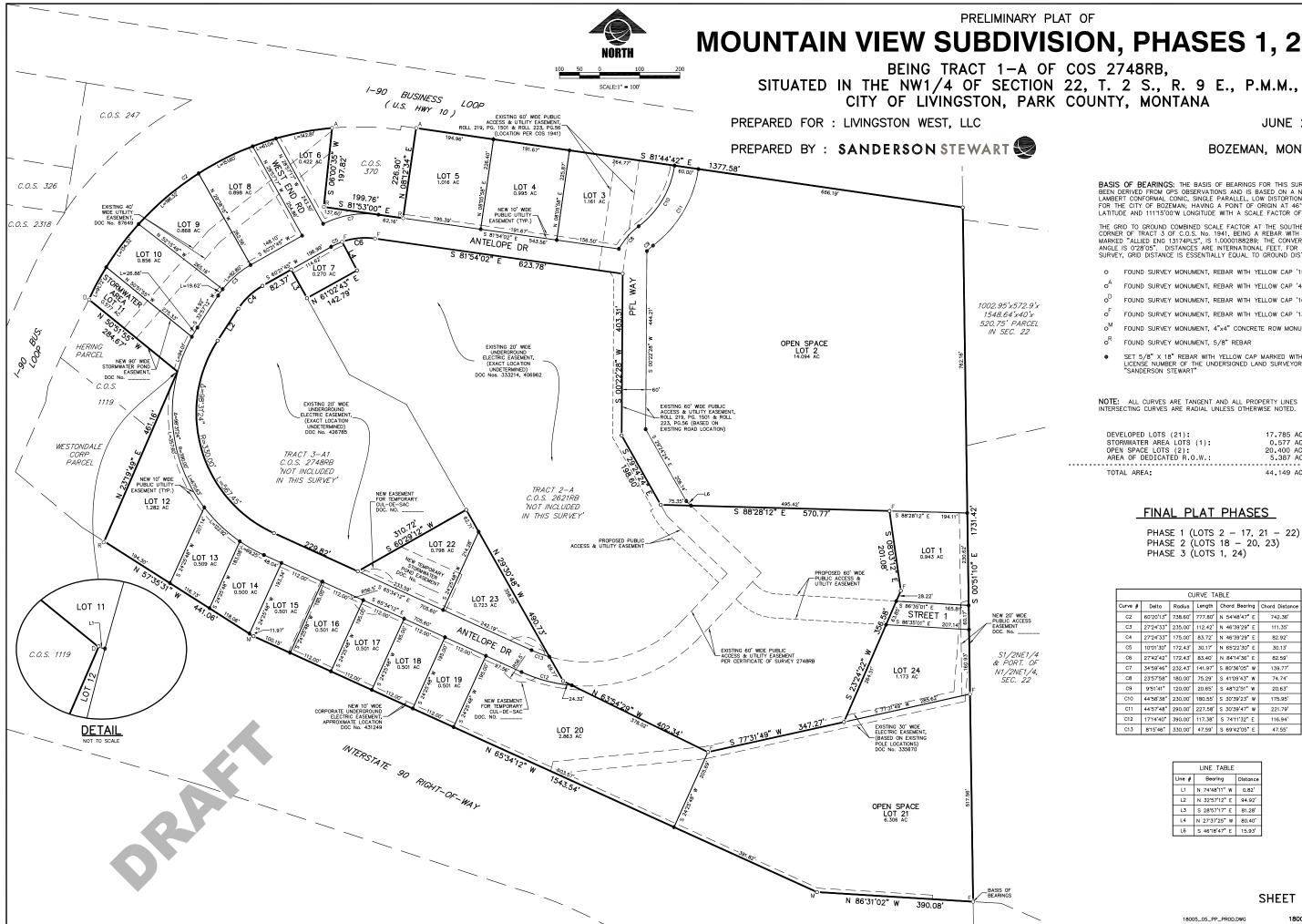

N V


S



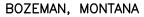
West_LLC_Major_Subdivision/GADD_C3D/PRODUCTION_DW0180/6_05_EX_PROD.dwg, C2.1 EXISTING SITE & DEMOLITION PLAN,





gston. West LLC. Major: SubdivisioniCADD C3D/PRODUCTION. DWG/18005.05. DETAILS.dwg. C6:1 DETAILS, 6/20/2023 3

18005_05_PP_PROD.DWG


18005.05 6/20/23 CDK

PRELIMINARY PLAT OF MOUNTAIN VIEW SUBDIVISION, PHASES 1, 2, &

CITY OF LIVINGSTON, PARK COUNTY, MONTANA

JUNE 2023

BASIS OF BEARINGS: THE BASIS OF BEARINGS FOR THIS SURVEY HAS BEEN DERIVED FROM GPS OBSERVATIONS AND IS BASED ON A NAD 83, LAMBERT CONFORMAL CONIC, SINGLE PARALLEL, LOW DISTORTION PROJECTION FOR THE CITY OF BOZEMAN; HAVING A POINT OF ORIGIN AT 4615'00 N LATITUDE AND 11115'00 W LONGITUDE WITH A SCALE FACTOR OF 1.000185.

THE GRID TO GROUND COMBINED SCALE FACTOR AT THE SOUTHEAST CORNER OF TRACT 3 OF C.O.S. No. 1941, BEING A REBAR WITH YELLOW CAP MARKED "ALLIED ENG 13174PLS", IS 1.0000188289; THE CONVERGENCE ANGLE IS O'28'05". DISTANCES ARE INTERNATIONAL FEET. FOR THIS SURVEY, GRID DISTANCE IS ESSENTIALLY EQUAL TO GROUND DISTANCE.

0	FOUND	SURVEY	MONUMENT,	REBAR	WITH	YELLOW	CAP	'15273'

- of FOUND SURVEY MONUMENT, REBAR WITH YELLOW CAP '4955'
- FOUND SURVEY MONUMENT. REBAR WITH YELLOW CAP '10010
- FOUND SURVEY MONUMENT, REBAR WITH YELLOW CAP '13174
- FOUND SURVEY MONUMENT, 4"x4" CONCRETE ROW MONUMENT FOUND SURVEY MONUMENT, 5/8" REBAR

SET 5/8" X 18" REBAR WITH YELLOW CAP MARKED WITH THE LICENSE NUMBER OF THE UNDERSIGNED LAND SURVEYOR AND "SANDERSON STEWART"

NOTE: ALL CURVES ARE TANGENT AND ALL PROPERTY LINES INTERSECTING CURVES ARE RADIAL UNLESS OTHERWISE NOTED.

DEVELOPED LOTS (21):	17.785 ACRES
STORMWATER AREA LOTS (1):	0.577 ACRES
OPEN SPACE LOTS (2):	20.400 ACRES
AREA OF DEDICATED R.O.W.:	5.387 ACRES
TOTAL AREA:	44.149 ACRES

FINAL PLAT PHASES

PHASE 1 (LOTS 2 - 17, 21 - 22) PHASE 2 (LOTS 18 - 20, 23) PHASE 3 (LOTS 1, 24)

CURVE TABLE											
Curve #	Delta	Radius	Length	Chord Bearing	Chord Distance						
C2	60'20'13"	738.60'	777.80'	N 54'48'47" E	742.36'						
C3	27'24'33"	235.00'	112.42'	N 46'39'29" E	111.35'						
C4	27'24'33"	175.00'	83.72'	N 46'39'29" E	82.92'						
C5	10'01'30"	172.43	30.17	N 65'22'30" E	30.13'						
C6	27'42'42"	172.43'	83.40'	N 84'14'36" E	82.59'						
C7	34'59'46"	232.43'	141.97'	S 80'36'05" W	139.77'						
C8	23'57'58"	180.00'	75.29'	S 41'09'43" W	74.74'						
C9	9'51'41"	120.00'	20.65'	S 48'12'51" W	20.63'						
C10	44'58'38"	230.00'	180.55'	S 30'39'23" W	175.95'						
C11	44'57'48"	290.00'	227.58'	S 30'39'47" W	221.79'						
C12	17'14'40"	390.00'	117.38'	S 74'11'32" E	116.94'						
C13	8'15'46"	330.00'	47.59'	S 69'42'05" E	47.55'						

LINE TABLE										
Line #	Distance									
L1	N 74'48'11" W	0.82'								
L2	N 32'57'12" E	94.92								
L3	S 28'57'17" E	81.28'								
L4	N 27'37'25" W	80.40'								
L6	S 4618'47" E	15.93'								

SHEET 2 OF 2

18005.05 6/20/23 CDM

MOUNTAIN VIEW MAJOR SUBDIVISION PRELIMINARY PLAT APPLICATION

Project No. 18005.05

APPENDIX A Preliminary

Stormwater Report

Billings Bozeman Denver Fort Collins

May 3, 2023 Project No. 18005.05

PRELIMINARY STORMWATER REPORT FOR THE MOUNTAIN VIEW SUBDIVISION LIVINGSTON, MONTANA

OVERVIEW NARRATIVE

The purpose of this preliminary drainage report is to present a summary of calculations performed to quantify storm drainage improvements required for the Mountain View Major Subdivision in Livingston, Montana. The project is located in the City of Livingston within Park County, Montana. This site is located between Hwy 10 and Hwy 191. The existing area consists of an access roadway, two (2) commercial facilities, grasslands, and the associated utilities. The storm drain system will be designed to meet the requirements in *The City of Livingston Design Standards and Specification Policy* (DSSP) of August 2022. The "Storm Drainage Report Ruedebusch Offsite Street and Utility" dated May 24, 2022 is referenced in this report, which is located in Appendix C.

EXISTING CONDITIONS

The existing topography of the subdivision flows to the southeast to the existing wetland area. There is a temporary detention pond at the end of the asphalt cul-de-sac as shown in the report previously mentioned. This detention pond will be removed and a new detention pond will be constructed as part of the remaining infrastructure proposed. There is also an existing detention pond to the southeast of the Printing for Less facility that treats a portion of their runoff. The remaining land cover surrounding the proposed roadway is generally vacant grassland. Runoff is generally conveyed into the existing shallow ditches and depressions and directed towards the existing wetland to the east of the site. The new development area is hydrologically divided into five watershed areas in its existing state, Existing Watershed 1, 2, 3, 4, and 5 as shown on Exhibit A in Appendix A. Preliminary hydrologic calculations for these watersheds can be found in Appendix B.

ENDURING COMMUNITY DESIGN

PROPOSED CONDITIONS

The proposed improvements of the Mountain View Subdivision include roads, sidewalks, open lots and open space that will house the stormwater facilities. There will be the removal of two (2) temporary basins as part of the full build out of the subdivision. The temporary detention pond was constructed as a part of the Ruedebusch Offsite Street and Utility project.

The new development area of the subdivision has been broken into seven (7) total basins as shown on Exhibit B in Appendix A. Preliminary hydrologic calculations for these watersheds can be found in Appendix B.

Basin A includes the proposed roadways and sidewalks throughout the southeast side of the subdivision. All other basins include the parcels adjacent to the proposed roadway as seen in Appendix A.

Basin A runoff will be collected in the gutters and conveyed through storm drainage infrastructure toward the proposed detention pond.

Basins B, C, and D runoff will generally drain toward the new street and will be conveyed along swales following the proposed roadway. These swales will convey the runoff towards the proposed detention pond. As development occurs on the lots, the swales will be filled as the developments will be required to mitigate runoff within their site. The new detention basin at the end of the asphalt cul-de-sac will be designed to store and convey the pre-development peak flows from each of these basins.

Basin E and F is generally "open space" that will remain undeveloped. The runoff will follow existing drainage patterns and diverted to the wetland on the eastern edge of the subdivision.

Basin G runoff will drain to an existing culvert under Antelope Drive then to PFL Way to be directed to existing drainage patterns and diverted to the wetlands on the eastern edge of the subdivision.

For the remaining areas of the Mountain View Subdivision, reference the previously approved Ruedebusch Offsite Street and Utility Storm Drainage Report located in Appendix C.

None of the drainage basins in the subdivision will drain into the MDT right of way. There is an existing culvert under Interstate 90 that flows to the north into the subdivision near Basin C. As development occurs, it will be the responsibility of the associated developments to mitigate the additional flow from the MDT right of way.

INLETS

Inlet locations will be designed to capture runoff from the right-of-way area and limit the spread width to less than 9.5-feet for this project's typical section. Bentley's FlowMaster program, which uses the methodology of the FHWA HEC-22 Manual, will be utilized to calculate inlet spacing. This program will be used to calculate the spread width and gutter flow depth at each of the inlets using the calculated peak post-development flow rate from the 25-year storm event, inlet dimensions, and road parameters. The allowable limit for the depth of flow in the curb line is 0.15-feet below the top of curb, but the

design will provide at least 0.3-feet. The inlets will be analyzed with a 50% clogging factor.

PIPES

The Manning's equation will be used to analyze and design the storm drain pipes throughout the project. Pipe slopes will be set to maintain a minimum depth of cover of two feet below final grade and the minimum velocity of 3-fps when flowing full. The storm drain pipes will be designed to convey the peak flow from the 25-year storm event. When the depth of flow in the pipe exceeds full flow capacity, the next larger size pipe will be used.

BASIN/UNDERGROUND DETENTION FACILITY

As mentioned above, a new detention basin is proposed to the northeast of the proposed asphalt culde-sac at the end of the street. The proposed detention basin will treat the runoff and limit the discharge flow rate to the 2-year pre-development flow rate from the existing watershed.

The new detention basin will have a maximum side slope steepness of 4:1. Site detention will be calculated using the 10-year design storm allowing for the discharge of the 2-year pre-development flow rate.

MAJOR STORM EVENTS

In the event of a 100-year storm event, the proposed detention basin will overtop and flow to the east with shallow concentrated flow.

Appendices

Appendix A – Watershed Exhibits Appendix B – Preliminary Hydrology Calculations Appendix C – Storm Drainage Report Ruedebusch Offsite Street and Utility Appendix D – 2019 Wetlands Report

Mountain View Subdivision Stormwater Report 18005.05

ENDURING COMMUNITY DESIGN

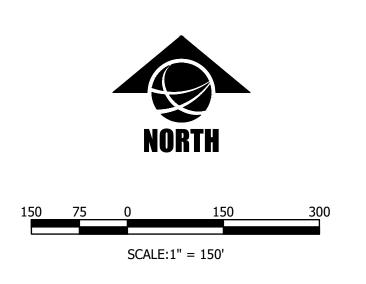
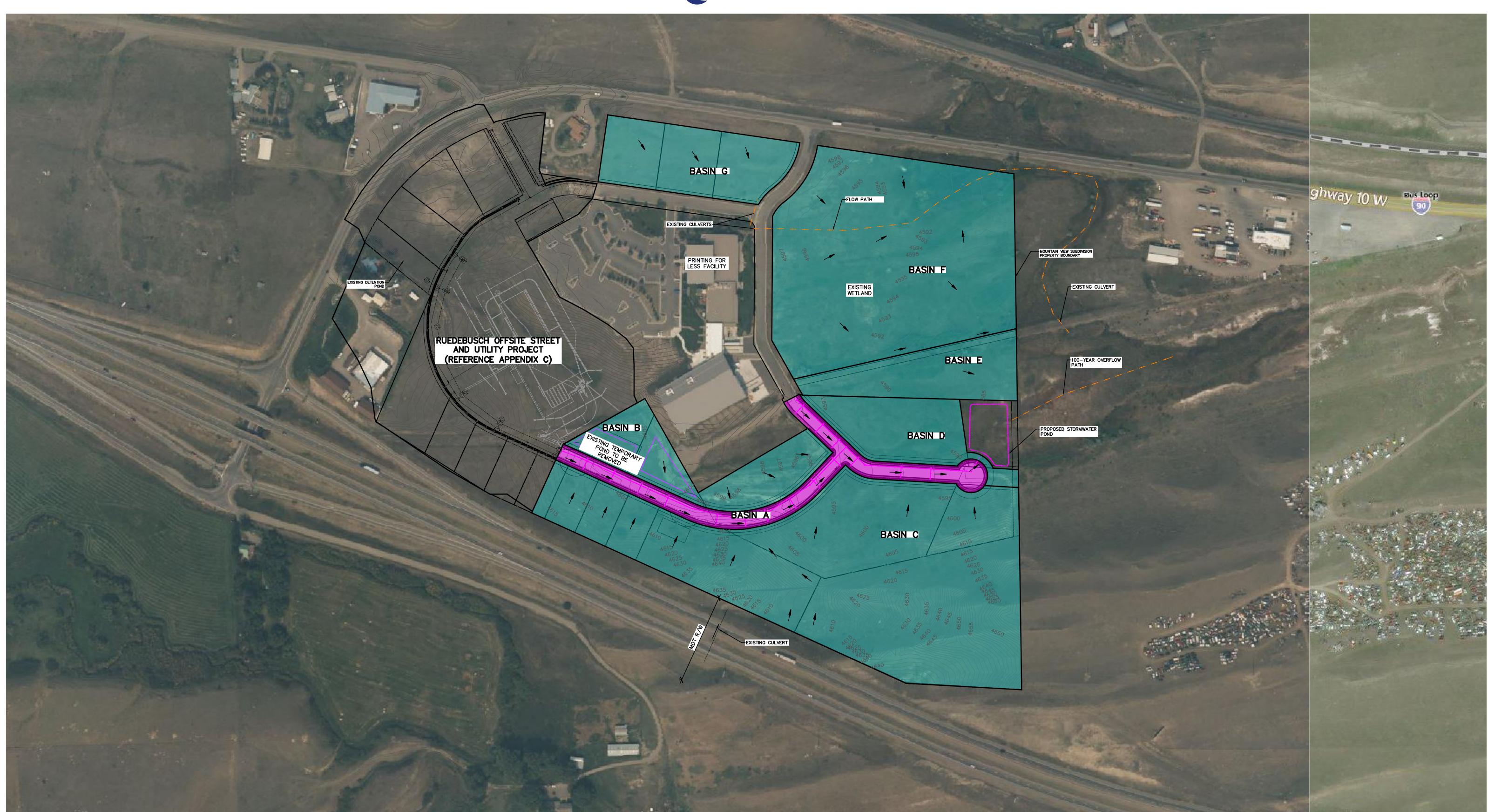


EXHIBIT A

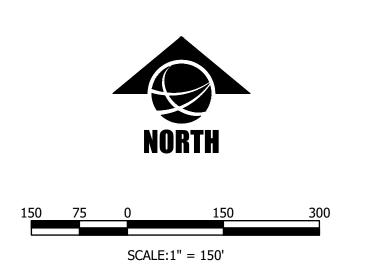
PRE-DEVELOPMENT WITHIN MOUNTAIN VIEW SUBDIVISION


LIVINGSTON WEST, LLC.

SEPTEMBER 2022 LIVINGSTON, MONTANA

18005.05

NJH



PREPARED FOR : LIVINGSTON WEST, LLC.
PREPARED BY : SANDERSONSTEWART

EXHIBIT B

POST-DEVELOPMENT within Mountain view subdivision

> MAY 2023 LIVINGSTON, MONTANA

18005.05

Mountain View Subdivision Stormwater Report 18005.05

APPENDIX B

ENDURING COMMUNITY DESIGN

Mountain View Subdivision 18005.05 05/2/2023

PRE DEVELOPMENT/EXISTING BASINS

ws	Tc (hours)	Area (sf)	Area (ac.)	Area Impervious (sf)	Area Gravel (sf)	Area Pervious (sf)	RC	% IC	I ₂ (in/hr)	I ₁₀ (in/hr)	I ₂₅ (in/hr)	Q ₂ Peak Flow (cfs)	Q ₁₀ Peak Flow (cfs)	Q ₂₅ Peak Flow (cfs)
1	0.350	804,928	18.48	0	0	804,928	0.20	0%	0.940	1.583	1.840	3.47	5.85	6.80
2	0.450	187,231	4.30	0	0	187,231	0.20	0%	0.796	1.344	1.567	0.68	1.16	1.35
3	0.292	152,213	3.49	0	0	152,213	0.20	0%	1.060	1.782	2.068	0.74	1.25	1.45
4	0.692	518,145	11.89	0	0	518,145	0.20	0%	0.599	1.017	1.190	1.43	2.42	2.83
5	0.283	138,157	3.17	0	0	138,157	0.20	0%	1.080	1.816	2.107	0.69	1.15	1.34

POST DEVELOPMENT/PROPOSED BASINS

ws	Tc (hours)	Area (sf)	Area (ac.)	Area Impervious (sf)	Area Gravel (sf)	Area Pervious (sf)	RC	% IC	I ₂ (in/hr)	I ₁₀ (in/hr)	I ₂₅ (in/hr)	Q2 Peak Flow (cfs)	Q ₁₀ Peak Flow (cfs)	Q ₂₅ Peak Flow (cfs)
А	0.083	111,236	2.55	83,558	0	27,679	0.73	75%	2.423	4.023	4.611	4.49	7.46	8.55
В	0.283	127,336	2.92	0	0	127,336	0.20	0%	1.080	1.816	2.107	0.63	1.06	1.23
С	0.217	681,016	15.63	0	0	681,016	0.20	0%	1.290	2.162	2.502	4.03	6.76	7.82
D	0.317	103,834	2.38	0	0	103,834	0.20	0%	1.004	1.689	1.962	0.48	0.81	0.94
Е	0.300	120,848	2.77	0	0	120,848	0.20	0%	1.040	1.750	2.031	0.58	0.97	1.13
F	0.692	518,145	11.89	0	0	518,145	0.20	0%	0.599	1.017	1.190	1.43	2.42	2.83
G	0.283	138,157	3.17	0	0	138,157	0.20	0%	1.080	1.816	2.107	0.69	1.15	1.34

Mountain View Subdivision Stormwater Report 18005.05

APPENDIX C

Storm Drainage Report Ruedebusch Offsite Street and Utility

ENDURING COMMUNITY DESIGN

STORM DRAINAGE REPORT RUEDEBUSCH OFFSITE STREET AND UTILITY

21098.01

CITY OF LIVINGSTON

Community Planning

Landscape and Placemaking

> Infrastructure Engineering

Surveying and Mapping

Branding

May 24th, 2022

RUEDEBUSCH OFFSITE STREET AND UTILITY IMPROVEMENTS STORM DRAINAGE REPORT LIVINGSTON, MONTANA

CERTIFICATION

I hereby state that this Storm Drainage Report has been prepared by me or under my supervision and meets the standard of care and expertise which is usual and customary in this community of professional engineers. The analysis has been prepared utilizing procedures and practices specified by the City of Livingston and within the standard accepted practices.

udeck

Steph Hudock, P.E.

05/24/2022

Date

Billings Bozeman Denver Fort Collins SandersonStewart.com

Billings Bozeman Denver Fort Collins

November 24, 2021 Revised: January 25, 2022 Revised: May 24, 2022 Project No. 21098

STORM DRAINAGE REPORT FOR RUEDEBUSCH OFFSITE STREET AND UTILITY IMPROVEMENTS LIVINGSTON, MONTANA

OVERVIEW NARRATIVE

The purpose of this drainage report is to describe the drainage design associated with the improvements to the Ruedebusch Off-site Public Infrastructure Improvements project. The project is located in the City of Livingston within Park County, Montana. This site is located between Hwy 10 and Hwy 191. The existing area consists of 16.8 acres of grassland with no existing infrastructure or structures. The proposed improvements will consist of a new roadway within a new 60 foot right-of-way and will include drive lanes, curb and gutter, boulevards, and sidewalk on both sides of the road. The project will extend 1,550-feet from Antelope Drive to the West and the road will curve to the SE ending in an asphalt bulb. The storm drain system will be designed to meet the requirements in *The City of Livingston Design Standards and Specification Policy* (DSSP) of February 2021.

HYDROLOGY

The Rational Method and rainfall data provided was used to calculate the runoff volumes for the 10year storm event for the runoff storage facilities and the 25-year storm event for the storm drain conveyance facilities. The site stormwater improvements have been designed with the intent to meet the current City of Livingston drainage regulations for the entire site to the extent feasible. Watersheds were delineated for both existing and proposed conditions and are shown in Exhibits A and B in Appendix A. The weighted runoff coefficient "C" was calculated for each contributing area using 0.9 for impervious areas, 0.8 for gravel areas, 0.2 for undeveloped areas(grassland), and 0.3 for the landscaped boulevard and adjacent pervious area. The results of the hydrologic analysis for the storm events described above are shown in Appendix B.

70

Hydrologic Equations

 $C_{wd} = W eighted Runoff Coefficient$ A = Area (acres) I = Rainfall Intensity (in/hr) Q = Peak Runoff (cfs) $Q = C_{wd} \times I \times A$

Water Quantity Volume

 $Q (cfs) = C \times 0.51 \text{ in/} hr \times A (acre)$ $V (cf) = 7200 \text{ sec} \times Q (ft^3)$

Water Quality Volume

V(cf) = 0.5 in $\div 12$ in $\times A(sf)$

EXISTING CONDITIONS

The existing topography of the site flows to the southeast to the existing wetland area. There are no existing stormwater facilities in the area. Surficial soils are a topsoil or fill which was encountered in all borings. The underlying soils were a clay with varying amounts of sand and silt ranging from 0.5-feet to 21.5-feet below ground surface. Sand with varying amounts of clay and gravel were present in some borings ranging from 1.5-feet to 6.5 feet below ground surface. Sandstone and claystone were encountered depths below ground surface ranging from 5-feet to 41.5-feet. Groundwater was encountered at ranging depths from 6 to 15 feet below existing site elevations. The Geotechnical Report is attached in Appendix D. The land cover surrounding the corridor is generally vacant grassland. Runoff is generally conveyed into the existing shallow ditches and depressions.

The project area is hydrologically divided into three watershed areas, Existing Watershed 1, 2 and 3 as shown on Exhibit A in Appendix A. Runoff from Existing Watershed 1 overland flows to existing Antelope Drive to the east. This area is captured by an existing culvert which is then routed under an existing approach to a detention basin on COS 2621RB Parcel 2-A.

Runoff from Existing Watershed 3 overland flows to the south and then east eventually draining into the existing wetland to the east of PFL Way. Runoff within Existing Watershed 3 discharges to the outfall location for the proposed drainage system. Therefore, the peak flows from this watershed were compared against the proposed peak flows.

Existing Watershed 3:

Area = 13.06 acres Runoff Coefficient = 0.2 Time of Concentration = 17.10 min 2-Year Peak Flow = 2.81 cfs 10-Year Peak Flow = 4.72 cfs 25-Year Peak Flow = 5.48 cfs Runoff from Existing Watershed 3 flows to the existing ditch located on the western edge of the property as shown on Exhibit A in Appendix A. This ditch functions more like a retention area since it is relatively flat with little positive flow and the end of the ditch is filled in. This ditch not only receives runoff from the adjacent land but also from dual 36-inch crossing culverts under Highway 10. These culverts primarily convey runoff from west of the project area but might also convey irrigation waste water It is unknown how much water is conveyed through these culverts. The water that enters the existing ditch is generally conveyed to the south but the ditch terminates and water is retained within the ditch. There are two overtopping locations of the ditch. The first is at elevation 4626.0' where runoff would overtop into the Highway 10 roadside ditch at the exit of the culverts. There is also an overtopping elevation point at the end of the ditch where it terminates at elevation 4623.00'. For water to enter the end of the ditch, it must first overtop the intermediate high points with in the ditch at elevation 4625.0'. Based on a visual inspection of the ditch and a desktop review, it does not appear that water is conveyed to the end of the ditch. As shown image below taken June 17th, 2021 (Figure 4), most of the runoff that is conveyed to the ditch is blocked by West End Road to the west. Areas of high water retention are characterized by green grass, this ditch does not show the characterizations of high water retention.

Figure 1: Dual 36" Culverts Looking West (exit of culverts)

Figure 2: Entrance to Ditch Looking East (exit of culverts behind photographer)

Figure 3: Center of the Ditch Looking West

Figure 4: End of Ditch Looking East

Figure 5: Aerial Image of Ditch

PROPOSED CONDITIONS

The storm drain design associated with the new road improvements will consist of new curb and gutter, curb inlets and storm drain trunkline. The proposed design is also hydrologically split into two Major Watersheds based on their discharge locations, Proposed Watershed A and Proposed Watershed B as shown on Exhibit B in Appendix A.

Proposed Watershed A is hydrologically split into two sections, Proposed Watershed A1 and A2. Runoff from Proposed Watershed A2 will match existing drainage patterns. Runoff from Proposed Watershed A1 will flow into Antelope Drive east towards the intersection with PFL Way. Runoff will flow in the gutter of PFL Way until the end of the curb where runoff is diverted into the existing wetland to the east. No new inlets and pipes are proposed for Proposed Watershed A.

Runoff from Proposed Watershed B is split into three separate basins as Shown on Exhibit B in Appendix A. Proposed Watershed B1 is the area west of the new Street B, Proposed Watershed B2 is the area east of the new Street B and Proposed Watershed B3 is the area that drains into the proposed retention area to matching the existing retention area.

Proposed Watershed B1: The grade of the new Street B is set above existing grade and therefore a ditch is formed at the edge of the road to tie the new road into existing ground. This ditch will collect a small amount of runoff from the undeveloped land from Proposed Watershed B1 to the west of the road. The peak flow rates from this undeveloped land are relatively small. The ditch conveys runoff to the new detention pond. The ditch is temporary and will be filled in as development occurs on the lots. The alternative would have been to install the road below adjacent grade forcing runoff to drain onto the road, which would have significantly increase the storm drain infrastructure. The temporary ditch cross section side slopes varies depending on how the new road fill slope ties into the existing ground. The minimum ditch capacity was calculated using Bentley's FlowMaster, which applies the Manning's Equation to determine the capacity of the ditch based off the longitudinal slope, side slopes, Manning's Roughness, and depth. A Manning's Roughness coefficient of 0.03 was used to determine the ditch capacity. The smallest ditch capacity for each watershed was compared to the 25-year, 5-minute peak flow to determine if the ditch can adequately convey the runoff. Watershed B1 has a 25-year peak flow of 3.25 cfs, which can be conveyed with the smallest ditch capacity of 7.01 cfs.

As proposed development moves in adjacent to the road, the ditch will be removed as the developments will be required to mitigate runoff within their site. When this adjacent land is developed, the new trunkline has the capacity to carry the 2-year pre development flow rate from the undeveloped plans. The new detention basin at the end of the asphalt bulb has capacity to store and convey the pre-development peak flow from Watershed B1 and B2.

Proposed Watershed B2: This watershed will soon be developed into a new FedEx facility. This area is included in the calculations of the off-site improvements to ensure that the proposed storm drain facilities have the capacity to convey the 2-year pre-development flow rate from the site.

Proposed Watersheds B3: To match existing conditions, the existing capacity of the ditch/retention area was calculated. This volume was estimated to be 4,172 CF. A new retention area is proposed in the same location with a volume of 15,462 CF. In the event that the volume of water to the pond exceeds the available storage capacity, water will be able to overtop into a new 12-inch outlet pipe at an elevation of 4925.50' is also proposed at the east end of the pond and connects into the proposed storm drain system (Inlet D-1) within Street A. However, it is anticipated that the new retention pond has the capacity to retain all of the water diverted to the pond.

INLETS

Inlet locations were designed to capture runoff from the right-of-way area and limit the spread width to less than 9.5-feet for this project's typical section. Bentley's FlowMaster program, which uses the methodology of the FHWA Hec-22 Manual, was used to calculate the spread width and gutter flow depth at each of the inlets using the calculated peak post-development flow rate from the 25-year storm event, inlet dimensions, and road parameters. The allowable limit for the depth of flow in the curb line is 0.15-feet below the top of curb, but the design provides at least 0.3-feet. The inlets were analyzed with a 50% clogging factor. The bypass flow to the bulb is less than the pre-development flow rate and will dissipate into the existing ground conditions to the west. The table in Appendix C summarizes the calculations for each inlet and verifies that they meet design requirements.

PIPES

The Manning's equation was used to analyze and design the storm drain pipes throughout the project. Pipe slopes are set to maintain a minimum depth of cover of two feet below final grade and the minimum velocity of 3-fps when flowing full. The storm drain pipes were designed to convey the peak flow from the 25-year storm event. When the depth of flow in the pipe exceeds full flow capacity, the next larger size pipe was used. The main trunkline was sized to account for the predevelopment flow rates from adjacent lots (B1 & B3) in anticipation for future development. Storm drain pipe design analysis is summarized in Appendix C.

BASIN/UNDERGROUND DETENTION FACILITY

As mentioned above, a new detention basin is proposed to the northeast of the proposed asphalt bulb at the end of Street A. The proposed detention basin will treat the runoff and limit the discharge flow rate to the 2-year pre-development flow rate from Existing Watershed 3.

The new detention basin will have a maximum side slope steepness of 4:1. Site detention was calculated using the 10-year design storm allowing for the discharge of the 2-year pre-development flow rate. The proposed design will keep the water depth at a maximum of 1.5 feet.

Because the runoff from Post-development Watershed A1 isn't treated before leaving the project site, the proposed detention basin is designed to treat the equivalent 0.5-inch runoff volume and limit the pre-development flow rate to account for the increase in the 10-year peak flow rate from Post-development Watershed A1. The final discharge location for both Post-development Watershed A1 and new detention pond is the existing wetland to the east at the same location. Watershed A1 sheet flows through Antelope Drive to the south, runoff flows in the gutter to PFL

Way. At the intersection of PFL Way, runoff flows south down the curb and gutter to the end of the Printing for Less Development This is the same general location that the existing water from Watershed B discharges. The time of concentration for Watershed A1 is 13.70 minutes and was used to calculate the peak flows.

Proposed Watershed A1 2-Year Peak Flow Rate = 0.84 cfs 10-Year Peak Flow Rate = 1.41 cfs

Existing Watershed 3 2-Year Peak Flow Rate = 2.81 cfs 10-Year Peak Flow Rate =4.72 cfs

The discharge rate for the detention basin is calculated by subtracting the 10-year post development peak runoff rate from Watershed A1 which flows unrestricted to the existing wetland, from the 2-year predevelopment flow rate to the wetland from existing Watershed 3. A proposed 6-inch outlet pipe will restrict the peak flow leaving the detention pond to 0.92 cfs. This method was used to calculate the allowable outflow from the detention pond because it ensures that during the 10-year storm event the peak flow rate to the wetland is still limited to the 2-year pre-development flow rate from Existing Watershed 3 (2.81 cfs).

Design Flow Rates

2-Year Pre Development Peak Flow Rate from Watershed 3 = 2.81 cfs 10-Year Post Development Peak Flow Rate from Watershed A1 = 1.41 cfs

2.81 cfs – 1.41 cfs = 1.40 cfs = Calculated Detention Basin Discharge Rate Required Detention Discharge Rate = 1.40 cfs Provided Detention Discharge Rate = 0.92 cfs with 6-inch outlet pipe Proposed 2-Year Peak Flow Rate to Wetlands = 0.84 cfs + 0.92 cfs = 1.76 cfs Proposed 10-Year Peak Flow Rate to Wetlands = 1.41 cfs + 0.92 cfs = 2.33 cfs < 2.81 cfs

If the design were to just compare the 2-year and 10-year flows against eachother, then the peak flow rate during the 10-year storm event would exceed the 2-year pre-development flow rate to the wetlands.

2-Year Storm Event

2.81 cfs - 0.84 cfs = 1.97 cfs

10-Year Storm Event

4.72 cfs - 1.41 cfs = 3.31 cfs

Watershed A through I Required 10-Year Storage Volume = 10,808 CF Watershed A, C, D, F, G, H, I Required 0.5-inch Treatment Volume = 5,577 CF Provided Storage Volume = 12,496 CF

The basin is design with a bottom area length of 120 LF, a width of 60 LF, and basin bottom area of 7,200 SF. The basin has a depth of 1.5-feet. The bottom of the basin is at an elevation of 4,603.5-

feet and at this location a borehole of 6.5-feet from existing surface encountered no groundwater. The existing elevation of the borehole is 4602-feet. This gives more than three feet of cover between the stormwater basin and the potential ground water. The 6-inch outlet pipe capacity was estimated to be 0.92 cfs using HY-8 to model the outlet pipe as a culvert. The maximum capacity (0.92 cfs) was determined by finding the capacity of the culvert at the maximum headwater depth of 1.5 feet (maximum pond depth). Calculations have been provided in the Appendix.

The basin area was calculated to release the runoff at a rate less than 145-square feet per 1-cfs for sediment control to treat the runoff. The settling velocity of 40 micron particles is 0.0069 fps allowing sediment to settle and treat the runoff before discharge. This is shown in the post-development basin sizing table in Appendix C. This reduces the total project peak outflow to below that of the pre-development flow rate and post-development flow rate from Watershed A1 discussed below.

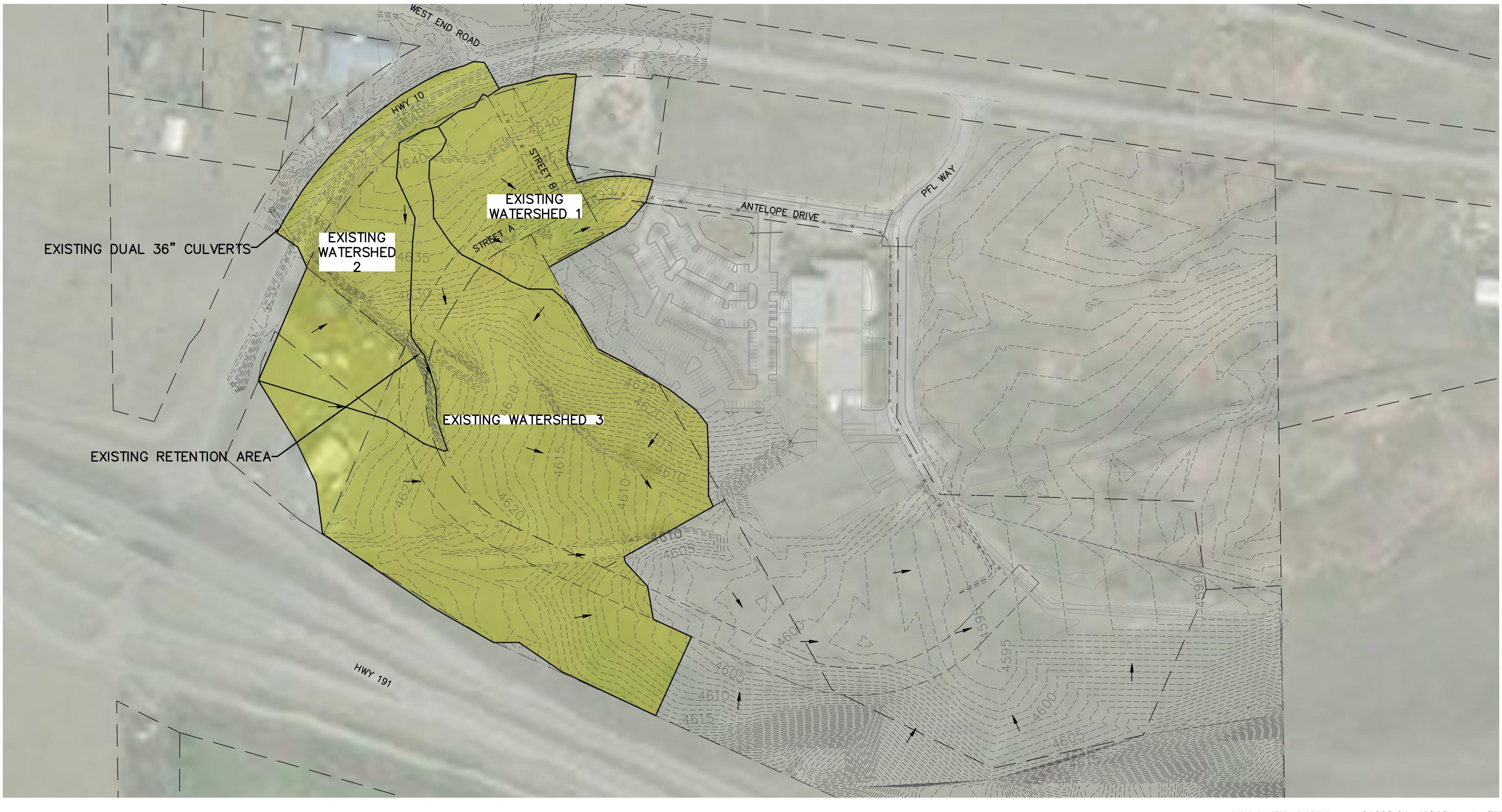
Minimum Pond Area for Water Quality Treatment according to Section 2.C.4 of the DSSP and the Sizing Detention Basins Sample Problem on page 74 of the DSSP.

Settling velocity of 40-micron particles = 0.0069 ft/sec Design Release Rate = 0.92 cfs Minimum Area Required: 0.92 cfs ÷ 0.0069 ft/sec = 133.3 SF < proposed 7,200 SF

MAJOR STORM EVENTS

In the event of a 100-year storm event, the detention basin to the northeast of the bulb will overtop and flow to the east with shallow concentrated flow. During large storm events runoff will pond at inlets D1 and D2, which are located at a sag in Street A. Once the storm drain drainage facilities are at capacity, runoff will overtop the sidewalks to adjacent properties at the sag location. There are no properties to the west that will be impacted. To the east, if the runoff overtops the sidewalk, it will be captured in the proposed drainage swale before reaching the proposed building, resulting in no anticipated property damage.

In the event that the volume of water directed to the proposed retention basin used capture the water exiting the dual 36-inch culverts, water will be able to overtop in two locations. The first location would be at the exit of the dual 36-inch culverts, where runoff can overtop to the south and flow in the west roadside ditch of Highway 10. The second location would be at the western edge of the pond where runoff would overtop and flow along the toe of slope of the road (the temporary ditch).


Appendices

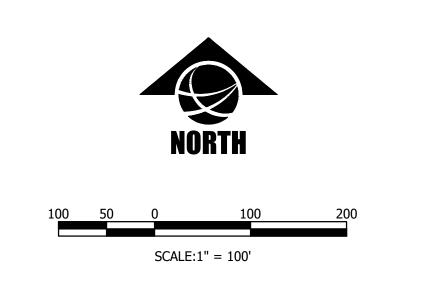
Appendix A – Watershed Exhibits *(include both existing and proposed in two separate exhibits – A* & B) Appendix B – Pre-Development Calculations Appendix C – Post-Development Calculations

Appendix A

78

STORMWATER BASINS

EXHIBIT A


EXISTING WATERSHEDS

WITHIN SUBDIVISION OF S22, TO2 S, RO9 E, C.O.S. 2621RB RUEDEBUSCH OFF-SITE STREET AND UTILITY IMPROVEMENTS

PREPARED FOR : RUEDEBUSCH DEVELOPMENT & CONSTRUCTION INC.

MAY, 2022 BOZEMAN, MONTANA

_**B**1

B1

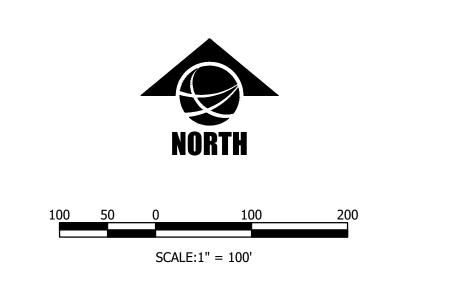
EXISTING DUAL 36" CULVERTS

PROPOSED RETENTION AREA FOR-EXISTING DUAL 36" CULVERTS

100 YEAR OVERFLOW PATH-

EXHIBIT B

PROPOSED WATERSHEDS


WITHIN SUBDIVISION OF S22, TO2 S, RO9 E, C.O.S. 2621RB RUEDEBUSCH OFF-SITE STREET AND UTILITY IMPROVEMENTS

PREPARED FOR : RUEDEBUSCH DEVELOPMENT & CONSTRUCTION INC.

MAY, 2022 BOZEMAN, MONTANA

21098.01 05/23/22 SNH/RRB 21098_01_STORM_BASE.DWG

Appendix B

EXISTING CALCULATIONS

Date: 05/20/2022
PRE DEVELOPMENT/EXISTING BASINS

Reudebush 21098

ws	Tc (hours)	Area (sf)	Area (ac.)	Area Impervious (sf)	Area Gravel (sf)	Area Pervious (sf)	RC	% IC	I2 (in/hr)	I ₁₀ (in/hr)	I ₂₅ (in/hr)	Q2 Peak Flow (cfs)	Q ₁₀ Peak Flow (cfs)	Q ₂₅ Peak Flow (cfs)
1	0.083	139,527	3.20	0	0	139,527	0.20	0%	2.423	4.023	4.611	1.55	2.58	2.95
2	0.167	196,992	4.52	22,510	0	174,482	0.28	11%	1.533	2.564	2.959	1.94	3.25	3.75
3	0.285	568,766	13.06	0	0	568,766	0.20	0%	1.076	1.809	2.099	2.81	4.72	5.48

HYDROLOGY WORKSHEET

Project:RuedebuschProject No.:21098Date:5/20/2022

SANDERSON STEWART

Time of Concentration

		S	Sheet	Flow		Shall		oncen ow	trated		C	Chann	el Flo	W		Tc
Watershed 3	L (ft)	n	P (in)	s (ft/ft)	Tsf (min)	s (ft/ft)	V (ft/s)	L (ft)	Tscf (min)	r (ft)	s (ft/ft)	n	V (ft/s)	L (ft)	Tch (min)	Total (min)
Flow Path 1	275	0.035	1.385	0.0252	9.52											9.52
Flow Path 2	88	0.035	1.385	0.0766	2.45											2.45
Flow Path 3				3		0.0279	2.70	218	1.35							1.35
Flow Path 4) 		0.0313	2.85	404	2.36							2.36
Flow Path 5						0.0136	1.88	160	1.42							1.42
Flow Path 6																

USDA Urban Hydrology for Small Watersheds TR-55 Manual.

Sheet Flow Equations

Eq. 3-3

$$T_{sf} = \frac{0.007(nL)0.8}{P_2^{0.5}s^{0.4}}$$

L = Length of overland sheet flow (ft)
n = Manning's roughness
P = 2-year, 24-hour rainfall, in
s = Slope (ft/ft)

Shallow Concentrated Flow Equations

 $V = 16.135(s)^{0.5}$ for Grassed Waterways $V = 6.962(s)^{0.5}$ for Short-grassed pasture $V = 20.328(s)^{0.5}$ for Pavement

$$T_{scf} = \frac{L}{60V}$$

s = Slope (ft/ft)

L = Length of overland sheet flow (ft)

Channel/Pipe Flow Equations

Total 17.10

$$V = \frac{1.49(r^{0.67}s^{0.5})}{n}$$
$$T_{ch} = \frac{L}{60V}$$

L = Length of overland sheet flow (ft)

- n = Manning's roughness
- s = Slope (ft/ft)
- r = hydraulic radius (ft)

Appendix C

PROPOSED CALCULATIONS

Project:ReudebushProject No.:21098Date:05/20/2022

POST DEVELOPMENT/PROPOSED BASINS

Time of Concentration= 5 mins

ws	Structure	Area (sf)	Area (ac.)	Area Impervious (sf)	Area Pervious (sf)	Weighted RC	% IC	V _{0.5-in} (cf)
C1	C1	2,716	0.06	2,241	475	0.84	83%	113.17
C2	C2	2,561	0.06	2,126	435	0.84	83%	106.71
D1	D1	6,551	0.15	5,404	1,147	0.84	82%	272.96
D2	D2	6,137	0.14	5,339	798	0.87	87%	255.71
F1	F1	3,745	0.09	3,087	658	0.84	82%	156.04
F2	F2	3,458	0.08	2,874	584	0.84	83%	144.08
G1	G1	4,884	0.11	4,033	851	0.84	83%	203.50
G2	G2	4,459	0.10	3,706	753	0.84	83%	185.79
H1	H1	4,865	0.11	4,011	854	0.84	82%	202.71
H2	H2	4,492	0.10	3,733	759	0.84	83%	187.17
11	11	6,053	0.14	4,993	1,060	0.84	82%	252.21
12	12	6,368	0.15	5,635	733	0.88	88%	265.33
						Sub	Totals	2,345.38

ws	TOC (min)	Area (sf)	Area (ac.)	Area Impervious (sf)	Area Pervious (sf)	RC	% IC	V _{0.5-in} (cf)	Q2 Peak Flow (cfs)	Q ₁₀ Peak Flow (cfs)	Q ₂₅ Peak Flow (cfs)
A1	13.70	58,921	1.35	25,052	33,869	0.50	43%	2,455.04	0.84	1.41	1.63
A2	5	18,627	0.43	0	18,627	0.20	0%	776.13	0.21	0.34	0.39
B1	16	323,631	7.43	0	323,631	0.20	0%	0.00	1.67	2.81	3.25
B2	7	291,232	6.69	22,510	268,722	0.25	8%	0.00	3.30	5.49	6.32
B3	7	147,065	3.38	0	147,065	0.20	0%	0.00	1.31	2.18	2.51

Sub Totals 3,231.17 CF

Total 5,576.54 CF

HYDROLOGY WORKSHEET

Project:RuedebuschProject No.:21098Date:1/25/2022

Eq. 3-3

s = Slope (ft/ft)

n = Manning's roughness

P = 2-year, 24-hour rainfall, in

Time of Concentration

		5	Sheet	Flow		Shall		oncen ow	trated			Char	nnel Flov	W		Tc
Watershed A1	L (ft)	n	P (in)	s (ft/ft)	Tsf (min)	s (ft/ft)	V (ft/s)	L (ft)	Tscf (min)	r (ft)	s (ft/ft)	n	V (ft/s)	L (ft)	Tch (min)	Total (min)
Flow Path 1										0.058	0.024	0.015	2.31	1896	13.698	13.70
																0.00
																0.00
																0.00
																0.00
																0.00

USDA Urban Hydrology for Small Watersheds TR-55 Manual.

 $T_{sf} = \frac{0.007(nL)0.8}{P_2^{0.5}s^{0.4}}$

L = Length of overland sheet flow (ft)

Sheet Flow Equations

Shallow Concentrated Flow Equations

 $V = 16.135(s)^{0.5}$ for Grassed Waterways $V = 6.962(s)^{0.5}$ for Short-grassed pasture $V = 20.328(s)^{0.5}$ for Pavement

$$T_{scf} = \frac{L}{60V}$$

s = Slope (ft/ft)

L = Length of overland sheet flow (ft)

Channel/Pipe Flow Equations

$$V = \frac{1.49(r^{0.67}s^{0.5})}{n}$$
$$T_{ch} = \frac{L}{60V}$$

L = Length of overland sheet flow (ft)

- n = Manning's roughness
- s = Slope (ft/ft)
- r = hydraulic radius (ft)

13.70

Total

PIPE SIZING WORKSHEET - RATIONAL METHOD

Design Storm = 25-yr Intensity = 4.61 in/hr Time of Concentration = 5-min

Pipe Run - STREET A

Pipe #	Included Areas	Runoff Coeff.	Total Area (acres)	Peak Flow (cfs)	Added Flow (cfs)	Q Total Flow (cfs)	Pipe Length (ft)	Pipe Slope (ft/ft)	Pipe Size (in)	Qf Flow Full Capacity (cfs)	Vf Flow Full Velocity (fps)	Q/Qf	d/D	V/Vf	d (in)	V Actual (fps)
20	С	0.84	0.12	0.47	0.00	0.47	119	0.02770	15	10.78	8.78	0.043	0.16	0.42	2.45	3.68
21	C-D	0.85	0.41	1.62	0.87	2.49	124	0.02000	15	9.16	7.46	0.271	0.41	0.72	6.10	5.35
22	C-E	0.84	0.58	2.23	0.00	2.23	91	0.02040	15	9.25	7.54	0.241	0.38	0.69	5.77	5.23
23	C-E	0.84	0.58	2.23	0.46	2.70	156	0.02000	15	9.16	7.46	0.294	0.42	0.73	6.35	5.46
24	C-G	0.84	0.79	3.06	0.00	3.06	158	0.01270	15	7.30	5.95	0.420	0.51	0.81	7.70	4.82
25	C-H	0.84	1.01	3.89	0.79	4.68	217	0.01500	15	7.93	6.46	0.590	0.63	0.90	9.38	5.80
26	C-I	0.84	1.29	4.99	1.86	6.85	101	0.01680	15	8.40	6.84	0.816	0.77	0.99	11.50	6.77
12	C-I	NA	NA	2.58	0.00	2.58	14	0.01000	12	3.57	4.55	0.722	0.71	0.95	8.49	4.34

INLET WORKSHEET 25-YEAR

Project: Ruedebusch Project No.: 21098 Date: 01/25/2022

SANDERSON STEWART

Structure Inf	Ó	Roadwa	y Inputs	Peak	Flow	<u>G</u>	utter Sprea	ad	Intercepted	<u>Bypass</u>
Structure Name	Туре	Cross Slope (ft/ft)	Long. Slope (ft/ft)	Q (cfs)	Q + Bypass (cfs)	Spread Width (ft)	Depth (in)	Depth (ft)	Qint	Qb (cfs)
High Point										
C1	On Grade	2.00%	2.75%	0.24	0.24	3.5	0.8	0.07	0.20	0.04
D1	Sag	2.00%	2.45%	0.58	0.62	7.7	1.8	0.15	0.62	0.00
F1	On Grade	2.00%	1.13%	0.33	0.33	4.6	1.1	0.09	0.26	0.07
G1	On Grade	2.00%	1.85%	0.43	0.50	5.0	1.2	0.10	0.36	0.14
H1	On Grade	2.00%	2.77%	0.43	0.57	4.8	1.2	0.10	0.41	0.16
I1	On Grade	2.00%	4.35%	0.54	0.70	4.8	1.1	0.09	0.49	0.21

Structure Inf	fo	Roadwa	y Inputs	Peak	Flow	<u>G</u>	utter Sprea	ad	Intercepted	<u>Bypass</u>
Structure Name	Туре	Cross Slope (ft/ft)	Long. Slope (ft/ft)	Q (cfs)	Q + Bypass (cfs)	Spread Width (ft)	Depth (in)	Depth (ft)	Qint	Qb (cfs)
High Point										
C2	On Grade	2.00%	2.75%	0.23	0.23	2.2	0.5	0.04	0.22	0.01
D2	On Grade	2.00%	2.45%	0.56	0.57	7.3	1.8	0.15	0.57	0.00
F2	On Grade	2.00%	1.13%	0.31	0.31	4.5	1.1	0.09	0.25	0.06
G2	On Grade	2.00%	1.85%	0.40	0.45	4.8	1.1	0.09	0.35	0.10
H2	On Grade	2.00%	2.77%	0.40	0.50	4.6	1.1	0.09	0.37	0.13
I2	On Grade	2.00%	4.35%	0.59	0.72	4.8	1.2	0.10	0.50	0.22

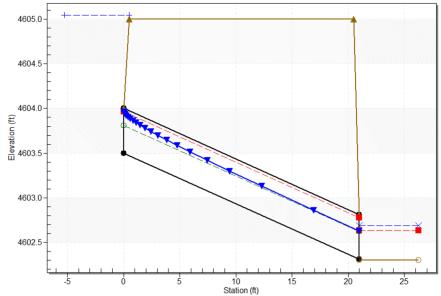
RATIONAL METHOD FOR WATER QUANTITY VOLUME CALCULATIONS BASIN SIZING

Design Storm Frequency =	10	yrs.
Discharge Rate, d =	0.92	cfs

Surface Type	Area A (ft ²)	Area (acres)	Runoff Coefficient C	Frequency Factor Cf	$C \ge C_{\rm f}$
Impervious	72,234	1.66	0.9	1	0.90
Landscape	61,603	1.41	0.3	1	0.30
Undeveloped (B1 & B2)	614,863	14.12	0.2	1	0.20
Totals	748,700	17.19	0.28	1	0.276

Rainfall	Rainfall	Runoff Volume		Site Detention
Duration,	Intensity,	$= C_{wd} x A x i x t$	Discharge Volume	= Runoff Volume - Discharge
t	i		= d x t	Volume
(min)	(in/hr)	(ft ³)	(ft ³)	(ft ³)
1	11.45	3256.84	55.20	3201.64
5	4.02	5720.52	276.00	5444.52
10	2.56	7291.15	552.00	6739.15
15	1.97	8402.88	828.00	7574.88
20	1.63	9293.02	1104.00	8189.02
25	1.41	10047.90	1380.00	8667.90
30	1.26	10709.98	1656.00	9053.98
35	1.14	11303.68	1932.00	9371.68
40	1.04	11844.51	2208.00	9636.51
45	0.96	12342.99	2484.00	9858.99
50	0.90	12806.65	2760.00	10046.65
60	0.80	13650.52	3312.00	10338.52
75	0.69	14759.36	4140.00	10619.36
80	0.66	15096.55	4416.00	10680.55
90	0.61	15731.89	4968.00	10763.89
100	0.57	16322.86	5520.00	10802.86
103	0.56	16492.60	5685.60	10807.00
104	0.56	16548.47	5740.80	10807.67
105	0.56	16603.99	5796.00	10807.99
106	0.55	16659.16	5851.20	10807.96
180	0.39	20051.25	9936.00	10115.25
360	0.25	25556.54	19872.00	5684.54
720	0.16	32573.36	39744.00	
1440	0.10	41516.72	79488.00	

POND OUTFALL PIPE CALCULATIONS


Parameter	Value	Units
🕜 DISCHARGE DATA		- i
Discharge Method	Minimum, Design, and Maximum	-
Minimum Flow	0.000	cfs
Design Flow	1.500	cfs
Maximum Flow	3.000	cfs
🥜 TAILWATER DATA		
Channel Type	Triangular Channel	•
Side Slope (H:V)	6.000	_:1
Channel Slope	0.0100	ft/ft
Manning's n (channel)	0.030	
Channel Invert Elevation	4602.300	ft
Rating Curve	View	
🕜 ROADWAY DATA		
Roadway Profile Shape	Constant Roadway Elevation	•
First Roadway Station	0.000	ft
Crest Length	20.000	ft
Crest Elevation	4605.000	ft
Roadway Surface	Paved	•
Top Width	20.000	ft

POND OUTLET	Add Culvert	
	Duplicate Culvert	
	Delete Culvert	
Parameter	Value	Unit
CULVERT DATA		Unit.
Name	POND OUTLET	
Shape	Circular	-
(2) Material	Smooth HDPE	-
Diameter	0.500	ft
② Embedment Depth	0.000	in
Manning's n	0.013	
Oulvert Type	Straight	-
Inlet Configuration	Thin Edge Projecting (Ke=0.9)	-
Inlet Depression?	No	-
SITE DATA		
Site Data Input Option	Culvert Invert Data	-
Inlet Station	0.000	ft
Inlet Elevation	4603.500	ft
Outlet Station	21.000	ft
Outlet Elevation	4602.310	ft
Number of Barrels	1	
Computed Culvert Slope	0.056667	ft/ft

Table 1 - Summary of Culvert Flows at Crossing: POND OUTLET

Headwater Elevation (ft)	Total Discharge (cfs)	POND OUTLET Discharge (cfs)	Roadway Discharge (cfs)	Iterations
4603.50	0.00	0.00	0.00	1
4603.93	0.30	0.30	0.00	1
4604.31	0.60	0.60	0.00	1
4604.94	0.90	0.90	0.00	1
4605.03	1.20	0.93	0.26	9
4605.04	1.50	0.94	0.55	4
4605.06	1.80	0.94	0.85	4
4605.07	2.10	0.95	1.14	3
4605.08	2.40	0.95	1.44	3
4605.10	2.70	0.96	1.74	3
4605.11	3.00	0.96	2.02	2
4605.00	0.92	0.92	0.00	Overtopping

Crossing - POND OUTLET, Design Discharge - 1.5 cfs Culvert - POND OUTLET, Culvert Discharge - 0.9 cfs

🔮 Worksheet : C1				- • •
Calculations () Messages	:			
Solve For: Efficiency	~ 2			
	urb			
Discharge:	0.24 cfs	Intercepted Flow:	0.20	cfs
Slope:	0.028 ft/ft	Bypass Flow:	0.04	cfs
Gutter Width:	1.50 ft	Spread:	3.5	ft
Gutter Cross Slope:	0.020 ft/ft	Depth:	0.8	in
Road Cross Slope:	0.020 ft/ft	Flow Area:	0.1	ft²
Roughness Coefficient	0.016	Gutter Depression:	0.0	in
		Total Depression:	0.0	in
		Velocity:	1.97	ft/s
		Splash Over Velocity:	6.30	ft/s
		Frontal Flow Factor:	1.000	
		Side Flow Factor:	0.203	
		Grate Flow Ratio:	0.777	
		Equivalent Cross Slope:	0.020	ft/ft
		Active Grate Length:	2.3	ft
		Length Factor:	0.054	
		Total Interception Length:	14.0	ft
Worksheet : C2				
Calculations () Message	3			
	s ✓ ∂			
Calculations () Messager Solve For: Efficiency				
Calculations () Messager Solve For: Efficiency	~ 2	Intercepted Flow:	0.22	cfs
Calculations () Messager Solve For: Efficiency Gutter Inlet Grate C	v 2	Intercepted Flow: Bypass Flow:	0.22	
Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge:	v 2 urb 0.23 cfs			cfs
Calculations (1) Message Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope:	 ✓ 0.23 cfs 0.275 ft/ft 	Bypass Flow:	0.01	cfs
Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width:	 ✓ ✓ 0.23 cfs 0.275 ft/ft 1.50 ft 	Bypass Flow: Spread:	0.01	cfs cfs ft
Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope:	0.23 cfs 0.275 fr/ft 1.50 ft 0.020 fr/ft	Bypass Flow: Spread: Depth:	0.01 2.2 0.5	cfs cfs ft in
Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	 ✓ ✓ 0.23 cfs 0.275 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft 	Bypass Flow: Spread: Depth: Flow Area:	0.01 2.2 0.5 0.0	cfs cfs ft in ft ²
Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	 ✓ ✓ 0.23 cfs 0.275 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft 	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression:	0.01 2.2 0.5 0.0 0.0	cfs cfs ft in ft ² in
Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	 ✓ ✓ 0.23 cfs 0.275 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft 	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression:	0.01 2.2 0.5 0.0 0.0 0.0	cfs cfs ft in ft ² in in
Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	 ✓ ✓ 0.23 cfs 0.275 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft 	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity:	0.01 2.2 0.5 0.0 0.0 0.0 4.62	
Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	 ✓ ✓ 0.23 cfs 0.275 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft 	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity:	0.01 2.2 0.5 0.0 0.0 0.0 4.62 6.30	
Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	 ✓ ✓ 0.23 cfs 0.275 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft 	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor:	0.01 2.2 0.5 0.0 0.0 0.0 4.62 6.30 1.000	
Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	 ✓ ✓ 0.23 cfs 0.275 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft 	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor:	0.01 2.2 0.5 0.0 0.0 4.62 6.30 1.000 0.052	
Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	 ✓ ✓ 0.23 cfs 0.275 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft 	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio:	0.01 2.2 0.5 0.0 0.0 4.62 6.30 1.000 0.052 0.949	
Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	 ✓ ✓ 0.23 cfs 0.275 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft 	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio: Equivalent Cross Slope:	0.01 2.2 0.5 0.0 0.0 0.0 4.62 6.30 1.000 0.052 0.949 0.020	cfs cfs ft in ft ² in ft/s ft/s
Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	 ✓ ✓ 0.23 cfs 0.275 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft 	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio: Equivalent Cross Slope: Active Grate Length:	0.01 2.2 0.5 0.0 0.0 0.0 4.62 6.30 1.000 0.052 0.949 0.020 2.3	cfs cfs ft in ft ² in ft/s ft/s
Calculations Messager Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope: Roughness Coefficient	 ✓ ✓ 0.23 cfs 0.275 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft 	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Factor: Equivalent Cross Slope: Active Grate Length: Length Factor:	0.01 2.2 0.5 0.0 0.0 0.0 4.62 6.30 1.000 0.052 0.949 0.020 2.3 0.027	
Calculations Messager Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	0.23 cfs 0.275 fv/ft 1.50 ft 0.020 fv/ft 0.020 fv/ft 0.016	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Factor: Equivalent Cross Slope: Active Grate Length: Length Factor:	0.01 2.2 0.5 0.0 0.0 0.0 4.62 6.30 1.000 0.052 0.949 0.020 2.3 0.027	

🔮 Worksheet : d1					
Calculations 🕕 Messages					
		~			
Solve For: Spread	~	0			
Gutter Grate			r		
Discharge:	0.62	cfs	Depth:	1.8	in
Spread:	7.7	ft	Gutter Depression:	0.0	in
Gutter Width:	1.50	ft	Total Depression:	0.0	in
Gutter Cross Slope:	0.020	ft/ft	Open Grate Area:	2.0	ft²
Road Cross Slope:	0.020	ft/ft	Active Grate Weir Length:	4.5	ft
Calculation Successful.					
Worksheet : d2					
Calculations () Messages					
Solve For: Spread					
	~	e			
Gutter Grate	~	0			
	0.57	Cfs	Depth:	1.8	in
Gutter Grate	0.57 7.3		Depth: Gutter Depression:	1.8 0.0	in
Gutter Grate		cfs			1
Gutter Grate Discharge: Spread:	7.3	cfs ft	Gutter Depression:	0.0	in
Gutter Grate Discharge: Spread: Gutter Width:	7.3 1.50	cfs ft ft	Gutter Depression: Total Depression:	0.0	in
Gutter Grate Discharge: Spread: Gutter Width: Gutter Cross Slope:	7.3 1.50 0.020	cfs ft ft ft/ft	Gutter Depression: Total Depression: Open Grate Area:	0.0 2.0	in in ft²

🚱 Worksheet : F1				
Calculations () Message	8			
Data Fair Fifthing				
Solve For: Efficiency	~ 2			
Gutter Inlet Grate C	ùurb			
Discharge:	0.33 cfs	Intercepted Flow:	0.26	cfs
Slope:	0.011 ft/ft	Bypass Flow:	0.07	cfs
Gutter Width:	1.50 ft	Spread:	4.6	ft
Gutter Cross Slope:	0.020 ft/ft	Depth:	1.1	in
Road Cross Slope:	0.020 ft/ft	Flow Area:	0.2	ft²
Roughness Coefficient	0.016	Gutter Depression:	0.0	in
		Total Depression:	0.0	in
		Velocity:	1.53	ft/s
		Splash Over Velocity:	6.30	ft/s
		Frontal Flow Factor:	1.000	
		Side Flow Factor:	0.287	
		Grate Flow Ratio:	0.647	
		Equivalent Cross Slope:	0.020	ft/ft
		Active Grate Length:	2.3	ft
		Length Factor:	0.061	
		Total Interception Length:	12.3	ft
Dptions				
Calculation Successful. Worksheet : F2				.:
Calculation Successful.				
Calculation Successful. Worksheet : F2				
Calculation Successful. Worksheet : F2 Calculations G Message: Solve For: Efficiency	s			
Calculation Successful. Worksheet : F2 Calculations Message Solve For: Efficiency Gutter Inlet Grate C	s ~ C	Intercepted Flow:	0.25	.: cfs
Calculation Successful. Worksheet : F2 Calculations Message: Solve For: Efficiency	s 🗸 🗸	Intercepted Flow: Bypass Flow:	0.25	
Calculation Successful. Worksheet : F2 Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge:	s v 2 Jurb			cfs
Calculation Successful. Worksheet : F2 Calculations Message Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope:	s Qurb 0.31 cfs 0.011 ft/ft	Bypass Flow:	0.06	cfs
Calculation Successful. Worksheet : F2 Calculations Message Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width:	s 2urb 0.31 cfs 0.011 ftrit 1.50 ft	Bypass Flow: Spread:	0.06	cfs cfs ft
Calculation Successful. Worksheet : F2 Calculations Message Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope:	s Aurb 0.31 cfs 0.011 ft/ft 1.50 ft 0.020 ft/ft	Bypass Flow: Spread: Depth:	0.06 4.5 1.1	cfs cfs ft in
Calculation Successful. Worksheet : F2 Calculations Message Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	xurb 0.31 cfs 0.011 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft	Bypass Flow: Spread: Depth: Flow Area:	0.06 4.5 1.1 0.2	cfs cfs ft in ft ²
Calculation Successful. Worksheet : F2 Calculations Message Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	xurb 0.31 cfs 0.011 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression:	0.06 4.5 1.1 0.2 0.0	cfs cfs ft in ft ² in
Calculation Successful. Worksheet : F2 Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	xurb 0.31 cfs 0.011 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression:	0.06 4.5 1.1 0.2 0.0 0.0	cfs cfs ft in in in
Calculation Successful. Worksheet : F2 Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	xurb 0.31 cfs 0.011 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity:	0.06 4.5 1.1 0.2 0.0 1.50	cfs cfs ft in ft ² in in ft/s
Calculation Successful. Worksheet : F2 Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	xurb 0.31 cfs 0.011 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity:	0.06 4.5 1.1 0.2 0.0 0.0 1.50 6.30	cfs cfs ft in ft ² in in ft/s
Calculation Successful. Worksheet : F2 Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	xurb 0.31 cfs 0.011 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor:	0.06 4.5 1.1 0.2 0.0 0.0 1.50 6.30 1.000	cfs cfs ft in ft ² in in ft/s
Calculation Successful. Worksheet : F2 Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	xurb 0.31 cfs 0.011 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor:	0.06 4.5 1.1 0.2 0.0 1.50 6.30 1.000 0.292	cfs cfs ft in ft ² in in ft/s
Calculation Successful. Worksheet : F2 Calculations Message: Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	xurb 0.31 cfs 0.011 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio:	0.06 4.5 1.1 0.2 0.0 1.50 6.30 1.000 0.292 0.657	cfs cfs ft in ft ² in ft/s ft/s
Calculation Successful. Worksheet : F2 Calculations Message Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	xurb 0.31 cfs 0.011 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio: Equivalent Cross Slope:	0.06 4.5 1.1 0.2 0.0 0.0 1.50 6.30 1.000 0.292 0.657 0.020	cfs cfs ft in ft ² in in tt/s ft/s
Calculation Successful. Worksheet : F2 Calculations Message Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	xurb 0.31 cfs 0.011 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio: Equivalent Cross Slope: Active Grate Length:	0.06 4.5 1.1 0.2 0.0 0.0 1.50 6.30 1.000 0.292 0.657 0.020 2.3	cfs cfs ft in ft ² in in tt/s ft/s
Calculation Successful. Worksheet : F2 Calculations Messager Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	xurb 0.31 cfs 0.011 ft/ft 1.50 ft 0.020 ft/ft 0.020 ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio: Equivalent Cross Slope: Active Grate Length: Length Factor:	0.06 4.5 1.1 0.2 0.0 0.0 1.50 6.30 1.000 0.292 0.657 0.020 2.3 0.063	cfs ft in in in in ft/s ft/s ft/ft ft

				_	
Calculations 🕕 Messages	3				
		2			
Solve For: Efficiency Gutter Inlet Grate C	×	e			
Gutter Inlet Grate C	urb	7			
Discharge:	0.50	cfs	Intercepted Flow:	0.36	cfs
Slope:	0.019	ft/ft	Bypass Flow:	0.14	cfs
Gutter Width:	1.50	ft	Spread:	5.0	ft
Gutter Cross Slope:	0.020	ft/ft	Depth:	1.2	in
Road Cross Slope:	0.020	ft/ft	Flow Area:	0.2	ft ²
Roughness Coefficient	0.016		Gutter Depression:	0.0	in
			Total Depression:	0.0	_ in
			Velocity:	2.04	ft/s
			Splash Over Velocity:	6.30	ft/s
			Frontal Flow Factor: Side Flow Factor:	0.193	
			Grate Flow Ratio:	0.193	
			Equivalent Cross Slope:	0.020	ft/ft
			Active Grate Length:	2.3	ft
			Length Factor:	0.044	7
			Total Interception Length:	16.9	ft
Options					
Calculation Successful.					
-					.:
🕸 Worksheet : G2					
Colordations 0 11					
Calculations () Messages	1				
		0			
Solve For: Efficiency	~	0			
Solve For: Efficiency Gutter Inlet Grate Co	urb	1	Internated Flow		1
Solve For: Efficiency Gutter Inlet Grate C Discharge:	v urb 0.45	cfs	Intercepted Flow:	0.34	cfs
Solve For: Efficiency Gutter Inlet Grate Co Discharge: Slope:	v urb 0.45 0.019	cfs ft/ft	Bypass Flow:	0.34] cfs] cfs
Solve For: Efficiency Gutter Inlet Grate Co Discharge: Slope: Gutter Width:	v 0.45 0.019 1.50] cfs] ft/ft] ft	Bypass Flow: Spread:	0.34 0.11 4.8] cfs] cfs] ft
Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope:	v 0.45 0.019 1.50 0.020] cfs] ft/ft] ft] ft/ft	Bypass Flow: Spread: Depth:	0.34 0.11 4.8 1.1] cfs] cfs] ft] in
Solve For: Efficiency Gutter Inlet Grate Co Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	v 0.45 0.019 1.50 0.020 0.020] cfs] ft/ft] ft] ft/ft] ft/ft	Bypass Flow: Spread: Depth: Flow Area:	0.34 0.11 4.8 1.1 0.2] cfs] cfs] ft] ft] ft ²
Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope:	v 0.45 0.019 1.50 0.020] cfs] ft/ft] ft] ft/ft] ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression:	0.34 0.11 4.8 1.1] cfs] cfs] ft] in] ft ²] in
Solve For: Efficiency Gutter Inlet Grate Co Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	v 0.45 0.019 1.50 0.020 0.020] cfs] ft/ft] ft] ft/ft] ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression:	0.34 0.11 4.8 1.1 0.2 0.0] cfs] cfs] ft] ft] ft ²
Solve For: Efficiency Gutter Inlet Grate Co Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	v 0.45 0.019 1.50 0.020 0.020] cfs] ft/ft] ft] ft/ft] ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity:	0.34 0.11 4.8 1.1 0.2 0.0 0.0] cfs] cfs] ft] in] ft ²] in
Solve For: Efficiency Gutter Inlet Grate Co Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	v 0.45 0.019 1.50 0.020 0.020] cfs] ft/ft] ft] ft/ft] ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression:	0.34 0.11 4.8 1.1 0.2 0.0 0.0 1.99] cfs] cfs] ft] in] ft ²] in] ft/s
Solve For: Efficiency Gutter Inlet Grate C Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	v 0.45 0.019 1.50 0.020 0.020] cfs] ft/ft] ft] ft/ft] ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity:	0.34 0.11 4.8 1.1 0.2 0.0 1.99 6.30] cfs] cfs] ft] in] ft ²] in] ft/s
Solve For: Efficiency Gutter Inlet Grate Co Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	v 0.45 0.019 1.50 0.020 0.020] cfs] ft/ft] ft] ft/ft] ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor:	0.34 0.11 4.8 1.1 0.2 0.0 0.0 1.99 6.30 1.000] cfs] cfs] ft] in] ft ²] in] ft/s
Solve For: Efficiency Gutter Inlet Grate Co Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	v 0.45 0.019 1.50 0.020 0.020] cfs] ft/ft] ft] ft/ft] ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor:	0.34 0.11 4.8 1.1 0.2 0.0 0.0 1.99 6.30 1.000 0.200] cfs] cfs] ft] in] ft ²] in] ft/s
Solve For: Efficiency Gutter Inlet Grate Co Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	v 0.45 0.019 1.50 0.020 0.020] cfs] ft/ft] ft] ft/ft] ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio:	0.34 0.11 4.8 1.1 0.2 0.0 0.0 1.99 6.30 1.000 0.200 0.636] cfs] cfs] ft] in] ft ²] in] ft/s] ft/s
Solve For: Efficiency Gutter Inlet Grate Co Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	v 0.45 0.019 1.50 0.020 0.020] cfs] ft/ft] ft] ft/ft] ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio: Equivalent Cross Slope:	0.34 0.11 4.8 1.1 0.2 0.0 0.0 1.99 6.30 1.000 0.200 0.636 0.020] cfs] cfs] ft] in] ft ²] in] ft/s] ft/ft
Solve For: Efficiency Gutter Inlet Grate Co Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	v 0.45 0.019 1.50 0.020 0.020] cfs] ft/ft] ft] ft/ft] ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio: Equivalent Cross Slope: Active Grate Length:	0.34 0.11 4.8 1.1 0.2 0.0 0.0 1.99 6.30 1.000 0.200 0.636 0.020 2.3] cfs] cfs] ft] in] ft ²] in] tin] ti/s] ft/ft
Solve For: Efficiency Gutter Inlet Grate Co Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	v 0.45 0.019 1.50 0.020 0.020] cfs] ft/ft] ft] ft/ft] ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio: Equivalent Cross Slope: Active Grate Length: Length Factor:	0.34 0.11 4.8 1.1 0.2 0.0 0.0 1.99 6.30 1.000 0.200 0.636 0.020 2.3 0.046] cfs] cfs] ft] in] ft] in] ft/s] ft/s]] ft/ft] ft
Solve For: Efficiency Gutter Inlet Grate Co Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	v 0.45 0.019 1.50 0.020 0.020] cfs] ft/ft] ft] ft/ft] ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio: Equivalent Cross Slope: Active Grate Length: Length Factor:	0.34 0.11 4.8 1.1 0.2 0.0 0.0 1.99 6.30 1.000 0.200 0.636 0.020 2.3 0.046] cfs] cfs] ft] in] ft] in] ft/s] ft/s]] ft/ft] ft

				- • 💌
Calculations 🕕 Messages				
	2			
Solve For: Efficiency	~ 2			
Gutter Inlet Grate Curb				
Discharge: 0.57	cfs	Intercepted Flow:	0.41	cfs
Slope: 0.028	ft/ft	Bypass Flow:	0.16	cfs
Gutter Width: 1.50	ft	Spread:	4.8	ft
Gutter Cross Slope: 0.020	ft/ft	Depth:	1.2	in
Road Cross Slope: 0.020	ft/ft	Flow Area:	0.2	ft²
Roughness Coefficient 0.016		Gutter Depression:	0.0	in
		Total Depression:	0.0	in
		Velocity:	2.45	ft/s
		Splash Over Velocity:	6.30	ft/s
		Frontal Flow Factor:	1.000	
		Side Flow Factor:	0.146	
		Grate Flow Ratio:	0.630	
		Equivalent Cross Slope:	0.020	ft/ft
		Active Grate Length:	2.3	ft
		Length Factor:	0.037	
		Total Interception Length:	20.2	ft
Calculations 1 Messages				
Solve For: Efficiency	~ 2			
Gutter Inlet Grate Curb	~ 2			
Gutter Inlet Grate Curb		Intercented Flow	0.37	cfs
Gutter Inlet Grate Curb Discharge: 0.50	cfs	Intercepted Flow:	0.37	cfs
Gutter Inlet Grate Curb Discharge: 0.50 Slope: 0.028	cfs ft/ft	Bypass Flow:	0.13	cfs
Gutter Inlet Grate Curb Discharge: 0.50 Slope: 0.028 Gutter Width: 1.50	cfs ft/ft	Bypass Flow: Spread:	0.13 4.6	cfs ft
Gutter Inlet Grate Curb Discharge: 0.50 Slope: 0.028 Gutter Width: 1.50 Gutter Cross Slope: 0.020	cfs ft/ft ft/ft	Bypass Flow: Spread: Depth:	0.13 4.6 1.1	cfs ft in
Gutter Inlet Grate Curb Discharge: 0.50 Slope: 0.028 Gutter Width: 1.50 Gutter Cross Slope: 0.020 Road Cross Slope: 0.020	cfs ft/ft ft ft/ft ft/ft	Bypass Flow: Spread: Depth: Flow Area:	0.13 4.6 1.1 0.2	cfs ft in ft ²
Gutter Inlet Grate Curb Discharge: 0.50 Slope: 0.028 Gutter Width: 1.50 Gutter Cross Slope: 0.020	cfs ft/ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression:	0.13 4.6 1.1 0.2 0.0	cfs ft in ft ² in
Gutter Inlet Grate Curb Discharge: 0.50 Slope: 0.028 Gutter Width: 1.50 Gutter Cross Slope: 0.020 Road Cross Slope: 0.020	cfs ft/ft ft ft/ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression:	0.13 4.6 1.1 0.2 0.0 0.0	cfs ft in ft ² in in
Gutter Inlet Grate Curb Discharge: 0.50 Slope: 0.028 Gutter Width: 1.50 Gutter Cross Slope: 0.020 Road Cross Slope: 0.020	cfs ft/ft ft ft/ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity:	0.13 4.6 1.1 0.2 0.0 0.0 2.37	cfs ft in ft ² in in ft/s
Gutter Inlet Grate Curb Discharge: 0.50 Slope: 0.028 Gutter Width: 1.50 Gutter Cross Slope: 0.020 Road Cross Slope: 0.020	cfs ft/ft ft ft/ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity:	0.13 4.6 1.1 0.2 0.0 0.0 2.37 6.30	cfs ft in ft ² in in
Gutter Inlet Grate Curb Discharge: 0.50 Slope: 0.028 Gutter Width: 1.50 Gutter Cross Slope: 0.020 Road Cross Slope: 0.020	cfs ft/ft ft ft/ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor:	0.13 4.6 1.1 0.2 0.0 0.0 2.37 6.30 1.000	cfs ft in ft ² in in ft/s
Gutter Inlet Grate Curb Discharge: 0.50 Slope: 0.028 Gutter Width: 1.50 Gutter Cross Slope: 0.020 Road Cross Slope: 0.020	cfs ft/ft ft ft/ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor:	0.13 4.6 1.1 0.2 0.0 2.37 6.30 1.000 0.154	cfs ft in ft ² in in ft/s
Gutter Inlet Grate Curb Discharge: 0.50 Slope: 0.028 Gutter Width: 1.50 Gutter Cross Slope: 0.020 Road Cross Slope: 0.020	cfs ft/ft ft ft/ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio:	0.13 4.6 1.1 0.2 0.0 2.37 6.30 1.000 0.154 0.652	cfs ft in ft ² in in ft/s ft/s
Gutter Inlet Grate Curb Discharge: 0.50 Slope: 0.028 Gutter Width: 1.50 Gutter Cross Slope: 0.020 Road Cross Slope: 0.020	cfs ft/ft ft ft/ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio: Equivalent Cross Slope:	0.13 4.6 1.1 0.2 0.0 0.0 2.37 6.30 1.000 0.154 0.652 0.020	cfs ft in ft ² in ft/s ft/s ft/ft
Gutter Inlet Grate Curb Discharge: 0.50 Slope: 0.028 Gutter Width: 1.50 Gutter Cross Slope: 0.020 Road Cross Slope: 0.020	cfs ft/ft ft ft/ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio: Equivalent Cross Slope: Active Grate Length:	0.13 4.6 1.1 0.2 0.0 0.0 2.37 6.30 1.000 0.154 0.652 0.020 2.3	cfs ft in ft ² in in ft/s ft/s
Gutter Inlet Grate Curb Discharge: 0.50 Slope: 0.028 Gutter Width: 1.50 Gutter Cross Slope: 0.020 Road Cross Slope: 0.020	cfs ft/ft ft ft/ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio: Equivalent Cross Slope:	0.13 4.6 1.1 0.2 0.0 0.0 2.37 6.30 1.000 0.154 0.652 0.020 2.3 0.039	cfs ft in ft ² in ft/s ft/s ft/ft
Gutter Inlet Grate Curb Discharge: 0.50 Slope: 0.028 Gutter Width: 1.50 Gutter Cross Slope: 0.020 Road Cross Slope: 0.020	cfs ft/ft ft ft/ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio: Equivalent Cross Slope: Active Grate Length:	0.13 4.6 1.1 0.2 0.0 0.0 2.37 6.30 1.000 0.154 0.652 0.020 2.3 0.039	cfs ft in ft ² in ft/s ft/s ft/ft
Gutter Inlet Grate Curb Discharge: 0.50 Slope: 0.028 Gutter Width: 1.50 Gutter Cross Slope: 0.020 Road Cross Slope: 0.020	cfs ft/ft ft ft/ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio: Equivalent Cross Slope: Active Grate Length: Length Factor:	0.13 4.6 1.1 0.2 0.0 0.0 2.37 6.30 1.000 0.154 0.652 0.020 2.3 0.039	cfs ft in ft ² in in t//s ft/s ft/ft ft
Gutter Inlet Grate Curb Discharge: 0.50 Slope: 0.028 Gutter Width: 1.50 Gutter Cross Slope: 0.020 Road Cross Slope: 0.020	cfs ft/ft ft ft/ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio: Equivalent Cross Slope: Active Grate Length: Length Factor:	0.13 4.6 1.1 0.2 0.0 0.0 2.37 6.30 1.000 0.154 0.652 0.020 2.3 0.039	cfs ft in ft ² in in t//s ft/s ft/ft ft

Worksheet : 11					
Calculations 🕕 Messages	S				
Solve For: Efficiency	~	Э			
	Curb	~			
Discharge:	0.70	cfs	Intercepted Flow:	0.49	cfs
Slope:	0.044	ft/ft	Bypass Flow:	0.43	cfs
Gutter Width:	1.50	ft	Spread:	4.8	ft
Gutter Cross Slope:	0.020	ft/ft	Depth:	1.1	"
Road Cross Slope:	0.020	ft/ft	Flow Area:	0.2	ft ²
Roughness Coefficient	0.016		Gutter Depression:	0.0	in
		_	Total Depression:	0.0	in
			Velocity:	3.06	ft/s
			Splash Over Velocity:	6.30	ft/s
			Frontal Flow Factor:	1.000	
			Side Flow Factor:	0.103	
			Grate Flow Ratio:	0.634	
			Equivalent Cross Slope:	0.020	ft/ft
			Active Grate Length:	2.3	ft
			Length Factor:	0.030	
			Total Interception Length:	25.2	ft
Worksheet : 12	7		р 	[- 0 ×
Calculation Successful. Worksheet : 12 alculations Messages		0	p		
Calculation Successful. Worksheet : I2 alculations Messages Solve For: Efficiency	~	0	р.		
Calculation Successful. Worksheet : 12 alculations Messages Solve For: Efficiency Sutter Inlet Grate Cu	~	O cfs	, Intercepted Flow:	0.50	cfs
Calculation Successful. Worksheet : I2 alculations Messages Solve For: Efficiency iutter Inlet Grate Cu Discharge:	vh		, Intercepted Flow: Bypass Flow:		
Calculation Successful. Worksheet : 12 alculations Messages Solve For: Efficiency iutter Inlet Grate Cu Discharge: Slope:	urb 0.72	cfs		0.50	cfs
Calculation Successful. Worksheet : 12 alculations Messages Solve For: Efficiency iutter Inlet Grate Cu Discharge: Slope: Gutter Width:	v nb 0.72 0.044	cfs ft/ft	Bypass Flow:	0.50	cfs cfs
Calculation Successful.	v irb 0.72 0.044 1.50	cfs ft/ft ft	Bypass Flow: Spread:	0.50 0.22 4.8	cfs cfs ft
Calculation Successful.	v nrb 0.72 0.044 1.50 0.020	cfs ft/ft ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression:	0.50 0.22 4.8 1.2 0.2 0.0	cfs cfs ft in
Calculation Successful. Worksheet : 12 alculations Messages Solve For: Efficiency autter Inlet Grate Cu Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	rb 0.72 0.044 1.50 0.020 0.020	cfs ft/ft ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression:	0.50 0.22 4.8 1.2 0.2 0.0 0.0	cfs cfs ft in ft ² in in
Calculation Successful. Worksheet : 12 alculations Messages Solve For: Efficiency autter Inlet Grate Cu Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	rb 0.72 0.044 1.50 0.020 0.020	cfs ft/ft ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity:	0.50 0.22 4.8 1.2 0.2 0.0 0.0 3.08	cfs cfs ft in ft ² in in ft/s
Calculation Successful. Worksheet : 12 alculations Messages Solve For: Efficiency autter Inlet Grate Cu Discharge: Slope: Gutter Width: Gutter Cross Slope: Road Cross Slope:	rb 0.72 0.044 1.50 0.020 0.020	cfs ft/ft ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity:	0.50 0.22 4.8 1.2 0.2 0.0 0.0 3.08 6.30	cfs cfs ft in ft ² in in
Calculation Successful.	rb 0.72 0.044 1.50 0.020 0.020	cfs ft/ft ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor:	0.50 0.22 4.8 1.2 0.0 0.0 3.08 6.30	cfs cfs ft in ft ² in in ft/s
Calculation Successful.	rb 0.72 0.044 1.50 0.020 0.020	cfs ft/ft ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor:	0.50 0.22 4.8 1.2 0.0 0.0 0.0 1.000 0.102	cfs cfs ft in ft ² in in ft/s
Calculation Successful.	rb 0.72 0.044 1.50 0.020 0.020	cfs ft/ft ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio:	0.50 0.22 4.8 1.2 0.2 0.0 3.08 6.30 1.000 0.102	cfs cfs ft in ft ² in ft/s ft/s
Calculation Successful.	rb 0.72 0.044 1.50 0.020 0.020	cfs ft/ft ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio: Equivalent Cross Slope:	0.50 0.22 4.8 1.2 0.0 0.0 0.0 1.000 0.102	cfs cfs ft in ft ² in in ft/s
Calculation Successful.	rb 0.72 0.044 1.50 0.020 0.020	cfs ft/ft ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio:	0.50 0.22 4.8 1.2 0.2 0.0 3.08 6.30 1.000 0.102 0.629 0.020	cfs cfs ft in ft ² in t/s ft/s
Calculation Successful. Worksheet : 12 alculations Messages Solve For: Efficiency	rb 0.72 0.044 1.50 0.020 0.020	cfs ft/ft ft ft/ft	Bypass Flow: Spread: Depth: Flow Area: Gutter Depression: Total Depression: Velocity: Splash Over Velocity: Frontal Flow Factor: Side Flow Factor: Grate Flow Ratio: Equivalent Cross Slope: Active Grate Length:	0.50 0.22 4.8 1.2 0.2 0.0 3.08 6.30 1.000 0.102 0.629 0.020 2.3	cfs cfs ft in ft ² in t/s ft/s

Smallest Ditch Section of Temporary Ditch Along West Edge of Street B

Worksheet : Smallest Te	mporary Ditch Section	n			
Uniform Flow Gradually Va	ried Flow 🕕 Messa	ges			
Solve For: Discharge	~	e	Friction Method: Mannin	g Formula	~
Roughness Coefficient	0.030]	Flow Area:	3.0] ft²
Channel Slope:	0.023	ft/ft	Wetted Perimeter:	17.2	ft
Normal Depth:	4.2	in	Hydraulic Radius:	2.1] in
Left Side Slope:	45.000	H:V	Top Width:	17.15	ft
Right Side Slope:	4.000	H:V	Critical Depth:	4.2	in
Discharge:	7.01	cfs	Critical Slope:	0.024	ft/ft
			Velocity:	2.34	ft/s
			Velocity Head:	0.08	ft
			Specific Energy:	0.43	ft
			Froude Number:	0.984]
			Flow Type:	Subcritical]
Coloulation Successful					
Calculation Successful.					.::

Appendix D

98

GEOTECHNICAL REPORT

4.55 Acre Site Development Livingston, MT May 7, 2021 Terracon Project No. 26215031

Prepared for:

Ruedebusch Development and Construction Madison, WI

Prepared by:

Terracon Consultants, Inc. Billings, Montana May 7, 2021

Ruedebusch Development and Construction 4605 Dovetail Drive Madison, WI 53704

- Attn: Mr. Dave Hull P: (608) 249-2012 ext. 232 E: DaveH@ruedebusch.com
- Re: Geotechnical Engineering Report 4.55 Acre Site Development PFL Way Livingston, MT Terracon Project No. 26215031

Dear Mr. Hull:

We have completed the Geotechnical Engineering services for the above referenced project. This study was performed in general accordance with revised Terracon Proposal No. P26215031 dated April 2, 2021. This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of foundations and floor slabs for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or if we may be of further service, please contact us.

Sincerely, Terracon Consultants, Inc.

Jane O. Scott, E.I.T. Staff Engineer Gary W. Rome, P.E. Senior Project Manager

Terracon Consultants, Inc. 1392 13th Ave SW Great Falls, MT 59404 P (406) 453 5400 F (406) 761 6655 terracon.com

REPORT TOPICS

INTRODUCTION	1
SITE CONDITIONS	1
PROJECT DESCRIPTION	2
GEOTECHNICAL CHARACTERIZATION	3
GEOTECHNICAL OVERVIEW	4
EARTHWORK	6
	10
SEISMIC CONSIDERATIONS	12
	13
LATERAL EARTH PRESSURES	14
PAVEMENTS	16
FROST CONSIDERATIONS	20
CORROSIVITY	21
GENERAL COMMENTS	22
FIGURES	

Note: This report was originally delivered in a web-based format. **Orange Bold** text in the report indicates a referenced section heading. The PDF version also includes hyperlinks which direct the reader to that section and clicking on the *GeoReport* logo will bring you back to this page. For more interactive features, please view your project online at <u>client.terracon.com</u>.

ATTACHMENTS

EXPLORATION AND TESTING PROCEDURES SITE LOCATION AND EXPLORATION PLANS EXPLORATION RESULTS SUPPORTING INFORMATION

Note: Refer to each individual Attachment for a listing of contents.

4.55 Acre Site Development PFL Way Livingston, MT Terracon Project No. 26215031 May 7, 2021

INTRODUCTION

This report presents the results of our subsurface exploration and geotechnical engineering services performed for development of the proposed 4.55 acre site to be located near PFL Way in Livingston, MT. The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- Subsurface soil (and rock) conditions
- Groundwater conditions
- Site preparation and earthwork
- Excavation considerations
- Stormwater considerations

- Foundation design and construction
- Floor slab design and construction
- Seismic site classification per IBC
- Lateral earth pressures
- Pavement design and construction

The geotechnical engineering Scope of Services for this project included the advancement of fifteen test borings to depths ranging from approximately 6.5 to 41.5 feet below existing site grades.

Maps showing the site and boring locations are shown in the **Site Location** and **Exploration Plan** sections, respectively. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included on the boring logs and as separate graphs in the **Exploration Results** section.

SITE CONDITIONS

The following description of site conditions is derived from our site visit in association with the field exploration and our review of publicly available geologic and topographic maps.

Item	Description
Parcel Information	The project is located near PFL Way in Livingston, Montana. Latitude/Longitude (approximate): 45.6519° N, 110.6082° W See Site Location
Existing Improvements	The site is currently undeveloped.

4.55 Acre Site Development
Livingston, MT
May 7, 2021 Terracon Project No. 26215031

103

Item	Description
Current Ground Cover	Native grasses above an open pit location, including clay, sand, and gravel ground cover in pit area.
Existing Topography	The site is relatively flat, with a slight grade from the north/northwest toward the south/southeast with elevations ranging from 4.620 to 4,615 feet above mean sea level (MSL).
Geology	Subsurface conditions consist of near alluvium, mainly valley fill deposits consisting of clay, silt, sand and minor gravel with inclusions of glacial drift (cobbles/boulders). The alluvium is underlain by Upper Cretaceous claystone and interbedded sandstone of the Billman Creek Formation of the Livingston Group.

PROJECT DESCRIPTION

Our initial understanding of the project was provided in our proposal and was discussed during project planning. A period of collaboration has transpired since the project was initiated, and our final understanding of the project conditions is as follows:

Item	Description		
Information Provided	An email with supporting documents was received from Mr. Dave Hull on February 18, 2021 containing a site layout and a requested scope of services. Following delivery of the initial proposal, four (4) additional borings were requested by Mr. Hull on March 31, 2021.		
	The project includes:		
Proposed Structures	 A one-story, 18,540 square foot distribution building Automobile parking, capacity 44 spaces to the west of the building Van parking, capacity 6 spaces to the south of the building 28-foot trailer parking, capacity 3 east of detention pond area Tractor parking, capacity 2 north side of building Dolly parking, capacity 3 east of detention pond Loading/unloading spaces, capacity 3 north side of building Potential fenced detention pond area, north of building 		
Building Construction	Proposed building construction not provided at time of report preparation.		
Maximum Loads	Maximum column loads: 155 kips		
Below-Grade Structures	None anticipated.		
Free-Standing Retaining Walls	None specified at the time of report preparation		

4.55 Acre Site Development
Livingston, MT
May 7, 2021 Terracon Project No. 26215031

104

Item	Description		
Pavements	Paved driveway and parking will be constructed on approximately 3 acres of the parcel.		
	Both rigid (concrete) and flexible (asphalt) pavement sections are considered.		
	Anticipated pavement types obtained from spreadsheet provided by Ruedebusch titled "Livingston SS CY21_202110227" dated April 21, 2021:		
	Type 1: all other pavement, heavy duty		
	 Approx. 145,000 ESALs 		
	Type 2: employee parking lot, light duty		
	 Less than 100 ESALs 		
	The pavement design period is assumed to be 10 years.		

GEOTECHNICAL CHARACTERIZATION

We have developed a general characterization of the subsurface conditions based upon our review of the subsurface exploration, laboratory data, geologic setting and our understanding of the project. This characterization, termed GeoModel, forms the basis of our geotechnical calculations and evaluation of site preparation and foundation options. Conditions encountered at each exploration point are indicated on the individual logs. The individual logs can be found in the **Exploration Results** section and the GeoModel can be found in the **Figures** section of this report.

As part of our analyses, we identified the following model layers within the subsurface profile. For a more detailed view of the model layer depths at each boring location, refer to the GeoModel.

Model Layer	Layer Name	General Description
1	Surficial Conditions	Topsoil or fill encountered surficially in all borings.
2	Clay	Clay with varying amounts of sand and silt present in all borings except P-5.
3	Sand with varying amounts of clay and gravel present in P-5 and P-9.	
4	Sedimentary Bedrock	Sandstone and/or claystone bedrock present in all borings except B-5. P-1, and P-3 through P-9.

Groundwater Conditions

The boreholes were observed while drilling for the presence and level of groundwater. The water levels observed in the boreholes can be found on the boring logs in **Exploration Results**, and are summarized on the following page.

4.55 Acre Site Development
Livingston, MT
May 7, 2021 Terracon Project No. 26215031

Boring Number	Approximate Depth to Groundwater while Drilling (feet)	Approximate Depth Bottom of Boring (feet)
B-1	6	21.5
B-3	7	41.5
B-5	7	21.5
PD-1	15	26.5

Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the borings were performed. Therefore, groundwater levels during construction or at other times in the life of the structure may be higher or lower than the levels indicated on the boring logs. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project. Fluctuations in groundwater levels can best be determined by implementation of a groundwater monitoring plan. Such a plan would include installation of groundwater monitoring wells and periodic measurement of groundwater levels over a sufficient period of time.

Laboratory Testing

Laboratory test results indicate that the clay soils tested exhibit swell potential ranging from approximately 0.2 to 0.8 percent when subjected to an applied load of 1,000 pounds per square foot (psf) at in-situ water contents. When exposed to increases in moisture content at an applied load of 1,000 psf, the clay soils exhibited swell potential ranging from 0.2 to 0.8 percent, followed by low to moderate compression at increased loadings up to 4 kips per square foot (ksf).

Laboratory test results indicate that a relatively undisturbed sample of the clay soil obtained from boring PD-1 at approximate depths of 5 to 7 feet exhibited a hydraulic conductivity of 1.85×10^{-4} centimeters per second (cm/s) when placed under a confining pressure of approximately 500 psf.

The results of laboratory testing completed for this project can be found in the **Exploration Results** section of this report.

GEOTECHNICAL OVERVIEW

Based on the results of our field investigation, laboratory testing program and geotechnical analyses, development of the site is considered feasible from a geotechnical viewpoint provided that the conclusions and considerations provided herein are incorporated into the design and construction of the project. We have identified the following geotechnical conditions that could impact design and construction of the proposed project.

The distribution building may be constructed on shallow foundations bearing on structural fill. Additional foundation and floor slab information pertaining to the structures can be found in the **Shallow Foundations** sections of this report. The **General Comments** section provides an understanding of the report limitations.

Existing Fill Materials

Approximately 2 feet of existing fill material was encountered in Boring P-3. The fill material did not possess man-made debris to indicate fill, but was characterized as possible fill due to its texture. The fill depth presented in the boring log is approximate and the total depth, lateral extent, and composition of fill material present on the site may not become evident until construction and should be expected to vary across the site.

We do not possess any information regarding whether the fill encountered was placed under the observation of a geotechnical engineer. There is an inherent risk for the owner that compressible fill or unsuitable material, within or buried by the fill, will not be discovered, resulting in movements that could cause distress to structures and pavements. Based on the results of our field exploration and laboratory testing, it is our opinion the fill materials should not be used to support foundations, floor slabs, or pavements without complete removal and replacement with compacted structural fill. Provided the owner is willing to accept an increased risk of movement, we have provided an option for partial removal and replacement of fill materials below pavements. After removal of existing fill, surfaces to receive structural fill should be prepared as recommended in the **Earthwork** section of this report.

To better characterize the extents of the fill material we recommend that test pits be excavated either before or during construction, and a representative of the geotechnical engineer be on site to observe test pit excavations to confirm that the existing fill is consistent with what was encountered in our borings. Additional removal and replacement may be required should unsuitable soils be encountered that differ from what was observed during our field exploration.

There exists the potential for construction debris and/or domestic trash to be encountered within the fill on some portions of the site. Because construction debris was not encountered in the borings drilled at this site, the potential for encountering construction debris and domestic trash is considered to be low. The fill materials should be observed for the presence of trash and debris during site grading and construction.

The existing fill materials can be reused as structural fill below foundations, floor slabs, and pavements provided it meets the requirements for structural fill in the **Earthwork** section. Further, some additional removal and replacement may be required if unsuitable or soft materials are exposed during removal of the fill materials.

Low Strength Soils

Test boring data indicate that low strength soils may be locally present. Consequently, low strength soils could be encountered in excavations and these conditions may require some corrective work. Corrective work could involve removal and re-compaction or replacement, or the use of geotextiles. Lightweight equipment may be required to reduce subgrade pumping. In any event, Terracon should be contacted to observe excavations to evaluate conditions and to provide guidance concerning corrective work (if needed).

In addition, moisture infiltration to pavement subgrade combined with continued repetitive traffic may cause the on-site clay soils to become unstable and lead to premature pavement distress. To reduce the risk of pavement distress, we recommend that pavements be supported on a minimum of 6 inches of structural fill. We recommend that subgrade soils be designed and graded to provide positive drainage away from pavements.

Groundwater

During our field exploration, groundwater was encountered in borings B-1, B-3, B-5, and PD-1 at depths ranging from 6 to 15 feet below existing site grades. Depending on site grading, groundwater could be encountered during construction, and if encountered, a temporary dewatering system consisting of well points or shallow trenches leading to a sump pit where the water could be removed by pumping will be necessary. The individual contractor(s) should be made aware of the possibility of encountering groundwater, and plan for dewatering during construction. If groundwater is encountered in foundation excavations, we recommend that a permanent foundation perimeter drain system be included in the design of the foundations.

EARTHWORK

Earthwork is anticipated to include clearing and grubbing, excavations, and fill placement. The following sections provide recommendations for use in the preparation of specifications for the work. Recommendations include critical quality criteria, as necessary, to render the site in the state considered in our geotechnical engineering evaluation for foundations, floor slabs, and pavements.

Site Preparation

Prior to placing fill, existing vegetation, root mat, and any deleterious material should be removed. Complete stripping of the topsoil should be performed within the limits of the proposed building and pavement areas.

Prior to the placement of fill, the subgrade should be proofrolled with an adequately loaded vehicle such as a fully-loaded tandem-axle dump truck. The proofrolling should be performed under the

direction of the Geotechnical Engineer. Areas excessively deflecting under the proofroll should be delineated and subsequently addressed by the Geotechnical Engineer. Such areas should either be removed or modified. Excessively wet or dry material should either be removed or moisture conditioned and recompacted.

Based on the results of laboratory testing, some of the clay soil has in-situ moisture contents in excess of the optimum moisture content. Mechanical mixing or air-drying of clay soils prior to placing and compacting as fill should be anticipated. If schedule does not allow time to moisture condition fill prior to placement, consideration should be given to importing structural fill.

Existing Fill

As noted in **Geotechnical Characterization**, boring P-3 encountered existing fill to a depth of approximately 2 feet below existing grade. The fill appears to have been placed in a controlled manner, but we have no records to indicate the degree of control. Support of pavements, on or above existing fill soils, is discussed in this report. However, even with the recommended construction procedures, there is inherent risk for the owner that compressible fill or unsuitable material, within or buried by the fill will, not be discovered. This risk of unforeseen conditions cannot be eliminated without completely removing the existing fill, but can be reduced by following the recommendations contained in this report.

If the owner elects to construct pavements on the existing fill, the following protocol should be followed. Once the planned subgrade elevation has been reached, the entire pavement area should be proofrolled. Areas of soft or otherwise unsuitable material should be undercut and replaced with either new structural fill or suitable, existing on site materials.

Fill Material Types

Engineered fill required to achieve design grade should be classified as Structural Fill and general fill. Structural Fill is material used below, or within 10 feet of structures, pavements or constructed slopes. General fill is material used to achieve grade outside of these areas. Earthen materials used for Structural Fill and general fill should meet the following material property requirements:

Geotechnical Engineering Report

4.55 Acre Site Development
Livingston, MT
May 7, 2021
Terracon Project No. 26215031

Soil Type ¹	USCS Classification	Acceptable Parameters	
Granular	GW, GP, SW, SP (and dual symbols)	For Structural Fill: 100% passing 3-inch sieve, 30-60% passing No. 4 sieve; less than 10% passing No. 200 sieve	
On-Site Soils ²	CL, SP, SC, SM	The on-site sand and lean clay soils are suitable for use as general fill and structural fill including: site grading, utility trench and exterior foundation backfill of foundations, and pavement subgrade.	

- material should not be used, and fill should not be placed on a frozen subgrade. A sample of each material type should be submitted to the Geotechnical Engineer for evaluation prior to use on this site.
- Significant moisture conditioning of the on-site clays may be necessary to meet compaction requirements; this will likely require mechanical mixing or air-drying to achieve proper moisture content and will be challenging during wet/cold seasons.

Fill Compaction Requirements

ltem	Structural Fill	General Fill
Maximum Lift	8 inches or less in loose thickness when heavy, self-propelled compaction equipment is used	
Maximum Lift Thickness	4 to 6 inches in loose thickness when hand- guided equipment (i.e. jumping jack or plate compactor) is used	
Minimum Compaction	98% of max. below foundations 95% of max. foundation wall backfill, utility	Same as Structural Fill
Requirements ^{1, 2, 3}	trench backfill, slab and pavement subgrades	
Water Content	Low plasticity cohesive: -2% to +2% of optimum	As required to achieve min.
Range ¹	Granular: -3% to +3% of optimum	compaction requirements

Structural and general fill should meet the following compaction requirements.

1. Maximum density and optimum water content as determined by the standard Proctor test (ASTM D698).

2. Low and high plasticity cohesive fill should not be compacted to more than 100% of standard Proctor maximum dry density.

3. If the granular material is a coarse sand or gravel, or of a uniform size, or has a low fines content, compaction comparison using local practices may be more appropriate. It should be noted that ASTM D698 allows for rock-correction of samples with up to 30% Retained on the 3/4" screen, but that this can lead to values not attainable in the field. ASTM allows for use of engineering judgement of field test strips.

Utility Trench Backfill

For low permeability subgrades, utility trenches are a common source of water infiltration and migration. Utility trenches penetrating beneath the building should be effectively sealed to restrict water intrusion and flow through the trenches, which could migrate below the building. The trench should provide an effective trench plug that extends at least 5 feet from the face of the building

exterior. The plug material should consist of cementitious flowable fill or low permeability clay. The trench plug material should be placed to surround the utility line. If used, the clay trench plug material should be placed and compacted to comply with the water content and compaction recommendations for structural fill stated previously in this report.

Grading and Drainage

All grades must provide effective drainage away from the building during and after construction and should be maintained throughout the life of the structure. Water retained next to the building can result in soil movements greater than those discussed in this report. Greater movements can result in unacceptable differential floor slab and/or foundation movements, cracked slabs and walls, roof leaks, and pavement distress.

Exposed ground should be sloped and maintained at a minimum 5% away from the building for at least 10 feet beyond the perimeter of the building. Locally, flatter grades may be necessary to transition ADA access requirements for flatwork. After building construction and landscaping have been completed, final grades should be verified to document effective drainage has been achieved. Grades around the structure should also be periodically inspected and adjusted, as necessary, as part of the structure's maintenance program. Where paving or flatwork abuts the structure, a maintenance program should be established to effectively seal and maintain joints and prevent surface water infiltration.

Earthwork Construction Considerations

Shallow excavations for the proposed structure are anticipated to be accomplished with conventional construction equipment. Upon completion of filling and grading, care should be taken to maintain the subgrade water content prior to construction. Construction traffic over the completed subgrades should be avoided. The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations. Water collecting over or adjacent to construction areas should be removed. If the subgrade freezes, desiccates, saturates, or is disturbed, the affected material should be removed, or the materials should be scarified, moisture conditioned, and recompacted prior to construction.

The groundwater table could affect overexcavation efforts, especially for over-excavation and replacement of lower strength soils. A temporary dewatering system consisting of sumps with pumps could be necessary to achieve the recommended depth of over-excavation.

As a minimum, excavations should be performed in accordance with OSHA 29 CFR, Part 1926, Subpart P, "Excavations" and its appendices, and in accordance with any applicable local, and/or state regulations.

Construction site safety is the sole responsibility of the contractor who controls the means, methods, and sequencing of construction operations. Under no circumstances shall the

information provided herein be interpreted to mean Terracon is assuming responsibility for construction site safety, or the contractor's activities; such responsibility shall neither be implied nor inferred.

Construction Observation and Testing

The earthwork efforts should be monitored under the direction of Terracon. Monitoring should include documentation of adequate removal of vegetation and topsoil, proof rolling, and mitigation of areas delineated by the proof roll to require mitigation. Each lift of compacted fill should be tested, evaluated, and reworked as necessary until approved by Terracon prior to placement of additional lifts.

In areas of foundation excavations, the bearing subgrade and exposed conditions at the base of the recommended over-excavation should be evaluated under the direction of Terracon. In the event that unanticipated conditions are encountered, Terracon should prescribe mitigation options.

In addition to the documentation of the essential parameters necessary for construction, the continuation of Terracon into the construction phase of the project provides the continuity to maintain Terracon's evaluation of subsurface conditions, including assessing variations and associated design changes.

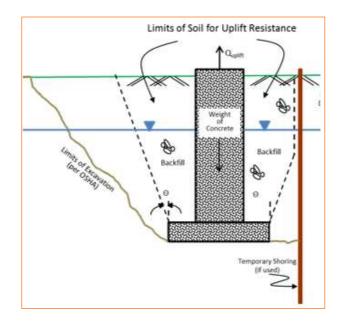
SHALLOW FOUNDATIONS

If the site has been prepared in accordance with the requirements noted in Earthwork, the following design parameters are applicable for shallow foundations.

Design Parameters – Compressive Loads

Item	Description		
Maximum Allowable Bearing pressure ^{1, 2}	2,000 psf (foundations bearing on structural fill)		
Required Bearing Stratum ³	2 feet of granular structural fill		
Minimum Foundation Dimensions	Columns: 24 inches		
Ultimate Coefficient of Sliding Friction ⁴	0.70 (granular structural fill)		
Minimum Embedment below	Exterior footings / unheated areas: 42 inches		
Finished Grade ⁵	Interior footings in heated areas: 24 inches		
Estimated Total Settlement from Structural Loads ²	Less than about 3/4 inch		
Estimated Differential Settlement ^{2, 6}	About 1/2 of total settlement		

Item

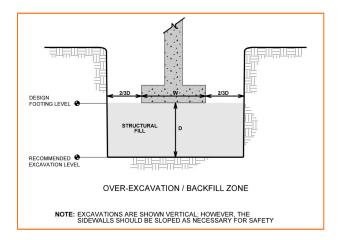

112

Description

- Assumes proper preparation of bearing surface in accordance with Site Preparation. Based on a minimum factor of safety of 3.
- 2. Values provided are for maximum loads noted in Project Description. The foundation movement will depend upon the variations within the subsurface soil profile, the structural loading conditions, the embedment depth of the footings, the thickness of compacted fill, the quality of the earthwork operations, and maintaining uniform soil water content throughout the life of the structure. The estimated movements are based on maintaining uniform soil water content during the life of the structure. Additional foundation movements could occur if water from any source infiltrates the foundation soils; therefore, proper drainage and irrigation practices should be incorporated into the design and operation of the facility. Failure to maintain soil water content and positive drainage will nullify the movement estimates provided above.
- 3. Unsuitable or soft soils should be over-excavated and replaced per the recommendations presented in **Earthwork**.
- 4. Can be used to compute sliding resistance where foundations are placed on suitable soil/materials. Should be neglected for foundations subject to net uplift conditions.
- 5. Embedment necessary to minimize the effects of frost and/or seasonal water content variations. For sloping ground, maintain depth below the lowest adjacent exterior grade within 5 horizontal feet of the structure.
- 6. Differential settlement estimated for a column spacing of 50 feet.

Design Parameters - Uplift Loads

Uplift resistance of spread footings can be developed from the effective weight of the footing and the overlying soils. As illustrated on the subsequent figure, the effective weight of the soil prism defined by diagonal planes extending up from the top of the perimeter of the foundation to the ground surface at an angle, θ , of 20 degrees from the vertical can be included in uplift resistance. The maximum allowable uplift capacity should be taken as a sum of the effective weight of soil plus the dead weight of the foundation, divided by an appropriate factor of safety. A maximum total unit weight of 100 pcf should be used for the on-site soil backfill. This unit weight should be reduced to 38 pcf for portions of the backfill or natural soils below the groundwater elevation.


113

Foundation Construction Considerations

As noted in **Earthwork**, the footing excavations should be evaluated under the direction of the Geotechnical Engineer. The base of all foundation excavations should be free of water and loose soil, prior to placing concrete. Concrete should be placed soon after excavating to reduce bearing soil disturbance. Care should be taken to prevent wetting or drying of the bearing materials during construction. Excessively wet or dry material or any loose/disturbed material in the bottom of the footing excavations should be removed/reconditioned before foundation concrete is placed.

Over-excavation for structural fill placement below footings should be conducted as shown below. The over-excavation should be backfilled up to the footing base elevation, with granular structural fill placed, as recommended in the **Earthwork** section.

To limit the intrusion of fines and improve constructability, we recommend a geotextile separator fabric, such as a Mirafi 180N or equivalent be placed at the granular structural fill/on-site clay soil interface. To limit the infiltration of surface water, we recommend exterior foundation walls be backfilled with the on-site clay materials.

SEISMIC CONSIDERATIONS

The seismic design requirements for buildings and other structures are based on Seismic Design Category. Site Classification is required to determine the Seismic Design Category for a structure. The Site Classification is based on the upper 100 feet of the site profile defined by a weighted average value of either shear wave velocity, standard penetration resistance, or undrained shear strength in accordance with Section 20.4 of ASCE 7 and the International Building Code (IBC). Based on the soil and bedrock properties encountered at the site and as described on the exploration logs and results, it is our professional opinion that the **Seismic Site Classification is C**. Subsurface explorations at this site were extended to a maximum depth of 41.5 feet. The site properties below the maximum boring depth of 41.5 feet to 100 feet were estimated based on our

experience and knowledge of geologic conditions of the general area. Additional deeper borings or geophysical testing may be performed to confirm the conditions below the current boring depth.

FLOOR SLABS

Depending upon the finished floor elevation, unsuitable, weak, soft to medium stiff soils may be encountered at the floor slab subgrade level. These soils should be replaced with granular structural fill so the floor slab is supported on at least 1 foot of compacted granular structural fill.

Design parameters for floor slabs assume the requirements for **Earthwork** have been followed. Specific attention should be given to positive drainage away from the structure and positive drainage of the aggregate base beneath the floor slab.

Floor Slab Design Parameters

ltem	Description
Floor Slab Support ¹	A minimum of 1 foot of granular structural fill, placed and compacted in accordance with the recommendations in Earthwork ,
Estimated Modulus of Subgrade Reaction ²	200 pounds per square inch per inch (psi/in) for point loads
	e structurally independent of building footings or walls to reduce the possibility of flo

1. Floor slabs should be structurally independent of building footings or walls to reduce the possibility of floor slab cracking caused by differential movements between the slab and foundation.

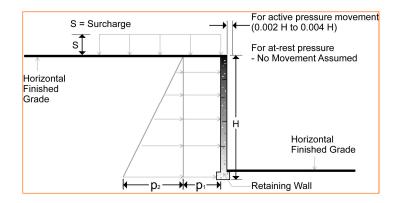
2. Modulus of subgrade reaction is an estimated value based upon our experience with the subgrade condition, the requirements noted in Earthwork, and the floor slab support as noted in this table. It is provided for point loads. For large area loads the modulus of subgrade reaction would be lower.

The use of a vapor retarder should be considered beneath concrete slabs on grade covered with wood, tile, carpet, or other moisture sensitive or impervious coverings, or when the slab will support equipment sensitive to moisture. When conditions warrant the use of a vapor retarder, the slab designer should refer to ACI 302 and/or ACI 360 for procedures and cautions regarding the use and placement of a vapor retarder.

Saw-cut control joints should be placed in the slab to help control the location and extent of cracking. For additional recommendations refer to the ACI Design Manual. Joints or cracks should be sealed with a water-proof, non-extruding compressible compound specifically recommended for heavy duty concrete pavement and wet environments.

Where floor slabs are tied to perimeter walls or turn-down slabs to meet structural or other construction objectives, our experience indicates differential movement between the walls and slabs will likely be observed in adjacent slab expansion joints or floor slab cracks beyond the length of the structural dowels. The Structural Engineer should account for potential differential settlement through use of sufficient control joints, appropriate reinforcing or other means.

Floor Slab Construction Considerations


Finished subgrade, within and for at least 10 feet beyond the floor slab, should be protected from traffic, rutting, or other disturbance and maintained in a relatively moist condition until floor slabs are constructed. If the subgrade should become damaged or desiccated prior to construction of floor slabs, the affected material should be removed and structural fill should be added to replace the resulting excavation. Final conditioning of the finished subgrade should be performed immediately prior to placement of the floor slab support course.

The Geotechnical Engineer should approve the condition of the floor slab subgrades immediately prior to placement of the floor slab support course, reinforcing steel, and concrete. Attention should be paid to high traffic areas that were rutted and disturbed earlier, and to areas where backfilled trenches are located.

LATERAL EARTH PRESSURES

Design Parameters

Structures with unbalanced backfill levels on opposite sides should be designed for earth pressures at least equal to values indicated in the following table. Earth pressures will be influenced by structural design of the walls, conditions of wall restraint, methods of construction and/or compaction and the strength of the materials being restrained. Two wall restraint conditions are shown in the diagram below. Active earth pressure is commonly used for design of free-standing cantilever retaining walls and assumes wall movement. The "at-rest" condition assumes no wall rotation and is commonly used for below grade exterior walls and other walls restrained from movement. The recommended design lateral earth pressures below are applicable to cast-in-place concrete walls, do not include a factor of safety, and do not provide for possible hydrostatic pressure on the walls (unless stated). These recommendations are not applicable to the design of modular block – geogrid reinforced backfill walls and additional analyses and evaluation would be required.

4.55 Acre Site Development Livingston, MT May 7, 2021 Terracon Project No. 26215031

Lateral Earth Pressure Design Parameters					
Earth Pressure	Coefficient for	Surcharge	Effective Fluid Pressures (psf) ^{2, 4, 5}		
Condition ¹		Pressure ^{3, 4, 5} p ₁ (psf)	Unsaturated ⁶	Submerged ⁶	
Λ atives (Ke)	Granular - 0.27	(0.27)S	(35)H	(80)H	
Active (Ka)	Fine Grained - 0.49	(0.49)S	(55)H	(85)H	
At-Rest (Ko)	Granular - 0.43	(0.43)S	(55)H	(90)H	
	Fine Grained - 0.66	(0.66)S	(70)H	(95)H	
Passive (Kp)	Granular - 3.69		(480)H	(315)H	
	Fine Grained - 2.04		(225)H	(160)H	

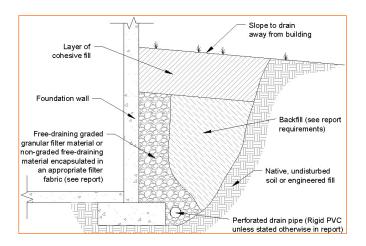
1. For active earth pressure, wall must rotate about base, with top lateral movements 0.002 H to 0.004 H, where H is wall height. For passive earth pressure, wall must move horizontally to mobilize resistance.

2. Uniform, horizontal backfill, compacted to at least 95% of the ASTM D 698 maximum dry density, rendering a maximum unit weight of 130 pcf and an angle of internal friction of 35° for granular structural fill, and a maximum unit weight of 110 pcf and an angle of internal friction of 20° for fine-grained on-site soils.

- 3. Uniform surcharge, where S is surcharge pressure.
- 4. Loading from heavy compaction equipment is not included.
- 5. No safety factor is included in these values.
- 6. To achieve "Unsaturated" conditions, follow guidelines in **Subsurface Drainage for Below-Grade Walls** below. "Submerged" conditions are recommended when drainage behind walls is not incorporated into the design.

Backfill placed against structures should consist of granular soils or low plasticity cohesive soils. For the granular values to be valid, the granular backfill must extend out and up from the base of the wall at an angle of at least 45 and 60 degrees from vertical for the active and passive cases, respectively.

Subsurface Drainage for Below-Grade Walls


A perforated rigid plastic drain line installed behind the base of walls and extends below adjacent grade is recommended to prevent hydrostatic loading on the walls. The invert of a drain line around a below-grade building area or exterior retaining wall should be placed near foundation bearing level. The drain line should be sloped to provide positive gravity drainage to daylight or to a sump pit and pump. The drain line should be surrounded by clean, free-draining granular material having less than 5% passing the No. 200 sieve, such as ASTM No. 57 aggregate. The free-draining aggregate should be encapsulated in a filter fabric. The granular fill should extend to within 2 feet of final grade, where it should be capped with compacted cohesive fill to reduce infiltration of surface water into the drain system.

Geotechnical Engineering Report

117

4.55 Acre Site Development
Livingston, MT
May 7, 2021
Terracon Project No. 26215031

As an alternative to free-draining granular fill, a pre-fabricated drainage structure may be used. A pre-fabricated drainage structure is a plastic drainage core or mesh which is covered with filter fabric to prevent soil intrusion, and is fastened to the wall prior to placing backfill.

PAVEMENTS

General Pavement Comments

Pavement designs are provided for the traffic conditions and pavement life conditions as noted in **Project Description** and in the following sections of this report. A critical aspect of pavement performance is site preparation. Pavement designs noted in this section must be applied to the site which has been prepared as recommended in the **Earthwork** section.

Based on the planned grading, we anticipate the onsite soils will be utilized in subgrade construction. A California Bearing Ratio (CBR) test has been performed on a disturbed bulk sample of the clay subgrade obtained from boring P-7 at an approximate depth of 1 to 4 feet below existing grade. This material was compacted at about 95 percent of the standard proctor maximum dry density at approximately optimum moisture. The moisture-density relationship and CBR test results are presented in the **Exploration Results** section.

Pavement Design Parameters

A subgrade CBR of 2 was used for the AC pavement designs, based on laboratory testing of the clay subgrade soils encountered on site. A modulus of subgrade reaction of 60 pci was used for the PCC pavement designs. A modulus of rupture of 580 psi was used for pavement concrete.

Design of pavements for the project is based on procedures outlined in the AASHTO Guide for Design of Pavement Structures, 1993, coupled with publications by the Asphalt Institute and the American Concrete Institute on the design of parking lots and our local experience. Pavement design input parameters and resulting pavement sections are provided in the following tables:

Design Criteria	Value
Roadway Classification	Private parking areas and drive lanes
Estimated Growth Factor Percentage	1.0
Provided ESALs – Light Duty	< 100
Provided ESALs – Heavy Duty	145,000

The following design parameters were utilized for pavement thickness design:

Pavement Thickness Design Parameters				
Input Parameter	Flexible (asphalt)	Rigid (concrete)		
Reliability	90%	90%		
Serviceability Loss	2.2	2.0		
Standard Deviation	0.45	0.35		
Asphalt Layer Coefficient	0.41	N/A		
Aggregate Base Coefficient	0.14	N/A		
Concrete Elastic Modulus(E _c)	N/A	3,605,000 psi		
Concrete Modulus of Rupture (Sc)	N/A	580 psi		
Load Transfer Coefficient (J)	N/A	3.8 ¹		

1. The Load Transfer Coefficient value provided is based on jointed plain concrete pavement with doweled longitudinal and expansion joints at a spacing interval no greater than 15 feet. Also, doweled into the concrete curb and gutter.

Pavement Section Thicknesses

Based on the parameters presented above, we recommend the following pavement sections be considered:

Asphaltic Concrete Design				
	Thickness (inches)			
Layer	Type 1: Heavy Duty ¹	Type 2: Light Duty ¹		
AC ²	4	3		
Aggregate B ase ³	12	6		
Total Thickness	tal Thickness 16 9			

119

Asphaltic Concrete Design				
		Thicknes	Thickness (inches)	
Layer		Type 1: Heavy Duty ¹	Type 2: Light Duty ¹	
1. See Project Description for more specifics regarding Light Duty and Heavy Duty traffic.				
2.	2. All materials should meet the current Montana Public Works Standard Specifications (MPWSS) Section 2510.			
3.	A 1.5-inch minus base	e course meeting the requirements of MP	NSS Section 02235 is recommended.	

Prior to proceeding with construction of the pavement section, a passing proofroll of the subgrade should be documented. A Mirafi 180N or equivalent geotextile fabric should be placed at the natural fine-grained soil/Structural Fill interface to limit the intrusion of fines into the base course and improve constructability.

Asphalt concrete should be composed of aggregate, filler, and additives (if required), with approved bituminous material. The asphalt concrete should conform to approved mix design which include volumetrics, Marshall Properties, optimum asphalt content, project mix formula, and recommended mixing and placing temperatures. The asphalt concrete should be consistent with an approved mix design conforming to MPWSS. Aggregate used in the asphalt should meet MPWSS for quality and gradation.

Asphalt material should be placed in lifts of not more than 3 inches and should be compacted to the minimum standards outlined in the MPWSS. In addition, the average of the density tests should be a minimum of 93 percent with no single test below 92 percent of the maximum theoretical maximum, as determined by ASTM D2041.

The recommended sections in this report are based on the selected parameters presented herein and Terracon's experience with similar projects and soil conditions. Parameters may vary with the specific project and material source. Variation of these parameters may change the thickness of the pavement sections presented. If traffic details differ substantially from those presented above, Terracon should be notified to re-evaluate the recommendations provided.

Portland Cement Concrete Design				
	Thickness (inches)			
Layer	Type 1: Heavy Duty ¹	Type 2: Light Duty ¹		
PCC ²	7	5		
Aggregate B ase ³	6	6		
Total Thickness 13 11				

120

Portland Cement Concrete Design			
	Thickness (inches)		
Layer	Type 1: Heavy Duty ¹	Type 2: Light Duty ¹	

1. See Project Description for more specifics regarding Light Duty and Heavy Duty traffic.

2. All materials should meet the current Montana Public Works Standard Specifications (MPWSS).

3. A 1.5-inch minus base course meeting the requirements of MPWSS Section 02235 is recommended.

Portland cement concrete should meet the requirements of MPWSS. It is recommended concrete for rigid pavements have a minimum 28-day compressive strength of 4,000 psi and be placed with a maximum slump of 4 inches. The pavement concrete slabs should be steel reinforced and sufficient joint provisions should be included in the design to prevent potential issues related to expansion and contraction of the concrete. Steel reinforcement and joint spacing should be assessed by the Structural Engineer for the project. Although not required for structural support, the minimum 6-inch thick base course layer recommended below concrete pavements will help reduce potential for slab curl, shrinkage cracking, and subgrade pumping through joints.

Pavement design methods are intended to provide structural sections with adequate thickness over a subgrade such that wheel loads are reduced to a level the subgrade can support. The support characteristics of the subgrade for pavement design do not account for shrink/swell movements of the clay subgrades such as the soils encountered in the borings. Thus, the pavement may be adequate from a structural standpoint, yet still experience cracking and deformation due to the shrink/swell related movement of the subgrade. It is, therefore, important to minimize moisture changes in the subgrade to reduce shrink/swell movements.

Openings in pavements, such as decorative landscape areas, are sources for water infiltration into surrounding pavement systems. Water can collect in the islands and migrate into the surrounding subgrade soils thereby degrading support of the pavement. This is especially applicable for islands and raised concrete curbs, irrigated foliage, and low permeability near-surface soils. The civil design for the pavements with these conditions should include features to restrict or collect and discharge excess water from the islands. Examples of features are edge drains connected to the storm water collection system or other suitable outlets and impermeable barriers preventing lateral migration of water such as a cutoff wall installed to a depth below the pavement structure.

Pavement Drainage

Pavements should be sloped to provide rapid drainage of surface water. Water allowed to pond on or adjacent to the pavements could saturate the subgrade and contribute to premature pavement deterioration. In addition, the pavement subgrade should be graded to provide positive

drainage within the granular base section. Appropriate sub-drainage or connection to a suitable daylight outlet should be provided to remove water from the granular subbase.

Based on the groundwater elevations encountered during the field investigation, we do not anticipate groundwater will affect long-term pavement performance. Therefore, installation of subdrains beneath the pavement footprint is not recommended.

Pavement Maintenance

The pavement sections represent minimum recommended thicknesses and, as such, periodic maintenance should be anticipated. Therefore, preventive maintenance should be planned and provided for through an on-going pavement management program. Maintenance activities are intended to slow the rate of pavement deterioration and to preserve the pavement investment. Maintenance consists of both localized maintenance (e.g., crack and joint sealing and patching) and global maintenance (e.g., surface sealing). Preventive maintenance is usually the priority when implementing a pavement maintenance program. Additional engineering observation is recommended to determine the type and extent of a cost-effective program. Even with periodic maintenance, some movements and related cracking may still occur and repairs may be required.

Pavement performance is affected by its surroundings. In addition to providing preventive maintenance, the civil engineer should consider the following recommendations in the design and layout of pavements:

- Final grade adjacent to paved areas should slope down from the edges at a minimum 2%.
- Subgrade and pavement surfaces should have a minimum 2% slope to promote proper surface drainage.
- Install below pavement drainage systems surrounding areas anticipated for frequent wetting.
- Install joint sealant and seal cracks immediately.
- Seal all landscaped areas in or adjacent to pavements to reduce moisture migration to subgrade soils.
- Place compacted, low permeability backfill against the exterior side of curb and gutter.
- Place curb, gutter and/or sidewalk directly on clay subgrade soils rather than on unbound granular base course materials.

FROST CONSIDERATIONS

The fine-grained soils on this site are frost susceptible, and small amounts of water can affect the performance of the slabs on-grade, sidewalks, and pavements. Exterior slabs should be anticipated to heave during winter months. If frost action needs to be eliminated in critical areas, we recommend the use of non-frost susceptible (NFS) fill or structural slabs (for instance, structural stoops in front of building doors). Placement of NFS material in large areas may not be

May 7, 2021 Terracon Project No. 26215031

122

feasible; however, the following recommendations are provided to help reduce potential frost heave:

- Provide surface drainage away from the building and slabs, and toward the site storm drainage system.
- Install drains around the perimeter of the building, stoops, below exterior slabs and pavements, and connect them to the storm drainage system.
- Grade clayey subgrades, so groundwater potentially perched in overlying more permeable subgrades, such as sand or aggregate base, slope toward a site drainage system.
- Place NFS fill as backfill beneath slabs and pavements critical to the project.
- Place a 3 horizontal to 1 vertical (3H:1V) transition zone between NFS fill and other soils.
- Place NFS materials in critical sidewalk areas.

As an alternative to extending NFS fill to the full frost depth, consideration can be made to placing extruded polystyrene or cellular concrete under a buffer of at least 2 feet of NFS material.

CORROSIVITY

The table below lists the results of laboratory soluble sulfate, electrical resistivity, and pH testing. The values may be used to estimate potential corrosive characteristics of the on-site soils with respect to contact with the various underground materials which will be used for project construction.

Corrosivity Test Results Summary					
Sample Depth (feet)Soil DescriptionSoluble Sulfate (%)Electrical Resistivity 1 (Ω-cm)					
B-2	2.5 – 4.0	CL	0.03	1,620	8.1
B-4	2.5 – 4.0	CL	2.00	328	7.5
1. Performed on a saturated sample of soil.					

Results of water-soluble sulfate testing indicate that samples of the on-site soils have an exposure class of S2 when classified in accordance with Table 19.3.1.1 of the American Concrete Institute (ACI) Design Manual. Concrete should be designed in accordance with the provisions of the ACI Design Manual, Section 318, Chapter 19.

To improve sulfate resistance of concrete in severe sulfate exposure when Type V cement is not available, the following should be considered:

• Use of Type I-II modified cement for sulfate resistance

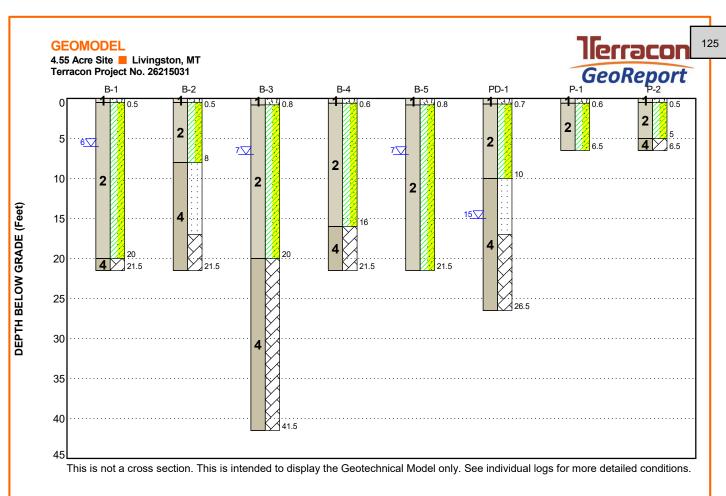
123

- Cement should have a tricalcium aluminate content of not more than 8%.
- Concrete mixture should contain at least 20% Class F fly ash.
- Provide air-entrainment of 4% to 7% by volume.
- Lower the water to cement ratio to 0.4 to 0.45.

GENERAL COMMENTS

Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Natural variations will occur between exploration point locations or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. Terracon should be retained as the Geotechnical Engineer, where noted in this report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

Our Scope of Services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.


Our services and any correspondence or collaboration through this system are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third-party beneficiaries intended. Any third-party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client, and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety, and cost estimating including, excavation support, and dewatering requirements/design are the responsibility of others. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.

FIGURES

Contents:

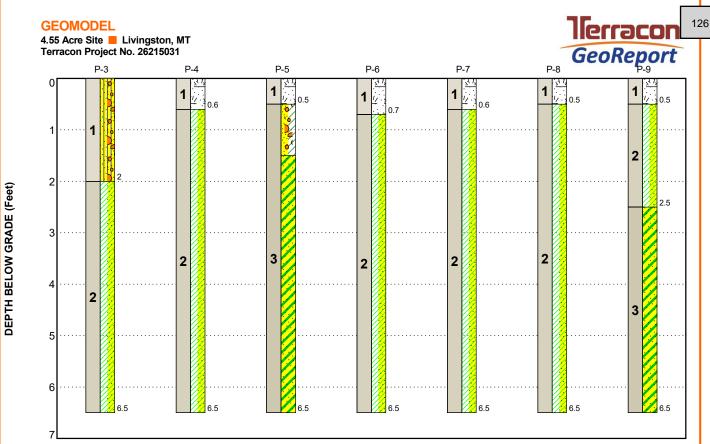
GeoModel (2 pages)

Model Layer	Layer Name	General Description
1	Surficial Conditions	Topsoil or fill encountered surficially in all borings.
2	Clay	Clay with varying amounts of sand and silt present in all borings except P-5.
3	Sand	Sand with varying amounts of clay and gravel present in P-5 and P-9.
4	Sedimentary Bedrock	Sandstone and/or claystone present in all borings except B-5, P-1, and P-3 through B-9.

LEGEND

Topsoil

Sandstone


Lean Clay with Sand

✓ First Water Observation

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project. Numbers adjacent to soil column indicate depth below ground surface.

Groundwater levels are temporal. The levels shown are representative of the date and time of our exploration. Significant changes are possible over time. Water levels shown are as measured during and/or after drilling. In some cases, boring advancement methods mask the presence/absence of groundwater. See individual logs for details.

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.

Model Layer	Layer Name	General Description
1	Surficial Conditions	Topsoil or fill encountered surficially in all borings.
2	Clay	Clay with varying amounts of sand and silt present in all borings except P-5.
3	Sand	Sand with varying amounts of clay and gravel present in P-5 and P-9.
4	Sedimentary Bedrock	Sandstone and/or claystone present in all borings except B-5, P-1, and P-3 through B-9.

LEGEND

Silty Sand with Gravel

Poorly-graded Sand with Clay and Gravel

Clayey Sand

Lean Clay with Sand

Topsoil

✓ First Water Observation

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project. Numbers adjacent to soil column indicate depth below ground surface.

Groundwater levels are temporal. The levels shown are representative of the date and time of our exploration. Significant changes are possible over time. Water levels shown are as measured during and/or after drilling. In some cases, boring advancement methods mask the presence/absence of groundwater. See individual logs for details. **ATTACHMENTS**

EXPLORATION AND TESTING PROCEDURES

Field Exploration

Number of Borings	Boring Depth (feet)	Planned Location
5	21.5 to 41.5	Building Center and Corners
1	26.5	Detention Pond Area
9	6.5	Pavement Areas

Boring Layout and Elevations: The locations of the borings were originally laid out by Terracon personnel using a handheld GPS unit (estimated horizontal accuracy of about ±10 feet). If elevations and a more precise boring layout are desired, we recommend borings be surveyed.

Subsurface Exploration Procedures: We advanced the borings with a truck-mounted drill rig using continuous-flight, hollow stem augers. Four samples were obtained in the upper 10 feet of each boring and at intervals of 5 feet thereafter. In the thin-walled tube sampling procedure, a thin-walled, seamless steel tube with a sharp cutting edge was pushed hydraulically into the soil to obtain a relatively undisturbed sample. In the split-barrel sampling procedure, a standard 2-inch outer diameter split-barrel sampling spoon was driven into the ground by a 140-pound automatic hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a normal 18-inch penetration is recorded as the Standard Penetration Test (SPT) resistance value. The SPT resistance values, also referred to as N-values, are indicated on the boring logs at the test depths. For safety purposes, all borings were backfilled with auger cuttings after their completion.

The sampling depths, penetration distances, and other sampling information was recorded on the field boring logs. The samples were placed in appropriate containers and taken to our soil laboratory for testing and classification by a Geotechnical Engineer. Our exploration team prepared field boring logs as part of the drilling operations. These field logs included visual classifications of the materials encountered during drilling and our interpretation of the subsurface conditions between samples. Final boring logs were prepared from the field logs. The final boring logs represent the Geotechnical Engineer's interpretation of the field logs and include modifications based on observations and tests of the samples in our laboratory.

Laboratory Testing

The project engineer reviewed the field data and assigned laboratory tests to better understand the engineering properties of the various soil and rock strata, as necessary, for this project. Procedural standards noted below are for reference to methodology in general. In some cases, variations to methods were applied because of local practice or professional judgment. Standards

noted below include reference to other, related standards. Such references are not necessarily applicable to describe the specific test performed.

- ASTM D2216 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
- ASTM D4318 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
- ASTM D422 Standard Test Method for Particle-Size Analysis of Soils
- ASTM D2166 Standard Test Method for Unconfined Compressive Strength of Cohesive Soil
- ASTM D2435 Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading
- ASTM D698 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600 kN-m/m³))
- ASTM D1883 Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils
- ASTM D5084 Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter
- Resistivity, pH, and soluble sulfate content

The laboratory testing program often included examination of soil samples by an engineer. Based on the material's texture and plasticity, we described and classified the soil samples in accordance with the Unified Soil Classification System.

Rock classification was conducted using locally accepted practices for engineering purposes. Boring log rock classification was determined using the Description of Rock Properties.

SITE LOCATION AND EXPLORATION PLANS

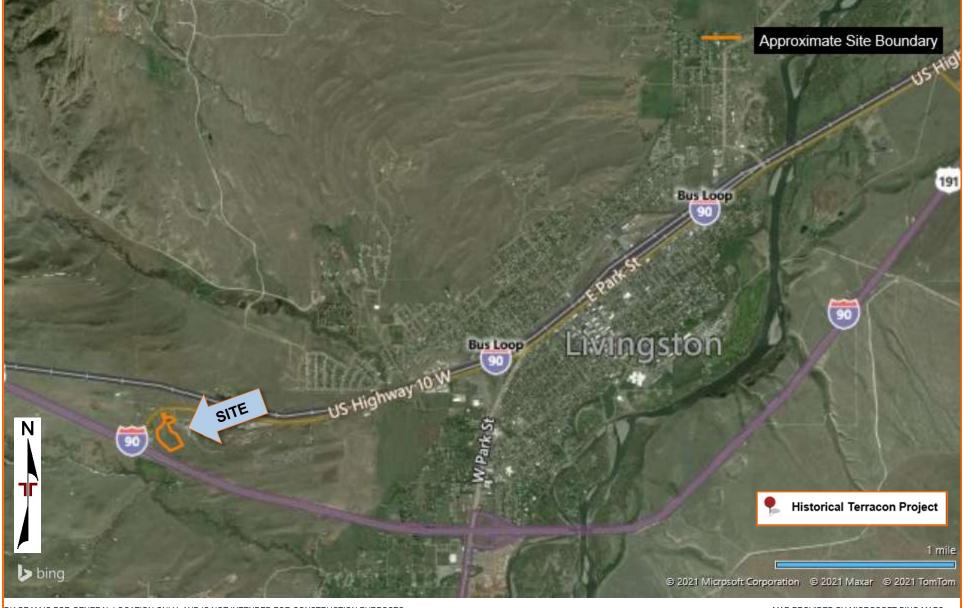
Contents:

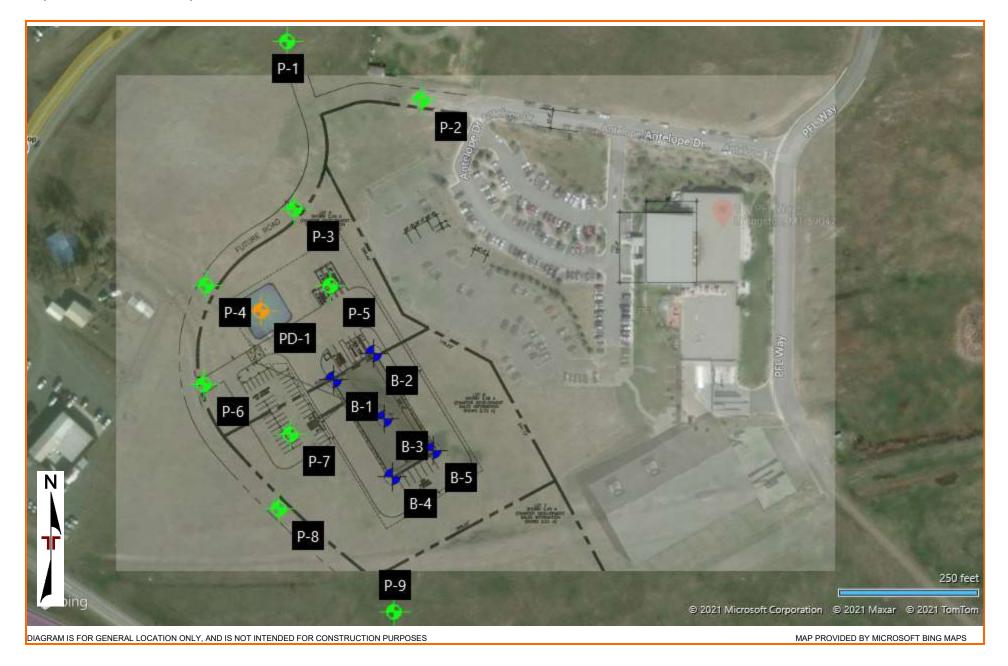
Site Location Plan Exploration Plan

Note: All attachments are one page unless noted above.

SITE LOCATION

4.55 Acre Site Development
Livingston, MT
May 7, 2021 Terracon Project No. 26215031




DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

MAP PROVIDED BY MICROSOFT BING MAPS

EXPLORATION PLAN

4.55 Acre Site Development
Livingston, MT
May 7, 2021 Terracon Project No. 26215031

EXPLORATION RESULTS

Contents:

Boring Logs (B-1 through B-5, PD-1, and P-1 through P-9 – 16 pages) Atterberg Limits Grain Size Distribution Consolidation/Swell (2 pages) Unconfined Compressive Strength (2 pages) Moisture Density Relationship CBR Falling Head Permeability Corrosivity (8 pages)

Note: All attachments are one page unless noted above.

Γ	BORING L). B-	1					Page 1 of	134 1
Р	PROJ	ECT: 4.55 Acre Site	CLIENT:	Rueo Madi	deb	usch Develo	opmer	nt & C			
S	SITE:	Near PFL Way Livingston, MT		maai	501	,					
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 45.6521° Longitude: -110.6087°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
1		LEAN CLAY WITH SAND (CL), brown to light purplish grav.	moist		X	2-4-5 N=9		23.9			
		to wet, medium stiff to very stiff			en X	4-5-5 N=10	-	24.1			
			5 -		X	3-2-3 N=5	_	23.4			
					X	2-3-3 N=6					
2			10-		X	2-2-6 N=8	-				
			15		X	5-9-14 N=23					
4		20.0 <u>SEDIMENTARY BEDROCK - CLAYSTONE</u> , dark purplish bro wet 21.5	wn, 20		X	25-22-40 N=62	_				
2		Boring Terminated at 21.5 Feet									
Adv	anceme	ratification lines are approximate. In-situ, the transition may be gradual.	esting Procedures	for a	_	lammer Type: Autor	natic				
0 Aba B	andonme	ollow Stem Auger description of field and and additional data (If and additional data (If See Supporting Inform symbols and abbrevia ackfilled with auger cuttings upon completion. See Support and abbrevia	l laboratory procedu any). ation for explanatio	ures used							
	7	WATER LEVEL OBSERVATIONS	aco		-	ing Started: 04-12-20	021			oleted: 04-12-2	021
		2110 Ove	land Ave Ste 124 lings, MT		-	Rig: BK-81 ect No.: 26215031		Drille	er: Hazte	ech	

			BORING L	LOG NO. B-2 Page 1 of							
F	PROJ	ECT: 4.55 Acre Site		CLIENT:	Rued Madis	ebusch Devel son, WI	opmer	nt & C		-	
	SITE:	Near PFL Way Livingston, MT		-		·					
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 45.6522° Longitude: -110.6084° DEPTH		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS SAMDIE TYDE	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits	PERCENT FINES
1		<u>LEAN CLAY WITH SAND (CL)</u> , dark brown	n, moist, very stiff	-	-	4-6-9 N=15		24.4			
170				-		5-7-8 N=15	_	10.5			
		8.0		5		7-22-43 N=65	_	11.1			
		SANDSTONE, light brown to light gray, moi	ist	- 10- -		< 50	-	3.1			
		17.0		- - 15- -		<50/4"					
		SEDIMENTARY BEDROCK - CLAYSTONE purple, moist 21.5	<u>e</u> , light gray to light	- - 20- -		20-33-50/5"	_	15.4			
		Boring Terminated at 21.5 Feet									
	Str	atification lines are approximate. In-situ, the transition may be	e gradual.			Hammer Type: Auto	matic				
	0 - 20' Ho andonme	nt Method: Ilow Stem Auger Int Method: ickfilled with auger cuttings upon completion.	See Exploration and Testi description of field and lat and additional data (If any See Supporting Informatic symbols and abbreviation	boratory procedur /). on for explanation	res used	Notes:					
		WATER LEVEL OBSERVATIONS				Boring Started: 04-12-2	021	Borir	ng Comp	oleted: 04-13-20	021
	Gi	oundwater not encountered	2110 Overlan	d Ave Ste 124 gs, MT		Drill Rig: BK-81 Project No.: 26215031		Drille	er: Hazte	ch	

		BORING L	.OG NC). B-	3					Page 1 of	130
Р	ROJ	ECT: 4.55 Acre Site	CLIENT:	Ruec Madi	debu ison.	sch Devel WI	opmer	nt & C		-	
S	ITE:	Near PFL Way Livingston, MT	_								
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 45.6519° Longitude: -110.6083°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
1	<u></u>	DEPTH 0.8 TOPSOIL , dark brown, moist			$\overline{\mathbf{A}}$	2-3-3		23.4			
		LEAN CLAY WITH SAND (CL), dark brown to light purplish gramoist to wet, medium stiff to very stiff	ay,			N=6					
					X	3-3-4 N=7	_	27.2			
			5-	_							
							250	31.5	100	46-23-23	79
					X	4-4-5 N=9					
			10-								
2					X	2-3-4 N=7					
				-							
			15-		X	3-7-10 N=17					
				_							
		20.0	20-								
		SEDIMENTARY BEDROCK - CLAYSTONE, light gray to light wet	gray,		X	14-27-26 N=53					
4				-							
			25-		X	19-39-50 N=89					
_	YX) Str	atification lines are approximate. In-situ, the transition may be gradual.		-	Ha	mmer Type: Auto	matic				
		nt Method: See Exploration and Te llow Stem Auger description of field and			Not	es:					
		and additional data (If a See Supporting Informa	ny). <mark>tion</mark> for explanatio								
	oring ba	nt Method: ckfilled with auger cuttings upon completion.	ภาธ.					_			
$\overline{\nabla}$	7	WATER LEVEL OBSERVATIONS While drilling			Borin	g Started: 04-12-2	021	Borir	ng Comp	oleted: 04-12-2	021
			Ind Ave Ste 124		Drill F	Rig: BK-81		Drille	er: Hazte	ech	
			ngs, MT		Proje	ct No.: 26215031					

BORING LOG NO. B-3 Page 2 of 2									137			
Р	ROJ	ECT: 4.55 Acre Site	CL	ENT:	Rue Mad	dek liso	ousch Develo n, Wl	pmen	nt & C			
S	ITE:	Near PFL Way Livingston, MT										
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 45.6519° Longitude: -110.6083° DEPTH		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits	PERCENT FINES
		SEDIMENTARY BEDROCK - CLAYSTONE wet (continued)	, light gray to light gray,			\times	29-50					
4				35		X	12-22-49 N=71	-				
		41.5 Boring Terminated at 41.5 Feet		40	-	X	13-20-30 N=50	-				
Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic Advancement Method: 0 - 40' Hollow Stem Auger See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Notes:												
	oring ba	nt Method: ckfilled with auger cuttings upon completion.	See Supporting Information for e symbols and abbreviations.	xplanation	i of							
$\overline{\nabla}$		WATER LEVEL OBSERVATIONS hile drilling	Jerra				oring Started: 04-12-20	21	-		oleted: 04-12-20	021
			2110 Overland Ave S				ill Rig: BK-81		Drille	er: Hazte	ech	-
			Billings, MT			Pro	oject No.: 26215031					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 262150314.55 ACRE SITE.GPJ TERRACON_DATATEMPLATE.GDT 4/30/21

BORING LOG NO. B-4 Page 1							Page 1 of	138				
P	ROJ	ECT: 4.55 Acre Site	CLI	ENT:	Rue Mad	del	busch Develo on, WI	pmer	nt & C			
S	SITE:	Near PFL Way Livingston, MT					,					
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 45.6516° Longitude: -110.6082° DEPTH		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits	PERCENT FINES
1	<u>x17x: .x</u>	0.6 <u>TOPSOIL</u> , light brown, moist <u>LEAN CLAY WITH SAND (CL)</u> , light brown medium stiff to very stiff	to brown, moist,	-	-	X	3-2-3 N=5	_	14.7	_		
				-	-	X	6-6-7 N=13	-	16.4	-		
					-	X	4-5-5 N=10	-	21.2	-		
2	2				-		3-4-4 N=8	-	19.7	-		
					-	X	7-10-9 N=19	-	21.9	-		
		16.0 SEDIMENTARY BEDROCK - CLAYSTONE.	, gray with purple, moist	15-	-	X	10-17-19 N=36	-	19.3			
4		21.5		20-	-		18-27-29 N=56	-	16.8			
	Boring Terminated at 21.5 Feet											
┢	Stratification lines are approximate. In-situ, the transition may be gradual.			<u> </u>	<u> </u>		Hammer Type: Auton	natic				
0 Aba	Ivancement Method: See Exploration and Testing P 0 - 20' Hollow Stem Auger description of field and laborat and additional data (If any). sandonment Method: See Supporting Information fo symbols and abbreviations.			procedu	res use		Notes:					
	WATER LEVEL OBSERVATIONS					В	oring Started: 04-12-20)21	Borir	ng Comp	oleted: 04-12-20)21
	Gı	Groundwater not encountered				Di	rill Rig: BK-81		Drille	er: Hazte	ech	
		2110 Overland / Billings,		te 124		Pr	roject No.: 26215031					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 26215031 4:55 ACRE SITE.GPJ TERRACON_DATATEMPLATE.GDT 4/30/21

	BORING L			LOG NO. B-5								139
											Page 1 of	1
P	ROJ	ECT: 4.55 Acre Site	CL	IENT:	Rue Mad	det liso	ousch Develo n, WI	opmer	nt & C	Cons	truction	
S	ITE:	Near PFL Way Livingston, MT										
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 45.6518° Longitude: -110.6080°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIMITS	PERCENT FINES
1	<u></u>	DEPTH 0.8 TOPSOIL , dark brown, moist					2-3-4					
		LEAN CLAY WITH SAND (CL), dark brown to brown, medium stiff to very stiff	oist to wet,		-	\square	N=7		21.9			
				-	-	X	4-5-5 N=10		22.9			
				5-				850	32.8	88	46-22-24	74
				-		\square	2-2-2 N=4					
				-								
2				10-	-	\square	2-3-4 N=7					
				-	-							
				-	-							
				15-	-	\square	12-14-10 N=24					
				-								
				20-	-							
		21.5		-		Х	7-12-14 N=26					
		Boring Terminated at 21.5 Feet										
	St	atification lines are approximate. In-situ, the transition may be gradual.					Hammer Type: Auton	natic				
		nt Method: See Exploration description of fire and additional d	and Testing Prod eld and laboratory data (If any).	<mark>cedures</mark> fo y procedur	r a es use		Notes:					
		See Supporting Information onment Method: Ing backfilled with auger cuttings upon completion.		xplanation	of							
	,	WATER LEVEL OBSERVATIONS			_	Во	oring Started: 04-12-20)21	Borir	ng Comp	oleted: 04-12-20)21
	_ W	hile drilling	611		Π	Dri	ill Rig: BK-81		Drille	er: Hazte	ech	
		2110 Overland . Billings,				Pro	oject No.: 26215031					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 262150314.55 ACRE SITE.GPJ TERRACON_DATATEMPLATE.GDT 4/30/21

Γ		В	ORING LO	G NO.	PC)-1					Daga 1 of	140
F	ROJ	ECT: 4.55 Acre Site			Rue	deb	ousch Develo	pmen	nt & C		Page 1 of truction	1
ę	SITE:	Near PFL Way Livingston, MT			Mad	liso	n, WI					
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 45.6524° Longitude: -110.6092° DEPTH		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits	PERCENT FINES
1	<u>x x</u> . <u>.</u>		moist, medium stiff	to -			2-4-4 N=8		15.9			
				-	-		3-3-4 N=7		17.8			
2		10.0		5	-	X	4-4-8 N=12		15.3			
			10 - - -		X	15-19-50/4"		11.7				
4		17.0 SEDIMENTARY BEDROCK - CLAYSTONE, brown, wet	light gray to light	15- 		>	50/2"					
				20		\times	34-50					
		26.5		25		\times	50					
L	Str	Boring Terminated at 26.5 Feet atification lines are approximate. In-situ, the transition may be g	radual.				Hammer Type: Autom	natic				
(Aba	anceme - 25' Ho Indonme	nt Method: S Ilow Stem Auger d	n for explanatior	res use	N	lotes:						
		WATER LEVEL OBSERVATIONS	70			Bo	ring Started: 04-13-20	21	Borin	ig Comp	leted: 04-13-20)21
$\overline{\nabla}$	<u>_</u> W	hile drilling			Π	_	II Rig: BK-81			er: Hazte		
			2110 Overland Billing			Pro	oject No.: 26215031					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 26215031 4:55 ACRE SITE.GPJ TERRACON_DATATEMPLATE.GDT 4/30/21

	BORING			G LOG NO. P-1 Page 1 of							141		
P	ROJ	ECT: 4.55 Acre Site			NT:	Rue	dek	ousch Develo	pmen	t & C			1
s	ITE:	Near PFL Way Livingston, MT				Mad	iso	n, WI					
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 45.6538° Longitude: -110.6090°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits	PERCENT FINES
1	<u></u>	LEAN CLAY WITH SAND (CL), light brown to I	ight gray, moist, s	stiff			X	3-4-6 N=10		19.6			
2		to hard			-	-	n N	11-14-17 N=31	-	15.2			
		6.5 Boring Terminated at 6.5 Feet			5 — _		X	17-25-26 N=51	-	12.7			
	St	atification lines are approximate. In-situ, the transition may be grad	ual.					Hammer Type: Auton	natic				
	ancement Method: - 5' Hollow Stem Auger See Exploration and Test description of field and la and additional data (If an See Supporting Informati		poratory p /).	procedur	es used		lotes:						
		Ionment Method: ing backfilled with auger cuttings upon completion.		s.	nanation	OI							
		WATER LEVEL OBSERVATIONS					Bo	oring Started: 04-13-20	21	Borin	ig Comp	leted: 04-13-20)21
	GI	oundwater not encountered	llerra	20		Π	Dri	ill Rig: BK-81		Drille	er: Hazte	ch	
	2110 Over			d Ave Ste ls, MT	9 124		Pro	oject No.: 26215031					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 26215031 4:55 ACRE SITE.GPJ TERRACON_DATATEMPLATE.GDT 4/30/21

		F		LOG NO. P-2								142	
P	ROJ	ECT: 4.55 Acre Site						ousch Develo	nmer	nt & (Page 1 of [!]	1
						Mad	liso	on, WI	pinei		20113		
S		Near PFL Way Livingston, MT				i	1			1			
VER	LOG	LOCATION See Exploration Plan			∃t.)	IONS	ΥΡΕ	ST	VED SIVE I (psf)	(%)	l⊤ pcf)	ATTERBERG LIMITS	INES
MODEL LAYER	GRAPHIC LOG	Latitude: 45.6535° Longitude: -110.6080°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
1	<u></u>	DEPTH 0.5 TOPSOIL , light brown, moist				- 0	$\overline{\mathbf{\nabla}}$	3-5-5	00				<u> </u>
		LEAN CLAY WITH SAND (CL), light gray to medium stiff to stiff	light brown, moist,		-		Å	N=10	-	14.6	-		
2					-	-	S N	4-4-3	_	14.5	-		
					-	-	\square	N=7	-		-		
4		5.0 SEDIMENTARY BEDROCK - CLAYSTONE brown, moist 6.5	, light gray to light		5 – -	-	\mathbf{X}	13-30-37 N=67	_	10.8			
	Boring Terminated at 6.5 Feet												
	Str	l atification lines are approximate. In-situ, the transition may be s	gradual.			1	I	Hammer Type: Auton	natic	1	1	I	
		ncement Method: See Exploration and T			dures fo	ora		Notes:					
0		5' Hollow Stem Auger description of field and and additional data (If a		/).									
		onment Method: ng backfilled with auger cuttings upon completion.		on tor exp is.	ianation	I OT							
	~	WATER LEVEL OBSERVATIONS					Вс	oring Started: 04-13-20	21	Borin	ng Comp	leted: 04-13-20)21
	Gı	oundwater not encountered	llerra			Π	Dr	ill Rig: BK-81		Drille	er: Hazte	ch	
			2110 Overlan Billing	d Ave Ste gs, MT	124		Pr	oject No.: 26215031					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 262150314.55 ACRE SITE.GPJ TERRACON_DATATEMPLATE.GDT 4/30/21

										143			
PROJECT: 4.55 Acre Site CLIENT: Ru						Rue	debusch Development & Construction						
s	ITE:	Near PFL Way Livingston, MT		-		iviad	liso	n, WI					
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 45.6529° Longitude: -110.6089° DEPTH			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits	PERCENT FINES
1	0000	FILL - SILTY SAND WITH GRAVEL (SM), fine to co rounded, brown, moist, medium dense	oarse grained	d,			X	10-7-4 N=11	_				
2		2.0 LEAN CLAY WITH SAND (CL), light brown, moist, v	very stiff		_		X	7-10-13 N=23	_	13.6	-		
		6.5			5-	-	X	11-13-13 N=26	_	16.7			
	anceme	ow Stem Auger description	ration and Testi of field and lat	boratory pro			1	Hammer Type: Autor Notes:	natic				
Aba B	Abandonment Method: Boring backfilled with auger cuttings upon completion.					of							
WATER LEVEL OBSERVATIONS					_	Вс	oring Started: 04-13-20)21	Borir	ng Comp	oleted: 04-13-20	021	
			erra	JC		Π		ill Rig: BK-81		Drille	er: Hazte	ech	
				10 Overland Ave Ste 124 Billings, MT				Project No.: 26215031					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 26215031 4:55 ACRE SITE.GPJ TERRACON_DATATEMPLATE.GDT 4/30/21

										144		
PROJECT: 4.55 Acre Site CLIENT: Rued					ede	busch Develo	pmen	nt & C		Page 1 of [!] truction	1	
SITE: Near PFL Way Livingston, MT		Near PFL Way Livingston, MT			Ma	disc	on, WI					
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 45.6526° Longitude: -110.6095° DEPTH		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-PI	PERCENT FINES
1	<u>x17</u> x <u>.</u>	<u>LEAN CLAY WITH SAND (CL)</u> , brown, mo	pist, stiff		_		2-5-6 N=11		17.3			
2					_		4-5-4 N=9	-	10.7	-		
		6.5 Boring Terminated at 6.5 Feet		5	_		5-5-5 N=10		9.5			
	Str	atification lines are approximate. In-situ, the transition may be	e gradual.				Hammer Type: Autor	matic				
0	Advancement Method: 0 - 5' Hollow Stem Auger See Exploration and Test description of field and la and additional data (If an See Supporting Informati				aboratory procedures used y). ion for explanation of							
Abar Bi	ndonme oring ba	nt Method: ckfilled with auger cuttings upon completion.	symbols and abbreviations	<i>i</i> ations.								
WATER LEVEL OBSERVATIONS Groundwater not encountered						В	Boring Started: 04-13-20	Borir	Boring Completed: 04-13-2021			
Groundwater not encountered			llerracon				Drill Rig: BK-81			Driller: Haztech		
			2110 Overland Ave Ste 124 Billings, MT			P	Project No.: 26215031					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 262150314.55 ACRE SITE.GPJ TERRACON_DATATEMPLATE.GDT 4/30/21

		B	ORING LO	OG N	O	P	-5						145
P	ROJ	ECT: 4.55 Acre Site						busch Develo	pmer	nt & C		Page 1 of [:] truction	1
								on, WI					
5	ITE:	Near PFL Way Livingston, MT											
YER	-06	LOCATION See Exploration Plan			t)	/EL ONS	ΥΡΕ	L. C	ED SIVE (psf)	(%)	T cf)	ATTERBERG LIMITS	NES
MODEL LAYER	GRAPHIC LOG	Latitude: 45.6526° Longitude: -110.6087°			DEPTH (Ft.)	ER LEV RVATI	SAMPLE TYPE	FIELD TEST RESULTS	ONFIN PRESS	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		ENT FI
MOD	GRA				DEF	WATER LEVEL OBSERVATIONS	SAMF	프문	UNCONFINED COMPRESSIVE STRENGTH (psf)	CON	MEIG	LL-PL-PI	PERCENT FINES
1	<u></u>	, <u> </u>	0000				\bigtriangledown	6-7-8		9.8			
	<u>}</u>	1.5 fine to coarse grained, rounded, brown, moist	, medium dense				$\mid \land \mid$	N=15		0.0	-		
		CLAYEY SAND (SC), fine grained, light gray medium dense to very dense	to light purple, mois	st,	_			3-10-8		11.0	-		
3					_		$\mid \land \mid$	N=18		11.3			
					5 —		\mathbf{k}	8-16-40	-		-		
		6.5			_		igarproduct	N=56		11.5			
		Boring Terminated at 6.5 Feet											
	Str	atification lines are approximate. In-situ, the transition may be gr	adual.	I			•	Hammer Type: Auton	natic				
			ee Exploration and Testinescription of field and lab					Notes:					
		ar	additional data (If any ee Supporting Informatic).									
			mbols and abbreviations		auun	U							
	-	WATER LEVEL OBSERVATIONS					В	oring Started: 04-13-20	121	Borir	ng Comp	oleted: 04-13-20	021
	Gı	oundwater not encountered	lerra			Π		rill Rig: BK-81			er: Hazte		
			2110 Overland Billing		24		Pr	roject No.: 26215031					

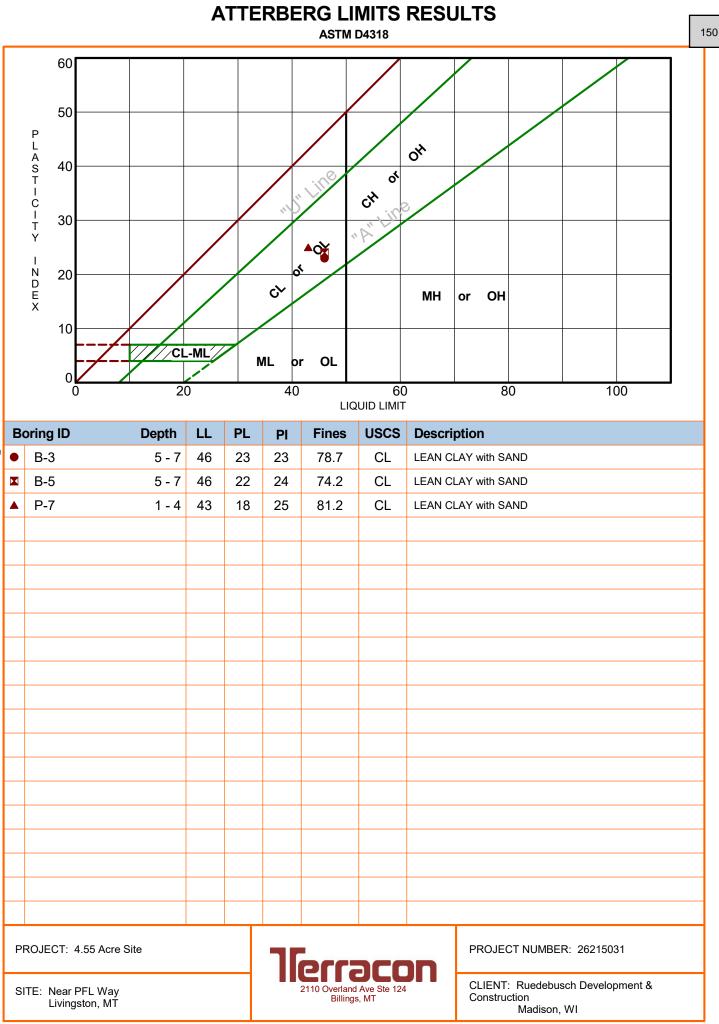
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 262150314.55 ACRE SITE.GPJ TERRACON_DATATEMPLATE.GDT 4/30/21

			BORING L		JU	D.	_6						146
<u> </u>		ECT: 4.55 Acre Site								400		Page 1 of	1
P	RUJ	ECT: 4.55 Acre Site			11:	Mad	liso	ousch Develo n, WI	pmen		Jons	truction	
S	ITE:	Near PFL Way Livingston, MT							•				
YER	LOG	LOCATION See Exploration Plan			ft.)	VEL	ΥΡΕ	ST	(psf)	(%)	ocf)	ATTERBERG LIMITS	INES
MODEL LAYER	GRAPHIC LOG	Latitude: 45.6521° Longitude: -110.6096°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
1	<u>74 1× - 74</u>	DEPTH 0.7 TOPSOIL , dark brown, moist				>0	ν 7		-0%				Ē
		LEAN CLAY WITH SAND (CL), brown, mo	bist		_	-	X	2-4-9 N=13		19.4			
					_			10-13-10	-	22.4			
2					_	-	\square	N=23		22.4			
		6.5			5— _		X	6-5-6 N=11	_	20.6			
		Boring Terminated at 6.5 Feet											
	Str	atification lines are approximate. In-situ, the transition may b	e gradual					Hammer Type: Autor	natic				
L	30	auneaust intee are approximate. In situ, the transition may b	- <u>-</u>					. ammor type. Auton					
		nt Method: ow Stem Auger	See Exploration and Testi description of field and lat and additional data (If any	boratory pro	ires foi ocedure	r a es useo		Notes:					
		nt Method: ckfilled with auger cuttings upon completion.	See Supporting Information symbols and abbreviation	on for explai is.	nation	of							
E		WATER LEVEL OBSERVATIONS						pring Started: 04-13-20	121	Borin		leted: 04-13-20)21
		oundwater not encountered	llerra	DC		Π		rill Rig: BK-81	- 1	-	er: Hazte		- 1
			2110 Overland		-			roject No.: 26215031					

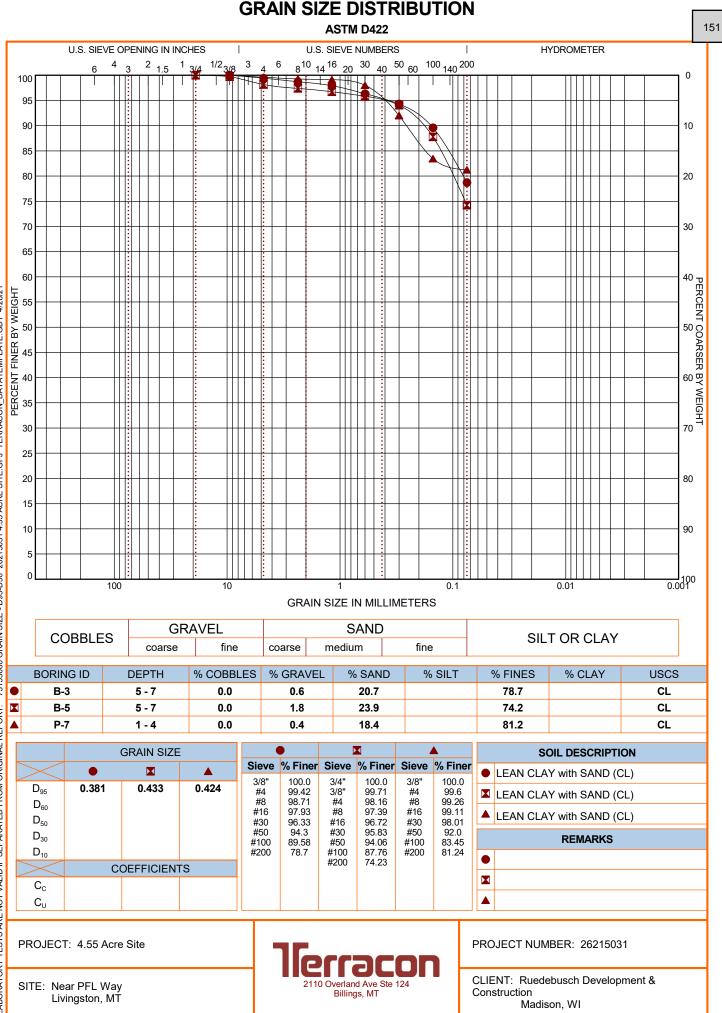
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 262150314.55 ACRE SITE.GPJ TERRACON_DATATEMPLATE.GDT 4/30/21

Γ		B	ORING LO		P _7	7					147
-								4 0 0		Page 1 of ¹	1
1	'ROJ	ECT: 4.55 Acre Site		CLIENT:	Madis	ebusch Develo son, WI	opmen		ons	truction	
5	SITE:	Near PFL Way Livingston, MT									
YER	00	LOCATION See Exploration Plan		t)	/EL		ED tiVE (psf)	(%)	r ď)	ATTERBERG LIMITS	NES
MODEL LAYER	GRAPHIC LOG	Latitude: 45.6518° Longitude: -110.6090°		DEPTH (Ft.)	R LEV	FIELD TEST RESULTS	NFIN RESS IGTH	ATER TENT (DRY UNIT WEIGHT (pcf)		ENT FI
MODI	GRAI			DEP	WATER LEVEL OBSERVATIONS	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	WEIG	LL-PL-PI	PERCENT FINES
1		DEPTH 0.6 <u>TOPSOIL</u> , dark brown, moist				2-2-2					
		LEAN CLAY WITH SAND (CL), dark brown, r stiff	noist, medium stiff t	to –	1 Z	N=4		20.5			
				-	- an	7	-			43-18-25	81
2				_		7-8-7 N=15		17.9			
17/00				5-							
+ - - -		6.5				4-4-5 N=9		20.4			
		Boring Terminated at 6.5 Feet									
IKACO 1											
Е. С. Т.											
Н Ч П П											
ACC:											
2 1 2 0 3 1 2											
7621											
0.6-NC											
AKI											
5 											
ХЕТ С С											
einal											
I F K O											
	Str	atification lines are approximate. In-situ, the transition may be gra	dual.	<u> </u>		Hammer Type: Autor	natic			<u> </u>	
Ady			e Exploration and Testin			Notes:					
	ווסדו כ- נ	an	scription of field and labo d additional data (If any)								
			e Supporting Information nbols and abbreviations		of						
دروب		WATER LEVEL OBSERVATIONS									
9NING		oundwater not encountered][err:			Boring Started: 04-13-20	021			oleted: 04-13-20	021
			2110 Overland	Ave Ste 124		Drill Rig: BK-81		Drille	r: Hazte	ech	
± 📃			Billings	s, MT		Project No.: 26215031		1			

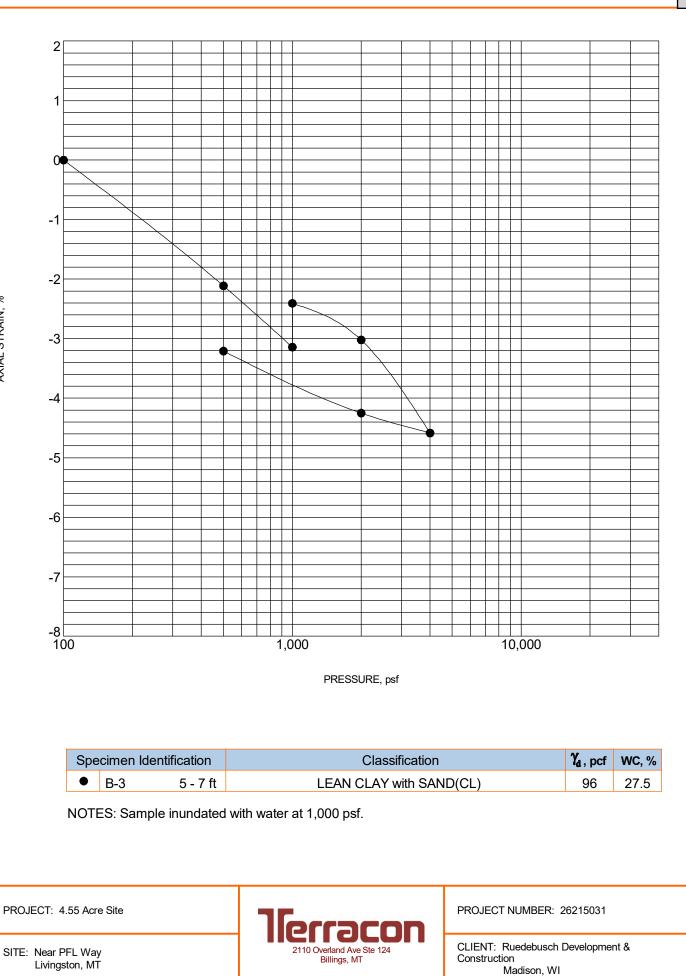
Г


			BORING LO		0	P _8	8					148
P	ROJ	ECT: 4.55 Acre Site					ebusch Devel	opmer	nt & C		Page 1 of [!] truction	1
S	ITE:	Near PFL Way					on, WI					
		Livingston, MT							1		ATTERBERG	
YER	g	LOCATION See Exploration Plan		£	, EL	ONS			(%)	ر ق	LIMITS	NES
MODEL LAYER	GRAPHIC LOG	Latitude: 45.6515° Longitude: -110.6090°		DEPTH (Ft.)	WATER LEVEL	OBSERVATIONS	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
1	<u></u> <u>_</u>	DEPTH 0.5 TOPSOIL , dark brown, moist				0 0		- 0 s				Ē
		LEAN CLAY WITH SAND (CL), dark brow	n, moist		_		2-2-2 N=4		21.8			
						en en	n 5-6-5	-		-		
2					_	Z	N=11	_	11.4	-		
		6.5		5	;		4-7-9 N=16		28.1	-		
	<u></u>	Boring Terminated at 6.5 Feet										
⊢	St	atification lines are approximate. In-situ, the transition may be	e gradual.				Hammer Type: Auto	matic				
		nt Method: low Stem Auger	See Exploration and Testin description of field and lab and additional data (If any)	oratory proce		used	Notes:	_	_	_	_	
A.L	adaress	art Method	See Supporting Information	n for explanat	tion of							
		nt Method: ckfilled with auger cuttings upon completion.	symbols and abbreviations	5.								
	-	WATER LEVEL OBSERVATIONS					Boring Started: 04-13-2	021	Borir	ng Comp	leted: 04-13-20)21
	Gi	oundwater not encountered	lerra	900		1	Drill Rig: BK-81		Drille	er: Hazte	ch	
			2110 Overland Billings	Ave Ste 124			Project No.: 26215031					

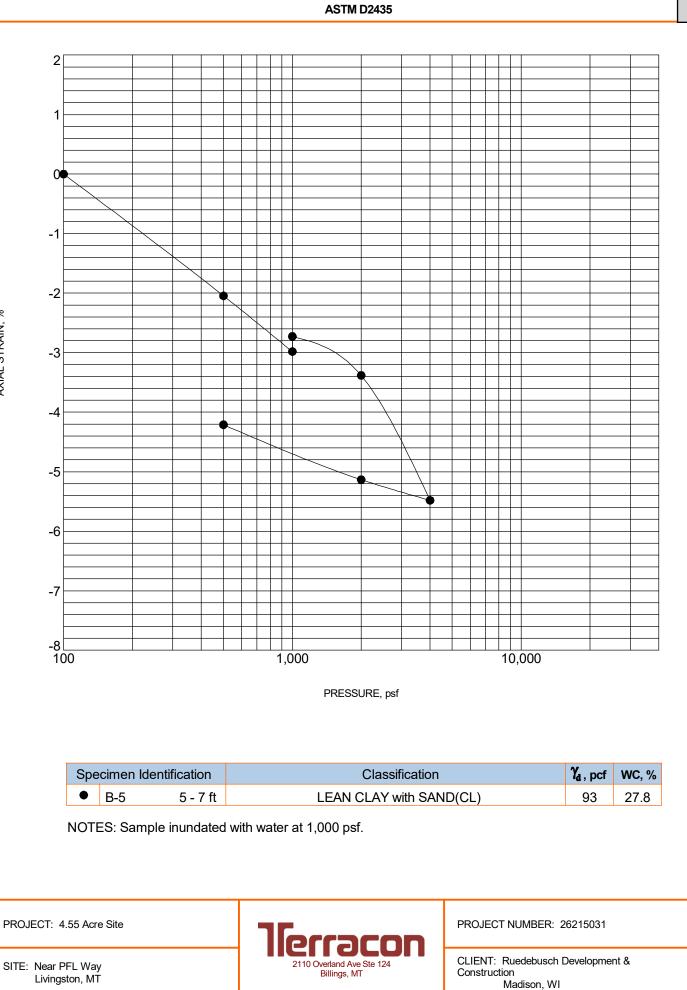
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 262150314.55 ACRE SITE.GPJ TERRACON_DATATEMPLATE.GDT 4/30/21


		BORING L			٥						149
			1							Page 1 of	1
PR	OJECT: 4.55 Acre Site		CLIENT:	Rue Mac	edek diso	ousch Develo n, WI	opmen	nt & C	Cons	truction	
SIT	E: Near PFL Way Livingston, MT					,					
MODEL LAYER	LOCATION See Exploration Plan Latitude: 45.6510° Longitude: -110.6082°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	UNCONFINED COMPRESSIVE STRENGTH (psf)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS	PERCENT FINES
1 <u>st</u> 2	DEPTH <u> DEPTH</u> <u> DEPTH</u> , dark brown, moist <u> LEAN CLAY WITH SAND (CL)</u> , dark browr stiff	n, moist, medium stiff	to	-	X	2-2-2 N=4	-	18.9			
	2.5 <u>CLAYEY SAND (SC)</u> , fine grained, light bro dense	own, moist, medium		-		2-4-7 N=11	-	12.1			
3	6.5		5 -	_		7-8-8 N=16	_	10.4			
	Boring Terminated at 6.5 Feet	e gradual.				Hammer Type: Auton	hatic				
0 - 5 Abando	ement Method: Hollow Stem Auger	See Exploration and Testi description of field and lat and additional data (If any See Supporting Information symbols and abbreviation	boratory procedu /). on for explanatio	ures use		Notes:					
Boul	g backfilled with auger cuttings upon completion.										
	WATER LEVEL OBSERVATIONS Groundwater not encountered	Torr			Bo	oring Started: 04-13-20)21	Borin	ng Comp	leted: 04-13-20)21
					Dr	ill Rig: BK-81		Drille	er: Hazte	ch	
			d Ave Ste 124 js, MT		Pr	oject No.: 26215031					

Г

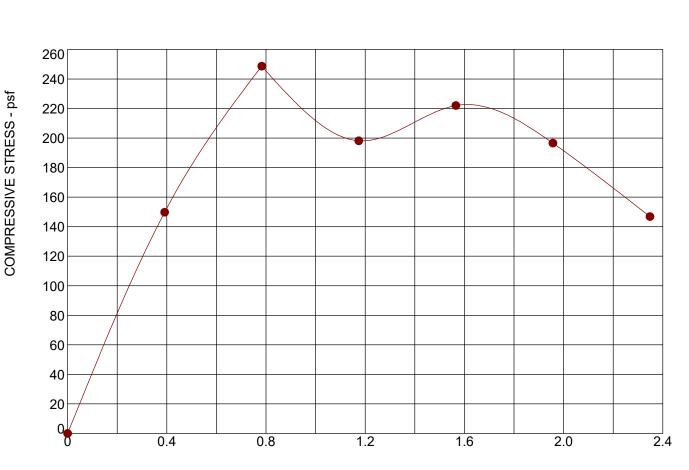

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 26215031 4:55 ACRE SITE.GPJ TERRACON_DATATEMPLATE.GDT 4/30/21

LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. ATTERBERG LIMITS 262150314.55 ACRE SITE.GPJ TERRACON_DATATEMPILATE.GDT 4/28/21

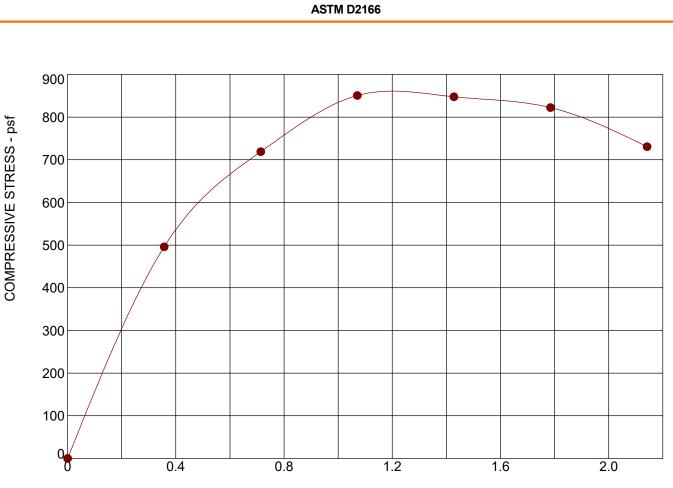


73155080 GRAIN SIZE - D95-D50 26215031 4.55 ACRE SITE.GPJ TERRACON_DATATEMPLATE.GDT 4/28/21 -ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

SWELL CONSOLIDATION TEST ASTM D2435


LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. TC_CONSOL_STRAIN-USCS_262150314.55 ACRE SITE.GPJ_TERRACON_DATATEMPLATE.GDT_4/30/21 AXIAL STRAIN, %

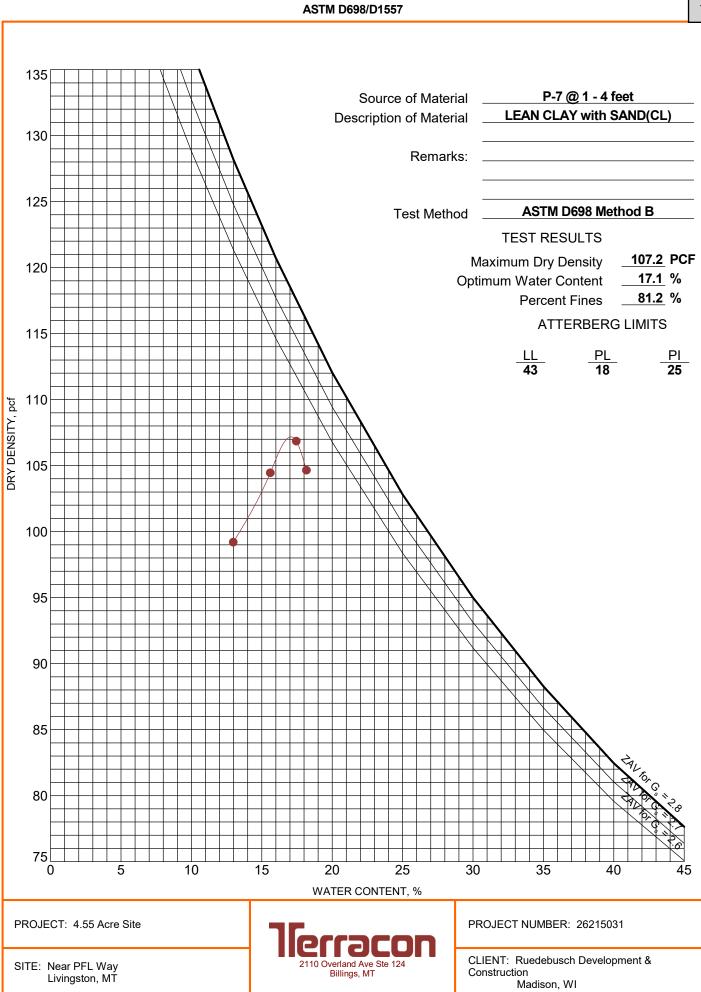
SWELL CONSOLIDATION TEST


LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. TC_CONSOL_STRAIN-USCS_262150314.55 ACRE SITE.GPJ_TERRACON_DATATEMPLATE.GDT_4/30/21 AXIAL STRAIN, %

UNCONFINED COMPRESSION TEST ASTM D2166

AXIAL STRAIN - %

SPECIMEN FAILURE PHOTOGRAPH	1		SPE	CIMEN TEST D	ATA
	Moisture Co	ntent:		%	31.5
	Dry Density:	:		pcf	100
	Diameter:			in.	2.70
	Height:			in.	5.11
	Height / Dia	meter Ratio:			1.89
	Calculated S	Saturation:		%	
	Calculated \	/oid Ratio:			
	Assumed S	pecific Gravit	/ :		
	Failure Strai	n:		%	0.78
	Unconfined	Compressive	Strengt	n (psf)	249
	Undrained S	Shear Strengt	h:	(psf)	124
Contraction to a	Strain Rate:			in/min	0.0500
	Remarks:				
SAMPLE TYPE: Shelby Tube		SAMPLE LO	OCATION	N: B-3@5-7	feet
DESCRIPTION: LEAN CLAY with SAND(CL)		LL	PL	PI	Percent < #200 Sieve
		46	23	23	78.7
PROJECT: 4.55 Acre Site		aco	n	PROJECT NUI	MBER: 26215031
SITE: Near PFL Way Livingston, MT	2110 Overlan Billing			Construction	lebusch Development & son, WI

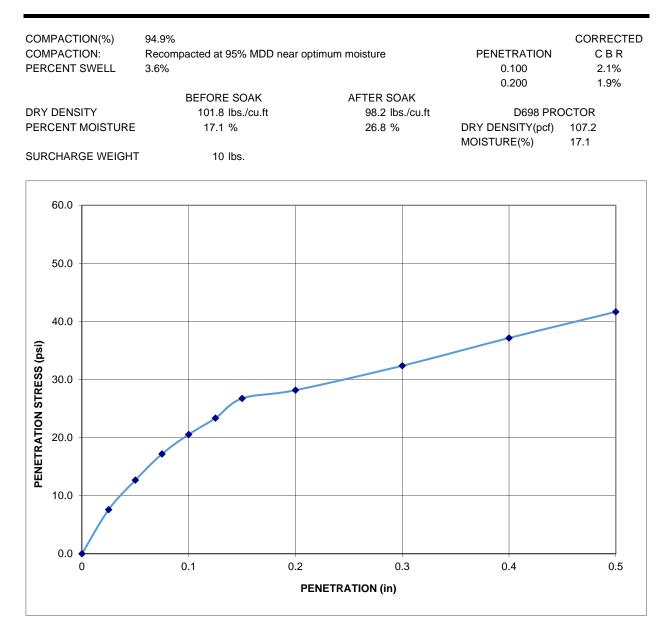


AXIAL STRAIN - %

SPECIMEN FAILURE PHOTOGRAPH			SPE	CIMEN TEST D	ATA
	Moisture Co	ntent:		%	32.8
	Dry Density:			pcf	88
	Diameter:			in.	2.85
	Height:			in.	5.60
	Height / Dia	meter Ratio:			1.97
	Calculated S	Saturation:		%	
	Calculated \	/oid Ratio:			
	Assumed S	pecific Gravity	/ :		
	Failure Strai	n:		%	1.07
	Unconfined	Compressive	Strengt	n (psf)	851
	Undrained S	hear Strengt	h:	(psf)	425
	Strain Rate:			in/min	0.0500
	Remarks:				
SAMPLE TYPE: Shelby Tube		SAMPLE LO	OCATION	N: B-5@5-7	feet
DESCRIPTION: LEAN CLAY with SAND(CL)		LL	PL	PI	Percent < #200 Sieve
		46	22	24	74.2
PROJECT: 4.55 Acre Site		aco	n	PROJECT NUM	/BER: 26215031
SITE: Near PFL Way Livingston, MT	2110 Overland Billing	d Ave Ste 124		Construction	ebusch Development & son, WI

LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. UNCONFINED WITH PHOTOS 262150314.55 ACRE SITE.GPJ TERRACON_DATATEMPLATE.GDT 4/28/21

UNCONFINED COMPRESSION TEST


LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. COMPACTION - V2 26215031 4.55 ACRE SITE.GPJ TERRACON_DATATEMPLATE.GDT 4/28/21

MOISTURE-DENSITY RELATIONSHIP

PROJECT:	4.55 Acre Site	PROJECT NO:	26215031
LOCATION:	Livingston, Montana		
MATERIAL:	Lean Clay with Sand		
SAMPLE SOURCE:	P-7 @ 1 to 4 feet	DATE:	4/28/2021
REVIEWED BY:	TG		

CBR (CALIFORNIA BEARING RATIO) OF LABORATORY-COMPACTED SOILS (ASTM D1883)

HYDRAULIC CONDUCTIVITY DETERMINATION

(FLEXIBLE-WALL PERMEAMETER - FALLING-HEAD-ASTM D 5084 Method C)

Date:	4.55 Acre Site 4/28/2021 26215031 PD-1 -	-	Othe	r Location:	Tube Num	ber : centimeter):	C1 0.8755	Tube Capacity: Factor (cm) =	25.0 1.14	cm	l
Materi S	al Description	Lean Clay	with Sand (C	CL)							
0				SAMPLE	DATA						
Wet Wt. sample Tare or ring W Wet Wt: of San Diameter : Length :	t. :	<mark>.</mark> in	<u>553.7</u> <u>0.0</u> <u>553.7</u> <u>7.26948</u> 7.03834	g g cm^2		Before Tare No.: Wet Wt.+tare: Dry Wt.+tare:	<u>Mr. T</u> 156.62	After T Tare No.: Wet Wt.+tare: Dry Wt.+tare:	est Bill 772.21 672.3		
Area: Volume : Unit Wt.(wet):	<u>6.433</u> 17.826	<u>8</u> in^2	<u>41.505</u> <u>292.124</u> <u>118.3</u>	cm^2 cm^3		Tare Wt: Dry Wt.: Water Wt.:		Tare Wt: Dry Wt.: Water Wt.:	232.97 439.33 99.91		
Unit Wt.(dry):		g/cm^3	102.3			% moist.:	15.6	% moist.:	22.7		
(estim	Decific Gravity : ated: <u>Xactual:</u> ed % saturation:)	Q	/ Density = % of max = ratio (e) =		OMC % = % +/- OMC = Porosity (n)=		_			
	ifferential (psi) =			essure Hea		Porosity (n)=		raulic Gradient:	Maximum*	Minimum*	Average*
				TEST RE	ADINGS				20.0	16.0	20.1
Date/time (i)	Date/time (f)	elapsed t	elapsed t	H initial	H final	Flow in	Flow out	temp	α	k	k
m/d hr:min	m/d/hr:min	(day)	(sec)	Hi (cm)	Hf (cm)	qi (cc)	qo (cc)	(deg C)	(temp corr)	(cm/sec)	(ft./day)
4/27 10:00 4/27 10:00	4/27 10:00 4/27 10:00	0.0001	5 5	6.7 5.7	5.7 4.9	1.0 0.8	1.0 0.8	<u>23.2</u> 23.2	0.927 0.927	2.22E-04 1.84E-04	6.28E-01 5.22E-01
4/27 10:00	4/27 10:00	0.0001	5	4.9	4.5	0.8	0.8	23.2	0.927	1.73E-04	
4/27 10:00	4/27 10:00	0.0001	5	4.1	3.4	0.7	0.7	23.2	0.927	1.62E-04	
					0.00						
				k.	SUMN 1.85E-04			()		50	0/)
Reading 1 2 3 4	qo/qi 0.97 0.95 0.97 1.00	acceptance ok ok ok ok ok		ka = ki k1 = k2 = k3 = k4 =	2.22E-04 1.84E-04 1.73E-04 1.62E-04	cm/sec cm/sec cm/sec	Vm 19.7 0.5 6.6 12.7	(k Acceptance crit % % %	ena: vm< =	50	%)
]	k =	1.85E-04	cm/sec	(hydraulic	conductivity)			
Acceptance crii (Variation from 50 % for ka >= 95% for ka < 1 Acceptance crii 0.75 <= qo/qi < (All acceptance	ASTM D 5084) = 1.00E-08 .00E-08 <u>teria for qo/qi ra</u> <= 1.25	atio:	ings)	Vm =	<u> ka-ki </u> ka	x 100		* <u>Hydraulic Gra</u> Maximum and I during the test. ⁻ may not be reac actual hydraulic	Minimum ref The maximur hed. Averag	er to the ran n and/or min e is the aver	nimum limits age of

ANALYTICAL SUMMARY REPORT

May 06, 2021

Terracon Consu 2110 Overland A Billings , MT 59	Ave Ste 124			
Work Order: Project Name:	B21041350 26215031	Quote ID: B5647		
		eived the following 2 samples for Te	erracon Consu	Iltants on 4/19/2021 for analysis.
Lab ID	Client Sample ID	Collect Date Receive Date	Matrix	Test
B21041350-001	B-2 [2.5-4]feet	04/13/21 10:00 04/19/21	Soil	pH, Saturated Paste Saturated Paste Extraction ASA Resistivity, Sat Paste Sulfate-Geochemical

B21041350-002	B-4 [2.5-4]feet	04/12/21 12:00	04/19/21	Soil	Same As Above
	control in this report w	are performed by Eper	av Loboratoria	a kaa 1120	S 27th St., Billings, MT 59101, unless

otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

t Date: 05/06/21 n Date: 04/13/21 10:00 ceived: 04/19/21 Matrix: Soil Analysis Date / By
eived: 04/19/21 Matrix: Soil
Analysis Date / By
04/29/21 09:22 / srm 04/29/21 09:22 / srm
05/05/21 09:21 / srm
Date: 04/12/21 12:00 ceived: 04/19/21
Matrix: Soil
Analysis Date / By
04/29/21 09:22 / srm
04/29/21 09:22 / srm
05/05/21 09:21 / srm

QA/QC Summary Report

Prepared by Billings, MT Branch

Client:	Terracon Consultants	5			Work Order:	B2104	1350	Repor	t Date:	05/06/21	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	ASA10-3									Batc	h: 154910
Lab ID:	B21041133-001A DUF	b Sai	mple Duplic	ate			Run: MISC	-SOIL_210429A		04/29	/21 09:22
pH, sat.	paste		7.70	s.u.	0.10				0.0	10	
Lab ID:	LCS-2104290922	Lat	ooratory Cor	ntrol Sample	9		Run: MISC	-SOIL_210429A		04/29	/21 09:22
pH, sat.	paste		7.10	s.u.	0.10	95	90	110			

QA/QC Summary Report

Prepared by Billings, MT Branch

Client:	Terracon Consultants	;			Work Order:	B2104	1350	Repo	ort Date	: 05/06/21	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	Calculation									Batc	h: 154910
Lab ID:	B21041133-001A DUF	> San	nple Duplic	ate			Run: MISC	-SOIL_210429A	`	04/29	/21 09:22
Resistivity	, Sat. Paste		1150	ohm-cm	1.0		70	130	3.4	30	
Lab ID:	LCS-2104290922	Lab	oratory Co	ntrol Sample)		Run: MISC	-SOIL_210429A	<i>۱</i>	04/29	/21 09:22
Resistivity	Sat. Paste		249	ohm-cm	1.0	102	70	130			

0.009

wt%

QA/QC Summary Report

Prepared by Billings, MT Branch

Client:

Terracon Consultants Work Order: B21041350 Report Date: 05/06/21 Analyte Count Result Units RL %REC Low Limit High Limit RPD RPDLimit Qual MTDOT Method: Batch: R360273 Lab ID: B21041350-001A DUP Sample Duplicate Run: MISC-SOIL_210506A 05/05/21 09:21 Sulfate, HCL Extractable 0.03 wt% 0.01 30 13 Lab ID: LCS Laboratory Control Sample Run: MISC-SOIL_210506A 05/05/21 09:21 Sulfate, HCL Extractable 0.08 wt% 0.01 109 70 130 MBLK1 Method Blank Run: MISC-SOIL_210506A 05/05/21 09:21

Lab ID: Sulfate, HCL Extractable

B21041350

164

Work Order Receipt Checklist

Terracon Consultants

Login completed by: Leslie S. Cadreau			Date I	Received: 4/19/2021			
Reviewed by:	BL2000\darcy		Received by: dac				
Reviewed Date:	4/20/2021		Carr	rier name: Hand Del			
Shipping container/cooler in	good condition?	Yes 🗌	No 🗌	Not Present 🗹			
Custody seals intact on all sh	nipping container(s)/cooler(s)?	Yes 🗌	No 🗌	Not Present 🗹			
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present 🗹			
Chain of custody present?		Yes 🗹	No 🗌				
Chain of custody signed whe	en relinquished and received?	Yes 🗹	No 🗌				
Chain of custody agrees with	a sample labels?	Yes 🗹	No 🗌				
Samples in proper container/	'bottle?	Yes 🗹	No 🗌				
Sample containers intact?		Yes 🗹	No 🗌				
Sufficient sample volume for	indicated test?	Yes 🗹	No 🗌				
All samples received within h (Exclude analyses that are co such as pH, DO, Res CI, Su	onsidered field parameters	Yes 🗸	No 🗌				
Temp Blank received in all sh	nipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable			
Container/Temp Blank tempe	erature:	19.4°C No Ice					
Water - VOA vials have zero	headspace?	Yes	No 🗌	No VOA vials submitted			
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable			

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

Contact and Corrective Action Comments:

None

3	
ENERGY	Twict Aur Bearly Teart are Days

.

Chain of Custody & Analytical Request Record

Instour People. Turst our Data				MM	<u>www.energylab.com</u>	D.com	•				Pageof	
Account Information (Billing information)	(Billing information)			Report Info	ormation (#	Report Information (# different then Account Information)	unt Information)		Com	Comments		
	00			Company/Name								
Phone 406-65	-6-3072			Contact TC Phone	ravis (porte			,			
2110	March Aren	ar Sute	- 124	Mailing Address								
9	MT Sals			City, State, Zip							ţ	
Email Chr. 15. Larda Receive Invoice DHard Copy	e Con	· CO ·	DÊmail.	Email Trauts, Corac. Receive Report Drand.	<u> rovrs, (56</u> epóit □Hart-Copy	<u> </u>	alawor.	mo				
	1			Special ReportFormats: [1] LEVEL IV DNELAC		EDD/EDT (contact laboratory) [] Other	atory) [] Other ·			,		
Project Information				Matrix Codes		Ana	Analysis Requested	p				
Project Name, PWSID, Permit, etc.	1. 26215031-	3,]_		A- Ar W. Wâter	*						All turnaround times are	
Sampler Name J. Schue Flourer	ALEC Sampler Phone	701-429-3244	3244	S - Solis/ Solids	\$ 4							•
Sample Origin State M7	EPA/State Compliance	npliance 🛛 Yes) Ž	V - Vegetation B - Bioassay	5 24		•	-		Ĩ	Energy Laboratories MUST be contacted prior to	
Lab provided preservatives were used	ed 🛛 Yes 🗶 🕼			0 - Other	5				pə		RUSH sample submittal for	Ч
MINING CLIENTS, please indicate sample type. "If ore has been processed or refined, call before sending. Byproduct 11 (e)2 material D Upprocessed o	sample type td. call before sending □ Unprocessed ore (NOT ground or refined)*	T ground or refined		DW - Drukeng	17150 dmg						charges and scheduling – See Instructions Páge	
Sample Identification. (Name. Location, Interval, etc.)	tification <i>*</i> nterval, etc.)	Collection Date T	ime	Number of Matrix Containers (See Codes Above)	'-41d 1 - 1 d	•			4 99S	TAT		
1 BC2, 2.5-4'		ぇ	1000	S						1 1	R21041350	
2,5	-4'	1 22114	0021									
3	ľ							1904				
4												
S									•			
9											-	
2												
,												
10												
Custody Relinquished by (print) Record MUST Jarscon 5,0	methaner	Date/Time 9/19/21 1302		eller	Lahah-	Received by (print)		Date/Time		Signature		
De signed Relinquished by (print)	rint) Dat	Date/Time ************************************	Sufficience Sufficience		11	Rocaved by Laboratory			21170	Signature		
A with start brown of the start start start of the start	(s) Custody Seals	Intact R	Receipt Temp					Amount		Certor Num	Receipt Number (cashchock only)	
	ם ב ב	z	د 	z "	z	oc cash	Cneck	<u>م</u>				16
	In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis-requested This serves as notice of this possibility All subcontracted data will be clearly notated on your analytical report.	submitted to Ene serves as notice	rgy Laborat of this poss	cories, Inc. may sibility All subc	 be subcontra ontracted data 	cted to other certi will be clearly no	fied laboratories in tated on your anal	n order to co lytical repor	mplete the a t.	ınalysis-r	equested Eu-coc-06/08 v.2	5

r

of-7 i

ч

,

SUPPORTING INFORMATION

Contents:

General Notes Unified Soil Classification System Description of Rock Properties

Note: All attachments are one page unless noted above.

GENERAL NOTES DESCRIPTION OF SYMBOLS AND ABBREVIATIONS 4.55 Acre Site Livingston, MT Terracon Project No. 26215031

SAMPLING	WATER LEVEL		FIELD TESTS
	_── Water Initially Encountered	N	Standard Penetration Test Resistance (Blows/Ft.)
Grab Shelby Sample Tube	_────────────────────────────────────	(HP)	Hand Penetrometer
	Water Level After a Specified Period of Time	(T)	Torvane
Split Spoon	Cave In Encountered	(DCP)	Dynamic Cone Penetrometer
	Water levels indicated on the soil boring logs are the levels measured in the borehole at the times indicated. Groundwater level variations will occur	UC	Unconfined Compressive Strength
	over time. In low permeability soils, accurate determination of groundwater levels is not possible with short term water level	(PID)	Photo-Ionization Detector
	observations.	(OVA)	Organic Vapor Analyzer

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification as noted on the soil boring logs is based Unified Soil Classification System. Where sufficient laboratory data exist to classify the soils consistent with ASTM D2487 "Classification of Soils for Engineering Purposes" this procedure is used. ASTM D2488 "Description and Identification of Soils (Visual-Manual Procedure)" is also used to classify the soils, particularly where insufficient laboratory data exist to classify the soils in accordance with ASTM D2487. In addition to USCS classification, coarse grained soils are classified on the basis of their in-place relative density, and fine-grained soils are classified on the basis of their consistency. See "Strength Terms" table below for details. The ASTM standards noted above are for reference to methodology in general. In some cases, variations to methods are applied as a result of local practice or professional judgment.

LOCATION AND ELEVATION NOTES

Exploration point locations as shown on the Exploration Plan and as noted on the soil boring logs in the form of Latitude and Longitude are approximate. See Exploration and Testing Procedures in the report for the methods used to locate the exploration points for this project. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

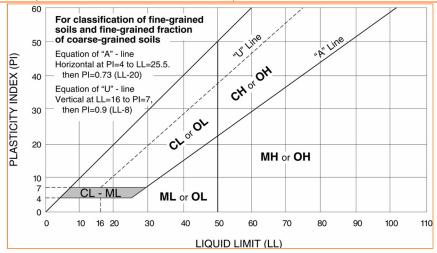
	S	TRENGTH TE	RMS				
RELATIVE DENSITY	OF COARSE-GRAINED SOILS	CONSISTENCY OF FINE-GRAINED SOILS					
	retained on No. 200 sieve.) / Standard Penetration Resistance	Consistency de	(50% or more passing the No. 200 s termined by laboratory shear strength te procedures or standard penetration re	esting, field visual-manual			
Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength Qu, (tsf)	Standard Penetration or N-Value Blows/Ft.			
Very Loose	0 - 3	Very Soft	less than 0.25	0 - 1			
Loose	4 - 9	Soft	0.25 to 0.50	2 - 4			
Medium Dense	10 - 29	Medium Stiff	0.50 to 1.00	4 - 8			
Dense	30 - 50	Stiff	1.00 to 2.00	8 - 15			
Very Dense	> 50	Very Stiff	2.00 to 4.00	15 - 30			
		Hard	> 4.00	> 30			

RELEVANCE OF SOIL BORING LOG

The soil boring logs contained within this document are intended for application to the project as described in this document. Use of these soil boring logs for any other purpose may not be appropriate.

	5	Soil Classification				
Criteria for Assig	ning Group Symbols	and Group Names	Using Laboratory To	ests A	Group Symbol	Group Name ^B
		Clean Gravels:	$Cu \ge 4$ and $1 \le Cc \le 3^{E}$		GW	Well-graded gravel ^F
	Gravels: More than 50% of	Less than 5% fines ^C	Cu < 4 and/or [Cc<1 or C	c>3.0] <mark>E</mark>	GP	Poorly graded gravel ^F
	coarse fraction retained on No. 4 sieve	Gravels with Fines:	Fines classify as ML or M	Н	GM	Silty gravel ^{F, G, H}
Coarse-Grained Soils:	on No. 4 sieve	More than 12% fines ^C	Fines classify as CL or C	н	GC	Clayey gravel ^{F, G, H}
More than 50% retained on No. 200 sieve		Clean Sands:	$Cu \ge 6$ and $1 \le Cc \le 3^{E}$		SW	Well-graded sand I
	Sands: 50% or more of coarse fraction passes No. 4	Less than 5% fines ^D	Cu < 6 and/or [Cc<1 or C	c>3.0] ^E	SP	Poorly graded sand
		Sands with Fines:	Fines classify as ML or M	Н	SM	Silty sand ^{G, H, I}
	sieve	More than 12% fines ^D	Fines classify as CL or C	н	SC	Clayey sand ^{G, H, I}
		Increanic	PI > 7 and plots on or abo	ove "A" line	CL	Lean clay ^{K, L, M}
	Silts and Clays:	Inorganic:	PI < 4 or plots below "A" line J		ML	Silt K, L, M
	Liquid limit less than 50	Organic:	Liquid limit - oven dried < 0.75		OL	Organic clay K, L, M, N
Fine-Grained Soils: 50% or more passes the		Organic.	Liquid limit - not dried		OL	Organic silt ^K , L, M, O
No. 200 sieve		Inorganic:	PI plots on or above "A" line		СН	Fat clay <mark>K, L, M</mark>
	Silts and Clays:	inorganic.	PI plots below "A" line		MH	Elastic Silt ^{K, L, M}
	Liquid limit 50 or more	Organic:	Liquid limit - oven dried	< 0.75	ОН	Organic clay K, L, M, P
		Organic.	Liquid limit - not dried	< 0.75		Organic silt ^K , L, M, Q
Highly organic soils:	Primarily	/ organic matter, dark in co	olor, and organic odor		PT	Peat

A Based on the material passing the 3-inch (75-mm) sieve.


- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay.

$$E Cu = D_{60}/D_{10}$$
 $Cc = \frac{(D_{30})}{D_{10}}$

- **F** If soil contains \geq 15% sand, add "with sand" to group name.
- ^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

)2

- ^H If fines are organic, add "with organic fines" to group name.
- If soil contains \geq 15% gravel, add "with gravel" to group name.
- ^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- ^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- L If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- MIf soil contains \geq 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- **N** PI \geq 4 and plots on or above "A" line.
- PI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- QPI plots below "A" line.

DESCRIPTION OF ROCK PROPERTIES

WEATHERING	
Fresh	Rock fresh, crystals bright, few joints may show slight staining. Rock rings under hammer if crystalline.
Very slight	Rock generally fresh, joints stained, some joints may show thin clay coatings, crystals in broken face show bright. Rock rings under hammer if crystalline.
Slight	Rock generally fresh, joints stained, and discoloration extends into rock up to 1 in. Joints may contain clay. In granitoid rocks some occasional feldspar crystals are dull and discolored. Crystalline rocks ring under hammer.
Moderate	Significant portions of rock show discoloration and weathering effects. In granitoid rocks, most feldspars are dull and discolored; some show clayey. Rock has dull sound under hammer and shows significant loss of strength as compared with fresh rock.
Moderately severe	All rock except quartz discolored or stained. In granitoid rocks, all feldspars dull and discolored and majority show kaolinization. Rock shows severe loss of strength and can be excavated with geologist's pick.
Severe	All rock except quartz discolored or stained. Rock "fabric" clear and evident, but reduced in strength to strong soil. In granitoid rocks, all feldspars kaolinized to some extent. Some fragments of strong rock usually left.
Very severe	All rock except quartz discolored or stained. Rock "fabric" discernible, but mass effectively reduced to "soil" with only fragments of strong rock remaining.
Complete	Rock reduced to "soil". Rock "fabric" no discernible or discernible only in small, scattered locations. Quartz may be present as dikes or stringers.
HARDNESS (for en	gineering description of rock – not to be confused with Moh's scale for minerals)
Very hard	Cannot be scratched with knife or sharp pick. Breaking of hand specimens requires several hard blows of geologist's pick.
Hard	Can be scratched with knife or pick only with difficulty. Hard blow of hammer required to detach hand specimen.
Moderately hard	Can be scratched with knife or pick. Gouges or grooves to ¼ in. deep can be excavated by hard blow of point of a geologist's pick. Hand specimens can be detached by moderate blow.
Medium	Can be grooved or gouged 1/16 in. deep by firm pressure on knife or pick point. Can be excavated in small chips to pieces about 1-in. maximum size by hard blows of the point of a geologist's pick.
Soft	Can be gouged or grooved readily with knife or pick point. Can be excavated in chips to pieces several inches in size by moderate blows of a pick point. Small thin pieces can be broken by finger pressure.
Very soft	Can be carved with knife. Can be excavated readily with point of pick. Pieces 1-in. or more in thickness can be broken with finger pressure. Can be scratched readily by fingernail.
	Joint Bedding, and Foliation Spacing in Rock ¹

Joi	nt, Bedding, and Foliation Spacing in Rock	۲ ¹
Spacing	Joints	Bedding/Foliation
Less than 2 in.	Very close	Very thin
2 in. – 1 ft.	Close	Thin
1 ft. – 3 ft.	Moderately close	Medium
3 ft. – 10 ft.	Wide	Thick
More than 10 ft.	Very wide	Very thick

1. Spacing refers to the distance normal to the planes, of the described feature, which are parallel to each other or nearly so.

Rock Quality De	signator (RQD) ¹		Joint Openne	ss Descriptors
RQD, as a percentage	Diagnostic description		Openness	Descriptor
Exceeding 90	Excellent	-	No Visible Separation	Tight
90 – 75	Good		Less than 1/32 in.	Slightly Open
75 – 50	Fair	1/32 to 1/8 in. Moderately C		Moderately Open
50 – 25	Poor	_	1/8 to 3/8 in.	Open
Less than 25	Very poor	-	3/8 in. to 0.1 ft.	Moderately Wide
1 ROD (given as a percent	age) = length of core in pieces 4	-	Greater than 0.1 ft.	Wide

1. RQD (given as a percentage) = length of core in pieces 4 inches and longer / length of run

References: American Society of Civil Engineers. Manuals and Reports on Engineering Practice - No. 56. <u>Subsurface Investigation for</u> <u>Design and Construction of Foundations of Buildings.</u> New York: American Society of Civil Engineers, 1976. U.S. Department of the Interior, Bureau of Reclamation, <u>Engineering Geology Field Manual</u>.

Project No. 18005.05

APPENDIX B

Preliminary Sewer & Water Design Report

ENDURING

C MMUNITY

DESIGN

June 2023 Project No. 18005.05

PRELIMINARY SEWER AND WATER DESIGN REPORT FOR MOUNTAIN VIEW SUBDIVISION LIVINGSTON, MONTANA

SITE NARRATIVE

The purpose of this preliminary report is to summarize the design of the completed sanitary sewer and water main installation associated with the Mountain View Major Subdivision in Livingston, Montana. The project will provide water service stubs and sanitary stubs to serve future lots within the subdivision. The following report will summarize the water and sewer main design and capacity calculations for the water and sewer services to the Mountain View Major Subdivision and the existing facilities currently contributing to the infrastructure. The "Sewer and Water Design Report Ruedebusch Infrastructure Improvements" document dated April 18, 2022, is referenced in this report, which the City of Livingston has approved.

SITE DEVELOPMENT PLAN

The assumed development plan proposes three general development areas to include highway commercial, light industrial/commercial at 60% lot coverage, and multi-family residential. The highway commercial lots are proposed to include a 50-room hotel, two gas stations with 20 total fueling positions, one 2,000 square-foot coffee shop, and one 5,000 square-foot fast-food restaurant. Approximately 165,101 square feet are proposed for industrial uses, as well as 12 apartments on the residential lots.

SEWER

The existing 10-inch sanitary sewer system has capacity to handle the proposed build out of Mountain View Major Subdivision. Refer to the "Sewer and Water Design Report Ruedebusch Infrastructure Improvements" document dated April 18, 2022.

Capacity calculations were conducted per the City of Livingston Design Standards Revised August 2022. The 10-inch sewer main capacity at 75 percent full is 391-gal/min using the minimum pipe slope of 0.0028 ft/ft.

Using a zoned Highway Commercial designation peak flow calculations for the existing and sewer pipes were completed to find the overall peak flow in the 10-inch sewer main exiting the subdivision to the southeast. Highway Commercial zoning requires "Maximum Property Use Estimates" (MPUE) based on DEQ Circular 4 to determine typical wastewater flow estimates.

Highway Commercial designations were broken into lots, area, and people. The designation of lots assumed a 4-plex on each lot with 2.5 people per living unit, and 100-gallons per capita per day. Area assumed 1,000 gallons per acre per day. The designation of people had a different assumption based on if the lot was designated to a small hotel, coffee shop, automobile service station, or restaurant. Refer to *DEQ Circular 4* to reference flow assumptions. Using the above assumptions, the average daily flow exiting the subdivision was estimated at 13.67 gal/min. A peaking factor of 4.24 was then applied for a peak hourly flow rate of 57.99 gal/min. An infiltration flowrate of 150 gal/acre/day was then used to calculate a total peak hourly flow rate with infiltration at 59.80 gal/min, which is significantly less than the 10-inch capacity of 391 gal/min stated above.

WATER

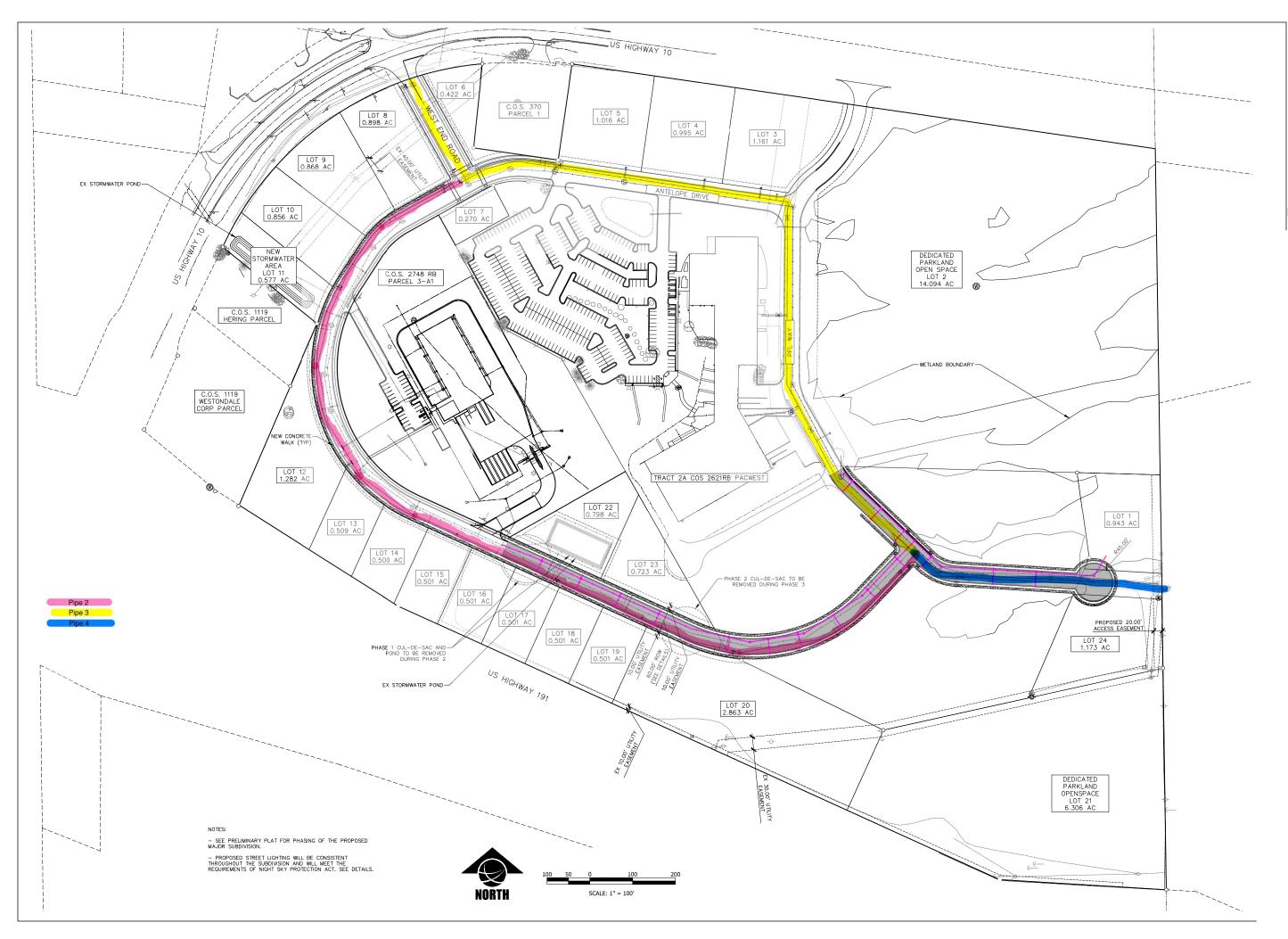
The existing 12-inch water system has the capacity to handle the build out of Mountain View Major Subdivision. Refer to the Sewer and Water Design Report Ruedebusch Infrastructure Improvements' documents dated April 18, 2022.

Given the Highway Commercial zoning (non-residential lots), the proposed 12.35 acres serving the proposed area would serve around 97 persons based on wastewater usage of 127.5 gal/day/person (1,000 gal/day/acre x 12.35 acres)/127.5 gal per day per person = 97 persons). The 3 lots with assumed 4-plex development with 2.5 people per living unit add an additional 30 persons. The small hotel, coffee shop, two automobile service stations, and restaurant add an additional 452 persons. The proposed area would serve around 579 persons. Using a more conservative value of 600 people, the average daily domestic flow using 127.5 gpd/person per Livingston Design Standards is as follows:

Average Daily Flow = 600 people x 127.5 gal/day/person = 76,500 gal/day = 53.13 gpm

Using a peaking factor of 2.36 per the City of Livingston Design Standards, the Maximum Day Demand is as follows:

Maximum Day Demand = $2.36 \times 53.13 = 125.38$ gpm (round to 126 gpm)


The water main will be designed using a fire flow of 1,500 gpm plus the 126 gpm domestic flow for a total of 1,626 gpm.

CONCLUSION

Based on the assumptions provided above and the Sewer and Water Design Report for the Ruedebusch Infrastructure Improvements, the existing 10-inch sanitary sewer and 12-inch water main installation will provide the required capacity for the build out of the planned developments in the project area. Please contact Sumner Anacker, PE for any questions pertaining to this preliminary report by email, <u>sanacker@sandersonstewart.com</u> or by phone 406-922-4308.

Attached:

- Pipe Designation Map
- Pipe 2 Spreadsheet
- Pipe 3 Spreadsheet
- Pipe 4 Spreadsheet

PIPE DESIGNATION EXHIBIT

Capacity Calclulations

10" Pipe Flowing Full Capacity 10" Pipe Flowing Full Capacity Q/Qfill @ 75% full, Capacity @ 75% full		1.16 522 0.75 391	cfs gal/min per nomograpl gal/min	n
System Demand				
Service Lo	ots			
DESIGNATION	Lots (#)			Area (AC)
HC (MPUE - Assumed 4-plex on each lot, 2.5 people per living unit, 100-gallons per capita per day)	1.00	1000.00	gal/day	2.863
Service A	rea			
	Area			
Designation	(AC)			
HC (MPUE - Assumed 1,000 gallons/acre/day)	5.8645	5864.5	gal/day	
	People			Area
Designation	(#)			(AC)
HC (Small Hotel - Assumed 48 gallons/guest/day)	150	7200	gal/day	0.856
HC (Small Hotel - Assumed 10 gallons/employee/day)	5	50	gal/day	
HC (Coffee Shop - Assumed 6 gallons/customer/day)	100	600	gal/day	0.868
HC (Coffee Shop - Assumed 10 gallons/employee/day) HC (Automobile Service Station - Assumed 10 gallons/vehicle	3	30	gal/day	
served/day) HC (Automobile Service Station - Assumed 12	45	450	gal/day	0.898
gallons/employee/day)	2	24	gal/day	

Total Service (Pipe 2)			
	15218.50	gal/day	11.3495
	10.57	gal/min	

Peaking Factor (per DEQ circular 2 formula) Peak Hourly Flow	4.24 44.85	gal/min
Infiltration at 150 gal/acre/day (per City of Livingston) Infiltration gal/min	1702.43 1.18	gal/day gal/min
Total Peak Hourly Flow plus Infiltration	46.03	gal/min
<u>Result</u> Q/Qfull based on peak hour Percent Full for 8" From Nomograph at peak hour	0.09 25%	

Capacity Calclulations

8" Pipe Flowing Full Capacity	0.77	cfs
8" Pipe Flowing Full Capacity	344	gal/min
(8") Q/Qfill @ 75% full,	0.75	per nomograph
(8") Capacity @ 75% full	258	gal/min
10" Pipe Flowing Full Capacity	1.16	cfs
10" Pipe Flowing Full Capacity	522	gal/min
(10") Q/Qfill @ 75% full,	0.75	per nomograph
(10") Capacity @ 75% full	391	gal/min

System Demand

Service I	Lots			
	People			Area
DESIGNATION	(#)			(AC)
HC (Automobile Service Station - Assumed 10 gallons/vehicle				
served/day)	45	450	gal/day	1.016
HC (Automobile Service Station - Assumed 12				
gallons/employee/day)	2	24	gal/day	1.016
HC (Restaurant - Assumed 3 gallons/customer/day)	100	300	gal/day	1.161
	_			
Service A				
	Area			
DESIGNATION	(AC)			
HC (MPUE - Assumed 1,000 gallons/acre/day)	1.687	1687	gal/day	
		1.71	gal/min	
Peaking Factor (per DEQ circular 2 formula)		4.24		
Peak Hourly Flow		7.25	gal/min	
Infiltration at 150 gal/acro/day/nor City of Livingston)		570.60	aal/day	
Infiltration at 150 gal/acre/day (per City of Livingston)		579.60	gal/day	
Infiltration gal/min		0.40	gal/min	
Total Peak Hourly Flow plus Infiltration		7.65	gal/min	

Result	
Q/Qfull based on peak hour	0.01
Percent Full for 8" From Nomograph at peak hour	10%

Capacity Calclulations 10" Pipe Flowing Full Capacity cfs 1.16 10" Pipe Flowing Full Capacity 522 gal/min Q/Qfill @ 75% full, 0.75 per nomograph Capacity @ 75% full 391 gal/min System Demand **Service Lots** Lots DESIGNATION (#) HC (MPUE - Assumed 4-plex on each lot, 2.5 people per living 2.00 2000.00 gal/day unit, 100-gallons per capita per day) Pipe 4 1.39 gal/min Previous Service (Pipe 2 and 3) Pipe 2 10.57 gal/min Pipe 3 1.71 gal/min **All Pipes** 13.67 gal/min Peaking Factor (per DEQ Circular 2 Formula) 4.24 **Peak Hourly Flow** 57.99 gal/min Infiltration at 150 gal/acre/day (per City of Livingston) 2599.43 gal/day Infiltration gal/min 1.81 gal/min **Total Peak Hourly Flow plus Infiltration** 59.80 gal/min

Result	
Q/Qfull based on peak hour	0.11
Percent Full for 10" From Nomograph at peak hour	28%

Area

(AC)

2.116

Project No. 18005.05

180

APPENDIX C Subdivision

mprovements

ENDURING

C MMUNITY

DESIGN

Billings Bozeman Fort Collins

June 21, 2023 Project No. 18005.05

MOUNTAIN VIEW MAJOR SUBDIVISION PRELIMINARY PLAT APPLICATION SUBDIVISION IMPROVEMENTS

The proposed general improvements of the Mountain View Subdivision include streets, street signage, boulevards, sidewalks, and street lighting. All these improvements will be designed to meet the requirements established in the City of Livingston Public Works Design Standards and Specifications Policy including the corresponding Modifications to Montana Public Works Standards. As such all sidewalks will be ADA compliant and all street lighting will meet the requirements of the Night Sky Protection Act.

STREETS & ALLEYS

All the proposed streets and any future alleys will be designed and constructed in accordance with the City of Livingston Public Works Standards and Subdivision Regulations. The proposed new streets are designed to the "local" street classification standards approved by the City of Livingston for the recently completed Ruedebusch FedEx project. For more details see the Civil Engineering Plans.

DRAINAGE STRUCTURES

All proposed stormwater drainage structures will be designed and constructed in accordance with the City of Livingston Public Works Standards and applicable DEQ Circulars. For more information and details see Appendix A: Preliminary Stormwater Report and Civil Engineering Plans.

ENDURING COMMUNITY DESIGN

SIGNS

The proposed Mountain View Subdivision will meet the standards established by the City of Livingston Public Works Standards and Manual on Uniform Control Devices.

SIDEWALKS

All the proposed sidewalks will be designed and constructed in accordance with the City of Livingston Public Works Standards and Subdivision Regulations. The proposed new sidewalks will be designed and constructed to match the specifications and standards approved by the City of Livingston for the recently completed Ruedebusch FedEx project. For more information see the Civil Engineering Plans.

STREETLIGHTS

All the proposed street lighting will be designed and installed in accordance with the City of Livingston Public Works Standards, Subdivision Regulations, and the Night Sky Protection Act. The proposed new streetlights will be installed to match the specifications and standards approved by the City of Livingston for the recently completed Ruedebusch FedEx project. For more information see the Civil Engineering Plans.

SOLID WASTE FACILITIES

Per the Administrative Rules of Montana 17.36.309, the Mountain View Subdivision tenants will store solid waste in adequate containers and will contract with the City of Livingston Solid Waste Department to be removed frequently to prevent a nuisance.

FIRE HYDRANTS

All the required fire hydrants will be designed and installed in accordance with the City of Livingston Public Works Standards and Subdivision Regulations. For more details see the Civil Engineering Plans.

SEWER, WATER & STORM FACILITIES

All the proposed sewer, water, and stormwater facilities will be designed and constructed in accordance with the City of Livingston Public Works Standards, Subdivision Regulations, and applicable DEQ Circulars. The new subdivision wet utilities will be designed and installed to integrate with the existing City services including those recently constructed for the Ruedebusch FedEx project. For more information and details see Appendix A: Preliminary Stormwater Report, Appendix B: Preliminary Sewer & Water Report, and the Civil Engineering Plans.

MAIL DELIVERY

Mail deliver services will be provided for the proposed Mountain View Subdivision on a contract basis from the United States Postal Service. It is anticipated the USPS will require that the subdivision would need to provide a central mailbox bank. For more details see Appendix H: Private Service Providers Review.

Project No. 18005.05

APPENDIX D

Mountain View Subdivision Traffic Impact Study

MOUNTAIN VIEW SUBDIVISION

TRAFFIC IMPACT STUDY

18005.05

Mr. Andrew Field Livingston West, LLC 100 PFL Way Livingston, MT 59047

Placemaking

Infrastructure Engineering

Surveying + Mapping

Community Planning

Landscape Architecture

Branding + Visualization

May 2023

TABLE OF CONTENTS

INTRODUCTION	1
SITE LOCATION AND DESCRIPTION	1
SITE DEVELOPMENT PLAN	1
EXISTING CONDITIONS	1
Streets	1
Intersections	5
Bicycle/Pedestrian Facilities	5
Traffic Volumes	5
Intersection Capacity	5
Crash Analysis	7
TRIP GENERATION	8
TRIP DISTRIBUTION	10
TRAFFIC ASSIGNMENT	10
TRAFFIC IMPACTS	10
Traffic Volumes	10
Intersection Capacity	13
Bicycle and Pedestrian Facilities	13
Mitigation Alternatives	13
CONCLUSIONS AND RECOMMENDATIONS	14
Conclusions	14
Recommendations	15

APPENDICES

APPENDIX A – TRAFFIC VOLUME DATA APPENDIX B – CAPACITY CALCULATIONS – EXISTING CONDITIONS (2022) APPENDIX C – CAPACITY CALCULATIONS – FUTURE (2027) APPENDIX D – AUXILIARY TURN LANE WARRANT WORKSHEETS

LIST OF TABLES

TABLE 1: CRASH HISTORY – FREQUENCY AND SEVERITY STATISTICS	7
TABLE 2: CRASH HISTORY – COLLISION TYPE	8
TABLE 3: TRIP GENERATION SUMMARY	9

LIST OF FIGURES

FIGURE 1: STUDY AREA	2
FIGURE 2: SITE LAYOUT	3
FIGURE 3: STREET AND INTERSECTION CHARACTERISTICS	4
FIGURE 4: EXISTING CONDITIONS (2022) PEAK HOUR TRAFFIC VOLUMES	6
FIGURE 5: TRIP DISTRIBUTION & TRAFFIC ASSIGNMENT SUMMARY	
FIGURE 6: FUTURE (2027) TRAFFIC PROJECTIONS	12

INTRODUCTION

This traffic impact study (TIS) assesses the traffic-related impacts associated with the proposed Mountain View Subdivision in Livingston, Montana on the surrounding transportation system. This report also provides recommendations to mitigate any such impacts. The methodology and analysis procedures used in this study employ the latest technology and nationally accepted standards in the areas of site development and transportation impact assessment. Recommendations made in this report are based on professional judgment and these principles.

SITE LOCATION AND DESCRIPTION

Mountain View Subdivision is located southeast of US Highway 10 north of the Interstate 90 interchange west of Livingston, Montana. The site is bordered by Interstate 90 to the south, US Highway 10 to the west and north, and undeveloped land to the east. An existing Printing for Less (PFL) facility is contained within the proposed subdivision. Figure 1 on the following page depicts the study area.

SITE DEVELOPMENT PLAN

The site development plan proposes three general development areas to include highway commercial, light industrial/ commercial at 60% lot coverage, and multi-family residential. The highway commercial lots are proposed to include a 50room hotel, two gas stations with 20 total fueling positions, a 2,000 square-foot coffee shop, and a 5,000 square-foot fast-food restaurant. Approximately 165,101 square feet are proposed for industrial uses, as well as 12 apartments on the residential lots.

Access to the site is proposed via a new full-movement road connection to US 10 across from West End Road and new internal connections to PFL Way, which also accesses US 10. Figure 2 (page 3) shows the current proposed site plan for Mountain View Subdivision.

EXISTING CONDITIONS

Streets

Figure 3 on page 4 shows the MDT street classifications and speed limits on study area streets. Additional conditions of study area streets most likely to be affected by the development are described below.

All study area streets are paved. The EB and WB I-90 ramps all have single lane approaches and US 10, West End Road, and PFL Way all have two-lane sections. West Park Street has one thru lane in each direction in the study area with multiple turn lanes at the US 10 intersection. US 10 and the ramps all have paved shoulders, while there is curb and gutter on West Park Street and on PFL Way beginning approximately 150 feet south of US 10. There is a minimally used at-grade railroad crossing on US 10 approximately 70 feet west of West Park Street and another crossing approximately another 0.2-miles to the west.

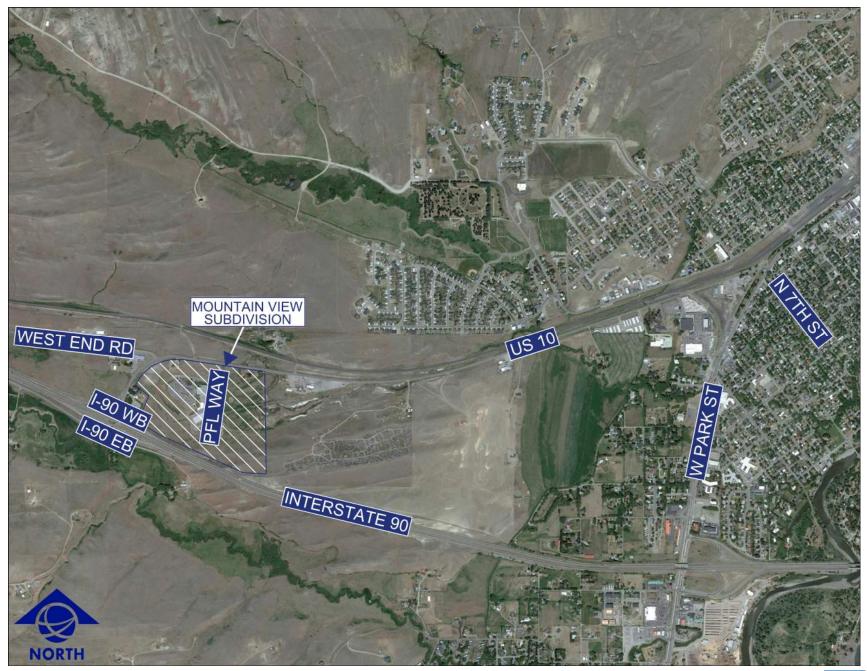


Figure 1. Study Area Mountain View Subdivision 11S

Figure 2. Site Layout Mountain View Subdivision TIS

Figure 3. Street and Intersection Characteristics

Intersections

Figure 3 also shows the traffic control utilized at each study area intersection. The West Park Street/US 10 intersection has separate southbound left-turn, thru, and right-turn lanes, and a dedicated northbound left-turn lane. Although there are no marked eastbound turn lanes, the approach provides adequate width that right-turning vehicles often form a separate lane. The signal at this intersection operates with protected/permissive phasing for northbound left turns and permissive phasing for all other movements. The remaining intersections in the study area have no auxiliary turn lanes and are all stop-controlled.

Bicycle/Pedestrian Facilities

There is a paved path along the north side of US 10 beginning at the westernmost railroad crossing and continuing east and then north along the west side of West Park Street. A sidewalk is provided along the eastern side of West Park Street. There are also sidewalks and multi-use paths within the Printing for Less development area. There are no other bicycle or pedestrian facilities in the study area.

Traffic Volumes

Weekday AM and PM peak hour turning movement counts were collected for study area intersections on Tuesday, August 30, 2022. The traffic data was collected using Miovision Scout video-based systems. In general, the weekday AM and PM peak hour periods were found to occur from 7:30 to 8:30 AM and 4:30 to 5:30 PM. Raw count data was adjusted for seasonal variation using MDT seasonal adjustment factors. Figure 4 on page 6 summarizes the calculated Existing Conditions (2022) peak hour turning movement volumes for the AM and PM peak hours. Detailed traffic count data worksheets are included in Appendix A.

Intersection Capacity

Intersection capacity calculations for Existing Conditions (2022) were performed for the study area intersections using Synchro, Version 11, which is based on the Highway Capacity Manual, 6th Edition (Transportation Research Board, 2016) methodologies. Level of service (LOS) is defined as a quality measure describing operational conditions within a traffic stream, generally in terms of such service measures as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience. LOS is a qualitative measure of the performance of an intersection with values ranging from LOS A, indicating good operation and low vehicle delays, to LOS F, which indicates congestion and longer vehicle delays. LOS C is typically considered a minimum acceptable threshold for operations in Montana-based communities, though exceptions are made in certain cases.

The results of the Existing Conditions (2022) intersection capacity calculations showed that all intersections and approaches operate at LOS C or better except for the eastbound approach at the West Park Street/US 10 intersection, which operates at LOS D during the AM peak hour, although just under a second over the LOS C cutoff threshold. Figure 4 also shows the Existing Conditions (2022) LOS results at each intersection. Projected 95th percentile queuing is moderate at the West Park Street/US 10 intersection, with queues of up to 13 vehicles on West Park Street and up to 11 vehicles on US 10 to the west, which extends across the at-grade rail crossing. US 10 provides a stop bar in advance of the crossing for eastbound vehicles to queue and prevent them from stopping across the railroad tracks. A detailed capacity summary table and capacity calculation worksheets for the study area intersections can be found in Appendix B.

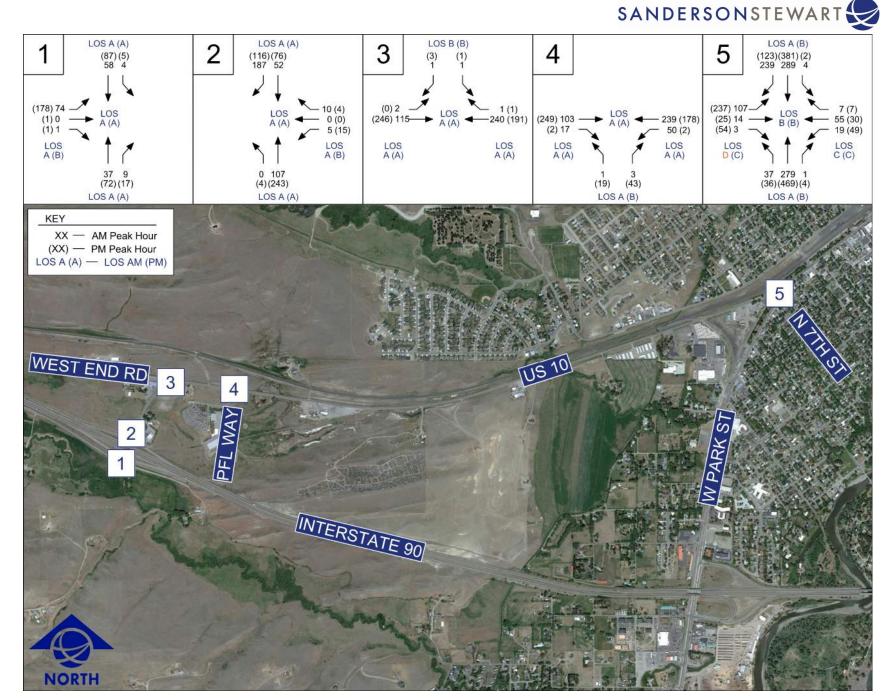


Figure 4. Existing Conditions (2022) Peak Hour Traffic Volumes Mountain View Subdivision TIS

Crash Analysis

Historical crash data was requested from MDT and Montana Highway Patrol (MHP) for the 5-year period from January I, 2015 through December 31, 2019 for all study area intersections. No MDT information could be provided for the West Park Street/US 10 or US 10/West End Road intersections and MHP has no record of crashes at these two intersections. The crash data was analyzed for the purpose of calculating intersection crash/severity rates and evaluating collision type trends. Tables I and 2 below and on page 8, respectively, illustrate the results of that analysis.

			C	Crash Ty	уре	Cr	ash Data ³		HSM Pred	ictions⁴
	2015-	Denewood				Average	Crash		Predicted	Predicted
Intersection	2019	Reported				Crash	Rate	Severity	Average Crash	Crash Rate
	DEV	Crashes ²	FDO	injury	гасансу	Frequency	(Crash/	Index	Frequency	(Crash/
					(Crash/Yr)	MVE)		(Crash/Yr)	MVE)	
US Hwy 10/I-90 EB Ramps	1774	4	4	0	0	0.8	1.24	1.00	0.23	0.36
US Hwy 10/I-90 WB Ramps	3579	I	_	0	0	0.2	0.15	1.00	0.19	0.15
US Hwy 10/West Park Street	15815	I	-	0	0	0.2	0.03	1.00	2.50	0.43
US Hwy 10/West End Road	5069	0	0	0	0	0.0	0.00	0.00	0.16	0.09
US Hwy 10/PFL Way	4962	0	0	0	0	0.0	0.00	0.00	0.42	0.23

Table I. Cr	ash History –	Frequency a	nd Severity	Statistics
-------------	---------------	-------------	-------------	------------

¹ Daily Entering Volume (DEV) estimated from 2022 peak hour counts and 2015 through 2019 MDT published ADTs

² Crashes reported from January 1, 2015 to December 31, 2019

³ Crash rates expressed as crashes per million vehicles entering (MVE)

⁴ Rates calculated using SPICE tool using Highway Safety Manual (HSM) 1 st Edition predictive methodology

Intersection crash frequency rates were calculated on the basis of crashes per million vehicles entering (MVE). The MVE metric was estimated based on published historical ADT volumes from the MDT website and 2022 peak hour counts. The highest crash rate was observed to be 1.24 crashes/MVE at the intersection of US 10/I-90 EB Ramps, but the high crash rate is most likely due to the very low traffic volumes since only four crashes occurred during the five years at the intersection. Crash rates for the other study area intersections were 0.00 and 0.15 crashes/MVE. These rates are shown in Table 1.

To evaluate the relative significance of the calculated historical crash rates, an expected rate was calculated using the predictive crash rate formulas in the American Association of State Highway and Transportation Officials (AASHTO) Highway Safety Manual (HSM). The process involves calculating the number of crashes predicted at a given intersection in a year based on traffic demand (AADTs) and various physical and traffic environment-based conditions, such as lane configurations and traffic signal phasing. The calculation results in a crashes-per-year prediction. An equivalent MVE frequency rate was then back calculated to compare the predicted crash rate with the actual historical crash rate at the intersection of US 10/I-90 EB Ramps. This is most likely due to four crashes occurring with low volumes at the intersection. The predicted crash rate is equal to the historical crash rate at the intersection of US 10/I-90 EB Ramps. The is equal to the historical crash rate at the intersection of US 10/I-90 EB Ramps. The secure at the remaining study area intersections during the 5-year period.

In general, the crash rates are generally low relative to intersections with similar attributes that Sanderson Stewart has analyzed around the state over the years. The HSM rate predictions and 5-year crash totals for each intersection are summarized in Table 1.

Severity indexes were also calculated for all study area intersections based on standard MDT protocols. A severity index gives an indication of relative crash severity for a location based on the number of fatal, injury, and property damage only (PDO) crashes. The severity indexes were found to be relatively low (0.00 or 1.00) due to all recorded crashes being PDO. The severity rates are also shown in Table 1.

Collision types were also quantified to identify any significant trends in the crash data. Table 2 below presents the results of that analysis. Fixed object crashes were the most commonly reported collision type (2 of 4, 50%) at the intersection of US 10/I-90 EB Ramps. Three (3) of the 5 total study area intersection crashes were single vehicles crashes (run-off-road or fixed object). All fixed object crashes occurred during daylight with dry roadway conditions. It is possible that high speeds on US Highway 10 are contributing to the single vehicle crashes and inability of drivers to have time to react when leaving a lane before a collision occurs.

Table 2. Crash History – Collision Type

			Collision Type	9	
	Right Angle	Rear End	Fixed Object	Run Off Road	Total
US Hwy 10/I-90 EB Ramps		I	2		4
US Hwy 10/I-90 WB Ramps				I	I
US Hwy 10/West Park Street	I				I
US Hwy 10/West End Road					0
US Hwy 10/PFL Way					0

A speed study is recommended to be completed on US 10 upon development of Mountain View Subdivision. It is likely that operations on the highway will become more urban in nature with the addition of the subdivision trips and speed limit changes may be necessary.

It is important to note that more detailed information about individual crashes would be needed to determine exact causes for each collision and identify any additional trends.

TRIP GENERATION

This study utilized *Trip Generation Manual*, 11th Edition, published by the Institute of Transportation Engineers (ITE), which is the most widely accepted source in the United States for determining trip generation projections. These projections are used to analyze the impacts of a new development on the surrounding area. For the purposes of this study, Land Use Code 110 – General Light Industrial, Land Use Code 220 – Multifamily Housing (Low-Rise), Land Use Code 310 – Hotel, Land Use Code 934 – Fast-Food Restaurant with Drive-Thru Window, Land Use Code 937 – Coffee/Donut Shop with Drive-Thru Window, and Land Use Code 945 – Convenience Store/Gas Station were utilized to estimate trip generation for Mountain View Subdivision. Table 3 on the following page illustrates the results of the trip generation calculations for the site.

At full buildout, Mountain View Subdivision is projected to generate a total of 9,991 gross average weekday trips with 866 trips (484 entering/382 exiting) generated during the AM peak hour and 754 trips (343 entering/411 exiting) generated during the PM peak hour.

196

Trip generation projections provide an estimate of the total number of trips that would be generated by a proposed development. However, to estimate the net number of new trips made by personal vehicles external to the site, adjustments must often be made to account for internal capture trips, pass-by trips, and trips made by alternate modes.

Land Use	Indep	endent Variable	Aver	age We	ekday	AM	l Peak H	our	PM	Peak H	our
Lailu Ose	Intensity	Units	total	enter	exit	total	enter	exit	total	enter	exit
		Highway C	ommerci	al							
Hotel	50	Rooms	400	200	200	23	13	10	30	15	15
Internal Capture Trips**			200	93	107	3	I	2	19	11	8
Convenience Store/Gas Station ²	20	Veh Fueling Positions	5302	2651	2651	321	161	160	368	184	184
Internal Capture Trips**			1091	507	584	35	14	21	92	51	41
Pass-By Trips (Avg. Rate = 56%)**			2359	1201	1158	160	82	78	154	74	80
Coffee/Donut Shop w/ Drive-Thru Window ³	2	1000 SF GFA	1067	534	533	172	88	84	78	39	39
Internal Capture Trips**			372	201	171	16	10	6	31	13	18
Pass-By Trips (Avg. Rate = 49%)**†			340	163	177	76	38	38	23	13	10
Fast-Food Restaurant w/ Drive-Thru Window ⁴	5	1000 SF GFA	2337	1169	1168	223	114	109	165	86	79
Internal Capture Trips**			817	441	376	21	13	8	68	29	39
Pass-By Trips (Avg. Rate = 49%)**			745	357	388	98	49	49	48	28	20
		Light Industrie	al/Comme	rcial							
General Light Industrial ⁵	165.101	1000 SF GFA	804	402	402	122	107	15	107	15	92
		Resid	ential								
Multifamily Housing (Low-Rise) ⁶	12	Dwelling Units	81	41	40	5	Ι	4	6	4	2
Internal Capture Trips**		•	32	14	18	-	0	I	4	3	-
Total Gross Tr	-		9991	4997	4994	866	484	382	754	343	411
Total Internal Captu	re Trips		2512	1256	1256	76	38	38	214	107	107
Total Pass-By T	-		3444	1721	1723	334	169	165	225	115	110
Total New Externa	al Trips		4035	2020	2015	456	277	179	315	121	194
 Hotel - Land Use 310* 					Units =	Rooms					
Average Weekday:					Average	Rate = 7.	99		(50% ent	ering/50%	6 exiting
Peak Hour of the Adjacent Street, One Ho	ur betweer	n 7 and 9 AM:			Average	Rate = 0.	46		(56% ent	ering/44%	6 exiting
Peak Hour of the Adjacent Street, One Ho	ur betweer	n 4 and 6 PM:			Average	Rate = 0.	59		(51% ent	ering/49%	6 exiting
(2) Convenience Store/Gas Station - Land Use	945*				Units = '	Vehicle F	ueling Pos	itions			
Average Weekday:					Average	Rate = 26	65.12		(50% ent	ering/50%	6 exiting
Peak Hour of the Adjacent Street, One Ho	ur betweer	n 7 and 9 AM:			Average	Rate = 16	6.06		(50% ent	ering/50%	6 exiting
Peak Hour of the Adjacent Street, One Ho	ur betweer	n 4 and 6 PM:			Average	Rate = 18	3.42		(50% ent	ering/50%	6 exiting
(3) Coffee/Donut Shop with Drive-Thru Wind	ow - Land l	Jse Code 937*			Units =	1000 SF C	GFA				

Average Rate = 533.57

Average Rate = 85.88

Average Rate = 38.99

Units = 1000 SF GFA

Average Rate = 44.61

Average Rate = 33.03

Units = 1000 SF GFA

Average Rate = 4.87

Average Rate = 0.74

Average Rate = 0.65

Average Rate = 6.74

Average Rate = 0.40

Average Rate = 0.51

Units = Dwelling Units

Average Rate = 467.48

Table 3. Trip Generation Summary

(3) Coffee/Donut Shop with Drive-Thru Window - Land Use Code 93: Average Weekday: Peak Hour of the Adjacent Street, One Hour between 7 and 9 AM: Peak Hour of the Adjacent Street, One Hour between 4 and 6 PM:

 (4) Fast-Food Restaurant with Drive-Thru Window - Land Use 934* Average Weekday:

Peak Hour of the Adjacent Street, One Hour between 7 and 9 AM: Peak Hour of the Adjacent Street, One Hour between 4 and 6 PM:

(5) General Light Industrial - Land Use 110*
 Average Weekday:
 Peak Hour of the Adjacent Street, One Hour between 7 and 9 AM:
 Peak Hour of the Adjacent Street, One Hour between 4 and 6 PM:

(6) Multifamily Housing (Low-Rise) - Land Use 220*
 Average Weekday:
 Peak Hour of the Adjacent Street. One Hour between 7 and

Peak Hour of the Adjacent Street, One Hour between 7 and 9 AM: Peak Hour of the Adjacent Street, One Hour between 4 and 6 PM:

*Trip Generation, 11th Edition , Institute of Transportation Engineers, 2021

**Trip Generation Handbook, 3rd Edition , Institute of Transportation Engineers, 2017

(50% entering/50% exiting)

(51% entering/49% exiting)

(50% entering/50% exiting)

(50% entering/50% exiting)

(51% entering/49% exiting)

(52% entering/48% exiting)

(50% entering/50% exiting)

(88% entering/12% exiting)

(14% entering/86% exiting)

(50% entering/50% exiting)

(24% entering/76% exiting)

(63% entering/37% exiting)

[†]Pass-By Trips Average Rate for Coffee/Donut Shop w/ Drive-Through Window is not included in ITE Pass-By data, therefore 49% Pass-By Average Rate for Fast Food Restaurant w/ Drive-Through was selected

Internal capture (IC) trips are trips that do not have origins or destinations external to a project site and therefore do not have an impact on external traffic operations. IC trips most often occur in mixed-use developments where residential, commercial, and office-related land uses exhibit a high rate of internal trip exchange. IC trips were therefore calculated between the commercial, and residential uses in the subdivision.

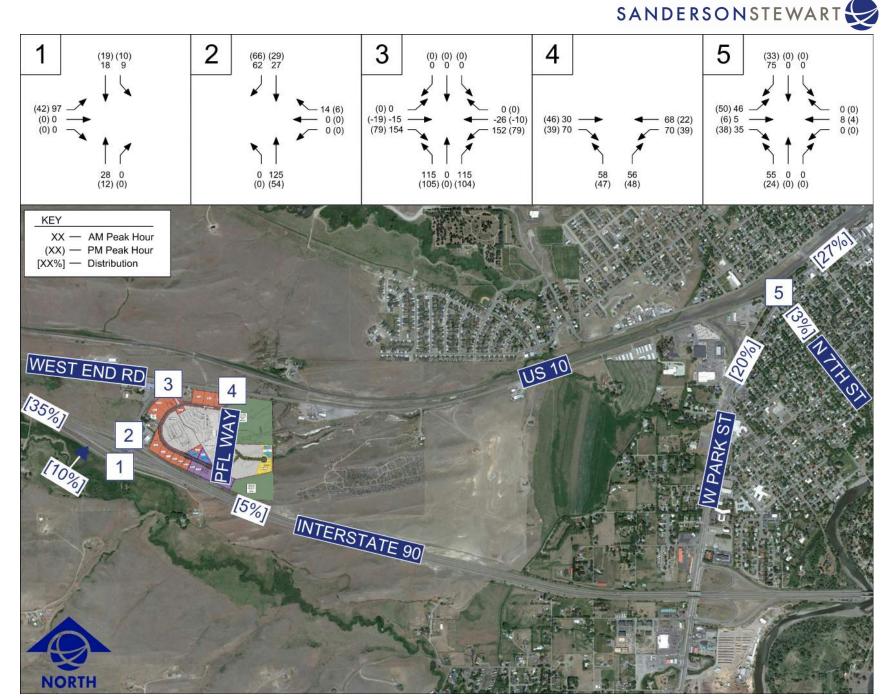
Pass-by trips are trips that are made as intermediate stops on the way from a point of origin to a primary trip destination. Pass-by trips are attracted from traffic "passing by" on an adjacent street that offers direct access to that site. Pass-by trips are primarily attracted by commercial type land uses such as restaurants, convenience markets, and gas stations and were therefore also calculated for this study.

Trips made by alternate modes (walking, biking, transit) were considered as negligible for this site due to its location and the lack of multi-modal accessibility on US 10.

With reductions made for internal capture and pass-by trips, the Mountain View Subdivision is projected to generate 4,305 net new external vehicular trips on a typical weekday with 456 trips (277 entering/179 exiting) during the AM peak hour and 315 trips (121 entering/194 exiting) during the PM peak hour.

TRIP DISTRIBUTION

Trip distribution is an estimate of site-generated trip routing, which can be determined by several methods such as computerized travel demand models, calculation of travel time for various available routes, and/or simple inspection of existing traffic patterns within the project area. For this study, distribution percentages were calculated based on existing traffic volumes and other nearby studies. Figure 5 on page 11 presents the trip distribution scheme.


TRAFFIC ASSIGNMENT

Traffic assignment is the procedure whereby site-generated vehicle trips are assigned to study area streets, intersections, and site access driveways based on the calculated trip distribution and the physical attributes of the development site. Using this approach, site-generated trips for Mountain View Subdivision were assigned to the study area intersections for the purposes of projecting future traffic volumes for analysis. The results of this exercise are also illustrated in Figure 5 on page 11.

TRAFFIC IMPACTS

Traffic Volumes

Based on information from the client, a buildout year of 2027 was utilized for the purposes of calculating future traffic projections. In addition to site-generated trips, background traffic volumes will also likely increase for study area streets and intersections due to general growth. To account for that growth, historical MDT traffic data on US 10 and I-90 was reviewed, and it was determined that an annual background growth rate (AGR) of 2% would be conservatively appropriate for modeling ambient growth on US 10 and West Park Street, and 4% AGR would be appropriate on the I-90 ramps. Future (2027) traffic projections for the facility were then calculated by combining existing traffic volumes with anticipated background growth, site-generated traffic assignments, and projected trips for the FedEx facility currently under construction within the Mountain View Subdivision area. Figure 6 on page 12 illustrates the resulting AM and PM peak hour traffic volume projections.

Figure 5. Trip Distribution & Traffic Assignment Summary Mountain View Subdivision TIS

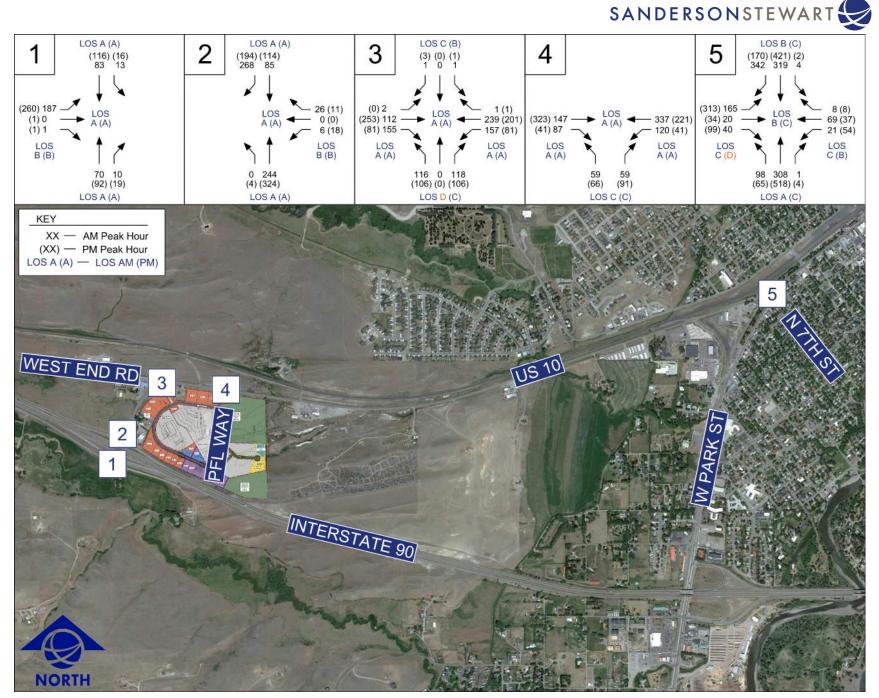


Figure 6. Future (2027) Traffic Projections Mountain View Subdivision TIS

Intersection Capacity

Intersection capacity calculations were performed for the Future (2027) scenario based on the AM and PM peak hour traffic volume projections presented in Figure 6. Peak hour factors (PHFs) for the design year were conservatively assumed to be 0.92 for all intersections, per HCM guidelines and common industry practice for future scenarios. The assumed values were utilized to not overestimate future congestion in the study area. Figure 6 also shows the Future (2027) LOS results at each intersection.

Future (2027) scenario capacity results are projected to be similar to Existing Conditions (2022) results. The northbound approach at the US 10/West End Road intersection is projected to operate at LOS D during the AM peak hour with the addition of subdivision trips. The West Park Street/US 10 intersection is projected to operate at LOS D on the eastbound approach during the PM peak hour. During the AM peak hour, that approach is projected to improve from LOS D to C because the average delay value decreases due to the addition of eastbound right-turning trips from Mountain View Subdivision which have low delay values. All other intersections and approaches are projected to continue to operate at or above LOS C. Projected 95th percentile queuing is projected to worsen at the West Park Street/US 10 intersection, with a queue of 19 vehicles projected eastbound on US 10. A detailed intersection capacity summary table and capacity calculation worksheets for the Future (2027) traffic projection scenario can be found in Appendix C.

Bicycle and Pedestrian Facilities

It is recommended that the road ditches on the south side of US 10 be regraded in order to build a multi-use path along the entirety of US 10, as requested by the City of Livingston. It is assumed the full path typical section will fit within the existing MDT Highway 10 right-of-way, but ultimate location will be determined through final design. Designing the path to an elevation close to the roadway elevation will require the roadside berms to be regraded which subsequently will optimize sight distance.

Mitigation Alternatives

A variety of potential mitigation improvement options were evaluated to address existing concerns and/or projected impacts for the study area streets and intersections. The following paragraphs provide details on that analysis.

Auxiliary Turn Lanes

Auxiliary right- and left-turn lane warrants were evaluated based on the methodology outlined in the MDT Traffic Engineering Manual (November 2007) for the Existing Conditions (2022) and Future (2027) analysis scenarios:

- **US 10/PFL Way intersection:** A westbound left-turn lane is warranted based on the Existing Conditions (2022) scenario. An eastbound right-turn lane is not projected to be warranted in the Future (2027) scenario, but the turning volume is only two vehicles below the required threshold for considering a turn lane.
- **US 10/West End Road intersection:** An eastbound right-turn lane and a westbound left-turn lane are both projected to be warranted based on the Future (2027) scenario.
- I-90 WB Ramps/US 10 intersection: A southbound right-turn is warranted based on the Existing Conditions (2022) scenario.

• I-90 EB Ramps/US 10 intersection: No turn lanes are warranted based on the Existing Conditions (2022) or Future (2027) scenarios.

The high volume of trips added to the network by the Mountain View Subdivision are projected to trigger the warrants for turn lanes into the site access intersections. The final decision to install any turn lanes shall be made by MDT after evaluation of what impacts they may have to other aspects of the intersections or adjacent intersections. Auxiliary turn lane warrant worksheets for Existing Conditions (2022) and Future (2027) scenarios can be found in Appendix D.

Improved Intersection Capacity

The warranted eastbound right-turn and westbound left-turn lanes at the US 10/West End Road intersection are projected to reduce northbound delay during the AM peak hour by over 6 seconds/vehicle, resulting in an improved capacity of LOS C on that approach in the Future (2027) scenario. These lanes should be considered for installation due to the projected capacity improvements, as well as the safety benefits provided by separating thru and turning movements on a higher speed facility.

The warranted turn lanes at the US 10/PFL Way and I-90 WB Ramps/US 10 intersections are projected to have a minimal impact on capacity, and both intersections are projected to operate at LOS C or better with existing lane configurations. Although these turn lanes do not provide capacity benefits, they should be considered by MDT due to their potential to improve safety at the intersections by separating thru and turning movements, particularly at the PFL Way intersection where the speed limit is 60 mph.

Minor changes to the signal timing plan at the West Park Street/US 10 intersection are projected to improve capacity from LOS D to LOS C during the PM peak hour in the Future (2027) scenario.

Other Area Developments

Although a development application was previously submitted for land on the northwest side of US 10, that application was denied, and no further plans have been made public for potential development at that location or other sites adjacent to the Mountain View Subdivision area. Therefore, no additional trips were added to the Future (2027) scenario to account for potential area development in addition to the ambient background growth.

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The preceding analysis has shown that construction of the facility will generate a substantial volume of new traffic demand for area streets and intersections. Through the planned development, it is estimated that approximately 4,035 new external vehicle trips could be generated daily upon full buildout of the subdivision. This would result in approximately 2,000 new vehicle trips per day on US 10 just west of the West Park Street intersection.

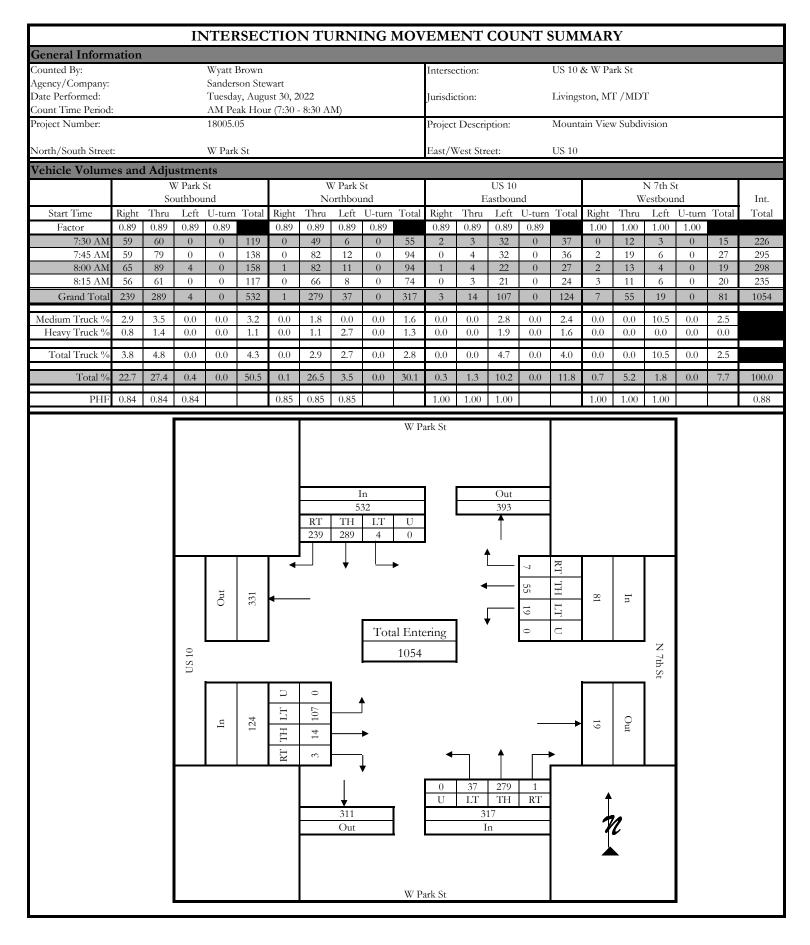
An evaluation of Existing Conditions (2022) intersection capacity showed that all intersections and approaches currently operate at LOS C or better except for the eastbound approach at the West Park Street/US 10 intersection, which operates at LOS D during the AM peak hour. A crash history analysis showed that crash and severity rates are generally low for all study area intersections. Fixed object/run off road collisions were found to be the most common amongst historical crashes overall, with speed possibly being a contributing factor.

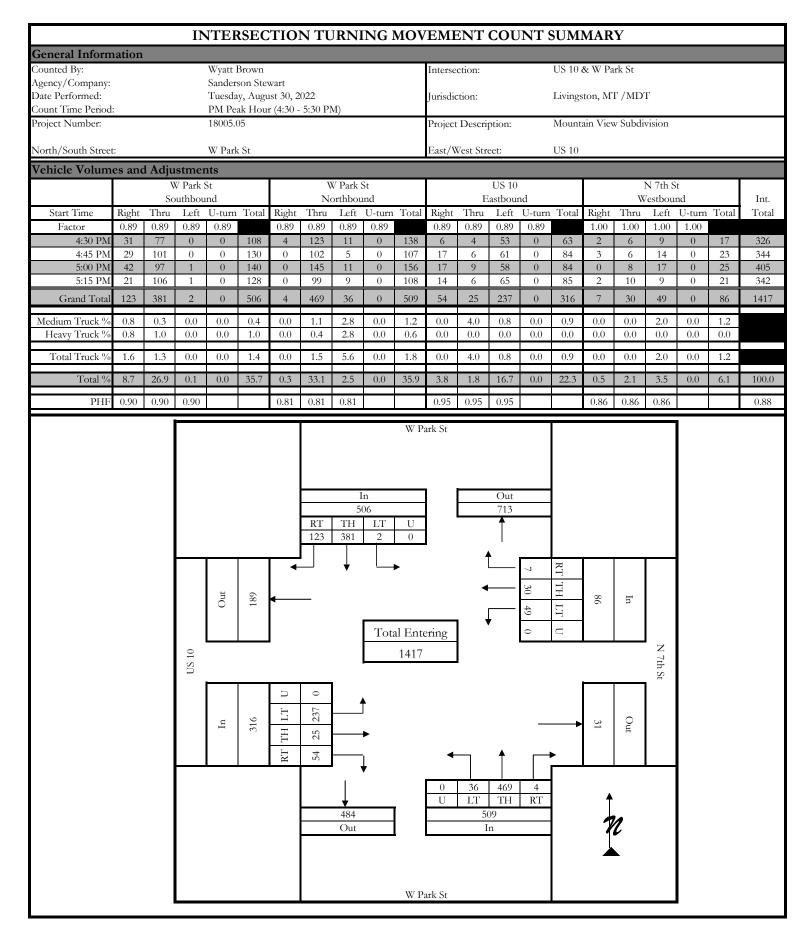
Initial intersection capacity analysis results for the Future (2027) scenario projected that the new northbound approach at the US 10/West End Road intersection would operate at LOS D during the AM peak hour. The eastbound approach at the West Park Street/US 10 intersection is also projected to worsen to LOS D during the PM peak hour.

Auxiliary turn lane warrants were evaluated at all study area intersections. Based on the application of MDT Traffic Engineering Manual criteria, turn lanes were found to be warranted at the US 10/PFL Way, US 10/West End Road, and I-90 WB Ramps/US 10 intersections. The warranted lanes should be considered for installation based on projected capacity improvements at the US 10/West End Road intersection and potential safety benefits at all three intersections provided by separating thru and turning movements. The final decision to install any turn lanes will be made by MDT.

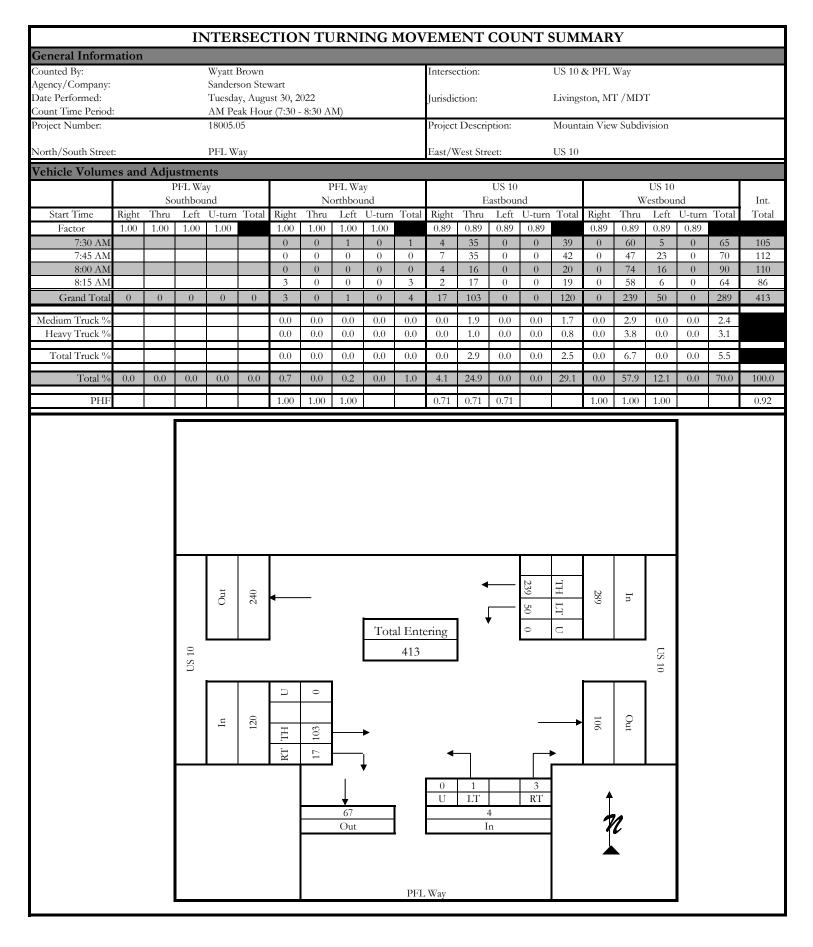
Recommendations

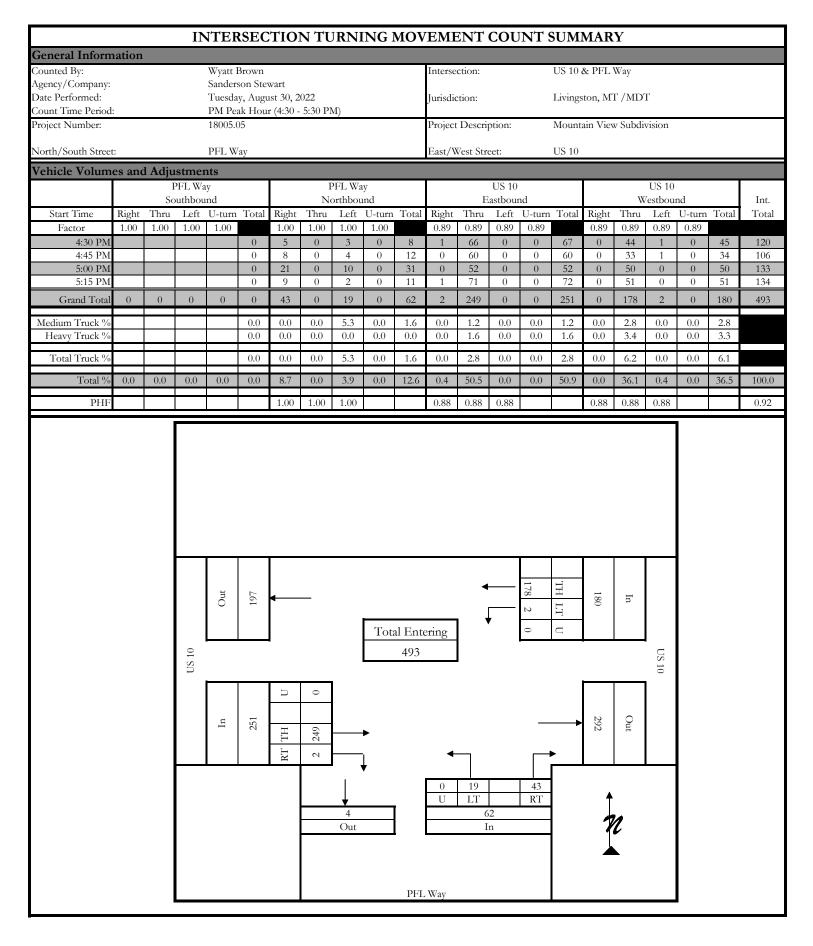
The following list of recommendations is based on the analysis results from this study and professional judgment:

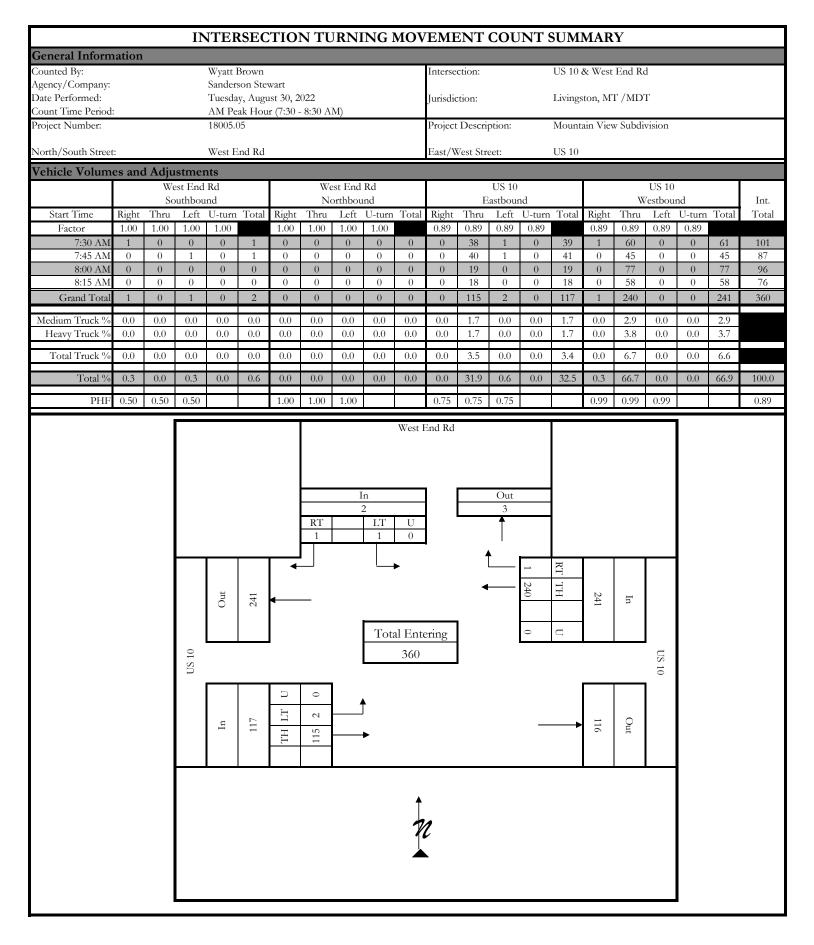

- An R1-1 (stop) sign shall be installed on the southern leg of the new site access intersection with US 10 at West End Road.
- A speed study should be conducted for US 10 upon full buildout of Mountain View Subdivision to evaluate whether the resulting traffic increase and safety concerns may warrant reduced speed limits.
- Installation of the following turn lanes should be considered, although MDT may decide the intersection characteristics and safety considerations would not benefit from the warranted lanes.
 - A westbound left-turn lane should be considered at the US 10/PFL Way intersection based on Existing Conditions (2022) and Future (2027) scenario turn lane warrant results. An eastbound right-turn lane should also be considered at the intersection, as Future (2027) projected volumes are extremely close to meeting the warrant. These lanes may provide safety benefits at the intersection.
 - A westbound left-turn lane and eastbound right-turn lane should be considered at the US 10/West End Road intersection based on Future (2027) scenario turn lane warrant results. These lanes are projected to provide capacity benefits and may provide safety benefits at the intersection.
 - A southbound right-turn lane should be considered at the I-90 WB Ramps/US 10 intersection based on Existing Conditions (2022) turn lane warrant results. This turn lane may provide safety benefits at the intersection.
- Safety and operations should be monitored at the West Park Street/US 10 intersection as area volumes
 increase, particularly on the west leg. Steps should be taken to prevent vehicles from stopping across the
 railroad tracks if necessary, and the signal timing plan should be reevaluated as capacity deteriorates. If deemed
 necessary by an engineering study, a pre-signal on US 10 may be considered as outlined in Chapter 8C.09.16 of
 the MUTCD. Any modifications to the at-grade railroad crossing shall be evaluated by and coordinated with
 MRL and BNSF.
- Any proposed improvements should be coordinated with MDT area projects and all transportation-related improvements shall be designed in accordance with MDT standards (where applicable), the City of Livingston, and the Manual on Uniform Traffic Control Devices (MUTCD).

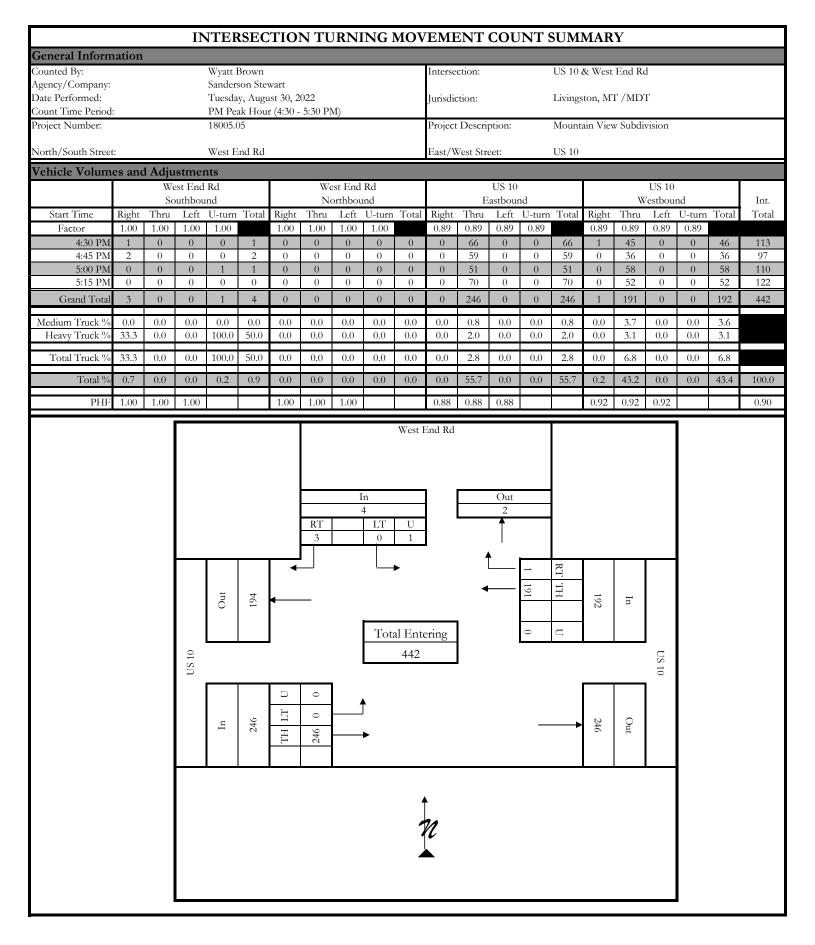

APPENDIX A

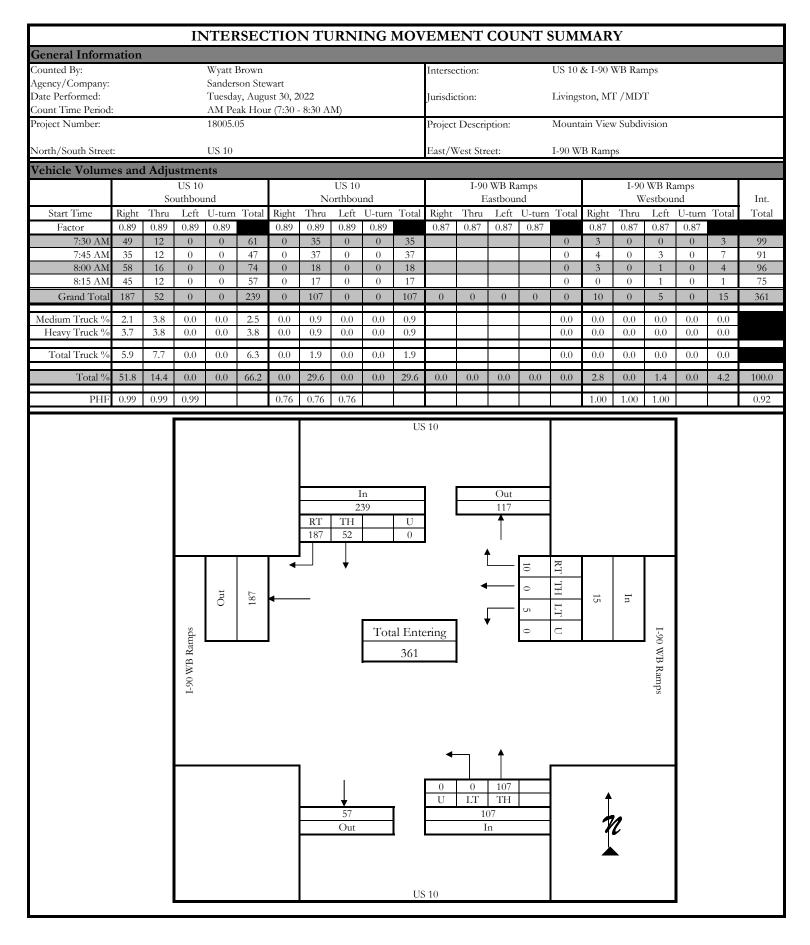
TRAFFIC VOLUME DATA

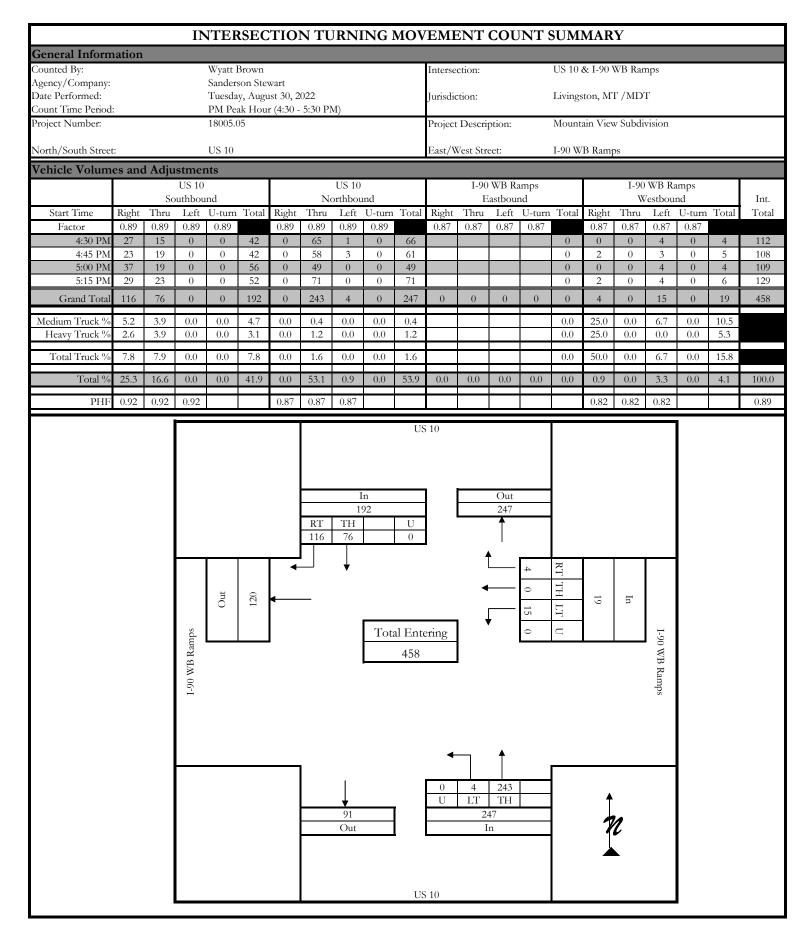


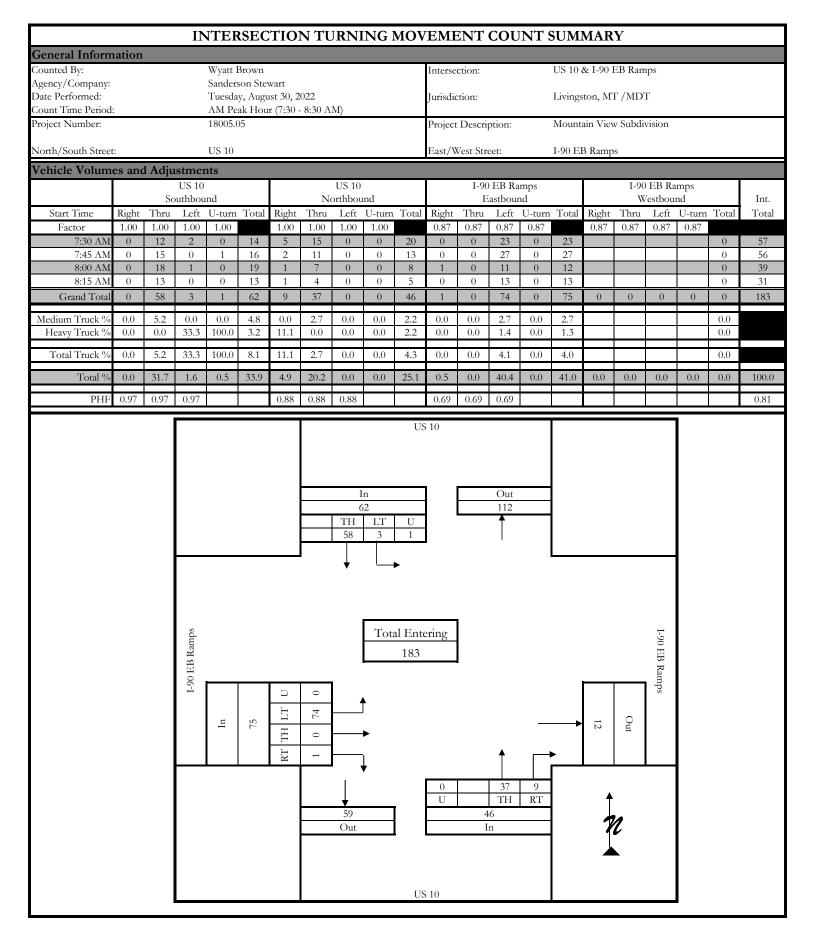


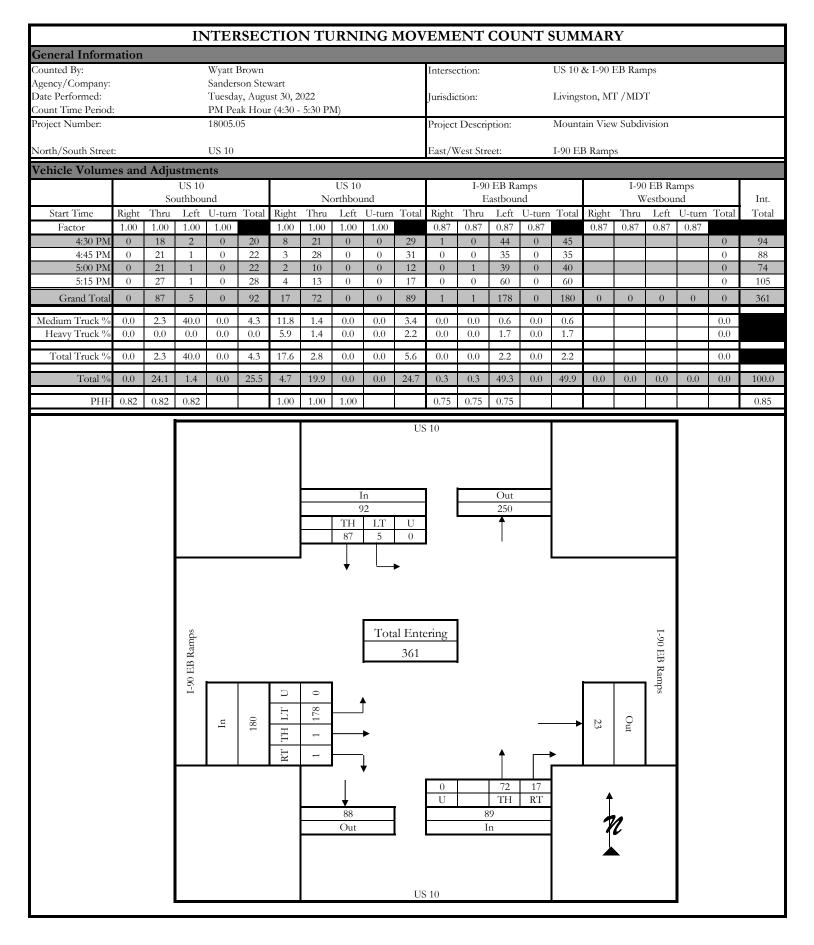












APPENDIX B

CAPACITY CALCULATIONS – EXISTING CONDITIONS (2022)

				Existing	g (2022)		
		-	AM Peak	X		PM Peak	2
Intersection	Approach	Avg		95th %	Avg		95th %
	11	Delay		Queue	Delay		Queue
		(s/veh)	LOS	(veh)	(s/veh)	LOS	(veh)
Intersection Contro				Signa			
	EB	35.6	D	5	34.8	С	11
West Park Street &	WB	33.4	С	3	24.8	С	3
	NB	4.1	А	5	13.2	В	13
US 10	SB	6.7	А	7	15.1	В	13
	Intersection	11.4	В		19.4	В	
Intersection Contro			One-l	Vay Stop-0		(NB)	
	EB	0.0	А	0	0.0	А	0
US 10 &	WB	1.3	А	1	0.1	А	0
PFL Way	NB	9.6	А	0	10.8	В	1
	Intersection	1.0	А		1.4	А	
Intersection Contro				Way Stop-		1 /	
	EB	0.1	А	0	0.0	А	0
US 10 &	WB	0.0	А	0	0.0	А	0
West End Road	SB	10.3	В	0	10.9	В	0
	Intersection	0.1	A		0.1	A	
Intersection Contro		0.0		Vay Stop-0			
	WB	9.3	A	1	11.4	B	1
US 10 &	NB	0.0	A	0	0.1	A	0
I-90 WB Ramps	SB	0.0	А	0	0.0	A	0
	Intersection	0.4	A	 W/ C / /	0.5	A	
Intersection Contro		0.7		Vay Stop-		1 /	2
US 10 &	EB	9.7	A	1	11.4	B	2
	NB SB	0.0	A	0	0.0	A	0
I-90 EB Ramps	Intersection	0.5 4.1	A	0	0.4	A	0
	mersecuon	4.1	11		5.0	11	

0.4

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations					4			र्स			¢Î,		
Traffic Vol, veh/h	0	0	0	5	0	10	0	107	0	0	52	187	
Future Vol, veh/h	0	0	0	5	0	10	0	107	0	0	52	187	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	1	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	0	0	0	0	0	0	0	2	0	0	8	6	
Mvmt Flow	0	0	0	5	0	11	0	116	0	0	57	203	

Minor1		Ν	/lajor1		Ма	ajor2				
275	376	116	260	0	-	-	-	0		
116	116	-	-	-	-	-	-	-		
159	260	-	-	-	-	-	-	-		
6.4	6.5	6.2	4.1	-	-	-	-	-		
5.4	5.5	-	-	-	-	-	-	-		
5.4	5.5	-	-	-	-	-	-	-		
3.5	4	3.3	2.2	-	-	-	-	-		
719	558	942	1316	-	0	0	-	-		
914	803	-	-	-	0	0	-	-		
875	697	-	-	-	0	0	-	-		
				-			-	-		
719	0	942	1316	-	-	-	-	-		
719	0	-	-	-	-	-	-	-		
914	0	-	-	-	-	-	-	-		
875	0	-	-	-	-	-	-	-		
WB			NB			SB				
9.3			0			0				
А										
	275 116 159 6.4 5.4 5.4 3.5 719 914 875 719 719 719 914 875 WB 9.3	275 376 116 116 159 260 6.4 6.5 5.4 5.5 3.5 4 719 558 914 803 875 697 719 0 719 0 719 0 914 0 875 0 WB 9.3	275 376 116 116 116 - 159 260 - 6.4 6.5 6.2 5.4 5.5 - 3.5 4 3.3 719 558 942 914 803 - 875 697 - 719 0 942 719 0 - 875 697 - WB 9.3 -	275 376 116 260 116 116 - - 159 260 - - 6.4 6.5 6.2 4.1 5.4 5.5 - - 3.5 4 3.3 2.2 719 558 942 1316 914 803 - - 875 697 - - 719 0 942 1316 914 803 - - 875 697 - - 914 0 - - 914 0 - - 875 0 - - WB NB 9.3 0	275 376 116 260 0 116 116 - - - 159 260 - - - 6.4 6.5 6.2 4.1 - 5.4 5.5 - - - 3.5 4 3.3 2.2 - 719 558 942 1316 - 914 803 - - - 719 558 942 1316 - 914 803 - - - 719 0 942 1316 - 719 0 942 1316 - 719 0 942 1316 - 719 0 942 1316 - 914 0 - - - 875 0 - - - 875 0 - - - 875 0 - - - 93 0 -	275 376 116 260 0 - 116 116 - - - - 159 260 - - - - 6.4 6.5 6.2 4.1 - - 5.4 5.5 - - - - 3.5 4 3.3 2.2 - - 719 558 942 1316 - 0 914 803 - - 0 719 568 942 1316 - 0 914 803 - - 0 - 719 0 942 1316 - - 719 0 942 1316 - - 914 0 - - - - 875 0 - - - - 93 0 - - - -	275 376 116 260 0 - - 116 116 - - - - - 159 260 - - - - - 6.4 6.5 6.2 4.1 - - - 5.4 5.5 - - - - - 3.5 4 3.3 2.2 - - - 719 558 942 1316 - 0 0 914 803 - - 0 0 0 719 558 942 1316 - 0 0 914 803 - - 0 0 - 719 0 942 1316 - - - 719 0 942 1316 - - - 914 0 - - - - - 875 0 - - - - - 914 </td <td>275 376 116 260 0 -</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	275 376 116 260 0 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Minor Lane/Major Mvmt	NBL	NBTWBLn1	SBT	SBR
Capacity (veh/h)	1316	- 854	-	-
HCM Lane V/C Ratio	-	- 0.019	-	-
HCM Control Delay (s)	0	- 9.3	-	-
HCM Lane LOS	А	- A	-	-
HCM 95th %tile Q(veh)	0	- 0.1	-	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
	EDL		EDR	VVDL	VVDI	WDR	INDL	INDI	NDN	JDL	SDI	JDR	
Lane Configurations		- 4 >						ર્ન 👘			- କି		
Traffic Vol, veh/h	74	0	1	0	0	0	0	37	9	4	58	0	
Future Vol, veh/h	74	0	1	0	0	0	0	37	9	4	58	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	81	
Heavy Vehicles, %	4	0	0	0	0	0	0	3	11	33	5	0	
Mvmt Flow	91	0	1	0	0	0	0	46	11	5	72	0	

Major/Minor	Minor2			Major1		Majo	or2		
Conflicting Flow All	134	139	72	-	0	0	57 0	0	
Stage 1	82	82	-	-	-	-		-	
Stage 2	52	57	-	-	-	-		-	
Critical Hdwy	6.44	6.5	6.2	-	-	- 4	.43 -	-	
Critical Hdwy Stg 1	5.44	5.5	-	-	-	-		-	
Critical Hdwy Stg 2	5.44	5.5	-	-	-	-		-	
Follow-up Hdwy	3.536	4	3.3	-	-	- 2.4	-97 -	-	
Pot Cap-1 Maneuver	855	756	996	0	-	- 13	- 71	0	
Stage 1	936	831	-	0	-	-		0	
Stage 2	965	851	-	0	-	-		0	
Platoon blocked, %					-	-	-		
Mov Cap-1 Maneuver	852	0	996	-	-	- 13	- 71	-	
Mov Cap-2 Maneuver	852	0	-	-	-	-		-	
Stage 1	936	0	-	-	-	-		-	
Stage 2	961	0	-	-	-	-		-	
Approach	EB			NB			SB		

Approach	EB	NB	SB	
HCM Control Delay, s	9.7	0	0.5	
HCMLOS	А			

Minor Lane/Major Mvmt	NBT	NBR E	BLn1	SBL	SBT
Capacity (veh/h)	-	-	854	1371	-
HCM Lane V/C Ratio	-	- (0.108	0.004	-
HCM Control Delay (s)	-	-	9.7	7.6	0
HCM Lane LOS	-	-	Α	А	А
HCM 95th %tile Q(veh)	-	-	0.4	0	-

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		- द	et 👘		Y	
Traffic Vol, veh/h	2	115	240	1	1	1
Future Vol, veh/h	2	115	240	1	1	1
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	0	4	7	0	0	0
Mvmt Flow	2	129	270	1	1	1

Major/Minor	Major1	Ν	/lajor2	1	Minor2	
Conflicting Flow All	271	0	-	0	404	271
Stage 1	-	-	-	-	271	-
Stage 2	-	-	-	-	133	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1304	-	-	-	606	773
Stage 1	-	-	-	-	779	-
Stage 2	-	-	-	-	898	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1304	-	-	-	605	773
Mov Cap-2 Maneuver	-	-	-	-	605	-
Stage 1	-	-	-	-	777	-
Stage 2	-	-	-	-	898	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		10.3	
HCM LOS					В	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		1304	-	-	-	679
HCM Lane V/C Ratio		0.002	-	-	-	0.003
HCM Control Delay (s))	7.8	0	-	-	10.3
HCM Lane LOS		А	А	-	-	В
HCM 95th %tile Q(veh)	0	-	-	-	0

Queues 15: W Park St & Hwy 10/7th St

	→	+	•	1	1	ţ	~
Lane Group	EBT	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	141	93	42	318	5	328	272
v/c Ratio	0.59	0.32	0.06	0.28	0.01	0.33	0.28
Control Delay	38.9	27.3	5.2	7.3	11.2	12.0	2.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	38.9	27.3	5.2	7.3	11.2	12.0	2.6
Queue Length 50th (ft)	65	38	5	57	1	86	0
Queue Length 95th (ft)	106	69	18	119	7	171	37
Internal Link Dist (ft)	582	178		347		219	
Turn Bay Length (ft)			100		100		100
Base Capacity (vph)	365	446	710	1127	587	984	956
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.39	0.21	0.06	0.28	0.01	0.33	0.28
Intersection Summary							

09/09/2022

HCM 6th Signalized Intersection Summary 15: W Park St & Hwy 10/7th St

	۶	-	\mathbf{F}	•	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			- ↔		<u>۲</u>	eî 👘		ሻ	↑	1
Traffic Volume (veh/h)	107	14	3	19	55	7	37	279	1	4	289	239
Future Volume (veh/h)	107	14	3	19	55	7	37	279	1	4	289	239
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1682	1750	1750	1614	1750	1750	1709	1709	1750	1750	1682	1695
Adj Flow Rate, veh/h	122	16	3	22	62	8	42	317	1	5	328	272
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, %	5	0	0	10	0	0	3	3	0	0	5	4
Cap, veh/h	240	20	4	87	158	18	614	1241	4	795	1099	939
Arrive On Green	0.12	0.12	0.12	0.12	0.12	0.12	0.04	0.73	0.73	0.65	0.65	0.65
Sat Flow, veh/h	1287	169	32	254	1300	148	1628	1703	5	1078	1682	1437
Grp Volume(v), veh/h	141	0	0	92	0	0	42	0	318	5	328	272
Grp Sat Flow(s),veh/h/ln	1487	0	0	1702	0	0	1628	0	1708	1078	1682	1437
Q Serve(g_s), s	3.2	0.0	0.0	0.0	0.0	0.0	0.6	0.0	5.0	0.1	6.7	6.5
Cycle Q Clear(g_c), s	7.2	0.0	0.0	4.0	0.0	0.0	0.6	0.0	5.0	0.1	6.7	6.5
Prop In Lane	0.87		0.02	0.24		0.09	1.00		0.00	1.00		1.00
Lane Grp Cap(c), veh/h	264	0	0	262	0	0	614	0	1245	795	1099	939
V/C Ratio(X)	0.53	0.00	0.00	0.35	0.00	0.00	0.07	0.00	0.26	0.01	0.30	0.29
Avail Cap(c_a), veh/h	495	0	0	533	0	0	776	0	1245	795	1099	939
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	33.9	0.0	0.0	32.6	0.0	0.0	3.8	0.0	3.6	4.8	6.0	5.9
Incr Delay (d2), s/veh	1.7	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.5	0.0	0.7	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	2.7	0.0	0.0	1.7	0.0	0.0	0.2	0.0	1.5	0.0	2.3	1.9
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	35.6	0.0	0.0	33.4	0.0	0.0	3.9	0.0	4.1	4.8	6.7	6.7
LnGrp LOS	D	A	A	С	A	A	A	A	A	A	A	<u> </u>
Approach Vol, veh/h		141			92			360			605	
Approach Delay, s/veh		35.6			33.4			4.1			6.7	
Approach LOS		D			С			А			А	
Timer - Assigned Phs		2		4	5	6		8				
Phs Duration (G+Y+Rc), s		64.3		15.7	6.0	58.3		15.7				
Change Period (Y+Rc), s		6.0		6.0	3.0	6.0		6.0				
Max Green Setting (Gmax), s		45.0		23.0	11.0	31.0		23.0				
Max Q Clear Time (g_c+l1), s		7.0		9.2	2.6	8.7		6.0				
Green Ext Time (p_c), s		2.2		0.6	0.0	3.1		0.4				
Intersection Summary												
HCM 6th Ctrl Delay			11.4									
HCM 6th LOS			В									

09/09/2022

1

Intersection

Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	et			÷	Y	
Traffic Vol, veh/h	103	17	50	239	1	3
Future Vol, veh/h	103	17	50	239	1	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	0	0	7	0	0
Mvmt Flow	112	18	54	260	1	3

Major/Minor	Major1	Ν	/lajor2	ſ	Minor1	
Conflicting Flow All	0	0	130	0	489	121
Stage 1	-	-	-	-	121	-
Stage 2	-	-	-	-	368	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1468	-	542	936
Stage 1	-	-	-	-	909	-
Stage 2	-	-	-	-	704	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1468	-	519	936
Mov Cap-2 Maneuver	-	-	-	-	519	-
Stage 1	-	-	-	-	909	-
Stage 2	-	-	-	-	674	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.3		9.6	
HCM LOS					А	
Minor Lane/Major Mvm	nt N	IBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h) HCM Lane V/C Ratio		779 0.006	-	-	1468 0.037	-
		9.6	-	-	0.037 7.5	-
HCM Control Delay (s) HCM Lane LOS		9.0 A	-	-	7.5 A	A
HCM 95th %tile Q(veh))	0	-	-	0.1	- A
)	0	-	_	0.1	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			स		-	ţ,	-
Traffic Vol, veh/h	0	0	0	15	0	4	4	243	0	0	76	116
Future Vol, veh/h	0	0	0	15	0	4	4	243	0	0	76	116
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	1	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, %	0	0	0	7	0	50	0	2	0	0	8	8
Mvmt Flow	0	0	0	17	0	4	4	273	0	0	85	130

Major/Minor		Minor1		1	Major1		Ма	ajor2			
Conflicting Flow All		431	496	273	215	0	-	-	-	0	
Stage 1		281	281	-	-	-	-	-	-	-	
Stage 2		150	215	-	-	-	-	-	-	-	
Critical Hdwy		6.47	6.5	6.7	4.1	-	-	-	-	-	
Critical Hdwy Stg 1		5.47	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2		5.47	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy		3.563	4	3.75	2.2	-	-	-	-	-	
Pot Cap-1 Maneuver		572	478	664	1367	-	0	0	-	-	
Stage 1		755	682	-	-	-	0	0	-	-	
Stage 2		866	729	-	-	-	0	0	-	-	
Platoon blocked, %						-			-	-	
Mov Cap-1 Maneuver		570	0	664	1367	-	-	-	-	-	
Mov Cap-2 Maneuver		570	0	-	-	-	-	-	-	-	
Stage 1		753	0	-	-	-	-	-	-	-	
Stage 2		866	0	-	-	-	-	-	-	-	
Approach		WB			NB			SB			
HCM Control Delay, s		11.4			0.1			0			
HCM LOS		В									
Minor Lane/Major Mvmt	NBL	NBTWBLn1	SBT	SBR							
Capacity (veh/h)	1367	- 588	-	-							

	1001		000		
HCM Lane V/C Ratio	0.003	- 0	.036	-	-
HCM Control Delay (s)	7.6	0	11.4	-	-
HCM Lane LOS	А	А	В	-	-
HCM 95th %tile Q(veh)	0	-	0.1	-	-

In	to	rc	0	\sim	tı	2	n
	te	13	C	U	LI	U	

3 *													
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$						et P			÷		
Traffic Vol, veh/h	178	1	1	0	0	0	0	72	17	5	87	0	
Future Vol, veh/h	178	1	1	0	0	0	0	72	17	5	87	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85	
Heavy Vehicles, %	2	0	0	0	0	0	0	3	18	40	2	0	
Mvmt Flow	209	1	1	0	0	0	0	85	20	6	102	0	

Major/Minor	Minor2			Major1		N	/lajor2			
Conflicting Flow All	209	219	102	-	0	0	105	0	0	
Stage 1	114	114	-	-	-	-	-	-	-	
Stage 2	95	105	-	-	-	-	-	-	-	
Critical Hdwy	6.42	6.5	6.2	-	-	-	4.5	-	-	
Critical Hdwy Stg 1	5.42	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4	3.3	-	-	-	2.56	-	-	
Pot Cap-1 Maneuver	779	683	959	0	-	-	1280	-	0	
Stage 1	911	805	-	0	-	-	-	-	0	
Stage 2	929	812	-	0	-	-	-	-	0	
Platoon blocked, %					-	-		-		
Mov Cap-1 Maneuver	775	0	959	-	-	-	1280	-	-	
Mov Cap-2 Maneuver	775	0	-	-	-	-	-	-	-	
Stage 1	911	0	-	-	-	-	-	-	-	
Stage 2	924	0	-	-	-	-	-	-	-	
Approach	EB			NB			SB			

Approach	ED	IND	30	
HCM Control Delay, s	11.4	0	0.4	
HCM LOS	В			

Minor Lane/Major Mvmt	NBT	NBR EB	3Ln1	SBL	SBT
Capacity (veh/h)	-	-	776	1280	-
HCM Lane V/C Ratio	-	- 0.	.273	0.005	-
HCM Control Delay (s)	-	-	11.4	7.8	0
HCM Lane LOS	-	-	В	Α	Α
HCM 95th %tile Q(veh)	-	-	1.1	0	-

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		- सी	ર્ન 🐪		۰¥	
Traffic Vol, veh/h	0	246	191	1	1	3
Future Vol, veh/h	0	246	191	1	1	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	3	7	0	100	33
Mvmt Flow	0	273	212	1	1	3

Major/Minor	Major1	Ν	/lajor2	N	/linor2	
Conflicting Flow All	213	0	-	0	486	213
Stage 1	-	-	-	-	213	-
Stage 2	-	-	-	-	273	-
Critical Hdwy	4.1	-	-	-	7.4	6.53
Critical Hdwy Stg 1	-	-	-	-	6.4	-
Critical Hdwy Stg 2	-	-	-	-	6.4	-
Follow-up Hdwy	2.2	-	-	-		3.597
Pot Cap-1 Maneuver	1369	-	-	-	400	755
Stage 1	-	-	-	-	636	-
Stage 2	-	-	-	-	592	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1369	-	-	-	400	755
Mov Cap-2 Maneuver	-	-	-	-	400	-
Stage 1	-	-	-	-	636	-
Stage 2	-	-	-	-	592	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		10.9	
HCM LOS					В	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		1369	-	-	-	618
HCM Lane V/C Ratio		-	-	-	-	0.007
HCM Control Delay (s))	0	-	-	-	10.9
HCM Lane LOS		А	-	-	-	В
HCM 95th %tile Q(veh)	0	-	-	-	0

Queues 15: W Park St & Hwy 10/7th St

	→	-	1	Ť	1	Ļ	1
Lane Group	EBT	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	358	98	41	538	2	433	140
v/c Ratio	0.84	0.23	0.10	0.59	0.01	0.54	0.19
Control Delay	44.9	20.0	11.2	19.0	18.5	23.2	7.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	44.9	20.0	11.2	19.0	18.5	23.2	7.4
Queue Length 50th (ft)	175	36	10	206	1	190	13
Queue Length 95th (ft)	265	67	27	325	5	302	50
Internal Link Dist (ft)	582	178		347		219	
Turn Bay Length (ft)			100		100		100
Base Capacity (vph)	493	495	416	915	336	811	737
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.73	0.20	0.10	0.59	0.01	0.53	0.19
Intersection Summary							

09/09/2022

HCM 6th Signalized Intersection Summary 15: W Park St & Hwy 10/7th St

	≯	-	\mathbf{F}	4	-	•	1	1	1	1	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	ef 👘		ሻ	↑	1
Traffic Volume (veh/h)	237	25	54	49	30	7	36	469	4	2	381	123
Future Volume (veh/h)	237	25	54	49	30	7	36	469	4	2	381	123
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1736	1695	1750	1723	1750	1750	1668	1723	1750	1750	1736	1723
Adj Flow Rate, veh/h	269	28	61	56	34	8	41	533	5	2	433	140
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, %	1	4	0	2	0	0	6	2	0	0	1	2
Cap, veh/h	370	31	68	287	162	34	424	994	9	427	893	751
Arrive On Green	0.28	0.28	0.28	0.28	0.28	0.28	0.04	0.58	0.58	0.51	0.51	0.51
Sat Flow, veh/h	1060	110	240	791	573	121	1589	1704	16	881	1736	1460
Grp Volume(v), veh/h	358	0	0	98	0	0	41	0	538	2	433	140
Grp Sat Flow(s),veh/h/ln	1411	0	0	1486	0	0	1589	0	1720	881	1736	1460
Q Serve(g_s), s	17.5	0.0	0.0	0.0	0.0	0.0	1.0	0.0	17.1	0.1	14.5	4.6
Cycle Q Clear(g_c), s	21.8	0.0	0.0	4.3	0.0	0.0	1.0	0.0	17.1	11.0	14.5	4.6
Prop In Lane	0.75		0.17	0.57		0.08	1.00		0.01	1.00		1.00
Lane Grp Cap(c), veh/h	470	0	0	484	0	0	424	0	1003	427	893	751
V/C Ratio(X)	0.76	0.00	0.00	0.20	0.00	0.00	0.10	0.00	0.54	0.00	0.48	0.19
Avail Cap(c_a), veh/h	616	0	0	638	0	0	490	0	1003	427	893	751
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	30.7	0.0	0.0	24.6	0.0	0.0	10.1	0.0	11.4	16.6	14.1	11.7
Incr Delay (d2), s/veh	4.1	0.0	0.0	0.2	0.0	0.0	0.1	0.0	2.1	0.0	1.9	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	7.7	0.0	0.0	1.6	0.0	0.0	0.3	0.0	6.7	0.0	5.9	1.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	34.8	0.0	0.0	24.8	0.0	0.0	10.2	0.0	13.4	16.6	16.0	12.3
LnGrp LOS	С	А	А	С	А	А	В	А	В	В	В	В
Approach Vol, veh/h		358			98			579			575	
Approach Delay, s/veh		34.8			24.8			13.2			15.1	
Approach LOS		С			С			В			В	
Timer - Assigned Phs		2		4	5	6		8				
Phs Duration (G+Y+Rc), s		58.5		31.5	6.2	52.3		31.5				
Change Period (Y+Rc), s		6.0		6.0	3.0	6.0		6.0				
Max Green Setting (Gmax), s		43.0		35.0	7.0	33.0		35.0				
Max Q Clear Time (g_c+l1), s		19.1		23.8	3.0	16.5		6.3				
Green Ext Time (p_c), s		3.9		1.7	0.0	3.1		0.5				
Intersection Summary												
HCM 6th Ctrl Delay			19.4									
HCM 6th LOS			В									

09/09/2022

Intersection						
Int Delay, s/veh	1.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	el el			ŧ	Y	
Traffic Vol, veh/h	249	2	2	178	19	43
Future Vol, veh/h	249	2	2	178	19	43
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	0	0	6	5	0
Mvmt Flow	271	2	2	193	21	47

Major/Minor	Major1	Ν	lajor2	ľ	Minor1	
Conflicting Flow All	0	0	273	0	469	272
Stage 1	-	-	-	-	272	-
Stage 2	-	-	-	-	197	-
Critical Hdwy	-	-	4.1	-	6.45	6.2
Critical Hdwy Stg 1	-	-	-	-	5.45	-
Critical Hdwy Stg 2	-	-	-	-	5.45	-
Follow-up Hdwy	-	-	2.2	-	3.545	3.3
Pot Cap-1 Maneuver	-	-	1302	-	547	772
Stage 1	-	-	-	-	767	-
Stage 2	-	-	-	-	829	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1302	-	546	772
Mov Cap-2 Maneuver	-	-	-	-	546	-
Stage 1	-	-	-	-	767	-
Stage 2	-	-	-	-	827	-
Approach	EB		WB		NB	
Approach						
HCM Control Delay, s	0		0.1		10.8	
HCM LOS					В	
Minor Lane/Major Mvn	nt NI	BLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		685	-	-	1302	-
	~	000			0.000	

HCM Lane V/C Ratio	0.098	-	- 0.002	-
HCM Control Delay (s)	10.8	-	- 7.8	0
HCM Lane LOS	В	-	- A	А
HCM 95th %tile Q(veh)	0.3	-	- 0	-

SANDERSON STEWART

APPENDIX C

CAPACITY CALCULATIONS – FUTURE (2027)

				Future	(2027)		
			AM Peak	(PM Peak	
Intersection	Approach	Avg		95th %	Avg		95th %
intersection	Арргоасп	Delay	LOS	Oueue	Delay	LOS	Queue
		,	203		,	205	~
		(s/veh)		(veh)	(s/veh)		(veh)
Intersection Cont				Signo		•	
	EB	32.9	С	8	36.6	D	19
West Park Street &	WB	27.8	С	4	19.5	В	4
US 10	NB	6.7	A	6	20.1	С	15
03 10	SB	11.7	В	9	22.8	С	14
	Intersection	14.8	В		25.3	С	
Intersection Cont			One-\	Nay Stop-		(NB)	
	EB	0.0	A	0	0.0	A	0
US 10 &	WB	2.1	A		1.3	A	
PFL Way	NB	16.5	C	2	15.5	C	2
	Intersection	3.6	A	<u> </u>	3.5	A	
Intersection Cont			-	'ay Stop-C		NB/SB)	-
	EB	0.1	A	0	0.0	A	0
US 10 &	WB	3.3	A		2.4	A	
West End Road	NB	28.2	D	5	21.2	С	3
West Ellu Koau	SB	16.3	С	0	13.8	В	0
	Intersection	8.8	A		6.3	A	
Intersection Cont				Vay Stop-			-
US 10 &	WB	10.3	В		12.3	В	
US 10 &	NB	0.0	A	0	0.1	A	0
I-90 WB Ramps	SB	0.0	Α	0	0.0	A	0
	Intersection	0.5	A		0.6	A	
Intersection Cont				Way Stop-			
US 10 &	EB	11.2	B		13.4	B	2
03 10 a	NB	0.0	A	0	0.0	A	0
I-90 EB Ramps	SB	1.0	Α	0	0.9	A	0
-	Intersection	6.0	Α		7.2	Α	

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations					4			र्स			¢Î,		
Traffic Vol, veh/h	0	0	0	6	0	26	0	244	0	0	85	268	
Future Vol, veh/h	0	0	0	6	0	26	0	244	0	0	85	268	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	1	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	0	0	0	0	0	0	0	2	0	0	5	4	
Mvmt Flow	0	0	0	7	0	28	0	265	0	0	92	291	

Major/Minor	Minor1		M	Major1		М	ajor2			
Conflicting Flow All	503	648	265	383	0	-	-	-	0	
Stage 1	265	265	-	-	-	-	-	-	-	
Stage 2	238	383	-	-	-	-	-	-	-	
Critical Hdwy	6.4	6.5	6.2	4.1	-	-	-	-	-	
Critical Hdwy Stg 1	5.4	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	5.4	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	2.2	-	-	-	-	-	
Pot Cap-1 Maneuver	532	392	779	1187	-	0	0	-	-	
Stage 1	784	693	-	-	-	0	0	-	-	
Stage 2	806	616	-	-	-	0	0	-	-	
Platoon blocked, %					-			-	-	
Mov Cap-1 Maneuver	532	0	779	1187	-	-	-	-	-	
Mov Cap-2 Maneuver	532	0	-	-	-	-	-	-	-	
Stage 1	784	0	-	-	-	-	-	-	-	
Stage 2	806	0	-	-	-	-	-	-	-	
Approach	WB			NB			SB			
HCM Control Delay, s	10.3			0			0			
HCM LOS	В									

Minor Lane/Major Mvmt	NBL	NBTWBLn1	SBT	SBR
Capacity (veh/h)	1187	- 717	-	-
HCM Lane V/C Ratio	-	- 0.049	-	-
HCM Control Delay (s)	0	- 10.3	-	-
HCM Lane LOS	А	- B	-	-
HCM 95th %tile Q(veh)	0	- 0.2	-	-

6

Intersection

					14/BT			NDT		0.51	0.D.T	000	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		- 44						- î +			- सी		
Traffic Vol, veh/h	187	0	1	0	0	0	0	70	10	13	83	0	
Future Vol, veh/h	187	0	1	0	0	0	0	70	10	13	83	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	0	0	0	0	0	0	3	10	15	3	0	
Mvmt Flow	203	0	1	0	0	0	0	76	11	14	90	0	

Major/Minor	Minor2			Major1		M	ajor2			
Conflicting Flow All	200	205	90	-	0	0	87	0	0	
Stage 1	118	118	-	-	-	-	-	-	-	
Stage 2	82	87	-	-	-	-	-	-	-	
Critical Hdwy	6.42	6.5	6.2	-	-	-	4.25	-	-	
Critical Hdwy Stg 1	5.42	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4	3.3	-	-	- 2	2.335	-	-	
Pot Cap-1 Maneuver	789	695	973	0	-	-	1431	-	0	
Stage 1	907	802	-	0	-	-	-	-	0	
Stage 2	941	827	-	0	-	-	-	-	0	
Platoon blocked, %					-	-		-		
Mov Cap-1 Maneuver	781	0	973	-	-	-	1431	-	-	
Mov Cap-2 Maneuver	781	0	-	-	-	-	-	-	-	
Stage 1	907	0	-	-	-	-	-	-	-	
Stage 2	932	0	-	-	-	-	-	-	-	
Annroach	ED			ND			CD			

Approach	EB	NB SB
HCM Control Delay, s	11.2	0 1
HCM LOS	В	

Minor Lane/Major Mvmt	NBT	NBR E	BLn1	SBL	SBT
Capacity (veh/h)	-	-	782	1431	-
HCM Lane V/C Ratio	-	-	0.261	0.01	-
HCM Control Delay (s)	-	-	11.2	7.5	0
HCM Lane LOS	-	-	В	А	Α
HCM 95th %tile Q(veh)	-	-	1	0	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 🗘			- 🗘			- 🗘			- 🗘	
Traffic Vol, veh/h	2	112	155	157	239	1	116	0	118	1	0	1
Future Vol, veh/h	2	112	155	157	239	1	116	0	118	1	0	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	0	4	0	0	5	0	0	0	0	0	0	0
Mvmt Flow	2	122	168	171	260	1	126	0	128	1	0	1

Major/Minor	Major1		Μ	lajor2		Ν	1inor1		Ν	linor2			
Conflicting Flow All	261	0	0	290	0	0	813	813	206	877	897	261	
Stage 1	-	-	-	-	-	-	210	210	-	603	603	-	
Stage 2	-	-	-	-	-	-	603	603	-	274	294	-	
Critical Hdwy	4.1	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	1315	-	-	1283	-	-	299	315	840	271	281	783	
Stage 1	-	-	-	-	-	-	797	732	-	489	492	-	
Stage 2	-	-	-	-	-	-	489	492	-	736	673	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1315	-	-	1283	-	-	263	265	840	202	237	783	
Mov Cap-2 Maneuver	-	-	-	-	-	-	263	265	-	202	237	-	
Stage 1	-	-	-	-	-	-	795	731	-	488	415	-	
Stage 2	-	-	-	-	-	-	412	415	-	622	672	-	
Approach	EB			WB			NB			SB			
ICM Control Dolov o	0.1			2.2			<u> </u>			16.2			

HCM Control Delay, s	0.1		3.3			28.2		16.3		
HCM LOS						D		С		
Minor Lane/Major Mymt	NRI n1	FRI	FRT	FRR	W/RI	W/RT	W/RR SRI n1			

Minor Lane/Major WVml	INDLIT	EDL	EDI	EDK	VVDL	VVDI	VVDR V	SPLUI	
Capacity (veh/h)	402	1315	-	-	1283	-	-	321	
HCM Lane V/C Ratio	0.633	0.002	-	-	0.133	-	-	0.007	
HCM Control Delay (s)	28.2	7.7	0	-	8.2	0	-	16.3	
HCM Lane LOS	D	А	А	-	А	А	-	С	
HCM 95th %tile Q(veh)	4.2	0	-	-	0.5	-	-	0	

Queues 15: W Park St & Hwy 10/7th St

	→	+	1	1	1	Ļ	4
Lane Group	EBT	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	244	107	107	336	4	347	372
v/c Ratio	0.79	0.29	0.18	0.32	0.01	0.42	0.41
Control Delay	45.2	24.1	7.1	9.5	14.2	17.1	3.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	45.2	24.1	7.1	9.5	14.2	17.1	3.4
Queue Length 50th (ft)	106	40	19	76	1	112	0
Queue Length 95th (ft)	#186	78	41	137	7	207	51
Internal Link Dist (ft)	582	178		347		219	
Turn Bay Length (ft)			100		100		100
Base Capacity (vph)	370	449	625	1040	487	832	907
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.66	0.24	0.17	0.32	0.01	0.42	0.41

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

05/11/2023

HCM 6th Signalized Intersection Summary 15: W Park St & Hwy 10/7th St

	≯	-	\mathbf{r}	4	+	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷		٦	eî.		٦	•	1
Traffic Volume (veh/h)	165	20	40	21	69	8	98	308	1	4	319	342
Future Volume (veh/h)	165	20	40	21	69	8	98	308	1	4	319	342
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1682	1750	1750	1614	1750	1750	1709	1709	1750	1750	1682	1709
Adj Flow Rate, veh/h	179	22	43	23	75	9	107	335	1	4	347	372
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	5	0	0	10	0	0	3	3	0	0	5	3
Cap, veh/h	287	26	50	97	262	28	504	1110	3	682	938	808
Arrive On Green	0.20	0.20	0.20	0.20	0.20	0.20	0.06	0.65	0.65	0.56	0.56	0.56
Sat Flow, veh/h	1054	133	254	215	1323	141	1628	1703	5	1061	1682	1448
Grp Volume(v), veh/h	244	0	0	107	0	0	107	0	336	4	347	372
Grp Sat Flow(s),veh/h/ln	1441	0	0	1679	0	0	1628	0	1708	1061	1682	1448
Q Serve(g_s), s	8.7	0.0	0.0	0.0	0.0	0.0	2.0	0.0	6.8	0.1	9.2	12.2
Cycle Q Clear(g_c), s	13.0	0.0	0.0	4.2	0.0	0.0	2.0	0.0	6.8	0.1	9.2	12.2
Prop In Lane	0.73		0.18	0.21		0.08	1.00		0.00	1.00		1.00
Lane Grp Cap(c), veh/h	363	0	0	387	0	0	504	0	1114	682	938	808
V/C Ratio(X)	0.67	0.00	0.00	0.28	0.00	0.00	0.21	0.00	0.30	0.01	0.37	0.46
Avail Cap(c_a), veh/h	488	0	0	533	0	0	636	0	1114	682	938	808
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	30.7	0.0	0.0	27.4	0.0	0.0	6.5	0.0	6.0	7.9	9.9	10.5
Incr Delay (d2), s/veh	2.2	0.0	0.0	0.4	0.0	0.0	0.2	0.0	0.7	0.0	1.1	1.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.7	0.0	0.0	1.8	0.0	0.0	0.6	0.0	2.3	0.0	3.4	4.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	32.9	0.0	0.0	27.8	0.0	0.0	6.7	0.0	6.7	7.9	11.0	12.4
LnGrp LOS	С	A	Α	С	Α	A	A	А	Α	Α	В	B
Approach Vol, veh/h		244			107			443			723	
Approach Delay, s/veh		32.9			27.8			6.7			11.7	
Approach LOS		С			С			А			В	
Timer - Assigned Phs		2		4	5	6		8				
Phs Duration (G+Y+Rc), s		58.2		21.8	7.5	50.6		21.8				
Change Period (Y+Rc), s		6.0		6.0	3.0	6.0		6.0				
Max Green Setting (Gmax), s		45.0		23.0	11.0	31.0		23.0				
Max Q Clear Time (g_c+I1), s		8.8		15.0	4.0	14.2		6.2				
Green Ext Time (p_c), s		2.3		0.9	0.1	3.4		0.5				
Intersection Summary												
HCM 6th Ctrl Delay			14.8									

latence ettere						
Intersection						
Int Delay, s/veh	3.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
		EDR	VVDL	VVDI		NDN
Lane Configurations	- î ∍			- କି	۰¥	
Traffic Vol, veh/h	147	87	120	337	59	59
Future Vol, veh/h	147	87	120	337	59	59
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-	None	· ·	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	0	0	4	0	0
Mvmt Flow	160	95	130	366	64	64

Major/Minor	Major1	Ν	/lajor2		Minor1	
Conflicting Flow All	0	0	255	0	834	208
Stage 1	-	-	-	-	208	-
Stage 2	-	-	-	-	626	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1322	-	341	837
Stage 1	-	-	-	-	832	-
Stage 2	-	-	-	-	537	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	· -	-	1322	-	299	837
Mov Cap-2 Maneuver	-	-	-	-	299	-
Stage 1	-	-	-	-	832	-
Stage 2	-	-	-	-	471	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		2.1		16.5	
HCM LOS					С	
Minor Lane/Major Mvr	nt N	IBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		441	-	-	1322	-
HCM Lane V/C Ratio		0.291	-	-	0.099	-
HCM Control Delay (s	;)	16.5	-	-	8	0
		~				

А

0.3

-

-

А

-

С

1.2

-

-

HCM Lane LOS

HCM 95th %tile Q(veh)

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	1
Lane Configurations					4			÷.			4	•2	
Traffic Vol, veh/h	0	0	0	18	0	11	4	324	0	0	114	194	
Future Vol, veh/h	0	0	0	18	0	11	4	324	0	0	114	194	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	1	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	0	0	0	5	0	10	0	2	0	0	4	4	
Mvmt Flow	0	0	0	20	0	12	4	352	0	0	124	211	

Major/Minor	Minor1		M	Major1		М	ajor2			
Conflicting Flow All	590	695	352	335	0	-	-	-	0	
Stage 1	360	360	-	-	-	-	-	-	-	
Stage 2	230	335	-	-	-	-	-	-	-	
Critical Hdwy	6.45	6.5	6.3	4.1	-	-	-	-	-	
Critical Hdwy Stg 1	5.45	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	5.45	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.545	4	3.39	2.2	-	-	-	-	-	
Pot Cap-1 Maneuver	465	368	674	1236	-	0	0	-	-	
Stage 1	699	630	-	-	-	0	0	-	-	
Stage 2	801	646	-	-	-	0	0	-	-	
Platoon blocked, %					-			-	-	
Mov Cap-1 Maneuver	463	0	674	1236	-	-	-	-	-	
Mov Cap-2 Maneuver	463	0	-	-	-	-	-	-	-	
Stage 1	696	0	-	-	-	-	-	-	-	
Stage 2	801	0	-	-	-	-	-	-	-	
Approach	WB			NB			SB			
HCM Control Delay, s	12.3			0.1			0			
HCM LOS	В									

Minor Lane/Major Mvmt	NBL	NBTW	/BLn1	SBT	SBR
Capacity (veh/h)	1236	-	525	-	-
HCM Lane V/C Ratio	0.004	-	0.06	-	-
HCM Control Delay (s)	7.9	0	12.3	-	-
HCM Lane LOS	А	А	В	-	-
HCM 95th %tile Q(veh)	0	-	0.2	-	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	EDL		EDN	VVDL	VVDI	VUDN	INDL		NDN	SDL	SDI	SDR
Lane Configurations		- 4 >						ર્ન 👘			- କି	
Traffic Vol, veh/h	260	1	1	0	0	0	0	92	19	16	116	0
Future Vol, veh/h	260	1	1	0	0	0	0	92	19	16	116	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	0	0	0	0	0	0	3	15	10	2	0
Mvmt Flow	283	1	1	0	0	0	0	100	21	17	126	0

Major/Minor	Minor2			Major1		N	/lajor2			
Conflicting Flow All	271	281	126	-	0	0	121	0	0	
Stage 1	160	160	-	-	-	-	-	-	-	
Stage 2	111	121	-	-	-	-	-	-	-	
Critical Hdwy	6.42	6.5	6.2	-	-	-	4.2	-	-	
Critical Hdwy Stg 1	5.42	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4	3.3	-	-	-	2.29	-	-	
Pot Cap-1 Maneuver	718	631	930	0	-	-	1418	-	0	
Stage 1	869	769	-	0	-	-	-	-	0	
Stage 2	914	800	-	0	-	-	-	-	0	
Platoon blocked, %					-	-		-		
Mov Cap-1 Maneuver	709	0	930	-	-	-	1418	-	-	
Mov Cap-2 Maneuver	709	0	-	-	-	-	-	-	-	
Stage 1	869	0	-	-	-	-	-	-	-	
Stage 2	902	0	-	-	-	-	-	-	-	
Approach	EB			NB			SB			

Approach	EB	NB	SB	
HCM Control Delay, s	13.4	0	0.9	
HCM LOS	В			

Minor Lane/Major Mvmt	NBT	NBR E	BLn1	SBL	SBT
Capacity (veh/h)	-	-	710	1418	-
HCM Lane V/C Ratio	-	-	0.401	0.012	-
HCM Control Delay (s)	-	-	13.4	7.6	0
HCM Lane LOS	-	-	В	А	Α
HCM 95th %tile Q(veh)	-	-	1.9	0	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	253	81	81	201	1	106	0	106	1	0	3
Future Vol, veh/h	0	253	81	81	201	1	106	0	106	1	0	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	0	3	0	1	5	0	0	0	0	100	0	33
Mvmt Flow	0	275	88	88	218	1	115	0	115	1	0	3

Major/Minor	Major1		Maj	or2	1	Minor1		Ν	/linor2			
Conflicting Flow All	219	0	0 3	363 0	0	715	714	319	772	758	219	
Stage 1	-	-	-		-	319	319	-	395	395	-	
Stage 2	-	-	-		-	396	395	-	377	363	-	
Critical Hdwy	4.1	-	- 4	.11 -	-	7.1	6.5	6.2	8.1	6.5	6.53	
Critical Hdwy Stg 1	-	-	-		-	6.1	5.5	-	7.1	5.5	-	
Critical Hdwy Stg 2	-	-	-		-	6.1	5.5	-	7.1	5.5	-	
Follow-up Hdwy	2.2	-	- 2.2	- 209	-	3.5	4	3.3	4.4	4	3.597	
Pot Cap-1 Maneuver	1362	-	- 12	- 201	-	348	359	726	223	339	749	
Stage 1	-	-	-		-	697	657	-	473	608	-	
Stage 2	-	-	-		-	633	608	-	485	628	-	
Platoon blocked, %		-	-	-	-							
Mov Cap-1 Maneuver	1362	-	- 12	- 201	-	324	329	726	176	311	749	
Mov Cap-2 Maneuver	-	-	-		-	324	329	-	176	311	-	
Stage 1	-	-	-		-	697	657	-	473	558	-	
Stage 2	-	-	-		-	578	558	-	408	628	-	
Approach	EB		1	NB		NB			SB			
HCM Control Delay, s	0			2.4		21.2			13.8			
HCM LOS						С			В			

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1
Capacity (veh/h)	448	1362	-	-	1201	-	-	413
HCM Lane V/C Ratio	0.514	-	-	-	0.073	-	-	0.011
HCM Control Delay (s)	21.2	0	-	-	8.2	0	-	13.8
HCM Lane LOS	С	А	-	-	А	А	-	В
HCM 95th %tile Q(veh)	2.9	0	-	-	0.2	-	-	0

Queues 15: W Park St & Hwy 10/7th St

	-	←	1	Ť	\mathbf{b}	Ļ	~
Lane Group	EBT	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	485	108	71	567	2	458	185
v/c Ratio	0.95	0.22	0.23	0.72	0.01	0.71	0.30
Control Delay	57.6	18.3	13.7	25.6	18.5	32.1	8.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	57.6	18.3	13.7	25.6	18.5	32.1	8.6
Queue Length 50th (ft)	246	36	21	259	1	234	22
Queue Length 95th (ft)	#474	76	42	365	5	336	67
Internal Link Dist (ft)	582	178		347		219	
Turn Bay Length (ft)			100		100		100
Base Capacity (vph)	508	492	313	819	231	666	639
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.95	0.22	0.23	0.69	0.01	0.69	0.29
Interpretion Cummon							

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM 6th Signalized Intersection Summary 15: W Park St & Hwy 10/7th St

	≯	-	\mathbf{r}	1	+	*	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	4Î		ሻ	↑	7
Traffic Volume (veh/h)	313	34	99	54	37	8	65	518	4	2	421	170
Future Volume (veh/h)	313	34	99	54	37	8	65	518	4	2	421	170
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1736	1695	1750	1723	1750	1750	1695	1723	1750	1750	1736	1723
Adj Flow Rate, veh/h	340	37	108	59	40	9	71	563	4	2	458	185
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	1	4	0	2	0	0	4	2	0	0	1	2
Cap, veh/h	429	39	115	332	212	44	319	854	6	298	730	614
Arrive On Green	0.37	0.37	0.37	0.37	0.37	0.37	0.05	0.50	0.50	0.42	0.42	0.42
Sat Flow, veh/h	984	107	312	737	579	120	1615	1708	12	858	1736	1460
Grp Volume(v), veh/h	485	0	0	108	0	0	71	0	567	2	458	185
Grp Sat Flow(s),veh/h/ln	1403	0	0	1435	0	0	1615	0	1721	858	1736	1460
Q Serve(g_s), s	25.7	0.0	0.0	0.0	0.0	0.0	2.1	0.0	22.1	0.2	18.7	7.6
Cycle Q Clear(g_c), s	30.0	0.0	0.0	4.3	0.0	0.0	2.1	0.0	22.1	15.1	18.7	7.6
Prop In Lane	0.70		0.22	0.55		0.08	1.00		0.01	1.00		1.00
Lane Grp Cap(c), veh/h	582	0	0	588	0	0	319	0	860	298	730	614
V/C Ratio(X)	0.83	0.00	0.00	0.18	0.00	0.00	0.22	0.00	0.66	0.01	0.63	0.30
Avail Cap(c_a), veh/h	613	0	0	620	0	0	371	0	860	298	730	614
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	27.3	0.0	0.0	19.4	0.0	0.0	14.9	0.0	16.8	25.1	20.5	17.3
Incr Delay (d2), s/veh	9.2	0.0	0.0	0.1	0.0	0.0	0.3	0.0	3.9	0.0	4.0	1.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	11.2	0.0	0.0	1.6	0.0	0.0	0.8	0.0	9.3	0.0	8.2	2.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	36.6	0.0	0.0	19.5	0.0	0.0	15.3	0.0	20.7	25.1	24.6	18.6
LnGrp LOS	D	А	А	В	А	А	В	А	С	С	С	В
Approach Vol, veh/h		485			108			638			645	
Approach Delay, s/veh		36.6			19.5			20.1			22.8	
Approach LOS		D			В			С			С	
Timer - Assigned Phs		2		4	5	6		8				
Phs Duration (G+Y+Rc), s		51.0		39.0	7.2	43.9		39.0				
Change Period (Y+Rc), s		6.0		6.0	3.0	6.0		6.0				
Max Green Setting (Gmax), s		43.0		35.0	7.0	33.0		35.0				
Max Q Clear Time (g_c+I1), s		24.1		32.0	4.1	20.7		6.3				
Green Ext Time (p_c), s		3.8		0.9	0.0	3.0		0.6				
Intersection Summary												
HCM 6th Ctrl Delay			25.3									
HCM 6th LOS			С									

241

Intersection						
Int Delay, s/veh	3.5					
	FDT					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	- 1 +			- କୀ	۰¥	
Traffic Vol, veh/h	323	41	41	221	66	91
Future Vol, veh/h	323	41	41	221	66	91
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	0	0	3	2	0
Mvmt Flow	351	45	45	240	72	99
	001	10	10	210	12	00

Major/Minor M	lajor1	Ν	/lajor2	1	Minor1	
Conflicting Flow All	0	0	396	0	704	374
Stage 1	-	-	-	-	374	-
Stage 2	-	-	-	-	330	-
Critical Hdwy	-	-	4.1	-	6.42	6.2
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.2	-	3.518	3.3
Pot Cap-1 Maneuver	-	-	1174	-	403	677
Stage 1	-	-	-	-	696	-
Stage 2	-	-	-	-	728	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1174	-	385	677
Mov Cap-2 Maneuver	-	-	-	-	385	-
Stage 1	-	-	-	-	696	-
Stage 2	-	-	-	-	696	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.3		15.5	
HCM LOS	•				C	
					•	
Minor Long /Major Maynet	N	IDI	грт			
Minor Lane/Major Mvmt	<u></u>	IBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		513	-	-	1174	-
HCM Lane V/C Ratio		0.333	-	-	0.038	-
HCM Control Delay (s)		15.5	-	-	8.2	0
HCM Lane LOS		С	-	-	A	A

0.1

-

-

-

1.4

HCM 95th %tile Q(veh)

SANDERSON STEWART

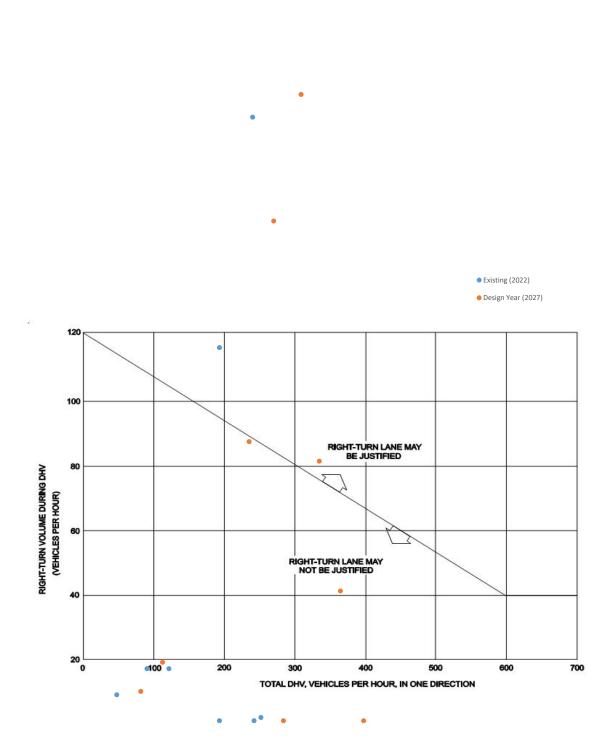
APPENDIX D

AUXILIARY TURN LANE WARRANT WORKSHEETS

TURN	LANE WARRANTS		10 & Way		10 & nd Road		Ramps & 10		Ramps & 10
		AM	PM	AM	PM	AM	PM	AM	PM
	NB Right-Turn Lane							NO	NO
	NB Left-Turn Lane					NO	NO		
	SB Right-Turn Lane					YES	YES		
2022	SB Left-Turn Lane							NO	NO
2022	EB Right-Turn Lane	NO	NO						
	EB Left-Turn Lane			NO	NO				
	WB Right-Turn Lane			NO	NO				
	WB Left-Turn Lane	YES	NO						
	NB Right-Turn Lane							NO	NO
	NB Left-Turn Lane					NO	NO		
	SB Right-Turn Lane					YES	YES		
2027	SB Left-Turn Lane							NO	NO
2027	EB Right-Turn Lane	NO	NO	YES	YES				
	EB Left-Turn Lane			NO	NO				
	WB Right-Turn Lane			NO	NO				
	WB Left-Turn Lane	YES	YES	YES	YES				

Existing Traffic Volumes (2022) - Right-Turn Lanes at Unsignalized Intersections on 2-Lane Highways

				Right-Turn Volume	Required Right-Turn	Warranted Right-	
			Total DHV	During DHV	Volume for	Turn Lane?	Speed Limit at
	Approach	Time	(veh/hr)	(veh/hr, one direction)	Warranted Lane	(Y/N)	Approach
ſ	Hwy 10 & PFL EB	AM weekday	120	17	104	N	60
	HWY IU & PFL ED	PM weekday	251	2	87	N	60
ſ	US 10 & West End WB	AM weekday	241	1	88	N	45
	OS TO & West Ella WB	PM weekday	192	1	94	N	45
ſ	I-90 WB & US 10 SB	AM weekday	239	187	108	Y	45
	1-90 WD & US 10 3D	PM weekday	192	116	114	Y	45
	I-90 EB & US 10 NB	AM weekday	46	9	114	N	45
	1-90 ED & US 10 NB	PM weekday	89	17	108	N	45


24	+4	

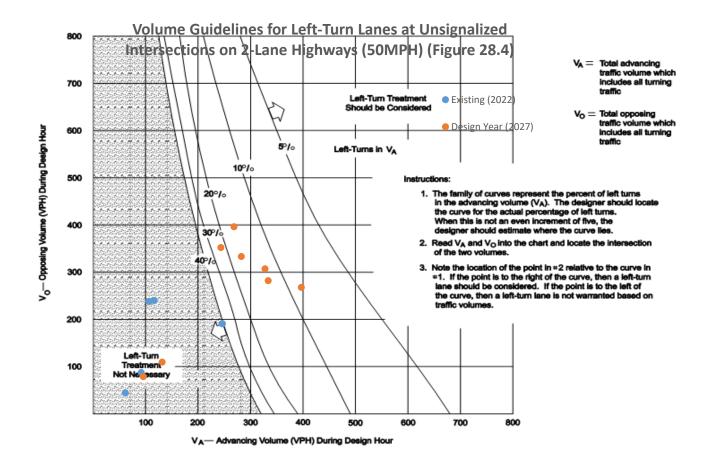
Adjustment

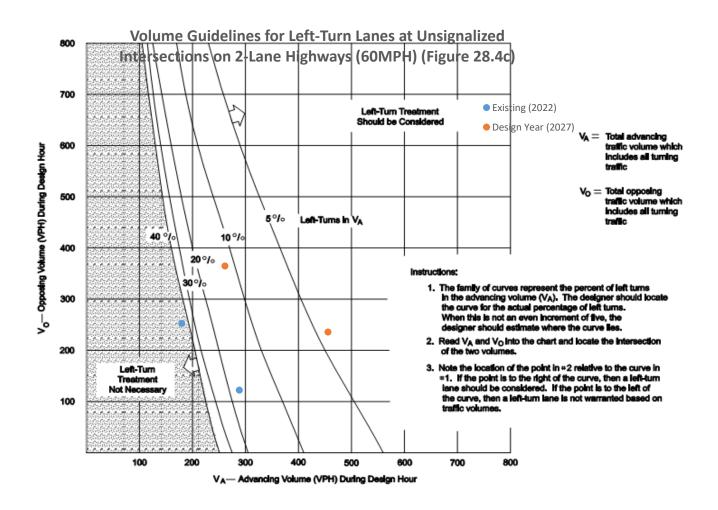
Future Traffic Volumes (2027) - Right-Turn Lanes at Unsignalized Intersections on 2-Lane Highways

			Right-Turn Volume	Required Right-Turn	Warranted Right-	
		Total DHV	During DHV	Volume for	Turn Lane?	Speed Limit at
Approach	Time	(veh/hr)	(veh/hr, one direction)	Warranted Lane	(Y/N)	Approach
Hwy 10 & PFL EB	AM weekday	234	87	89	N	60
	PM weekday	364	41	71	N	60
US 10 & West End EB	AM weekday	269	155	104	Y	45
	PM weekday	334	81	75	Y	45
US 10 & West End WB	AM weekday	397	1	67	N	45
	PM weekday	283	1	82	N	45
I-90 WB & US 10 SB	AM weekday	353	268	73	Y	45
	PM weekday	308	194	79	Y	45
I-90 EB & US 10 NB	AM weekday	80	10	109	N	45
1-90 ED & US 10 NB	PM weekday	111	19	105	Ν	45

Adjustment

Guidelines for Right-Turn Lanes at Unsignalized Intersections on 2-Lane Highways (Figure 28.4A)


•


Existing Traffic Volumes (2022) - Left-Turn Lanes at Unsignalized Intersections on 2-Lane Highways

Approach	Time	Va = Total advancing traffic volume	Val = Total left-turn volume in advancing traffic	Percent left-turns in Va	Vo = Total opposing traffic volume	Warranted Left- Turn Lane? (Y/N)	Sr Lin App
Hwy 10 & PFL WB	AM weekday	289	50	17.3%	120	Y	
	PM weekday	180	2	1.1%	251	N	
US 10 & West End EB	AM weekday	117	2	1.7%	241	Ν	
	PM weekday	246	0	0.0%	192	N	
I-90 WB & US 10 NB	AM weekday	107	0	0.0%	239	N	
	PM weekday	247	4	1.6%	192	N	
I-90 EB & US 10 SB	AM weekday	62	4	6.5%	46	Ν	
	PM weekday	92	5	5.4%	89	N	

Future Traffic Volumes (2027) - Left-Turn Lanes at Unsignalized Intersections on 2-Lane Highways

Approach	Time	Va = Total advancing traffic volume	Val = Total left-turn volume in advancing traffic	Percent left-turns in Va	Vo = Total opposing traffic volume	Warranted Left- Turn Lane? (Y/N)	А
Hwy 10 & PFL WB	AM weekday	457	120	26.3%	234	Ŷ	
	PM weekday	262	41	15.6%	364	Y	
US 10 & West End EB	AM weekday	269	2	0.7%	397	N	
	PM weekday	334	0	0.0%	283	N	
US 10 & West End WB	AM weekday	397	157	39.5%	269	Y	
	PM weekday	283	81	28.6%	334	Y	
I-90 WB & US 10 NB	AM weekday	244	0	0.0%	353	Ν	
	PM weekday	328	4	1.2%	308	Ν	
I-90 EB & US 10 SB	AM weekday	96	13	13.5%	80	Ν	
	PM weekday	132	16	12.1%	111	N	

SANDERSONSTEWART.C@M

Project No. 18005.05

APPENDIX E

Wetland Delineation Report

Printing for Less Wetland Delineation Report

Prepared By:

PO Box 1424 Bozeman, MT 59771 406.539.7244 briana@sundogeco.com

09/13/2019

Contents

Introduction1
Site Description1
Waterbodies and Waterways1
Methods2
Results
Vegetation3
Uplands3
Delineated Wetlands
Soils5
Hydrology5
Wetland Boundaries5
Wetland Impacts
Threatened and Endangered Species6
Cultural Resources and Historic Structures6
Summary
References7

List of Figures and Tables

Figure 1: Location of the Printing for Less Wetland Delineation Site relative to US Interstate 90 and MT	
Highway 10	. 1
Table 1: Plant species observed at the Printing for Less Wetland Delineation Site.	.4

Table 1: Plant species observed at the Printing for Less Wetland Delineation Site.4Table 2: Wetland characteristics identified at the Printing for Less Wetland Delineation Site.5

Appendices

- Appendix A Project Area Maps
- Appendix B Mapped Wetland Boundary
- Appendix C Wetland Determination Data Forms
- Appendix D Site Photographs

Introduction

A routine wetland delineation was conducted by Sundog Ecological Inc., on June 19th and 26th, 2019 on behalf of property owner, Printing for Less (PFL), to verify wetland boundaries east of PFL Way. The purpose of this wetland delineation was to investigate the project area, identify areas meeting technical guidelines for wetlands, delineate the extent of wetlands within the project area and to classify these wetland habitats. This report describes methodologies used, summarizes results of wetland investigations, and provides technical documentation for all delineated wetlands within the project area. Figures referred to in text are included in Appendices at the end of the report.

Site Description

The PFLWetland Delineation site is located in the northwest quarter of Section 22, Township 2 South, Range 9 East, approximately 2.15 miles west of Livingston, Montana. The property is located immediately east of the Printing for Less headquarters on PFL Way. Upland communities are comprised of pasture grasses, Montana State Listed noxious weeds, small shrubs and other weedy species. Wetlands communities are dominated by mixed grasses, rushes, sedges and cattails. Four wetland types and one upland type were identified within project boundaries.

Figure 1: Location of the Printing for Less Wetland Delineation Site relative to US Interstate 90 and MT Highway 10.

<u>Directions to site from Bozeman</u>: From North 7th Avenue take Interstate 90 east for 22.7 miles, exiting at Livingston Exit 330. Turn left onto 1-90 Business Loop/MT Highway 10 for 0.5 miles. Turn right onto PFL Way, the project area is on the left.

Waterbodies and Waterways

While there are no direct waterbodies or streams on the PFL wetland site, there is a stream that flows west from the north side of the Interstate 90 business loop to the south side and eventually discharges into the wetland in the northeast corner of the site. A review of aerial photos shows that this water

appears to be diverted from Fleshman Creek (north of the site). Other waterways in the area include Billman Creek (south of the site) and the Yellowstone River (east of the site).

Methods

This wetland delineation was conducted using the routine on-site-approach in accordance with standard practices outlined in the 1987 Army Corps of Engineers (ACOE) Wetland Delineation Manual (Environmental Laboratory 1987) and by Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast - Version 2.0 (ACOE 2010). The study evaluated the presence or absence of indicators of three wetlands parameters described in the ACOE Wetland Delineation Manual. Under the delineation procedures outlined in this manual, an area must exhibit characteristic wetland hydrology, hydric soils, and hydrophytic vegetation to be considered a wetland. If field investigation determines that any of the three parameters are not satisfied, the area does not usually qualify as a wetland. Wetlands were classified according to the Cowardin classification system (Cowardin *et al.*, 1979). Non-wetland water bodies such as streams were classified according to the Cowardin system (Cowardin *et al.*, 1979).

Prior to conducting field studies, available background and supplementary reference materials were reviewed, including aerial photographs and maps from: Google Earth Pro, National Wetlands Inventory, Montana Natural Heritage Program, the Park County Soil Survey, Web Soil Survey, the National Wetlands Plant List, plat and topographic maps. Site maps used for assessment of the Printing for Less wetland delineation site are included in Appendix A.

As part of a delineation report, data forms and technical information are required by the ACOE to document the three parameters for any area determined to be wetland. A total of seventeen (17) data points were observed. Wetland boundaries were drawn utilizing field data, aerial photographs and topographic boundaries. Wetland boundaries were surveyed using survey grade GPS equipment and data point locations were collected using a resource grade handheld GPS unit. Exact accuracy of maps and locations of boundaries and data points is limited by the accuracy of data collection devices (less than 30 cm for survey grade and 0.5 to 2 meters for handheld). Data forms for sample locations are provided in Appendix B. Representative photographs of sample locations and delineated wetlands are provided in Appendix D.

Results

The following discussion provides an overview of each of the four wetland components inventoried at the PFL wetland delineation site. In June 2019, four wetland types were identified and delineated within the 25-acre project boundary. All potential areas of impact were assessed for dominant hydrophytic vegetation, hydric soils, and evidence of wetland hydrology. Wetland areas outside of the project limits were not assessed. Overall, 17 (seven matched sets) data points were investigated to determine the wetland/upland boundary within the project area. Data points were placed along the wetland/upland boundary and in areas where vegetation and topographic changes appeared across the landscape.

The location of identified wetlands, upland sample points and wetland sample points are shown on Figure 1 (Appendix B). Data forms for sample locations can be found in Appendix C. Photographs of sample locations are located in Appendix D.

Vegetation

Approximately 34 plant species were identified within the proposed project site (Table 1). Plants observed at sample locations are listed on their respective data forms. Of the plant species observed, four are listed as Montana State noxious weeds. Three priority 2B species observed are: whitetop (*Cardaria draba*), Canada thistle (*Cirsium arvense*) and gypsyflower (*Cynoglossum officinale*); which are widespread on the property. One priority 3 species, Russian olive (*Elaeagnus angustifolia*), was observed in a few isolated locations. A weed management plan should be developed and implemented for this site.

Uplands

A total of 7 upland sample points (paired with 9 wetland sample points) were documented within the project area and are shown on Figure 1, Appendix B. These sample points were used to assist in establishing wetland boundaries and to determine/verify upland areas. Taken throughout the project limits, sample points varied throughout upland areas. Uplands generally occur in areas of slightly higher topography and in some cases, convex surfaces. Vegetation within the uplands included a mix of hydrophytic and upland species but facultative upland (FACU) generally dominated the overall cover. Common species noted in the uplands included: smooth brome, redtop and Kentucky bluegrass. Soils ranged from a grey, very dark greyish brown to dark brown and typically lacked redox concentrations. Soil textures varied, but generally ranged from a silty clay loam to silty loam.

Delineated Wetlands

Four wetland types, covering 13-acres were delineated within the PFL wetland delineation site boundaries.

Wetland Type 1 is dominated by cattails (*Typha latifolia*) and occupies 1.75 acres of wetlands. Wetland Type 1 areas are generally located along the east property boundary, extending west of the property. Cattails were observed in both the north and central wetland cells (1.43 and 0.32 acres, respectfully).

Wetland Type 2 is a willow dominated scrub-shrub community with a *Salix exigua* (narrowleaf willow) overstory and a mixed *Juncus/Agrostis (J. balticus, A. alba*) understory. Wetland Type 2 accounts for 0.35 wetland acres located along north (0.21 acres) and south sides (0.14 acres) of the abandoned railroad grade.

Wetland Type 3 is dominated by a mixed *Juncus* community (*J. balticus, J. effusus*) with lesser amounts of reed canary grass (*Phalaris arundinacea*), redtop (*A. alba*) and Rocky Mountain iris (*Iris missouriensis*). Wetland Type 3 occupies 4.02 acres.

Wetland Type 4 is the largest wetland community, covering 6.68 acres (5.11, 1.07 and 0.5 acres in the north, central and south complexes, respectively). This community is comprised of redtop, Rocky Mountain iris, common rush, reed canary grass and Baltic rush.

Scientific Name	Common Name	Indicator Status
Achillea millefolium	common yarrow	FACU
Agrostis alba	redtop	FAC
Agroypron intermedium	intermediate wheatgrass	UPL
Alopecurus arundinaceus	Garrison creeping foxtail	FAC
Bromus inermis	smooth brome	UPL
Cardaria draba	whitetop	UPL
Carex nebrascensis	Nebraska sedge	OBL
Carex stipata	awlfruit sedge	OBL
Cirsium arvense	Canada thistle	FACU
Cynoglossum officinale	gypsyflower	FACU
Dactylis glomerata	orchard grass	FACU
Elaeagnus angustifolia	Russian olive	FAC
Eleocharis palustris	common spikerush	OBL
Elymus lanceolatus	streambank wheatgrass	FACU
Equisetum hyemale	rough horsetail	FACW
Helianthus annus	common sunflower	FACU
Hordeum jubatum	foxtail barley	FAC
Iris missourienssis	Rocky Mountain iris	FACW
Juncus balticus	Baltic rush	FACW
Juncus effusus	common rush	FACW
Mentha arvesis	field mint	FACW
Pascopyrum smithii	western wheatgrass	FACU
Poa pratensis	Kentucky bluegrass	FAC
Rosa woodsii	Wood's rose	FACU
Salix exigua	narrowleaf willow	FACW
Schoenoplectus pungens	common threesqure	OBL
Solidago canadensis	Canada goldenrod	FACU
Sonchus arvensis	field sowthistle	FACU
Sporobolus airoides	alkali sacaton	FAC
Stipa viradula	green needlegrass	UPL
Symphoricarpos albus	common snowberry	FACU
Taraxacum officinale	common dandelion	FACU
Triglochin maritima	seaside arrowgrass	OBL
Typha latifolia	broadleaf cattail	OBL

Table 1: Plant species observed at the Printing for Less Wetland Delineation Site.

Site	General Location	Size (Acres)	Cowardin Class	Primary Hydrology	Dominant Vegetation
Upland	Throughout project area	12.00	none	none	smooth brome, Kentucky bluegrass, common snowberry
Wetland Type 1	Throughout project area	1.75	PEMA	ground and surface water	cattails, common rush
Wetland Type 2	Throughout project area	0.35	PSS	ground and surface water	narrowleaf willow, redtop, Baltic rush
Wetland Type 3	Throughout project area	4.22	PEMA	ground and surface water	common rush, Baltic rush, Rocky Mountain iris, redtop
Wetland Type 4	Throughout project area	6.68	PEMA	ground and surface water	redtop, Rocky Mountain iris, reed canary grass, common rush, Baltic rush

Table 2: Wetland characteristics identified at the Printing for Less Wetland Delineation Site.

Soils

One soil unit was observed within the project limits of the PFL wetland delineation site, the Reedpoint-Tanna-Ethridge complex. This soil complex is variable with loamy, sandy clay loam and silty clay loam soils. Soil matrix observations for hues were 7.5 YR and 10YR, matrix values ranged from 2 to 5 and chromas were 2 or less. Redox concentrations were generally common throughout most observed wetland soils within the project area. Redox values ranged from 4 to 6 and chromas were 3 or less. Hydric soil indicators were generally Hydrogen Sulfide odor (A4), depleted matrix (F3) or redox dark surface (F6). Detailed soil descriptions for each wetland and upland sample point are provided on the wetland delineation data forms, in Appendix C.

Hydrology

Typical conditions for the region were observed during field sampling. Primary indictors of wetland hydrology were surface water present (A1), saturation (A3) or Hydrogen Sulfide odor (C1). Most wetlands sites also met wetland hydrology indicators based on secondary indicators of geomorphic position (D2) and positive FAC-Neutral test (D5). Depressional wetlands and swales are supported by high groundwater or seasonal groundwater expressed at or near ground surface. Hydrologic indicators at sample locations are documented on their respective data forms located in Appendix C.

Wetland Boundaries

Wetland boundaries were generally readily identifiable due to changes in topography, shifts in vegetation structure or changes in vegetation dominance from FAC to wetter (FACW, OBL) or drier (FACU, UPL) species, changes in hydrology and/or changes in soil types. Topographic breaks were frequently used to help identify wetland boundaries in depressions and swales. In some areas, shifts in plant species composition toward drier species such as smooth brome (*Bromus inermis*) and common snowberry (*Symphoricarpos albus*) also assisted with boundary determinations. When Kentucky bluegrass, redtop or Baltic rush were common in both wetland and upland sample plots, subsurface explorations to assess soil and hydrology assisted in identifying boundaries.

Wetland Impacts

This wetland delineation report for PFL provides baseline information that will assist in developing practices to minimize wetland impacts during development.

Threatened and Endangered Species

A review of USFWS Information, Planning and Conservation System database for the site listed the Canada Lynx as threatened and the North American Wolverine as proposed threatened. Development within the PFL site is not expected to impact any of these species as there are no critical habitats for these species within the project area.

Cultural Resources and Historic Structures

There are no cultural resources, historic or other structures that would be impacted by development activities at the PFL wetland delineation site.

Summary

Four wetland types and one upland type were identified within the PFL wetland delineation site project boundaries totaling 13 and 12 acres, respectively. The largest wetland area accounts for 6.68-acres of mixed *Agrostis* community that is abundant throughout the site. Three wetlands were classified as palustrine emergent wetlands (9.65 acres) and one wetland was classified as shrub-scrub (0.35 acres).

References

- Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. FWS/OBS-79/31. U.S.D.I Fish and Wildlife Service. Washington D.C.
- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. U.S. Army Corps of Engineers. Washington, DC.
- Lichvar, R.W., M. Butterwick, N.C. Melvin, and W.N. Kirchner. 2014. The National Wetland Plant List. 2014 Update of Wetland Ratings. Phytoneuron 2014-41:1-42.
- Reed, P.B. 1988. National list of plant species that occur in wetlands: North West (Region 9). Biological Report 88(26.9), May 1988. U.S. Fish and Wildlife Service, Washington, DC.
- U.S. Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-10-3. Vicksburg, MS: U.S. Army Engineer Research and Development Center

Websites

Montana Department of Agriculture website. Accessed July 2019 at https://agr.mt.gov/Weeds

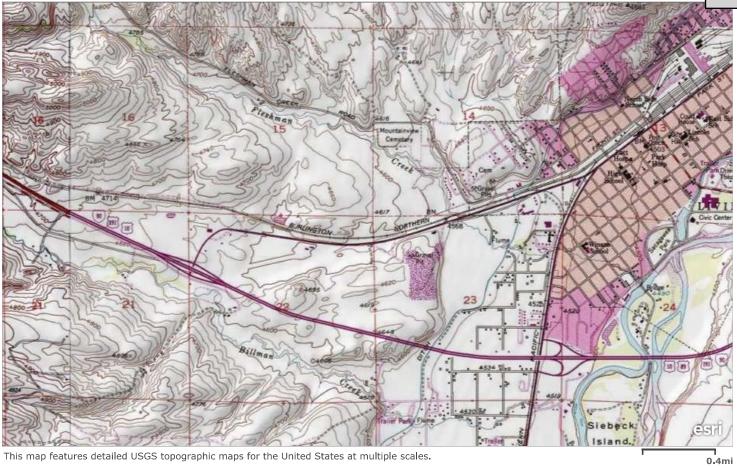
Montana Natural Heritage Program website. Accessed in July 2019 at http://mtnhp.org/mapviewer

- USDA, Natural Resources Conservation Service Web Soil Survey. Park County, Montana. Accessed July 2019 at: <u>http://websoilsurvey.nrcs.usda.gov/app/</u>
- U.S. Fish and Wildlife Service National Wetlands Inventory website. Accessed in July 2019 at: https://www.fws.gov/wetlands/data/mapper.html.
- US Fish & Wildlife Service. Information for Planning and Conservation. Accessed in July 2019 at: <u>https://ecos.fws.gov/ipac/</u>

Appendix A

Aerial Overview of the Printing for Less Wetland Delineation Site

Topographic Overview of the Printing for Less Wetland Delineation Site


National Wetland Inventory – Mapped Wetlands of the Printing for Less Wetland Delineation Site

Montana Natural Heritage Program - Mapped Wetlands of the Printing for Less Wetland Delineation Site

Soils of the Printing for Less Wetland Delineation Site in Park County, MT

USA Topo Maps

Esri, HERE, DeLorme | Copyright: © 2013 National Geographic Society, i-cubed

265

U.S. Fish and Wildlife Service **National Wetlands Inventory**

Printing for Less

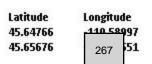
July 23, 2019

Wetlands

- Estuarine and Marine Wetland

Estuarine and Marine Deepwater

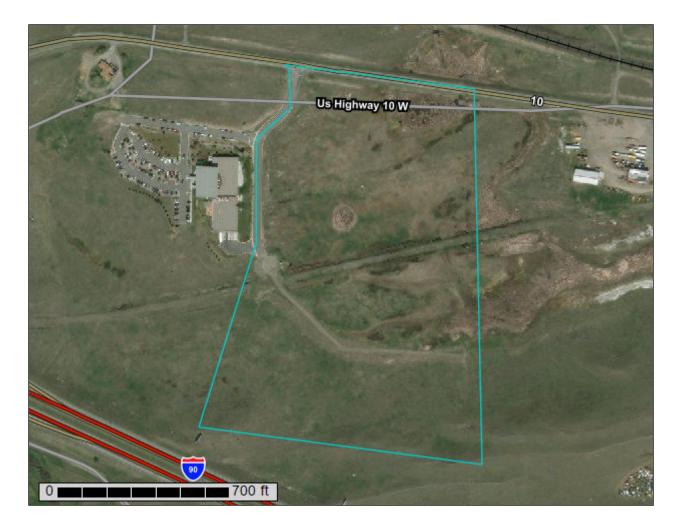
- Freshwater Forested/Shrub Wetland


Freshwater Emergent Wetland

Freshwater Pond

Lake Other Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.



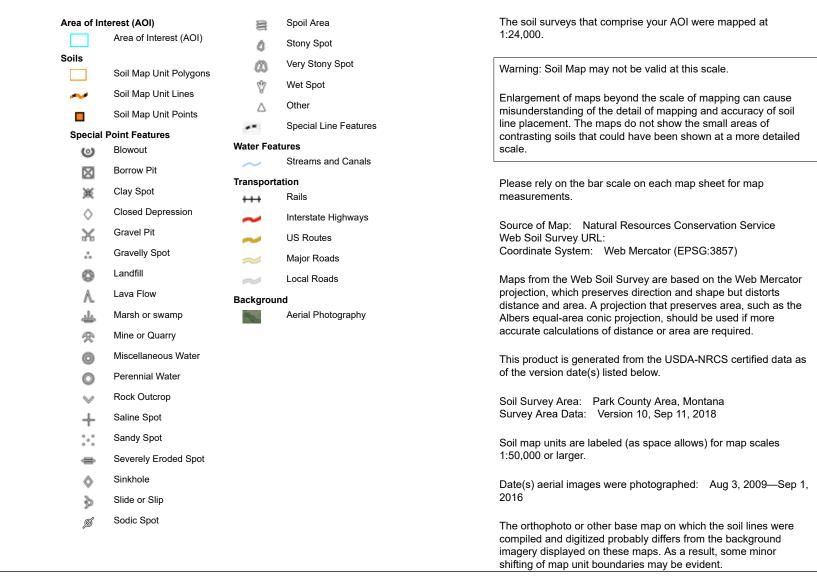
United States Department of Agriculture

Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Park County Area, Montana

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.


Custom Soil Resource Report Soil Map

270

MAP INFORMATION

MAP LEGEND

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
5401D	Ethridge-Tanna-Reedpoint complex, 2 to 15 percent slopes	0.8	2.3%
5502E	Reedpoint-Tanna-Ethridge complex, 4 to 35 percent slopes	32.4	97.7%
Totals for Area of Interest		33.2	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The

delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Park County Area, Montana

5401D—Ethridge-Tanna-Reedpoint complex, 2 to 15 percent slopes

Map Unit Setting

National map unit symbol: 582g Elevation: 4,300 to 5,100 feet Mean annual precipitation: 12 to 14 inches Mean annual air temperature: 43 to 45 degrees F Frost-free period: 90 to 120 days Farmland classification: Not prime farmland

Map Unit Composition

Ethridge and similar soils: 35 percent *Tanna and similar soils:* 25 percent *Reedpoint and similar soils:* 15 percent *Minor components:* 25 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Ethridge

Setting

Landform: Swales on hills Landform position (two-dimensional): Footslope Down-slope shape: Linear Across-slope shape: Linear Parent material: Clayey alluvium derived from sedimentary rock

Typical profile

A - 0 to 4 inches: clay loam Bt - 4 to 17 inches: clay loam Bk1 - 17 to 53 inches: clay loam 2Bk2 - 53 to 60 inches: gravelly loam

Properties and qualities

Slope: 2 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.57 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent
Sodium adsorption ratio, maximum in profile: 5.0
Available water storage in profile: High (about 10.4 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C Ecological site: Clayey (Cy) 9-14" p.z. (R044XS330MT) Hydric soil rating: No

Description of Tanna

Setting

Landform: Hills Landform position (two-dimensional): Backslope Down-slope shape: Convex Across-slope shape: Convex Parent material: Loamy alluvium derived from igneous, metamorphic and sedimentary rock

Typical profile

A - 0 to 8 inches: clay loam

Bt - 8 to 16 inches: clay loam

Bk - 16 to 23 inches: loam

Cr - 23 to 60 inches: weathered bedrock, bedrock

Cr - 23 to 60 inches:

Properties and qualities

Slope: 4 to 15 percent
Depth to restrictive feature: 20 to 40 inches to paralithic bedrock
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent
Available water storage in profile: Low (about 3.9 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: C Ecological site: Silty (Si) 9-14" p.z. (R044XS339MT) Hydric soil rating: No

Description of Reedpoint

Setting

Landform: Hills Landform position (two-dimensional): Summit Down-slope shape: Convex Across-slope shape: Convex Parent material: Loamy residuum weathered from sandstone

Typical profile

A1 - 0 to 2 inches: very channery loam A2 - 2 to 8 inches: extremely channery loam R - 8 to 18 inches: bedrock

Properties and qualities

Slope: 4 to 15 percent Depth to restrictive feature: 4 to 10 inches to lithic bedrock Natural drainage class: Well drained Runoff class: Medium Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: Very low (about 0.8 inches)

Interpretive groups

Land capability classification (irrigated): 7s Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: Very Shallow (VSw) 9-14" p.z. (R044XS348MT) Hydric soil rating: No

Minor Components

Yamacall

Percent of map unit: 10 percent Landform: Hills Landform position (two-dimensional): Backslope Down-slope shape: Convex Across-slope shape: Convex Ecological site: Silty (Si) 9-14" p.z. (R044XS339MT) Hydric soil rating: No

Cabbart

Percent of map unit: 10 percent Landform: Scarp slopes Landform position (two-dimensional): Backslope Down-slope shape: Convex Across-slope shape: Convex Ecological site: Shallow Limy (SwLy) 9-14" p.z. (R044XS612MT) Hydric soil rating: No

Rock outcrop

Percent of map unit: 5 percent

5502E—Reedpoint-Tanna-Ethridge complex, 4 to 35 percent slopes

Map Unit Setting

National map unit symbol: 5801 Elevation: 4,300 to 5,200 feet Mean annual precipitation: 12 to 14 inches Mean annual air temperature: 43 to 45 degrees F Frost-free period: 90 to 120 days Farmland classification: Not prime farmland Reedpoint and similar soils: 35 percent Tanna and similar soils: 25 percent Ethridge and similar soils: 20 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Reedpoint

Setting

Landform: Dip slopes Landform position (two-dimensional): Summit, shoulder, backslope Down-slope shape: Convex Across-slope shape: Linear Parent material: Loamy residuum weathered from sandstone

Typical profile

A1 - 0 to 2 inches: very channery loam A2 - 2 to 8 inches: extremely channery loam R - 8 to 18 inches: bedrock

Properties and qualities

Slope: 4 to 35 percent
Depth to restrictive feature: 4 to 10 inches to lithic bedrock
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Very low (about 0.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: Very Shallow (VSw) 9-14" p.z. (R044XS348MT) Hydric soil rating: No

Description of Tanna

Setting

Landform: Swales on dip slopes Landform position (two-dimensional): Backslope Down-slope shape: Concave Across-slope shape: Convex Parent material: Loamy alluvium derived from sandstone and shale

Typical profile

A - 0 to 2 inches: sandy clay loam Bt - 2 to 8 inches: clay loam Bk - 8 to 26 inches: loam Cr - 26 to 30 inches: weathered bedrock R - 30 to 40 inches: bedrock Slope: 4 to 25 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock; 20 to 40 inches to paralithic bedrock
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent
Available water storage in profile: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: C Ecological site: Silty (Si) 9-14" p.z. (R044XS339MT) Hydric soil rating: No

Description of Ethridge

Setting

Landform: Swales on dip slopes Landform position (two-dimensional): Toeslope Down-slope shape: Concave Across-slope shape: Concave Parent material: Clayey alluvium derived from sandstone and shale

Typical profile

A - 0 to 5 inches: clay loam Bt - 5 to 21 inches: clay loam Bk1 - 21 to 30 inches: clay loam 2Bk2 - 30 to 60 inches: gravelly loam

Properties and qualities

Slope: 4 to 15 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.57 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent
Sodium adsorption ratio, maximum in profile: 5.0
Available water storage in profile: High (about 9.4 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: C Ecological site: Clayey (Cy) 9-14" p.z. (R044XS330MT) Hydric soil rating: No

Minor Components

Cabbart

Percent of map unit: 12 percent Landform: Scarp slopes Landform position (two-dimensional): Backslope Down-slope shape: Convex Across-slope shape: Convex Ecological site: Shallow Limy (SwLy) 9-14" p.z. (R044XS612MT) Hydric soil rating: No

Rock outcrop

Percent of map unit: 5 percent

Bigsandy

Percent of map unit: 3 percent Landform: Drainageways Landform position (two-dimensional): Footslope Down-slope shape: Linear Across-slope shape: Linear Ecological site: Saline Subirrigated (SSb) 9-14" p.z. (R044XS333MT) Hydric soil rating: Yes

Appendix B

Figure 1 – Mapped Wetland Boundary at the Printing for Less Wetland Delineation Site

NO.	REVISIONS	DRAWN BY	DATE	Q 100	200 300
				SCAL	E (FEET)
				PROJECT ENGINEER: RO	DRAWN BY: Sanderson Stewart
				DESIGNED BY:	REVIEWED BY:

Appendix C

Printing for Less Wetland Determination Data Forms

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

283

Project/Site: Printing for Less	City/County: Livingston/Park	:	Sampling Date: 19-J	un-19
Applicant/Owner: Printing for Less		State: MT	Sampling Point:	PFL 1
Investigator(s): B Schultz	Section, Township, Range	s 22 t 2	S R 9 E	_
Landform (hillslope, terrace, etc.): Undulating	Local relief (concave, conv	ex, none): none	Slope:	0.0 % / 0.0
Subregion (LRR): LRR E	: 45°39'2.53"N Lo	ng.: 110°36'10.41"\	N Datur	n: WGS 84
Soil Map Unit Name: Reedpoint-Tanna-Ethridge complex		NWI classif	ication: none	
Are climatic/hydrologic conditions on the site typical for this time of y	ear? Yes $oldsymbol{O}$ No $oldsymbol{O}$	(If no, explain in I	Remarks.)	
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 significat	ntly disturbed? Are "Norma	al Circumstances" pr	resent? Yes 🖲	No \bigcirc
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 naturally	problematic? (If needed	, explain any answei	rs in Remarks.)	

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes () Yes () Yes ()	No	Is the Sampled Area within a Wetland?	Yes 🔿 No 🖲
Remarks:				

Dominant

Sample located south of gravel access drive.

VEGETATION - Use scientific names of plants.

		Rel.Strat.	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft.)	% Cover	_	Status	Number of Dominant Species
1	0	0.0%		That are OBL, FACW, or FAC: (A)
2	0	0.0%		Total Number of Dominant
3	0	0.0%		Species Across All Strata: (B)
4	0	0.0%		
Sapling/Shrub Stratum (Plot size: 15 ft.)	0	= Total Cov	er	Percent of dominant Species That Are OBL, FACW, or FAC:(A/B)
1	0	0.0%		Prevalence Index worksheet:
2	0	0.0%		Total % Cover of: Multiply by:
3	0	0.0%		OBL species x 1 =
4.	0	0.0%		FACW species 0 x 2 = 0
5.	0	0.0%		FAC species $5 \times 3 = 15$
	0	= Total Cov	er	FACU species $0 \times 4 = 0$
Herb Stratum (Plot size: 5 ft.)		_		UPL species $\frac{75}{75} \times 5 = \frac{375}{75}$
1. Bromus inermis	75	78.9%	UPL	Column Totals: 80 (A) 390 (B)
2. Litter	15	15.8%		
3. Poa pratensis	5	5.3%	FAC	Prevalence Index = $B/A = 4.875$
4	0	0.0%		Hydrophytic Vegetation Indicators:
5	0	0.0%		1 - Rapid Test for Hydrologic Vegetation
6	0	0.0%		2 - Dominance Test is 50%
7	0	0.0%		\square 3 - Prevalence Index is ≤3.0 ¹
8	0	0.0%		
9	0	0.0%		4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
10	0	0.0%		\Box 5 - Wetland Non-Vascular Plants ¹
11	0	0.0%		Problematic Hydrophytic Vegetation 1 (Explain)
	95	= Total Cov	er	
Woody Vine Stratum (Plot size:)		_		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
1	0	0.0%		be present, unless disturbed of problematic.
2	0	0.0%		Hydrophytic
	0	= Total Cov	er	Vegetation Present? Yes O No •
% Bare Ground in Herb Stratum:				
Remarks:				
Community dominated by pasture grasses.				

Soil

Sampling Point: PFL 1

284

Depth		Matrix			Red	ox Featu	res				
(inches)					Loc ²	Texture	Remarks				
0-6	7.5YR	3/2	93	7.5YR	5/1	7	С	M	Silty Clay Loam	wet, not saturated	
6-13	7.5YR	3/2	95	7.5YR	5/3	3	С	М	Silty Clay	very clayey	
				7.5YR	4/4	2	С	M			
13-22	7.5YR	4/2	80	7.5YR	, 5/3	20	С	М	Silty Clay Loam	reddish profile, wet, not saturated	
		_	_	_				_			
<i>,</i> ,		•		uced Matrix, C RRs, unless				ins ² Loca	tion: PL=Pore Lining. I	M=Matrix roblematic Hydric Soils ³ :	
Histosol ((Applicat			dy Redox (2 cm Muck (A	•	
Histic Epi	Histic Epipedon (A2)				Red Parent Material (TF2)						
Black Hist	. ,				Loamy Mucky Mineral (F1) (except in MLRA 1)						
	Sulfide (A4)				ny Gleyed	•	2)				
	Below Dark S		1)		leted Matri ox Dark Su	. ,					
	k Surface (A1	,			leted Dark	()			³ Indicators of hydrophytic vegetation and wetland hydrology must be present,		
	ick Mineral (S	,			ox depress	```	/)		unless disturbed or problematic.		
	eyed Matrix (S ayer (if pres	· ·								F	
Type:	ayer (ii pres	sent):									
Depth (inc	hes).								Hydric Soil Preser	nt? Yes $ullet$ No $igodom$	
Remarks:											
ottles at 3 i	nches.										
ydrolog	v										
Vetland Hyd		cators:									
Primary Ind	icators (min	imum of	one requi	red; check a	ll that ap	ply)			Secondary 1	Indicators (minimum of two requir	
	Water (A1)						(B9) (excep		Water-S		

Primary Indicators (minimum of one required	; check all that apply)	Secondary Indicators (minimum of two required)	
Surface Water (A1)	Water-Stained Leaves (B9) (except MLRA	Water-Stained Leaves (B9) (MLRA 1, 2,	
High Water Table (A2)	1, 2, 4A, and 4B)	4A, and 4B)	
Saturation (A3)	Salt Crust (B11)	Drainage Patterns (B10)	
Water Marks (B1)	Aquatic Invertebrates (B13)	Dry Season Water Table (C2)	
Sediment Deposits (B2)	Hydrogen Sulfide Odor (C1)	Saturation Visible on Aerial Imagery (C9)	
Drift deposits (B3)	Oxidized Rhizospheres on Living Roots (C3)	Geomorphic Position (D2)	
Algal Mat or Crust (B4)	Presence of Reduced Iron (C4)	Shallow Aquitard (D3)	
Iron Deposits (B5)	Recent Iron Reduction in Tilled Soils (C6)	FAC-neutral Test (D5)	
Surface Soil Cracks (B6)	Stunted or Stressed Plants (D1) (LRR A)	Raised Ant Mounds (D6) (LRR A)	
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)	Frost Heave Hummocks (D7)	
Sparsely Vegetated Concave Surface (B8)			
Field Observations:			
Surface Water Present? Yes O No 🖲	Depth (inches):		
Water Table Present? Yes O No O	Depth (inches):	· · · · · · · · · ·	
Saturation Present? (includes capillary fringe) Yes O No O	Depth (inches):	drology Present? Yes 🔾 No 🖲	
Describe Recorded Data (stream gauge, monit	or well, aerial photos, previous inspections), if availa	ble:	
Remarks:			

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

285

Project/Site: Printing for Less	City/County: Livingston/Park	Sa	mpling Date: <u>19-Jun-19</u>	
Applicant/Owner: Printing for Less	Si	tate: MT	Sampling Point: PFL 2	
Investigator(s): B Schultz	Section, Township, Range: S	5 22 T 2 S	R 9 E	
Landform (hillslope, terrace, etc.): Undulating	Local relief (concave, convex,	none): none	Slope: 0.0 % / 0.0) °
Subregion (LRR): LRR E	45°39'2.65"N Long	.: 110°36'10.65"W	Datum: WGS 84	
Soil Map Unit Name: Reedpoint-Tanna-Ethridge complex		NWI classifica	ation: none	_
Are climatic/hydrologic conditions on the site typical for this time of year	ar? Yes $ullet$ No $igodom$ (If no, explain in Re	marks.)	
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 significant	ly disturbed? Are "Normal C	Circumstances" pres	ent? Yes 🖲 No 🔾	
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 naturally p	problematic? (If needed, ex	xplain any answers	in Remarks.)	

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🖲	No O	Is the Sampled Area	
Hydric Soil Present?	Yes 🖲	No \bigcirc	within a Wetland?	Yes 🖲 No
Wetland Hydrology Present?	Yes 🖲	No O	within a wetland?	

Dominant

Remarks:

Sample located eight feet from sample point 1.

VEGETATION - Use scientific names of plants.

		_Species?		I
		Rel.Strat.		Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft.)	% Cover	Cover	Status	Number of Dominant Species
1	0	0.0%		That are OBL, FACW, or FAC: <u>3</u> (A)
2	0	0.0%		
3	0	0.0%		Total Number of Dominant Species Across All Strata: 3 (B)
4.	0	0.0%		
		= Total Cov		Percent of dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft.)			ei	That Are OBL, FACW, or FAC:(A/B)
1 Elaeagnus angustifolia	5	✔ 100.0%	FAC	
1			TAC	Prevalence Index worksheet:
2		0.0%		Total % Cover of: Multiply by:
3	0	0.0%		OBL species $0 \times 1 = 0$
4	0	0.0%		FACW species $0 \times 2 = 0$
5.	0	0.0%		FAC species 80 x 3 = 240
	5	= Total Cov	er	FACU species $5 \times 4 = 20$
Herb Stratum (Plot size: 5 ft.)				UPL species $0 \times 5 = 0$
1. Poa pratensis	35	36.8%	FAC	
2. Sporobolus airoides	30	✔ 31.6%	FAC	Column Totals: <u>85</u> (A) <u>260</u> (B)
3. Litter	15	15.8%		Prevalence Index = $B/A = 3.059$
4. Hordeum jubatum	10	10.5%	FAC	
5. Sonchus arvensis	5	5.3%	FACU	Hydrophytic Vegetation Indicators:
6	0	0.0%		1 - Rapid Test for Hydrologic Vegetation
7	0	0.0%		✓ 2 - Dominance Test is > 50%
	0	0.0%		□ 3 - Prevalence Index is \leq 3.0 ¹
8	0	0.0%		4 - Morphological Adaptations ¹ (Provide supporting
9	0	0.0%		data in Remarks or on a separate sheet)
10	0	0.0%		\Box 5 - Wetland Non-Vascular Plants 1
11		= Total Cov		Problematic Hydrophytic Vegetation ¹ (Explain)
	95		er	¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size:)				be present, unless disturbed or problematic.
1	0	0.0%		
2	0	0.0%		Hydrophytic Vegetation
	0	= Total Cov	er	Present? Yes No
% Bare Ground in Herb Stratum: 5				
Remarks:				

Sample dominated by Kentucky bluegrass and alkai sacaton.

Soil

Sampling Point: PFL 2

Depth		Matrix			Red	ox Featu	ires		L		
(inches)	Color (I	noist)	%	Color (mo	oist)	%	Type ¹	Loc ²	Texture		Remarks
0-4	7.5YR	4/1	100						Silty Clay Loam	saturated	to soil surface
4-12	7.5YR	3/1	94	7.5YR	6/1	3	С	М	Silty Clay Loam		
				7.5YR	5/2	3	С	М			
12-18+	7.5YR	3/2	50	7.5YR	4/2	50			Silty Clay Loam	soil almos	t appears mixed
		_						_			
/1				uced Matrix, CS: RRs, unless of				ins ² Loca	tion: PL=Pore Lining. M= Indicators for Prol		Soils 3
Histosol (/		(Applicat			Redox (S				2 cm Muck (A10		. 50115 -1
Histosof (A1) Stripped Matrix (S6)				Red Parent Mate							
Black Hist	. ,) Loamy Mucky Mineral (F1) (except in MLRA 1)		Other (Explain in Remarks)							
Hydrogen	en Sulfide (A4)										
Depleted	Below Dark S	Surface (A1	.1)	Deplet	ted Matrix	x (F3)					
Thick Dar	k Surface (A1	2)				rface (F6)			³ Indicators of hydroph	nytic vegetation a	ind
Sandy Mu	ck Mineral (S	51)				Surface (F7)		wetland hydrology	must be present	
Sandy Gle	yed Matrix (S	54)		Redox	depressi	ions (F8)			unless disturbed or	problematic.	
	ayer (if pres	ent):									
Type:									Hydric Soil Present?	Yes 🖲	No 🔿
Depth (incl emarks:	nes):										
ottles at 4 i	nches.										
	,										
vdroloav											
		cators:									
lydrology Vetland Hyd Primary Indi	rology Indi		one requi	red; check all	that ap	ply)			Secondary Inc	licators (minim	ium of two requir

Primary Indicators (minir	num of one r	equirea; a	check all that apply)	_	Secondary Indicators (minimum of two required)		
Surface Water (A1)			Water-Stained Leave 1, 2, 4A, and 4B)	es (B9) (except			
High Water Table (A2)			1, 2, 4A, dhu 4D)		4A, and 4B)		
✓ Saturation (A3)			Salt Crust (B11)		Drainage Patterns (B10)		
Water Marks (B1)			Aquatic Invertebrate	es (B13)	Dry Season Water Table (C2)		
Sediment Deposits (B2)			Hydrogen Sulfide Od	lor (C1)	Saturation Visible on Aerial Imagery (C9)		
Drift deposits (B3)			Oxidized Rhizospher	es on Living Ro	Roots (C3) Geomorphic Position (D2)		
Algal Mat or Crust (B4)			Presence of Reduced Iron (C4)		Shallow Aquitard (D3)		
Iron Deposits (B5)			Recent Iron Reduction in Tilled Soils (C6)		bils (C6) FAC-neutral Test (D5)		
Surface Soil Cracks (B6))		Stunted or Stressed	Plants (D1) (LF	LRR A) Raised Ant Mounds (D6) (LRR A)		
Inundation Visible on A	erial Imagery (F	37)	Other (Explain in Remarks)		Frost Heave Hummocks (D7)		
Sparsely Vegetated Con	cave Surface (E	38)		,			
Field Observations:							
Surface Water Present?	Yes \bigcirc	No 🖲	Depth (inches):				
Water Table Present?	Yes \bigcirc	No 🖲	Depth (inches):				
Saturation Present? (includes capillary fringe)	Yes 🖲	No \bigcirc	Depth (inches):	0	Wetland Hydrology Present? Yes • No 🔾		
Describe Recorded Data (stream gauge	e, monito	^r well, aerial photos, p	revious inspe	ections), if available:		
Remarks:							
Soil saturated to surface.							

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

287

City/County: Livingston/Park	S	ampling Date: <u>19-Jun-19</u>	_
	State: MT	Sampling Point: PFL 3	
Section, Township, Range:	s 22 t 2 5	R 9 E	
Local relief (concave, conve	x, none): concave	Slope: 0.0 % /	<u>0.0</u>
45°39'2.66"N Lon	g.: _110°36'10.80"W	Datum: WGS 84	
	NWI classific	ation: none	
ar? Yes 🖲 No 🔿	(If no, explain in Re	emarks.)	
tly disturbed? Are "Normal	Circumstances" pre	sent? Yes 🖲 No 🔾	
problematic? (If needed,	explain any answers	in Remarks.)	
	Section, Township, Range: Local relief (concave, conve 45°39'2.66"N Lon ar? Yes No O tly disturbed? Are "Normal	State: MT Section, Township, Range: S 22 T 2 S Local relief (concave, convex, none): concave 45°39'2.66"N Long.: 110°36'10.80"W NWI classific ar? Yes No (If no, explain in Re thy disturbed? Are "Normal Circumstances" pre	State: MT Sampling Point: PFL 3 Section, Township, Range: S 22 T 2 S R 9 E Local relief (concave, convex, none): concave Slope: 0.0 % / 45°39'2.66"N Long.: 110°36'10.80"W Datum: WGS 84 NWI classification: none ar? Yes < No

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🖲	No O	Is the Sampled Area	
Hydric Soil Present?	Yes 🖲	No O		Yes 🖲 No 🔾
Wetland Hydrology Present?	Yes 🖲	No O	within a Wetland?	
Remarks:				

Dominant

Sample located in small depression.

VEGETATION - Use scientific names of plants.

		Rel.Strat.	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft.)	% Cover		Status	Number of Dominant Species
1	0	0.0%		That are OBL, FACW, or FAC:(A)
2		0.0%		Total Number of Dominant
3	0	0.0%		Species Across All Strata: 1 (B)
4	0	0.0%		
Sapling/Shrub Stratum (Plot size: 15 ft.)	0	= Total Cove	er	Percent of dominant Species That Are OBL, FACW, or FAC: <u>100.0%</u> (A/B)
1. Elaeagnus angustifolia	3	100.0%	FAC	Prevalence Index worksheet:
2.	0	0.0%		Total % Cover of: Multiply by:
3.	0	0.0%		OBL species65 x 1 =65
4.	0	0.0%		FACW species $10 \times 2 = 20$
5.	0	0.0%		FAC species $8 \times 3 = 24$
	3	= Total Cove	er	FACU species $0 \times 4 = 0$
Herb Stratum (Plot size: 5 ft.)				UPL species $0 \times 5 = 0$
1. Schoenoplectus pungens	65	✔ 81.3%	OBL	
2. Sporobolus airoides	5	6.3%	FAC	Column Totals: <u>83</u> (A) <u>109</u> (B)
3 Juncus effusus	5	6.3%	FACW	Prevalence Index = $B/A = 1.313$
4. Juncus balticus	5	6.3%	FACW	Hydrophytic Vegetation Indicators:
5	0	0.0%		
6	0	0.0%		✓ 1 - Rapid Test for Hydrologic Vegetation
7	0	0.0%		✓ 2 - Dominance Test is > 50%
8	0	0.0%		✓ 3 - Prevalence Index is \leq 3.0 ¹
9	0	0.0%		4 - Morphological Adaptations ¹ (Provide supporting
10	0	0.0%		data in Remarks or on a separate sheet)
11	0	0.0%		5 - Wetland Non-Vascular Plants
	80	= Total Cove	er	Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size:)	0	0.0%		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
1 2.	0	0.0%		Hydrophytic
<u> </u>	0	= Total Cove		Vegetation
% Bare Ground in Herb Stratum: 5			-	Present? Yes INO
Remarks:				1

Mixed wetland species were observed at this sample location.

Soil

Sampling Point: PFL 3

Profile Descr	iption: (Des	cribe to t	he depth n	eeded to document	the indic	cator or co	nfirm the a	bsence of indicators	.)
Depth		Matrix		Re	dox Featı	ures			
(inches)	Color (n	noist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-6	10YR	3/1	90	10YR 5/2	10	С	М	Silty Clay Loam	aturated to soil surface, mottles at 4 inches
6-14+	10YR	2/1	100					Silty Clay Loam	mottles at 4 inches dark, saturated, stinky
			· · · ·						
						-			
	· · · · · ·								
¹ Type: C=Cond	centration. D=	-Depletion	. RM=Reduc	ed Matrix, CS=Covere	ed or Coate	ed Sand Gra	ins ² Locat	tion: PL=Pore Lining. M	1=Matrix
Hydric Soil I	ndicators: (Applicab	le to all LR	Rs, unless otherwis	se noted.))		Indicators for Pr	oblematic Hydric Soils ³ :
Histosol (/				Sandy Redox	. ,			2 cm Muck (A	10)
	bedon (A2)			Stripped Matr	. ,	E1) (ovcont	in MIDA 1)	Red Parent Ma	
Black Hist	Sulfide (A4)			Loamy Gleyed	-		III MERA I)	Other (Explain	n in Remarks)
_ , , ,	Below Dark Su	urface (A1	1)	Depleted Mat	-	_,			
Thick Dark Surface (A12)			Redox Dark S	Surface (F6	i)		³ Indicators of hydro	phytic vegetation and	
Sandy Muck Mineral (S1)			Depleted Dar		. ,		wetland hydrology must be present, unless disturbed or problematic.		
Sandy Gle	eyed Matrix (S	4)		Redox depres	sions (F8)			unless disturbed	or problematic.
Restrictive La	ayer (if pres	ent):							
Туре:								Undria Cail Duasan	
Depth (incl	nes):							Hydric Soil Presen	t? Yes 🖲 No 🔾
Remarks:									
Strong mottle	s at 4 inche	s with hy	/drogen sul	fide odor.					
Hydrology	,								
Wetland Hyd		ators:							
-	••		one require	ed; check all that a	nnlv)			Secondary I	ndicators (minimum of two required)
	Vater (A1)		She require			(B9) (exce	ot MLRA		tained Leaves (B9) (MLRA 1, 2,
	er Table (A2)			1, 2, 4A, an				4A, and	
✓ Saturation				Salt Crust (I	B11)			Drainage	e Patterns (B10)
Water Ma	. ,			Aquatic Inv	ertebrates	(B13)			son Water Table (C2)
Sediment	Deposits (B2))		🖌 Hydrogen S	ulfide Odo	or (C1)		Saturatio	on Visible on Aerial Imagery (C9)
Drift depo	osits (B3)			Oxidized Rh	nizospheres	s on Living I	Roots (C3)	Geomorp	phic Position (D2)
Algal Mat	or Crust (B4)			Presence of	F Reduced	Iron (C4)		Shallow .	Aquitard (D3)
Iron Depo	osits (B5)			Recent Iron	Reduction	n in Tilled So	oils (C6)	✓ FAC-neu	tral Test (D5)
Surface S	oil Cracks (B6)		Stunted or	Stressed P	lants (D1) (LRR A)	Raised A	nt Mounds (D6) (LRR A)

Frost Heave Hummocks (D7	١

Inundation Visible on A Sparsely Vegetated Cor	5 /	()	Other (Explain in Remarks)	Frost Heave H	lummocks (D7)	
Field Observations:		\sim		_		
Surface Water Present?	Yes \bigcirc	No 🖲	Depth (inches):			
Water Table Present?	Yes \bigcirc	No 🖲	Depth (inches):		Yes 🔍 No 🔾	
Saturation Present? (includes capillary fringe)	Yes 🖲	No \bigcirc	Depth (inches): 0	Wetland Hydrology Present?	Yes 🔍 No 🔾	
Describe Recorded Data	(stream gau	ge, monito	r well, aerial photos, previous insp	pections), if available:		
Remarks:						

Sample was saturated to surface with hydrogen sulfide odor. Two seconday indicators were also observed.

289

Project/Site: Printing for Less	City/County: Livingston/Park	:	Sampling Date: <u>19-</u>	lun-19
Applicant/Owner: Printing for Less		State: MT	Sampling Point:	PFL 4
Investigator(s): B Schultz	Section, Township, Range	s 22 t 2	S R 9 E	
Landform (hillslope, terrace, etc.): Undulating	Local relief (concave, conve	ex, none): convex	Slope:	<u>0.0</u> % / <u>0.0</u>
Subregion (LRR): LRR E	45°39'2.62"N Lo	ng.: 110°36'14.77"\	N Datu	n: WGS 84
Soil Map Unit Name: Reedpoint-Tanna-Ethridge complex		NWI classif	ication: none	
Are climatic/hydrologic conditions on the site typical for this time of ye	ear? Yes 🖲 No 🔾	(If no, explain in F	Remarks.)	
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 significar	tly disturbed? Are "Norma	l Circumstances" pr	esent? Yes 🖲	No \bigcirc
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 naturally	problematic? (If needed,	explain any answer	rs in Remarks.)	

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🔾	No 🖲	Is the Sampled Area			
Hydric Soil Present?	Yes \bigcirc	No 🖲	•	Yes 🔿 No 🖲		
Wetland Hydrology Present?	Yes \bigcirc	No 🖲	within a Wetland?			
Remarks:						

Dominant

Upland site, southwest of PFL Way.

VEGETATION - Use scientific names of plants.

(Plot size: 20 ft)		Rel.Strat.	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft.)	% Cover		Status	Number of Dominant Species
1	0	0.0%		That are OBL, FACW, or FAC: (A)
2	0	0.0%		Total Number of Dominant
3	0	0.0%		Species Across All Strata:(B)
4	0	0.0%		
Sapling/Shrub Stratum (Plot size: 15 ft.)	0	= Total Cove	er	Percent of dominant Species That Are OBL, FACW, or FAC:(A/B)
1	0	0.0%		Prevalence Index worksheet:
2.	0	0.0%		Total % Cover of: Multiply by:
3.	0	0.0%		OBL species 0 x 1 = 0
4.	0	0.0%		FACW species 0 x 2 = 0
5.	0	0.0%		FAC species $10 \times 3 = 30$
	0	= Total Cove	er	FACU species $0 \times 4 = 0$
Herb Stratum (Plot size: 5 ft.)				UPL species $70 \times 5 = 350$
1. Bromus inermis	60	✔ 66.7%	UPL	
2. Litter	10	11.1%		Column Totals: <u>80</u> (A) <u>380</u> (B)
3. Cardaria draba	10	11.1%	UPL	Prevalence Index = $B/A = 4.750$
4. Poa pratensis	5	5.6%	FAC	I badwards die Manadatien Tediaten
5. Sporobolus airoides	5	5.6%	FAC	Hydrophytic Vegetation Indicators:
6	0	0.0%		1 - Rapid Test for Hydrologic Vegetation
7	0	0.0%		2 - Dominance Test is > 50%
8	0	0.0%		□ 3 - Prevalence Index is \leq 3.0 ¹
9	0	0.0%		4 - Morphological Adaptations ¹ (Provide supporting
10	0	0.0%		data in Remarks or on a separate sheet)
11	0	0.0%		\Box 5 - Wetland Non-Vascular Plants 1
	90	= Total Cove	er	Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size:)	0	0.0%		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
1	0	0.0%		Hydrophytic
۷.		1		Vegetation
% Bare Ground in Herb Stratum: Ω	0	= Total Cove	51	Present? Yes Vo 🖲
Remarks:				

Smooth brome and weeds dominated this location.

Sampling Point: PFL 4

290

Depth Matrix Redox Features (inches) Color (moist) % Color (moist) % Sily Clay Leam friable 6-12 10YR 3/3 100 Sily Clay Leam Damp 12:22+ 10YR 3/3 98 10YR 5/2 20 C M Sily Clay Leam Damp 12:22+ 10YR 3/3 98 10YR 5/2 20 C M Sily Clay Leam Small mottles at 16 inches 12:22+ 10YR 3/3 98 10YR 5/2 20 C M Sily Clay Leam Small Small<	Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)										
0-6 10YR 3/2 100	Depth			Redo	ox Featu	ires					
0-5 101R 3/2 100 Sitty Clay Leam Damp 12-22 101R 3/3 100 Sitty Clay Leam	(inches)	Color (r	noist)	%	Color (mo	ist)	%	Type ¹	Loc ²	Texture	
b-12 10/R 3/3 100	0-6	10YR	3/2	100						Silty Clay Loam	
12:224 101R 3/3 98 107R 5/2 20 C M Sitely Lay Loam ************************************	6-12	10YR	3/3	100						Silty Clay Loam	Damp
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils 3: Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Histic Epipedon (A2) Stripped Matrix (S6) Red Parent Material (TF2) Biack Histic (A3) Loamy Mucky Mineral (F1) (except in MLRA 1) Other (Explain in Remarks) Hydrogen Suffide (A4) Loamy Sleyed Matrix (F2) Other (Explain in Remarks) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Beloted Matrix (F3) Sandy Muck Mineral (S1) Depleted Matrix (F3) Beloted Matrix (F3) Thick Dark Surface (A12) Redox depressions (F8) 3 Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (If present): Type:	12-22+	10YR	3/3	98	10YR	5/2	20	С	М	Silty Clay Loam	small mottles at 16 inches
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils 3: Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Histic Epipedon (A2) Stripped Matrix (S6) Red Parent Material (TF2) Biack Histic (A3) Loamy Mucky Mineral (F1) (except in MLRA 1) Other (Explain in Remarks) Hydrogen Suffide (A4) Loamy Sleyed Matrix (F2) Other (Explain in Remarks) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Beloted Matrix (F3) Sandy Muck Mineral (S1) Depleted Matrix (F3) Beloted Matrix (F3) Thick Dark Surface (A12) Redox depressions (F8) 3 Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (If present): Type:											
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils 3: Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Histic Epipedon (A2) Stripped Matrix (S6) Red Parent Material (TF2) Biack Histic (A3) Loamy Mucky Mineral (F1) (except in MLRA 1) Other (Explain in Remarks) Hydrogen Suffide (A4) Loamy Sleyed Matrix (F2) Other (Explain in Remarks) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Beloted Matrix (F3) Sandy Muck Mineral (S1) Depleted Matrix (F3) Beloted Matrix (F3) Thick Dark Surface (A12) Redox depressions (F8) 3 Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (If present): Type:	17 0.0										
Histosol (A1) Histic Epipedon (A2) Stripped Matrix (56) Red Parent Material (TF2) Other (Explain in Remarks) Hydrogen Sulfide (A4) Loamy Micky Mineral (F1) (except in MLRA 1) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Depleted Matrix (F3) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) wetland hydrology must be present, unless disturbed or problematic. Remarks: Small mottles at 16 inches. Hydrology Wettand Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) J 2, 4A, and 4B) Sature (A1) J 2, 4A, and 4B J 2, 4A, and 4B	,1				,				ains ² Locat	5	
□ Thick Dark Surface (A12) □ Redox Dark Surface (F6) 3 Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. □ Sandy Muck Mineral (S1) □ Depleted Dark Surface (F7) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if present):	Histosol (/ Histic Epip Black Hist	A1) Dedon (A2) ic (A3) Sulfide (A4)			Sandy Strippe Loamy Loamy	Redox (S ed Matrix Mucky N Gleyed I	55) (S6) ⁄lineral (F Matrix (F2	-1) (except	in MLRA 1)	2 cm Muck (A: Red Parent Ma	10) aterial (TF2)
Type: Hydric Soil Present? Yes No Depth (inches):	Thick Dar	k Surface (A1 ck Mineral (S	2) 1)	1)	Redox	Dark Sur ed Dark S	rface (F6) Surface (wetland hydrolog	y must be present,
Depth (inches): Hydric Soil Present? Yes No Remarks: Small mottles at 16 inches. Hydrology Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water-Stained Leaves (B9) (except MLRA High Water Table (A2) 1, 2, 4A, and 4B) Saturation (A3) Salt Crust (B11) Water Marks (B1) Aquatic Invertebrates (B13)	Restrictive La	ayer (if pres	ent):								
Depin (inches):	Туре:									Undria Cail Dracant	
Small mottles at 16 inches. Hydrology Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) (except MLRA High Water Table (A2) 1, 2, 4A, and 4B) Saturation (A3) Salt Crust (B11) Water Marks (B1) Aquatic Invertebrates (B13)	Depth (incl	hes):								Hydric Soli Present	r fes⊖ No ©
Hydrology Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) (except MLRA High Water Table (A2) 1, 2, 4A, and 4B) Saturation (A3) Salt Crust (B11) Water Marks (B1) Aquatic Invertebrates (B13)	Remarks:										
Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) (except MLRA High Water Table (A2) 1, 2, 4A, and 4B) Saturation (A3) Salt Crust (B11) Water Marks (B1) Aquatic Invertebrates (B13)	Small mottles	at 16 inche	es.								
Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (minimum of two required) Surface Water (A1) Water-Stained Leaves (B9) (except MLRA High Water Table (A2) 1, 2, 4A, and 4B) Saturation (A3) Salt Crust (B11) Water Marks (B1) Aquatic Invertebrates (B13)											
Surface Water (A1) Water-Stained Leaves (B9) (except MLRA Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) High Water Table (A2) 1, 2, 4A, and 4B) Drainage Patterns (B10) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Water Marks (B1) Aquatic Invertebrates (B13) Dry Season Water Table (C2)											
High Water Table (A2) 1, 2, 4A, and 4B) 4A, and 4B) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Water Marks (B1) Aquatic Invertebrates (B13) Dry Season Water Table (C2)			imum of	one requir				(===) (
Image Patterns (A3) Salt Crust (B11) Drainage Patterns (B10) Water Marks (B1) Aquatic Invertebrates (B13) Dry Season Water Table (C2)		• •						(B9) (exce	pt MLRA		
Water Marks (B1) Aquatic Invertebrates (B13) Dry Season Water Table (C2)		. ,	1				-				
		. ,					-	(012)			
		. ,	2)							_ '	

Hydrogen Sulfide Odor (C1)	Saturation
Oxidized Rhizospheres on Living Roots (C3)	Geomorph

Ge	omo	orphi	c Po	osition	(D2)

Shallow Aquitard (D3)

Raised Ant Mounds (D6) (LRR A)	

Frost Heave Hummocks	(D7)	
	(, , , , , , , , , , , , , , , , , , ,	

Inundation Visible on Aerial Imagery (B7)
Sparsely Vegetated Concave Surface (B8)

Drift deposits (B3)

Algal Mat or Crust (B4)

Surface Soil Cracks (B6)

Iron Deposits (B5)

Sparsely Vegetated Concave Surface (B8)							
Field Observations: Surface Water Present?	Yes 〇	No 🖲	Depth (inches):]			
Water Table Present?	$_{\rm Yes} \bigcirc$	No 🖲	Depth (inches):		~ ~ ~ ~		
Saturation Present? (includes capillary fringe)	Yes \bigcirc	No 🖲	Depth (inches):	Wetland Hydrology Present?	Yes 🕖 No 🔍		
Describe Recorded Data (stream gauge, monitor well, aerial photos, previous inspections), if available:							

Presence of Reduced Iron (C4)

Other (Explain in Remarks)

Recent Iron Reduction in Tilled Soils (C6)

Stunted or Stressed Plants (D1) (LRR A)

Remarks:

No evidence of wetland hydrology was observed at this sample location.

291

Project/Site: Printing for Less	City/County: Livingston/Park		Sampling Date: <u>19-</u> J	un-19
Applicant/Owner: Printing for Less		State: MT	Sampling Point:	PFL 5
Investigator(s): B Schultz	Section, Township, Range	s 22 t 2	S R 9 E	
Landform (hillslope, terrace, etc.): Undulating	Local relief (concave, conv	ex, none): concave	Slope:	<u>0.0</u> % / <u>0.0</u>
Subregion (LRR): LRR E	: 45°39'2.47"N Lo	ong.: 110°36'14.28"	W Datur	n: WGS 84
Soil Map Unit Name: Reedpoint-Tanna-Ethridge complex		NWI classif	ication: none	
Are climatic/hydrologic conditions on the site typical for this time of y	ear? Yes $oldsymbol{O}$ No $oldsymbol{O}$	(If no, explain in I	Remarks.)	
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 significar	ntly disturbed? Are "Norm	al Circumstances" pr	resent? Yes 🖲	No \bigcirc
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 naturally	problematic? (If needed	, explain any answe	rs in Remarks.)	

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes () Yes () Yes ()	No () No () No ()	Is the Sampled Area within a Wetland?	Yes 🖲 No 🔿
Remarks:				

Dominant

Sample located in slight depression.

VEGETATION - Use scientific names of plants.

		_Species?		1
		Rel.Strat.		Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft.)	% Cover	Cover	Status	Number of Dominant Species
1	0	0.0%		That are OBL, FACW, or FAC: (A)
2	0	0.0%		
3	0	0.0%		Total Number of Dominant
4.	0	0.0%		Species Across All Strata: <u>2</u> (B)
1.				Percent of dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft.)	0	= Total Cove	er	That Are OBL, FACW, or FAC:100.0% (A/B)
1	0	0.0%		Prevalence Index worksheet:
2	0	0.0%		Total % Cover of: Multiply by:
3	0	0.0%		OBL species $0 \times 1 = 0$
4	0	0.0%		FACW species 25 x 2 = 50
5.	0	0.0%		FAC species $55 \times 3 = 165$
	0	= Total Cove	er	FACU species $5 \times 4 = 20$
Herb Stratum (Plot size: 5 ft.)				
1 Poa pratensis	50	47.6%	FAC	
2. Juncus effusus	25	23.8%	FACW	Column Totals: <u>90</u> (A) <u>260</u> (B)
3. Litter	15	14.3%		Prevalence Index = $B/A = 2.889$
4. Cirsium arvense	5	4.8%	FAC	
5. Cardaria draba	5	4.8%	UPL	Hydrophytic Vegetation Indicators:
(Caroy microntora	5	4.8%	FACU	1 - Rapid Test for Hydrologic Vegetation
7	0	0.0%		✓ 2 - Dominance Test is > 50%
		0.0%		✓ 3 - Prevalence Index is \leq 3.0 1
8	0	0.0%		4 - Morphological Adaptations ¹ , Provide supporting
9	0	0.0%		data in Remarks or on a separate sheet)
10	0	0.0%		\Box 5 - Wetland Non-Vascular Plants 1
11		= Total Cove		Problematic Hydrophytic Vegetation ¹ (Explain)
(Plot size:	105		er	¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size:)				be present, unless disturbed or problematic.
1	0	0.0%		
2	0	0.0%		Hydrophytic Vegetation
	0	= Total Cove	er	Present? Yes No
% Bare Ground in Herb Stratum: 0				
Remarks:				·

Kentucky bluegrass and Baltic rush were most dominant at this location.

Sampling Point: PFL 5

Depth		Matrix		Redox Features					
(inches)	Color (r	moist)	%	Color (moi	st) %	Type ¹	Loc ²	Texture	Remarks
0-6	10YR	3/1	100					Silty Clay Loam	saturated to soil surface
6-18+	10YR	3/2	92	10YR	5/1 5	С	М	Silty Clay Loam	increased saturation
				10YR	4/2 3	С	М		
ype: C=Conc	entration. D	=Depletion	. RM=Redu	ced Matrix, CS=	Covered or Co	ated Sand Gra	ins ² Loca	tion: PL=Pore Lining. M	=Matrix
<i>,</i> ,,				RRs, unless oth					oblematic Hydric Soils ³ :
Histosol (A	1)			📃 Sandy I	Redox (S5)			2 cm Muck (A	10)
Histic Epip	edon (A2)			Strippe	d Matrix (S6)			Red Parent Material (TF2)	
Black Histi	c (A3)				Mucky Minera		in MLRA 1)	Other (Explain in Remarks)	
Hydrogen	Sulfide (A4)			/	Gleyed Matrix	(F2)			
Depleted E	Below Dark S	Surface (A1	1)		ed Matrix (F3)				
Thick Dark	Surface (A1	2)		✓ Redox	Dark Surface (F6)		³ Indicators of hydror	phytic vegetation and
Sandy Muo	ck Mineral (S	51)		Deplete	ed Dark Surfac	e (F7)		wetland hydrolog	y must be present,
	yed Matrix (S	,		Redox	depressions (F	8)		unless disturbed o	or problematic.
estrictive La	yer (if pres	sent):							
Туре:									
Depth (inch	nes):							Hydric Soil Present	? Yes 🖲 No 🔾
Remarks:									
ottles at 6 ir	nches.								
	_								
ydrology /etland Hydi		cators							
			one requir	ed; check all t	hat apply)			Secondary Ir	ndicators (minimum of two requir
Surface W	-		ene requi	· _	r-Stained Leav	= es (B9) (exce	ot MLRA		ained Leaves (B9) (MLRA 1, 2,
_	er Table (A2)	`			4A, and 4B)			4A, and 4	
	()	/			rust (B11)			, ,	Patterns (B10)

✓ Saturation (A3)			Salt Crust (B11)	Salt Crust (B11) Drainage Patterns (B10)				
Water Marks (B1)			Aquatic Invertebrates (B13)	Dry Season Wa	ter Table (C2)		
Sediment Deposits (B2)				(C1)	Saturation Visit	ble on Aerial Imagery (C9)		
Drift deposits (B3)			Oxidized Rhizospheres	on Living Roots (C3)	Geomorphic Po	sition (D2)		
Algal Mat or Crust (B4)			Presence of Reduced I	ron (C4)	Shallow Aquita	rd (D3)		
Iron Deposits (B5)			Recent Iron Reduction	in Tilled Soils (C6)	✓ FAC-neutral Te	✓ FAC-neutral Test (D5)		
Surface Soil Cracks (B6)			Stunted or Stressed Pla	ants (D1) (LRR A)	Raised Ant Mou	Raised Ant Mounds (D6) (LRR A)		
Inundation Visible on Ae	erial Imagery	(B7)	Other (Explain in Rema	ırks)	Frost Heave Hu	Frost Heave Hummocks (D7)		
Sparsely Vegetated Con	cave Surface	(B8)						
Field Observations: Surface Water Present? Water Table Present?	Yes 〇 Yes 〇	No 🔍 No 🖲	Depth (inches):					
	100		Depth (inches):			\sim \sim		
Saturation Present? (includes capillary fringe)	Yes 🖲		Depth (inches):	0 Wetla	nd Hydrology Present?	Yes 🖲 No 🔾		
	Yes 🖲	No \bigcirc	Depth (inches):	0		Yes 🖲 No		
(includes capillary fringe)	Yes 🖲	No \bigcirc	Depth (inches):	0		Yes 🖲 No		

293

Project/Site: Printing for Less	City/County: Livingston/Park	Sa	Sampling Date: <u>19-Jun-19</u>		
Applicant/Owner: Printing for Less	S	tate: MT	Sampling Point: PFL 6		
Investigator(s): B Schultz	Section, Township, Range: S	5 22 T 2 S	R 9 E		
Landform (hillslope, terrace, etc.): Undulating	Local relief (concave, convex	, none): concave	Slope: <u>0.0</u> % / <u>0.0</u> °		
Subregion (LRR): LRR E	45°39'2.28"N Long	.: 110°36'14.17"W	Datum: WGS 84		
Soil Map Unit Name: reedpoint-Tanna-Ethridge complex		NWI classifica	ation: none		
Are climatic/hydrologic conditions on the site typical for this time of year	ar? Yes $ullet$ No $iglood$	(If no, explain in Re	marks.)		
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 significant	ly disturbed? Are "Normal (Circumstances" pres	ent? Yes 🖲 No 🔾		
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 naturally p	oroblematic? (If needed, ex	xplain any answers	in Remarks.)		

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🖲	No O	Is the Sampled Area	
Hydric Soil Present?	Yes 🖲	No O	within a Wetland?	Yes 🖲 No
Wetland Hydrology Present?	Yes 🖲	No O	within a wetland?	

Dominant

Remarks:

Sample located in slight depression south of access road.

VEGETATION - Use scientific names of plants.

		Rel.Strat.		Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft.)	% Cover		Status	Number of Dominant Species
1	0			That are OBL, FACW, or FAC: (A)
2	0			Total Number of Dominant
3	0	0.0%		Species Across All Strata:3(B)
4	0	0.0%		
Sapling/Shrub Stratum (Plot size: 15 ft.)	0	= Total Cove	er	Percent of dominant Species That Are OBL, FACW, or FAC: <u>66.7%</u> (A/B)
1	0	0.0%		Prevalence Index worksheet:
2.	0	0.0%		Total % Cover of: Multiply by:
3.	0	0.0%		OBL species $0 \times 1 = 0$
4.	0	0.0%		FACW species 20 x 2 = 40
5.	0	0.0%		FAC species $30 \times 3 = 90$
	0	= Total Cov	er	FACU species $20 \times 4 = 80$
Herb Stratum (Plot size: 5 ft.)				$\frac{1}{\text{UPL species}} \qquad \frac{1}{\text{UPL species}} \qquad \frac{1}{\text{VPL species}}$
1. Juncus effusus	20	26.7%	FACW	
2. Carex microptera	20	26.7%	FACU	Column Totals: <u>70</u> (A) <u>210</u> (B)
3 Sporobolus airoides	15	✔ 20.0%	FAC	Prevalence Index = $B/A = 3.000$
4. Alopecurus arundinaceus	10	13.3%	FAC	I had a she the Manager than To dian ta an
5. Cirsium arvense	5	6.7%	FAC	Hydrophytic Vegetation Indicators:
6. Litter	5	6.7%		1 - Rapid Test for Hydrologic Vegetation
7	0	0.0%		✓ 2 - Dominance Test is > 50%
8	0	0.0%		✓ 3 - Prevalence Index is \leq 3.0 ¹
9	0	0.0%		4 - Morphological Adaptations ¹ (Provide supporting
10	0	0.0%		data in Remarks or on a separate sheet)
11	0	0.0%		\Box 5 - Wetland Non-Vascular Plants 1
	75	= Total Cove	er	Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size:)	0	0.0%		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
1 2.	0	0.0%		Hydrophytic
2.				Vegetation
0/ Rave Created in Hash Streatures	0	= Total Cove	er	Present? Yes VNO
% Bare Ground in Herb Stratum: 0				
Remarks:				

Sample loction contained approximately 25% water.

Sampling Point: PFL 6

Profile Descr	iption: (Des		ne depth r	eeded to doc				nfirm the a	bsence of indicators.)
Depth		Matrix		<u> </u>		ox Featu			_ .	_ .
(inches)	Color (%	Color (mo	ist)	%	Type ¹	Loc ²	Texture	Remarks saturated to surface
0-6	10YR	4/1	100						Silt Loam	
6-12	10YR	4/1	95	10YR	4/6	5	С	М	Silt Loam	mottles at 6 inches
			_					_		
		- Dopletion	DM-Dodu	and Matrix CC-	Coucered	ar Costa	d Sand Cra		ion: PL=Pore Lining. M	
<i>,</i> ,				Rs, unless ot				ins ² Locat	-	blematic Hydric Soils ³ :
Histosol (A Histic Epip Black Hist Hydrogen Depleted Thick Dar Sandy Mu	A1) pedon (A2) ic (A3) Sulfide (A4) Below Dark S k Surface (A1 ck Mineral (S eyed Matrix (S ayer (if present) hes):	Surface (A1 12) 51) 54) sent):		Sandy Strippe Loamy ✓ Deplet Redox Deplet	Redox (S ed Matrix Mucky N Gleyed I ed Matrix Dark Sur	55) (S6) Aineral (F Matrix (F2 (F3) fface (F6) Surface (I	i1) (except 2)	in MLRA 1)	2 cm Muck (A1 Red Parent Ma Other (Explain ³ Indicators of hydrop	0) terial (TF2) in Remarks) phytic vegetation and y must be present, or problematic.
Surface V	rology Indi cators (min Vater (A1) er Table (A2)	imum of	one requir	1, 2,	er-Stained 4A, and	d Leaves 4B)	(B9) (excep	ot MLRA	Water-Sta 4A, and 4	
Saturatio	. ,				Crust (B1	,				Patterns (B10)
Water Ma	arks (B1)			Aqua	atic Inver	tebrates	(B13)		Dry Seaso	on Water Table (C2)

Wetland Hydrology Indica	ators:							
Primary Indicators (minir	num of one	required;	check all that apply)	_		Secondary Indica	tors (minimum of two rec	uired)
 Surface Water (A1) High Water Table (A2) 			Water-Stained Leave 1, 2, 4A, and 4B)	es (B9) (except	t MLRA	Water-Stained 4A, and 4B)	Leaves (B9) (MLRA 1, 2,	
Saturation (A3)			Salt Crust (B11)			Drainage Patte	erns (B10)	
Water Marks (B1)			Aquatic Invertebrate	es (B13)		Dry Season Wa	ater Table (C2)	
Sediment Deposits (B2)			Hydrogen Sulfide Oc	dor (C1)		Saturation Visi	ble on Aerial Imagery (C9)	
Drift deposits (B3)			Oxidized Rhizospher	es on Living R	oots (C3)	Geomorphic Po	osition (D2)	
Algal Mat or Crust (B4)			Presence of Reduce	d Iron (C4)		Shallow Aquita	ırd (D3)	
Iron Deposits (B5)			Recent Iron Reduction	on in Tilled So	ils (C6)	FAC-neutral Te	est (D5)	
Surface Soil Cracks (B6))	Stunted or Stressed Plants (D1) (LRR A)				Raised Ant Mounds (D6) (LRR A)		
Inundation Visible on A	erial Imagery	(B7)	Other (Explain in Re	marks)		Frost Heave H	ummocks (D7)	
Sparsely Vegetated Con	icave Surface	(B8)		· · · /				
Field Observations: Surface Water Present?	Yes 🖲		Depth (inches):	1	1			
	\sim		Depth (inches).	1	1			
Water Table Present?	Yes \bigcirc	No 🖲	Depth (inches):		Wetlend Ut	duala au Duacant2	Yes 🔍 No 🔾	
Saturation Present? (includes capillary fringe)	Yes 🖲	No \bigcirc	Depth (inches):	0		drology Present?		
Describe Recorded Data (stream gau	ge, monito	r well, aerial photos, p	revious inspe	ections), if availa	ble:		
Remarks:								
One inch of surface wate	r was obser	ved						
one men or surface water		/си.						

295

Project/Site: Printing for Less	City/County: Livingston/Park	\$	Sampling Date: 19-Jun-19		
Applicant/Owner: Printing for Less		State: MT	Sampling Point:	PFL 7	
Investigator(s): B Schultz	Section, Township, Range:	s 22 t 2	S R 9E	_	
Landform (hillslope, terrace, etc.): Undulating	Local relief (concave, conve	x, none): concave	Slope: 0	.0 % / 0.0 4	
Subregion (LRR): LRR E	45°39'4.28"N Loi	ng.: 110°36'10.81"\	V Datum	: WGS 84	
Soil Map Unit Name: Reedpoint-Tanna-Ethridge complex		NWI classifi	cation: PEM1C		
Are climatic/hydrologic conditions on the site typical for this time of year	ar? Yes 🖲 No 🔾	(If no, explain in R	lemarks.)		
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 significant	ly disturbed? Are "Norma	l Circumstances" pr	esent? Yes 🖲	No 🔿	
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 naturally p	oroblematic? (If needed,	explain any answer	s in Remarks.)		

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🖲	No O	Is the Sampled Area	
Hydric Soil Present?	Yes 🖲	No 🔿	•	Yes 🖲 No 🔾
Wetland Hydrology Present?	Yes 🖲	No O	within a Wetland?	
Remarks:				

Dominant

Sample located in wetland swale.

VEGETATION - Use scientific names of plants.

		_Species?		1
(Plat size: 20 ft)		Rel.Strat.	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft.)	% Cover		Status	Number of Dominant Species
1	0	0.0%		That are OBL, FACW, or FAC: (A)
2	0	0.0%		
3	0	0.0%		Total Number of Dominant Species Across All Strata: 1 (B)
4.	0	0.0%		
	0	= Total Cove	ər	Percent of dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft.)		- 10001 0010		That Are OBL, FACW, or FAC: <u>100.0%</u> (A/B)
1	0	0.0%		Prevalence Index worksheet:
	0	0.0%		Total % Cover of: Multiply by:
2	0	0.0%		
3	0	0.0%		
5.	0	0.0%		FACW species $50 \times 2 = 100$
5		0.0%		FAC species $0 \times 3 = 0$
Herb Stratum (Plot size: 5 ft.)	0	= Total Cove	er	FACU species X 4 =2
	50	52 10/	FACIN	UPL species $0 \times 5 = 0$
1, Juncus effusus	50	✓ 52.1%	FACW	Column Totals: <u>86</u> (A) <u>226</u> (B)
2, Litter	10	10.4%		
3. Solidago canadensis		10.4%	FACU	Prevalence Index = B/A =2.628
4. Rosa woodsii		5.2%	FACU	Hydrophytic Vegetation Indicators:
5. Symphoricarpos albus	5	5.2%	FACU	✓ 1 - Rapid Test for Hydrologic Vegetation
6, Helianthus annuus	5	5.2%	FACU	 ✓ 2 - Dominance Test is > 50%
7. Taraxacum officinale	5	5.2%	FACU	
8. Eleocharis palustris	3	3.1%	OBL	\checkmark 3 - Prevalence Index is ≤3.0 ¹
9. Triglochin maritima	3	3.1%	OBL	4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
10	0	0.0%		
11	0	0.0%		5 - Wetland Non-Vascular Plants
	96	= Total Cov	er	Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size:)				¹ Indicators of hydric soil and wetland hydrology must
1	0	0.0%		be present, unless disturbed or problematic.
2.	0	0.0%		Hydrophytic
	0	= Total Cove	er	Vegetation Present? Yes • No ·
% Bare Ground in Herb Stratum: ()				
Remarks:				1
Reliaires:				

Sampling Point: PFL 7

Profile Descr	iption: (Desc	ribe to the	depth need	ded to document	the indic	ator or co	nfirm the a	bsence of indicators	s.)	
Depth	N	1 atrix		Re	dox Featu	ires				
(inches)	Color (m	oist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-6	10YR	4/1	100					Silt Loam	saturated to soil surface	
6-14	10YR	4/1	93	10YR 4/6	7	С	M	Silt Loam	mottles at 6 inches	
	· · · · ·									
¹ Type: C=Cond	centration. D=	Depletion. R	M=Reduced	Matrix, CS=Covere	ed or Coate	ed Sand Gra	ins ² Locat	tion: PL=Pore Lining. I	M=Matrix	
Hydric Soil I	Indicators: (/	Applicable	to all LRRs	, unless otherwis	se noted.)			Indicators for P	roblematic Hydric Soils ³ :	
Histosol (/	,			Sandy Redox	. ,			2 cm Muck (A	A10)	
	Histic Epipedon (A2) Black Histic (A3)			Stripped Matr				Red Parent M	laterial (TF2)	
	. ,			Loamy Mucky	-		in MLRA 1)	Other (Explai	n in Remarks)	
	Sulfide (A4)			Loamy Gleyed ✓ Depleted Mat	-	<u>z)</u>				
Depleted Below Dark Surface (A11) Thick Dark Surface (A12)				Redox Dark S)		3		
	ick Mineral (S1)	,		Depleted Darl	· · ·				ophytic vegetation and gy must be present,	
	eyed Matrix (S4			Redox depres	-	,		unless disturbed or problematic.		
Restrictive La	-	-								
Type:	ayer (ii prese	ancy.								
Depth (incl	hoc);							Hydric Soil Preser	nt? Yes $ullet$ No $igodom$	
	nes).			_						
Remarks:										
Mottles at 6 in	nches.									
	v									
Wetland Hyd	-	ators								
-			مسمعيناسمطر		ار با مع			Cocordow	Indicators (minimum of two required)	
` _	icators (minir	num or on	e requirea;		[][]][]][]][]][]][]][]][]][]][]][]][]][Secondary	indicators (minimum of two required)	
	Matau (A1)					(DO) (autoar				
	Vater (A1)			Water-Stain	ed Leaves	(B9) (excep	ot MLRA	Water-S	itained Leaves (B9) (MLRA 1, 2,	
_	er Table (A2)			Water-Stain 1, 2, 4A, an	ied Leaves id 4B)	(B9) (excep	ot MLRA	Water-S 4A, and	tained Leaves (B9) (MLRA 1, 2, 4B)	
Saturation	rer Table (A2) n (A3)			Water-Stain 1, 2, 4A, an Salt Crust (I	ned Leaves nd 4B) B11)		ot MLRA	Water-S 4A, and Drainag	itained Leaves (B9) (MLRA 1, 2, 4B) e Patterns (B10)	
Saturation	er Table (A2) n (A3) arks (B1)			Water-Stain 1, 2, 4A, an Salt Crust (I Aquatic Inv	ned Leaves nd 4B) B11) ertebrates	(B13)	ot MLRA	Water-S 4A, and Drainag Dry Sea	itained Leaves (B9) (MLRA 1, 2, 4B) e Patterns (B10) son Water Table (C2)	
 ✓ Saturation Water Ma Sediment 	rer Table (A2) n (A3) arks (B1) t Deposits (B2)			Water-Stain 1, 2, 4A, an Salt Crust (I Aquatic Inve Hydrogen S	ned Leaves nd 4B) B11) ertebrates Gulfide Odo	(B13) r (C1)		Water-S 4A, and Drainag Dry Sea Saturati	itained Leaves (B9) (MLRA 1, 2, 4B) e Patterns (B10) son Water Table (C2) on Visible on Aerial Imagery (C9)	
Saturation Water Ma Sediment Drift depo	er Table (A2) n (A3) arks (B1) t Deposits (B2) osits (B3)			Water-Stain 1, 2, 4A, an Salt Crust (I Aquatic Inv Hydrogen S Oxidized Rh	ed Leaves ad 4B) B11) ertebrates Sulfide Odo nizospheres	(B13) r (C1) s on Living F		 Water-S 4A, and Drainage Dry Sea Saturation Geomor 	itained Leaves (B9) (MLRA 1, 2, 4B) e Patterns (B10) son Water Table (C2) on Visible on Aerial Imagery (C9) phic Position (D2)	
Saturation Water Ma Sediment Drift depo Algal Mat	ter Table (A2) n (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4)			Water-Stain 1, 2, 4A, an Salt Crust (I Aquatic Inv Hydrogen S Oxidized Rh Presence of	ed Leaves ad 4B) B11) ertebrates Sulfide Odo nizospheres f Reduced	(B13) r (C1) s on Living F Iron (C4)	Roots (C3)	 Water-S 4A, and Drainage Dry Sea Saturation ✓ Geomor Shallow 	tained Leaves (B9) (MLRA 1, 2, 4B) e Patterns (B10) son Water Table (C2) on Visible on Aerial Imagery (C9) phic Position (D2) Aquitard (D3)	
 Saturation Water Ma Sediment Drift depo Algal Mat Iron Depo 	ter Table (A2) n (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4)			Water-Stain 1, 2, 4A, an Salt Crust (I Aquatic Inv Hydrogen S Oxidized Rh	ed Leaves ad 4B) B11) ertebrates Gulfide Odo nizospheres F Reduced n Reductior	(B13) r (C1) s on Living F Iron (C4) i in Tilled Sc	Roots (C3) bils (C6)	 Water-S 4A, and Drainage Dry Sea Saturatie ✓ Geomor Shallow ✓ FAC-neu 	itained Leaves (B9) (MLRA 1, 2, 4B) e Patterns (B10) son Water Table (C2) on Visible on Aerial Imagery (C9) phic Position (D2)	

Surrace Soli Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8)		Other (Explain in Remarks)	RR A) RR A) RR A) RR A) Raised Ant Mo Frost Heave H	unds (D6) (LRR A) ummocks (D7)	
Field Observations: Surface Water Present? Water Table Present? Saturation Present? (includes capillary fringe)	Yes 〇 Yes 〇 Yes ④	No (•) No (•) No (-)	Depth (inches):	Wetland Hydrology Present?	Yes 🖲 No 🔾
	(stream gau	ge, monito	or well, aerial photos, previous inspe	ctions), if available:	

Soil saturated to surface. Two secondary indicators of wetland hydrology were also observed.

297

Project/Site: Printing for Less	City/County: Livingston/Park	S	Sampling Date: 19-Jun-19		
Applicant/Owner: Printing for Less		State: MT	Sampling Point:	PFL 8	
Investigator(s): B Schultz	Section, Township, Range:	s 22 t 2 9	5 R 9E	_	
Landform (hillslope, terrace, etc.): Undulating	Local relief (concave, conve	x, none): none	Slope: 0	0.0 % /	
Subregion (LRR): LRR E	45°39'4.49"N Lor	ng.: 110°36'11.13"W	V Datum	: WGS 84	
Soil Map Unit Name: Reedpoint-Tanna-Ethridge complex		NWI classifie	cation: PEM1C		
Are climatic/hydrologic conditions on the site typical for this time of ye	ar? Yes 🖲 No 🔾	(If no, explain in R	emarks.)		
Are Vegetation, Soil, or Hydrology significan	tly disturbed? Are "Norma	l Circumstances" pre	esent? Yes 🖲	No 🔿	
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 naturally	problematic? (If needed,	explain any answers	s in Remarks.)		

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes \bigcirc	No 🖲	Is the Sampled Area	
Hydric Soil Present?	Yes \bigcirc	No 🖲	within a Wetland?	Yes 🔿 No 🖲
Wetland Hydrology Present?	Yes \bigcirc	No 🖲	within a wetland?	
Demesler				

Dominant

Remarks:

Located approximately three feet above sample seven.

VEGETATION - Use scientific names of plants.

			Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft.)	% Cover		Status	Number of Dominant Species
1	0	0.0%		That are OBL, FACW, or FAC: (A)
2	0	0.0%		Total Number of Dominant
3	0	0.0%		Species Across All Strata:(B)
4	0	0.0%		
Sapling/Shrub Stratum (Plot size: 15 ft.)	0	= Total Cove	er	Percent of dominant Species That Are OBL, FACW, or FAC:(A/B)
1	0	0.0%		Prevalence Index worksheet:
2.	0	0.0%		Total % Cover of: Multiply by:
3.	0	0.0%		OBL species 0 x 1 = 0
4.	0	0.0%		FACW species $8 \times 2 = 16$
5.	0	0.0%		FAC species $10 \times 3 = 30$
	0	= Total Cove	er	FACU species $\frac{25}{25} \times 4 = \frac{100}{25}$
Herb Stratum (Plot size: 5 ft.)				UPL species $50 \times 5 = 250$
1. Bromus inermis	50	✓ 51.0%	UPL	
2. Symphoricarpos albus	20	20.4%	FACU	Column Totals: <u>93</u> (A) <u>396</u> (B)
3. Poa pratensis	10	10.2%	FAC	Prevalence Index = $B/A = 4.258$
4. Litter	5	5.1%		Hydrophytic Vegetation Indicators:
5. Rosa woodsii	5	5.1%	FACU	
6. Juncus balticus	5	5.1%	FACW	1 - Rapid Test for Hydrologic Vegetation
7. Iris missouriensis	3	3.1%	FACW	2 - Dominance Test is > 50%
8	0	0.0%		3 - Prevalence Index is ≤3.0 1
9	0	0.0%		4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
10	0	0.0%		5 - Wetland Non-Vascular Plants ¹
11	0	0.0%		
	98	= Total Cove	er	Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size:) 1	0	0.0%		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
2	0	0.0%		Hydrophytic
	0	= Total Cove	er	Vegetation Present? Yes No •
% Bare Ground in Herb Stratum: <u>0</u>				
Remarks:				

Smooth brome and snowberry dominated this sample location.

Sampling Point: PFL 8

298

Profile Descri	iption: (Des	cribe to f	the depth n	eeded to document	the indica	tor or cor	nfirm the a	bsence of indicators.	.)	
Depth		Matrix			ox Featur					
(inches)	Color (n	noist)	<u>%</u>	Color (moist)	%	Type	Loc ²	Texture	Remarks damp	
0-4	10YR	3/2	100					Silty Clay Loam	· ·	
4-22+	10YR	3/3	100					Silty Clay Loam	damp	
17 0.0		D								
		•		ed Matrix, CS=Covered		a Sand Grai	ns ² Locat	tion: PL=Pore Lining. M		
		(Applicat	e to all LR	Rs, unless otherwise	-				oblematic Hydric Soils ³ :	
Histosol (A	,			Sandy Redox (2 cm Muck (A	•	
	bedon (A2)			Stripped Matrix	. ,) (except i	n MIDA 1)	Red Parent Ma	. ,	
Black Histi	Sulfide (A4)			Loamy Gleyed	•	,, ,	II MLKA I)	Other (Explain	in Remarks)	
	Below Dark S	urface (A1	(1)	Depleted Matrix	•	/				
	k Surface (A1	•	.1)	Redox Dark Su	. ,			3 to diastans of budges	ala, dia waana kabian awal	
	ck Mineral (Si			Depleted Dark		7)		wetland hydrolog	phytic vegetation and y must be present,	
	yed Matrix (S			Redox depress	ions (F8)	-		unless disturbed		
Restrictive La		-								
Type:	.yei (ii pies	ciicyi								
Depth (inch	hec).							Hydric Soil Present	:? Yes 🔿 No 🖲	
	103).			_						
Remarks:										
No hydric soil	indicators v	were obs	erved at th	is sample location.						
L										
Hydrology	,									
Wetland Hyd	•••									
		imum of	one require	ed; check all that ap					ndicators (minimum of two	
	Vater (A1)			Water-Staine 1, 2, 4A, and		B9) (excep	t MLRA	4A, and 4	ained Leaves (B9) (MLRA 1, 2,	
	er Table (A2)				-					
Saturation	. ,			Salt Crust (B	•				Patterns (B10)	
Water Ma	. ,			Aquatic Inve	•	,		Dry Seas	on Water Table (C2)	
	Deposits (B2	.)		Hydrogen Su	lfide Odor	(C1)		Saturatio	n Visible on Aerial Imagery (C))
Drift depo				Oxidized Rhiz	ospheres	on Living R	oots (C3)	Geomorp	hic Position (D2)	
Algal Mat	or Crust (B4))		Presence of F	Reduced Ir	ron (C4)		Shallow A	Aquitard (D3)	
Iron Depo	osits (B5)			Recent Iron I	Reduction	in Tilled So	ils (C6)	FAC-neut	ral Test (D5)	

Stunted or Stressed Plants (D1) (I

Inundation Visible on Aerial Imagery (B
Sparsely Vegetated Concave Surface (B

 Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) 		 Stunted or Stressed Plants (D1) (LI Other (Explain in Remarks) 	RR A) Raised Ant Mounds (D6) (LRR A) Frost Heave Hummocks (D7)	
Field Observations: Surface Water Present? Water Table Present? Saturation Present? (includes capillary fringe)	Yes () Yes () Yes ()	No 💿 No 💿 No 💿	Depth (inches):	Wetland Hydrology Present? Yes 🔿 No 🖲
Describe Recorded Data (stream gaug	je, monito	r well, aerial photos, previous inspe	ctions), if available:

Remarks:

No wetland hydrology indicators were observed at this sample location.

299

Project/Site: Printing for Less	City/County: Livin	ngston/Park	Sampling Date: 26-Jun-19		
Applicant/Owner: Printing for Less		State: MT	Sampling Point:	PFL 9	
Investigator(s): B Schultz	Section, Towns	ship, Range: S 22 T	2.S R 9.E		
Landform (hillslope, terrace, etc.): Undulating	Local relief (cor	ncave, convex, none): none	Slope:	0.0 % / 0.0 °	
Subregion (LRR): LRR E	45°39'3.32"N	Long.: 110°36'10.83	"W Datu	m: WGS 84	
Soil Map Unit Name: Reedpoint-Tanna-Ethridge complex		NWI class	ification: PEM1C		
Are climatic/hydrologic conditions on the site typical for this time of ye Are Vegetation, Soil, or Hydrology significant		No (If no, explain in Are "Normal Circumstances"		No O	
Are Vegetation D , Soil , or Hydrology naturally	problematic?	(If needed, explain any answ	ers in Remarks.)		

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🖲	No \bigcirc	Is the Sampled Area	
Hydric Soil Present?	Yes 🖲	No O	•	Yes 🔿 No 🖲
Wetland Hydrology Present?	Yes \bigcirc	No 🖲	within a Wetland?	

Remarks:

Two of three wetland indicators were observed at this sample location.

VEGETATION - Use scientific names of plants. Dominant Species? Indicator Absolute Rel.Strat. Dominance Test worksheet: Tree Stratum (Plot size: 30 ft.) % Cover Cover Status Number of Dominant Species 0 0.0% That are OBL, FACW, or FAC: (A) 1. 1 2. 0 0.0% Total Number of Dominant 0 0.0% 3. 1 (B) Species Across All Strata: 4. 0 0.0% Percent of dominant Species = Total Cover 0 100.0% (A/B) That Are OBL, FACW, or FAC: ____) Sapling/Shrub Stratum (Plot size: 15 ft. 0 0.0% 1. **Prevalence Index worksheet:** 2. 0 0.0% Total % Cover of: Multiply by: 3. 0 0.0% OBL species 0 0 x 1 =4. 0 0.0% 20 FACW species 10 x 2 = 5. 0 0.0% FAC species 70 x 3 = 210 = Total Cover 0 0 0 FACU species x 4 Herb Stratum (Plot size: 5 ft.) 25 5 x 5 = UPL species 1 Agrostis gigantea 50 ✓ 52.6% FAC 255 Column Totals: 85 (B) (A) 2. Cirsium arvense 10 10.5% FAC 3. Poa pratensis Prevalence Index = B/A =10 10.5% FAC 3.000 4 Juncus balticus 10 10.5% FACW Hydrophytic Vegetation Indicators: 5. Litter 10 10.5% 1 - Rapid Test for Hydrologic Vegetation 6. Cardaria draba 5 5.3% UPI ✓ 2 - Dominance Test is > 50% 0.0% 0 7._ ✓ 3 - Prevalence Index is \leq 3.0 ¹ 0 0.0% 8. 4 - Morphological Adaptations ¹ (Provide supporting 0.0% 0 9. data in Remarks or on a separate sheet) 0 0.0% 10. **5** - Wetland Non-Vascular Plants ¹ 0 0.0% 11. Problematic Hydrophytic Vegetation ¹(Explain) 95 = Total Cover 1 Indicators of hydric soil and wetland hydrology must $% \left({\left[{{{\rm{A}}} \right]_{{\rm{A}}}} \right)_{{\rm{A}}}} \right)$ Woody Vine Stratum (Plot size:) be present, unless disturbed or problematic. 1. 0 0.0% 2. 0 0.0% Hydrophytic Vegetation Yes 🔍 No 🔾 0 = Total Cover Present? % Bare Ground in Herb Stratum: 0

Remarks:

Redtop dominated the sample location.

Sampling Point: PFL 9

Depth		Matrix			Red	ox Featu	res						
(inches)	Color (r	moist)	%	Color (n	noist)	%	Type ¹	Loc ²	Texture	Remarks			
0-2	10YR	3/2	100						silty clay loam	rooty, organic			
2-8	10YR	4/1	97	10YR	5/1	3	С	М	Silty Clay Loam	increase clay as increase depth, 3% mottles at 6			
8-22	10YR	4/1	92	10YR	5/1	5	С	М	Silty Clay Loam	very clayey, very wet soi			
				10YR	5/3	3	С	M					
ype: C=Con	centration. D	=Depletion	n. RM=Red	uced Matrix, C	S=Covered	d or Coate	d Sand Gra	ns ² Loca	tion: PL=Pore Lining. N	M=Matrix			
-		(Applicab	ole to all L	RRs, unless						roblematic Hydric Soils ³ :			
Histosol (/					ly Redox (,			2 cm Muck (A				
	bedon (A2)			·	ped Matrix	• •	1) (overati	- MIDA 1)	Red Parent M				
Black Hist	. ,				ny Mucky ny Gleyed	•	1) (except i	n MLRA I)	Other (Explain	n in Remarks)			
- · ·	Sulfide (A4)	Surface (A1	1)		eted Matri	•	-)						
- ·	Below Dark S	•	.1)		ox Dark Su	. ,			2				
	k Surface (A1	,			eted Dark				³ Indicators of hydrophytic vegetation and wetland hydrology must be present,				
	ck Mineral (S				ox depress		.)		unless disturbed				
	eyed Matrix (S ayer (if pres	,			in depi dee					•			
Type:	ayer (ii pres	sent):											
	hac);								Hydric Soil Presen	nt? Yes 🖲 No 🔾			
Depth (incl	les):								-				
Remarks:													
ottles at 6 i	nches.												
ydrology													
etland Hyd	rology Indi	cators:											
Primary Indi	cators (min	imum of	one requi	red; check a	ll that ap	ply)			Secondary I	Indicators (minimum of two require			
Surface V	Vater (A1)						(B9) (excep	t MLRA		tained Leaves (B9) (MLRA 1, 2,			
High Wat	er Table (A2))		1,	2, 4A, and	I 4B)			4A, and	4B)			
Saturatio	n (A3)			Sa	lt Crust (B	11)			Drainage	e Patterns (B10)			
Water Ma	. ,				uatic Inve		(B13)			son Water Table (C2)			
	: Deposits (B2				drogen Su		•		,	on Visible on Aerial Imagery (C9)			

Oxidized Rhizospheres on Living Roots (C3)	Geomorphic Position (I	02)
Oxidized Rhizospheres on Living Roots (C3)	Geomorphic Position	(E

Presence of Reduced Iron (C4)	Shallow Aquitard (D3)
Recent Iron Reduction in Tilled Soils (C6)	FAC-neutral Test (D5)

FAC-neutral Test (D5)
Raised Ant Mounds (D6) (LRR A)

Inundation Visible on Aerial Imagery (B7)
Sparsely Vegetated Concave Surface (B8)

Drift deposits (B3)

Iron Deposits (B5)

Algal Mat or Crust (B4)

Surface Soil Cracks (B6)

		(50)			
Field Observations: Surface Water Present?	Yes 🔾	No 🖲	Depth (inches):		
Water Table Present?	Yes \bigcirc	No 🖲	Depth (inches):		
Saturation Present? (includes capillary fringe)	$\mathbf{Yes} \bigcirc$	No 🖲	Depth (inches):	Wetland Hydrology Present?	Yes 🔾 No 🖲
Describe Recorded Data (stream gaug	ge, monitor	well, aerial photos, previous	s inspections), if available:	

Presence of Reduced Iron (C4)

Other (Explain in Remarks)

Stunted or Stressed Plants (D1) (LRR A)

Remarks:

No hydric soil indicators were observed at this locaiton.

301

Project/Site: Printing for Less	City/County: Livingston/Park	San	pling Date: <u>26-Jun-19</u>
Applicant/Owner: Printing for Less	9	State: MT S	Sampling Point: PFL 10
Investigator(s): B Schultz	Section, Township, Range:	s 22 t 2 S	R 9 E
Landform (hillslope, terrace, etc.): Undulating	Local relief (concave, conve	, none): none	Slope: <u>0.0</u> % / <u>0.0</u> °
Subregion (LRR): LRR E	45°39'3.37"N Lon	.: 110°36'9.90"W	Datum: WGS 84
Soil Map Unit Name: Reedpoint-Tanna-Ethridge complex		NWI classificat	ion: PEM1C
Are climatic/hydrologic conditions on the site typical for this time of ye	ar? Yes 🖲 No 🔾	(If no, explain in Rem	arks.)
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 significant	tly disturbed? Are "Normal	Circumstances" prese	nt? Yes 🖲 No 🔾
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 naturally j	problematic? (If needed, e	xplain any answers in	Remarks.)

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🖲	No O	Is the Sampled Area	
Hydric Soil Present?	Yes 🖲	No O	•	Yes 🖲 No 🔾
Wetland Hydrology Present?	Yes 🖲	No O	within a Wetland?	······
Remarks:				

Dominant Species?

Sample located three feet below sample nine.

VEGETATION - Use scientific names of plants.

		Rel.Strat.		Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft.)	% Cover	Cover	Status	Number of Dominant Species
1	0	0.0%		That are OBL, FACW, or FAC: (A)
2	0	0.0%		Total Number of Dominant
3	0	0.0%		Species Across All Strata:(B)
4	0	0.0%		
Sapling/Shrub Stratum (Plot size: 15 ft.)	0	= Total Cove	er	Percent of dominant Species That Are OBL, FACW, or FAC: <u>100.0%</u> (A/B)
1	0	0.0%		Prevalence Index worksheet:
2	0	0.0%		Total % Cover of: Multiply by:
3.	0	0.0%		OBL species $0 \times 1 = 0$
4.	0	0.0%		FACW species 70 x 2 = 140
5.	0	0.0%		FAC species $25 \times 3 = 75$
	0	= Total Cove	er	FACU species $0 \times 4 = 0$
Herb Stratum (Plot size: 5 ft.)				
1. Juncus effusus	65	✔ 68.4%	FACW	
2. Alopecurus arundinaceus	25	26.3%	FAC	Column Totals: <u>95</u> (A) <u>215</u> (B)
3. Mentha arvensis	5	5.3%	FACW	Prevalence Index = $B/A = 2.263$
4	0	0.0%		Hydrophytic Vegetation Indicators:
5	0	0.0%		1 - Rapid Test for Hydrologic Vegetation
6	0	0.0%		 ✓ 2 - Dominance Test is > 50%
7	0	0.0%		
8	0	0.0%		✓ 3 - Prevalence Index is \leq 3.0 ¹
9	0	0.0%		4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
10	0	0.0%		\Box 5 - Wetland Non-Vascular Plants ¹
11	0	0.0%		
	95	= Total Cove	er	\Box Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size:)				¹ Indicators of hydric soil and wetland hydrology must
1	0	0.0%		be present, unless disturbed or problematic.
2.	0	0.0%		Hydrophytic
	0	= Total Cove	er	Vegetation Present? Yes • No O
% Bare Ground in Herb Stratum: _0				
Remarks:				
Sample location dominated by Baltic rush.				

*Indicator suffix = National status or professional decision assigned because Regional status not defined by FWS.

Sampling Point: PFL 10

				document the indicator or confirm the a Redox Features				···· ·		
Depth (inches)	Color (%	Color (n		%	Type ¹	Loc ²	Texture	Remarks
0-14	10YR	4/1	90	10YR	4/4	5	C	M	Silty Clay Loam	saturated to soil surface
				10YR	4/6	5	С	М		increase clay as increae depth
						_				
¹ Type: C=Cond	centration. D	=Depletior	n. RM=Redu	ced Matrix, C	S=Covere	d or Coate	ed Sand Gra	ins ² Loca	tion: PL=Pore Lining. M=	Matrix
Hydric Soil I		(Applicat	ole to all LF	· _		-)			blematic Hydric Soils ³ :
Black Histi	edon (A2)			Strip	ny Gleyed	x (S6) Mineral (F Matrix (F	⁼ 1) (except 2)	in MLRA 1)	2 cm Muck (A10 Red Parent Mat ✓ Other (Explain i	erial (TF2)
Thick Dark	Below Dark S k Surface (A1 ck Mineral (S yed Matrix (S	12) 51)	1)	Red Dep	leted Matr ox Dark Su leted Dark ox depress	urface (F6 Surface (, F7)		³ Indicators of hydropi wetland hydrology unless disturbed o	must be present,
Restrictive La	ayer (if pres	sent):								
Туре:									Hydric Soil Present?	yes ● No ○
Depth (incl	nes):								Tryunc Son Fresent:	
Remarks:										
Black (10YR 2	2/1) spots t	hroughou	ıt profile fr	om 2 to 4 i	nches. H	lydrogen	sulfide oc	lor was ob	oserved.	

Hydrology

Wetland Hydrology Indicators	s:		
Primary Indicators (minimum	n of one required; che	ck all that apply)	Secondary Indicators (minimum of two required)
Surface Water (A1) High Water Table (A2)		Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B)	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B)
 Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial I Sparsely Vegetated Concave 	Imagery (B7)	 Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Roots (C3) Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (C6) Stunted or Stressed Plants (D1) (LRR A) Other (Explain in Remarks) 	 Drainage Patterns (B10) Dry Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost Heave Hummocks (D7)
Surface Water Fresent:	ſes ○ No ●	Depth (inches):	
	ſes ○ No ● ſes ● No ○	Depth (inches): Wetland H	lydrology Present? Yes 🖲 No 🔿
Describe Recorded Data (strea	am gauge, monitor we	ell, aerial photos, previous inspections), if avai	lable:
Remarks:			
Soil saturated to surface. Soi	il had a hydrogen sulfi	de odor. Two secondary indicators of wetland	I hydrology were observed at this sample location.

303

Project/Site: Printing for Less	City/County: Livings	ston/Park Sa	ampling Date: <u>26-Jun-19</u>
Applicant/Owner: Printing for Less		State: MT	Sampling Point: PFL 11
Investigator(s): B Schultz	Section, Townshi	ip, Range: S 22 T 2 S	R 9 E
Landform (hillslope, terrace, etc.): Undulating	Local relief (conca	ave, convex, none): none	Slope: <u>0.0</u> % / <u>0.0</u> °
Subregion (LRR): LRR E	Lat.: 45°39'3.43"N	Long.: 110°36'9.48"W	Datum: WGS 84
Soil Map Unit Name: Reedpoint-Tanna-Ethridge complex		NWI classific	ation: PEM1C
Are climatic/hydrologic conditions on the site typical for this ti	ime of year? Yes 🔍 I	No \bigcirc (If no, explain in Re	marks.)
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 si	ignificantly disturbed? Ar	e "Normal Circumstances" pres	sent? Yes 🖲 No 🔾
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 na	aturally problematic? (I	f needed, explain any answers	in Remarks.)

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes () Yes () Yes ()	No () No () No ()	Is the Sampled Area within a Wetland?	Yes \bullet No \bigcirc
Remarks:				
Cattail marsh.				

Dominant

VEGETATION - Use scientific names of plants.

		_Species? .		-
Tree Stratum (Plot size: 30 ft.)	Absolute % Cover	Rel.Strat.	Indicator Status	Dominance Test worksheet:
		0.0%	Status	Number of Dominant Species
1	0			That are OBL, FACW, or FAC: (A)
2	0	0.0%		Total Number of Dominant
3	0	0.0%		Species Across All Strata: 2 (B)
4	0	0.0%		
Sapling/Shrub Stratum (Plot size: 15 ft.)	0	= Total Cove	er	Percent of dominant Species That Are OBL, FACW, or FAC:100.0% (A/B)
1	0	0.0%		Prevalence Index worksheet:
2	0	0.0%		Total % Cover of: Multiply by:
3.	0	0.0%		OBL species 50 x 1 = 50
4.	0	0.0%		FACW species $40 \times 2 = 80$
5.	0	0.0%		FAC species $0 \times 3 = 0$
	0	= Total Cove	er	FACU species $0 \times 4 = 0$
Herb Stratum (Plot size: 5 ft.)				UPL species $0 \times 5 = 0$
1. Typha latifolia	40	42.1%	OBL	
2. Juncus effusus	35	✔ 36.8%	FACW	Column Totals: <u>90</u> (A) <u>130</u> (B)
3. Carex nebrascensis	10	10.5%	OBL	Prevalence Index = $B/A = 1.444$
4. Mentha arvensis	5	5.3%	FACW	I bade a bad's Manakat'an Tad'as base
5, Litter	5	5.3%		Hydrophytic Vegetation Indicators:
6	0	0.0%		✓ 1 - Rapid Test for Hydrologic Vegetation
7	0	0.0%		✓ 2 - Dominance Test is > 50%
8	0	0.0%		✓ 3 - Prevalence Index is \leq 3.0 ¹
9.	0	0.0%		\Box 4 - Morphological Adaptations ¹ (Provide supporting
10	0	0.0%		data in Remarks or on a separate sheet)
11	0	0.0%		$igsqcup$ 5 - Wetland Non-Vascular Plants 1
11	95	= Total Cove	er	Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size:)				¹ Indicators of hydric soil and wetland hydrology must
1	0	0.0%		be present, unless disturbed or problematic.
2.	0	0.0%		Hydrophytic
	0	= Total Cove	er	Vegetation Present? Yes • No ·
% Bare Ground in Herb Stratum: ()				
Remarks:				1
Site dominated by cattails and Baltic rush.				

Sampling Point: PFL 11

Depth		Matrix			Redox Feat	ures			
(inches)	Color (r	noist)	%	Color (moist) %	Type ¹	Loc ²	Texture	Remarks
0-6	10YR	4/1	100					Silty Clay Loam	saturated, stinky soil
6-14+	10YR	4/1	95	10YR 4,	6 5	С	М	Silty Clay Loam	stinky, silky soil
Type: C=Cond	centration. D	=Depletion	. RM=Redu	ced Matrix, CS=Co	vered or Coat	ed Sand Gra	ins ² Loca	ition: PL=Pore Lining. I	M=Matrix
Hydric Soil I	ndicators:	(Applicab	le to all Ll	RRs, unless othe	rwise noted.	.)		Indicators for P	roblematic Hydric Soils ³ :
Histosol (A	A1)			Sandy Re	()			2 cm Muck (#	A10)
	pedon (A2)			=	Matrix (S6)			Red Parent M	laterial (TF2)
Black Histi	. ,				ucky Mineral (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	in MLRA 1)	Other (Explai	in in Remarks)
	Sulfide (A4)		1)		eyed Matrix (I Matrix (F3)	-2)			
_ ·	Below Dark S	•	1)	·	rk Surface (F6	5)		3	
	k Surface (A1 ck Mineral (S				Dark Surface	,			ophytic vegetation and ay must be present,
	ved Matrix (S			_	pressions (F8			unless disturbed	
Restrictive La	, ,	,							
Type:		-							
Depth (incl	nes):							Hydric Soil Preser	nt? Yes 🖲 No 🔾
Remarks:									
lydrogen sulf	fide odor w	as observ	ed.						
., <u>j</u>									

Hydrology

1					
Wetland Hydrology Indica	itors:				
Primary Indicators (minin	num of one	required;	Secondary Indicators (minimum of two required)		
✓ Surface Water (A1)			Water-Stained Leave	es (B9) (except	
High Water Table (A2)			1, 2, 4A, and 4B)		4A, and 4B)
✓ Saturation (A3)		Drainage Patterns (B10)			
Water Marks (B1)			Aquatic Invertebrate	es (B13)	Dry Season Water Table (C2)
Sediment Deposits (B2)			✓ Hydrogen Sulfide Od	lor (C1)	Saturation Visible on Aerial Imagery (C9)
Drift deposits (B3)			Oxidized Rhizosphere	es on Living Ro	Roots (C3) Geomorphic Position (D2)
Algal Mat or Crust (B4)			Presence of Reduced	d Iron (C4)	Shallow Aquitard (D3)
Iron Deposits (B5)			Recent Iron Reduction	on in Tilled Soil	ils (C6) FAC-neutral Test (D5)
Surface Soil Cracks (B6)			Stunted or Stressed	Plants (D1) (LR	RR A) Raised Ant Mounds (D6) (LRR A)
Inundation Visible on Ae	rial Imagery	(B7)	Other (Explain in Rei	marks)	Frost Heave Hummocks (D7)
Sparsely Vegetated Con	cave Surface	(B8)			
Field Observations:					
Surface Water Present?	Yes 🖲	No \bigcirc	Depth (inches):	1	
Water Table Present?	Yes \bigcirc	No 🖲	Depth (inches):		Wetland Hydrology Present? Yes • No O
Saturation Present? (includes capillary fringe)	Yes 🖲	No \bigcirc	Depth (inches):	0	Wetland Hydrology Present? Yes • No 🔾
Describe Recorded Data (stream gau	ge, monito	r well, aerial photos, pr	revious inspec	ections), if available:
Remarks:					
Approximately one inch o	f surface wa	ater.			
······································					

305

Project/Site: Printing for Less	City/County: Livingston/Park	Sam	pling Date: 26-Jun-19
Applicant/Owner: Printing for Less	S	tate: MT S	ampling Point: PFL 12
Investigator(s): B Schultz	Section, Township, Range:	5 22 T 2 S	R 9 E
Landform (hillslope, terrace, etc.): Undulating	Local relief (concave, convex	, none): none	Slope: 0.0 % / 0.0 °
Subregion (LRR): LRR E	45°39'6.36"N Long	.: 110°36'11.12"W	Datum: WGS 84
Soil Map Unit Name: Reedpoint-Tanna-Ethridge complex		NWI classificati	ion: FSW
Are climatic/hydrologic conditions on the site typical for this time of ye	ar? Yes $oldsymbol{igstar}$ No $igstar$	(If no, explain in Rem	arks.)
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 significant	tly disturbed? Are "Normal (Circumstances" prese	nt? Yes 🖲 No 🔾
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 naturally	problematic? (If needed, e	xplain any answers in	Remarks.)

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🖲	No O	Is the Sampled Area	
Hydric Soil Present?	Yes 🖲	No O	within a Wetland?	Yes 🖲 No
Wetland Hydrology Present?	Yes 🖲	No O	within a wetland?	

Dominant

Remarks:

Shrub/scrub sample location along railroad grade.

VEGETATION - Use scientific names of plants.

	-	_Species?		
				Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft.)	% Cover		Status	Number of Dominant Species
1	0			That are OBL, FACW, or FAC: (A)
2	0	0.0%		Total Number of Dominant
3	0	0.0%		Species Across All Strata: 3 (B)
4	0	0.0%		
Sapling/Shrub Stratum (Plot size: 15 ft.)	0	= Total Cove	er	Percent of dominant Species That Are OBL, FACW, or FAC: <u>100.0%</u> (A/B)
1. Salix exigua	40	✔ 100.0%	FACW	Prevalence Index worksheet:
2.	0	0.0%		Total % Cover of: Multiply by:
3.	0	0.0%		OBL species 10 x 1 = 10
4.	0	0.0%		FACW species $60 \times 2 = 120$
5.	0	0.0%		FAC species $15 \times 3 = 45$
	40	= Total Cove	er	FACU species $5 \times 4 = 20$
Herb Stratum (Plot size: 5 ft.)			-	
1. Juncus effusus	20	37.7%	FACW	
2. Agrostis gigantea	15	28.3%	FAC	Column Totals: <u>90</u> (A) <u>195</u> (B)
3. Triglochin maritima	5	9.4%	OBL	Prevalence Index = $B/A = 2.167$
4. Eleocharis palustris	5	9.4%	OBL	
5. Litter	3	5.7%		Hydrophytic Vegetation Indicators:
6. Symphoricarpos albus	5	9.4%	FACU	1 - Rapid Test for Hydrologic Vegetation
7	0	0.0%		2 - Dominance Test is > 50%
8	0	0.0%		✓ 3 - Prevalence Index is \leq 3.0 ¹
9	0	0.0%		\Box 4 - Morphological Adaptations ¹ (Provide supporting
10	0	0.0%		data in Remarks or on a separate sheet)
11	0	0.0%		\Box 5 - Wetland Non-Vascular Plants 1
	53	= Total Cove	er	Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size:)				¹ Indicators of hydric soil and wetland hydrology must
1	0	0.0%		be present, unless disturbed or problematic.
2.	0	0.0%		Hydrophytic
	0	= Total Cove	er	Vegetation Present? Yes • No ·
% Bare Ground in Herb Stratum: _0				
Remarks:				
Salix overstory with mixed understory.				

*Indicator suffix = National status or professional decision assigned because Regional status not defined by FWS.

Sampling Point: PFL 12

Depth .		Matrix			Redox Feat	ures			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-6	10YR	4/1	100					Silty Clay Loam	saturated, surface wate
6-15	10YR	4/1	94	10YR 4/6	6	С	м	Silty Clay Loam	mottles at 6 inches
								·	
ype: C=Conce	entration. D	=Depletion	. RM=Redu	ced Matrix, CS=Cov	ered or Coat	ed Sand Gra	ains ² Loca	tion: PL=Pore Lining.	M=Matrix
ydric Soil Ir	ndicators:	(Applicab	le to all LF	RRs, unless other	vise noted.)		Indicators for P	roblematic Hydric Soils ³ :
Histosol (A	,			Sandy Red	()			2 cm Muck (/	,
Histic Epipe	. ,			Stripped M	. ,			 Red Parent Material (TF2) Other (Explain in Remarks) 	
Black Histic					ky Mineral (,, ,	in MLRA 1)		
_ , _	Sulfide (A4)				yed Matrix (F	-2)			
	elow Dark S	•	1)	✓ Depleted N	. ,				
Thick Dark	Surface (A1	12)			k Surface (F6	,		³ Indicators of hydro	ophytic vegetation and
Sandy Muc	k Mineral (S	51)			ark Surface	. ,			gy must be present,
Sandy Gley	ed Matrix (54)		Redox dep	ressions (F8)			uniess disturbed	l or problematic.
estrictive La	yer (if pres	sent):							
Туре:									
Depth (inch	es):							Hydric Soil Preser	nt? Yes 🖲 No 🔾
emarks:									
ttles at 6 in	ches.								
ydrology	,								
	ology Indi	cators:							
etland Hydr			one requir	ed; check all that	apply)			Secondary	Indicators (minimum of two req

Surface Water (A1)		Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B)	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B)		
✓ Saturation (A3)		Salt Crust (B11)	Drainage Patterns (B10)		
Water Marks (B1)		Aquatic Invertebrates (B13)	Dry Season Water Table (C2)		
Sediment Deposits (B2)		Hydrogen Sulfide Odor (C1)	Saturation Visible on Aerial Imagery (C9)		
Drift deposits (B3)		Oxidized Rhizospheres on Living Roots (C3)	Geomorphic Position (D2)		
Algal Mat or Crust (B4)		Presence of Reduced Iron (C4)	Shallow Aquitard (D3)		
Iron Deposits (B5)		Recent Iron Reduction in Tilled Soils (C6)	✓ FAC-neutral Test (D5)		
Surface Soil Cracks (B6)		Stunted or Stressed Plants (D1) (LRR A)	Raised Ant Mounds (D6) (LRR A)		
Inundation Visible on Aer	rial Imagery (B7)	Other (Explain in Remarks)	Frost Heave Hummocks (D7)		
Sparsely Vegetated Conc	ave Surface (B8)				
Field Observations:					
Surface Water Present?	Yes 💿 No 🔾	Depth (inches): 1			
Water Table Present?	Yes 🔾 No 🖲	Depth (inches):			
Saturation Present? (includes capillary fringe)	Yes No O 	Depth (inches): Wetland H	iydrology Present? Yes 🖲 No 🔾		
Describe Recorded Data (s	tream gauge, monit	or well, aerial photos, previous inspections), if avai	lable:		
Remarks:					
One inch of surface water	was observed. Two	secondary indicators of wetland hydrology were of	served at this location		

307

Project/Site: Printing for Less	City/County: Livingston/Park	:	Sampling Date: 26-	Jun-19
Applicant/Owner: Printing for Less		State: MT	Sampling Point:	PFL 13
Investigator(s): B Schultz	Section, Township, Range	s 22 t 2	S R 9 E	_
Landform (hillslope, terrace, etc.): Undulating	Local relief (concave, conve	ex, none): none	Slope:	0.0 % / 0.0 °
Subregion (LRR): LRR E	45°39'6.52"N Lo	ng.: 110°36'11.22"\	N Datu	m: WGS 84
Soil Map Unit Name: reedpoint-Tanna-Ethridge complex		NWI classif	ication: FSW	
Are climatic/hydrologic conditions on the site typical for this time of year	ar? Yes 🖲 No 🔾	(If no, explain in F	Remarks.)	
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 significant	ly disturbed? Are "Norma	l Circumstances" pr	resent? Yes 🖲	No \bigcirc
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 naturally p	problematic? (If needed,	explain any answer	rs in Remarks.)	

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🔾	No 🖲	Is the Sampled Area	
Hydric Soil Present?	Yes \bigcirc	No 🖲		Yes 🔾 No 🖲
Wetland Hydrology Present?	Yes \bigcirc	No 🖲	within a Wetland?	
Demoster				

Dominant

Remarks:

No wetland indicators were observed at this sample location.

VEGETATION - Use scientific names of plants.

		_Species?		
Tree Stratum (Plot size: 30 ft.)	Absolute % Cover	Rel.Strat.	Indicator Status	Dominance Test worksheet:
			Status	Number of Dominant Species
1	0	0.0%		That are OBL, FACW, or FAC: (A)
2	0	0.0%		Total Number of Dominant
3	0	0.0%		Species Across All Strata: 2 (B)
4	0	0.0%		
Sapling/Shrub Stratum (Plot size: 15 ft.)	0	= Total Cov	er	Percent of dominant Species That Are OBL, FACW, or FAC:(A/B)
1. Salix exigua	5	✔ 100.0%	FACW	Prevalence Index worksheet:
2	0	0.0%		Total % Cover of: Multiply by:
3.	0	0.0%		OBL species x 1 =
4.	0	0.0%		FACW species $10 \times 2 = 20$
5.	0	0.0%		FAC species $0 \times 3 = 0$
	5	= Total Cov	er	FACU species $\frac{88}{100} \times 4 = \frac{352}{100}$
Herb Stratum (Plot size: 5 ft.)				UPL species $0 \times 5 = 0$
1. Symphoricarpos albus	50	✓ 53.8%	FACU	
2. Rosa woodsii	15	16.1%	FACU	Column Totals: <u>98</u> (A) <u>372</u> (B)
3 Dactylis glomerata	10	10.8%	FACU	Prevalence Index = $B/A = 3.796$
4. Achillea millefolium	10	10.8%	FACU	
5. Equisetum hyemale	5	5.4%	FACW	Hydrophytic Vegetation Indicators:
6. Helianthus annuus	3	3.2%	FACU	1 - Rapid Test for Hydrologic Vegetation
7	0	0.0%		2 - Dominance Test is > 50%
8	0	0.0%		□ 3 - Prevalence Index is \leq 3.0 ¹
9	0	0.0%		\Box 4 - Morphological Adaptations ¹ (Provide supporting
10.	0	0.0%		data in Remarks or on a separate sheet)
11	0	0.0%		\square 5 - Wetland Non-Vascular Plants 1
	93	= Total Cov	er	Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size:)				¹ Indicators of hydric soil and wetland hydrology must
1	0	0.0%		be present, unless disturbed or problematic.
2.	0	0.0%		Hydrophytic
	0	= Total Cov	er	Vegetation Present? Yes No •
% Bare Ground in Herb Stratum: $_{ m O}$				
Remarks:				1
Snowberry domianted this site.				

Raised Ant Mounds (D6) (LRR A)

Soil

Sampling Point: PFL 13

308

Profile Descr	iption: (Des	cribe to t	he depth n	eeded to document	he indic	ator or co	nfirm the a	bsence of indicator	s.)
Depth		Matrix		Red	ox Featu	ires			
(inches)	Color (r	noist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-4	10YR	3/2	100					silty lay loam	organic, rooty
4-20	10YR	4/1	100					Silty Clay Loam	increase clay as deeper in profile
					-			· · ·	prorrite
1		-							
/1				ed Matrix, CS=Covered			ins ² Locat	tion: PL=Pore Lining.	
_		(Applicat	e to all LR	Rs, unless otherwise	-				Problematic Hydric Soils ³ :
	,			Sandy Redox (,			2 cm Muck (
	bedon (A2)			Stripped Matrix	• •	1) (Material (TF2)
Black Hist	. ,			Loamy Mucky	•	,, ,	IN MILKA I)	Other (Expla	in in Remarks)
	Sulfide (A4)			Loamy Gleyed	-	2)			
	Below Dark S	•	.1)	Redox Dark Su	• •	`			
	k Surface (A1	,		Depleted Dark	•				ophytic vegetation and
·	ck Mineral (S	,		Redox depress	•	Γ7)			ogy must be present, d or problematic.
	eyed Matrix (S	,							
Restrictive La	ayer (if pres	ent):							
Type:								Undria Cail Brass	nt? Yes 🔿 No 🖲
Depth (incl	hes):			_				Hydric Soil Prese	nt? Yes 🔾 No 🖲
Remarks:									
No hydric soil	indicators	were obs	erved at th	is sample location.					
Hydrology	/								
Wetland Hyd	rology India	cators:							
Primary Indi	cators (min	imum of	one reauire	ed; check all that ap	olv)			Secondarv	Indicators (minimum of two required)
` 	Vater (A1)			Water-Staine		(B9) (excer	ot MLRA		Stained Leaves (B9) (MLRA 1, 2,
	er Table (A2)			1, 2, 4A, and		() (4A, and	
Saturation	. ,			Salt Crust (B	11)			Drainac	e Patterns (B10)
Water Ma	()				,	(B13)			ason Water Table (C2)
	()					. ,			
	: Deposits (B2	-)		Hydrogen Su		. ,	h = h = (C2)		ion Visible on Aerial Imagery (C9)
Drift depo				Oxidized Rhi	•	-	(UUIS (US)		rphic Position (D2)
	or Crust (B4))		Presence of		. ,			/ Aquitard (D3)
Iron Depo	osits (B5)			Recent Iron	Reductior	in Tilled So	oils (C6)	FAC-ne	utral Test (D5)

Stunted or Stressed Plants (D1) (LRR A) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)

Surface Soil Cracks (B6)

Inundation Visible on A Sparsely Vegetated Cor	5,	. ,	Other (Explain in Remarks)	Frost Heave H	lummocks (D7)
Field Observations: Surface Water Present?	Yes O	No 🖲	Depth (inches):]	
Water Table Present?	Yes \bigcirc	No 🖲	Depth (inches):		~ ~ ~ ~
Saturation Present? (includes capillary fringe)	Yes \bigcirc	No 🖲	Depth (inches):	Wetland Hydrology Present?	Yes 🕖 No 🖲
Describe Recorded Data	(stream gau	ge, monito	or well, aerial photos, previous inspe	ections), if available:	
Remarks:					

No evidence of wetland hydrology was observed at this sample location.

309

Project/Site: Printing for Less	City/County: Livingston/Park	S	ampling Date: 26-Jun-19
Applicant/Owner: Printing for Less		State: MT	Sampling Point: PFL 14
Investigator(s): B Schultz	Section, Township, Range	s 22 t 2 5	5 R 9 E
Landform (hillslope, terrace, etc.):	Local relief (concave, conve	ex, none):	Slope: <u>0.0</u> % / <u>0.0</u> °
Subregion (LRR): LRR E	45°39'10.46"N Lo	ng.: 110°36'8.06"W	Datum: WGS 84
Soil Map Unit Name:		NWI classific	cation:
Are climatic/hydrologic conditions on the site typical for this time of yea	ar? Yes $ullet$ No $igodot$	(If no, explain in R	emarks.)
Are Vegetation . , Soil , or Hydrology significant	ly disturbed? Are "Norma	l Circumstances" pre	esent? Yes 🖲 No 🔾
Are Vegetation D , Soil , or Hydrology naturally p	problematic? (If needed,	explain any answers	s in Remarks.)

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🖲	No O	Is the Sampled Area		
Hydric Soil Present?	Yes \bigcirc	No 🖲	-	Yes 🔾 No 🖲	
Wetland Hydrology Present?	Yes 🖲	No O	within a Wetland?		
Remarks:					

Dominant

Sample located along eastern boundary.

VEGETATION - Use scientific names of plants.

		_Species?		1
		Rel.Strat.	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft.)	% Cover		Status	Number of Dominant Species
1	0	0.0%		That are OBL, FACW, or FAC: (A)
2	0	0.0%		Total Number of Dominant
3	0	0.0%		Species Across All Strata:(B)
4.	0	0.0%		
	0	= Total Cov	er	Percent of dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft.)		- 10001 0010		That Are OBL, FACW, or FAC: <u>100.0%</u> (A/B)
1	0	0.0%		Prevalence Index worksheet:
	0	0.0%		Total % Cover of: Multiply by:
2	0	0.0%		
3	0	0.0%		
4 5				FACW species $30 \times 2 = 60$
5	0	0.0%		FAC species $38 \times 3 = 114$
(District) [ft]	0	= Total Cove	er	FACU species $10 \times 4 = 40$
Herb Stratum (Plot size: 5 ft.)		• •• •••		UPL species $0 \times 5 = 0$
1. Agrostis gigantea	30	✓ 32.3%	FAC	Column Totals: (A) (B)
2. Juncus effusus	30	✓ 32.3%	FACW	
3. Litter	15	16.1%		Prevalence Index = $B/A = 2.744$
4. Solidago canadensis	10	10.8%	FACU	Hydrophytic Vegetation Indicators:
5. Poa pratensis	5	5.4%	FAC	1 - Rapid Test for Hydrologic Vegetation
6. Cirsium arvense	3	3.2%	FAC	 ✓ 2 - Dominance Test is > 50%
7	0	0.0%		
8	0	0.0%		✓ 3 - Prevalence Index is \leq 3.0 ¹
9	0	0.0%		4 - Morphological Adaptations ¹ (Provide supporting
10	0	0.0%		data in Remarks or on a separate sheet)
11	0	0.0%		\Box 5 - Wetland Non-Vascular Plants 1
	93	= Total Cov	er	Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size:)				¹ Indicators of hydric soil and wetland hydrology must
1	0	0.0%		be present, unless disturbed or problematic.
2.	0	0.0%		Hydrophytic
	0	= Total Cove	er	Vegetation Present? Yes No
% Bare Ground in Herb Stratum: _0				
Remarks:				1
Redtop and Baltic rush dominated this location.				

*Indicator suffix = National status or professional decision assigned because Regional status not defined by FWS.

Surface Soil Cracks (B6)

Soil

Sampling Point: PFL 14

Profile Descri	iption: (Des	cribe to t	he depth i	needed to d	ocument	the indic	ator or cor	nfirm the a	bsence of indicator	s.)
Depth		Matrix			Rec	lox Featu	res			
(inches)	Color (r	noist)	%	Color (I	noist)	%	Type ¹	Loc ²	Texture	Remarks
0-3	10YR	3/1	100						silty clay loam	organic, rooty
3-12	10YR	4/2	94	10YR	4/6	3	С	М	Silty Clay Loam	mottles start at 3 inches
				10YR	5/2	3	С	М		
12-18+	10YR	4/2	87	10YR	4/6	8	С	М	Silty Clay Loam	increase mottles
				10YR	5/2	5	С	М		
¹ Type: C=Cond	centration. D	=Depletion	. RM=Redu	ced Matrix, C	S=Covere	d or Coate	d Sand Grai	ins ² Loca	tion: PL=Pore Lining.	M=Matrix
Hydric Soil I	ndicators:	(Applicab	le to all Ll	RRs, unless	otherwis	e noted.)			Indicators for P	roblematic Hydric Soils ³ :
Histosol (A	,				dy Redox (. ,			2 cm Muck (A10)
	edon (A2)				oped Matri	. ,			Red Parent N	Material (TF2)
Black Histi	. ,					•	1) (except i	n MLRA 1)	Other (Expla	in in Remarks)
	Sulfide (A4)				my Gleyed	-	2)			
·	Below Dark S	•	1)		leted Matr	• •				
Thick Dark	k Surface (A1	.2)			ox Dark Su	• • •			³ Indicators of hydr	ophytic vegetation and
Sandy Mu	ck Mineral (S	1)			leted Dark		F/)			ogy must be present,
Sandy Gle	yed Matrix (S	54)			ox depres	sions (F8)			uniess disturbed	d or problematic.
Restrictive La	ayer (if pres	sent):								
Type:									Undria Cail Brass	nt? Yes 🔿 No 🖲
Depth (incl	nes):								Hydric Soil Prese	nt? Yes 🔾 No 🖲
Remarks:										
Mottles at 3 ir	nches.									
Hydrology	/									
Wetland Hyd	rology Indie	cators:								
Primary Indi		imum of	one requir						Secondary	Indicators (minimum of two required)
Surface W	Vater (A1)						(B9) (excep	ot MLRA		Stained Leaves (B9) (MLRA 1, 2,
High Wate	er Table (A2))		1,	2, 4A, and	a 4B)			4A, and	1 4B)
Saturation	n (A3)			Sa	alt Crust (E	311)			Drainag	je Patterns (B10)
Water Ma	ırks (B1)			A	quatic Inve	ertebrates	(B13)		Dry Sea	ason Water Table (C2)
Sediment	Deposits (B2	2)		H	ydrogen Si	ulfide Odoi	r (C1)			ion Visible on Aerial Imagery (C9)
Drift depo	osits (B3)			0	xidized Rhi	izospheres	on Living R	loots (C3)	_	rphic Position (D2)
	or Crust (B4))			esence of		-	(<i>)</i>		/ Aquitard (D3)
Iron Depo	• •	,					in Tilled So	ils (C6)		utral Test (D5)

Stunted or Stressed Plants (D1) (LRR A)

Surface Soil Cracks (B6	,	Stunted or Stressed Plants (unds (D6) (LRR A)
Inundation Visible on A Sparsely Vegetated Co	57(7)	Other (Explain in Remarks)	Frost Heave Hu	ummocks (D7)
Field Observations: Surface Water Present?	Yes 🔾 No	Depth (inches):		
Water Table Present?	Yes 🔿 No	Depth (inches):		Yes 🔍 No 🔾
Saturation Present? (includes capillary fringe)	Yes \bigcirc No	Depth (inches):	Wetland Hydrology Present?	res 🖲 No O
	(stream gauge, n	nonitor well, aerial photos, previous	inspections), if available:	
Remarks:				

Two secondary indicators of wetland hydrology were observed at this sample location

311

Project/Site: Printing for Less	City/County: Livingston/Park	s	Sampling Date: 26-Jun-19		
Applicant/Owner: Printing for Less		State: MT	Sampling Point: PFL 15		
Investigator(s): B Schultz	Section, Township, Range:	s 22 t 2 9	5 R 9 E		
Landform (hillslope, terrace, etc.): Undulating	Local relief (concave, conve	x, none): none	Slope: <u>0.0</u> % / <u>0.0</u> °		
Subregion (LRR): LRR E	: 45°39'10.70"N Lor	 110°36'8.20"W	Datum: WGS 84		
Soil Map Unit Name: Reedpoint-Tanna-Ethridge complex		NWI classifie	cation: none		
Are climatic/hydrologic conditions on the site typical for this time of y	rear? Yes 🖲 No 🔾	(If no, explain in R	emarks.)		
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 significant	ntly disturbed? Are "Norma	Circumstances" pre	esent? Yes 🖲 No 🔾		
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 naturally	problematic? (If needed,	explain any answers	s in Remarks.)		

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🔾	No 🖲	Is the Sampled Area		
Hydric Soil Present?	Yes \bigcirc	No 🖲		Yes 🔿 No 🖲	
Wetland Hydrology Present?	Yes \bigcirc	No 🖲	within a Wetland?		
Remarks:					

Dominant

Sample located along eastern boundary.

VEGETATION - Use scientific names of plants.

		_Species?		1
		Rel.Strat.	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft.)	% Cover	Cover	Status	Number of Dominant Species
1	0	0.0%		That are OBL, FACW, or FAC: 0 (A)
2	0	0.0%		
3	0	0.0%		Total Number of DominantSpecies Across All Strata:2(B)
4.	0	0.0%		
		= Total Cov		Percent of dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft.)	0			That Are OBL, FACW, or FAC:(A/B)
	0	0.0%		
1				Prevalence Index worksheet:
2	0	0.0%		Total % Cover of: Multiply by:
3	0	0.0%		OBL species $0 \times 1 = 0$
4	0	0.0%		FACW species $10 \times 2 = 20$
5	0	0.0%		FAC species $5 \times 3 = 15$
	0	= Total Cove	er	FACU species $75 \times 4 = 300$
Herb Stratum (Plot size: 5 ft.)				UPL species $5 \times 5 = 25$
1. Symphoricarpos albus	40	42.1%	FACU	
2. Pascopyrum smithii	25	26.3%	FACU	Column Totals: <u>95</u> (A) <u>360</u> (B)
3. Juncus balticus	10	10.5%	FACW	Prevalence Index = $B/A = 3.789$
4. Solidago canadensis	10	10.5%	FACU	
5. Cirsium arvense	5	5.3%	FAC	Hydrophytic Vegetation Indicators:
6. Stipa viridula	5	5.3%	UPL	1 - Rapid Test for Hydrologic Vegetation
7	0	0.0%		2 - Dominance Test is > 50%
8	0	0.0%		□ 3 - Prevalence Index is \leq 3.0 ¹
9	0	0.0%		\Box 4 - Morphological Adaptations ¹ /Provide supporting
10	0	0.0%		data in Remarks or on a separate sheet)
	0	0.0%		\Box 5 - Wetland Non-Vascular Plants 1
11	95	= Total Cove	ər	Problematic Hydrophytic Vegetation ¹ (Explain)
Weeder Vine Charter (Plot size:		- 100010010		¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size:) 1.	0	0.0%		be present, unless disturbed or problematic.
2.	0	0.0%		Hydrophytic
	0	= Total Cove	er	Vegetation Present? Yes No •
% Bare Ground in Herb Stratum: 0	-			
Remarks:				1
Dominated by snowberry and Baltic rush.				
DOMINATED DV SHOWDELLV AND DAILIC LUSH.				

Sampling Point: PFL 15

Profile Descr	ription: (Des	scribe to t	he depth r	eeded to document	the indic	cator or co	nfirm the a	absence of indicators	s.)
Depth		Matrix		Red	lox Featu	ures			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-3	10YR	4/1	100					Silty Clay Loam	powdery, friable
3-6	10YR	4/2	100					Silty Clay Loam	dry
6-18+	10YR	5/2	100					Silty Clay Loam	friable
		_			·				
		•		ced Matrix, CS=Covere			ins ² Loca	tion: PL=Pore Lining.	M=Matrix roblematic Hydric Soils ³ :
Histosol (A1) pedon (A2)			Sandy Redox (Stripped Matri Loamy Mucky Loamy Gleyed Depleted Matri	(S5) x (S6) Mineral (F Matrix (F	F1) (except	in MLRA 1)	2 cm Muck (Red Parent N	A10)
Thick Dar	k Surface (A1 Ick Mineral (S Eyed Matrix (S	12) 51)		Redox Dark Su Depleted Dark Redox deprese	Surface ((F7)			ophytic vegetation and igy must be present, l or problematic.
Restrictive L	ayer (if pres	sent):							
Type: Depth (inc	hes):							Hydric Soil Preser	nt? Yes 🔿 No 🖲
Remarks:									
No hydric soi	l indicators	were obs	erved at th	is sample location.					
Hydrology	y								
Wetland Hyd	lrology Indi	cators:							
1				ed; check all that ap					Indicators (minimum of two required)
	Matau (A1)			Mahau Chains		(00) (

		check all that apply)	Secondary Indicators (minimum of two required)	
Surface Water (A1)		Water-Stained Leaves (B9) (except MLRA	Water-Stained Leaves (B9) (MLRA 1, 2,	
High Water Table (A2)		1, 2, 4A, and 4B)	4A, and 4B)	
Saturation (A3)		Salt Crust (B11)	Drainage Patterns (B10)	
Water Marks (B1)		Aquatic Invertebrates (B13)	Dry Season Water Table (C2)	
Sediment Deposits (B2)		Hydrogen Sulfide Odor (C1)	Saturation Visible on Aerial Imagery (C9)	
Drift deposits (B3)		Oxidized Rhizospheres on Living Roots (C3)	Geomorphic Position (D2)	
Algal Mat or Crust (B4)		Presence of Reduced Iron (C4)	Shallow Aquitard (D3)	
Iron Deposits (B5)		Recent Iron Reduction in Tilled Soils (C6)	FAC-neutral Test (D5)	
Surface Soil Cracks (B6)		Stunted or Stressed Plants (D1) (LRR A)	Raised Ant Mounds (D6) (LRR A)	
Inundation Visible on Ae	erial Imagery (B7)	Other (Explain in Remarks)	Frost Heave Hummocks (D7)	
Sparsely Vegetated Con	cave Surface (B8)	_ 、,		
Field Observations:				
Surface Water Present?	Yes 🔿 No 🖲	Depth (inches):		
	Yes O No O Yes No O	Depth (inches):		
Surface Water Present?		Depth (inches):	Hydrology Present? Yes 🔿 No 🖲	
Surface Water Present? Water Table Present? Saturation Present? (includes capillary fringe)	Yes O No O Yes No O	Depth (inches): Wetland		
Surface Water Present? Water Table Present? Saturation Present? (includes capillary fringe)	Yes O No O Yes No O	Depth (inches): Wetland		
Surface Water Present? Water Table Present? Saturation Present? (includes capillary fringe)	Yes O No O Yes No O	Depth (inches): Wetland		

313

Project/Site: Printing for Less	City/County: Livingston/Park	:	Sampling Date: 26-Jun-19		
Applicant/Owner: Printing for Less		State: MT	Sampling Point:	PFL 16	
Investigator(s): B Schultz	Section, Township, Range	s 22 t 2	S R 9 E	_	
Landform (hillslope, terrace, etc.): Undulating	Local relief (concave, conve	ex, none): none	Slope:	0.0 % / 0.0 °	
Subregion (LRR): LRR E	45°39'13.27"N Lo	ng.: 110°36'15.76"\	N Datun	n: WGS 84	
Soil Map Unit Name: reedpoint-Tanna-Ethridge complex		NWI classif	ication: none		
Are climatic/hydrologic conditions on the site typical for this time of ye	ar? Yes 🖲 No 🔾	(If no, explain in I	Remarks.)		
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 significant	tly disturbed? Are "Norma	l Circumstances" pr	resent? Yes 🖲	No \bigcirc	
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 naturally p	problematic? (If needed,	explain any answe	rs in Remarks.)		

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🖲	No O	Is the Sampled Area			
Hydric Soil Present?	Yes 🖲	No O	•	Yes 🔿 No 🖲		
Wetland Hydrology Present?	Yes \bigcirc	No 🖲	within a Wetland?			
Remarks:						

Dominant

Sample located at toe slope along Business 90.

VEGETATION - Use scientific names of plants.

		_Species?		
Tree Stratum (Plot size: 30 ft.)	Absolute % Cover	Rel.Strat.	Indicator Status	Dominance Test worksheet:
	-		Status	Number of Dominant Species
1	0	0.0%		That are OBL, FACW, or FAC: (A)
2	0	0.0%		Total Number of Dominant
3	0	0.0%		Species Across All Strata: 3 (B)
4.	0	0.0%		
	0	= Total Cove	er	Percent of dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft.)				That Are OBL, FACW, or FAC: <u>66.7%</u> (A/B)
1.	0	0.0%		Prevalence Index worksheet:
2.	0	0.0%		Total % Cover of: Multiply by:
3.	0	0.0%		OBL species $0 \times 1 = 0$
4.	0	0.0%		
5.	0	0.0%		
				FAC species $35 \times 3 = 105$
Herb Stratum (Plot size: 5 ft.)	0	= Total Cove	er	FACU species $35 \times 4 = 140$
1 Pop protensis	20	23.5%	FAC	UPL species $10 \times 5 = 50$
Pascopyrum smithii	20	23.5%	FACU	Column Totals: <u>85</u> (A) <u>305</u> (B)
3 Hordeum jubatum	15	✓ 23.5%✓ 17.6%	FAC	Prevalence Index = $B/A = 3.588$
	10	11.8%	UPL	
4 Agropyron intermedium				Hydrophytic Vegetation Indicators:
5. Sonchus arvensis	10		FACU	1 - Rapid Test for Hydrologic Vegetation
6. Solidago canadensis	5	5.9%	FACU	✓ 2 - Dominance Test is > 50%
7. Iris missouriensis	5	5.9%	FACW	3 - Prevalence Index is ≤3.0 1
8	0	0.0%		
9		0.0%		4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
10	0	0.0%		\square 5 - Wetland Non-Vascular Plants ¹
11	0	0.0%		
	85	= Total Cove	er	Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size:)				¹ Indicators of hydric soil and wetland hydrology must
1	0	0.0%		be present, unless disturbed or problematic.
2.	0	0.0%		Hydrophytic
	0	= Total Cov	er	Vegetation Present? Yes • No ·
% Bare Ground in Herb Stratum: 🕦				
				l
Remarks:				
MIxed grasses were observed.				

Sampling Point: PFL 16

Depth Matrix					Redox Feat	ires					
(inches)	Color (r	noist)	%	Color (mois	t) %	Type ¹	Loc ²	Texture	Remarks		
0-4	10YR	4/1	100					Silty Clay Loam	dry		
4-16	10YR	4/2	95	10YR 5	/4 5	С	М	Silty Clay Loam	yellowish mottles		
ype: C=Conc	entration. D	=Depletion	. RM=Redu	ced Matrix, CS=Co	overed or Coat	ed Sand Gra	ains ² Loca	ition: PL=Pore Lining. I	M=Matrix		
lydric Soil Iı	ndicators:	(Applicab	le to all Ll	RRs, unless othe	rwise noted.)		Indicators for P	roblematic Hydric Soils ³ :		
Histosol (A	1)			Sandy Re	edox (S5)			2 cm Muck (A	A10)		
Histic Epip	edon (A2)			Stripped	Matrix (S6)			Red Parent M	laterial (TF2)		
Black Histi	c (A3)				ucky Mineral (I	,, ,	in MLRA 1)	Other (Explai	n in Remarks)		
Hydrogen	Sulfide (A4)			= '	leyed Matrix (F	2)					
Depleted E	Below Dark S	urface (A1	1)		Matrix (F3)						
_ Thick Dark	Surface (A1	2)			ark Surface (F6	,		³ Indicators of hydrophytic vegetation and			
Sandy Muc	k Mineral (S	1)			Dark Surface	. ,			gy must be present,		
Sandy Gley	yed Matrix (S	54)		Redox de	epressions (F8)			unless disturbed	l or problematic.		
estrictive La	yer (if pres	ent):									
Туре:								Hydric Soil Preser	nt? Yes 🖲 No 🔾		
Depth (inch	les):							Hydric Soli Preser	it? Yes INO U		
emarks:											
			road?								

Hydrology

Wetland Hydrology Indicators:			
Primary Indicators (minimum of	ne required; cl	Secondary Indicators (minimum of two required)	
Surface Water (A1)		Water-Stained Leaves (B9) (except MLR	
High Water Table (A2)		1, 2, 4A, and 4B)	4A, and 4B)
Saturation (A3)		Salt Crust (B11)	Drainage Patterns (B10)
Water Marks (B1)		Aquatic Invertebrates (B13)	Dry Season Water Table (C2)
Sediment Deposits (B2)		Hydrogen Sulfide Odor (C1)	Saturation Visible on Aerial Imagery (C9)
Drift deposits (B3)		Oxidized Rhizospheres on Living Roots (C3) Geomorphic Position (D2)
Algal Mat or Crust (B4)		Presence of Reduced Iron (C4)	Shallow Aquitard (D3)
Iron Deposits (B5)		Recent Iron Reduction in Tilled Soils (C6) FAC-neutral Test (D5)
Surface Soil Cracks (B6)		Stunted or Stressed Plants (D1) (LRR A)	Raised Ant Mounds (D6) (LRR A)
Inundation Visible on Aerial Imag	ery (B7)	Other (Explain in Remarks)	Frost Heave Hummocks (D7)
Sparsely Vegetated Concave Surf	ace (B8)		
Field Observations:) No 🖲		
Surface Water Present? Yes		Depth (inches):	
Water Table Present? Yes) No 🖲	Depth (inches):	
Saturation Present? (includes capillary fringe)) No 🖲	Depth (inches):	Vetland Hydrology Present? Yes 🔿 No 🖲
Describe Recorded Data (stream	auge, monitor	well, aerial photos, previous inspection	s), if available:
Remarks:			
No hydric soil indicators were obs	erved at this lo	caiton.	

315

Project/Site: Printing for Less	City/County: Livingston/Park	Sa	mpling Date: 26-Jun-19
Applicant/Owner: Printing for Less	S	tate: MT	Sampling Point: PFL 17
Investigator(s): B Schultz	Section, Township, Range:	s 22 t 2 S	R 9 E
Landform (hillslope, terrace, etc.): Undulating	Local relief (concave, convex	, none): none	Slope: 0.0 % / 0.0 °
Subregion (LRR): LRR E	45°39'12.97"N Long	.: 110°36'15.75"W	Datum: WGS 84
Soil Map Unit Name: reedpoint-Tanna-Ethridge complex		NWI classifica	ation: PEMA
Are climatic/hydrologic conditions on the site typical for this time of ye	ar? Yes $ullet$ No $igcap$	(If no, explain in Re	marks.)
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 significant	ly disturbed? Are "Normal	Circumstances" pres	sent? Yes 🖲 No 🔾
Are Vegetation 🗌 , Soil 🗌 , or Hydrology 🗌 naturally p	problematic? (If needed, e	xplain any answers	in Remarks.)

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🖲	No O	Is the Sampled Area				
Hydric Soil Present?	Yes 🖲	No O	•	Yes 🖲 No 🔾			
Wetland Hydrology Present?	Yes 🖲	No O	within a Wetland?				

Dominant

Remarks:

Sample located at toe slope along Business 90.

VEGETATION - Use scientific names of plants.

		_Species?		1
		Rel.Strat.		Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft.)	% Cover	Cover	Status	Number of Dominant Species
1	0	0.0%		That are OBL, FACW, or FAC: 1 (A)
2	0	0.0%		
3	0	0.0%		Total Number of Dominant Species Across All Strata: 1 (B)
4.	0	0.0%		
				Percent of dominant Species
Sapling/Shrub Stratum (Plot size: 15 ft.)	0	= Total Cove	er	That Are OBL, FACW, or FAC:100.0% (A/B)
	0	0.0%		
1				Prevalence Index worksheet:
2	0	0.0%		Total % Cover of: Multiply by:
3	0	0.0%		OBL species $0 \times 1 = 0$
4	0	0.0%		FACW species <u>15</u> x 2 = <u>30</u>
5.	0	0.0%		FAC species 55 x 3 = 165
	0	= Total Cove	er	FACU species $13 \times 4 = 52$
Herb Stratum (Plot size: 5 ft.)		_		UPL species $0 \times 5 = 0$
1. Agrostis gigantea	50	✓ 53.8%	FAC	
2. Iris missouriensis	15	16.1%	FACW	Column Totals: <u>83</u> (A) <u>247</u> (B)
3. Litter	10	10.8%		Prevalence Index = $B/A = 2.976$
4. Alopecurus arundinaceus	5	5.4%	FAC	
5. Rosa woodsii	5	5.4%	FACU	Hydrophytic Vegetation Indicators:
6. Cynoglossum officinale	3	3.2%	FACU	1 - Rapid Test for Hydrologic Vegetation
7. Elymus lanceolatus	5	5.4%	FACU	✓ 2 - Dominance Test is > 50%
8	0	0.0%		✓ 3 - Prevalence Index is \leq 3.0 1
9	0	0.0%		4 - Morphological Adaptations ¹ (Provide supporting
10	0	0.0%		data in Remarks or on a separate sheet)
10	0	0.0%		\square 5 - Wetland Non-Vascular Plants 1
11,	93	= Total Cove		\Box Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size:)				¹ Indicators of hydric soil and wetland hydrology must
	0			be present, unless disturbed or problematic.
1	0	0.0%		
2	0	0.0%		Hydrophytic Vegetation
	0	= Total Cove	er	Present? Yes • No O
% Bare Ground in Herb Stratum:				
Remarks:				

Primarily redtop was observed at this sample location.

Sampling Point: PFL 17

Profile Desc	ription: (Des	scribe to t	he depth	needed to d	ocument	the indic	ator or co	nfirm the a	absence of indicators	s.)			
Depth Matrix Redox Features													
(inches)	Color (I	moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		marks		
0-4	10YR	4/1	100						Silty Clay Loam	dry, rooty			
4-8	10YR	4/1	94	10YR	5/1	3	С	М	Silty Clay Loam saturated				
, saturate				10YR	4/6	3	С	м					
8-16	10YR	4/2	85	10YR	4/6	10	с	м	Silty Clay Loam	oxidized roo Calcium? Sal			
				10YR	6/1	5	С	М					
			_										
¹ Type: C=Con	centration. D	=Depletion	. RM=Redu	iced Matrix, (CS=Covered	d or Coate	ed Sand Gra	ins ² Loca	tion: PL=Pore Lining. I	M=Matrix			
Hydric Soil	Indicators:	(Applicab	le to all L	RRs, unless	otherwise	e noted.))		Indicators for P	roblematic Hydric S	ioils ³ :		
= `	Histosol (A1) Sandy Redox (S5)						2 cm Muck (A10)						
	pedon (A2)				pped Matrix	• •			Red Parent Material (TF2)				
Black Hist	. ,					•	1) (except	in MLRA 1)	Other (Explai	in in Remarks)			
Hydroger	Sulfide (A4)				my Gleyed	•	2)						
Depleted	Below Dark S	Surface (A1	1)	🖌 Dep	leted Matri	x (F3)							
Thick Dar	k Surface (A1	2)			lox Dark Su	•	,		³ Indicators of hvdro	ophytic vegetation and	ł		
Sandy Mu	Sandy Muck Mineral (S1) Depleted Dark Surface (F7) wetland hydrology must be present,												
Sandy Gle	eyed Matrix (S	54)		Rec	lox depress	ions (F8)			unless disturbed or problematic.				
Restrictive L	, ,	,											
Type:											\frown		
Depth (inc	hes):								Hydric Soil Preser	nt? Yes 🖲 N	lo ()		
Remarks:													
Salt concentr	ations on su	urface											
Hydrolog	У												
Wetland Hyd	lrology Indi	cators:											

Primary Indicators (minir	num of one	Sec	Secondary Indicators (minimum of two required)					
Surface Water (A1) High Water Table (A2)			Water-Stained Leav 1, 2, 4A, and 4B)	ves (B9) (except	MLRA	Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B)		
Saturation (A3)			Salt Crust (B11)			Drainage Patterns (B10)		
Water Marks (B1)			Aquatic Invertebrat	es (B13)		Dry Season Wa	ter Table (C2)	
Sediment Deposits (B2)		Hydrogen Sulfide O	dor (C1)		Saturation Visit	ble on Aerial Imagery (C9)		
Drift deposits (B3)		Oxidized Rhizosphe	eres on Living Ro	oots (C3)	Geomorphic Po	sition (D2)		
Algal Mat or Crust (B4)		Presence of Reduce	ed Iron (C4)		Shallow Aquitard (D3)			
Iron Deposits (B5)		Recent Iron Reduct	tion in Tilled Soi	s (C6)	FAC-neutral Test (D5)			
Surface Soil Cracks (B6)		Stunted or Stressed	d Plants (D1) (Li	RRA)	Raised Ant Mounds (D6) (LRR A)			
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remark						Frost Heave Hu	immocks (D7)	
Sparsely Vegetated Con	cave Surface	(B8)						
Field Observations:								
Surface Water Present?	Yes \bigcirc	No 🖲	Depth (inches):					
Water Table Present?	Yes \bigcirc	No 🖲	Depth (inches):				× • • •	
Saturation Present? (includes capillary fringe)	Yes 🖲	No \bigcirc	Depth (inches):	4	Wetland Hydrolog	gy Present?	Yes 🔍 No 🔾	
Describe Recorded Data (stream gau	ge, monito	r well, aerial photos, p	previous inspe	ctions), if available:			
Remarks:								
Saturated at 4 inches belo	ow ground s	surface						

Appendix D

Printing for Less Wetland Delineation Site Photographs

Printing for Less - Wetland Delineation

(Data Points 1-3)

(Data Point 4)

(Data Point 5)

318

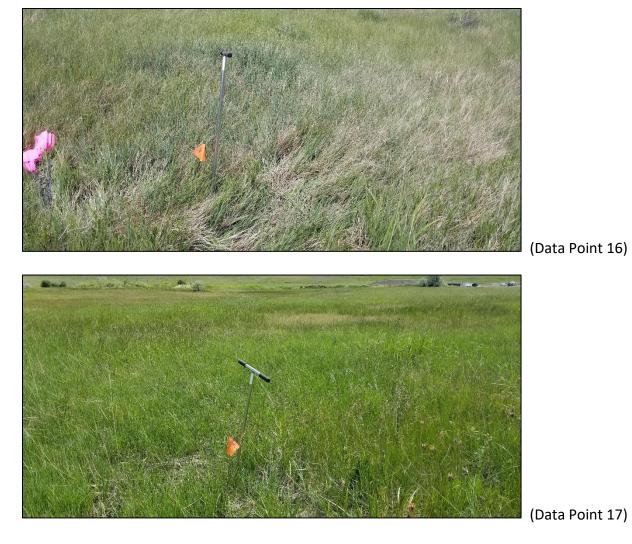
(Data Point 7)

(Data Point 8)

319

de al de la

320


(Data Point 9)

(Data Points 10-11)

We Milesting

Real Property in the

(Data Point 15)

)

322

Page | 5

MOUNTAIN VIEW MAJOR SUBDIVISION PRELIMINARY PLAT APPLICATION

Project No. 18005.05

APPENDIX I Public Agency Review

Billings Bozeman Fort Collins

June 7, 2023

Jen Smithham Helena Area Resource Office Montana Fish, Wildlife, and Parks PO Box 200701 Helena, MT 59620-0701 fwpcomments@mt.gov

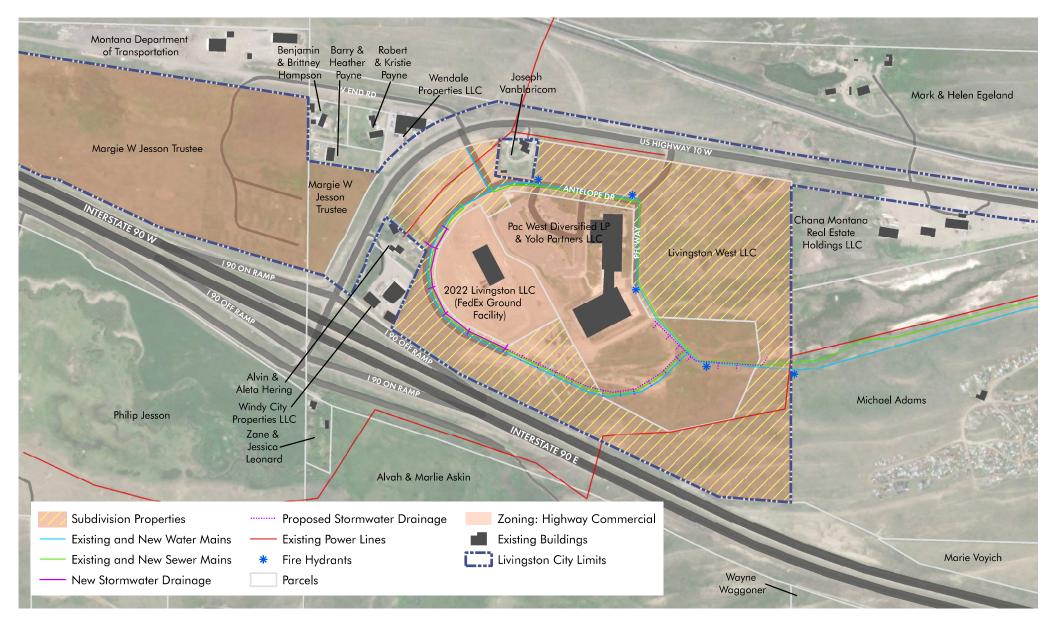
Delivered via Email

Reference: Mountain View Subdivision, Livingston, Montana

Dear Ms. Smithham:

We are soliciting your comments regarding a proposed highway commercial subdivision with the City of Livingston. The project would create 22 highway commercial lots, two (2) dedicated parkland open space lots, and public right-of-way totaling 44.149 acres. These new lots would be served by the City of Livingston water and sanitary sewer systems.

The project is located within the Livingston city limits and will be accessed via Highway 10 via PFL Way and Antelope Drive. The project site is legally described as Tract 1-A of COS 2748RB and is located within Section 22 of Township 2 South, Range 9 East, Principal Meridian Montana, City of Livingston, Park County, Montana. Attached is the proposed subdivision vicinity map.


As part of the subdivision application process, we are soliciting comments you may have regarding the proposed subdivision. Should you have any comments or questions, we would appreciate a written response to this letter delivered by email no later than June 16, 2023.

If you have any further questions or comments, please do not hesitate to call me at (406) 922-4314 or email me at sanacker@sandersonstewart.com.

Sincerely,

unnermalk

Sumner Anacker, PE Project Engineer Sanderson Stewart 106 East Babcock Street, Suite L1 Bozeman, MT 59715 <u>sanacker@sandersonstewart.com</u> ph: 406-922-4314

June 7, 2023

Lonnie Von Oesen, SIAP Planner Rail, Transit, & Planning Division Montana Department of Transportation PO Box 201001 Helena, MT 59601-2001 Ivonoesen@mt.gov

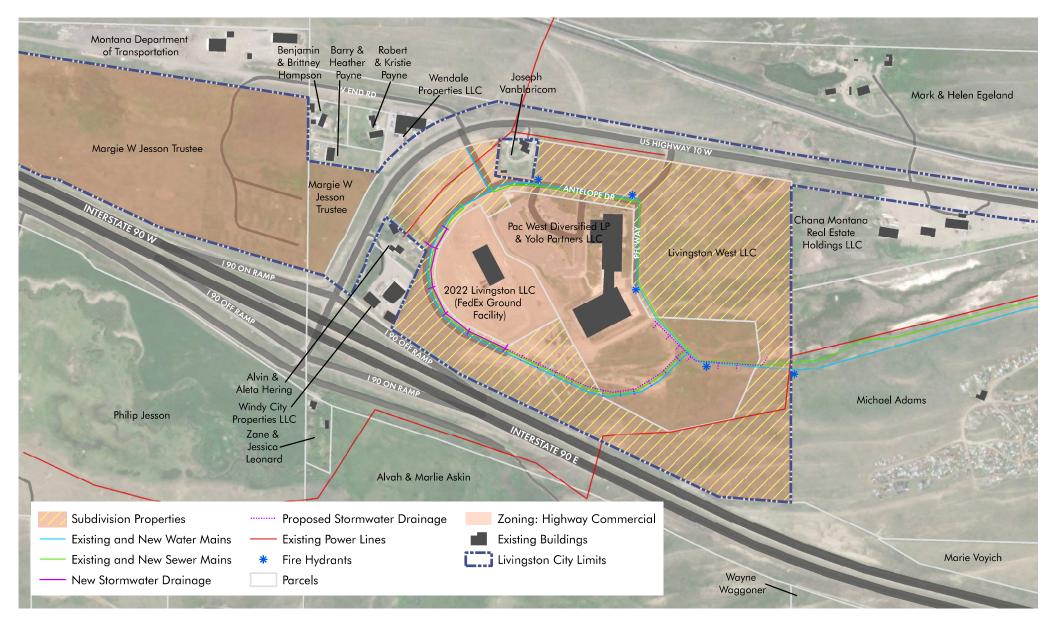
Delivered via Email

Reference: Mountain View Subdivision, Livingston, Montana

Dear Mr. Von Oesen:

We are soliciting your comments regarding a proposed highway commercial subdivision with the City of Livingston. The project would create 22 highway commercial lots, two (2) dedicated parkland open space lots, and public right-of-way totaling 44.149 acres. These new lots would be served by the City of Livingston water and sanitary sewer systems.

The project is located within the Livingston city limits and will be accessed via Highway 10 via PFL Way and Antelope Drive. The project site is legally described as Tract 1-A of COS 2748RB and is located within Section 22 of Township 2 South, Range 9 East, Principal Meridian Montana, City of Livingston, Park County, Montana. Attached is the proposed subdivision vicinity map.


As part of the subdivision application process, we are soliciting comments you may have regarding the proposed subdivision. Should you have any comments or questions, we would appreciate a written response to this letter delivered by email no later than June 16, 2023.

If you have any further questions or comments, please do not hesitate to call me at (406) 922-4314 or email me at sanacker@sandersonstewart.com.

Sincerely,

mmenal

Sumner Anacker, PE Project Engineer Sanderson Stewart 106 East Babcock Street, Suite LI Bozeman, MT 59715 <u>sanacker@sandersonstewart.com</u> ph: 406-922-4314

June 7, 2023

Pete Brown State Historic Preservation Officer Montana Historical Society PO Box 201201 Helena, MT 59620-1201 pebrown@mt.gov

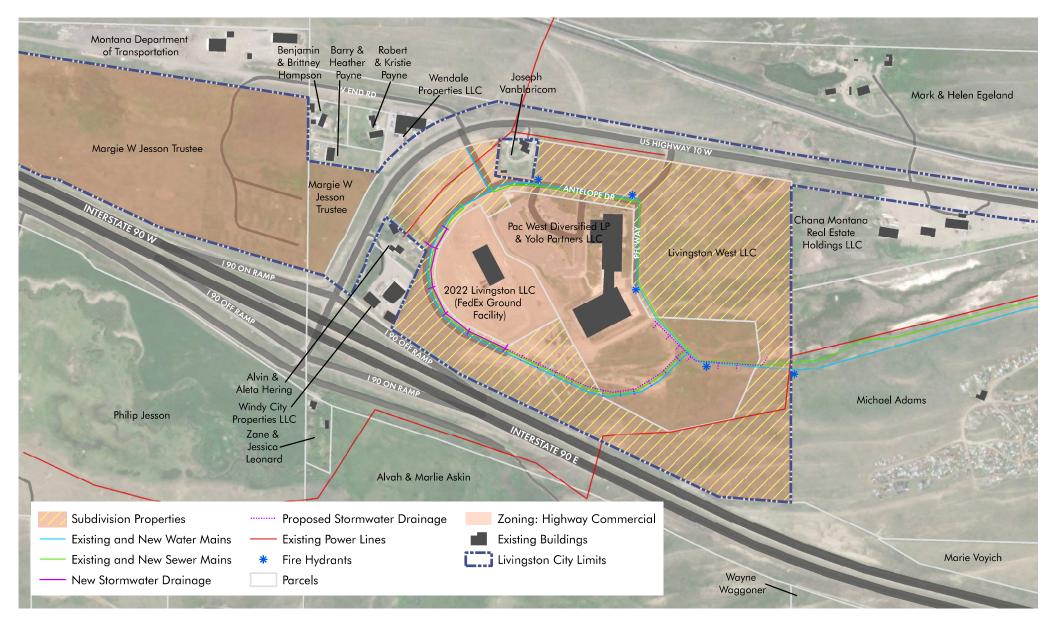
Delivered via Email

Reference: Mountain View Subdivision, Livingston, Montana

Dear Mr. Brown:

We are soliciting your comments regarding a proposed highway commercial subdivision with the City of Livingston. The project would create 22 highway commercial lots, two (2) dedicated parkland open space lots, and public right-of-way totaling 44.149 acres. These new lots would be served by the City of Livingston water and sanitary sewer systems.

The project is located within the Livingston city limits and will be accessed via Highway 10 via PFL Way and Antelope Drive. The project site is legally described as Tract 1-A of COS 2748RB and is located within Section 22 of Township 2 South, Range 9 East, Principal Meridian Montana, City of Livingston, Park County, Montana. Attached is the proposed subdivision vicinity map.


As part of the subdivision application process, we are soliciting comments you may have regarding the proposed subdivision. Should you have any comments or questions, we would appreciate a written response to this letter delivered by email no later than June 16, 2023.

If you have any further questions or comments, please do not hesitate to call me at (406) 922-4314 or email me at sanacker@sandersonstewart.com.

Sincerely,

unnerfnalt

Sumner Anacker, PE Project Engineer Sanderson Stewart 106 East Babcock Street, Suite LI Bozeman, MT 59715 <u>sanacker@sandersonstewart.com</u> ph: 406-922-4314

Sumner Anacker

From: Sent: To: Subject: Attachments: Murdo, Damon <dmurdo@mt.gov> Thursday, June 8, 2023 2:59 PM Sumner Anacker RE: Mountain View Subdivision Preliminary Plat - Request for Comment (SHPO) Reports.pdf; 2023060806.pdf

June 8, 2023

Sumner Anacker Sanderson Stewart 106 East Babcock St, Suite L Bozeman MT 59715

RE: MOUNTAIN VIEW SUBDIVISION, LIVINGSTON. SHPO Project #: 2023060806

Dear Sumner:

I have conducted a cultural resource file search for the above-cited project located in Section 22, T2S R9E. According to our records there have been no previously recorded sites within the designated search locale. However, there have been a few previously conducted cultural resource inventories done in the area. I've attached a list of these reports. If you would like any further information regarding these reports, you may contact me at the number listed below.

It is SHPO's position that any structure over fifty years of age is considered historic and is potentially eligible for listing on the National Register of Historic Places. If any structures are within the Area of Potential Effect, and are over fifty years old, we would recommend that they be recorded, and a determination of their eligibility be made prior to any disturbance taking place.

As long as there will be no disturbance or alteration to structures over fifty years of age, we feel that there is a low likelihood cultural properties will be impacted. We, therefore, feel that a recommendation for a cultural resource inventory is unwarranted at this time. However, should structures need to be altered or if cultural materials are inadvertently discovered during this project, we would ask that our office be contacted, and the site investigated.

If you have any further questions or comments, you may contact me at (406) 444-7767 or by e-mail at <u>dmurdo@mt.gov</u>. I have attached an invoice for the file search. Thank you for consulting with us.

Sincerely,

Damon Murdo Cultural Records Manager State Historic Preservation Office

File: LOCAL/SUBDIVISIONS/2023

STATE HISTORIC PRESERVATION OFFICE Montana Cultural Resource Database

CRABS Township, Range, Section Results

Report Date:6/8/2023

Township:2 S Range:9 E Section: 22

GREISER T. WEBER, ET AL.

11/1/2000 RESULTS OF A CULTURAL RESOURCES INVENTORY FOR THE TOUCH AMERICA/AT & T FIBER OPTIC CABLE ROUTE BETWEEN BILLINGS AND LOOKOUT PASS IN MONTANA CRABS Document Number: ZZ 6 23275 Agency Document Number:

Township:2 S Range:9 E Section: 22

wilship:2 5 Kange: 5 E Section: 22

LAHREN LARRY A.

1/16/2004 CULTURAL RESOURCE EVALUATIONS OF THE PROPOSED PRINTING FOR LESS FACILITY IN PARK COUNTY MONTANA

CRABS Document Number: PA 6 27162

Agency Document Number:

MOUNTAIN VIEW MAJOR SUBDIVISION PRELIMINARY PLAT APPLICATION

Project No. 18005.05

APPENDIX G

Private Service Providers Review

June 7, 2023

Julie Sterr Lumen Julie.Sterr I @lumen.com

Delivered via Email

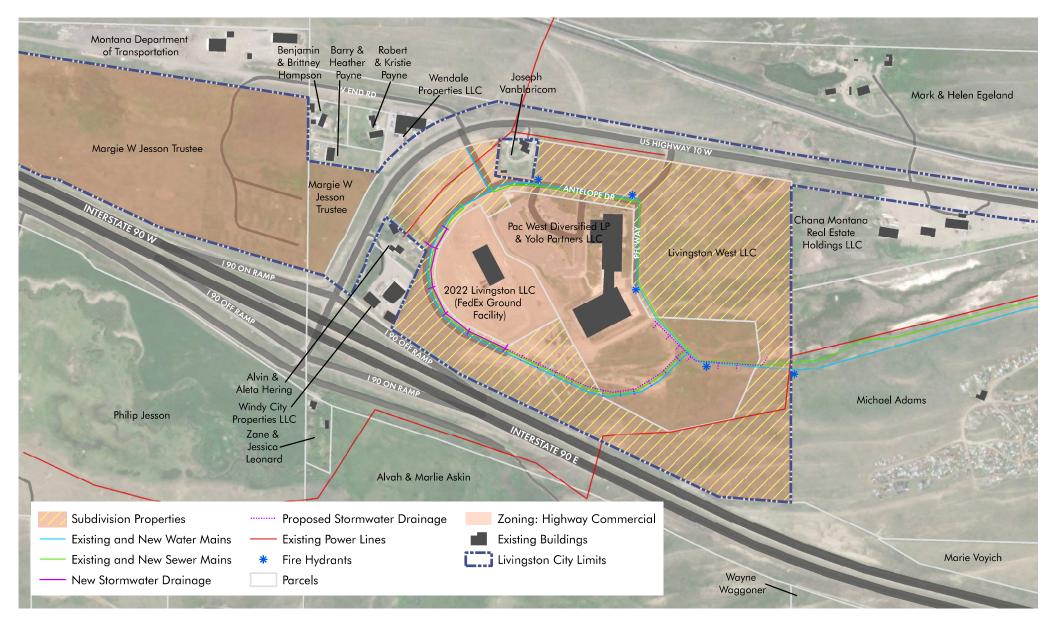
Reference: Mountain View Subdivision, Livingston, Montana

Dear Ms. Sterr:

We are soliciting your comments regarding a proposed highway commercial subdivision with the City of Livingston. The project would create 22 highway commercial lots, two (2) dedicated parkland open space lots, and public right-of-way totaling 44.149 acres. These new lots would be served by the City of Livingston water and sanitary sewer systems.

The project is located within the Livingston city limits and will be accessed via Highway 10 via PFL Way and Antelope Drive. The project site is legally described as Tract 1-A of COS 2748RB and is located within Section 22 of Township 2 South, Range 9 East, Principal Meridian Montana, City of Livingston, Park County, Montana. Attached is the proposed subdivision vicinity map.

As part of the subdivision application process, we are soliciting comments you may have regarding the proposed subdivision. Should you have any comments or questions, we would appreciate a written response to this letter delivered by email no later than June 16, 2023.


If you have any further questions or comments, please do not hesitate to call me at (406) 922-4314 or email me at sanacker@sandersonstewart.com.

Sincerely,

mnennalt

Sumner Anacker, PE Project Engineer Sanderson Stewart 106 East Babcock Street, Suite L1 Bozeman, MT 59715 <u>sanacker@sandersonstewart.com</u> ph: 406-922-4314

ENDURING COMMUNITY DESIGN

June 7, 2023

Sheryl Raddas Windrider 414 E Callender Street Livingston, MT 59047 sraddas@parkcounty.org

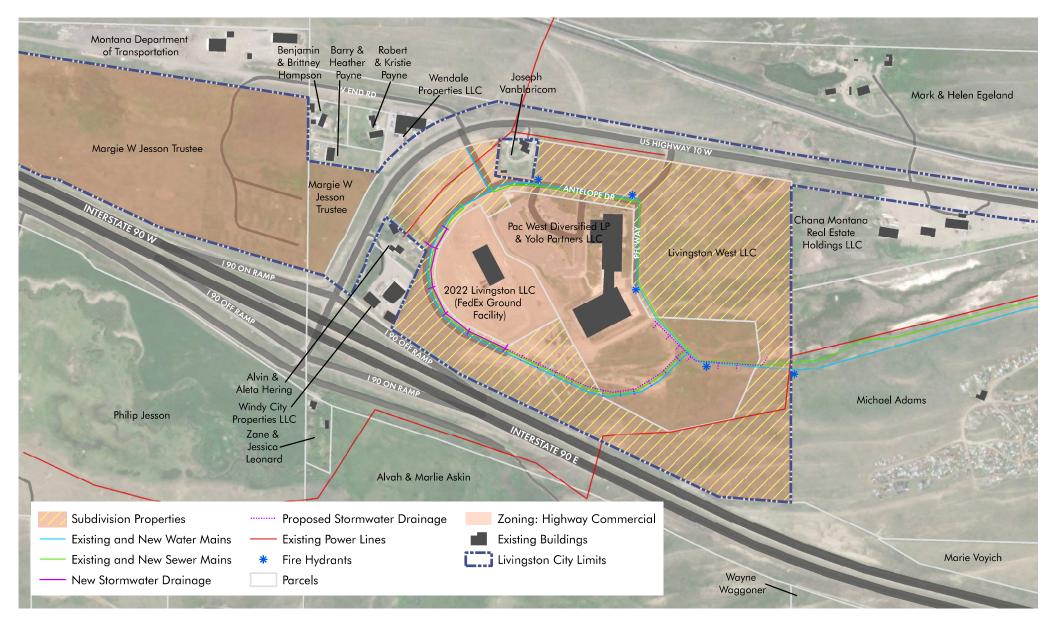
Delivered via Email

Reference: Mountain View Subdivision, Livingston, Montana

Dear Ms. Raddas:

We are soliciting your comments regarding a proposed highway commercial subdivision with the City of Livingston. The project would create 22 highway commercial lots, two (2) dedicated parkland open space lots, and public right-of-way totaling 44.149 acres. These new lots would be served by the City of Livingston water and sanitary sewer systems.

The project is located within the Livingston city limits and will be accessed via Highway 10 via PFL Way and Antelope Drive. The project site is legally described as Tract 1-A of COS 2748RB and is located within Section 22 of Township 2 South, Range 9 East, Principal Meridian Montana, City of Livingston, Park County, Montana. Attached is the proposed subdivision vicinity map.


As part of the subdivision application process, we are soliciting comments you may have regarding the proposed subdivision. Should you have any comments or questions, we would appreciate a written response to this letter delivered by email no later than June 16, 2023.

If you have any further questions or comments, please do not hesitate to call me at (406) 922-4314 or email me at sanacker@sandersonstewart.com.

Sincerely,

mennal

Sumner Anacker, PE Project Engineer Sanderson Stewart 106 East Babcock Street, Suite L1 Bozeman, MT 59715 <u>sanacker@sandersonstewart.com</u> ph: 406-922-4314

June 7, 2023

Matt Fettig Manager of District Operations – Livingston Northwestern Energy 224 S B Street Livingston, MT matthew.fettig@northwestern.com

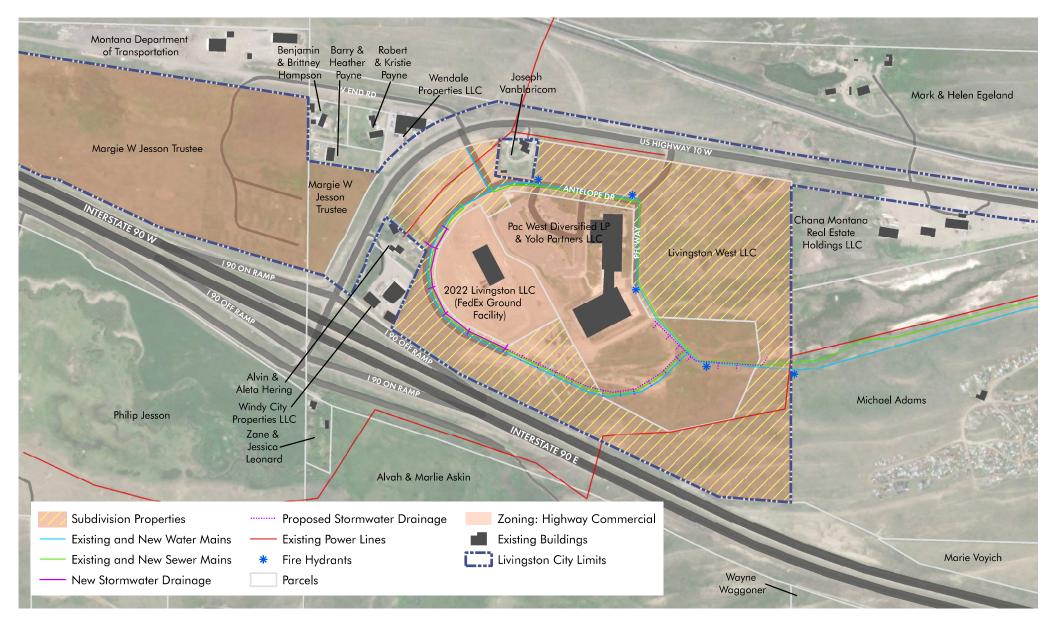
Delivered via Email

Reference: Mountain View Subdivision, Livingston, Montana

Dear Mr. Fettig:

We are soliciting your comments regarding a proposed highway commercial subdivision with the City of Livingston. The project would create 22 highway commercial lots, two (2) dedicated parkland open space lots, and public right-of-way totaling 44.149 acres. These new lots would be served by the City of Livingston water and sanitary sewer systems.

The project is located within the Livingston city limits and will be accessed via Highway 10 via PFL Way and Antelope Drive. The project site is legally described as Tract 1-A of COS 2748RB and is located within Section 22 of Township 2 South, Range 9 East, Principal Meridian Montana, City of Livingston, Park County, Montana. Attached is the proposed subdivision vicinity map.


As part of the subdivision application process, we are soliciting comments you may have regarding the proposed subdivision. Should you have any comments or questions, we would appreciate a written response to this letter delivered by email no later than June 16, 2023.

If you have any further questions or comments, please do not hesitate to call me at (406) 922-4314 or email me at sanacker@sandersonstewart.com.

Sincerely,

mmegnaek

Sumner Anacker, PE Project Engineer Sanderson Stewart 106 East Babcock Street, Suite L1 Bozeman, MT 59715 <u>sanacker@sandersonstewart.com</u> ph: 406-922-4314

sent via email June 7, 2023

Chris Naumann Sanderson Stewart – Senior Planner 106 E Babcock St. – Suite L1 Bozeman, MT 59718

Dear Chris,

Northwestern Energy is willing and able to provide electric and natural gas services to the proposed Mountain View Subdivision in Livingston, MT near the West Interchange and 100 PFL Way. The area in question consists of portions of T2S, R9E, S22.

These services will be provided in accordance with applicable Montana Public Services rules and regulations and the current Northwestern Energy tariff schedule. NWE has both underground and overhead electric, as well as gas distribution in and around the project area.

Northwestern Energy shall determine the locations of all transformers, underground lines and equipment for proper installation and maintenance. These facilities shall be located on front lot lines in the utility easement right-of-way unless otherwise approved by both parties.

As the project gets closer to approved plat and a finalized development plan, please reach out to NWE directly in order to start the utility planning, design and sizing process for your development. Please feel free to contact me if you have any questions or require any additional information.

Sincerely,

Matt Fettig

Matt Fettig Livingston District Manager matthew.fettig@northwestern.com 224 S. B St. Livingston, MT 59047 406-582-4606

June 7, 2023

Matt Grose Park Electric Cooperative PO Box 1119 Livingston, MT 59047-1119 mgrose@parkelectric.coop

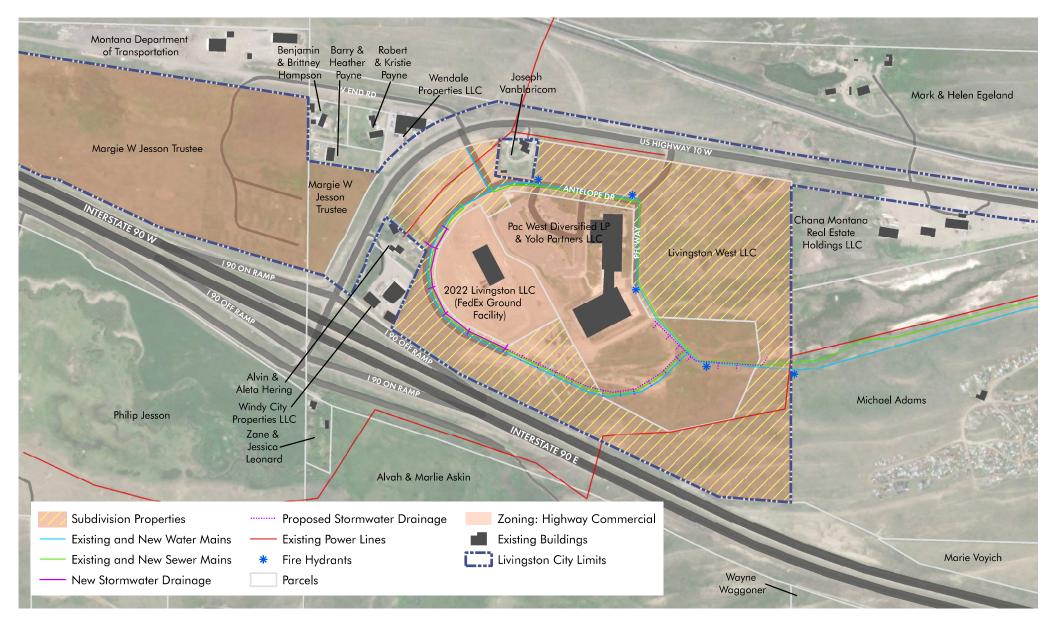
Delivered via Email

Reference: Mountain View Subdivision, Livingston, Montana

Dear Mr. Grose:

We are soliciting your comments regarding a proposed highway commercial subdivision with the City of Livingston. The project would create 22 highway commercial lots, two (2) dedicated parkland open space lots, and public right-of-way totaling 44.149 acres. These new lots would be served by the City of Livingston water and sanitary sewer systems.

The project is located within the Livingston city limits and will be accessed via Highway 10 via PFL Way and Antelope Drive. The project site is legally described as Tract 1-A of COS 2748RB and is located within Section 22 of Township 2 South, Range 9 East, Principal Meridian Montana, City of Livingston, Park County, Montana. Attached is the proposed subdivision vicinity map.


As part of the subdivision application process, we are soliciting comments you may have regarding the proposed subdivision. Should you have any comments or questions, we would appreciate a written response to this letter delivered by email no later than June 16, 2023.

If you have any further questions or comments, please do not hesitate to call me at (406) 922-4314 or email me at sanacker@sandersonstewart.com.

Sincerely,

menal

Sumner Anacker, PE Project Engineer Sanderson Stewart 106 East Babcock Street, Suite L1 Bozeman, MT 59715 <u>sanacker@sandersonstewart.com</u> ph: 406-922-4314

June 7, 2023

Daniel Payne United States Postal Service 105 N 2nd Floor Livingston, MT 59047-9998 daniel.f.payne@usps.gov

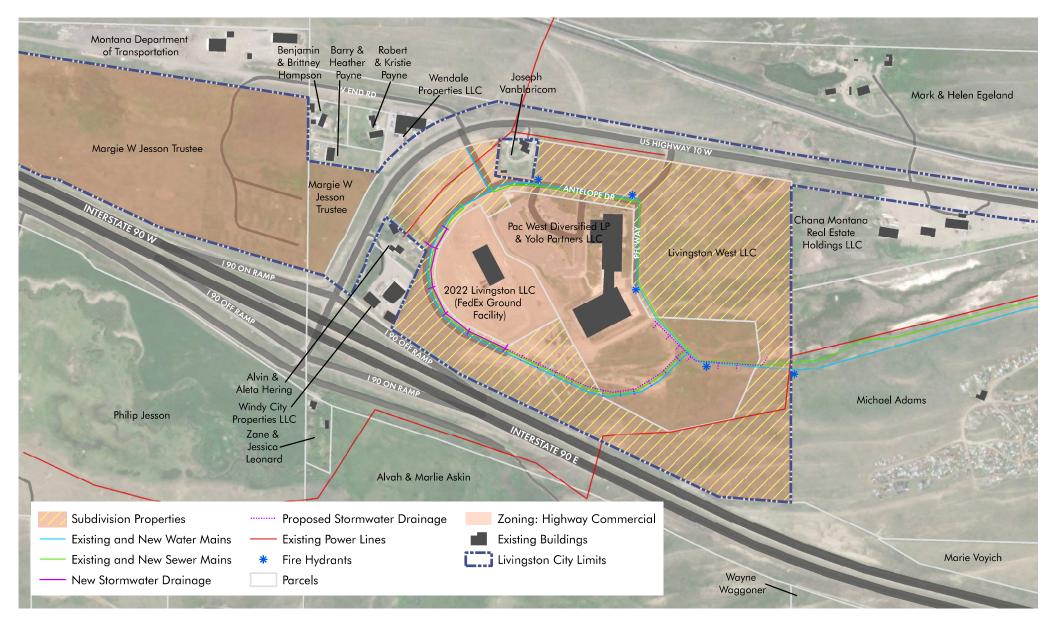
Delivered via Email

Reference: Mountain View Subdivision, Livingston, Montana

Dear Mr. Payne:

We are soliciting your comments regarding a proposed highway commercial subdivision with the City of Livingston. The project would create 22 highway commercial lots, two (2) dedicated parkland open space lots, and public right-of-way totaling 44.149 acres. These new lots would be served by the City of Livingston water and sanitary sewer systems.

The project is located within the Livingston city limits and will be accessed via Highway 10 via PFL Way and Antelope Drive. The project site is legally described as Tract 1-A of COS 2748RB and is located within Section 22 of Township 2 South, Range 9 East, Principal Meridian Montana, City of Livingston, Park County, Montana. Attached is the proposed subdivision vicinity map.


As part of the subdivision application process, we are soliciting comments you may have regarding the proposed subdivision. Should you have any comments or questions, we would appreciate a written response to this letter delivered by email no later than June 16, 2023.

If you have any further questions or comments, please do not hesitate to call me at (406) 922-4314 or email me at sanacker@sandersonstewart.com.

Sincerely,

unnenal

Sumner Anacker, PE Project Engineer Sanderson Stewart 106 East Babcock Street, Suite L1 Bozeman, MT 59715 <u>sanacker@sandersonstewart.com</u> ph: 406-922-4314

Project No. 18005.05

344

APPENDIX H Covenants, Conditions, and

Restrictions Summary

ENDURING

C MMUNITY

DESIGN

Mountain View Subdivision

SUMMARY OF COVENANTS

The purpose of these covenants is to facilitate the Mountain View Subdivision becoming an appealing entrance to the City, preserve and protect the interests and investment of the individual owners, and provide for an attractive appearance for buildings across the development without creating a "cookie-cutter" approach to design. The following is a summary list of the protective covenants for Mountain View Subdivision. This list is not intended to be all-inclusive or a replacement of the actual covenants.

GENERAL

- The purpose of these covenants is to provide for individual and community decision making.
- Property Owners' Association (hereafter "The Association") Design Review Committee shall implement and enforce covenants and guidelines. The Developer shall be the Chair of the Design Review Committee until the majority of the lots are sold.
- 4-sided 3-dimensional architectural designs are required for review by the Design Review submittal.
- The Association will be responsible for maintenance of streets and common areas.
- Individual parcel owners may not build fences or structures on common easements.
- Individual property owners are responsible for the control of noxious weeds. The Association will be responsible for common areas.
- Approved landscaping installation required within one year of construction completion.
- Where there is a common border between a commercial use and a residential use, a landscape feature (such as a row of trees or landscaped berm) must be installed to provide a graceful transition between use types.
- Construction, improvements, landscaping, or alteration to exterior of any building or addition of any structure to a lot requires an Association Design Review Committee approval.
- No RV, boat, trailer, junk, or inoperable vehicle storage allowed on site unless stored inside a garage.
- No open burning allowed.
- All garbage shall be stored in animal-proof containers or be made unavailable to animals.
- Shielded downlight exterior lighting only in conformance with the City of Livingston's Night Sky Protection Act
- Property is located within view of agricultural activities, which may cause noise, dust, odors, etc.

RESIDENTIAL

- Traditional stick-built homes shall be built to current IRC standards.
- No mobile, modular, or re-located homes allowed but ADU units can be considered in a back yard on a case-by-case basis.
- Onsite parking must be addressed in design review submittals.

- A maximum of two (2) dogs or two (2) cats may be kept on any lot. Commercial breeding, care or keeping of animals is not allowed.
- Fencing should be wildlife friendly.
- All garbage shall be stored in animal-proof containers or be made unavailable to animals.
- Architectural design must include multiple roof elements ideally incorporating both varying heights and intersecting ridgelines.
- A tri-color paint scheme of natural colors is encouraged.

COMMERCIAL / OFFICE / INDUSTRIAL

- All buildings shall be built to current UBC standards.
- Onsite parking must be addressed in design review submittals. Spaces shall be paved and provide adequate driveway and space for movement of vehicles.
- The office portion of the building can be three stories, while the maximum height of any office/warehouse is 42'.
- Signage must be professionally done and approved by the City of Livingston.
- Ground lines, wires, antennas, or satellite dishes shall be placed out of sight as much as possible.

Jennifer Severson

Subject: FW: Mountain View Subdivision Resubmittal Comments

From: Shannon Holmes <sholmes@livingstonmontana.org>
Sent: Wednesday, July 19, 2023 12:08 PM
To: Jennifer Severson <jseverson@livingstonmontana.org>; Martha ORourke <morourke@livingstonmontana.org>
Subject: RE: Mountain View Subdivision Resubmittal Comments

Jennifer,

Here are my comments.

Please let me know if you have any questions.

- 1. Starlo Booster Station does have additional costs for pumping water and providing fire flows to this development.
- 2. The sewer main near Kenyon Noble is a high risk area with clay tile and capacity issues for future flows. A 15inch main replacement is recommended in the Wastewater Collection PER.
- 3. All weather access road in Antelope Drive to PFL Way needs to be constructed in Phase 1.
- 4. Please provide dead end barricades at cul de sacs for each phase.
- 5. Erosion Control needs to be placed per the SWPPP
- 6. Improve PFL Way from end of pavement Fire hydrant past Antelope Drive.
- 7. No return letters from FWP, MDT, Windrider and Park electric and USPS
- 8. Covenants- City takes care of Streets. POA takes care of dedicated open space, retention ponds
- 9. Covenants should address sidewalk construction.

Thanks!

Shannon Holmes Public Works Director (406) 222-5667

From: Shannon Holmes <<u>sholmes@livingstonmontana.org</u>>
Sent: Wednesday, July 19, 2023 8:06:58 AM
To: Jennifer Severson <<u>jseverson@livingstonmontana.org</u>>; Martha ORourke <<u>morourke@livingstonmontana.org</u>>;
Subject: RE: Mountain View Subdivision Resubmittal Comments

Good morning,

Yes, each lot needs water and sewer service stubs now as part of the subdivision. I will provide any comments that I have later this morning.

Thanks!

Shannon Holmes Public Works Director (406) 222--5667

From: Jennifer Severson <jseverson@livingstonmontana.org> Sent: Tuesday, July 18, 2023 3:39 PM To: Martha ORourke <<u>morourke@livingstonmontana.org</u>> Cc: Shannon Holmes <<u>sholmes@livingstonmontana.org</u>> Subject: RE: Mountain View Subdivision Resubmittal Comments

Thanks Martha- re: #3 below- Can you make the decision now whether or not you would allow each developer to do their own water/ sewer services? It just sounds a bit ambiguous as it is...unless this is a standard Public Works comment/ condition language for subs?

Also, is the below all comments from public works on the subdivision? I.E. Shannon, are you planning to also submit comments or does Martha's response cover it?

Thank you!

Jennifer Severson – Planning Director City of Livingston (406) 222-4903

From: Martha ORourke <<u>morourke@livingstonmontana.org</u>> Sent: Tuesday, July 18, 2023 3:31 PM To: Jennifer Severson <<u>jseverson@livingstonmontana.org</u>> Cc: Shannon Holmes <<u>sholmes@livingstonmontana.org</u>> Subject: Mountain View Subdivision Resubmittal Comments

Good afternoon Jennifer,

This application looks good. I don't have too many comments except:

- We should consider asking for an easement to be shown across lot 12 for future water and sewer service connection to the Westondale Corp parcel;
- Public Works will need to review stormwater and street plan and profiles for phases 2 and 3 of this subdivision;
- All new lots will need water and sewer services, unless we will allow each lot developer to do their own due to unknown proposed future development and unknown water and sewer service size needs.

Thank you,

Subject:

FW: Mountain View Subdivision (June 2023 Application)

From: Josh Chabalowski <firechief@livingstonmontana.org>
Sent: Tuesday, July 18, 2023 3:56 PM
To: Jennifer Severson <jseverson@livingstonmontana.org>
Subject: RE: Mountain View Subdivision (June 2023 Application)

No comments at this time. Looks good to me since they have the new line extensions in place with lots of hydrants. Makes me happy.

Josh

From: Jennifer Severson
Sent: Wednesday, June 28, 2023 2:50 PM
To: Shannon Holmes <<u>sholmes@livingstonmontana.org</u>>; Jim Woodhull <<u>jwoodhull@livingstonmontana.org</u>>; 'firechief@livingstonmontana.org' <<u>firechief@livingstonmontana.org</u>>; Dale Johnson
<<u>djohnson@livingstonmontana.org</u>>; Martha ORourke <<u>morourke@livingstonmontana.org</u>>
Subject: Mountain View Subdivision (June 2023 Application)

Hi folks,

I just shared a dropbox link with you that includes the latest Mountain View Subdivision application- file is too large to email. For easy reference, I'll also share the link here: <u>https://www.dropbox.com/s/yc7ex33f0d0fql1/Mountain%20View%20Subdivision%20-</u>%20Preliminary%20Plat%20Submittal%20-%20June%2021%202023.pdf?dl=0

The City has 15 working days to review the application materials for sufficiency- i.e. have they provided all the information you need to fully evaluate the proposed subdivision? I'll be responsible for notifying the applicant if we need additional information so that I can track all information submitted by the application for the planning review of the subdivision. If you need additional information from the applicant, please let me know **NO LATER THAN 2 pm on Wed. July 19** so I'll have time to compile requests for additional info and forward all requests for info to the applicant? I'm including a follow up notification in this email for July 18 at noon as a reminder.

Let me know if anyone has questions. This submittal is pretty close to what they submitted last time so I doubt the application will be missing much (if anything).

Thx, Jen

Jennifer Severson, AICP – Planning Director City of Livingston 220 E. Park St. Livingston, MT 59047 (406) 222-4903 jseverson@livingstonmontana.org From everything I looked at, I didn't see any issues from my department.

Dale

From: Jennifer Severson <jseverson@livingstonmontana.org>
Sent: Wednesday, June 28, 2023 2:50 PM
To: Shannon Holmes <sholmes@livingstonmontana.org>; Jim Woodhull
<jwoodhull@livingstonmontana.org>; Josh Chabalowski <firechief@livingstonmontana.org>; Dale
Johnson <djohnson@livingstonmontana.org>; Martha ORourke
<morourke@livingstonmontana.org>
Subject: Mountain View Subdivision (June 2023 Application)

Hi folks,

I just shared a dropbox link with you that includes the latest Mountain View Subdivision applicationfile is too large to email. For easy reference, I'll also share the link here: <u>https://www.dropbox.com/s/yc7ex33f0d0fql1/Mountain%20View%20Subdivision%20-</u> <u>%20Preliminary%20Plat%20Submittal%20-%20June%2021%202023.pdf?dl=0</u>

The City has 15 working days to review the application materials for sufficiency- i.e. have they provided all the information you need to fully evaluate the proposed subdivision? I'll be responsible for notifying the applicant if we need additional information so that I can track all information submitted by the application for the planning review of the subdivision. If you need additional information from the applicant, please let me know **NO LATER THAN 2 pm on Wed. July 19** so I'll have time to compile requests for additional info and forward all requests for info to the applicant? I'm including a follow up notification in this email for July 18 at noon as a reminder.

Let me know if anyone has questions. This submittal is pretty close to what they submitted last time so I doubt the application will be missing much (if anything).

Thx, Jen

Jennifer Severson, AICP – Planning Director

City of Livingston 220 E. Park St. Livingston, MT 59047 (406) 222-4903

From:	Jim Woodhull
To:	Jennifer Severson
Subject:	Mountain View Subdivision
Date:	Tuesday, July 18, 2023 1:11:35 PM

The Building Department has not concerns or conditions to recommend.

sent via email June 7, 2023

Chris Naumann Sanderson Stewart – Senior Planner 106 E Babcock St. – Suite L1 Bozeman, MT 59718

Dear Chris,

Northwestern Energy is willing and able to provide electric and natural gas services to the proposed Mountain View Subdivision in Livingston, MT near the West Interchange and 100 PFL Way. The area in question consists of portions of T2S, R9E, S22.

These services will be provided in accordance with applicable Montana Public Services rules and regulations and the current Northwestern Energy tariff schedule. NWE has both underground and overhead electric, as well as gas distribution in and around the project area.

Northwestern Energy shall determine the locations of all transformers, underground lines and equipment for proper installation and maintenance. These facilities shall be located on front lot lines in the utility easement right-of-way unless otherwise approved by both parties.

As the project gets closer to approved plat and a finalized development plan, please reach out to NWE directly in order to start the utility planning, design and sizing process for your development. Please feel free to contact me if you have any questions or require any additional information.

Sincerely,

Matt Fettig

Matt Fettig Livingston District Manager matthew.fettig@northwestern.com 224 S. B St. Livingston, MT 59047 406-582-4606

Sumner Anacker

From: Sent: To: Subject: Attachments: Murdo, Damon <dmurdo@mt.gov> Thursday, June 8, 2023 2:59 PM Sumner Anacker RE: Mountain View Subdivision Preliminary Plat - Request for Comment (SHPO) Reports.pdf; 2023060806.pdf

June 8, 2023

Sumner Anacker Sanderson Stewart 106 East Babcock St, Suite L Bozeman MT 59715

RE: MOUNTAIN VIEW SUBDIVISION, LIVINGSTON. SHPO Project #: 2023060806

Dear Sumner:

I have conducted a cultural resource file search for the above-cited project located in Section 22, T2S R9E. According to our records there have been no previously recorded sites within the designated search locale. However, there have been a few previously conducted cultural resource inventories done in the area. I've attached a list of these reports. If you would like any further information regarding these reports, you may contact me at the number listed below.

It is SHPO's position that any structure over fifty years of age is considered historic and is potentially eligible for listing on the National Register of Historic Places. If any structures are within the Area of Potential Effect, and are over fifty years old, we would recommend that they be recorded, and a determination of their eligibility be made prior to any disturbance taking place.

As long as there will be no disturbance or alteration to structures over fifty years of age, we feel that there is a low likelihood cultural properties will be impacted. We, therefore, feel that a recommendation for a cultural resource inventory is unwarranted at this time. However, should structures need to be altered or if cultural materials are inadvertently discovered during this project, we would ask that our office be contacted, and the site investigated.

If you have any further questions or comments, you may contact me at (406) 444-7767 or by e-mail at <u>dmurdo@mt.gov</u>. I have attached an invoice for the file search. Thank you for consulting with us.

Sincerely,

Damon Murdo Cultural Records Manager State Historic Preservation Office

File: LOCAL/SUBDIVISIONS/2023

STATE HISTORIC PRESERVATION OFFICE Montana Cultural Resource Database

CRABS Township, Range, Section Results

Report Date:6/8/2023

Township:2 S Range:9 E Section: 22

GREISER T. WEBER, ET AL.

11/1/2000 RESULTS OF A CULTURAL RESOURCES INVENTORY FOR THE TOUCH AMERICA/AT & T FIBER OPTIC CABLE ROUTE BETWEEN BILLINGS AND LOOKOUT PASS IN MONTANA CRABS Document Number: ZZ 6 23275 Agency Document Number:

Township:2 S Range:9 E Section: 22

LAHREN LARRY A.

1/16/2004 CULTURAL RESOURCE EVALUATIONS OF THE PROPOSED PRINTING FOR LESS FACILITY IN PARK COUNTY MONTANA

CRABS Document Number: PA 6 27162

Agency Document Number: