

REGIONAL PLANNING COMMISSION MEETING AGENDA

Thursday, May 16, 2024 at 5:30 PM City Hall, 415 Broad Street, Montgomery-Watterson Boardroom Room: 307

This meeting is an open and accessible meeting. If interested parties request special assistance or accommodations, please notify the Planning Department three (3) days in advance of the meeting.

- I. INTRODUCTION AND RECOGNITION OF VISITORS
- II. APPROVAL OF THE AGENDA
- **III. APPROVAL OF MINUTES**
 - 1. Approval of the April 22, 2024 work session minutes
 - 2. Approval of the April 25, 2024 regular meeting minutes

IV. CONSENT AGENDA

Consent items are those items that have previously been brought before the Planning Commission, which have been reviewed by the Planning Commission in previous meetings or work sessions or are minor subdivisions and final plats not requiring any variances.

1. Granby Place ILOC Extension with Increase (2021-201-00008). The Commission is requested to approve a one year extension and increase of the ILOC for Granby Place. (Pyatte)

V. UNFINISHED BUSINESS

VI. NEW BUSINESS

1. 3725 Sullivan Gardens Parkway Rezoning (REZONE24-0072). The Commission is requested to send a positive recommendation to the Sullivan County Commission in support of the rezoning request from County R-1 zone to County PMD-2 zone. (Weems)

- 2. 1258 E. Center Street Rezoning (REZONE24-0061). The Commission is requested to send a positive recommendation to the Board of Mayor and Aldermen in support of the rezoning request from the R-1B zone to the B-1 zone. (McMurray)
- 3. Airport Parkway Rezoning (REZONE24-00071). The Commission is requested to send a positive recommendation to the Board of Mayor and Aldermen in support of the rezoning request from the MX zone to the PD zone. (McMurray)
- 4. Overhill Drive County Rezoning (REZONE24-0072). The Commission is requested to send a positive recommendation to rezone the property from the County R-1 zone to the County PBD/SC zone. (Weems)
- Mural Zoning Text Amendment (ZTA24-0087). The Commission is requested to send a positive recommendation to the Board of Mayor and Aldermen in support of the text amendment. (Weems)

VII. OTHER BUSINESS

1. Approved Subdivisions

VIII. PUBLIC COMMENT

Citizens may speak on issue-oriented items. When you come to the podium, please state your name and address and sign the register that is provided. You are encouraged to keep your comments non- personal in nature, and they should be limited to five minutes.

IX. ADJOURN

REGIONAL PLANNING COMMISSION MEETING MINUTES

Monday, April 22, 2024 at 12 PM City Hall, 415 Broad Street, Montgomery-Watterson Boardroom 307

This meeting is an open and accessible meeting. If interested parties request special assistance or accommodations, please notify the Planning Department three (3) days in advance of the meeting.

I. INTRODUCTION AND RECOGNITION OF VISITORS

Members Present: Sharon Duncan, Sam Booher, Anne Greenfield, Tim Lorimer, Jason Snapp

Members Absent: John Moody, James Phillips, Chip Millican, Travis Patterson

Staff Present: Ken Weems, AICP, Jessica McMurray, Garret Burton

Visitors: none

II. APPROVAL OF THE AGENDA

III. APPROVAL OF MINUTES

- 1. Approval of the March 18, 2024 Work Session Minutes
- Approval of the March 21, 2024 Regular Meeting Minutes

The Commission reviewed both sets of minutes. No official action was taken.

IV. CONSENT AGENDA

Consent items are those items that have previously been brought before the Planning Commission, which have been reviewed by the Planning Commission in previous meetings or work sessions or are minor subdivisions and final plats not requiring any variances.

V. UNFINISHED BUSINESS

VI. NEW BUSINESS

Item III1.

- 1. Tri-Cities Crossing Preliminary Zoning Development Plan (COMDEV24-0056). The Kingsport Regional Planning Commission is requested to consider approval of the Preliminary Zoning Development Plan in a B-4P zone for the construction of a new Southern Tire Mart. The property is located inside the corporate limits of the City of Kingsport, 14th Civil District of Sullivan County. Staff presented the details of the item to the Commission. At hand is a new tire store proposal located generally at the intersection of TriCities Crossing and Kendrick Creek Road. Staff stated that the proposal meets the B-4P development requirements without the need for variances. Staff noted that the project resides within the Gateway Overlay District and that the Gateway Commission would consider the proposal the day after the Planning Commission meeting. No official action was taken.
- Brickyard Village Amended Preliminary PD (PD24-0036). The Commission is requested to grant amended preliminary approval for the Brickyard Village Development. Staff noted a few changes since the last approved Brickyard PD plan was considered by the Commission. Several of the once private drives are now being proposed as public streets. Additionally, two of the proposed public streets have been modified to end in a cul-de-sac. Staff stated that the revised plan did contain two variance requests. Staff noted that a modified local street section is proposed for the portion of Brickyard Park Drive that extends up to the proposed roundabout. Due to the northwest side of Brickyard Park Drive for this portion fronting single family homes, the Kingsport Curb is proposed on this side of the cross section to facilitate driveway access. The variance adds the grass strip between the Kingsport Curb and the sidewalk of 9'. Additionally, dead end streets, per the minimum subdivision regulations, must be 150' in length. The proposed termination of Diamond Way, after intersecting with Jewell Lane, is proposed to be 113-8". The shorter than required length is due to an existing power line easement and lining up Jewell Lane with the proposed driveway opposite its connection to Martin Luther King Jr. Drive. The variance is for 36-6" of relief to the length of a dead end street. No official action was taken.

VII. OTHER BUSINESS

1. Approved Subdivisions

VIII. PUBLIC COMMENT

Citizens may speak on issue-oriented items. When you come to the podium, please state your name and address and sign the register that is provided. You are encouraged to keep your comments non- personal in nature, and they should be limited to five minutes.

IX. ADJOURN

REGIONAL PLANNING COMMISSION MEETING MINUTES

Thursday, April 25, 2024 at 5:30p.m.
City Hall, 415 Broad Street, Montgomery-Watterson Boardroom

This meeting is an open and accessible meeting. If interested parties request special assistance or accommodations, please notify the Planning Department three (3) days in advance of the meeting.

I. INTRODUCTION AND RECOGNITION OF VISITORS

Members Present: Sharon Duncan, John Moody, Anne Greenfield, Tim Lorimer, Jason Snapp

Members Absent: Sam Booher, James Phillips, Chip Millican, Travis Patterson

Staff Present: Ken Weems, AICP, Jessica McMurray, Garret Burton

Visitors: Jennifer Salyer, Ben Herrick

II. APPROVAL OF THE AGENDA

With no changes identified, John Moody made a motion to approve the agenda as presented. The motion was seconded by Tim Lorimer. The motion passed, 5-0.

III. APPROVAL OF MINUTES

- 1. Approval of the March 18, 2024 Work Session Minutes
- 2. Approval of the March 21, 2024 Regular Meeting Minutes

The Commission reviewed both sets of minutes without identifying any needed corrections. A motion was made by Tim Lorimer, seconded by Anne Greenfield, to approve the minutes of both the March 18, 2024 work session and the March 21, 2024 regular meeting. The motion passed unanimously, 5-0.

IV. CONSENT AGENDA

Consent items are those items that have previously been brought before the Planning Commission,

Item III2.

which have been reviewed by the Planning Commission in previous meetings or work sessions or aleminor subdivisions and final plats not requiring any variances.

V. UNFINISHED BUSINESS

VI. NEW BUSINESS

- 1. Tri-Cities Crossing Preliminary Zoning Development Plan (COMDEV24-0056). The Kingsport Regional Planning Commission is requested to consider approval of the Preliminary Zoning Development Plan in a B-4P zone for the construction of a new Southern Tire Mart. The property is located inside the corporate limits of the City of Kingsport, 14th Civil District of Sullivan County. Staff presented the details of the item to the Commission. At hand is a new tire store proposal located generally at the intersection of TriCities Crossing and Kendrick Creek Road. Staff stated that the proposal meets the B-4P development requirements without the need for variances. Staff noted that the project resides within the Gateway Overlay District and that the Gateway Commission would consider the proposal the day after the Planning Commission meeting. A motion was made by Jason Snapp, seconded by Anne Greenfield, to grant preliminary zoning development plan approval contingent upon approval of the construction plans. The motion passed unanimously, 5-0.
- 2. Brickyard Village Amended Preliminary PD (PD24-0036). The Commission is requested to grant amended preliminary approval for the Brickyard Village Development. Staff noted a few changes since the last approved Brickyard PD plan was considered by the Commission. Several of the once private drives are now being proposed as public residential streets. Additionally, two of the proposed public residential streets have been modified to end in a culde-sac. Staff stated that the revised plan did contain two variance requests. Staff noted that a modified local street section is proposed for the portion of Brickyard Park Drive that extends up to the proposed roundabout. Due to the northwest side of Brickyard Park Drive for this portion fronting single family homes, the Kingsport Curb is proposed on this side of the cross section to facilitate driveway access. The variance adds the grass strip between the Kingsport Curb and the sidewalk of 9'. Additionally, dead end streets, per the minimum subdivision regulations, must be 150' in length. The proposed termination of Diamond Way, after intersecting with Jewell Lane, is proposed to be 113-8". The shorter than required length is due to an existing power line easement and lining up Jewell Lane with the proposed driveway opposite its connection to Martin Luther King Jr. Drive. The variance is for 36-6" of relief to the length of a dead end street. Staff noted the variance needs will assist the developer in navigating the existing conditions of the site and the existing streets that will be extended. A motion was made by Tim Lorimer, seconded by John Moody, to grant amended preliminary

Item III2.

PD plan approval, along with the dead end street variance of 36 feet, 6 inches and the Kingsport Curb on the Brickyard Park Drive portion of the local street proposal, contingent upon approval of the construction plans. The motion passed 5-0.

VII. OTHER BUSINESS

1. Approved Subdivisions

VIII. PUBLIC COMMENT

Citizens may speak on issue-oriented items. When you come to the podium, please state your name and address and sign the register that is provided. You are encouraged to keep your comments non- personal in nature, and they should be limited to five minutes.

IX. ADJOURN

MEMORANDUM

To: Kingsport Regional Planning Commission

FROM: LORI PYATTE, PLANNING TECHNICIAN

DATE: MAY 16TH, 2024

SUBJECT: IRREVOCABLE LETTER OF CREDIT EXTENSION FOR GRANBY PLACE

FILE NUMBER: 2021-201-00008

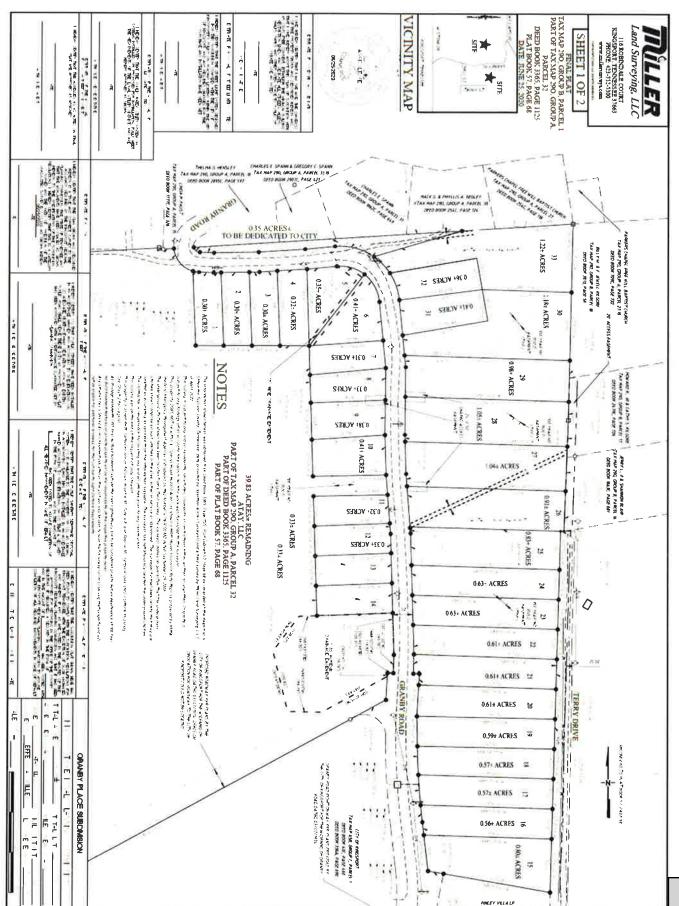
The City currently holds an Irrevocable Letter of Credit in the amount of \$124,827.14 for Granby Place road development. The City Engineering Division has calculated an estimate for this extension to cover the cost of the required improvements to meet the Minimum Subdivision Regulations for the Final Plat of Granby Place Subdivision. The revised estimate is for the amount of \$130,551.14. An irrevocable letter of credit will be submitted to the City for the amount matching that estimate. The remaining improvements are described on the attached bond estimate.

The current Irrevocable Letter of Credit will expire June 30th, 2024. The new Irrevocable Letter of Credit will have an expiration date of June 30th, 2025. The Irrevocable Letter of Credit states that the improvements will be completed on or before the Performance Date, which is set to March 30, 2025, with this giving them a one year extension.

Staff Recommends extension of the Irrevocable Letter of Credit in the amount of \$130,551.14 as calculated by the City Engineering Division, to cover all remaining improvements for Granby Place.

Item IV1.

BOND ESTIMATE Granby Road Bond Estimate


April 25, 2024

FILE NO. 2020-D9

ITEM NO. QU	JANTITY	UNIT	DESCRIPTION		INIT COST	T	OTAL COST
General Items							
1	1	LS	Mobilization	\$	7,607.33	Ś	7,607.33
2	1	LS	Traffic Control	\$	12,000.00		12,000.00
3	1	LS	Topsoil, Seeding and Strawing	\$	18,708.00	-	18,708.00
Sidewalks							
3	7,795	S.F.	4" Sidewalk w/ (4" Base Stone and Spray-Lok)	\$	7.79	\$	60,723.05
Erosion Control 4	1	LS	Erosion Control	\$	10,000.00	\$	10,000.00
Misc.							
5	1	LS	AS-Built Drawings	\$	5,000.00	\$	5,000.00
				SUI	STOTAL	\$	114,038.38
			CONTINGENCIES (6%)			\$	6,842.30
						\$	120,880.68
			CONSTRUCTION CONTRACT ADMINISTRATION & INSPECTION (8%)			\$	9,670.45
				TO	TAL	\$	130,551.14

David Harris Civil Engineer I City of Kingsport April 25, 2024 Date

Rezoning Report

File Number REZONE24-0072

3725 Sullivan Gardens Parkway County Rezoning

Property Information					
Address	3725 Sullivan Gardens Par	rkway			
Tax Map, Group, Parcel	Tax Map 090, Parcel 059.0	00			
Civil District	13				
Overlay District	n/a				
Land Use Designation	Retail/Commercial				
Acres	90 acres +/-				
Existing Use	Residential with the majority undeveloped	Existing Zoning	County A-1		
Proposed Use	Rock quarry/ borrow site	Proposed Zoning	County PMD-2		
Owner /Applicant Inform	nation				
Name: Daniel V. Davis or Jr. Address: 1300 Jan Way City: Kingsport	behalf of Preston H. Taylor	_	County A-1 to County PMD-2 for a rock quarry/ borrow site use		
State: TN	Zip Code: 37660				
Email: glmoody@charter.net					
Phone Number: (423) 782-					

Planning Department Recommendation

The Kingsport Planning Division recommends sending a POSITIVE recommendation to the Sullivan County Commission for the following reasons:

- The rezoning site is relatively well segregated from non-manufacturing uses.
- All new developments within the County's PMD-2 zone shall require Planning Commission approval to ensure compatibility with the surrounding land uses and/or adequate buffering to neighboring properties
- County PMD-2 districts are designed to be installed along major routes

Staff Field Notes and General Comments:

- The rezoning site currently contains an inhabited old house and garage.
- The parcel proposed for rezoning is accessed from Sullivan Gardens Parkway

Planner:	Ken Weems	Date:	May 1, 2024
Planning Commission	on Action	Meeting Date:	May 16, 2024
Approval:			
Denial:		Reason for Denial:	
Deferred:		Reason for Deferral:	

Rezoning Report File Number REZONE24-0072

PROPERTY INFORMATION

ADDRESS 3725 Sullivan Gardens Parkway

DISTRICT 13

OVERLAY DISTRICT n/a

EXISTING ZONING R-1 (Low Density /Single-Family District)

PROPOSED ZONING PMD-2 (Planned General Manufacturing District)

ACRES 90 +/-

EXISTING USE residential/ vacant land

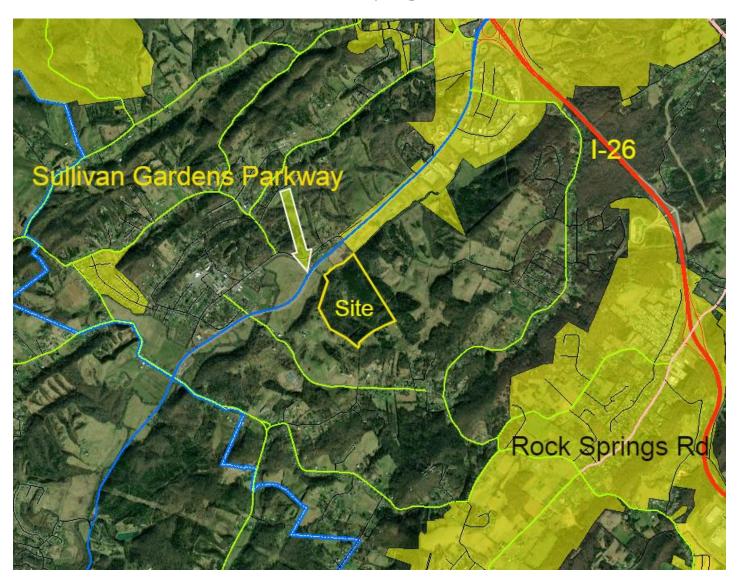
PROPOSED USE rock quarry/ borrow site

PETITIONER

ADDRESS 1300 Jan Way, Kingsport, TN 373660

REPRESENTATIVE

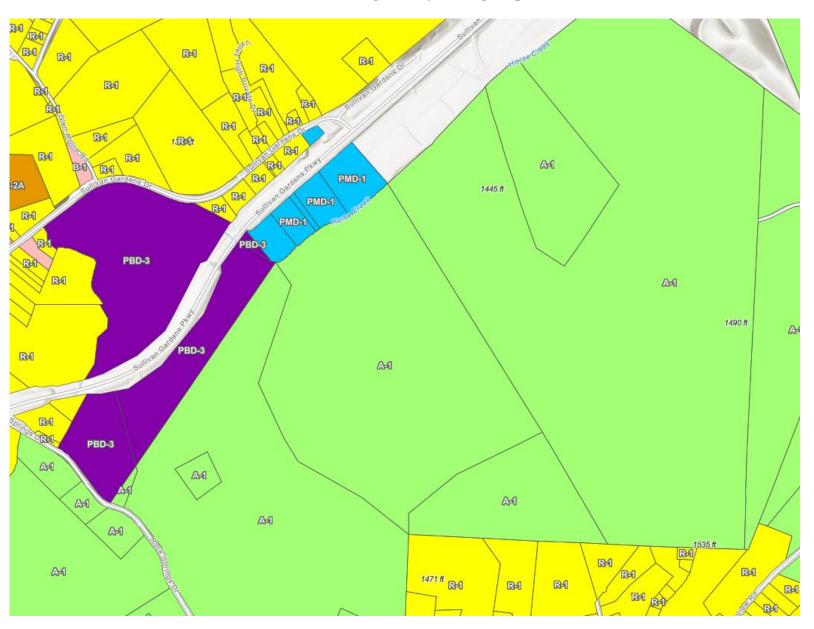
PHONE (423) 817-7300


INTENT

To rezone from County A-1 to County PMD-2 for the purpose of having a rock quarry/ borrow site use on the property.

Rezoning Report

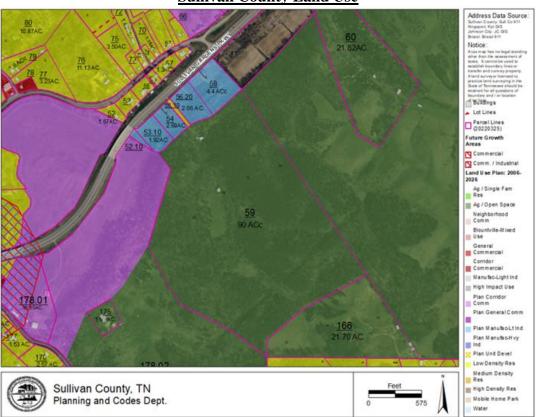
File Number REZONE24-0072


Vicinity Map

Rezoning Report

File Number REZONE24-0072

Surrounding County Zoning Map


Future Land Use Plan 2030: City: Single Family; County: Ag/ Open Space

Rezoning Report

File Number REZONE24-0072

Sullivan County Land Use

Aerial

Prepared by Kingsport Planning Department for the Kingsport Regional Planning Commission Meeting on May 16, 2024

Rezoning Report

Rezoning Report

File Number REZONE24-0072

Sullivan County R-1 Zone District Purpose (from the Sullivan County Zoning Resolution)

5. R-1, Low Density/Single-Family Residential District - These districts are designed to provide suitable areas for single-family residential development within areas that are predominantly characterized by low-density suburban residential development. Residential development consists of single-family detached dwellings and other accessory structures thereto. The intensity of development permitted within these districts is directly related to the availability of public water service and sewage capabilities. These districts also include community facilities, public utilities, and open uses that serve specifically the residents of these districts, or that are benefited by an open residential environment without creating objectionable or undesirable influences upon residential developments. It is the express purpose of this resolution to exclude from these districts all buildings or other structures and uses having commercial characteristics, whether operated for profit or otherwise, except that uses on review, with supplementary provision and home occupations specifically provided by these regulations for these districts shall be considered as not having such characteristics if they otherwise conform to the provisions of this resolution.

Sullivan County PMD-2 Zone District Purpose

1. PMD-2 Planned General Manufacturing District - This class of district is intended to provide space for manufacturing activities within the county. By reason of volume of raw materials or freight, scale of operation, type of structures required, or other similar characteristics these activities require locations relatively well segregated from non-manufacturing uses. Except as specified in Appendix B, Subsection B-105.2, Subpart 9, (Residential Occupancy in Connection with Nonresidential Activity), new residential activities are excluded. Commercial establishments and community facilities, which provide needed services for industry and are complementary thereto, are permitted. All new developments in this district shall require Planning Commission approval to ensure compatibility with the surrounding land uses and/or adequate buffering to neighboring properties. This class of district shall require adequate infrastructure to support any possible uses allowed within the district provisions. This district is designed to promote the clustering of developments along major routes or within industrial complexes while providing internal access roads to ease of the motoring public and heavy vehicles.

Sullivan County PMD-2 Zone District Uses and Structures (from the Sullivan County Zoning Resolution) TABLE 5-102A **USES AND STRUCTURES** ALLOWABLE WITHIN MANUFACTURING DISTRICTS

		PMD-2	PMD-1	M-2	<u>M-1</u>
I.	MANUFACTURING ACTIVITIES				
	A. Manufacturing – Limited	PC	PC	SUP	SUP
	B. Manufacturing – General	PC	PC	SUP	SUP
	C. Manufacturing - Basic Industry	PC	PC	SUP	SUP
	D. Manufacturing – Hazardous	PC	X	SUP	X
II.	COMMERCIAL ACTIVITIES				
	A. Adult Entertainment Establishments	X	X	O/PC	X
	B. Animal Care and Veterinary Services	PC	PC	SUP	SUP
	C. Automotive Parking	PC	PC	SUP	SUP
	D. Automotive & Marine Craft, Sales, Services & Repairs	PC	PC	SUP	SUP
	E. Auto Towing/Automobile Wrecking Yard	PC	X	SUP	X
	F. Outside Materials, Equipment Sales, Service and Repair	PC	PC	SUP	SUP
	G. Scrap Operations/Salvage/Junkyards	BZA	X	BZA	X
	H. Self-Storage/Mini-Warehouse Storage Facilities	PC	PC	Р	Р
	Warehousing, Goods Transport and Storage	PC	PC	SUP	SUP
	J. Wholesale Sales	PC	PC	SUP	SUP

Prepared by Kingsport Planning Department for the Kingsport Regional Planning Commission Meeting on May 16, 2024

Rezoning Report

File Number REZONE24-0072

Cont.	PMD-2	PMD-1	M-2	<u>M-1</u>
K. Commercial/Recreational – Limited	PC	PC	PC	PC
Outdoor and Indoor Sport Shooting Ranges (amended on 03/15/10)				
III. COMMUNITY FACILITY ACTIVITIES				
A. Administrative Services *	PC	PC	SUP	SUP *
B. Child Care Facilities, any type	PC	PC	SUP	SUP
C. Community Assembly	X	X	X	X
 D. Essential Public Transport, Communication and Utility Service 	SUP	SUP	SUP	SUP
E. Extensive Impact Facilities – Limited (see B-104.6 part 6)	PC	PC	PC	X
F. Intermediate Impact Facilities (Telecommunication Transmission Facilities – PC approval)	PC	PC	SUP	SUP
G. Religious Facilities	X	X	X	X
H. Special Institutional Care Facilities	X	BZA	X	BZA
Waste Disposal Operations	PC	X	PC	X
J. Substance Abuse Medical Clinics (amended on 11/15/2010)	X	Х	BZA	X
IV. AGRICULTURAL AND EXTRACTIVE ACTIVITIES				
A. Agricultural – General	Р	Р	Р	Р
B. Agricultural – Intensive	PC	PC	PC	PC
C. Agricultural Services	P	P	Р	P
D. Plant and Forest Nurseries	PC	PC	PC	PC
V. ACCESSORY ACTIVITIES				
A. Accessory Storage – Enclosed Structure	PC	PC	SUP	SUP
B. Accessory Child Care	PC	PC	SUP	SUP
C. Administrative Office	PC	PC	SUP	SUP
D. Operation of Cafeteria	PC	PC	PC	PC
E. Outdoor Storage	PC	PC	SUP	SUP
F. Production for Retail Sale	Х	X	X	X
G. Residential Occupancy (approved administratively)	SUP	SUP	X	SUP

KEY TO INTERPRETING USE CLASSIFICATIONS

SUP = Indicates Use Permitted with Supplemental Provisions.

PC = Indicates Permitted Use on Site Plan Review by the Planning Commission.

= Indicates Use Allowable within Special Overlay District

(See Article VIII, Section 8-401, ADULT ENTERTAINMENT DISTRICTS)

BZA = Special Exception of Use after Approval of the Board of Zoning Appeals NOTES:

See Section 5-104.

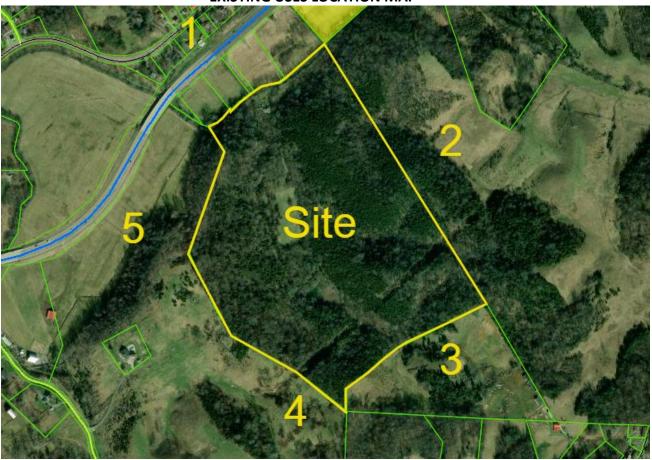
*Approved Alternative Training Facilities - Use of Cargo Shipping Containers for Administrative Services (PC approved with Supplemental Design Guidelines in Appendix B-104.6 Subpart 1D) amended on May 17, 2010.

⁼ Indicates Permitted Use.

Rezoning Report

View Toward Rezoning Site (From Sullivan Gardens Parkway)

View Toward Opposite Side of Sullivan Gardens Parkway



Rezoning Report

View of House with Garage on the Property (Proposed Quarry Area in Background)

EXISTING USES LOCATION MAP

Prepared by Kingsport Planning Department for the Kingsport Regional Planning Commission Meeting on May 16, 2024

Rezoning Report

Existing Zoning/Land Use Table

Location	Parcel / Zoning Petition	Zoning / Name	History Zoning Action Variance Action
North	1	Zone: County R-1 Use: residential	n/a
East	2	Zone: County A-1 Use: Ag/ vacant	n/a
Southeast	3	Zone: County A-1 Use: Ag/ vacant	n/a
South	4	Zone: County A-1 Use: low density residential	n/a
West	5	Zone: County A-1 Use: low density residential	n/a

CONCLUSION

Staff recommends sending a POSITIVE recommendation to the Sullivan County Commission to rezone from Sullivan County R-1 to Sullivan County PMD-2 based upon the following reasons:

- 1. The rezoning site is relatively well segregated from non-manufacturing uses.
- 2. All new developments within the County's PMD-2 zone shall require Planning Commission approval to ensure compatibility with the surrounding land uses and/or adequate buffering to neighboring properties.
- 3. County PMD-2 districts are designed to be installed along major routes.

3 Tees, LLC 1300 Jan Way Kingsport, Tennessee

Horse Creek Quarry Preliminary Development Plan

For

REQUEST FOR ZONING CHANGE TO M-2

September 9, 2023

PREPARED BY:

STEPHEN E. MAXFIELD, P. E. PROFESSIONAL ENGINEER P.O. BOX 1745 HONAKER, VIRGINIA 24260 PHONE: (276) 979-6963

CONTENTS

Rezoning Request Letter
Introduction
Site Location
Site Description
Operation Plan
Land Use
Highway Access
Safety
Drainage & Sediment Control
Reclamation
Groundwater Assessment
Environmental Assessment

Maps

Land Use Map Site Plan Cross Sections, Profiles and Details Stephen E. Maxfield, P. E. 1745 Roman Ridge Road Honaker, VA 24260 Phone: (276) 979-6963

Email: Coulwood1214@gmail.com

September 8, 2023

Department of Planning and Codes Sullivan County, Tennessee 3425 Highway 126, Suite 101 Blountville, TN 37617

Subject: Proposal for Preliminary Development Plan for M-2 zoning for proposed quarry

To whom it may concern:

On behalf of my client, 3 Tees, LLC, we are requesting that tracts 56.10, 56.20, and 59.00 located 3725 Sullivan Gardens Parkway be rezoned to M-2, Heavy Manufacturing. 3 Tees has the option to purchase these properties if they can be rezoned.

3 Tees is proposing to develop a quarry on these properties and would mine limestone rock, crush and screen the rock for aggregate, and stockpile the aggregate for sale for road construction and other uses. The actual quarry pit and processing facilities will be located approximately 1,200 ft from Sullivan Gardens Parkway and in so much as possible existing trees will be retained as a buffer and to screen the operations from the public.

A Preliminary Development Plan for the property has been prepared to address *Section 5-104.2 of The Sullivan County Zoning Resolution*. Please review the included plan for compliance.

We look forward to your recommendation on the plan. If you have any questions or require any additional information, please contact us.

Sincerely,

Stephen E. Maxfield, P. E.

INTRODUCTION

3 Tees, LLC is requesting rezoning approval for three (3) tracts of property located on 3725 Sullivan Gardens Parkway, Kingsport, Tennessee to M-2 District for Heavy Manufacturing. 3 Tees has an option to purchase these properties and plans to develop a limestone quarry to manufacture stone aggregate for construction. The proposed quarry will be located approximately 1,200 ft from Sullivan Gardens Parkway. Access to the proposed quarry site will be via an existing drive/farm road from Sullivan Gardens Parkway. An existing bridge crosses Horse Creek. These facilities will be upgraded suitable for the proposed use.

SITE LOCATION

3 Tees proposed operation will be an open pit limestone excavation, crushing and screening operation located at 3725 Sullivan Gardens Parkway, Kingsport, Tennessee in Sullivan County.

The site is located in the north west section of the Sullivan Gardens United States Geological Services (U.S.G.S) Sullivan Gardens 7.5' Quadrangle at the geographic coordinates of 36°28'43" North Latitude and 82°34'49" West Longitude. The site is located on the south side of Horse Creek at approximate elevation of 1350 ft. Horse Creek is approximately 1,000 ft. from the proposed quarry at an elevation of 1215 ft. Horse Creek is a first order perennial stream that flows north east to the Holston River.

The following tracts are located in the proposed rezoning:

Tract ID	Owner	Acres	Current Use
59.10	Preston H. Taylor		Drive/Farm Access
59.20	Preston H. Taylor		Agricultural
59.00	Preston H. Taylor	90	Agricultural

A location map is included with the drawings.

SITE DESCRIPTION

The proposed quarry will be located in a gently sloping area at approximately 1325 ft. in elevation approximately 1,000 ft South and 110 ft. above Horse Creek. The terrain between the proposed quarry and Horse Creek is fairly steep. Both eastward and southward the elevation rises to above 1,425 ft. to form a series of small knobs. On the west side the terrain is not as steep and rises to 1,350 ft. A sink hole is located south of the proposed site, between the knobs to the south and the less steep terrain to the west. The sink hole is at 1,290 ft. elevation.

On the north side of Horse Creek and south of Sullivan Gardens Parkway the terrain is nearly level at an elevation of 1220 ft. The elevation of Sullivan Gardens Parkway is 1230 ft. This area is in the FEMA floodway with a flood elevation of 1223. The bottom elevation of Horse Creek in this area is 1215 ft.

Drainage from the proposed quarry site is northward to Horse Creek in swales. This would only occur during periods of heavy rainfall. The site is high and dry with no indications of perennial or even intermittent stream flow that would be considered jurisdictional waters of the United States and regulated by the U. S. Army Corps of Engineers under Section 401 of the Clean Water Act. No wetlands were identified on the property either in the sink hole or along Horse Creek.

Access to the site from Sullivan Gardens Parkway will be via a road traversing southeast. From the parkway to Horse Creek for a distance of 375 ft the road will slope down at approximately 1%. A new bridge will be constructed across Horse Creek. The road will traverse along the swale a distance of 650 ft upward at a grade of 10% to the screening area and the proposed quarry pit.

The proposed quarry pit will be developed from approximately 1300 ft. in elevation to a proposed bottom of 1220 ft in elevation. The pit will be approximately 400 ft wide and 700 ft long. The pit walls will be developed with a slope ratio of 0.25 horizontal to 1 vertical. A 25 ft. wide bench is proposed in the pit walls at vertical intervals of 50 ft. A 25 ft. wide pit road will be developed as the pit progresses with a grade of 10 %.

A fill area to store topsoil and two (2) fill areas to store overburden will be constructed southeast of the pit. The topsoil fill will be approximately 10 ft. deep with a top elevation of 1335 ft. Overburden Fill No. 1 will be 50 ft. deep with a final elevation of 1350 ft. Overburden Fill No. 2 will be 70 ft. deep with a final elevation of 1400 ft. The front face of the fill will be sloped at a ratio of 2 horizontal to 1 vertical.

A proposed site plan at a scale of 1" = 200' is included with this submittal. Both existing and proposed elevation contours at 5 ft. intervals is shown on the site plan.

LAND USE

The existing land use on and around the proposed quarry include single family residential, agricultural and unmanaged forest lands. A Land Use Map is included. The following table is a summary of land use by tract.

	LAND USE TABLE					
Tract ID	Owner	Acres	Current Use			
59.10	Preston H. Taylor		Drive/Farm Access			
59.20	Preston H. Taylor		Agricultural			
59.00	Preston H. Taylor	90	Agricultural/Unmanaged Forest			
178.02	Horse Creek Farms		Agricultural/Unmanaged Forest			
175.00	Joe & Rebecca Riggs		Single Residential			
53.10	Billy & Dinah Lawson		Agricultural			
54.00	Billy & Dinah Lawson		Agricultural/Single Residential			
58.00	Danny & Crystal Edwards		Agricultural/Single Residential			
59.50	City of Kingsport		Public Recreational			
64.00	Harry Bachman, Jr.		Agricultural/Unmanaged Forest			
60.00	Harry Bachman, Jr.		Agricultural/Unmanaged Forest			
166.00	Jerry & Gladys Dean		Agricultural/Unmanaged Forest			
149.00	Charles & Letitia Williams		Agricultural/Unmanaged Forest			
178.1	Jill & Kenneth Rich		Single Residential			
55.00	Ruth Blix		Single Residential			
57.00	Derek Blix		Single Residential			
53.00	Nau & Natalie Tran		Single Residential			
52.00	Jeremiah Blair		Single Residential			
178.01	Josephine Riggs		Agricultural			

HIGHWAY ACCESS

Highway access to the proposed quarry is Tennessee State Route 93. State Route 93 begins at an intersection with US 11E/US 321 in Greeneville, TN. It then heads northeast toward Kingsport, TN. The route intersects State Route 81 just south of Fall Branch and heads more northerly. In Fall Branch, it has an interchange with Interstate 81exit 50 and continues north to Kingsport where it intersects State Route 347 just south of there. In Kingsport, it has an interchange with Interstate 26 and State Route 126 for the first time. This also marks the western terminus of State Route 126. The route heads east as a controlled-access southern bypass of the city passing by Eastman Chemical Company and crossing over the South Fork Holston River and has an interchange with State Route 36. Then, it intersects State Route 126 for a second time at an interchange. State Route 93 then turns back north to an interchange with US 11W and then it meets its northern terminus, at the Tennessee–Virginia State Line in Bloomingdale.

All of State Route 93, from just north of Interstate 81 to US 11W, is included as part of the National Highway System, a system of roadways important to the nation's economy, defense, and mobility. This section is also classified as a principal arterial route.

This highway is named Sullivan Gardens Parkway in the vicinity of the site. The highway is four (4) lanes undivided with a center turning lane. Each lane, including the turn lane is 12 ft. wide. There are paved shoulders on both sides 10 ft. wide.

The average number of vehicles per day on this segment the highway is 4,500, with about 47% north bound and 53% south bound. The average number of vehicles per hour is approximately 250 between the hours of 7 a.m. to 4 p.m., with a peak volume 450 vehicles from 5 to 6 p.m. Site distance to the north is 1,000 ft. or more and site distance to the south is 775 ft.

These road conditions are suitable for the proposed M-2 zoning district. Once re-zoning is approved, 3 Tees shall apply for a commercial entrance to the site from State Route 93 through the Tennessee Department of Transportation. The entrance shall incorporate all geometrics required for the intended use.

OPERATION PLAN

Limestone rock will be mined at this site utilizing the open pit quarry surface mining technique. Drilling and blasting will be utilized to break the rock. Once broken, the raw material will then be trucked or carried to a portable crushing and screening machine. The crusher will reduce the large rock to smaller sizes suitable for sale and screening. The screening will isolate the product by size for sale. Once sized, the material will sold and removed from the area by trucks. The screened-off material will be stored and used to reclaim disturbed areas. The proposed pit will be 50 feet deep at most, therefore benching is not required.

Before mining begins a sediment control basin will be constructed below the area. The basin will be constructed on the flat on the south side of Horse Creek. After pond construction, the road to the quarry site will be constructed. The road will be constructed by the cut/fill method, with an average grade of 10%. Ditches provided on the cut side and a safety berm provided on the fill side. The road will be graded at 2% toward the ditch. The road shall be adequately surface for the type of vehicles using it.

Following road construction, the mining area will first be cleared of trees and brush. The trees and brush will be either windrowed along the edge of the clearing to aid in sediment or erosion control, burned in accordance the governing local, state, or federal law or they will be removed from the site.

Following clearing, the available topsoil will be salvaged. This material will be placed in the designated topsoil fill southeast of the proposed pit. After removal of the topsoil, the overburden shall be removed. This consists of clay soil, weathered limestone, and shale not suitable for sale. This material may be stripped or ripped with a dozer or excavator or blasted if necessary. Two (2) overburden fills east and southeast of the pit will be used for disposal of the overburden. Note that prior to placement of topsoil or overburden, the footprint of the fill shall be cleared and grubbed of all vegetation. Additionally, the topsoil shall be salvaged from the overburden fill areas. Following

storage area foundation preparation, spoil or overburden material will be placed in these areas. Dozers, front-end loaders, trucks, etc. will then be used to move the spoil to the storage areas. The spoil material will placed in the fill area by the "end dump" method. No debris or other deleterious material will be placed in these storage areas. The outslope of the storage area will generally equal the angle of repose of the material being placed, however, when this material is placed in the final reclamation grade it will not be allowed to exceed a grade of 2 horizontal to 1 vertical.

The pit development will begin in the nearly level area at elevation 1300 ft and progress eastward. Once the pit has been developed, will be continually expanded and deepened by removal of the material by blasting. No cut slopes at the top of the pit wall will extend any closer than 25 feet of the property line. The pit bottom will be at elevation 1220 ft. and the wall at the highest on the east side of the pit will be at 1375 ft. The slope of the pit wall will be no greater than 2 horizontal to 1 vertical in unconsolidated material and 1 horizontal to 1 vertical in consolidated material and 0.25 horizontal to 1 vertical in solid limestone. A 25 ft. wide bench will be provided int he pit wall at intervals not exceeding 50 ft.

A portable crusher and screens will be set up northwest of the proposed pit. Blasted rock from the quarry will be hauled up the pit road and dumped. The raw material will be loaded directly into the screening/sizing machine for processing. The processing machine is a portable, diesel operated conveyor and dry screening device that can be set-up and various locations on the permit. The processing includes a screening that grades the rock by size. The classified aggregate is transferred from the machine to stockpile areas via small portable conveyors and trucks. The final marketed products produced at this site are transported via trucks. Scales will be set up for weighing the stone sold.

Limestone is not considered hazardous. The mine plans to produce 200,000 tons per year over the next 10 years. The anticipated daily vehicle count is 40, with 60% coming and leaving from north on State Route 93.

SAFETY

The proposed operation shall be conducted in a manner to ensure the safety of all employees, customers, and the general public and nearby resources. Prior to land disturbing activity, a permanent sign shall be installed at the entrance to the site and shall be visible and legible to access road traffic. The name of the company and any required permit numbers shall be on the sign. Additional signs shall also be posted instructing visitors and customers how to check in and proceed onto the site, speed limit, and personal protective equipment required. Signs shall also be posted regarding blasting. These signs shall outline the signaling system for blasting. Additional signs and barricades will be erected immediately prior to any blasting. The boundary of the mine shall be clearly marked with identifiable markings when mine related land disturbing activities are within 100 feet of the boundary.

All slopes shall be developed in a safe manner in consideration to the type of material and geology. At a minimum the following slopes are proposed:

Unconsolidated material 2H:1V Fill material 2H:1V Consolidated material 1H:1V Solid Shale 1H:1V Solid Limestone 1H:1V

For walls exceeding 50 ft in height, a bench with a minimum 25 ft width shall be provided.

Roadways shall be provided of sufficient width to accommodate the safe passing of two (2) of the largest vehicles anticipated to use the roads. The roads should not exceed a grade of 10%. A safety berm shall be provided on the outside of the road and shall be at a minimum the axle height of the largest vehicle traveling the road.

Buildings or areas used for storage of flammable or combustible materials shall be of fire resistant material, well ventilated, kept clean and orderly, posted with fire hazard warning signs, and provided with means to confine or contain accidental spills.

Several methods are employed at the site for the control of fugitive dust. These methods are in conjunction with a separate air quality control permit maintained with the Tennessee Department of Environmental. These methods include:

- Paving of entrances
- Washing of entrances
- Periodic resurfacing and grading of roads
- Periodic watering of roads
- Misting water sprays at conveyor transfer and discharge points

The quarry location and design should minimize disturbance and effects to nearby citizens. However, in the event that a compliant is made it will be diligently addressed. In the event the complaint is valid the issue will be promptly corrected.

DRAINAGE AND SEDIMENT CONTROL

The primary sediment control features for this site is the use of a sediment basin. Drainage from disturbed areas will be directed by ditches or use of a natural drainage swale to the location where a sediment basin will be constructed. The sediment basins will provide sediment and drainage control for the initial mining area, plant area, and roads. After the pit is developed below grade, it will provide drainage control for upstream of it and the basin will only control drainage for the road and plant area.

RECLAMATION

The final reclamation of this site will return this area to a post-mining land use of unmanaged forest land for wildlife. This will be in compliment to the natural surrounding terrain and the pre-mining land use. In as far as practical, reclamation will occur simultaneously with mining. However, due to the mine site size and method of mining, final reclamation of all pit areas may not be possible until the completion of mining. However, once mining is declared complete, reclamation shall commence with 12 months.

All fill area slopes will be graded to not exceed a 2 horizontal to 1 vertical slope. Topsoil from the storage area will be used to cover fill areas and other hard surfaces to propagate vegetation. The exposed walls will be enclosed with a woven wire fence 5 feet high with two (2) strands of barbed wire above (making the total height 6 feet) to prevent encroachment. In addition to the fence, danger signs will be strategically placed to warn of the hazardous exposed high wall.

After the completion of mining all buildings, plant structures, mining equipment, scrap metal, debris, etc. will be removed from the site. These areas and internal roads will be scarified and prepared for seeding. The stockpiles will be removed or graded to contour with the natural surroundings. The overburden will be graded to 2h: 1v and in high walls left exposed will be fenced. Topsoil will be redistributed and the area prepared for revegetation.

Seeding of all disturbed areas will occur within thirty (30) days of final re-grading. Soil tests will be taken when the re-grading process is nearly completed to determine specific nutrient requirements. Testing for pH, phosphorous, potassium, and textural class will be performed. The results of these tests will be used to determine proper soil additives. During seeding one thousand five hundred (1,500) pounds per acre of cellulose or wood fiber mulch or two thousand (2,000) pounds per acre of straw mulch will be used. The following table will be utilized to achieve the re-vegetation plan:

PLAN	TYPE	RATE /ACRE
Permanent Grass	KY 31 Fescue and Orchard Grass	30 lbs. And 20 lbs.
Legumes	White or Ladino Clover and Red Clover	2 lbs. And 4 lbs.
Temporary Mixture	Annual Rye and Foxtail Millet	20 lbs. And 10 lbs.
Mulch or Straw	Wood Fiber or Rye	1500 lbs. Or 2000 lbs.
Fertilizer	16-24-14 or 10-20-10	300 lbs. Or 500 lbs.
Lime	Agricultural	As required by soil testing during final regrade

A balance of tree cover is planned to establish proper ground cover, erosion control, valuable timber products, and wildlife habitat. Two categories of tree species will be utilized to achieve the post mining land use. These are the crop trees and the nitrogen fixing nurse trees or shrubs. The crop trees are long-lived species that offer value to the

landowners. The nurse trees and shrubs are nitrogen-fixing plants that benefit the tree crop and provide food and cover for wildlife.

Crop Trees	Pines - Pitch X Loblolly Pine Hybrid, White Pine, Virginia Pine. Hardwoods - Yellow Poplar, Oaks, White Ash, Sycamore, Red Maple, Black Cherry
Nurse Trees or Shrubs	Black Locust (not used with White Pine), European Black Alder (used w/ White Pine), Bicolor Lespedeza, Indigo Bush, Bristly Locust

A mixture of the above trees will be planted with to establish a minimum of 400 trees per acre, after two growing seasons. A spot application of herbicide may be required if ground cover growth is especially vigorous. This will reduce competition and allow trees to become established.

After vegetation is established, the sediment basin may be removed. Since the basin is an excavated basin, it will simply be filled in until the impounding capacity has been eliminated. A "swale" will be created through the basin area and to the spillway for post mining/reclamation drainage. The fill will be obtained from around the pond area. Any areas disturbed during removal of the basins will be seeded with a permanent seed mixture

Any areas of the site that remain inactive for twelve (12) months will be seeded with a temporary seed mixture and any areas of the permit that remain inactive for twenty-four (24) months will be final graded and seeded with a permanent seed mixture.

GROUNDWATER ASSESSMENT

Groundwater flow will originate as precipitation and surface water flow. The surface flow gradient is governed by topography. Surface flow atop ridges will begin migration to the lower valleys. As the flow migrates to the valley, stress relief fractures within the valley wall will begin to intercept the surface flow and transmit it into the groundwater system. Limestone is defined as karst terrain which has been eroded by dissolution to produce fissures and sinkholes has the capability to transmit groundwater, while shale tends to be more impervious. Therefore, groundwater water encountering the limestone may be retained in this strata especially when the strata is underlain by the more impervious shale or unweathered strata. Groundwater movement encountering shale may tend to follow the bedding plane or dip. This may result in groundwater discharge as a spring or seep. Fracturing within the valley floor has been found to be more intense and extend to greater depths than the valley walls. Groundwater movement within the valley floor fracture system will typically follow the stream gradient through the connected fractures.

Groundwater flow through the fracture flow system is typically characterized as rapid recharge, but low yielding. Groundwater quality is typically a function of contact time

between the strata and the water. Therefore, the quality of the groundwater along the slope is typically better than the valley floors or water found in aquifers of porous strata.

Typically a second groundwater system exists within the low gradient stream channels. This system consists of groundwater flow through the alluvial deposits within the valley floor. Typical alluvial deposits consist primarily of sand and silt with lesser amounts of clay and gravel. The physical characteristics allow these deposits to function as aquifers that store and transport ground water. Alluvial aquifers serve to capture a portion of water from precipitation events that would otherwise leave the area as surface runoff. Water stored in these alluvial aquifers contributes recharge to underlying valley floor fracture aquifer system and may supply recharge to streams, thereby sustaining base flows. Alluvial aquifers generally require a thickness in excess of 10 meters to supply sufficient water for the support of domestic wells. These groundwater systems are believed to exist along Horse Creek.

Drilling in the proposed quarry area did not identify any groundwater. No significant groundwater is anticipated unless a perched system would be encountered due to underlying shale or clays. If ground water is found to be present, it shall be directed to a sump in the pit. If necessary it will filtered prior to discharge into the stream or groundwater system. If these measures are implemented, no negative effects are expected to the surface water or groundwater system.

ENVIRONMENTAL ASSESSMENT

This operation will minimize adverse impacts to the environment. Potential pollutants generated at the site include dust and erosion/sediment. Additionally, oil and petroleum products may be stored on site for use in the mining equipment.

Measures have been outlined in the Operation Plan to control dust. An Air Quality Permit will be obtained from the Tennessee Department of Environment prior to beginning mining.

Additionally, measures have been outlined to control contribution of sediment to the streams. The Drainage and Sediment Control Plan above delineates the control measures. A National Pollution Discharge Elimination System (NPDES) will be obtained for the site.

All chemicals and petroleum products used at the site will be properly handled, to ensure the groundwater supply or stream is not contaminated. A supply of spill containment supplies such as absorbent pads and oil dry will be maintained on site it the unlikely event of a spill. Per 40 CFR 112 if any one tank on site is larger than 660 gallons, or the total storage is greater than or equal to 1,320 gallons, a Spill Prevention Control Countermeasures (SPCC) plan as required by the Environmental Protection Agency (EPA) will be implemented.

The site will not impact any jurisdictional waters of the United States or waters of the State of Tennessee. A thorough field investigation of the site was conducted and there were no indicators of streams or wetlands on this site other than Horse Creek. No impacts to Horse Creek are proposed. A new bridge will be constructed; however, it will be located outside of and beyond the defined Ordinary High Water Mark (OHWM) precluding any authorization from the U. S. Army Corps of Engineers.

Tennessee Property Assessment Data - Parcel Details Report - https://assessment.cot.tn.gov/

	Tellife 33cc i Top	city Assessment Data - Larcer Details Report - https://as	sessment.cot.tri.govi	
Sullivan (082)	Jan 1 Owner	Current Owner	SULLIVAN GAR	RDENS PKWY 3725
Tax Year 2024 Reappraisal 2021	TAYLOR PRESTON H	1358 WATAUGA ST	Ctrl Map: Group	o: Parcel: <i>Item VI1.</i> BI:
Tax Teal 2024 Neapplaisal 2021	1358 WATAUGA ST	KINGSPORT TN 37660	090	059.00
	KINGSPORT TN 37660			009.00
Value Information		Residential Building #: 1		

\$89,700

Value Information		
Land Market Value:	\$185,200	Land Use Value:

\$18,800 \$18,800 Improvement Value: \$204,000 **Total Use Appraisal:** \$108,500 **Assessment Percentage:** 25%

Special Service District 2: 000

Number of Mobile Homes: 0

Utilities - Electricity: 01 - PUBLIC

Neighborhood: A62

Zoning: A-1

Assessment: \$27,125

Subdivision Data

Improvement Value:

Total Market Appraisal:

Subdivision:

W W BIRD & DALE LAMPKIN

Lot: Plat Book: Plat Page: Block: 67A 13

Additional Information

PT OF LOTS 10 11 & 12 **General Information**

Class: 11 - Agricultural

City #: Special Service District 1: 000

District: 13

Number of Buildings: 1

Utilities - Water/Sewer: 00 - PUBLIC / NONE

Utilities - Gas/Gas Type: 00 - NONE

Outbuildings & Yard Items

Building #	Туре	Description	Units
1	OSH - OPEN SHED	14X21	294

City:

Sale Information

Sale Date	Price	Book	Page	Vacant/Improved	Type Instrument	Qualification
5/6/1955	\$0	0158A	00228		-	-

Land Information

Long Land Information list on subsequent pages

Improvement Type: 01 - SINGLE FAMILY **Exterior Wall:**

07 - CONCRETE BLOCK

Heat and AC: 0 - NONE

0 - BELOW AVERAGE

Square Feet of Living Area:

960

Quality:

Foundation:

02 - CONTINUOUS FOOTING

Roof Framing: 02 - GABLE/HIP Cabinet/Millwork: 02 - BELOW AVG Interior Finish: 00 - NONE **Bath Tiles:** 00 - NONE

Shape: 01 - RECTANGLE

Building Sketch

Stories:

1.00

Actual Year Built:

1943

Plumbing Fixtures:

3

Condition: AV - AVERAGE Floor System:

01 - SLAB ON GRADE

Roof Cover/Deck:

13 - PREFIN METAL CRIMPED

Floor Finish:

11 - CARPET COMBINATION

Paint/Decor:

02 - BELOW AVERAGE

Electrical: 02 - BELOW AVG Structural Frame: 00 - NONE

Building Areas

Areas	Square Feet
BAS - BASE	960
OPU - OPEN PORCH UNFINISHED	96

Land Information

Deed Acres: 0	Calculated Acres: 90	Total Land Units: 90
Land Code	Soil Class	Item VI1. Inits
46 - ROTATION	А	3.45
54 - PASTURE	Р	4.62
62 - WOODLAND 2	G	1.13
62 - WOODLAND 2	А	30.14
62 - WOODLAND 2	Р	50.16
04 - IMP SITE		0.50

3 Tees, LLC 1300 Jan Way Kingsport, Tennessee

Horse Creek Quarry

Application and Plans

For

NPDES Mining Permit

October 16, 2023

PREPARED BY:

STEPHEN E. MAXFIELD, P. E. PROFESSIONAL ENGINEER P.O. BOX 1745 HONAKER, VIRGINIA 24260 PHONE: (276) 979-6963

CONTENTS

Submittal Letter

Tennessee Department of Environment and Conservation Application (CN 1090)

EPA Forms 1 and 2D

Introduction

Site Location

Site Description

Operation Plan

Land Use

Highway Access

Safety

Drainage & Sediment Control

Sedcad 4 Drainage Calculations

Reclamation

Groundwater Assessment

Environmental Assessment

Maps

Site Plan

Cross Sections, Profiles and Details

Stephen E. Maxfield, P. E. 1745 Roman Ridge Road Honaker, VA 24260 Phone: (276) 979-6963

Email: Coulwood1214@gmail.com

October 16, 2023

Daniel Lawrence Tennessee Department of Environment and Conservation Mining Section 3711 Middlebrook Pike Knoxville, TN 37921

Subject: NPDES Permit For Proposed Limestone Quarry

Dear Mr. Lawrence:

On behalf of my client, 3 Tees, LLC, we are requesting a NPDES permit for a limestone rock quarry to be located at 3725 Sullivan Gardens Parkway. 3 Tees has the option to purchase these properties if they can be rezoned and permitted.

3 Tees is proposing to develop a quarry would mine limestone rock, crush and screen the rock for aggregate, and stockpile the aggregate for sale for road construction and other uses. The actual quarry pit and processing facilities will be located approximately 1,200 ft from Sullivan Gardens Parkway and in so much as possible existing trees will be retained as a buffer and to screen the operations from the public.

The application forms, mine plans and design, and maps and drawings have been included in this submittal. Please review the included plan for compliance.

If you have any questions or require any additional information, please contact us.

Sincerely,

Stephen E. Maxfield, P. E.

STATE OF TENNESSEE **DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER RESOURCES**

Item VI1.

Water-Based Systems William R. Snodgrass - Tennessee Tower 312 Rosa L. Parks Avenue, 11th Floor Nashville, TN 37243-1102

PERMIT CONTACT INFORMATION

Please complete all sections. If one person serves multiple functions, p	please repeat th	is information	ı in each sectio	on.
PERMIT NUMBER:	DATE: C	October 10	0, 2023	
PERMITTED FACILITY: Horse Creek Quarry	COUNTY: S	Sullivan		
OFFICIAL PERMIT CONTACT:				
(The permit signatory authority, e.g. responsible corporate officer, principle execu			cial)	
Official Contact: Vic Davis	Title or Position:	Manager		
Mailing Address: 1300 Jan Way	City: Kings	City: Kingsport State: TN Zip: 37660		
Phone number(s): 423-817-7300	T	@vdctn.co	om	*
PERMIT BILLING ADDRESS (where invoices should be sent):				
Billing Contact: Vic Davis	Title or Position:	Manager		
Mailing Address: 1300 Jan Way	^{City:} Kingsp	ort	State: TN	^{Zip:} 37660
Phone number(s): 423-817-7300	E-mail: vicd@vdctn.com			
FACILITY LOCATION (actual location of permit site and local contact	ct for site activit	y):		
Facility Location Contact: Vic Davis	Title or Position:	Manag	er	
Facility Location (physical street address): 3725 Sullivan Gardens Parkway	Kings	sport	State: TN	^{Zip:} 37660
Phone number(s): 423-817-7300	E-mail: vicd	@vdctn	.com	
Alternate Contact (if desired):	Title or Position:			
Mailing Address:	City:		State:	Zip:
Phone number(s):	E-mail:	<u> </u>	<u> </u>	
FACILITY REPORTING (Discharge Monitoring Report (DMR) or other	er reporting):			
Cognizant Official authorized for permit reporting: Vic Davis	Title or Position:	Manag	er	
Mailing Address: 1300 Jan Way	Kings	sport	State: T	N 37660
Phone number(s): 423-817-7300	E-mail: vicd	@vdctn	.com	_
Fax number for reporting: NA	Does the facility h	nave interest in sta	rting electronic DN	MR reporting? Yes No

Antidegradation Statement Guidance

To Be Used When Administering Tennessee's Antidegradation Statement as Associated with Obtaining a National Pollutant Discharge Elimination System (NPDES) Permit

The Antidegradation Statement Guidance document is to be used in accordance with the *Tennessee's Antidegradation Statement Rule 0400-40-03-.06* as it pertains to completing the application requirements for a NPDES permit. This document may be used as equivalent information for the EPA Worksheets (A, G, O, R, V, W, X, Y, Z, and AB for the private sector and O, P, Q, S, T, U, and AA for the public sector).

Specifically the document is divided into five parts. Parts 1-2 are general information regarding the facility and receiving water. Part 3 characterizes the level of degradation and the alternatives analysis (including social, economic, and environmental considerations of each alternative). Parts 4-5 detail the social and economic justification required to demonstrate that the degradation associated with the proposed discharge to an Exceptional Tennessee water (ETW) is justified. All permit applicants must complete, at a minimum, Parts 1-3 of this document. If you propose to discharge to an ETW, you must complete the document in its entirety.

Part 1. Contact Information		
1. Company name:	3 Tees, LLC	
2. NPDES No.: TN00		
3. Facility or mine name:	Horse Creek Quarry	
4. County:	Sullivan	

Part 2. Mine and Stream Information

1.	Please select the type of mine.	
	Noncoal	
	■Limestone Sand and gravel Ball Clay Industrial sand Zinc	☐ Marble ☐ Dimension stone ☐ Quartzite ☐ Other

	Coal	
	☐ Reclamation ☐ Active mining ☐ Post mining	Prep plants / associated areas Tipple / load out
2.	Please select the type of permit activity reques Renewal of permit based on currently appr Renewal and modification of permit Modification of permit New permit	

3. Please list each outfall number, the name of receiving stream(s) and the corresponding stream designation (either Outstanding National Resource Water (ONRW), Exceptional Tennessee Water (ETW), or Non Exceptional Tennessee Water (Non ETW). Use separate paper if necessary.

			Stream Designation	ation
Outfall(s)	Receiving Stream(s)	ONRW	ETW	NON ETW
001	Horse Creek			

Part 3. Characterize the Level of Degradation in the Proposed Activity and Analysis of Alternatives.

Please select one of the following levels and support your conclusion in the space that follows. Finally, complete the Alternatives Analysis.

Part 3-A- Level of Degradation

The proposed activity is to renew an existing permit. No changes to the acreage size, the number or location of outfall(s), or the volume of the existing discharge are proposed at this time. Renewal of the permit does not cause degradation above what is already permitted. (If this applies, skip to Part 3-B.)
The proposed activity will cause no measurable degradation. Activities causing no measurable degradation are defined as those activities that do not cause a measurable increase in levels of a given parameter in the receiving water.
The proposed activity will cause de minimis degradation. Activities causing de minimis degradation are defined as those activities that cause degradation of a small magnitude as described in <i>Rule 0400-40-0304 (4)(a)</i> . De minimis activities are described as single discharges that use less than five percent of the available assimilative capacity of the substance being discharged. *Note, this option is not applicable if the 7Q10 of the receiving water is zero or if the
receiving water has unavailable parameters for the pollutant to be discharged.
The proposed activity will cause more than de minimis degradation. Applications for activities causing degradation above the level of de minimis must analyze all reasonable alternatives and describe the level of degradation caused by each of the feasible alternatives. Analysis of each of these alternatives should also discuss the social and economic consequences of each alternative. Applicants must also demonstrate that the proposed degradation will not violate the water quality criteria for existing uses in the receiving waters and is necessary to accommodate important economic and social development in the area.

Attach additional pages as needed
Part 3-B - Alternatives Analysis
The following are examples of alternatives relative to natural resource extraction that are to be considered by applicants under Tennessee's <i>Antidegradation Statement 0400-40-0306</i> . Please check which treatment option(s) are currently used or will be used at the facility.
Connect to existing treatment system
Use over-sized ponds to increase treatment ability and holding capacity beyond the 10yr/24hr design storm. Design capacity of the pollution control system Current capacity of the system (%)
Divert drainage from non-disturbed areas away from treatment structures, separating storm water from mine wastewater – i.e. diversion berm, ditches, other BMPs.
Use pit as primary treatment and/or storage to increase ability to hold water on site during storm events.
Use ponds in series, forebays, and/or baffles to increase treatment and retention time.
Use chemical treatment for pH adjustment or treatment of solids.
Reuse/recycle treated process water to reduce discharge frequency. What

	Create no-discharge system.
	Use concurrent reclamation with mining activity.
	Land application of treated wastewater.
If tı	reatment option used is not listed, please describe in space below.
2)	Based on the alternatives indicated above, describe the level of degradation caused by each, as well as the social and economic consequences of each alternative. Examples of social and economic consequences may include but are not limited to, improved infrastructure such as road projects, housing development, as well as increasing local tax revenue and employment opportunities.

3) Can the level of treatment achievable at the facility ensure that water quality criteria will not be violated? Please explain.
The majority of the drainage will be received to the pit which will be well in excess as necessary for sedimentation. A small pond will be used for limited areas not controlled by the pit.
4) Is there another discharge location that would have less impact on the watershed?
No
5) Evaluate the mining technique used at the site. Would another technique result in a reduction in quantity or improvement in quality of the discharge from the site?
No
6) Were other locations for the facility evaluated? Describe the reasons why other locations were selected or rejected.
Other areas considered but area selected is best suited to topographyt

	life of the mine?
NA	

7) If this is an existing site, how long has the company mined at this location? If the option to mine has been reserved through payments to the owner or lessor of the rights, how long has that option been reserved? What is the projected

Part 4. Economic Justification

If you are applying for a new or expanded permit that discharges to Exceptional Tennessee Waters (ETW), complete Parts 4 and 5.

The following section shows economic/financial information for the facility. This information is necessary to determine if the applicant can afford to implement appropriate pollution control measures to protect water quality in the receiving water. Attach additional pages as needed.

1. Annual cost of operation and maintenance of pollution control project (including but not limited to monitoring, inspection, permitting fees, waste disposal charges, repair, administration, and replacement).	\$
2. Annual earnings without pollution control project costs	\$
3. Annual earnings with pollution control project costs	\$

Part 5. Social Justification

The following section shows social justification of the proposed degradation within the community where the facility is located. Attach additional pages as needed.

1. Define the affected community in this case; what areas are included?	
2. What is the current unemployment rate in affected community (if available)?	
3. What is the current national unemployment rate?	

4.	How many jobs will the facility provide in the affected community?	
5.	What is the average salary of these jobs?	
6.	What is the median household income in affected community?	\$
7.	What is the total number of households in affected community?	\$
8.	What are the current total tax revenues in the affected community?	
9.	What amount of tax revenues will be paid by the private entity to the affected community?	\$

Facility Name **EPA Identification Number** NPDES Permit Number Form Approved 03/05/19 OMB No. 2040-0004 Horse Creek Quarry **U.S. Environmental Protection Agency** Form **Application for NPDES Permit to Discharge Wastewater \$EPA NPDES GENERAL INFORMATION** SECTION 1. ACTIVITIES REQUIRING AN NPDES PERMIT (40 CFR 122.21(f) and (f)(1)) 1.1 Applicants Not Required to Submit Form 1 Is the facility a new or existing publicly owned Is the facility a new or existing treatment works 1,1,2 1.1.1 treatment works? treating domestic sewage? If yes, STOP. Do NOT complete If ves. STOP, Do NOT ΓX $\Box x$ No Form 1. Complete Form 2A. complete Form 1. Complete Form 2S. 1.2 Applicants Required to Submit Form 1 1.2.1 Is the facility a concentrated animal feeding 1.2.2 Is the facility an **existing** manufacturing, **Activities Requiring an NPDES Permit** operation or a concentrated aquatic animal commercial, mining, or silvicultural facility that is production facility? currently discharging process wastewater? Yes → Complete Form 1 Yes → Complete Form No TX No and Form 2B. 1 and Form 2C. 1.2.3 1.2.4 Is the facility a **new or existing** manufacturing, Is the facility a **new** manufacturing, commercial, mining, or silvicultural facility that has not yet commercial, mining, or silvicultural facility that commenced to discharge? discharges only nonprocess wastewater? Yes → Complete Form 1 Yes → Complete Form No X No and Form 2D. 1 and Form 2E, 1.2.5 Is the facility a new or existing facility whose discharge is composed entirely of stormwater associated with industrial activity or whose discharge is composed of both stormwater and non-stormwater? Yes → Complete Form 1 No and Form 2F unless exempted by 40 CFR 122.26(b)(14)(x) or (b)(15).SECTION 2. NAME, MAILING ADDRESS, AND LOCATION (40 CFR 122.21(f)(2)) 2.1 **Facility Name** Horse Creek Quarry Name, Mailing Address, and Location 2.2 **EPA Identification Number** 2.3 **Facility Contact** Name (first and last) Title Phone number Vic Davis 423-817-7300 Manager Email address vicd@vdctn.com 2.4 **Facility Mailing Address** Street or P.O. box 1300 Jan Way State ZIP code City or town 37660 TN Kingsport

EPA Form 3510-1 (revised 3-19) Page 1 50

Item VI1.

EPA Identification Number		tion Number	NPDES Pe	rmit Number	Facility Name	Form Approved 03/05/19 OMB No. 2040-0004					
م رَي	2.5	Facility Locati	on								
Iress	2.0	_	Street, route number, or other specific identifier								
Add		3725 Sullivan Gardens Parkway									
Name, Mailing Address, and Location Continued		County name		County code (i	if known)						
, Mai ocati		Sullivan									
ame nd Lo		City or town	State ZIP code								
		Kingsp		TN		37660					
SECTIO		AND NAICS CO									
	3.1	SIC C	Code(s)	Description (optional)							
		1422		Limeston	e Quarry						
S											
Cod											
<u>S</u>											
SIC and NAICS Codes	3.2	NAICS	Code(s)	Description (optional)						
anc		212312		Limestone	e Quarry						
SI		212012									
SECTIO	N 4 OPE	RATOR INFORI	MATION (40 CFF	2 122 21(f)(4))							
020110	4.1	Name of Opera	<u> </u>	(
		3 Tees, LL	C								
u o	4.2		u listed in Item 4.	1 also the owner	?						
Information		-									
nfor	4.0		No								
	4.3	Operator Statu	_	Public—state	□ Othor	s nublic (anacifu)					
Operator		Public—led	uerai L	Other (specify)		r public (specify)					
0	4.4	Phone Numbe	er of Operator	J Other (specify)							
		423-817-73									
	4.5	Operator Addr									
tion	1.0	Street or P.O. E									
rma		1300 Jan '	Way								
ator Inform Continued		City or town		State		ZIP code					
Operator Information Continued		Kingspor	tt	TN		37660					
Dper		Email address of operator									
				cd@vdctn.co	m 						
		AN LAND (40 C									
Indian Land	5.1		cated on Indian L	and?							
<u> </u>		Yes KNo									

EPA Form 3510-1 (revised 3-19)

Page 2 51

EPA Identification Number NPD			NPDES Permit N	lumber Facility Name		Facility Name	Form Approved 03/05/19 OMB No. 2040-0004				
SECTIO	N 6 EXIS	STING ENVIRON	IMENTAL PERMITS	(40 CER 122	21/f\/6	11					
	SECTION 6. EXISTING ENVIRONMENTAL PERMITS (40 CFR 122.21(f)(6)) 6.1 Existing Environmental Permits (check all that apply and print or type the corresponding permit number for each)										
Existing Environmental Permits	511		ischarges to surface	_		ous wastes)	UIC (underground injection of fluids)				
ing Envirol Permits		PSD (air e	missions)	□ Nonatta	inment	program (CAA)	NESHAPs (CAA)				
			mping (MPRSA)	CWA Section 404)	Other (specify)						
SECTIO	N 7. MAF	(40 CFR 122.2	1(f)(7))								
Мар	7.1	Have you attached a topographic map containing all required information to this application? (See instructions for specific requirements.) TXYes No CAFO—Not Applicable (See requirements in Form 2B.)									
SECTIO	N 8. NAT	URE OF BUSIN	ESS (40 CFR 122.21)	(f)(8))							
	8.1	Describe the na	ature of your business								
Nature of Business		Limeston	e quarrying, crus	shing, scre	ening	5					
SECTIO	N 9. COC	DLING WATER I	NTAKE STRUCTURE	S (40 CFR 1	22.21(f	()(9))					
	9.1	Does your facil	ity use cooling water?								
es es		☐ Yes	No → SKIP to Item	10.1.							
Cooling Water Intake Structures	9.2	40 CFR 125, S	ubparts I and J may h	ave additiona	al applic		intake structure as described at 40 CFR 122.21(r). Consult with your submitted and when.)				
SECTIO	N 10. VA	RIANCE REQUI	ESTS (40 CFR 122.21	(f)(10))							
Variance Requests	10.1	Do you intend to apply. Consult when.)	to request or renew or with your NPDES peri entally different factor	ne or more of mitting author		etermine what informa Water quality related	0 CFR 122,21(m)? (Check all that tion needs to be submitted and effluent limitations (CWA Section				
ariance			งงา(ท)) iventional pollutants ((301(c) and (g))	CWA		302(b)(2)) Thermal discharges ((CWA Section 316(a))				
>		☐ Not appl									

EPA Form 3510-1 (revised 3-19)

Page 3 52

EF	EPA Identification Number		NPDES Permit Number		Facility Name	Form Approved 03/05/19 OMB No. 2040-0004			
SECTIO	ON 11. CH	HECKLIST AND	CERTIFICATION STATEMENT (40	CFR 122	22(a) and (d))				
	11.1	In Column 1 be For each section	elow, mark the sections of Form 1 th on, specify in Column 2 any attachm licants are required to provide attac	nat you hav	nave completed and are submitting with your application. at you are enclosing to alert the permitting authority. Note				
			Column 1			Column 2			
		☐ Section	1: Activities Requiring an NPDES	Permit	w/ attachments				
		☐X Section	n 2: Name, Mailing Address, and Lo	ocation	☐ w/ attachments				
		☐ Section	3: SIC Codes		w/ attachments				
		Section Section	1 4: Operator Information		w/ attachments				
		☐ Section	n 5: Indian Land		w/ attachments				
ent		☐ Section	n 6: Existing Environmental Permits		w/ attachments				
tatem		Section Section	17: Мар		w/ topographic map	w/ additional attachments			
tion S		☐ Section	8: Nature of Business		w/ attachments				
rtifica		☐ Section	9: Cooling Water Intake Structures	S	w/ attachments				
nd Ce		☐ Section	n 10: Variance Requests		w/ attachments				
Checklist and Certification Statement		Section Section	11: Checklist and Certification State	tement	w/ attachments				
hecl	11.2	Certification S	cation Statement						
		in accordance was information sub directly responsible belief, true, according to the control of	neenalty of law that this document and with a system designed to assure the mitted. Based on my inquiry of the p sible for gathering the information, the urate, and complete. I am aware the cossibility of fine and imprisonment for	nat qualified person or p he informa at there ar	I personnel properly gan persons who manage th tion submitted is, to the e significant penalties fo	ther and evaluate the e system, or those persons best of my knowledge and			
		Name (print or	type first and last name)		Official title				
		Vic Dav	Vic Davis			Manager			
		Signature	- 0	1	Date signed				
		Un	Dun		10/16/23				

Form Approved 03/0 OMB No. 2040-0 Item VI1.

EPA Identification Number NPDES Permit Number Facility Name

U.S. Environmental Protection Agency

Form 2D NPDES	3	EPA	INCIN MICHOLA	Application for NPDES Permit to Discharge Wastewater NEW MANUFACTURING, COMMERCIAL, MINING, AND SILVICULTURAL OPERATIONS THAT HAVE NOT YET COMMENCED DISCHARGE OF PROCESS WASTEWATER							
SECTIO			TFALL LOCATION (40 C								
	1.1		ormation on each of the fa	cility's outfalls in th	ne table below.	1					
ation		Outfall Number	Receiving Water Name	L	atitude	Longitude					
Outfall Location		001	Horse Creek	36 ° 28	50 "	82 ° 34 ′ 49 ″					
Outfa				o	, "	o ' "					
				0	, "	0 , "					
	N 2. EX 2.1	PECTED DIS	CHARGE DATE (40 CFR Month	Year							
Expected Discharge Date											
	N 3 AVI	I ERAGE ELOI	WS AND TREATMENT (4	40 CER 122 21(k)((3)(i))						
GEOTIG	3.1			, , ,		information. Add additional shee	ets as				
		Tiooccoury.		**Outfall Nu	ımber**						
		Operations Contributing to Flow									
			Ope	eration	Ţ	Average Flow					
		June 1, 2	•	eration		Average Flow 0.007	mgd				
		June 1, 2	•	eration	v		mgd mgd				
tment		June 1, 2	•	eration	·						
d Treatment		June 1, 2	•	eration			mgd				
s and Treatment		June 1, 2	•	eration			mgd mgd				
lows and Treatment		June 1, 2	•		tment Units		mgd mgd mgd				
Average Flows and Treatment			•	Trea			mgd mgd mgd mgd				
Average Flows and Treatment			Description ize, flow rate through each retention time, etc.)	Trea	tment Units Code from	0.007 Final Disposal of Solid or I	mgd mgd mgd mgd Liquid				
Average Flows and Treatment		(include si	Description ize, flow rate through each retention time, etc.)	Trea	tment Units Code from Exhibit 2D-1	Final Disposal of Solid or I Wastes Other Than by Disc	mgd mgd mgd mgd Liquid				
Average Flows and Treatment		(include si	Description ize, flow rate through each retention time, etc.)	Trea	tment Units Code from Exhibit 2D-1	Final Disposal of Solid or I Wastes Other Than by Disc Sediment removed, dried, and	mgd mgd mgd mgd Liquid				
Average Flows and Treatment		(include si	Description ize, flow rate through each retention time, etc.)	Trea	tment Units Code from Exhibit 2D-1	Final Disposal of Solid or I Wastes Other Than by Disc Sediment removed, dried, and	mgd mgd mgd mgd Liquid				

EPA Form 3510-2D (Revised 3-19) 54 EPA Identification Number NPDES Permit Number Facility Name Form Approved 03/0: OMB No. 2040-0 Item VI1.

	3.1	**Outfall Nu	mber**	
	Cont.	Operations C	ontributing to Flow	
		Operation		Average Flow
				mgd
			ment Units	
		Description (include size, flow rate through each treatment unit, retention time, etc.)	Code from Exhibit 2D-1	Final Disposal of Solid or Liquid Wastes Other Than by Discharge
_				
tinuec				
ıt Con				
atme				
Average Flows and Treatment Continued				
ws a		**Outfall Nu		
Flo		Operations C Operation	ontributing to Flow	Average Flow
erage				mgd
¥				mgd
			ment Units	
		Description (include size, flow rate through each treatment unit, retention time, etc.)	Code from Exhibit 2D-1	Final Disposal of Solid or Liquid Wastes Other Than by Discharge

EPA Form 3510-2D (Revised 3-19)
Page 2 55

Е	PA Identific	ation Number	N	PDES Permit Nur	mber	Facility Na	ime	Form A	Approved 03/0: MB No. 2040-0 Item
Line Drawing	N 4. LINI 4.1	Have you		drawing to this				rough your facility with instructions for exam	
SECTIO	5.1	Except for or season	stormwater rui al? Yes	noff, leaks, or s		oected discha	to Section 6		
	5.2	Provide information necessary. Outfall Operat Number (list		Average Average		Rate and Vo		Volume Maximum Total	Duration
			, ,	Days/Week days/week	Months/Year months/year	Discr	narge mgd	Volume gallons	days
lows				days/week	months/year		mgd	gallons	days
onal F				days/week	months/year		mgd	gallons	days
asi				Fre	quency		Rate and \	Volume	
Intermittent or Seasonal Flows		Outfall Number	Operations (list)	Average Days/Week	Average Months/Year		m Daily narge	Maximum Total Volume	Duration
				days/week	months/year		mgd	gallons	days
Inter				days/week	months/year		mgd	gallons	days
				days/week months/year		mgd		gallons	days
		Outfall	Operations	Fre	quency		Rate and Volum		
		Number	Operations (list)	Average Days/Week	Average Months/Year		m Daily narge	Maximum Total Volume	Duration
				days/week	months/year		mgd	gallons	days
				days/week	months/year		mgd	gallons	days
				days/week	months/year		mgd	gallons	days
SECTIO	N 6. PRC		(40 CFR 122.2						
	6.1	Do any eff	fluent limitation	guidelines (El	Gs) promulgated	l by EPA und	ler CWA Se	ction 304 apply to you	ur facility?
		∑ Yes				No → SK	(IP to Section	on 7.	
5	6.2		e following info	rmation on ap					
Production			ELG Category Ining and Proc	essing Cru	ELG Subcateg	jory	Regulatory Citation 40 CFR Section: 436.22.a.1,2		
<u>. </u>									

EPA Form 3510-2D (Revised 3-19)
Page 3 56

EPA Identification Number			NPDES Permit Number	Facilit	ly Name		Form Approved 03/01 OMB No. 2040-0	Iten	
	6.3	Are the lir	mitations in th	he applicable ELGs expres	sed in terms of p	production (or othe	r measure o	f operation)?	
		☐ Yes			No 🗕	SKIP to Section	7.		
	6.4	Provide a	n expected n	neasure of average daily p	,			icable ELGs.	
		Outfall Year		Expected Actual Aver Operation, Product, or		Quantity per Day (note basis if applicable)		Unit of Measure	
Production Continued			Year 1						
			Year 2						
			Year 3						
			Year 1						
			Year 2						
			Year 3						
			Year 1						
			Year 2						
			Year 3						
TIO	N 7. EFF	LUENT CH	IARACTERI	STICS (40 CFR 122.21(k)(5))				
				ne the parameters and poll		equired to monitor	and, in turn,	the tables you mus	st
			• •	licants need to complete ea					
	7.1		equesting a v	waiver from your NPDES p		ty for one or more	of the Table	A parameters for a	any
		☐ Yes ☐ No →SKIP to Item 7.3.							
	7.2	1 *		olicable outfalls below. Atta	•	•	ed informati	on to the applicatio	n.
		Outfa	ll number	Outfall r	number	_ (oer	
	7.3			ed estimates or actual data equested and attached the				tfalls for which a	
		Ye				No; a waiver has	s been reque	ested from my for all parameters a	at
	Table I	B. Certain (Conventiona	al and Non-Conventional	Pollutants	an oatiano.			
	7.4	applicable	ELG?	elieved Present" for all pollu	utants listed in Ta		ted directly	or indirectly by an	
			Yes	, , , , , , , , , , , , , , , , , , ,		No		T	
	7.5	l		elieved Present" or "Believe	_	• .	nts listed in	Table B?	
		Have you	Yes	timated data facilities T. 1.	la D nallutanta fa	No	ndiasts -l	"Dollowed Deserve"	,n
	7.6	in your dis		timated data for those Tab	ie is pollutants fo	r wnich you have i	ndicated are	e Believed Present	
		\boxtimes	Yes			No			ļ

EPA Form 3510-2D (Revised 3-19) Page 4 57

El	EPA Identification Number		NPDES Permit Number	Facility Na	ame	Form Approved 03/0: OMB No. 2040-0	Item VI1.				
	Table (Toxic Metals To	tal Cyanide, and Total Pheno	le		L					
	7.7	Have you indicate	d whether pollutants are "Believ	ved Present" or "Bel	ieved Absent"	for all pollutants listed on Table	e C				
		for all outfalls?	·			·					
		☑ Yes			No						
	7.8		ed Table C by providing estimate of the information, for each a		nts you indicate	ed are "Believed Present,"					
		☐ Yes		Г	No						
	Table D	D. Organic Toxic Po	ollutants (GC/MS Fractions)	_							
	7.9		a small business exemption un	der the criteria spec	cified in the Inst	tructions?					
	Yes → Note that you qualify at the top of Table D, then SKIP to Item 7.12.										
pen	7.10 Have you indicated whether pollutants are "Believed Present" or "Believed Absent" for all pollutants listed on Table										
ntin		☑ Yes			No						
Effluent Characteristics Continued	7.11	Have you completed Table D by providing estimated data for pollutants you indicated are "Believed Present," including the source of the information, for each applicable outfall?									
erist		☐ Yes	,	··	No						
acte	2,3,7,8-	Tetrachlorodibenz	o-p-Dioxin (TCDD)								
Shar	7.12	Does the facility us	se or manufacture one or more				ou				
ant (know or have reas	on to believe that TCDD is or n	nay be present in ef	fluent from any	of your outfalls?					
£[ne		☐ Yes		$oxdsymbol{ox{oxdsymbol{oxdsymbol{ox{oxdsymbol{ox{oxdsymbol{ox{oxdsymbol{ox{oxdsymbol{ox{oxdsymbol{ox{oxdsymbol{ox{oxdsymbol{ox{oxdsymbol{ox}oxdsymbol{ox{oxdsymbol{ox{oxdsymbol{ox{oxdsymbol{ox{oxdsymbol{ox{oxdsymbol{ox{ox}}}}}}}$	No						
ш	Table E	E. Certain Hazardoi	us Substances and Asbestos								
	7.13	Have you indicate for all outfalls?	d whether pollutants are "Believ	ved Present" or "Bel	ieved Absent"	for all pollutants listed in Table	E				
		☑ Yes		Ø	No						
	7.14		ed Table E by reporting the rea or pollutants you indicated are								
		☐ Yes		M	No						
	Intake	Credits, Tables A t	hrough F								
	7.15		or net credits for the presence	of any of the polluta	nts on Tables i	A through E for any of your					
		☐ Yes →	 Consult with your NPDES po authority. 	ermitting 🗹	No						
SECTIO	N 8. ENG	SINEERING REPOR	RT (40 CFR 122.21(k)(6))								
	8.1	Do you have any studies?	technical evaluations of your w	astewater treatment	t, including eng	ineering reports or pilot plant					
eport		☐ Yes		\square	No → SKIP t	o Item 8.3.					
ng R	8.2	Have you provide	d the technical evaluation and	all related documen	ts to this applic	ation package?					
Engineering Report		☑ Yes			No						
Engi	8.3	Are you aware of treatment at your	any existing plant(s) that resen facility?		•		er				
		☐ Yes		Q	No → SKIP t	o Section 9.					

EPA Form 3510-2D (Revised 3-19)
Page 5 58

EF	EPA Identification Number NPDES Permit Number Facility Name Form Approved 03/0				Item VI1.					
								OMB No. 2040-0	nem vm.	
t	8.4	Provide	the name	and location of the sin	nilar pla	nts.				
Engineering Report Continued			Nar	me of Similar Plants			Locatio	on of Similar Plants		
neering Re Continued										
ring Itin										
Cor										
ibu										
_										
SECTIO				I (40 CFR 122.21(k)(7						
	9.1							art of the application review proce	SS	
		1	-	ond that which you hav	e allea	. 7		-		
			Yes ✓ No → SKIP to Section 10.							
ië	9.2	List the	additional	items and briefly note	why yo	u have included then	١.			
maj.		1.								
Other Information		2.	2							
erl										
퉏		3.								
		4.								
		_								
		5.								
SECTIO				RTIFICATION STATE						
	10.1							are submitting with your application		
				ints are required to co				alert the permitting authority. No	le	
		triatriot		umn 1		an occurre or tables,	Colun			
		7		1: Expected Outfall		w/ attachments (e.g	., responses	s for additional outfalls)		
			Location	ı 2: Expected	Η		<u> </u>	,		
			Discharg			w/ attachments				
, t		Ø		3: Average Flows	П	w/ attachments				
ment			and Trea		Η					
tateı		V		4: Line Drawing		w/ line drawing		w/ additional attachments		
ion S			Section Seasona	5: Intermittent or		w/ attachments				
Checklist and Certification State				6: Production		w/ attachments				
Cer						w/ Table A waiver				
and						request or	abla	Table A		
list						approval				
eck		☑	Section Charact	7: Effluent		Table B	\checkmark	Table C		
ਨੂ ਹ			Charact	ensucs		Table D	\checkmark	Table E		
						w/ other				
						attachments				
	Section 8: Engineering W/ technical evaluations and related attachments									
		П	Report	9: Other Information		w/ optional informat	ion			
					_	•	1011			
Section 10: Checklist and Certification Statement w/ attachments										

EPA Form 3510-2D (Revised 3-19)

Certification Statement

EPA	Identific	ation Number	NPDES Permit Number	Facility Name	Form Approved 03/05/19 OMB No. 2040-0004
Checklist and Certification Statement Continued	10.2	in accordance with information submi directly responsible belief, true, accura	ralty of law that this document and ha system designed to assure th tted. Based on my inquiry of the p le for gathering the information, th	at qualified personnel proper person or persons who mana pe information submitted is, to at there are significant penalt.	ge the system, or those persons
st and C		Name (print or typ Vic Davis	e first and last name)		Official title Manager
Checkli		Signature	Lain		Date signed 10/16/23

This page intentionally left blank.

Outfall Number	Form Approved 03/05/	ı
Calai Hamboi		İ

TAE	BLE A. CONVENTIONAL AN	D NON CONVEN	TIONAL PARAME	TER ESTIN	MATES (40 CFR 12	2.21(k)(5)(i)) ¹ Effluen	nt Data		Intake \	Nator
Pollutant		Waiver Requested (if applicable)	sted Units		Maximum Daily Discharge (required) Average Daily Discharge (if available) Source of Information (use codes in instructions)			Believed Present? (check only one response per parameter)		
V	Check here if you have app	olied to your NPDE	ES authority for a w	aiver for <i>all</i>	of the pollutants lis	ted on this table for	the noted outfall.			
	1. Biochemical oxygen demand (BOD ₅)		Concentration						Yes	
1.			Mass							□ No
_	Chemical oxygen demand (COD)		Concentration						Yes	
^{2.}			Mass							□ No
Total	Total organic carbon (TOC)		Concentration						Пу	
3.			Mass						☐ Yes	□ No
4.	Total suspended solids	П	Concentration						☐ Yes	□ No
4.	(TSS)		Mass							□ No
5.	Ammonia (as N)		Concentration						☐ Yes	□ No
J 5.	Ammonia (as N)		Mass						☐ Yes	∐ No
6.	Flow		Rate						☐ Yes	□ No
7.	Temperature (winter)		°C	°C					☐ Yes	□ No
'.	Temperature (summer)		°C	°C					☐ Yes	│
٥	pH (minimum)		Standard units	S.U.					☐ Yes	—
8. pH (maxim	pH (maximum)		Standard units	s.u.					☐ Yes	│ □ No

Facility Name

EPA Identification Number

EPA Form 3510-2D (Revised 3-19)

¹ Sampling shall be conducted according to sufficiently sensitive test procedures (i.e., methods) approved under 40 CFR 136 for the analysis of pollutants or pollutant parameters or required under 40 CFR chapter I, subchapter N or O. See instructions and 40 CFR 122.21(e)(3).

Item VI1.

This page intentionally left blank.

Outfall Number Form Approved 03/05/1 OMB No. 2040-000 *Item VI1*.

						<u> </u>				
TABL	E B. CERTAIN CONV	Presence of	ND NON CO or Absence ek one)	NVENTIONAL POL	VENTIONAL POLLUTANTS (40 CFR 122.21(k)(5)(ii))¹ Estimated Data for Pollutants Expected to be Present or Limited by an ELG (Provide both concentration and mass estimates for each pollutant.)					
Pollutant Religional Religional					Efflu			Intake	Water	
	Foliutalit	Believed Believe Present Absen		Units		Maximum Daily Discharge (required)	Average Daily Discharge (if available)	Source of Information (use codes in instructions)	Believed Present? (check only one response per item)	
	Check (✓) here if yo	u believe all p	ollutants liste	d to be absent from	the discharge	e. You need not com	nplete Table B for t	the noted outfall <i>unless</i> you have	quantitative da	ata available
1.	Bromide			Concentration					☐ Yes	□ No
'·	(24959-67-9)			Mass					L Yes	□ NO
2.	Chlorine, total			Concentration					│	□ No
	residual			Mass					L les	
3.	Color			Concentration					☐ Yes	□ No
	33.3.	_		Mass					163	
4.	Fecal coliform			Concentration					│	□ No
		_		Mass					100	
5.	Fluoride			Concentration					│	□ No
	(16984-48-8)	_	_	Mass						
6.	Nitrate-nitrite			Concentration					☐ Yes	□ No
<u> </u>		_	_	Mass						
7.	Nitrogen, total			Concentration					☐ Yes	□ No
<u> </u>	organic (as N)		_	Mass						
8.	Oil and grease			Concentration					☐ Yes	□ No
<u> </u>	Ŭ	_	_	Mass						
9.	Phosphorus (as P),			Concentration					☐ Yes	□ No
<u> </u>	total (7723-14-0)	_	_	Mass						
10.	Sulfate (as SO ₄)			Concentration					☐ Yes	□ No
	(14808-79-8)			Mass					103	
11.	Sulfide (as S)			Concentration					☐ Yes	□ No
1	1 ' '	<u> </u>	-	Mass	İ					

Facility Name

EPA Identification Number

EPA Form 3510-2D (Revised 3-19)
Page 3 64

A Identification Number	Facility Name	Outfall Number	Form Approved 03/05/1	
	·		OMB No. 2040-00d	Item VI1.

<u> </u>																
TABL	E B. CERTAIN CONV	Presence of	or Absence	NVENTIONAL POL		ated Data for Pollut	tants Expected to	be Present or Limited by	y an ELC	3						
		(check one)				(Provide both cor		stimates for each pollutant.)		Intake \	Water					
	Pollutant	Believed Present	Believed Absent	Units	Maximum Daily Average Daily		Source of Informatio (use codes in instructions)	-	Believed F (check or response p	Present?						
	Sulfite (as SO ₃)			Concentration						— —						
12.	(14265-45-3)			Mass						☐ Yes	□ No					
40	O of the stands			Concentration						п.,	П.,					
13.	Surfactants			Mass						☐ Yes	☐ No					
14.	Aluminum, total			Concentration						Пу	П м.					
14.	(7429-90-5)			Mass						☐ Yes	□ No					
15.	Barium, total			Concentration						☐ Yes	□ No					
10.	(7440-39-3)			Mass						☐ Yes	□ NO					
16.	Boron, total (7440-42-8)			Concentration						☐ Yes	□ No					
10.			Mass						Li res	□ NO						
17.	Cobalt, total			Concentration						☐ Yes	□ No					
11.	(7440-48-4)		Ц						Mass						Li res	□ NO
18.	Iron, total			Concentration						☐ Yes	□ No					
10.	(7439-89-6)			Mass						Li res	LI NO					
19.	Magnesium, total			Concentration						☐ Yes	□ No					
10.	(7439-95-4)			Mass						LI 162	LI INU					
20.	Molybdenum, total			Concentration						☐ Yes	□ No					
20.	(7439-98-7)			Mass						Li res	LI NO					
21.	Manganese, total			Concentration	<u> </u>					☐ Yes	□ No					
	(7439-96-5)			Mass	<u> </u>						LI INU					
22.	Tin, total			Concentration	<u> </u>					☐ Yes	□ No					
22.	(7440-31-5)			Mass						□ 162	LI INO					

EPA Form 3510-2D (Revised 3-19)

EPA Identification Number	Facility Name	Outfall Number	Form Approved 03/05/1 OMB No. 2040-000	Item VI1.

I						l l									
TABL	ABLE B. CERTAIN CONVENTIONAL AND NON CONVENTIONAL POLLUTANTS (40 CFR 122.21(k)(5)(ii)) ¹														
		Presence or Absence		Estimated Data for Pollutants Expected to be Present or Limited by an ELG											
		(check one)			(Provide both concentration and mass estimates for each pollutant.)										
	Pollutant					Efflu	ent			Intake \	Water				
	Tonutunt	Believed	Believed			Maximum Daily	Average Daily	Source of Infor	mation	Believed F	Present?				
		Present	Absent	Units		Discharge	Discharge	(use codes in instru		(check or					
						(required)	(if available)	(400 00400 111 1110111	20110110)	response p	per item)				
23.	Titanium, total			Concentration							п.,				
23.	(7440-32-6)			Mass						☐ Yes	☐ No				
24.	Radioactivity														
	,			0											
24.1	Alpha, total			Concentration						☐ Yes	□ No				
24.1				Mass						Li res	□ NO				
04.0	Data Astal	Data total		_		П		Concentration							П.,
24.2	Beta, total	Ш		Mass					İ	☐ Yes	☐ No				
24.2	24.3. Radium, total			Concentration											
24.3.				Mass						☐ Yes	☐ No				
24.4	Radium 226 total	lium 226 total	tium 226 total		Concentration						□ Yes □ No	П №			
24.4	Radium 226, total	Radium 226, total		Mass						☐ Yes	∐ No				

EPA Form 3510-2D (Revised 3-19)

¹ Sampling shall be conducted according to sufficiently sensitive test procedures (i.e., methods) approved under 40 CFR 136 for the analysis of pollutants or pollutant parameters or required under 40 CFR chapter I, subchapter N or O. See instructions and 40 CFR 122.21(e)(3).

Item VI1.

This page intentionally left blank.

				_
EPA Identification Number	Facility Name	Outfall Number	Form Approved 03 OMB No. 204 <i>Item VI1</i> .	

TABL	E C. TOXIC METALS	, TOTAL CYA	NIDE, AND TO	TAL PHENOLS (4	0 CFR 122.21(k)(5)(iii)(A)) ¹				
		Presence of	or Absence	,		mated Data fo		xpected to be Present in [
		(check one)				'		I mass estimates for each pollutan	t.)	Intake Water
	Pollutant					Effluen				intake water
		Believed	Believed			Maximum	Average	0	Believed Present?	
		Present	Absent	Unit	s	Daily Discharge	Daily Discharge	Source of Information (Use codes in Instructions.)		(Check only one sponse per pollutant.)
					(required) (if available)					
V		ou believe all po	ollutants listed f	to be absent from t	he discharge.			C for the noted outfall unles	s you have	quantitative data
	available.			1 -					1	
1.	Antimony, Total			Concentration					☐ Yes	□ No
_	(7440-36-0)			Mass	 				— 100	
2.	Arsenic, Total (7440-38-2)			Concentration Mass					☐ Yes	□ No
3.	Beryllium, Total	-		Concentration	 					
٥.	(7440-41-7)			Mass	 				☐ Yes	□ No
4.	Cadmium, Total			Concentration						
	(7440-43-9)			Mass					☐ Yes	☐ No
5.	Chromium, Total			Concentration						
	(7440-47-3)			Mass					☐ Yes	□ No
6.	Copper, Total			Concentration					☐ Yes	□ No
	(7440-50-8)			Mass	ļ				L 162	LI INU
7.	Lead, Total			Concentration					☐ Yes	□ No
	(7439-92-1)			Mass	 				_ 100	
8.	Mercury, Total (7439-97-6)			Concentration Mass					☐ Yes	☐ No
9.	Nickel, Total			Concentration						
٥.	(7440-02-0)			Mass					☐ Yes	☐ No
10.	Selenium, Total			Concentration						
	(7782-49-2)			Mass					☐ Yes	☐ No
11.	Silver, Total			Concentration					☐ Yes	□ No
	(7440-22-4)	Ш		Mass					☐ Yes	□ NO
12.	Thallium, Total			Concentration					☐ Yes	□ No
- 12	(7440-28-0)			Mass					L Tes	INU
13.	Zinc, Total			Concentration					☐ Yes	□ No
14.	(7440-66-6) Cyanide, Total			Mass					00	
14.	(57-12-5)			Concentration Mass	 				☐ Yes	☐ No
15.	Phenols, Total		<u> </u>	Concentration						
10.	1 11011010, 10101			Mass					☐ Yes	□ No

EPA Form 3510-2D (Revised 3-19)

¹ Sampling shall be conducted according to sufficiently sensitive test procedures (i.e., methods) approved under 40 CFR 136 for the analysis of pollutants or pollutant parameters or required under 40 CFR chapter I, subchapter N or O. See Instructions and 40 CFR 122.21(e)(3).

This page intentionally left blank.

EPA Identification Number	Facility Name	Outfall Number	Form Approved 0	
	·		OMB No. 204	Item VI1.

TABLE	E D. ORGANIC TOXIC POLLUTAN	NTS (Gas Chrom	atography/Ma	ss Spectrometry	or GC/MS Frac	ctions) (40 CF	R 122.21(k)(5)	(iii)(B))¹		
		Presence or						ed to Be Present in Disc estimates for each pollutant)	harge	
	Pollutant	(GIEGA C	ine)		(pi	Ovide Dour Concern	Effluer	·	Intake \	Water
	(CAS Number, if available)	Believed	Believed	Units	9	Maximum	Average	Source of	Believed F	
		Present	Absent	J		Daily	Daily	Information	(check only one	e response per
	Ol allow Will nellotents Bated	L. Table Dans and	Discharge Discharge (use codes in instructions) pollutant)							ant)
	Check here if all pollutants listed			•	, ,		<u> </u>			
	Check here if the facility believes of materials you must attach to the		Table D report	ing requirements b	ecause it is a d	Jualified small I	ousiness. See	the instructions for exem	ption criteria a	nd for a list
Note:	te: If you check either of the above boxes, you do not need to complete Table D for the noted outfall <i>unless</i> you have quantitative data available.									
	anic Toxic Pollutants (GC/MS Fra	action—Volatile	Compounds)							
1.1	Acrolein			Concentration					☐ Yes	□ No
	(107-02-8)			Mass					Li res	LI NO
1.2	Acrylonitrile			Concentration					│ │	□ No
	(107-13-1)	<u> </u>		Mass					<u> </u>	LI INU
1.3	Benzene			Concentration					│	□ No
	(71-43-2)	<u> </u>		Mass					162	LI INU
1.4	Bromoform (75-25-2)			Concentration					│	□ No
	` '	<u> </u>		Mass					163	
1.5	Carbon tetrachloride (56-23-5)			Concentration					│	□ No
	` '	<u> </u>	<u> </u>	Mass						
1.6	Chlorobenzene (108-90-7)			Concentration					│	□ No
	,			Mass						
1.7	Chlorodibromomethane (124-48-1)			Concentration					│	□ No
	,	'		Mass					<u> </u>	
1.8	Chloroethane (75-00-3)			Concentration					│	□ No
1.0	,	'		Mass					<u> </u>	
1.9	2-chloroethylvinyl ether (110-75-8)			Concentration					│	□ No
1.40	,	<u> </u>		Mass					—	
1.10	Chloroform (67-66-3)		Con						☐ Yes	□ No
1 44		<u> </u>		Mass					<u> </u>	
1.11	Dichlorobromomethane (75-27-4)		·	Concentration					│	□ No
	1 (10 21 7)	, — ,	. —	Macc		1	,	1	. —	

EPA Form 3510-2D (Revised 3-19) Page 9

			<u> </u>
EPA Identification Number	Facility Name	Outfall Number	Form Approved 0

TABLE D. ORGANIC TOXIC POLLUTANTS (Gas Chromatography/Mass Spectrometry or GC/MS Fractions) (40 CFR 122.21(k)(5)(iii)(B)) ¹										
		Presence or Absence		Estimated Data for Pollutants Expected to Be Present in Discharge						
	Dellutent	(спеск с	one)	(provide both concentration and mass estimates for each pollutant) Effluent Intake Water						
Pollutant (CAS Number, if available)		Believed Present	Believed Absent	Units	Maximum Daily Discharge	Average Source of Information Discharge (use codes in instructions)		Believed Present? (check only one response per pollutant)		
1.12	1,1-dichloroethane			Concentration						
	(75-34-3)			Mass				☐ Yes	☐ No	
1.13	1,2-dichloroethane	_	_	Concentration					□ No	
	(107-06-2)			Mass				☐ Yes		
1.14	1,1-dichloroethylene (75-35-4)			Concentration				_		
				Mass				☐ Yes	□ No	
1.15	1,2-dichloropropane			Concentration					\neg	
'	(78-87-5)			Mass				☐ Yes	□ No	
1.16	1,3-dichloropropylene			Concentration				☐ Yes	□ No	
	(542-75-6)			Mass				<u> </u>		
1.17	Ethylbenzene (100-41-4)			Concentration				☐ Yes	□ No	
4.10	,			Mass				1		
1.18	Methyl bromide (74-83-9)	3-9)		Concentration			-	☐ Yes	□ No	
1 10	,			Mass						
1.19	Methyl chloride (74-87-3)			Concentration				☐ Yes	□ No	
1.20	` ,			Mass						
1.20	Methylene chloride (75-09-2)			Concentration				☐ Yes	□ No	
1.21	1,1,2,2-tetrachloroethane	 	<u> </u>	Mass Concentration						
1.41	(79-34-5)			Mass				☐ Yes	□ No	
1.22	Tetrachloroethylene			Concentration						
	(127-18-4)			Mass				☐ Yes	□ No	
1.23	Toluene (108-88-3)			Concentration				☐ Yes	□ No	
				Mass				L Yes	⊔ No	
1.24	1,2-trans-dichloroethylene			Concentration				☐ Yes	□ No	
(156-60-5)	(150-00-5)	1 -		Mass	ļ ļ			L Tes	LI INO	

EPA Form 3510-2D (Revised 3-19)
Page 10 71

EPA Identification Number	Facility Name	Outfall Number	Form Approved 0 OMB No. 204 Item VI1.

TABLE D. ORGANIC TOXIC POLLUTANTS (Gas Chromatography/Mass Spectrometry or GC/MS Fractions) (40 CFR 122.21(k)(5)(iii)(B)) ¹										
		Presence or Absence (check one)		Estimated Data for Pollutants Expected to Be Present in Discharge						
	5 11 4 4			(provide both concentration and mass estimates for each pollutant) Effluent Intake Water						
Pollutant (CAS Number, if available)		Believed Present	Believed Absent	Units		Maximum Daily Discharge	Average Daily Discharge	Source of Information (use codes in instructions)	Believed Present? (check only one response per pollutant)	
1.25	1,1,1-trichloroethane			Concentration					п.,	П.,
	(71-55-6)	⊔		Mass				[☐ Yes	☐ No
1.26	1,1,2-trichloroethane			Concentration					п.,	
	(79-00-5)			Mass					☐ Yes	□ No
1.27	Trichloroethylene			Concentration						
	(79-01-6)			Mass					☐ Yes	□ No
1.28	Vinyl chloride			Concentration						
	(75-01-4)			Mass					☐ Yes	□ No
,	anic Toxic Pollutants (GC/MS Fra	action—Acid Co	mpounds)							
2.1	2-chlorophenol			Concentration					Пу	П.,
	(95-57-8)	l		Mass					☐ Yes	□ No
2.2	2,4-dichlorophenol			Concentration						П.,
	(120-83-2)			Mass					☐ Yes	□ No
2.3	2,4-dimethylphenol			Concentration						□ No
	(105-67-9)	l		Mass					☐ Yes	
2.4	4,6-dinitro-o-cresol			Concentration						П.,
	(534-52-1)	│		Mass					☐ Yes	□ No
2.5	2,4-dinitrophenol			Concentration						
	(51-28-5)			Mass					☐ Yes	□ No
2.6	2-nitrophenol (88-75-5)			Concentration					Пи	П.,
				Mass					☐ Yes	☐ No
2.7	4-nitrophenol (100-02-7)			Concentration						
				Mass					☐ Yes	□ No
2.8	p-chloro-m-cresol (59-50-7)			Concentration						п.,
				Mass					☐ Yes	□ No
2.9	Pentachlorophenol (87-86-5)			Concentration						п
				Mass					☐ Yes	☐ No

EPA Form 3510-2D (Revised 3-19) Page 11

EPA Identification Number	Facility Name	Outfall Number	Form Approved 0 OMB No. 204 Item VI1.

TABLE	D. ORGANIC TOXIC POLLUTAN	atography/Ma Absence	ss Spectrometry o	ss Spectrometry or GC/MS Fractions) (40 CFR 122.21(k)(5)(iii)(B))¹ Estimated Data for Pollutants Expected to Be Present in Discharge							
		(check c			(provide both concentration and mass estimates for each pollutant)						
	Pollutant (CAS Number, if available)	Believed Present	Believed Absent	Units		Effluent		Source of	Intake Water Believed Present? (check only one response per pollutant)		
2.10	Phenol			Concentration		Dioonaryo	Dioonargo	(doo codoo iii iiiod dodo)	'	,	
	(108-95-2)			Mass					☐ Yes	□ No	
2.11	2,4,6-trichlorophenol			Concentration							
	(88-05-2)			Mass					☐ Yes	□ No	
3. Org	anic Toxic Pollutants (GC/MS Fra	action—Base /No	eutral Compo	unds)							
3.1	Acenaphthene			Concentration					¬	¬	
	(83-32-9)			Mass					☐ Yes	□ No	
3.2	Acenaphthylene			Concentration					п.,	¬	
	(208-96-8)			Mass					☐ Yes	□ No	
3.3	Anthracene			Concentration					Пу		
	(120-12-7)	<u>'</u> '	"	Mass					☐ Yes	□ No	
3.4	Benzidine			Concentration					Пу		
	(92-87-5)	· ' <u></u> '	│	Mass					☐ Yes	□ No	
3.5	Benzo (a) anthracene			Concentration							
	(56-55-3)	<u> </u>		Mass					☐ Yes	□ No	
3.6	Benzo (a) pyrene			Concentration					☐ Yes	□ No	
	(50-32-8)			Mass					☐ Yes	LI NO	
3.7	3,4-benzofluoranthene			Concentration					☐ Yes	□ No	
	(205-99-2)			Mass					Li res	LI INO	
3.8	Benzo (ghi) perylene			Concentration					☐ Yes	□ No	
	(191-24-2)			Mass					Li res	LI INO	
3.9	Benzo (k) fluoranthene			Concentration					☐ Yes	□ No	
	(207-08-9)			Mass					Li res	LI NO	
3.10	Bis (2-chloroethoxy) methane			Concentration					☐ Yes	□ No	
	(111-91-1)	<u> </u>		Mass					Li res	LI INO	
3.11	Bis (2-chloroethyl) ether			Concentration					☐ Yes	□ No	
l	(111-44-4)		J L	Mass	ļ				L res	LI NO	

Outfall Number	Form Approved 0 OMB No. 204	Item VI1.
	OND NO. 207	

TABL	E D. ORGANIC TOXIC POLLUTA	NTS (Gas Chrom Presence of Check	Absence		nated Data for Pollu	itants Expecte	(iii)(B)) ¹ ed to Be Present in Disc estimates for each pollutant)	charge	
	Pollutant	ì			,,	Efflue	· ' '	Intake	Water
	(CAS Number, if available)	Believed Present	Believed Absent	Units	Maximum Daily Discharge	Average Daily Discharge	Source of Information (use codes in instructions)	Believed Present? (check only one response per pollutant)	
3.12	Bis (2-chloroisopropyl) ether (102-80-1)			Concentration Mass				☐ Yes	□ No
3.13	Bis (2-ethylhexyl) phthalate (117-81-7)			Concentration Mass				☐ Yes	□ No
3.14	4-bromophenyl phenyl ether (101-55-3)			Concentration Mass				☐ Yes	□ No
3.15	Butyl benzyl phthalate (85-68-7)			Concentration Mass				☐ Yes	□ No
3.16	2-chloronaphthalene (91-58-7)			Concentration Mass				☐ Yes	□ No
3.17	4-chlorophenyl phenyl ether (7005-72-3)			Concentration Mass				☐ Yes	□ No
3.18	Chrysene (218-01-9)			Concentration Mass				☐ Yes	□ No
3.19	Dibenzo (a,h) anthracene (53-70-3)			Concentration Mass				☐ Yes	□ No
3.20	1,2-dichlorobenzene (95-50-1)			Concentration Mass				☐ Yes	□ No
3.21	1,3-dichlorobenzene (541-73-1)			Concentration Mass				☐ Yes	□ No
3.22	1,4-dichlorobenzene (106-46-7)			Concentration Mass				☐ Yes	□ No
3.23	3,3-dichlorobenzidine (91-94-1)			Concentration Mass				☐ Yes	□ No
3.24	Diethyl phthalate (84-66-2)			Concentration Mass				☐ Yes	□ No
3.25	Dimethyl phthalate (131-11-3)			Concentration				☐ Yes	□ No

Facility Name

EPA Identification Number

EPA Form 3510-2D (Revised 3-19) Page 13

Mass

Outfall Number	Form Approved 0	Hom \//1
	OMB No. 204	Item VI1.

TABL	LE D. ORGANIC TOXIC POLLUTANTS (Gas Chromatography/Mass Spectrometry or GC/MS Fractions) (40 CFR 122.21(k)(5)(iii)(B)) ¹										
		Presence or						ed to Be Present in Disc	charge		
ļ	Pollutant	(check	one)		(provide both concentration and mass estimates for each pollutant) Effluent Intake Water						
(CAS Number, if available)		Believed Present	Believed Absent	Uni	ts	Maximum Daily Discharge	Average Daily Discharge	Source of Information (use codes in instructions)	Believed (check only one pollut	Present? e response per	
3.26	Di-n-butyl phthalate (84-74-2)			Concentration Mass					☐ Yes	□ No	
3.27	2,4-dinitrotoluene (121-14-2)			Concentration Mass					☐ Yes	□ No	
3.28	2,6-dinitrotoluene (606-20-2)			Concentration Mass					☐ Yes	□ No	
3.29	Di-n-octyl phthalate (117-84-0)			Concentration Mass					☐ Yes	□ No	
3.30	1,2-diphenylhydrazine (as azobenzene) (122-66-7)			Concentration Mass					☐ Yes	□ No	
3.31	Fluoranthene (206-44-0)			Concentration Mass					☐ Yes	□ No	
3.32	Fluorene (86-73-7)			Concentration Mass					☐ Yes	□ No	
3.33	Hexachlorobenzene (118-74-1)			Concentration Mass					☐ Yes	□ No	
3.34	Hexachlorobutadiene (87-68-3)			Concentration Mass					☐ Yes	□ No	
3.35	Hexachlorocyclopentadiene (77-47-4)			Concentration Mass					☐ Yes	□ No	
3.36	Hexachloroethane (67-72-1)			Concentration Mass					☐ Yes	□ No	
3.37.	Indeno (1,2,3-cd) pyrene (193-39-5)			Concentration Mass					☐ Yes	□ No	
3.38	Isophorone (78-59-1)			Concentration Mass					☐ Yes	□ No	
3.39	Naphthalene (91-20-3)			Concentration Mass					☐ Yes	□ No	

Facility Name

EPA Identification Number

		_		
Facility Name	Outfall Number	Form Approved 0		
		OMB No. 204	Item VI1.	

TABLE	BLE D. ORGANIC TOXIC POLLUTANTS (Gas Chromatography/Mass Spectrometry or GC/MS Fractions) (40 CFR 122.21(k)(5)(iii)(B)) ¹ Presence or Absence Estimated Data for Pollutants Expected to Be Present in Discharge									
		(check c						eat to be Present in Disc estimates for each pollutant)	narge	
	Pollutant						Efflue	nt	Intake '	Water
	(CAS Number, if available)	Believed Believed Present Absent		Units	Units		aximum Average Source of Daily Daily Information scharge Discharge (use codes in instructions)		Believed Present? (check only one response per pollutant)	
3.40	Nitrobenzene			Concentration			-			п.,
	(98-95-3)			Mass					☐ Yes	☐ No
3.41	N-nitrosodimethylamine			Concentration						
	(62-75-9)			Mass					☐ Yes	□ No
3.42	N-nitrosodi-n-propylamine			Concentration					Пу	П.,
	(621-64-7)			Mass					☐ Yes	☐ No
3.43	N-nitrosodiphenylamine			Concentration					Пу	П.,
	(86-30-6)			Mass					☐ Yes	☐ No
3.44	Phenanthrene			Concentration						
	(85-01-8)			Mass					☐ Yes	☐ No
3.45	Pyrene			Concentration						п.,
	(129-00-0)			Mass					☐ Yes	☐ No
3.46	1,2,4-trichlorobenzene			Concentration						П.,
	(120-82-1)			Mass					☐ Yes	☐ No
4. Org	anic Toxic Pollutants (GC/MS Fra	action—Pesticid	es)							
4.1.	Aldrin			Concentration					Пу	П.,
	(309-00-2)			Mass					☐ Yes	☐ No
4.2	α-BHC			Concentration						п.,
	(319-84-6)			Mass					☐ Yes	□ No
4.3	β-ВНС			Concentration						
	(319-85-7)			Mass					☐ Yes	☐ No
4.4	у-ВНС			Concentration					Пу	П.,
	(58-89-9)			Mass					☐ Yes	☐ No
4.5	δ-ΒΗС			Concentration						
	(319-86-8)			Mass					☐ Yes	☐ No
4.6	Chlordane			Concentration						
	(57-74-9)			Mass					☐ Yes	☐ No

EPA Identification Number

EPA Identification Number Facility Name Outfall Number Form Appro	oo Itom VII

D. ORGANIC TOXIC POLLUTAN	VIS (Gas Chroma	atography/Ma	ss Spectrometry or I	GC/MS Frad	ctions) (40 CF	P 122 21/k)/5)	/##\/B\\1				
D. ONGAINIO TOXICIT GEESTAI	Presence or	Absence	ss opectrometry or	Estimated Data for Pollutants Expected to Be Present in Discharge							
Pollutant	,	,		,			<u>'</u>	Intake \	Water		
(CAS Number, if available)	Believed Present	Believed Absent	Units		Maximum Daily Discharge	Average Daily Discharge	Source of Information (use codes in instructions)	(check only one	Believed Present? (check only one response per pollutant)		
4,4'-DDT	П		Concentration					 П _{Vaa}	□ No		
,		Ц	Mass					Li res	LI INO		
l '		П	Concentration					П Уде	□ No		
` '		ш	Mass					□ 169			
l '		П	Concentration					Π _{Vos}	□ No		
` '								169			
		П						Пуес	□ No		
` '			Mass					163			
			Concentration					☐ Yes			
(113-29-1)		Ы	Mass						☐ No		
β-endosulfan			Concentration					_			
(115-29-7)		Ц	Mass					☐ Yes	□ No		
Endosulfan sulfate			Concentration								
(1031-07-8)		Ш	Mass					☐ Yes	□ No		
Endrin			Concentration					п.,			
(72-20-0)		Ц	Mass				1	☐ Yes	□ No		
Endrin aldehyde			Concentration								
(7421-93-4)		Ц	Mass					☐ Yes	□ No		
	Pollutant (CAS Number, if available) 4,4'-DDT (50-29-3) 4,4'-DDE (72-55-9) 4,4'-DDD (72-54-8) Dieldrin (60-57-1) α-endosulfan (115-29-7) β-endosulfan (115-29-7) Endosulfan sulfate (1031-07-8) Endrin (72-20-8)	Pollutant (CAS Number, if available) 4,4'-DDT (50-29-3) 4,4'-DDE (72-55-9) 4,4'-DDD (72-54-8) Dieldrin (60-57-1) α-endosulfan (115-29-7) Endosulfan sulfate (1031-07-8) Endrin (72-20-8) Presence or (check of the check	Pollutant (CAS Number, if available) Believed Present Believed Absent	Presence or Absence (check one)	Pollutant (CAS Number, if available) Believed Present Believed Absent Units	Presence or Absence (check one)	Pollutant (CAS Number, if available) Believed Present Believed Present Believed Present Believed Present Believed Present Believed Present Units Maximum Daily Discharge Da	Concentration Concentrati	Presence or Absence (check one) Presence or Absence (check one) Pollutant (CAS Number, if available)		

			_		
EPA Identification Number	Facility Name	Outfall Number	Form Approved 0 OMB No. 204	Item VI1.	ı

TABLE	TABLE D. ORGANIC TOXIC POLLUTANTS (Gas Chromatography/Mass Spectrometry or GC/MS Fractions) (40 CFR 122.21(k)(5)(iii)(B))¹										
		Presence or						ed to Be Present in Disc estimates for each pollutant)	harge		
	Pollutant	(CHECK)	Jile)	Effluen			•	Intake	Water		
	(CAS Number, if available)	Believed Present			Units		Average Daily Discharge	Source of Information (use codes in instructions)	Believed Present? (check only one response per pollutant)		
4.16	Heptachlor			Concentration					☐ Yes	□ No	
	(76-44-8)			Mass					LI TES	LI NO	
4.17				Concentration					☐ Yes	□ No	
	(1024-57-3)			Mass					L Tes	□ NO	
4.18	PCB-1242			Concentration					☐ Yes	□ No	
	(53469-21-9)			Mass					L Yes	□ NO	
4.19	PCB-1254			Concentration					☐ Yes	□ No	
	(11097-69-1)			Mass					L	□ NO	
4.20	PCB-1221			Concentration					□ _V	□ No	
	(11104-28-2)			Mass					☐ Yes	□ NO	
4.21	PCB-1232			Concentration					☐ Yes	□ No	
	(11141-16-5)			Mass					☐ Yes	□ No	
4.22	PCB-1248			Concentration						п.,	
	(12672-29-6)			Mass					☐ Yes	☐ No	
4.23	PCB-1260			Concentration						п	
	(11096-82-5)			Mass					☐ Yes	☐ No	
4.24	PCB-1016			Concentration							
	(12674-11-2)		Mass					☐ Yes	☐ No		
4.25	Toxaphene				Concentration						п
	(8001-35-2)			Mass				'	☐ Yes	☐ No	

¹ Sampling shall be conducted according to sufficiently sensitive test procedures (i.e., methods) approved under 40 CFR 136 for the analysis of pollutants or pollutant parameters or required under 40 CFR chapter I, subchapter N or O. See instructions and 40 CFR 122.21(e)(3).

This page intentionally left blank.

EPA Identification Number	Facility Name	Outfall Number	Form Approved 03/05
	·		OMB No. 2040-0d Item VI1.

TAB	TABLE E. CERTAIN HAZARDOUS SUBSTANCES AND ASBESTOS (40 CFR 122.21(k)(5)(v))¹						
	Pollutant	Presence or (check of Believed Present		Reason Pollutant Believed Present in Discharge	Available Quantitative Data (specify units)		
✓	Check (✓) here if you believe all pollutants	s listed to be absent	from the dischar	rge. You need not complete Table E for the noted outfall unless you	have quantitative data available.		
1.	Asbestos						
2.	Acetaldehyde						
3.	Allyl alcohol						
4.	Allyl chloride						
5.	Amyl acetate						
6.	Aniline						
7.	Benzonitrile						
8.	Benzyl chloride						
9.	Butyl acetate						
10.	Butylamine						
11.	Captan						
12.	Carbaryl						
13.	Carbofuran						
14.	Carbon disulfide						
15.	Chlorpyrifos						
16.	Coumaphos						
17.	Cresol						
18.	Crotonaldehyde						

EPA Identification Number	Facility Name	Outfall Number	Form Approved 03/05
	·		OMB No. 2040-0d Item VI1.

TAB	TABLE E. CERTAIN HAZARDOUS SUBSTANCES AND ASBESTOS (40 CFR 122.21(k)(5)(v))¹						
	Pollutant	Presence or (check of			Available Quantitative Data		
	Pollutant	Believed Present	Believed Absent	Reason Pollutant Believed Present in Discharge	(specify units)		
19.	Cyclohexane						
20.	2,4-D (2,4-dichlorophenoxyacetic acid)						
21.	Diazinon						
22.	Dicamba						
23.	Dichlobenil						
24.	Dichlone						
25.	2,2-dichloropropionic acid						
26.	Dichlorvos						
27.	Diethyl amine						
28.	Dimethyl amine						
29.	Dintrobenzene						
30.	Diquat						
31.	Disulfoton						
32.	Diuron						
33.	Epichlorohydrin						
34.	Ethion						
35.	Ethylene diamine						
36.	Ethylene dibromide						
37.	Formaldehyde						

EPA Identification Number	Facility Name	Outfall Number	Form Approved 03/05 OMB No. 2040-00

TAB	TABLE E. CERTAIN HAZARDOUS SUBSTANCES AND ASBESTOS (40 CFR 122.21(k)(5)(v))¹					
	Pollutant	Presence or Absence (check one)		Reason Pollutant Believed Present in Discharge	Available Quantitative Data	
		Believed Present	Believed Absent		(specify units)	
38.	Furfural					
39.	Guthion					
40.	Isoprene					
41.	Isopropanolamine					
42.	Kelthane					
43.	Kepone					
44.	Malathion					
45.	Mercaptodimethur					
46.	Methoxychlor					
47.	Methyl mercaptan					
48.	Methyl methacrylate					
49.	Methyl parathion					
50.	Mevinphos					
51.	Mexacarbate					
52.	Monoethyl amine					
53.	Monomethyl amine					
54.	Naled					
55.	Naphthenic acid					
56.	Nitrotoluene					

EPA Identification Number	Facility Name	Outfall Number	Form Approved 03/05
			OMB No. 2040-00 Item VI1.

TAB	TABLE E. CERTAIN HAZARDOUS SUBSTANCES AND ASBESTOS (40 CFR 122.21(k)(5)(v))1						
	Delli-A-m4	Presence or (check			Available Quantitative Data		
Pollutant		Believed Present	Believed Absent	Reason Pollutant Believed Present in Discharge	(specify units)		
57.	Parathion						
58.	Phenolsulfonate						
59.	Phosgene						
60.	Propargite						
61.	Propylene oxide						
62.	Pyrethrins						
63.	Quinoline						
64.	Resorcinol						
65.	Strontium						
66.	Strychnine						
67.	Styrene						
68.	2,4,5-T (2,4,5-trichlorophenoxyacetic acid)						
69.	TDE (tetrachlorodiphenyl ethane)						
70.	2,4,5-TP [2-(2,4,5-trichlorophenoxy) propanoic acid]						
71.	Trichlorofon						
72.	Triethanolamine						
73.	Triethylamine						
74.	Trimethylamine						
75.	Uranium						

	EPA Identification Number Facility Name			Outfall Number	Form Approved 03/05 OMB No. 2040-00	lten	
ΑB	LE E. CERTAIN HAZARDOUS SUBSTAN	CES AND ASBEST	OS (40 CFR 122	2.21(k)(5)(v))	1		
	Pollutant	Presence or (check		Poo	oon Dellutant Policyad Procent in Discharge	Available Quantitative Da	ta
i onutant		Believed Present	Believed Absent	Reason Pollutant Believed Present in Discharge		(specify units)	
6.	Vanadium						
7.	Vinyl acetate						
8.	Xylene						
a	Yylenol	П	П				

80. Zirconium

¹ Sampling shall be conducted according to sufficiently sensitive test procedures (i.e., methods) approved under 40 CFR 136 for the analysis of pollutants or pollutant parameters or required under 40 CFR chapter I, subchapter N or O. See instructions and 40 CFR 122.21(e)(3).

INTRODUCTION

3 Tees, LLC is requesting a NPDES Permit for a quarry on property located on 3725 Sullivan Gardens Parkway, Kingsport, Tennessee. 3 Tees has an option to purchase these properties and plans to develop a limestone quarry to manufacture stone aggregate for construction. The proposed quarry will be located approximately 1,200 ft from Sullivan Gardens Parkway. Access to the proposed quarry site will be via an existing drive/farm road from Sullivan Gardens Parkway. An existing bridge crosses Horse Creek. These facilities will be upgraded suitable for the proposed use.

SITE LOCATION

3 Tees proposed operation will be an open pit limestone excavation, crushing and screening operation located at 3725 Sullivan Gardens Parkway, Kingsport, Tennessee in Sullivan County.

The site is located in the north west section of the Sullivan Gardens United States Geological Services (U.S.G.S) Sullivan Gardens 7.5' Quadrangle at the geographic coordinates of 36°28'43" North Latitude and 82°34'49" West Longitude. The site is located on the south side of Horse Creek at approximate elevation of 1350 ft. Horse Creek is approximately 1,000 ft. from the proposed quarry at an elevation of 1215 ft. Horse Creek is a first order perennial stream that flows north east to the Holston River.

The following tracts are located in the proposed rezoning:

Tract ID	Owner	Acres	Current Use
59.10	Preston H. Taylor		Drive/Farm Access
59.20	Preston H. Taylor		Agricultural
59.00	Preston H. Taylor	90	Agricultural

A location map is included with the drawings.

SITE DESCRIPTION

The proposed quarry will be located in a gently sloping area at approximately 1325 ft. in elevation approximately 1,000 ft South and 110 ft. above Horse Creek. The terrain between the proposed quarry and Horse Creek is fairly steep. Both eastward and southward the elevation rises to above 1,425 ft. to form a series of small knobs. On the west side the terrain is not as steep and rises to 1,350 ft. A sink hole is located south of the proposed site, between the knobs to the south and the less steep terrain to the west. The sink hole is at 1,290 ft. elevation.

On the north side of Horse Creek and south of Sullivan Gardens Parkway the terrain is nearly level at an elevation of 1220 ft. The elevation of Sullivan Gardens Parkway is 1230 ft. This area is in the FEMA floodway with a flood elevation of 1223. The bottom elevation of Horse Creek in this area is 1215 ft.

Drainage from the proposed quarry site is northward to Horse Creek in swales. This would only occur during periods of heavy rainfall. The site is high and dry with no indications of perennial or even intermittent stream flow that would be considered jurisdictional waters of the United States and regulated by the U. S. Army Corps of Engineers under Section 401 of the Clean Water Act. No wetlands were identified on the property either in the sink hole or along Horse Creek.

Access to the site from Sullivan Gardens Parkway will be via a road traversing southeast. From the parkway to Horse Creek for a distance of 375 ft the road will slope down at approximately 1%. A new bridge will be constructed across Horse Creek. The road will traverse along the swale a distance of 650 ft upward at a grade of 10% to the screening area and the proposed quarry pit.

The proposed quarry pit will be developed from approximately 1300 ft. in elevation to a proposed bottom of 1220 ft in elevation. The pit will be approximately 400 ft wide and 700 ft long. The pit walls will be developed with a slope ratio of 0.25 horizontal to 1 vertical. A 25 ft. wide bench is proposed in the pit walls at vertical intervals of 50 ft. A 25 ft. wide pit road will be developed as the pit progresses with a grade of 10 %.

A fill area to store topsoil and two (2) fill areas to store overburden will be constructed southeast of the pit. The topsoil fill will be approximately 10 ft. deep with a top elevation of 1335 ft. Overburden Fill No. 1 will be 50 ft. deep with a final elevation of 1350 ft. Overburden Fill No. 2 will be 70 ft. deep with a final elevation of 1400 ft. The front face of the fill will be sloped at a ratio of 2 horizontal to 1 vertical.

A proposed site plan at a scale of 1" = 200' is included with this submittal. Both existing and proposed elevation contours at 5 ft. intervals is shown on the site plan.

LAND USE

The existing land use on and around the proposed quarry include single family residential, agricultural and unmanaged forest lands. The following table is a summary of land use by tract.

	LAND USE TABLE					
Tract ID	Owner	Acres	Current Use			
59.10	Preston H. Taylor		Drive/Farm Access			
59.20	Preston H. Taylor		Agricultural			
59.00	Preston H. Taylor	90	Agricultural/Unmanaged Forest			
178.02	Horse Creek Farms		Agricultural/Unmanaged Forest			
175.00	Joe & Rebecca Riggs		Single Residential			
53.10	Billy & Dinah Lawson		Agricultural			
54.00	Billy & Dinah Lawson		Agricultural/Single Residential			
58.00	Danny & Crystal Edwards		Agricultural/Single Residential			
59.50	City of Kingsport		Public Recreational			
64.00	Harry Bachman, Jr.		Agricultural/Unmanaged Forest			
60.00	Harry Bachman, Jr.		Agricultural/Unmanaged Forest			
166.00	Jerry & Gladys Dean		Agricultural/Unmanaged Forest			
149.00	Charles & Letitia Williams		Agricultural/Unmanaged Forest			
178.1	Jill & Kenneth Rich		Single Residential			
55.00	Ruth Blix		Single Residential			
57.00	Derek Blix		Single Residential			
53.00	Nau & Natalie Tran		Single Residential			
52.00	Jeremiah Blair		Single Residential			
178.01	Josephine Riggs		Agricultural			

HIGHWAY ACCESS

Highway access to the proposed quarry is Tennessee State Route 93. State Route 93 begins at an intersection with US 11E/US 321 in Greeneville, TN. It then heads northeast toward Kingsport, TN. The route intersects State Route 81 just south of Fall Branch and heads more northerly. In Fall Branch, it has an interchange with Interstate 81exit 50 and continues north to Kingsport where it intersects State Route 347 just south of there. In Kingsport, it has an interchange with Interstate 26 and State Route 126 for the first time. This also marks the western terminus of State Route 126. The route heads east as a controlled-access southern bypass of the city passing by Eastman Chemical Company and crossing over the South Fork Holston River and has an interchange with State Route 36. Then, it intersects State Route 126 for a second time at an interchange. State Route 93 then turns back north to an interchange with US 11W and then it meets its northern terminus, at the Tennessee–Virginia State Line in Bloomingdale.

All of State Route 93, from just north of Interstate 81 to US 11W, is included as part of the National Highway System, a system of roadways important to the nation's economy, defense, and mobility. This section is also classified as a principal arterial route.

This highway is named Sullivan Gardens Parkway in the vicinity of the site. The highway is four (4) lanes undivided with a center turning lane. Each lane, including the turn lane is 12 ft. wide. There are paved shoulders on both sides 10 ft. wide.

The average number of vehicles per day on this segment the highway is 4,500, with about 47% north bound and 53% south bound. The average number of vehicles per hour is approximately 250 between the hours of 7 a.m. to 4 p.m., with a peak volume 450 vehicles from 5 to 6 p.m. Site distance to the north is 1,000 ft. or more and site distance to the south is 775 ft.

These road conditions are suitable for the proposed M-2 zoning district. Once re-zoning is approved, 3 Tees shall apply for a commercial entrance to the site from State Route 93 through the Tennessee Department of Transportation. The entrance shall incorporate all geometrics required for the intended use.

OPERATION PLAN

Limestone rock will be mined at this site utilizing the open pit quarry surface mining technique. Drilling and blasting will be utilized to break the rock. Once broken, the raw material will then be trucked or carried to a portable crushing and screening machine. The crusher will reduce the large rock to smaller sizes suitable for sale and screening. The screening will isolate the product by size for sale. Once sized, the material will sold and removed from the area by trucks. The screened-off material will be stored and used to reclaim disturbed areas. The proposed pit will be over 200 feet deep maximum.

Before any disturbance begins, sediment control will be provided. Silt fence may be used initially and on a temporary basis until such time as the sediment control basin is constructed and the pit is developed below grade. The basin will be constructed on the flat on the south side of Horse Creek. More detail is provided in The Drainage and Sediment Control section of this narrative.

The haulroad will be constructed from Sullivan Gardens Parkway to the proposed quarry. It will generally follow the old farm road, only upgraded for the intended use and size of vehicles using the road. The road will be constructed by the cut/fill method, with an average grade of 10%. Ditches provided on the cut side and a safety berm provided on the fill side. The road will be graded at 2% toward the ditch. The road shall be adequately surface for the type of vehicles using it.

Following road construction, the mining area will first be cleared of trees and brush. The trees and brush will be either windrowed along the edge of the clearing to aid in sediment or erosion control, burned in accordance the governing local, state, or federal law or they will be removed from the site.

Following clearing, the available topsoil will be salvaged. This material will be placed in the designated topsoil fill southeast of the proposed pit. After removal of the topsoil, the overburden shall be removed. This consists of clay soil, weathered limestone, and shale not suitable for sale. This material may be stripped or ripped with a dozer or excavator or blasted if necessary. Two (2) overburden fills east and southeast of the pit will be used for disposal of the overburden. Note that prior to placement of topsoil or overburden, the footprint of the fill shall be cleared and grubbed of all vegetation. Additionally, the topsoil shall be salvaged from the overburden fill areas. Following storage area foundation preparation, spoil or overburden material will be placed in these areas. Dozers, front-end loaders, trucks, etc. will then be used to move the spoil to the storage areas. The spoil material will placed in the fill area by the "end dump" method. No debris or other deleterious material will be placed in these storage areas. The outslope of the storage area will generally equal the angle of repose of the material being placed, however, when this material is placed in the final reclamation grade it will not be allowed to exceed a grade of 2 horizontal to 1 vertical.

The pit development will begin in the nearly level area at elevation 1300 ft and progress eastward. Once the pit has been developed, will be continually expanded and deepened by removal of the material by blasting. No cut slopes at the top of the pit wall will extend any closer than 25 feet of the property line. The pit bottom will be at elevation 1220 ft. and the wall at the highest on the east side of the pit will be at 1425 ft. The slope of the pit wall will be no greater than 2 horizontal to 1 vertical in unconsolidated material and 1 horizontal to 1 vertical in consolidated material and 0.25 horizontal to 1 vertical in solid limestone. A 25 ft. wide bench will be provided int he pit wall at intervals not exceeding 50 ft.

A portable crusher and screens will be set up northwest of the proposed pit. Blasted rock from the quarry will be hauled up the pit road and dumped. The raw material will be loaded directly into the screening/sizing machine for processing. The processing machine is a portable, diesel operated conveyor and dry screening device that can be set-up and various locations on the permit. The processing includes a screening that grades the rock by size. The classified aggregate is transferred from the machine to stockpile areas via small portable conveyors and trucks. The final marketed products produced at this site are transported via trucks. Scales will be set up for weighing the stone sold.

Limestone is not considered hazardous. The mine plans to produce 200,000 tons per year over the next 10 years. The anticipated daily vehicle count is 40, with 60% coming and leaving from north on State Route 93.

SAFETY

The proposed operation shall be conducted in a manner to ensure the safety of all employees, customers, and the general public and nearby resources. Prior to land disturbing activity, a permanent sign shall be installed at the entrance to the site and shall be visible and legible to access road traffic. The name of the company and any required permit numbers shall be on the sign. Additional signs shall also be posted instructing visitors and customers how to check in and proceed onto the site, speed

limit, and personal protective equipment required. Signs shall also be posted regarding blasting. These signs shall outline the signaling system for blasting. Additional signs and barricades will be erected immediately prior to any blasting. The boundary of the mine shall be clearly marked with identifiable markings when mine related land disturbing activities are within 100 feet of the boundary.

All slopes shall be developed in a safe manner in consideration to the type of material and geology. At a minimum the following slopes are proposed:

Unconsolidated material	2H:1V
Fill material	2H:1V
Consolidated material	1H:1V
Solid Shale	1H:1V
Solid Limestone	1H:1V

For walls exceeding 50 ft in height, a bench with a minimum 25 ft width shall be provided.

Roadways shall be provided of sufficient width to accommodate the safe passing of two (2) of the largest vehicles anticipated to use the roads. The roads should not exceed a grade of 10%. A safety berm shall be provided on the outside of the road and shall be at a minimum the axle height of the largest vehicle traveling the road.

Buildings or areas used for storage of flammable or combustible materials shall be of fire resistant material, well ventilated, kept clean and orderly, posted with fire hazard warning signs, and provided with means to confine or contain accidental spills.

Several methods are employed at the site for the control of fugitive dust. These methods are in conjunction with a separate air quality control permit maintained with the Tennessee Department of Environmental. These methods include:

- Paving of entrances
- Washing of entrances
- Periodic resurfacing and grading of roads
- Periodic watering of roads
- Misting water sprays at conveyor transfer and discharge points

The quarry location and design should minimize disturbance and effects to nearby citizens. However, in the event that a compliant is made it will be diligently addressed. In the event the complaint is valid the issue will be promptly corrected.

DRAINAGE AND SEDIMENT CONTROL

The primary sediment control features for this site is the use of a sediment basin and the quarry pit itself. Drainage from disturbed areas below the pit will be directed by

ditches or use of a natural drainage swale to the location where a sediment basin will be constructed. The sediment basins will provide sediment and drainage control for the initial mining area, plant area, and roads. After the pit is developed below grade, it will provide drainage control for upstream of it and the basin will only control drainage for the road and plant area.

The sediment basin along with ditches, culverts, spillways, etc. have been designed for the 10 year frequency, 24 hour duration storm event. Rainfall for this event was obtained from the National Oceanic and Atmospheric Administrations (NOAA) data server. Soil classifications and drainage classes were obtained Natural Resource Conservation Service (NRCS) Soil Surveys. The SedCad 4 computer program was used to determine peak runoff and design the structures. The computer output is included. The following tables are a summary of the structure designs.

	SEDIMENT BASIN DATA											
Basin No.	1	NPDES	001		TN S	tate Pl	lane	7992	234	TN State	2	2973715
		No.			North	ning				Plane Eastir	ng	
GENERAL INFOR	MATION											
Total Drainage Are	a (ac)	10.7			Desi	gn Flov	w (cfs)			17.96		
Total Disturbed Are	ea (ac)	1.60			Desi	gn Sto	rm Eve	nt (yr/	hr)	10/24		
Required Basin Vo	lume (ac-ft)	1.37			Prov	ided Ba	asin Vo	lume	(ac-ft)			
BASIN GEOMETR	Y											
	Bottom	Principa	Spillw	ay	Basir	Volun	ne		Emergen	cy Spillway	Тор	
Elevation (ft)	1212	NA			1219	1219.45			1220		122	4
Area (sq ft)	6534	NA			9605	9605			9845		1170	61
Principal Spillway ((Yes/No)										No	
Pipe Diameter (in)	NA Pi	pe Length	(ft) I	NA	Pipe	Inlet El	evatior	ı (ft)	NA	Pipe Slope	e (%)	NA
Riser Diameter (in)	NA Ri	ser Height	(ft)	NA	Riser	Top E	levatio	n (ft)	NA	Hp (ft)		NA
Emergency Spillwa	ay (Yes/No)										Yes	
	Bottom Widt	h (ft) 4	E	Bottom	Lengt	h (ft)	4	3	Side Slope	s (H:V)	2:1	
Flow Velocity (fps)	Flow Velocity (fps) 2.1 Type o				f Lining	g	Riprap	Dmir	n: 2.00 in,	D50: 3.00 in,	Dma	x: 4.50 in
Exit Channel(Yes/No)										Yes		
Slope (%)	3	В	Bottom Width (ft)	4			Side Slo	pes (H:V)		
Flow Depth (ft.)	0.62	F	reeboa	rd (ft)		0.38 Chai		Channel	Depth (ft)	1.0		
Flow Velocity (fps)	4.5	T	ype of	Lining		Riprap Dmin: 2.00 in, D50: 3.00 in, Dmax: 4.50 in				0 in		

DIVERSION DITCH/CULVERT DATA							
Ditch ID	1	2	3	4	5	Road Culvert	
Type Conveyance	Triangular	Trapezoidal	Triangular	Triangular	Triangular	Round	
Design Storm (yr/hr)	10/24	10/24	10/24	10/24	10/24	10/24	
Drainage Area (acres)	10.7	10.7	0.5	0.5	3.26	10.7	
Disturbed Area (acres)	1.6	1.6	0.5	0.5	0.52	1.6	
Design Flow (cfs)	17.96	17.96	1	1	6.54	17.96	
Length (ft)	630	63	30	30	450	30	
Grade (%)	10	1	1	1	10	1	
Bottom (ft.)	NA	2	NA	NA	NA	NA	
Side Slopes (H:V)	2:1	2:1	2:1	2:1	2:1	NA	
Flow Depth (ft.)	1.17	1.31	0.7	0.7	0.7	3.0	
Design Velocity (fps)	6.52	4.4	3.0	3.0	5.7	5.7	
Freeboard(ft.)	0.33	0.69	0.3	0.3	0.3	1.0	
Design Depth (ft.)	1.5	2.0	1.0	1.0	1.0	4.0	
Erosion Protection	Riprap Dmin: 3 in, D50: 6 in, Dmax: 9 in	Mixed Grass	Mixed Grass	Mixed Grass	Riprap Dmin: 3 in, D50: 6 in, Dmax: 9 in	Riprap Dmin: 3 in, D50: 6 in, Dmax: 9 in	

3 Tees Horse Creek Quarry

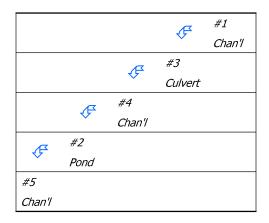
Pond Design

sem

Stephen E. Maxfield Professional Engineer 1745 Roman Ridge Road Honaker, VA 24260

Phone: 276-979-6963 Email: coulwood1214@gmail.com

Item VI1.


General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	10 yr - 24 hr
Rainfall Depth:	3.580 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Channel	#1	==>	#3	0.000	0.000	Road Ditch
Pond	#2	==>	#5	0.000	0.000	
Culvert	#3	==>	#4	0.000	0.000	Road Culvert
Channel	#4	==>	#2	0.000	0.000	Ditch to Pond
Channel	#5	==>	End	0.000	0.000	Exit Channel

Structure Summary:

		Immediate Contributing Area	Total Contributing Area	Peak Discharge	Total Runoff Volume
		(ac)	(ac)	(cfs)	(ac-ft)
#1		10.700	10.700	17.96	1.37
#3		0.000	10.700	17.96	1.37
#4		0.000	10.700	17.96	1.37
#2	In	0.000	10,700	17.96	1.37
#2	Out	0.000	10.700	14.65	1.37
#5		0.000	10.700	14.65	1.37

Structure Detail:

Structure #1 (Riprap Channel)

Road Ditch

Triangular Riprap Channel Inputs:

Material: Riprap

Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mu l t. x (VxD)
2.0:1	2.0:1	10.0	0.30		

Riprap Channel Results:

PADER Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	17 . 96 cfs	
Depth:	1.17 ft	1.47 ft
Top Width:	4.69 ft	5.89 ft
Velocity:	6.52 fps	
X-Section Area:	2.75 sq ft	
Hydraulic Radius:	0.525 ft	
Froude Number:	1.50	
Manning's n:	0.0470	
Dmin:	3.00 in	
D50:	6 . 00 in	
Dmax:	9 . 00 in	

Structure #3 (Culvert)

Road Culvert

Culvert Inputs:

Length (ft)	Slope (%)	Manning's n	Max. Headwater (ft)	Tailwater (ft)	Entrance Loss Coef. (Ke)
20.00	3.00	0.0150	3.00	0.00	0.90

Culvert Results:

Design Discharge = 17.96 cfs

Minimum pipe diameter: 1 - 24 inch pipe(s) required

Structure #4 (Vegetated Channel)

Ditch to Pond

Trapezoidal Vegetated Channel Inputs:

Material: Grass mixture

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Retardance Classes	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)	Limiting Velocity (fps)
2.00	2.0:1	2.0:1	1.0	D, B	0.30			5.0

Vegetated Channel Results:

	Stability	Stability	Capacity	Capacity
	Class D w/o Freeboard	Class D w/ Freeboard	Class B w/o Freeboard	Class B w/ Freeboard
Design Discharge:	17 . 96 cfs		17.96 cfs	
Depth:	1.36 ft	1.66 ft	2.11 ft	2.41 ft
Top Width:	7 .44 ft	8.64 ft	10.44 ft	11 . 64 ft
Velocity:	2.79 fps		1.37 fps	
X-Section Area:	6.43 sq ft		13.11 sq ft	
Hydraulic Radius:	0.795 ft		1.147 ft	
Froude Number:	0.53		0.22	
Roughness Coefficient:	0.0457		0.1192	

Structure #2 (Pond)

Pond Inputs:

Initial Pool Elev:	1,220.00 ft
Initial Pool:	1.49 ac-ft

Broad-crested Weir

Weir Width (ft)	Spillway Elev (ft)
4.00	1,220.00

Pond Results:

Peak Elevation:	1,221.12 ft
Dewater Time:	0.62 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time	
1 212 00				(hrs)	
1,212.00	0.150	0.000	0.000		
1,212.10	0.151	0.015	0.000		
1,212.20	0.152	0.030	0.000		
1,212.30	0.153	0.045	0.000		
1,212.40	0.153	0.061	0.000		
1,212.50	0.154	0.076	0.000		
1,212.60	0,155	0.092	0.000		
1,212.70	0.156	0.107	0.000		
1,212.80	0,157	0.123	0.000		
1,212.90	0.158	0.138	0.000		
1,213.00	0.159	0.154	0.000		
1,213.10	0.160	0.170	0.000		
1,213.20	0.160	0.186	0.000		
1,213.30	0.161	0.202	0.000		
1,213.40	0.162	0.218	0.000		
1,213.50	0.163	0.235	0.000		
1,213.60	0.164	0.251	0.000		
1,213.70	0.165	0.268	0.000		
1,213.80	0.166	0.284	0.000		
1,213.90	0.167	0.301	0.000		
1,214.00	0.168	0.317	0.000		
1,214.10	0.168	0.334	0.000		
1,214.20	0.169	0.351	0.000		
1,214.30	0.170	0.368	0.000		
1,214.40	0.171	0.385	0.000		
1,214.50	0.172	0.402	0.000		
1,214.60	0.173	0.420	0.000		
1,214.70	0.174	0.437	0.000		
1,214.80	0.175	0.454	0.000		
1,214.90	0.176	0.472	0.000		
1,215.00	0.177	0.490	0.000		
1,215.10	0.178	0,507	0.000		
1,215.20	0.179	0,525	0.000		
1,215.30	0.180	0,543	0.000		
1,215.40	0.180	0,561	0,000		
1,215.50	0.181	0.579	0.000		
1,215.60	0.182	0.597	0.000		
1,215.70	0.183	0.616	0.000		
1,215.80	0.184	0.634	0.000		
1,215.90	0.185	0.652	0.000		
1,216.00	0.186	0.671	0.000		
1,216.10	0.187	0.690	0.000		
1,216.20	0.188	0.708	0.000		
1,210.20	0.100	0.700	0,000		

Printed 10-17-2 99 Filename: 3t.sc4

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time		
1 216 20	0,189	0.727	0.000	(hrs)		
1,216.30						
1,216.40	0.190	0.746	0.000			
1,216.50	0.191	0.765	0.000			
1,216.60	0.192	0.784	0.000			
1,216.70	0.193	0.804	0.000			
1,216.80	0.194	0.823	0.000			
1,216.90	0.195	0.842	0.000			
1,217.00	0.196	0.862	0.000			
1,217.10	0.197	0.881	0.000			
1,217.20	0.198	0.901	0.000			
1,217.30	0.199	0.921	0.000			
1,217.40	0.200	0.941	0.000			
1,217.50	0.201	0.961	0.000			
1,217.60	0.202	0.981	0.000			
1,217.70	0.203	1.001	0.000			
1,217.80	0.204	1.022	0.000			
1,217.90	0.205	1.042	0.000			
1,218.00	0.206	1.062	0.000			
1,218.10	0.207	1.083	0.000			
1,218.20	0.208	1.104	0.000			
1,218.30	0.209	1.125	0.000			
1,218.40	0.210	1.146	0.000			
1,218.50	0.211	1.167	0.000			
1,218.60	0.212	1.188	0.000			
1,218.70	0.213	1.209	0.000			
1,218.80	0.214	1.230	0.000			
1,218.90	0.215	1.252	0.000			
1,219.00	0.216	1.273	0.000			
1,219.10	0.217	1.295	0.000			
1,219.20	0.218	1.317	0.000			
1,219.30	0.219	1.338	0.000			
1,219.40	0.220	1.360	0.000			
1,219.50	0.221	1.382	0.000			
1,219.60	0.222	1.404	0.000			
1,219.70	0.223	1,427	0.000			
1,219.80	0.224	1.449	0.000			
1,219.90	0.225	1.472	0.000			
1,220.00	0,226	1,494	0.000		Spillway #1	
1,220.10	0.227	1.517	0.390	6.80	<u> </u>	-
1,220.20	0.228	1.539	1.104	5.95		
1,220.30	0,229	1.562	2,029	1.15		
1,220.40	0.230	1.585	3.124	0.40		
1,220.50	0.231	1.608	4.366	0.15		
1,220130	01231	11000	11500	0,13		

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time	
1 220 60	0,232			(hrs) 0.20	
1,220.60	0.232	1.632	5.738 7.231	0.10	
1,220.80	0.235	1.678	8.836	0.05	
1,220.90	0,236	1,702	10,543	0.05	
1,221.00	0.237	1.725	12.348	0.05	
1,221.10	0.238		14.647	0.05	Peak Stage
1,221.12	0.238	1.754	16.231	0,05	reak Stage
1,221.30	0.239				
1,221.40	0.240	1.797	18.304 20.455		
1,221.40	0.241	1.845	22.685		
1,221.60	0.242	1.869	24.990		
· ·					
1,221.70	0.244	1.894	27,369		
1,221.80	0.245	1.918	29.821		
1,221.90	0.246	1.943	32.340 34 . 925		
1,222.00	0.248				
1,222.10	0.249	1.992	37.577		
1,222.20	0.250	2.017	40.292		
1,222.30	0.251	2.042	43,073		
1,222.40	0.252	2.067	45.911		
1,222.50	0.253	2.093	48.810		
1,222.60	0.254	2.118	51.767		
1,222.70	0.255	2.144	54.781		
1,222.80	0.256	2.169	57.856		
1,222.90	0.258	2.195	60.982		
1,223.00	0.259	2.221	64.162		
1,223.10	0.260	2.247	67.396		
1,223.20	0.261	2,273	70.682		
1,223.30	0.262	2.299	74.025		
1,223.40	0.263	2.325	77.414		
1,223.50	0.264	2.351	80.853		
1,223.60	0.265	2.378	84,342		
1,223.70	0.267	2.404	87.880		
1,223.80	0.268	2.431	91.470		
1,223.90	0.269	2.458	95.104		
1,224.00	0.270	2.485	98.784		

<u>Detailed Discharge Table</u>

Elevation (ft)	Broad- crested Weir (cfs)	Combined Total Discharge (cfs)
1,212.00	0.000	0.000
1,212.10	0.000	0.000
1,212.20	0.000	0.000
1,212.30	0.000	0.000
1,212.40	0.000	0.000
1,212.50	0.000	0.000
1,212.60	0.000	0.000
1,212.70	0.000	0.000
1,212.80	0.000	0.000
1,212.90	0.000	0.000
1,213.00	0.000	0.000
1,213.10	0.000	0.000
1,213.20	0.000	0.000
1,213.30	0.000	0.000
1,213.40	0.000	0.000
1,213.50	0.000	0.000
1,213.60	0.000	0.000
1,213.70	0.000	0.000
1,213.80	0.000	0.000
1,213.90	0.000	0.000
1,214.00	0.000	0.000
1,214.10	0.000	0.000
1,214.20	0.000	0.000
1,214.30	0.000	0.000
1,214.40	0.000	0.000
1,214.50	0.000	0.000
1,214.60	0.000	0.000
1,214.70	0.000	0.000
1,214.80	0.000	0.000
1,214.90	0.000	0.000
1,215.00	0.000	0.000
1,215.10	0.000	0.000
1,215.20	0.000	0.000
1,215.30	0.000	0.000
1,215.40	0.000	0.000
1,215.50	0.000	0.000
1,215.60	0.000	0.000
1,215.70	0.000	0.000
1,215.80	0.000	0.000
1,215.90	0.000	0.000
1,216.00	0.000	0.000

Elevation (ft)	Broad- crested Weir (cfs)	Combined Total Discharge (cfs)
1,216.10	0.000	0.000
1,216.20	0.000	0.000
1,216.30	0.000	0.000
1,216.40	0.000	0.000
1,216.50	0.000	0.000
1,216.60	0.000	0.000
1,216.70	0.000	0.000
1,216.80	0.000	0.000
1,216.90	0.000	0.000
1,217.00	0.000	0.000
1,217.10	0.000	0.000
1,217.20	0.000	0.000
1,217.30	0.000	0.000
1,217.40	0.000	0.000
1,217.50	0.000	0.000
1,217.60	0.000	0.000
1,217.70	0.000	0.000
1,217.80	0.000	0.000
1,217.90	0.000	0.000
1,218.00	0.000	0.000
1,218.10	0.000	0.000
1,218.20	0.000	0.000
1,218.30	0.000	0.000
1,218.40	0.000	0.000
1,218.50	0.000	0.000
1,218.60	0.000	0.000
1,218.70	0.000	0.000
1,218.80	0.000	0.000
1,218.90	0.000	0.000
1,219.00	0.000	0.000
1,219.10	0.000	0.000
1,219.20	0.000	0.000
1,219.30	0.000	0.000
1,219.40	0.000	0.000
1,219.50	0,000	0.000
1,219.60	0.000	0.000
1,219.70	0.000	0.000
1,219.80	0.000	0.000
1,219.90	0.000	0.000
1,220.00	0.000	0.000
1,220.10	0,390	0,390

		Combined
E l evation	Broad-	Total
(ft)	crested Weir (cfs)	Discharge
	(CI5)	(cfs)
1,220.20	1.104	1,104
1,220.30	2.029	2.029
1,220.40	3.124	3.124
1,220.50	4.366	4.366
1,220.60	5.738	5.738
1,220.70	7.231	7.231
1,220.80	8.836	8.836
1,220.90	10.543	10.543
1,221.00	12.348	12.348
1,221.10	14.245	14.245
1,221.20	16.231	16.231
1,221.30	18.304	18.304
1,221.40	20.455	20.455
1,221.50	22.685	22.685
1,221.60	24.990	24.990
1,221.70	27.369	27.369
1,221.80	29.821	29.821
1,221.90	32.340	32.340
1,222.00	34.925	34.925
1,222.10	37.577	37,577
1,222.20	40.292	40.292
1,222.30	43.073	43.073
1,222.40	45.911	45.911
1,222.50	48.810	48.810
1,222.60	51.767	51.767
1,222.70	54.781	54.781
1,222.80	57.856	57.856
1,222.90	60.982	60.982
1,223.00	64.162	64,162
1,223.10	67.396	67.396
1,223.20	70.682	70.682
1,223.30	74.025	74.025
1,223.40	77.414	77.414
1,223.50	80.853	80.853
1,223.60	84.342	84.342
1,223.70	87.880	87.880
1,223.80	91.470	91.470
1,223.90	95.104	95.104
1,224.00	98.784	98.784

Structure #5 (Riprap Channel)

Exit Channel

Printed 10-17- 104 Filename: 3t.sc4

onwright 1998 - 2010 Pamela I Schwah

Item VII.

Trapezoidal Riprap Channel Inputs:

Material: Riprap

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
4.00	2.0:1	2.0:1	1.0	0.38		

Riprap Channel Results:

PADER Method - Mild Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	14.65 cfs	
Depth:	0.80 ft	1.18 ft
Top Width:	7.19 ft	8.71 ft
Velocity:	3.28 fps	
X-Section Area:	4.47 sq ft	
Hydraulic Radius:	0 . 590 ft	
Froude Number:	0.73	
Manning's n:	0.0320	
Dmin:	1.00 in	
D50:	1.50 in	
Dmax:	3 . 00 in	

Subwatershed Hydrology Detail:

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	1.600	0.047	0.000	0.000	82.000	М	3.11	0.246
	2	9.100	0.025	0.000	0.000	77.000	М	14.85	1.129
	Σ	10.700						17.96	1.375
#3	Σ	10.700						17.96	1.375
#4	Σ	10.700						17.96	1.375
#2	Σ	10.700						17.96	1.375
#5	Σ	10.700						14.65	1.375

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	7. Paved area and small upland gullies	3.00	6.00	200.00	3.480	0.015
		8. Large gullies, diversions, and low flowing streams	10.00	68.19	681.90	9.480	0.019
		6. Grassed waterway	3.00	3.75	125.00	2.590	0.013
#1	1	Time of Concentration:					0.047
#1	2	1. Forest with heavy ground litter	40.00	50.00	125.00	1.600	0.021
		7. Paved area and small upland gullies	36.84	70.00	190.00	12.210	0.004
#1	2	Time of Concentration:					0.025

HIORSE CREEK QUARRY

DITCH 5

sem

Stephen E. Maxfield Professional Engineer 1745 Roman Ridge Road Honaker, VA 24260

Phone: 276-979-6963 Email: coulwood1214@gmail.com

Filename: DIT 5.sc4 Printed 10-17-

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	10 yr - 24 hr
Rainfall Depth:	3.580 inches

Filename: DIT 5.sc4 Printed 10-17-

Convright 1998 _2010 Pamela I Schwah

Item VI1.

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Channel	#1	==>	End	0.000	0.000	DITCH 5

#1 Chan'l

Filename: DIT 5.sc4 Printed 10-17-

Structure Summary:

	Immediate Contributing A rea	Total Contributing Area	Peak Discharge	Total Runoff Volume
	(ac)	(ac)	(cfs)	(ac-ft)
#1	3.260	3.260	6.54	0.53

Printed 10-17- 110 Filename: DIT 5.sc4

Structure Detail:

Structure #1 (Riprap Channel)

DITCH 5

Triangular Riprap Channel Inputs:

Material: Riprap

Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
2.0:1	2.0:1	10.0	0.30		

Riprap Channel Results:

PADER Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	6.54 cfs	
Depth:	0.76 ft	1.06 ft
Top Width:	3.03 ft	4.23 ft
Velocity:	5.72 fps	
X-Section Area:	1.14 sq ft	
Hydraulic Radius:	0.338 ft	
Froude Number:	1.64	
Manning's n:	0.0400	
Dmin:	2.00 in	
D50:	3.00 in	
Dmax:	4.50 in	

Filename: DIT 5.sc4 Printed 10-17-

Subwatershed Hydrology Detail:

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	2.740	0.050	0.000	0.000	82.000	5.32	0.422	
	2	0.520	0.017	0.000	0.000	89.000	1.23	0.104	
	Σ	3.260						6.54	0.526

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	1. Forest with heavy ground litter	30.00	60.00	200.00	1.380	0.040
		7. Paved area and small upland gullies	30.00	60.00	200.00	11.020	0.005
		8. Large gullies, diversions, and low flowing streams	10.00	20.00	200.00	9.480	0.005
#1	1	Time of Concentration:					0.050
#1	2	8. Large gullies, diversions, and low flowing streams	10.00	60.00	600.00	9.480	0.017
#1	2	Time of Concentration:					0.017

Printed 10-17 Filename: DIT 5.sc4 112

RECLAMATION

The final reclamation of this site will return this area to a post-mining land use of unmanaged forest land for wildlife. This will be in compliment to the natural surrounding terrain and the pre-mining land use. In as far as practical, reclamation will occur simultaneously with mining. However, due to the mine site size and method of mining, final reclamation of all pit areas may not be possible until the completion of mining. However, once mining is declared complete, reclamation shall commence with 12 months.

All fill area slopes will be graded to not exceed a 2 horizontal to 1 vertical slope. Topsoil from the storage area will be used to cover fill areas and other hard surfaces to propagate vegetation. The exposed walls will be enclosed with a woven wire fence 5 feet high with two (2) strands of barbed wire above (making the total height 6 feet) to prevent encroachment. In addition to the fence, danger signs will be strategically placed to warn of the hazardous exposed high wall.

After the completion of mining all buildings, plant structures, mining equipment, scrap metal, debris, etc. will be removed from the site. These areas and internal roads will be scarified and prepared for seeding. The stockpiles will be removed or graded to contour with the natural surroundings. The overburden will be graded to 2h: 1v and in high walls left exposed will be fenced. Topsoil will be redistributed and the area prepared for revegetation.

Seeding of all disturbed areas will occur within thirty (30) days of final re-grading. Soil tests will be taken when the re-grading process is nearly completed to determine specific nutrient requirements. Testing for pH, phosphorous, potassium, and textural class will be performed. The results of these tests will be used to determine proper soil additives. During seeding one thousand five hundred (1,500) pounds per acre of cellulose or wood fiber mulch or two thousand (2,000) pounds per acre of straw mulch will be used. The following table will be utilized to achieve the re-vegetation plan:

PLAN	TYPE	RATE /ACRE			
Permanent Grass	KY 31 Fescue and Orchard Grass	30 lbs. And 20 lbs.			
Legumes	White or Ladino Clover and Red Clover	2 lbs. And 4 lbs.			
Temporary Mixture	Annual Rye and Foxtail Millet	20 lbs. And 10 lbs.			
Mulch or Straw	Wood Fiber or Rye	1500 lbs. Or 2000 lbs.			
Fertilizer	16-24-14 or 10-20-10	300 lbs. Or 500 lbs.			
Lime	Agricultural	As required by soil testing during final regrade			

A balance of tree cover is planned to establish proper ground cover, erosion control, valuable timber products, and wildlife habitat. Two categories of tree species will be utilized to achieve the post mining land use. These are the crop trees and the nitrogen fixing nurse trees or shrubs. The crop trees are long-lived species that offer value to the

landowners. The nurse trees and shrubs are nitrogen-fixing plants that benefit the tree crop and provide food and cover for wildlife.

Crop Trees	Pines - Pitch X Loblolly Pine Hybrid, White Pine, Virginia Pine. Hardwoods - Yellow Poplar, Oaks, White Ash, Sycamore, Red Maple, Black Cherry
Nurse Trees or Shrubs	Black Locust (not used with White Pine), European Black Alder (used w/ White Pine), Bicolor Lespedeza, Indigo Bush, Bristly Locust

A mixture of the above trees will be planted with to establish a minimum of 400 trees per acre, after two growing seasons. A spot application of herbicide may be required if ground cover growth is especially vigorous. This will reduce competition and allow trees to become established.

After vegetation is established, the sediment basin may be removed. Since the basin is an excavated basin, it will simply be filled in until the impounding capacity has been eliminated. A "swale" will be created through the basin area and to the spillway for post mining/reclamation drainage. The fill will be obtained from around the pond area. Any areas disturbed during removal of the basins will be seeded with a permanent seed mixture.

Any areas of the site that remain inactive for twelve (12) months will be seeded with a temporary seed mixture and any areas of the permit that remain inactive for twenty-four (24) months will be final graded and seeded with a permanent seed mixture.

GROUNDWATER ASSESSMENT

Groundwater flow will originate as precipitation and surface water flow. The surface flow gradient is governed by topography. Surface flow atop ridges will begin migration to the lower valleys. As the flow migrates to the valley, stress relief fractures within the valley wall will begin to intercept the surface flow and transmit it into the groundwater system. Limestone is defined as karst terrain which has been eroded by dissolution to produce fissures and sinkholes has the capability to transmit groundwater, while shale tends to be more impervious. Therefore, groundwater water encountering the limestone may be retained in this strata especially when the strata is underlain by the more impervious shale or unweathered strata. Groundwater movement encountering shale may tend to follow the bedding plane or dip. This may result in groundwater discharge as a spring or seep. Fracturing within the valley floor has been found to be more intense and extend to greater depths than the valley walls. Groundwater movement within the valley floor fracture system will typically follow the stream gradient through the connected fractures.

Groundwater flow through the fracture flow system is typically characterized as rapid recharge, but low yielding. Groundwater quality is typically a function of contact time

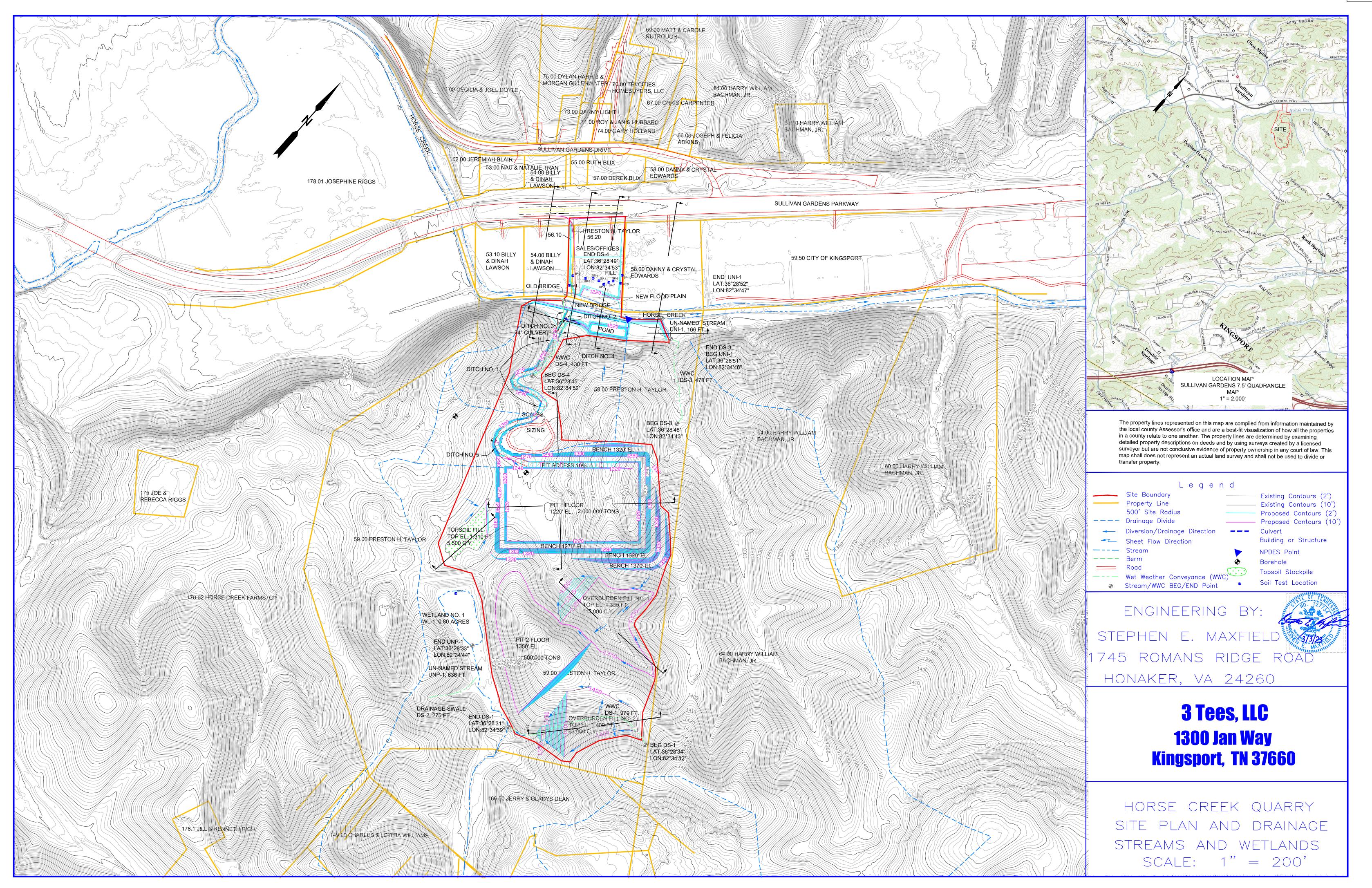
between the strata and the water. Therefore, the quality of the groundwater along the slope is typically better than the valley floors or water found in aquifers of porous strata.

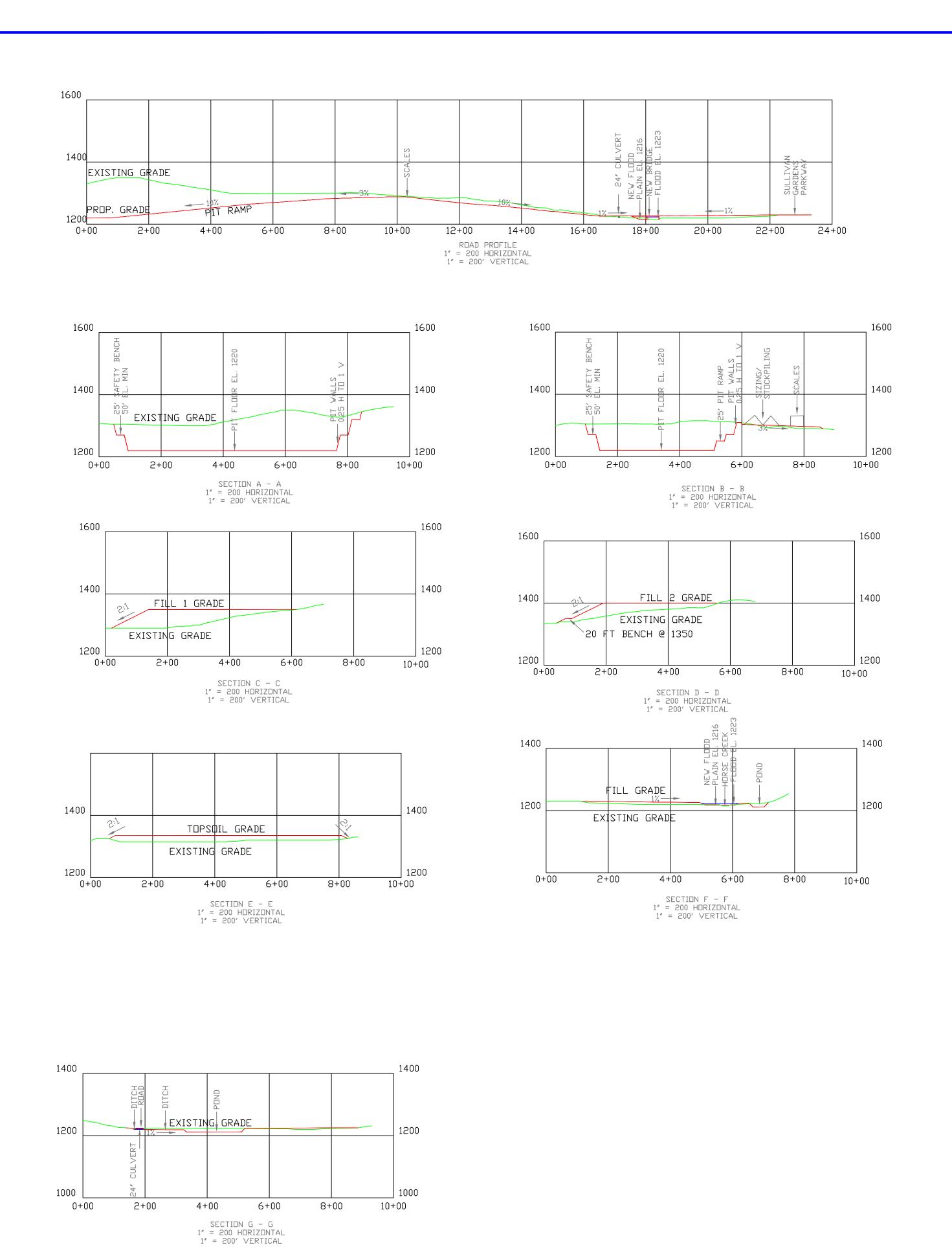
Typically a second groundwater system exists within the low gradient stream channels. This system consists of groundwater flow through the alluvial deposits within the valley floor. Typical alluvial deposits consist primarily of sand and silt with lesser amounts of clay and gravel. The physical characteristics allow these deposits to function as aquifers that store and transport ground water. Alluvial aquifers serve to capture a portion of water from precipitation events that would otherwise leave the area as surface runoff. Water stored in these alluvial aquifers contributes recharge to underlying valley floor fracture aquifer system and may supply recharge to streams, thereby sustaining base flows. Alluvial aquifers generally require a thickness in excess of 10 meters to supply sufficient water for the support of domestic wells. These groundwater systems are believed to exist along Horse Creek.

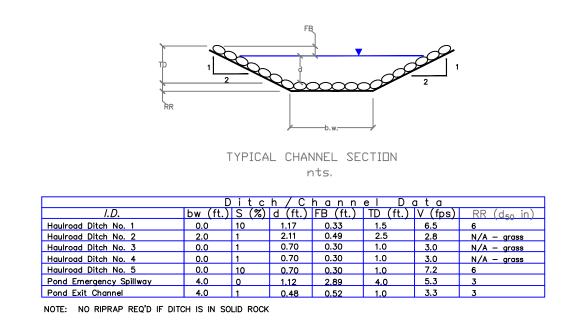
Drilling in the proposed quarry area did not identify any groundwater. No significant groundwater is anticipated unless a perched system would be encountered due to underlying shale or clays. If ground water is found to be present, it shall be directed to a sump in the pit. If necessary it will filtered prior to discharge into the stream or groundwater system. If these measures are implemented, no negative effects are expected to the surface water or groundwater system.

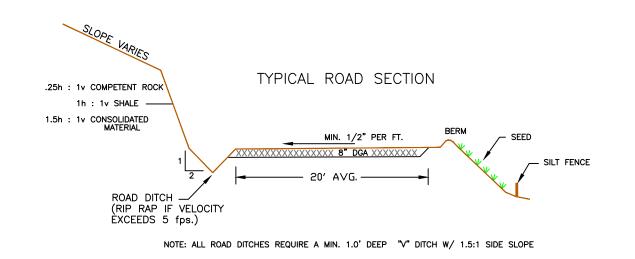
ENVIRONMENTAL ASSESSMENT

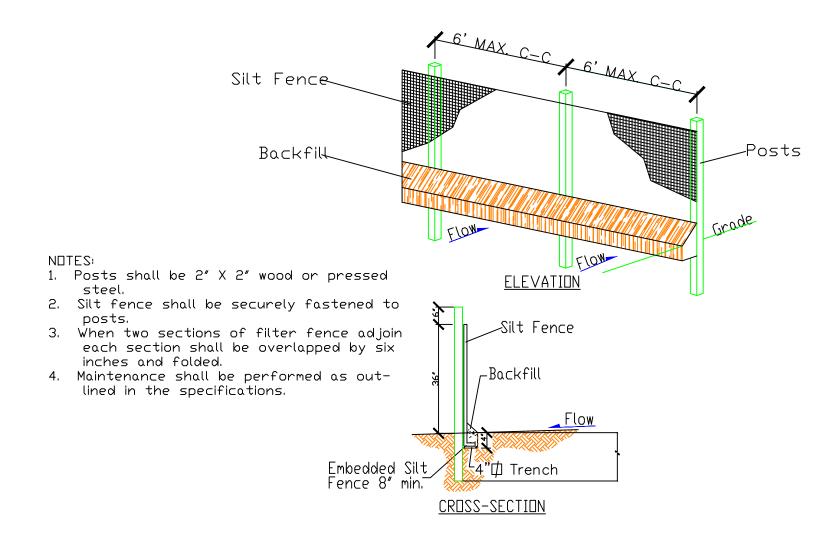
This operation will minimize adverse impacts to the environment. Potential pollutants generated at the site include dust and erosion/sediment. Additionally, oil and petroleum products may be stored on site for use in the mining equipment.


Measures have been outlined in the Operation Plan to control dust. An Air Quality Permit will be obtained from the Tennessee Department of Environment prior to beginning mining.


Additionally, measures have been outlined to control contribution of sediment to the streams. The Drainage and Sediment Control Plan above delineates the control measures. A National Pollution Discharge Elimination System (NPDES) will be obtained for the site.


All chemicals and petroleum products used at the site will be properly handled, to ensure the groundwater supply or stream is not contaminated. A supply of spill containment supplies such as absorbent pads and oil dry will be maintained on site it the unlikely event of a spill. Per 40 CFR 112 if any one tank on site is larger than 660 gallons, or the total storage is greater than or equal to 1,320 gallons, a Spill Prevention


Control Countermeasures (SPCC) plan as required by the Environmental Protection Agency (EPA) will be implemented.


The site will not impact any jurisdictional waters of the United States or waters of the State of Tennessee. A thorough field investigation of the site was conducted and there were no indicators of streams or wetlands on this site other than Horse Creek. No impacts to Horse Creek are proposed. A new bridge will be constructed; however, it will be located outside of and beyond the defined Ordinary High Water Mark (OHWM) precluding any authorization from the U. S. Army Corps of Engineers.

Temporary Sediment Control Typical Silt Fence

ENGINEERING BY: STEPHEN E. MAXFIELD 1745 ROMANS RIDGE RÖAD HONAKER, VA 24260

> **3 Tees, LLC 1300 Jan Way** Kingsport, TN 37660

HORSE CREEK QUARRY SECTIONS AND DETAILS SCALE: 1" = 200'

3 Tees, LLC 1300 Jan Way Kingsport, Tennessee

Horse Creek Quarry

Stream and Wetland Delineation (Addendum)

November 16, 2023 (Addendum March 4, 2024)

PREPARED BY:

STEPHEN E. MAXFIELD, P. E. PROFESSIONAL ENGINEER P.O. BOX 1745 HONAKER, VIRGINIA 24260 PHONE: (276) 979-6963

3 Tees, LLC Proposed Horse Creek Limestone Quarry Horse Creek, Sullivan County, Tennessee Stream and Wetland Delineation Addendum

TABLE OF CONTENTS

CORRESPONDENCE Engineer - TDEC

NARRATIVE

Introduction Methods Results References

WETLAND DETERMINATION DATA FORMS
SP 1, SP 2, SP 3, SP 4, SP 5, SP 6, SP 7, SP 8, SP 9, and SP 10

SITE PHOTOGRAPHS

MAPS

HORSE CREEK DELINEATION MAP

Stephen E. Maxfield, P. E. 1745 Roman Ridge Road Honaker, VA 24260 Phone: (276) 979-6963

Email: Coulwood1214@gmail.com

March 3, 2024

Dan Murray
Bonnie Craighead
Dainiel Lawrence
Tina Robinson
Tennessee Department of Environment and Conservation
Mining Section
3711 Middlebrook Pike
Knoxville, TN 37921

Subject: 3 Tees Hydrologic Determination

Ladies and Gentlemen:

As a follow up to your concurrence visit on January 29, 2024, please find attached an addendum to previous Stream and Wetland Delineation Report dated November 16, 2023. This addendum specifically address tract 56.20 lying between Sullivan Gardens Parkway and Horse Creek.

Should you have any additional questions or concerns, please contact me.

Sincerely,

Stephen E. Maxfield, P. E.

INTRODUCTION

This report is an addendum to the previous report compiled for 3 Tees, LLC proposed Horse Creek Limestone Quarry in Sullivan County, at 3725 Sullivan Gardens Parkway, Kingsport, Tennessee, dated November 16, 2023. This report will only evaluate the Preston H. Taylor property identified as tract 56.20. For a complete delineation of the entire boundary proposed, reference is hereby made to the original report.

In the original report and previous field evaluations of the property the grass growing on tract 56.20 was being harvested for hay. Other than the obvious wetlands just northeast of the property, there were no apparent indications of a wetland on this property. However, during the Tennessee Department of Environment and Conservation evaluation of the original report and permit applications, concerns over this property were raised. Therefore, this addendum to the original report was prepared using detail methods in accordance with the U. S. Army Corps of Engineers 1987 Wetland Delineation Manual Eastern Mountains and Piedmont Regional Supplement.

METHODS

Wetlands

Prior to fieldwork, the site was subjected to a preliminary remote assessment using U.S.G.S. resources. These include the Sullivan Gardens, 7.5' Quadrangle topographic map, U.S.G.S. National Wetlands database and mapping, digital orthophotography. Soils were assessed using the USDA Soil Survey.

Remote assessment did not indicate any wetlands on the 52.20 tract.

The wetland field work followed the Routine On-Site Determination methodology for areas equal to or less than 5 acres in size described in the U. S. Army Corps of Engineers Wetlands Delineation Manual (U.S. Army Corps of Engineers Waterways Experiment Station, 1987) and the Eastern Mountains and Piedmont Regional Supplement. Ten (10) sample points were evaluated for vegetation, hydrology, and soils and the data obtained for each point was compiled on the Wetland Determination Data Sheet. The data points were located in the 1983 Tennessee State Plane coordinate system and shown on the delineation map.

Plant species dominance was determined based on the percent aerial or basal coverage within a representative plot utilizing the "50/20" rule. Taxonomy was based on the U.S.G.S. List of Wetland Flora. Indicator status of plant species was taken from the National List of Plant Species That Occur in Wetlands: 1988 Region 3.

Soils profiles were characterized by pulling a soil sample with a 1 inch diameter tubular sampler at a minimum depth of 18 inches (or refusal) and utilizing Munsell Soil Color Charts and standard soil texturing methodology.

Wetland hydrology criteria were assessed by evaluating the geology and hydrologic regimes in the setting, visual observations, and soil samples obtained.

RESULTS

The results indicated presence of dominant FACW vegetation at all sample points. Three of the sample points had standing surface water 4 inches deep. It should be noted that this site investigation following a period of extended heavy rainfall and these areas were about 4 inches in elevation lower than surrounding areas. However, none of the soil samples found the presence of hydric soils. Based upon the absence of hydric soils a negative determination of wetlands was made for this area.

REFERENCES

- Cowardin, Lewis, etal. Classification of Wetlands and Deepwater Habitats of the United States. U. S. Department of the Interior, Washington, D. C.
- Mitsch, William J., Wetlands. 2007 John Wiley and Sons, Inc., Hoboken, New Jersey.
- Munsell Color. 1998. Munsell soil color charts. 1998 revised washable edition. GregtagMacbeth. New Windsor, New York.
- Reed, P.B. 1988. National list of plant species that occur in wetlands: Region III.
- Seelinger, Marc. USACE Wetland Delineation with Regional Supplements. 2006 The Swamp School, Angier, NC.
- U.S. Army Corps of Engineers. 1987. Corps of Engineers wetlands delineation manual. Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- U.S. Department of Agriculture, Natural Resource Conservation Service. 2006. Soil survey geographic database for Sullivan County, Tennessee. http://nrcs.usda.gov

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region See ERDC/EL TR-12-9; the proponent agency is CECW-CO-R

Project/Site: Horse Creek Quarry	City/Co	ounty: Sullivan	Sampling Date: 02/22/24
Applicant/Owner: 3 Tees, LLC		State: TN	Sampling Point: SP-1
Investigator(s): Stephen E. Maxfield, P. E.	Section, To	ownship, Range:	
Landform (hillside, terrace, etc.): Terrace	Local relief (co	oncave, convex, none): None	Slope (%): <1%
Subregion (LRR or MLRA): LRR N, MLRA 128		Long: 82 deg 34' 47"	Datum: WGS84
Soil Map Unit Name: Steadman silty clay loam	Lat. 30 deg 20 34	NWI classifica	
	ical for this time of year?		
Are climatic / hydrologic conditions on the site typ			explain in Remarks.)
Are Vegetation X, Soil , or Hydrology		Are "Normal Circumstances" present	
Are Vegetation, Soil, or Hydrology	naturally problematic?	(If needed, explain any answers in Re	emarks.)
SUMMARY OF FINDINGS – Attach sit	e map showing sampling	point locations, transects, in	portant features, etc.
Hydrophytic Vegetation Present? Yes	X No Is the Sa	mpled Area	
Hydric Soil Present? Yes	No X within a	Wetland? Yes	No X
Wetland Hydrology Present? Yes	No X		<u></u>
Sample point is located 60 ft. from Horse Creek.	The grass growing on the prope	rty has been harvested for hay.	
HYDROLOGY			
Wetland Hydrology Indicators:		Secondary Indicators	(minimum of two required)
Primary Indicators (minimum of one is required;		Surface Soil Crad	, ,
Surface Water (A1)	_True Aquatic Plants (B14)		ted Concave Surface (B8)
High Water Table (A2)	Hydrogen Sulfide Odor (C1)	Drainage Pattern	· · ·
Saturation (A3)	Oxidized Rhizospheres on Living		· · ·
Water Marks (B1)	Presence of Reduced Iron (C4)	Dry-Season Water	· ·
Sediment Deposits (B2)	Recent Iron Reduction in Tilled		e on Aerial Imagery (C9)
Drift Deposits (B3) Algal Mat or Crust (B4)	_Thin Muck Surface (C7) Other (Explain in Remarks)	Stunted or Stress	• • • •
Iron Deposits (B5)	- Other (Explain in Nemarks)	Geomorphic Pos	` '
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard	
Water-Stained Leaves (B9)		Microtopographic	
Aquatic Fauna (B13)		FAC-Neutral Tes	
Field Observations:			(- /
	X Depth (inches):		
	Depth (inches):	-	
	X Depth (inches):	Wetland Hydrology Present?	Yes No X
(includes capillary fringe)		=	
Describe Recorded Data (stream gauge, monito	ring well, aerial photos, previous i	nspections), if available:	
Aerial Photos			
Remarks:			
Nomano.			

Sampling Point:

Item	VI1.
110111	v , , ,

Trac Charles (District	Absolute	Dominant	Indicator	Description of Test weeks best
Tree Stratum (Plot size:)	% Cover	Species?	Status	Dominance Test worksheet:
1 2.				Number of Dominant Species That Are ORL FACW or FAC:
				That Are OBL, FACW, or FAC:1 (A)
3.				Total Number of Dominant
4.			-	Species Across All Strata: 2 (B)
5.				Percent of Dominant Species
6.				That Are OBL, FACW, or FAC: 50.0% (A/B)
7		Tatal Cover		Prevalence Index worksheet:
50% of total cover		Total Cover		Total % Cover of: Multiply by:
50% of total cover:	2070	of total cover:		OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size:)				FACW species 20 x 2 = 40
1.				FAC species 0 x 3 = 0
2.				FACU species 70 x 4 = 280
3.				UPL species $0 \times 5 = 0$
4.				Column Totals: 90 (A) 320 (B)
5.				Prevalence Index = B/A = 3.56
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				2 - Dominance Test is >50%
9.				3 - Prevalence Index is ≤3.0¹
		Total Cover		4 - Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)
50% of total cover:	20%	of total cover:		
Herb Stratum (Plot size: 3000 sqft)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Lysimachia nummularia	20	Yes	FACW	¹ Indicators of hydric soil and wetland hydrology must be
2. Panicum virgatum	70	Yes	<u>FACU</u>	present, unless disturbed or problematic.
3.				Definitions of Four Vegetation Strata:
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5				more in diameter at breast height (DBH), regardless of height.
6				neight.
7.				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft
9				(1 m) tall.
10				Herb – All herbaceous (non-woody) plants, regardless
11				of size, and woody plants less than 3.28 ft tall.
	90 =	Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 45	20%	of total cover:	18	height.
Woody Vine Stratum (Plot size:)				
1				
2				
3				
4.				
5.				Hydrophytic
	=	Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? Yes No No
Remarks: (Include photo numbers here or on a sepa	rate sheet)			
Tromano. (moidad prioto nambolo nello el en el ele-	1410 011001,			

SOIL Sampling Point:

Depth	cription: (Describe t Matrix	o tilo do		x Featur		utor 01 00	minim and abo	onoc or maic	<i>a</i> toro.,	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Rem	arks
0-18	7.5YR 3/4	10								
Type: C=C	oncentration, D=Depl	etion, RM	=Reduced Matrix, N	/IS=Mas	ked San	d Grains	² Lo	ocation: PL=P	ore Lining, M	1=Matrix.
	Indicators:									ntic Hydric Soils ³
Histosol	(A1)		Polyvalue Be	elow Su	rface (S8) (MLRA	147, 148)	2 cm Mu	uck (A10) (M I	LRA 147)
Histic E	pipedon (A2)		Thin Dark S	urface (S	39) (MLR	RA 147, 14	l8)	Coast P	rairie Redox	(A16)
Black Hi	istic (A3)		Loamy Muck	y Miner	al (F1) (N	/ILRA 136	5)	(MLR	A 147, 148)	
Hydroge	en Sulfide (A4)		Loamy Gley	ed Matri	x (F2)			Piedmo	nt Floodplain	Soils (F19)
Stratified	d Layers (A5)		Depleted Ma	itrix (F3))			(MLR	A 136, 147)	
2 cm Mu	uck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red Par	ent Material	(F21)
Depleted	d Below Dark Surface	(A11)	Depleted Da	rk Surfa	ice (F7)			(outsi	de MLRA 12	7, 147, 148)
Thick Da	ark Surface (A12)		Redox Depre	essions	(F8)			Very Sh	allow Dark S	urface (F22)
	Mucky Mineral (S1)		Iron-Mangar	ese Ma	sses (F1	2) (LRR N	l,	Other (E	Explain in Rer	marks)
	Sleyed Matrix (S4)		MLRA 13					•		
	Redox (S5)		Umbric Surfa		-					vegetation and
	l Matrix (S6)		Piedmont Fl		-					ust be present,
Dark Su	rface (S7)		Red Parent	Material	(F21) (M	ILRA 127,	147, 148)	unless o	listurbed or p	roblematic.
Restrictive	Layer (if observed):									
Type:										
Depth (ii	nches):						Hydric Soil	Present?	Yes	No X
Remarks:										

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region See ERDC/EL TR-12-9; the proponent agency is CECW-CO-R

Project/Site: Horse Creek Quarry		City/County: Sullivan		Sampling Date: 02/22/24			
Applicant/Owner: 3 Tees, LLC			State: TN	Sampling Point: SP-2			
Investigator(s): Stephen E. Maxfield, P. E.		Section, Township, Range:					
Landform (hillside, terrace, etc.): Terrace	Lo	cal relief (concave, convex, no	one): None	Slope (%): <1%			
Subregion (LRR or MLRA): LRR N, MLRA 1.		•	deg 34' 54"	Datum: WGS84			
Soil Map Unit Name: Steadman silty clay loa		Long. <u>02</u>	NWI classifica				
Are climatic / hydrologic conditions on the site		ar? Yes X	No (If no,	explain in Remarks.)			
							
Are Vegetation X, Soil , or Hydro			cumstances" present				
Are Vegetation, Soil, or Hydro	logynaturally probl	ematic? (If needed, expla	ain any answers in Re	emarks.)			
SUMMARY OF FINDINGS – Attach	site map showing s	sampling point location	ns, transects, im	portant features, etc.			
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area					
Hydric Soil Present?	Yes No X	within a Wetland?	Yes	No X			
Wetland Hydrology Present?	Yes No X						
Remarks:							
Sample point is located 110 ft. from Horse C	reek. The grass growing	on the property has been harv	ested for hay.				
HYDROLOGY							
Wetland Hydrology Indicators:		9	Secondary Indicators	(minimum of two required)			
Primary Indicators (minimum of one is require	red; check all that apply)		Surface Soil Crac	ks (B6)			
Surface Water (A1)	X True Aquatic Plants	(B14)	Sparsely Vegetat	ed Concave Surface (B8)			
High Water Table (A2)	Hydrogen Sulfide Oc	lor (C1)	Drainage Patterns (B10)				
Saturation (A3)	Oxidized Rhizospher	res on Living Roots (C3)	Roots (C3) Moss Trim Lines (B16)				
Water Marks (B1)	Presence of Reduce	I Iron (C4) Dry-Season Water Table (C2)					
Sediment Deposits (B2)	Recent Iron Reduction	on in Tilled Soils (C6) Crayfish Burrows (C8)					
Drift Deposits (B3)	Thin Muck Surface (C7)	Saturation Visible	on Aerial Imagery (C9)			
Algal Mat or Crust (B4)	Other (Explain in Re	marks)	Stunted or Stress	ed Plants (D1)			
Iron Deposits (B5)		_	Geomorphic Posi	tion (D2)			
Inundation Visible on Aerial Imagery (B7	')	_	Shallow Aquitard	(D3)			
Water-Stained Leaves (B9)		_	Microtopographic	Relief (D4)			
Aquatic Fauna (B13)		_	FAC-Neutral Test	(D5)			
Field Observations:							
Surface Water Present? Yes	No X Depth (inch	es):					
Surface Water Present? Yes Water Table Present? Yes	No X Depth (inch						
Saturation Present? Yes	No X Depth (inch		drology Present?	Yes No _ X			
(includes capillary fringe)							
Describe Recorded Data (stream gauge, mo	nitoring well, aerial photos	s, previous inspections), if avai	ilable:				
Aerial Photos							
Remarks:							

Sampling Point: SP-2

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size:)	% Cover	Species?	Status	Dominance Test worksheet:
1				Number of Dominant Species That Are OBL, FACW, or FAC:(A)
3. 4.				Total Number of Dominant Species Across All Strata: (B)
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 50.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:		of total cover:		OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size:)		or total cover.		FACW species 30 x 2 = 60
1				FAC species 0 x 3 = 0
3				FACU species 60 x 4 = 240
3.				UPL species 0 x 5 = 0
4				Column Totals: 90 (A) 300 (B)
5				Prevalence Index = B/A = 3.33
6				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				2 - Dominance Test is >50%
9				3 - Prevalence Index is ≤3.0 ¹
		=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:	20%	of total cover:		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 2300 sqft)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Lysimachia nummularia	30	Yes	FACW	¹ Indicators of hydric soil and wetland hydrology must be
2. Panicum virgatum	60	Yes	FACU	present, unless disturbed or problematic.
3.				Definitions of Four Vegetation Strata:
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5.				more in diameter at breast height (DBH), regardless of
6.				height.
7.				Continue/Charaka Manda and and analysis a land
8.		-		Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft
0.				(1 m) tall.
40				Horb. All banks as a conference of the plants are would as
10.				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
11		-Tatal Cause		
		=Total Cover	4.0	Woody Vine – All woody vines greater than 3.28 ft in height.
50% of total cover: 4	5 20%	of total cover:	18	neight.
Woody Vine Stratum (Plot size:)				
1				
2				
3.				
4				
5				Hydrophytic
		=Total Cover	_	Vegetation
50% of total cover:	20%	of total cover:		Present? Yes X No
Remarks: (Include photo numbers here or on a sepa	rate sheet \			<u> </u>
Tomano. (morado proto numboro nore or on a sepa				

120

SOIL Sampling Point:

Profile Desc	cription: (Describe	to the dep	th needed to doc	ument t	the indica	tor or co	onfirm the abs	ence of indic	ators.)		
Depth	Matrix		Redo	x Featu	res						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Rema	arks	
0-18	7.5YR 5/4	10									
	7.011074	10									
				-							
1- 00							2,				
	oncentration, D=Depl	etion, RM	=Reduced Matrix, I	MS=Mas	sked Sand	Grains.	-Lo	cation: PL=P			3.
Hydric Soil								Indicators for			olis":
Histosol	` ,		Polyvalue B						ıck (A10) (ML		
	oipedon (A2)		Thin Dark S						rairie Redox ((A16)	
	istic (A3)		Loamy Muc	•	. , .	ILRA 136	5)		A 147, 148)		
	en Sulfide (A4)		Loamy Gley						nt Floodplain	Soils (F19)	
	d Layers (A5)		Depleted Ma		•				A 136, 147)		
	ıck (A10) (LRR N)		Redox Dark						ent Material (
Depleted Below Dark Surface (A11) Depleted Dark Surface (F7)								(outsi	de MLRA 12	7, 147, 148)	
	ark Surface (A12)		Redox Depr		. ,				allow Dark Sเ		
	Mucky Mineral (S1)		Iron-Mangar		sses (F12	2) (LRR N	١,	Other (E	xplain in Ren	narks)	
	Gleyed Matrix (S4)		MLRA 13								
Sandy R	Redox (S5)		Umbric Surf					³ Indicators o		-	
Stripped	l Matrix (S6)		Piedmont Fl	oodplair	n Soils (F	19) (MLR	A 148)	wetland	hydrology mu	ıst be preser	nt,
Dark Su	rface (S7)		Red Parent	Material	l (F21) (M	LRA 127	, 147, 148)	unless d	isturbed or pr	roblematic.	
Restrictive I	Layer (if observed):										
Type:											
Depth (ir	nches):						Hydric Soil	Present?	Yes	No X	
Remarks:	-						-				

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region See ERDC/EL TR-12-9; the proponent agency is CECW-CO-R

Applicant/Owner: 3 Tees, LLC State: TN Sampling Point: Investigator(s): Stephen E. Maxfield, P. E. Section, Township, Range: Landform (hillside, terrace, etc.): Terrace Local relief (concave, convex, none): None Slope (%): Subregion (LRR or MLRA): LRR N, MLRA 128 Lat: 36 deg 28' 51" Long: 82 deg 34' 53" Datum: Soil Map Unit Name: Steadman silty clay loam NWI classification: NA	SP-3				
Investigator(s): Stephen E. Maxfield, P. E. Section, Township, Range: Landform (hillside, terrace, etc.): Terrace Local relief (concave, convex, none): None Slope (%): Subregion (LRR or MLRA): LRR N, MLRA 128 Lat: 36 deg 28' 51" Long: 82 deg 34' 53" Datum:					
Landform (hillside, terrace, etc.): Terrace Local relief (concave, convex, none): None Slope (%): Subregion (LRR or MLRA): LRR N, MLRA 128 Lat: 36 deg 28' 51" Long: 82 deg 34' 53" Datum:					
Subregion (LRR or MLRA): LRR N, MLRA 128 Lat: 36 deg 28' 51" Long: 82 deg 34' 53" Datum:	<1%				
Soil Map Unit Name: Steadman silty clay loam NWI classification: NA	WGS84				
Are climatic / hydrologic conditions on the site typical for this time of year? Yes X No (If no, explain in Remarks)	s.)				
Are Vegetation X, Soil , or Hydrology significantly disturbed? Are "Normal Circumstances" present? Yes X	No				
Are Vegetation, Soil, or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)					
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important feature	res, etc.				
Hydrophytic Vegetation Present? Yes X No Is the Sampled Area					
Hydric Soil Present? Yes No X within a Wetland? Yes No X	Yes No X				
Wetland Hydrology Present? Yes No X					
Remarks:					
Sample point is located 100 ft. from Horse Creek. The grass growing on the property has been harvested for hay.					
HYDROLOGY					
Wetland Hydrology Indicators: Secondary Indicators (minimum of two records)	required)				
Primary Indicators (minimum of one is required; check all that apply) Surface Soil Cracks (B6)					
Surface Water (A1) X True Aquatic Plants (B14) Sparsely Vegetated Concave Surface	ce (B8)				
	Drainage Patterns (B10)				
	Moss Trim Lines (B16)				
	Dry-Season Water Table (C2)				
Sediment Deposits (B2) Recent Iron Reduction in Tilled Soils (C6) Crayfish Burrows (C8)					
	Saturation Visible on Aerial Imagery (C9)				
Algal Mat or Crust (B4) Other (Explain in Remarks) Stunted or Stressed Plants (D1)					
Iron Deposits (B5) Geomorphic Position (D2)					
Inundation Visible on Aerial Imagery (B7) Shallow Aquitard (D3)					
Water Steined Legyee (P0)					
Water-Stained Leaves (B9) Microtopographic Relief (D4)					
Aquatic Fauna (B13) Field Observations: Microtopographic Relief (D4) FAC-Neutral Test (D5)					
Aquatic Fauna (B13) FAC-Neutral Test (D5) Field Observations:					
Aquatic Fauna (B13) FAC-Neutral Test (D5) Field Observations: Surface Water Present? Yes No X Depth (inches):					
Aquatic Fauna (B13) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches):	No X				
Aquatic Fauna (B13) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches):	No_X				
Aquatic Fauna (B13) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Wetland Hydrology Present? Yes	No X				
Aquatic Fauna (B13) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:	No X				
Aquatic Fauna (B13) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:	No X				
Aquatic Fauna (B13) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Aerial Photos	No_X				
Aquatic Fauna (B13) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Aerial Photos	No X				
Aquatic Fauna (B13) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Aerial Photos	No X				
Aquatic Fauna (B13) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Aerial Photos	No X				
Aquatic Fauna (B13) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Aerial Photos	No_X				
Aquatic Fauna (B13) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Aerial Photos	No_X				

Sampling Point: SP--

<u>Tree Stratum</u> (Plot size:	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1.	76 COVEI	Species?	Status	
2.				Number of Dominant Species That Are OBL, FACW, or FAC:(A)
3. 4.				Total Number of Dominant Species Across All Strata: 2 (B)
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 50.0% (A/B)
7.				Prevalence Index worksheet:
		Total Cover		Total % Cover of: Multiply by:
50% of total cover:		of total cover:		OBL species $0 x 1 = 0$
Sapling/Shrub Stratum (Plot size:)				FACW species 20 x 2 = 40
1				FAC species 0 x3 = 0
2				FACU species 70 x 4 = 280
				UPL species 0 x 5 = 0
3. 4.				
···				
5.				
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8				2 - Dominance Test is >50%
9.				3 - Prevalence Index is ≤3.0¹
	=	=Total Cover		4 - Morphological Adaptations (Provide supporting
50% of total cover:	20%	of total cover:		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 2300 sqft)				Problematic Hydrophytic Vegetation ¹ (Explain)
Lysimachia nummularia	20	Yes	FACW	¹ Indicators of hydric soil and wetland hydrology must be
2. Panicum virgatum	70	Yes	FACU	present, unless disturbed or problematic.
3.				Definitions of Four Vegetation Strata:
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5.				more in diameter at breast height (DBH), regardless of
6.				height.
7				Conline/Church Woody plants evaluding vines less
8.				Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft
9				(1 m) tall.
10				Have All barbassaya (non woody) plants regardless
11.				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
	90	Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 4	5 20%	of total cover:	18	height.
Woody Vine Stratum (Plot size:)				
1.				
2.				
3				
1				
5		Tatal C		Hydrophytic
		=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present?
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

SOIL Sampling Point:

Profile Desc	cription: (Describe	to the dep	th needed to doc	ument t	he indica	ator or c	onfirm the ab	sence of indic	ators.)	
Depth	Matrix		Redo	x Featur	res					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Rem	arks
0-18	7.5YR 4/4	10								
		 ·	_							
		. <u></u>								
¹ Type: C=Ce	oncentration, D=Depl	etion, RM	=Reduced Matrix, N	//S=Mas	ked San	d Grains.	² L	ocation: PL=P	ore Lining, M	l=Matrix.
Hydric Soil		· · · · · ·	•							tic Hydric Soils ³ :
Histosol			Polyvalue B	elow Sui	rface (S8) (MLRA	147, 148)		ıck (A10) (MI	
	pipedon (A2)		Thin Dark S						rairie Redox	
	istic (A3)		Loamy Mucl						A 147, 148)	` ,
	en Sulfide (A4)		Loamy Gley	-			•		nt Floodplain	Soils (F19)
	d Layers (A5)		Depleted Ma						A 136, 147)	,
2 cm Mu	uck (A10) (LRR N)		Redox Dark						ent Material	(F21)
 Depleted	d Below Dark Surface	(A11)	Depleted Da					(outsi	de MLRA 12	7, 147, 148)
Thick Da	ark Surface (A12)		Redox Depr	essions	(F8)			Very Sh	allow Dark Si	urface (F22)
Sandy M	Mucky Mineral (S1)		Iron-Mangar	nese Ma	sses (F1	2) (LRR I	٧,	Other (E	xplain in Rer	narks)
Sandy G	Sleyed Matrix (S4)		MLRA 13	6)						
Sandy R	Redox (S5)		Umbric Surf	ace (F13	3) (MLRA	122, 130	6)	³ Indicators o	f hydrophytic	vegetation and
Stripped	l Matrix (S6)		Piedmont FI	oodplair	Soils (F	19) (MLR	RA 148)	wetland	hydrology mi	ust be present,
Dark Su	rface (S7)		Red Parent	Material	(F21) (M	LRA 127	, 147, 148)	unless d	isturbed or p	roblematic.
Restrictive	Layer (if observed):									
Type:										
Depth (ii	nches):						Hydric Soi	I Present?	Yes	No X
Remarks:	-						•			

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region See ERDC/EL TR-12-9; the proponent agency is CECW-CO-R

Project/Site: Horse Creek Quarry		City/County: Sullivan		Sampling Date: 02/22/24				
Applicant/Owner: 3 Tees, LLC			State: TN	Sampling Point: SP-4				
Investigator(s): Stephen E. Maxfield, P. E.		Section, Township, Range:						
Landform (hillside, terrace, etc.): Terrace	1	cal relief (concave, convex, no	one): None	Slope (%): <1%				
Subregion (LRR or MLRA): LRR N, MLRA 1:		•	deg 34' 53"	Datum: WGS84				
Soil Map Unit Name: Steadman silty clay loa		Long. <u>02</u>	NWI classifica					
		2 V V		·				
Are climatic / hydrologic conditions on the site				explain in Remarks.)				
Are Vegetation X, Soil , or Hydrol			cumstances" present					
Are Vegetation, Soil, or Hydrol	ogy naturally proble	ematic? (If needed, expla	ain any answers in Re	emarks.)				
SUMMARY OF FINDINGS – Attach	site map showing s	sampling point location	ns, transects, im	portant features, etc.				
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area						
, , , ,	Yes No X	within a Wetland?	Yes	No X				
Wetland Hydrology Present?	Yes No X							
Remarks:								
Sample point is located 110 ft. from Horse C	reek. The grass growing	on the property has been har	vested for hay.					
HYDROLOGY								
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)				
Primary Indicators (minimum of one is requir	ed; check all that apply)	-	Surface Soil Crac	· · · · · · · · · · · · · · · · · · ·				
Surface Water (A1)	X True Aquatic Plants	(B14)		ed Concave Surface (B8)				
High Water Table (A2)	Hydrogen Sulfide Od	` '	Drainage Patterns					
Saturation (A3)		es on Living Roots (C3)						
Water Marks (B1)	Presence of Reduce		Dry-Season Water Table (C2)					
X Sediment Deposits (B2)	Recent Iron Reduction	on in Tilled Soils (C6)						
Drift Deposits (B3)	Thin Muck Surface (0	C7)	Saturation Visible	on Aerial Imagery (C9)				
Algal Mat or Crust (B4)	Other (Explain in Rer	marks)	Stunted or Stress	ed Plants (D1)				
Iron Deposits (B5)		-	Geomorphic Posi	tion (D2)				
Inundation Visible on Aerial Imagery (B7	·)	-	Shallow Aquitard	(D3)				
Water-Stained Leaves (B9)		-	Microtopographic	Relief (D4)				
Aquatic Fauna (B13)		-	FAC-Neutral Test	(D5)				
Field Observations:			<u> </u>					
Surface Water Present? Yes	No X Depth (inche	es):						
Surface Water Present? Yes Water Table Present? Yes	No X Depth (inche							
Saturation Present? Yes	No X Depth (inche		ydrology Present?	Yes No _ X				
(includes capillary fringe)		<u> </u>						
Describe Recorded Data (stream gauge, mo	nitoring well, aerial photos	, previous inspections), if ava	ilable:					
Aerial Photos								
Remarks:								

Sampling Point: SP--

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size:)	% Cover	Species?	Status	Dominance Test worksheet:
1. 2.				Number of Dominant Species That Are OBL, FACW, or FAC:(A)
3. 4.				Total Number of Dominant Species Across All Strata: 2 (B)
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 50.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:	20%	of total cover:		OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size:)				FACW species 20 x 2 = 40
1.				FAC species 0 x 3 = 0
2.				FACU species 70 x 4 = 280
3.				UPL species 0 x 5 = 0
4.				Column Totals: 90 (A) 320 (B)
5.				Prevalence Index = B/A = 3.56
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				2 - Dominance Test is >50%
9				3 - Prevalence Index is ≤3.0 ¹
·		=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:		of total cover:		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 2300 sqft)		or total cover.		Problematic Hydrophytic Vegetation ¹ (Explain)
Lysimachia nummularia	20	Yes	FACW	
Panicum virgatum	70	Yes	FACU	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
3.				Definitions of Four Vegetation Strata:
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5. 6.				more in diameter at breast height (DBH), regardless of height.
7.				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
9.				
10.				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
11				
		=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in height.
50% of total cover: 45	20%	of total cover:	18	neight.
Woody Vine Stratum (Plot size:)				
1				
2				
3.				
4				
5				Hydrophytic
		=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? Yes X No No
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			•
,	,			

135

SOIL Sampling Point:

Profile Desc	ription: (Describe t	to the dep	h needed to doc	ument t	he indica	ator or co	onfirm the ab	sence of indic	ators.)		
Depth	Matrix		Redo	x Featur	es						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Rema	arks	
0-18	7.5YR 4/4	10									
0 10	7.0117 1/1										
¹ Type: C=Co	ncentration, D=Depl	etion, RM=	Reduced Matrix, N	/IS=Mas	ked Sand	d Grains.	² L	ocation: PL=P	ore Lining, M	=Matrix.	
Hydric Soil I								Indicators fo			c Soils ³ :
Histosol			Polyvalue Be	elow Sur	face (S8	(MLRA	147, 148)		ck (A10) (ML	-	
	ipedon (A2)		Thin Dark S	urface (S	9) (MLR	A 147, 1	48)	Coast Pr	airie Redox (A16)	
Black His			Loamy Muck						\ 147, 148)	,	
	n Sulfide (A4)		Loamy Gley	-			-		nt Floodplain	Soils (F1	9)
Stratified	Layers (A5)		Depleted Ma	trix (F3)				(MLRA	A 136, 147)		·
2 cm Mu	ck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red Par	ent Material (F21)	
Depleted	Below Dark Surface	(A11)	Depleted Da	rk Surfa	ce (F7)			(outsi	de MLRA 127	7, 147, 1	48)
Thick Da	rk Surface (A12)		Redox Depre	essions	(F8)			Very Sha	allow Dark Su	ırface (F	22)
Sandy M	ucky Mineral (S1)		Iron-Mangar	ese Ma	sses (F12	2) (LRR N	١,	Other (E	xplain in Ren	narks)	
Sandy G	leyed Matrix (S4)		MLRA 130	6)							
Sandy R	edox (S5)		Umbric Surfa	ace (F13	3) (MLRA	122, 136	6)	³ Indicators of	f hydrophytic	vegetation	on and
Stripped	Matrix (S6)		Piedmont Fl	oodplain	Soils (F	19) (MLR	A 148)	wetland	hydrology mu	ist be pre	esent,
Dark Sur	face (S7)		Red Parent	Material	(F21) (M	LRA 127	, 147, 148)	unless d	isturbed or pr	oblemat	ic.
Restrictive L	ayer (if observed):										
Type:											
Depth (in	iches):						Hydric Soi	I Present?	Yes	No_	X
Remarks:											

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region See ERDC/EL TR-12-9; the proponent agency is CECW-CO-R

Project/Site: Horse Creek Quarry		City/County: Sullivan		Sampling Date: 02/22/24				
Applicant/Owner: 3 Tees, LLC			State: TN	Sampling Point: SP-5				
Investigator(s): Stephen E. Maxfield, P. E.		Section, Township, Range:						
	Lo	cal relief (concave, convex.	none): None	Slope (%): <1%				
Applicant/Owner: 3 Tees, LLC Applicant/Owner: 3 Tees, LLC Andform (hillside, terrace, etc.): Terrace Local relief (concave, convex, none): None Subregion (LRR or MLRA): LRR N, MLRA 128 Soil Map Unit Name: Steadman silty clay loam Are climatic / hydrologic conditions on the site typical for this time of year? Are Vegetation X, Soil , or Hydrology in aturally problematic? (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Hydrophytic Vegetation Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X Wetland Hydrology Present? Yes X No X No X Wetland Hydrology Present? Yes X No X No X Wetland Hydrology Present? Yes X No X No X Wetland Present? Yes X No X No X Wetland Present? Yes X No X No X No X No X No X No X No X N								
		Long.	-					
		o v v						
, ,	,,		· <u></u>					
· · · · · · · · · · · · · · · · · · ·			ircumstances" present	? Yes X No				
Are Vegetation, Soil, or Hydro	logynaturally probl	ematic? (If needed, exp	olain any answers in Re	emarks.)				
SUMMARY OF FINDINGS – Attach	site map showing	sampling point location	ons, transects, im	portant features, etc.				
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area						
Hydric Soil Present?		-	Yes	No X				
Wetland Hydrology Present?								
Sample point is located 120 ft. from Horse C	Creek. The grass growing	on the property has been ha	irvested for hay.					
HYDROLOGY								
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)				
Primary Indicators (minimum of one is required	red; check all that apply)		Surface Soil Crac	cks (B6)				
· · ·								
		= : : :						
		` ,						
 								
	Other (Explain in Re	marks)		·				
Iron Deposits (B5)	7\		Geomorphic Posi					
Inundation Visible on Aerial Imagery (B7 Water-Stained Leaves (B9)	')		Shallow Aquitard Microtopographic					
Aquatic Fauna (B13)			FAC-Neutral Test					
Field Observations:			TAO-Neutiai Tesi	T (D3)				
Surface Water Present? Yes X	No Donth (inch	00): 4						
Water Table Present? Yes	No Depth (inch No _X Depth (inch							
Saturation Present? Yes	No X Depth (inch		Hydrology Present?	Yes No X				
(includes capillary fringe)			.,	<u></u>				
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos	s, previous inspections), if a	vailable:					
Aerial Photos								
Remarks:								

Sampling Point: SP-5

· · · · · · · · · · · · · · · · · · ·	Absolute	Dominant	Indicator	
Tree Stratum (Plot size:)	% Cover	Species?	Status	Dominance Test worksheet:
1. 2.				Number of Dominant Species That Are OBL, FACW, or FAC:(A)
3. 4.				Total Number of Dominant Species Across All Strata: 2 (B)
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 50.0% (A/B)
7				Prevalence Index worksheet:
··		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:		of total cover:		OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size:)				FACW species 20 x 2 = 40
1				FAC species 0 x3 = 0
2.				FACU species 70 x 4 = 280
3.				UPL species 0 x 5 = 0
4				Column Totals: 90 (A) 320 (B)
5.				Prevalence Index = $B/A = 3.56$
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				2 - Dominance Test is >50%
9				3 - Prevalence Index is ≤3.0¹
·		=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
FOOV of total covers				data in Remarks or on a separate sheet)
50% of total cover:	20%	of total cover:		·
Herb Stratum (Plot size: 2300 sqft)	00	V	E4 0)4/	Problematic Hydrophytic Vegetation ¹ (Explain)
1. Lysimachia nummularia	20	Yes	FACU	¹ Indicators of hydric soil and wetland hydrology must be
2. Panicum virgatum 3.	70	Yes	FACU	present, unless disturbed or problematic.
4.				Definitions of Four Vegetation Strata:
· -				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of
5.				height.
6.				
7.				Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft
8.				(1 m) tall.
9.				
10				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
···	90	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 4		of total cover:	18	height.
Woody Vine Stratum (Plot size:)				
3.				
4				
J		=Total Cover		Hydrophytic
50% of total cover:		of total cover:		Vegetation Present? Yes X No
		or total cover.		Present?
Remarks: (Include photo numbers here or on a sepa	arate sheet.)			

SOIL Sampling Point:

Profile Desc	ription: (Describe t	to the dept	h needed to doc	ument t	he indica	ator or co	onfirm the ab	sence of indic	ators.)		
Depth	Matrix		Redo	x Featur	es						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	<u> </u>	Rema	arks	
0-18	7.5YR 4/4	25									
											•
											•
¹ Type: C=Cc	ncentration, D=Depl	etion, RM=	Reduced Matrix, N	/IS=Mas	ked Sand	d Grains.	² L	ocation: PL=P			
Hydric Soil I	ndicators:							Indicators for	or Problema	tic Hydr	c Soils ³ :
Histosol	(A1)		Polyvalue Be		•	, ,			ıck (A10) (ML)
Histic Ep	ipedon (A2)		Thin Dark S					Coast Pi	rairie Redox (A16)	
Black His	stic (A3)		Loamy Mucl	ky Miner	al (F1) (N	ILRA 130	6)		A 147, 148)		
	n Sulfide (A4)		Loamy Gley						nt Floodplain	Soils (F1	9)
	Layers (A5)		Depleted Ma					•	A 136, 147)		
	ck (A10) (LRR N)		Redox Dark						ent Material (
	Below Dark Surface	e (A11)	Depleted Da						de MLRA 12		-
	rk Surface (A12)		Redox Depre			o) // DD 1			allow Dark Su		22)
	ucky Mineral (S1)		Iron-Mangar		sses (F12	2) (LRR I	Ν,	Other (E	xplain in Ren	narks)	
	leyed Matrix (S4) edox (S5)		MLRA 130 Umbric Surfa		2\ /MI D A	122 126	2)	³ Indicators o	f bydrophytic	voqotati	on and
	Matrix (S6)		Piedmont Fl						hydrology mu	-	
	face (S7)		Red Parent		-				isturbed or pi		
			Neu Falelli	IVIAICI IAI	(121) (141	LNA 121	, 147, 140)	uness u	isturbed or pr	Oblemat	ю.
	.ayer (if observed):										
Type:	-h \.						Uhadaia Ca	:I Dunnamt2	Vaa	NI.	V
Depth (in	icnes):						Hyaric So	il Present?	Yes	No_	<u>X</u>
Remarks:											

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region See ERDC/EL TR-12-9; the proponent agency is CECW-CO-R

Project/Site: Horse Creek Quarry		City/County: Sullivan Sampling Date: 02/22/2						
Applicant/Owner: 3 Tees, LLC			State: TN	Sampling Point: SP-6				
Investigator(s): Stephen E. Maxfield, P. E.								
Landform (hillside, terrace, etc.): Terrace		cal relief (concave, convex, ı		Slope (%): <1%				
	•	·	•					
Subregion (LRR or MLRA): LRR N, MLRA 1		LONG. <u>o.</u>	2 deg 34' 52"	Datum: WGS84				
Soil Map Unit Name: Steadman silty clay lo	am		NWI classifica					
Are climatic / hydrologic conditions on the sit	e typical for this time of ye	ar? Yes X	No (If no,	explain in Remarks.)				
Are Vegetation X, Soil , or Hydro	ologysignificantly di	sturbed? Are "Normal Ci	rcumstances" present	? Yes X No				
Are Vegetation, Soil, or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)								
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.								
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area						
Hydric Soil Present?	Yes No X	within a Wetland?	Yes	No X				
Wetland Hydrology Present?	Yes No X							
Remarks:								
Sample point is located 110 ft. from Horse 0	Creek. The grass growing	on the property has been ha	rvested for hay.					
HYDROLOGY								
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)				
Primary Indicators (minimum of one is requi	red; check all that apply)		Surface Soil Cra	cks (B6)				
Surface Water (A1)	X True Aquatic Plants	(B14)	Sparsely Vegeta	ted Concave Surface (B8)				
High Water Table (A2)	Hydrogen Sulfide Oc	dor (C1)	Drainage Patterr	ns (B10)				
Saturation (A3)	Oxidized Rhizospher	res on Living Roots (C3)	Moss Trim Lines	(B16)				
Water Marks (B1)	Dry-Season Wat	_Dry-Season Water Table (C2)						
Sediment Deposits (B2)	on in Tilled Soils (C6)	Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)						
l —	Drift Deposits (B3) Thin Muck Surface (C7)							
Algal Mat or Crust (B4) Other (Explain in Remarks) Stunted or Stressed Plants (D1)								
Iron Deposits (B5)	Geomorphic Position (D2)							
Inundation Visible on Aerial Imagery (B		Shallow Aquitard (D3) Microtopographic Relief (D4)						
Water-Stained Leaves (B9)								
Aquatic Fauna (B13)FAC-Neutral Test (D5)								
Field Observations:	No. V. Dandh (in al-	\.						
Surface Water Present? Yes Water Table Present? Yes	No X Depth (inch							
Saturation Present? Yes	No X Depth (inch		lydrology Present?	Yes No X				
(includes capillary fringe)	No X Bopan (mon	Welland 1	iyarology i resent.	103NOX_				
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos	s, previous inspections), if av	ailable:					
Aerial Photos	,							
Remarks:								
1								

Sampling Point: SF-

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size:)	% Cover	Species?	Status	Dominance Test worksheet:
1. 2.				Number of Dominant Species That Are OBL, FACW, or FAC:(A)
3. 4.				Total Number of Dominant Species Across All Strata: (B)
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 50.0% (A/B)
7.	-			Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:	20%	of total cover:		OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size:)				FACW species 20 x 2 = 40
1				FAC species 0 x 3 = 0
2.				FACU species 70 x 4 = 280
3.				UPL species 0 x 5 = 0
4				Column Totals: 90 (A) 320 (B)
5.				Prevalence Index = B/A = 3.56
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8				2 - Dominance Test is >50%
9				3 - Prevalence Index is ≤3.0¹
<u> </u>	-	=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
FOR/ of total covery	200/			data in Remarks or on a separate sheet)
50% of total cover: <u>Herb Stratum</u> (Plot size: 2300 sqft)	20%	of total cover:		
	00	V	EA 0\A/	Problematic Hydrophytic Vegetation ¹ (Explain)
1. Lysimachia nummularia	20	Yes	FACW	¹ Indicators of hydric soil and wetland hydrology must be
2. Panicum virgatum	70	Yes	FACU	present, unless disturbed or problematic.
3.				Definitions of Four Vegetation Strata:
4	-			Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5.				more in diameter at breast height (DBH), regardless of height.
6				
7				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
9				(1 III) tall.
10 11.				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
	90	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 4	5 20%	of total cover:	18	height.
Woody Vine Stratum (Plot size:)				
3.				
1				
	-			
5		-Total Carra		Hydrophytic
F00/ - F1-1-1	200/	=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? YesX
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

SOIL Sampling Point:

Depth	ription: (Describe Matrix			x Featur					,	
inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Rem	arks
		10								
0-18	7.5YR 5/4	10								
										
ivne: C=Cc	oncentration, D=Dep	letion RM	=Reduced Matrix N	 2eM=2N	ked Sand	d Grains	² l (ocation: PL=F	ore Lining M	=Matrix
	ndicators:	iction, rtivi	-reduced Matrix, is	io-ivias	ica Gari	J Oranis.				tic Hydric Soils
Histosol			Polyvalue Be	elow Sur	face (S8) (MI RA	147 148)		uck (A10) (ML	-
	oipedon (A2)		Thin Dark Su		-				rairie Redox (•
Black His			Loamy Muck	•	, ,		•		A 147, 148)	(110)
	n Sulfide (A4)		Loamy Gley				,		nt Floodplain	Soils (F19)
	Layers (A5)		Depleted Ma						A 136, 147)	000 (1 10)
	ck (A10) (LRR N)		Redox Dark						ent Material (F21)
_	Below Dark Surface	e (A11)	Depleted Da						de MLRA 12	
	rk Surface (A12)	- ()	Redox Depre		` '			•	allow Dark Su	
	lucky Mineral (S1)		Iron-Mangar		-	2) (LRR N	l .		Explain in Ren	, ,
	leyed Matrix (S4)		MLRA 136		`	, (•		•	,
	edox (S5)		Umbric Surfa		B) (MLRA	122, 136	i)	³ Indicators of	f hydrophytic	vegetation and
	Matrix (S6)		Piedmont Fl							ust be present,
Dark Sur	face (S7)		Red Parent	Material	(F21) (M	LRA 127	147, 148)	unless o	listurbed or p	roblematic.
estrictive L	_ayer (if observed):		<u> </u>							
Type:										
Depth (ir	nches):						Hydric Soil	Present?	Yes	No X
temarks:	, <u> </u>					l.	• • • • • • • • • • • • • • • • • • • •			
Ciliains.										

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region See ERDC/EL TR-12-9; the proponent agency is CECW-CO-R

Project/Site: Horse Creek Quarry	City/County: Sullivan Sampling Date: 02/22/24							
Applicant/Owner: 3 Tees, LLC	State: TN Sampling Point:							
Investigator(s): Stephen E. Maxfield, P. E.								
Landform (hillside, terrace, etc.): Terrace	Local relief (concave, convex, none): None Slope (%): <1%							
Subregion (LRR or MLRA): LRR N, MLRA 128 Lat: 36 deg								
Soil Map Unit Name: Steadman silty clay loam	NWI classification: NA							
Are climatic / hydrologic conditions on the site typical for this tim	<u> </u>							
Are Vegetation X, Soil , or Hydrology signific								
Are Vegetation, Soil, or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)								
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.								
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area							
Hydric Soil Present? Yes No								
Wetland Hydrology Present? Yes X No	<u> </u>							
Remarks:								
Sample point is located 120 ft. from Horse Creek. The grass g	prowing on the property has been harvested for hay.							
HYDROLOGY								
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)							
Primary Indicators (minimum of one is required; check all that a	apply) Surface Soil Cracks (B6)							
X Surface Water (A1) X True Aquatic	Plants (B14) Sparsely Vegetated Concave Surface (B8)							
High Water Table (A2) Hydrogen Su	lfide Odor (C1) Drainage Patterns (B10)							
Saturation (A3) Oxidized Rhiz	zospheres on Living Roots (C3) Moss Trim Lines (B16)							
l 	Reduced Iron (C4) Dry-Season Water Table (C2)							
Sediment Deposits (B2) Recent Iron F	Reduction in Tilled Soils (C6) Crayfish Burrows (C8)							
Drift Deposits (B3) Thin Muck St								
Algal Mat or Crust (B4) Other (Explain in Remarks) Stunted or Stressed Plants (D1)								
Iron Deposits (B5) Geomorphic Position (D2)								
Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)							
Water-Stained Leaves (B9)	Microtopographic Relief (D4)							
Aquatic Fauna (B13)	FAC-Neutral Test (D5)							
Field Observations:								
Surface Water Present? Yes X No Deprimer Water Table Present? Yes No X Deprimer Saturation Present? Yes No X Deprimer	th (inches): 4							
Water Table Present? Yes No X Dept	th (inches):							
Saturation Present? Yes No X Dept	th (inches): Wetland Hydrology Present? Yes No _X							
(includes capillary fringe)								
Describe Recorded Data (stream gauge, monitoring well, aeria	I photos, previous inspections), if available:							
Aerial Photos								
Remarks:								

Sampling Point:

Item VI1.

Tree Stratum (Plot size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1				Number of Dominant Species That Are OBL, FACW, or FAC:(A)
3. 4.				Total Number of Dominant Species Across All Strata: 2 (B)
5.6.				Percent of Dominant Species That Are OBL, FACW, or FAC:(A/B)
7.				Prevalence Index worksheet:
	=	Total Cover		Total % Cover of: Multiply by:
50% of total cover:	20%	of total cover:		OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size:)				FACW species 20 x 2 = 40
1.				FAC species 0 x 3 = 0
2.				FACU species 70 x 4 = 280
3.				UPL species 0 x 5 = 0
4				Column Totals: 90 (A) 320 (B)
5				Prevalence Index = B/A = 3.56
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
				2 - Dominance Test is >50% 3 - Prevalence Index is ≤3.0¹
9.		T-4-1 0		
50% of total cover:	$\overline{}$	Total Cover of total cover:		4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 2300 sqft)				Problematic Hydrophytic Vegetation ¹ (Explain)
Lysimachia nummularia	20	Yes	FACW	¹ Indicators of hydric soil and wetland hydrology must be
2. Panicum virgatum	70	Yes	FACU	present, unless disturbed or problematic.
3.				Definitions of Four Vegetation Strata:
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5 6.				more in diameter at breast height (DBH), regardless of height.
7.				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
9.				
10. 11.				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
	90 =	Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover:4	5 20%	of total cover:	18	height.
Woody Vine Stratum (Plot size:)				
1.				
2.				
3.				
4.				
5.				
·		Total Cover		Hydrophytic
50% of total cover:		of total cover:		Vegetation Present? Yes X No
	-	or total GOVEL.		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

SOIL Sampling Point:

	Matrix			x Featu	res		nfirm the abso				
inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Rem	arks	
0-18	7.5YR 4/4	25									
0 10	7.011(4/4										
					. —	—					
Гуре: С=Сс	oncentration, D=Depl	etion, RM	1=Reduced Matrix, N	//S=Mas	ked Sand	d Grains.	² Lo	cation: PL=F	ore Lining, M	1=Matrix.	
ydric Soil I	Indicators:							Indicators f	or Problema	tic Hydr	ic Soils³
Histosol	(A1)		Polyvalue B	elow Su	rface (S8) (MLRA	147, 148)	2 cm Mu	uck (A10) (M I	LRA 147)
Histic Ep	oipedon (A2)		Thin Dark S	urface (S	S9) (MLR	A 147, 14	8)	Coast P	rairie Redox	(A16)	
Black His	stic (A3)		Loamy Mucl	ky Miner	al (F1) (N	/ILRA 136)	(MLR	A 147, 148)		
Hydroge	n Sulfide (A4)		Loamy Gley	ed Matri	x (F2)			Piedmo	nt Floodplain	Soils (F	19)
	l Layers (A5)		Depleted Ma	atrix (F3))			(MLR	A 136, 147)		
2 cm Mu	ck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red Pai	rent Material	(F21)	
	Below Dark Surface	e (A11)	Depleted Da						de MLRA 12		
	ark Surface (A12)		Redox Depr		, ,				allow Dark S		22)
	lucky Mineral (S1)		Iron-Mangar		sses (F1	2) (LRR N	,	Other (E	Explain in Rer	marks)	
	ileyed Matrix (S4)		MLRA 13	•				0			
	edox (S5)		Umbric Surf						of hydrophytic	-	
	Matrix (S6)		Piedmont FI		-				hydrology m		
Dark Sur	face (S7)		Red Parent	Material	(F21) (M	LRA 127,	147, 148)	unless o	disturbed or p	roblema	tic.
Restrictive L	_ayer (if observed):										
Type:											
Depth (ir	nches):						Hydric Soil	Present?	Yes	No	X
Remarks:											
lemarks:											
emarks:											
emarks:											
emarks:											
emarks:											
emarks:											
emarks:											
emarks:											
emarks:											
emarks:											
emarks:											
emarks:											
emarks:											
demarks:											
Remarks:											
Remarks:											
Remarks:											
Remarks:											
demarks:											
emarks:											

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region See ERDC/EL TR-12-9; the proponent agency is CECW-CO-R

OMB Control #: 0710-0024, Exp:11/3 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

Project/Site: Horse Creek Quarry		City/County: Sullivar	1	Sampling Date: 02/22/24
Applicant/Owner: 3 Tees, LLC			State: TN	Sampling Point: SP-8
Investigator(s): Stephen E. Maxfield, P. E.		Section, Township, Rang	 je:	
Landform (hillside, terrace, etc.): Terrace	Lc	• ocal relief (concave, conve	ex, none): None	Slope (%): <1%
Subregion (LRR or MLRA): LRR N, MLRA 1	28 Lat: 36 deg 28' 51'	" Lonc	g: 82 deg 34' 51"	Datum: WGS84
Soil Map Unit Name: Steadman silty clay loa			NWI classific	
Are climatic / hydrologic conditions on the site		ear? Yes X		, explain in Remarks.)
, ,	,,			
Are Vegetation X, Soil , or Hydro			I Circumstances" presen	
Are Vegetation, Soil, or Hydro	logy naturally probl	lematic? (If needed, e	explain any answers in F	Remarks.)
SUMMARY OF FINDINGS – Attach	site map showing	sampling point loca	itions, transects, ir	mportant features, etc.
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes No X Yes No X	Is the Sampled Area within a Wetland?	Yes	No X
Remarks:				
Sample point is located 140 ft. from Horse 0	neek. The grass growing	on the property has been	narvested for hay.	
HYDROLOGY				
Wetland Hydrology Indicators:			Secondary Indicators	s (minimum of two required)
Primary Indicators (minimum of one is requi			Surface Soil Cra	, ,
Surface Water (A1)	X True Aquatic Plants			ated Concave Surface (B8)
High Water Table (A2)	Hydrogen Sulfide Od		Drainage Patter	
Saturation (A3)		res on Living Roots (C3)	Moss Trim Lines	
Water Marks (B1)	Presence of Reduce	, ,	Dry-Season Wa	
Sediment Deposits (B2) Drift Deposits (B3)	Thin Muck Surface (on in Tilled Soils (C6)	Crayfish Burrow	le on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Re		Stunted or Stres	
Iron Deposits (B5)	Other (Explain III No	markoj	Geomorphic Pos	, ,
Inundation Visible on Aerial Imagery (Bi	7)		Shallow Aquitare	
Water-Stained Leaves (B9)	,		Microtopographi	
Aquatic Fauna (B13)			FAC-Neutral Te	
Field Observations:				
Surface Water Present? Yes	No X Depth (inch	nes):		
Water Table Present? Yes	No X Depth (inch	nes):		
Saturation Present? Yes	No X Depth (inch		d Hydrology Present?	Yes No _ X
(includes capillary fringe)				
Describe Recorded Data (stream gauge, mo Aerial Photos	onitoring well, aerial photos	s, previous inspections), if	available:	
Remarks:	-	-		· · · · · · · · · · · · · · · · · · ·
				-

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: SP-0

· · · · · · · · · · · · · · · · · · ·	Absolute	Dominant	Indicator	
Tree Stratum (Plot size:)	% Cover	Species?	Status	Dominance Test worksheet:
1. 2.				Number of Dominant Species That Are OBL, FACW, or FAC:(A)
3. 4.				Total Number of Dominant Species Across All Strata: 2 (B)
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 50.0% (A/B)
7				Prevalence Index worksheet:
··		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:		of total cover:		OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size:)				FACW species 20 x 2 = 40
1				FAC species 0 x3 = 0
2.				FACU species 70 x 4 = 280
3.				UPL species 0 x 5 = 0
4				Column Totals: 90 (A) 320 (B)
5.				Prevalence Index = $B/A = 3.56$
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				2 - Dominance Test is >50%
9				3 - Prevalence Index is ≤3.0¹
·		=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
FOOV of total covers				data in Remarks or on a separate sheet)
50% of total cover:	20%	of total cover:		·
Herb Stratum (Plot size: 2300 sqft)	00	V	E4 0)4/	Problematic Hydrophytic Vegetation ¹ (Explain)
1. Lysimachia nummularia	20	Yes	FACU	¹ Indicators of hydric soil and wetland hydrology must be
2. Panicum virgatum 3.	70	Yes	FACU	present, unless disturbed or problematic.
4.				Definitions of Four Vegetation Strata:
· -				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of
5.				height.
6.				
7.				Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft
8.				(1 m) tall.
9.				
10				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
···	90	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 4		of total cover:	18	height.
Woody Vine Stratum (Plot size:)				
3.				
4				
J		=Total Cover		Hydrophytic
50% of total cover:		of total cover:		Vegetation Present? Yes X No
		or total cover.		Present?
Remarks: (Include photo numbers here or on a sepa	arate sheet.)			

SOIL Sampling Point:

	Matrix		Redo	x Featur	es					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	<u>. </u>	Rema	arks
0-18	7.5YR 5/4	10								
0-10	7.51K 5/4	10								
vne: C=Co	oncentration, D=Dep	letion RM	I=Reduced Matrix N	AS=Mas	ked Sand	d Grains		ocation: PL=P	ore Lining M	=Matrix
ydric Soil Ir		iction, rtivi	i–rteduced Matrix, it	no-ivias	ica Gari	J Clailis.				tic Hydric Soils ³
Histosol (Polyvalue Be	elow Sur	face (S8	MI RA	147 148)		ıck (A10) (ML	•
	ipedon (A2)		Thin Dark S		-	-			rairie Redox (•
Black His			Loamy Muck	,	, ,		•		4 147, 148)	(110)
	n Sulfide (A4)		Loamy Gley			ILIO IO	. ,		nt Floodplain	Soils (F19)
	Layers (A5)		Depleted Ma						A 136, 147)	00110 (1 10)
	ck (A10) (LRR N)		Redox Dark	, ,					ent Material (F21)
_	Below Dark Surface	e (A11)	Depleted Da						de MLRA 12	
	rk Surface (A12)	- ()	Redox Depre		, ,			•	allow Dark Su	
	ucky Mineral (S1)		Iron-Mangar		-	2) (LRR I	N.		xplain in Ren	, ,
	leyed Matrix (S4)		MLRA 136		(-, (-,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	edox (S5)		Umbric Surfa		3) (MLRA	122, 13	6)	³ Indicators o	f hydrophytic	vegetation and
	Matrix (S6)		Piedmont Fl							ust be present,
 Dark Surf			Red Parent		-				isturbed or pr	
							1		-	
estrictive I	aver (if observed):									
	.ayer (if observed):									
Туре:							Hydric Soi	I Present?	Yes	No X
Type: Depth (in							Hydric Soi	I Present?	Yes	NoX
Type: Depth (in							Hydric Soi	I Present?	Yes	NoX
Type: Depth (in							Hydric Soi	I Present?	Yes	NoX
Type: Depth (in							Hydric Soi	l Present?	Yes	No X
Type: Depth (in							Hydric Soi	I Present?	Yes	No X
Type: Depth (in							Hydric Soi	I Present?	Yes	NoX
Type: Depth (in							Hydric Soi	I Present?	Yes	NoX
Type: Depth (inc							Hydric Soi	I Present?	Yes	NoX
Type: Depth (in							Hydric Soi	I Present?	Yes	No X
Type: Depth (in							Hydric Soi	I Present?	Yes	
Type: Depth (inc							Hydric Soi	I Present?	Yes	
Type: Depth (inc							Hydric Soi	I Present?	Yes	NoX
Type: Depth (inc							Hydric Soi	I Present?	Yes	No X
Type: Depth (inc							Hydric Soi	I Present?	Yes	No_X
Type: Depth (in							Hydric Soi	I Present?	Yes	
Type:							Hydric Soi	I Present?	Yes	No_X
Type: Depth (in							Hydric Soi	I Present?	Yes	No_X
Type: Depth (in							Hydric Soi	I Present?	Yes	NoX
Type: Depth (in							Hydric Soi	I Present?	Yes	No X
Type: Depth (in							Hydric Soi	I Present?	Yes	No X
Type: Depth (in							Hydric Soi	I Present?	Yes	No X

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region See ERDC/EL TR-12-9; the proponent agency is CECW-CO-R

OMB Control #: 0710-0024, Exp:11/3 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

Project/Site: Horse Creek Quarry City/County: Sullivan Sampling Date: 02/2						
Applicant/Owner: 3 Tees, LLC		State: TN	Sampling Point: SP-9			
Investigator(s): Stephen E. Maxfield, P. E.	Section, Township	, Range:				
Landform (hillside, terrace, etc.): Terrace	Local relief (concave,		Slope (%): <1%			
Subregion (LRR or MLRA): LRR N, MLRA 128 Lat: 3		Long: 82 deg 34' 51"	Datum: WGS84			
Soil Map Unit Name: Steadman silty clay loam	10 deg 20 32	NWI classific				
Are climatic / hydrologic conditions on the site typical for t			, explain in Remarks.)			
Are Vegetation X, Soil , or Hydrologys	ignificantly disturbed? Are "N	Normal Circumstances" presen	t? Yes X No			
Are Vegetation, Soil, or Hydrologyr	aturally problematic? (If nee	eded, explain any answers in R	demarks.)			
SUMMARY OF FINDINGS – Attach site map	showing sampling point	locations, transects, in	nportant features, etc.			
Hydrophytic Vegetation Present? Yes X	No Is the Sampled	Area				
Hydric Soil Present? Yes	No X within a Wetlan		No X			
Wetland Hydrology Present? Yes X	No		· ——			
Sample point is located 140 ft. from Horse Creek near pr	operty line. The grass growing o	n the property has been harve:	sted for hay.			
HYDROLOGY						
Wetland Hydrology Indicators:		Secondary Indicators	s (minimum of two required)			
Primary Indicators (minimum of one is required; check a		Surface Soil Cra	` '			
	quatic Plants (B14)		ated Concave Surface (B8)			
	en Sulfide Odor (C1)	Drainage Patterr				
 -	d Rhizospheres on Living Roots					
<u> </u>	ce of Reduced Iron (C4)	Dry-Season Wat				
	Iron Reduction in Tilled Soils (C					
	uck Surface (C7)		le on Aerial Imagery (C9)			
Algal Mat or Crust (B4)Other (Explain in Remarks)	Stunted or Stres Geomorphic Pos				
Inundation Visible on Aerial Imagery (B7)			, ,			
Water-Stained Leaves (B9)			Shallow Aquitard (D3) Microtopographic Relief (D4)			
Aquatic Fauna (B13)		FAC-Neutral Tes				
Field Observations:		<u> </u>	(- /			
Surface Water Present? Yes X No	Depth (inches): 4					
Water Table Present? Yes No X	Depth (inches):					
Saturation Present? Yes No X		Vetland Hydrology Present?	Yes No _ X			
(includes capillary fringe)						
Describe Recorded Data (stream gauge, monitoring well Aerial Photos	aerial photos, previous inspection	ons), if available:				
Remarks:						

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: SP--

<u>Tree Stratum</u> (Plot size:	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1.	70 COVE	Species:	Status	
2.				Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)
3. 4.				Total Number of Dominant Species Across All Strata: 1 (B)
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 0.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:		of total cover:		OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size:)				FACW species 1 x 2 = 2
1				FAC species 0 x 3 = 0
2.				FACU species 70 x 4 = 280
				UPL species 0 x 5 = 0
3. 4.				Column Totals: 71 (A) 282 (B)
5.				Prevalence Index = B/A = 3.97
6.				
··				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				2 - Dominance Test is >50%
9				3 - Prevalence Index is ≤3.0 ¹
		=Total Cover		4 - Morphological Adaptations (Provide supporting
50% of total cover:	20%	of total cover:		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 2300 sqft)				Problematic Hydrophytic Vegetation ¹ (Explain)
Juncus effusus	1	No	FACW	¹ Indicators of hydric soil and wetland hydrology must be
2. Panicum virgatum	70	Yes	FACU	present, unless disturbed or problematic.
3				Definitions of Four Vegetation Strata:
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5.				more in diameter at breast height (DBH), regardless of
6.				height.
7.				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft
9		<u> </u>		(1 m) tall.
10				Herb – All herbaceous (non-woody) plants, regardless
11.				of size, and woody plants less than 3.28 ft tall.
	71	Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 30	6 20%	of total cover:	15	height.
Woody Vine Stratum (Plot size:)				
1				
		<u> </u>		
3				
4				
5		T-4-1 C		Hydrophytic
		=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? Yes X No
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

SOIL Sampling Point:

Depth	Matrix			x Featur							
nches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Rem	arks	
0-18	2.5YR 4/6	25									
ype: C=Co	oncentration, D=Depl	etion, RM	I=Reduced Matrix, N	/IS=Mas	ked San	d Grains.	² Lo	cation: PL=P	ore Lining, M	l=Matrix.	
ydric Soil I	ndicators:							Indicators f	or Problema	tic Hydric	Soils ³
Histosol	(A1)		Polyvalue Be	elow Sur	rface (S8	B) (MLRA	147, 148)	2 cm Mu	ıck (A10) (MI	_RA 147)	
_Histic Ep	pipedon (A2)		Thin Dark S	urface (S	39) (MLF	RA 147, 14	48)	Coast P	rairie Redox	(A16)	
_Black His	stic (A3)		Loamy Muck	ky Miner	al (F1) (I	MLRA 136	5)	(MLR	A 147, 148)		
Hydroge	n Sulfide (A4)		Loamy Gley	ed Matri	x (F2)			Piedmoi	nt Floodplain	Soils (F19)
	l Layers (A5)		Depleted Ma	. ,					A 136, 147)		
_	ck (A10) (LRR N)		Redox Dark						ent Material		
	Below Dark Surface	e (A11)	Depleted Da						de MLRA 12		
	ark Surface (A12)		Redox Depre		-				allow Dark Si	•	2)
	lucky Mineral (S1)		Iron-Mangar		sses (F1	2) (LRR N	١,	Other (E	xplain in Rer	narks)	
	ileyed Matrix (S4)		MLRA 136					3			
	edox (S5)		Umbric Surfa		-			³ Indicators o		_	
	Matrix (S6)		Piedmont Fl		-				hydrology mi		
Dark Sur	face (S7)		Red Parent	Material	(F21) (N	ILRA 127	, 147, 148)	unless o	listurbed or p	roblematic	
estrictive l	_ayer (if observed):										
Type:											
Depth (ir	nches):						Hydric Soil	Present?	Yes	No:	X
emarks:											

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region See ERDC/EL TR-12-9; the proponent agency is CECW-CO-R

OMB Control #: 0710-0024, Exp:11/3 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

Project/Site: Horse Creek Quarry		City/County: Sullivan		Sampling Date: 02/22/24
Applicant/Owner: 3 Tees, LLC			State: TN	Sampling Point: SP-10
Investigator(s): Stephen E. Maxfield, P. E.		Section, Township, Range:		<u> </u>
Landform (hillside, terrace, etc.): Terrace	1.0	ocal relief (concave, convex,		Slope (%): <1%
		•	· ·	
Subregion (LRR or MLRA): LRR N, MLRA 1		Long: <u>{</u>	82 deg 34' 52"	Datum: WGS84
Soil Map Unit Name: Steadman silty clay loa	am		NWI classifica	ation: NA
Are climatic / hydrologic conditions on the site	e typical for this time of ye	ear? Yes X	No (If no,	explain in Remarks.)
Are Vegetation X, Soil , or Hydro	ology significantly di	sturbed? Are "Normal C	Circumstances" present	t? Yes X No
Are Vegetation, Soil, or Hydro	ology naturally probl	ematic? (If needed, ex	plain any answers in R	emarks.)
SUMMARY OF FINDINGS – Attach			ons, transects, in	nportant features, etc.
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area		
Hydric Soil Present?	Yes No X	within a Wetland?	Yes	No X
Wetland Hydrology Present?	Yes No X			<u> </u>
Remarks:		<u> </u>		
Sample point is located 185 ft. from Horse 0	Creek near property line.	Γhe grass growing on the pro	operty has been harves	sted for hay.
HYDROLOGY				
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)
Primary Indicators (minimum of one is requi	red; check all that apply)		Surface Soil Crac	
Surface Water (A1)	X True Aquatic Plants	(B14)		ted Concave Surface (B8)
High Water Table (A2)	Hydrogen Sulfide Od		Drainage Pattern	
Saturation (A3)		res on Living Roots (C3)	Moss Trim Lines	
Water Marks (B1)	Presence of Reduce	= : :	Dry-Season Wate	
Sediment Deposits (B2)		on in Tilled Soils (C6)	Crayfish Burrows	
Drift Deposits (B3)	Thin Muck Surface (C7)	Saturation Visible	e on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Re	marks)	Stunted or Stress	sed Plants (D1)
Iron Deposits (B5)			Geomorphic Pos	sition (D2)
Inundation Visible on Aerial Imagery (B	7)		Shallow Aquitard	I (D3)
Water-Stained Leaves (B9)			Microtopographic	
Aquatic Fauna (B13)			FAC-Neutral Tes	st (D5)
Field Observations:				
Surface Water Present? Yes	No X Depth (inch	es):		
	No X Depth (inch			
Saturation Present? Yes	No X Depth (inch		Hydrology Present?	Yes No _ X
(includes capillary fringe)				
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photo	s, previous inspections), if a	vailable:	
Aerial Photos				
Remarks:				

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: SP-TO

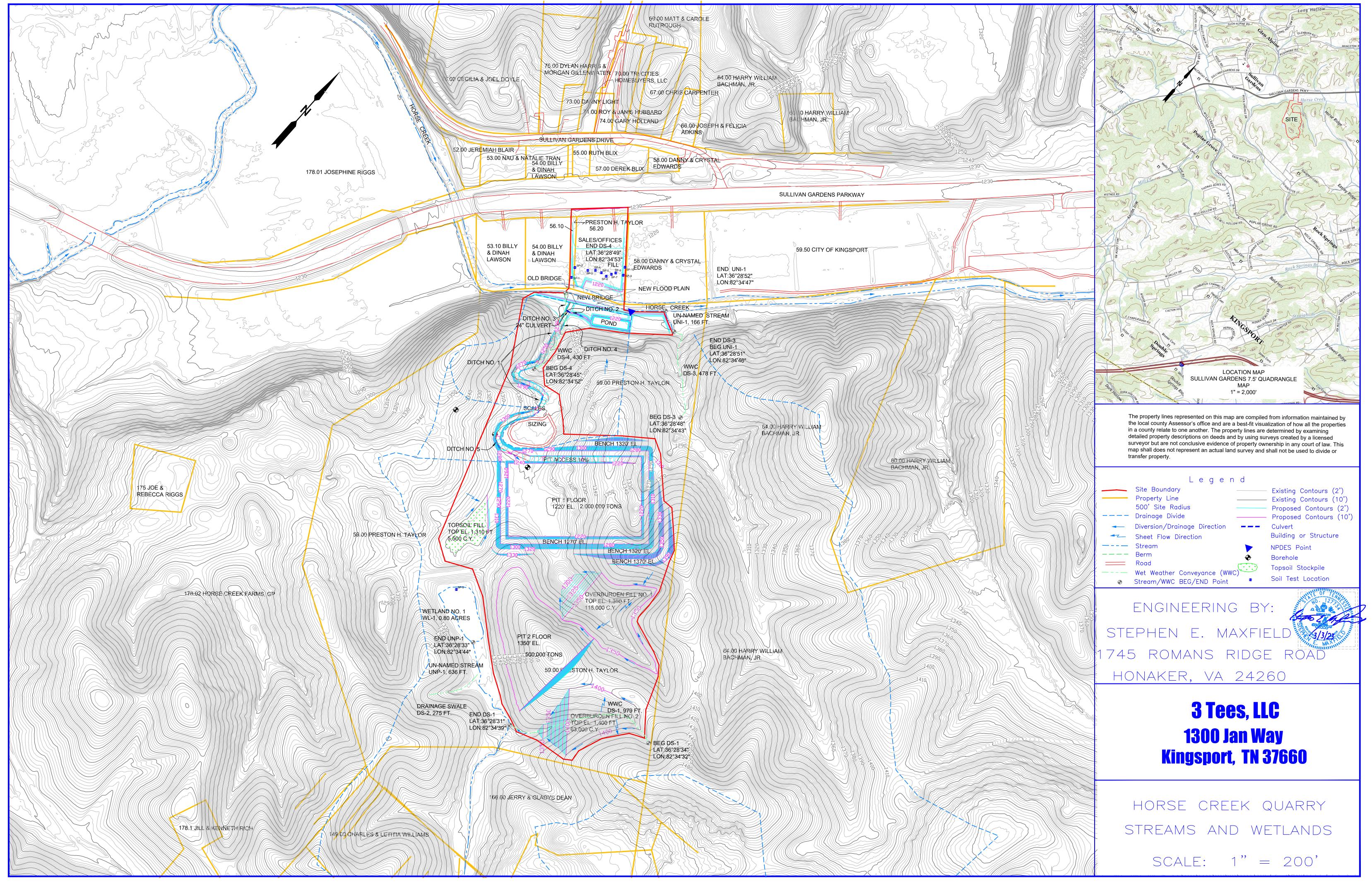
	Absolute	Dominant	Indicator	
Tree Stratum (Plot size:)	% Cover	Species?	Status	Dominance Test worksheet:
1. 2.				Number of Dominant Species That Are OBL, FACW, or FAC: (A)
3. 4.				Total Number of Dominant Species Across All Strata: 1 (B)
5 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 0.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:	20%	of total cover:		OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size:)				FACW species 5 x 2 = 10
1.				FAC species 0 x 3 = 0
2.				FACU species 70 x 4 = 280
3.				UPL species 0 x 5 = 0
4.				Column Totals: 75 (A) 290 (B)
5.				Prevalence Index = B/A = 3.87
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
Ω				2 - Dominance Test is >50%
9.				3 - Prevalence Index is ≤3.0¹
·		=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:		of total cover:		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 2300 sqft)	20 /0	OI IOIAI COVEI.		Problematic Hydrophytic Vegetation ¹ (Explain)
	5	No	EACW.	
 Juncus effusus Panicum virgatum 	5 70	No Yes	FACU FACU	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
3.				Definitions of Four Vegetation Strata:
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5				more in diameter at breast height (DBH), regardless of
6.				height.
7				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft
9.				(1 m) tall.
10.				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
	75	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 3		of total cover:	15	height.
	2070	OI IOIAI COVEI.		- Company of the comp
Woody Vine Stratum (Plot size:)				
1.	·	_		
2.				
3.				
4				
5				Hydrophytic
		=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present?
Remarks: (Include photo numbers here or on a sepa	arate sheet.)			

SOIL

Sampling Point:

Item VI1.

Depth	Matrix		oth needed to doc Redo	x Feature					,		
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Rem	arks	
0.40			, , ,								
0-18	7.5YR 4/4	25									
Type: C=Cc	ncentration, D=Depl	etion. RM	=Reduced Matrix. N	MS=Masl	ced Sand	Grains.	² Loc	ation: PL=Po	ore Linina. M	1=Matrix.	
lydric Soil II								Indicators fo			ic Soils ³ :
Histosol (Polyvalue B	elow Sur	face (S8)	(MLRA			ck (A10) (M I	-	
	ipedon (A2)		Thin Dark S						airie Redox		
Black His			Loamy Mucl	-				(MLRA	147, 148)	. ,	
	n Sulfide (A4)		Loamy Gley	-					t Floodplain	Soils (F	19)
Stratified	Layers (A5)		Depleted Ma	atrix (F3)			•	(MLRA	136, 147)		
2 cm Mud	ck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red Pare	ent Material	(F21)	
Depleted	Below Dark Surface	e (A11)	Depleted Da	ark Surfac	ce (F7)			(outsid	de MLRA 12	7, 147, 1	48)
	rk Surface (A12)		Redox Depr						allow Dark S	-	22)
	ucky Mineral (S1)		Iron-Mangar		ses (F12	2) (LRR N	,	Other (E	xplain in Rer	marks)	
	leyed Matrix (S4)		MLRA 13					2			
	edox (S5)		Umbric Surf	-				³ Indicators of		_	
	Matrix (S6)		Piedmont FI						nydrology m		
Dark Surf			Red Parent	Material	(F21) (M	LRA 127,	147, 148)	unless di	sturbed or p	roblema	IC.
Restrictive L	.ayer (if observed):										
Type:											
Type: Depth (in	ches):						Hydric Soil F	Present?	Yes	No	Χ
Depth (in	ches):						Hydric Soil F	Present?	Yes	No_	X
Depth (in	ches):						Hydric Soil F	Present?	Yes	No_	X
Depth (in	ches):						Hydric Soil F	Present?	Yes	No_	X
Depth (in	ches):						Hydric Soil F	Present?	Yes	No_	<u>X</u>
Depth (in	ches):						Hydric Soil F	Present?	Yes	_ No_	X
Depth (in	ches):						Hydric Soil F	Present?	Yes	No_	X
Depth (in	ches):						Hydric Soil F	Present?	Yes	No_	X
Depth (in	ches):					<u> </u>	Hydric Soil F	Present?	Yes	_ No_	X
Depth (in	ches):						Hydric Soil F	Present?	Yes	_ No_	X
Depth (in	ches):						Hydric Soil F	Present?	Yes	_ No_	X
Depth (in	ches):						Hydric Soil F	Present?	Yes	_ No_	X
Depth (in	ches):						Hydric Soil F	Present?	Yes	_ No_	X
Depth (in	ches):						Hydric Soil F	Present?	Yes	_ No_	X
Depth (in	ches):						Hydric Soil F	Present?	Yes	_ No_	X
Depth (in	ches):						Hydric Soil F	Present?	Yes	_ No_	X
Depth (in	ches):						Hydric Soil F	Present?	Yes	_ No_	X
Depth (in	ches):						Hydric Soil F	Present?	Yes	_ No_	X
	ches):						Hydric Soil F	Present?	Yes	_ No_	X
Depth (in	ches):						Hydric Soil F	Present?	Yes	_ No_	X
Depth (in	ches):						Hydric Soil F	Present?	Yes	_ No_	X
Depth (in	ches):						Hydric Soil F	Present?	Yes	_ No_	X



3 Tees, LLC 1300 Jan Way Kingsport, Tennessee

Horse Creek Quarry

Application for Aquatic Resource Alteration Permit (ARAP) & State §401 Water Quality Certification

October 16, 2023

PREPARED BY:

STEPHEN E. MAXFIELD, P. E. PROFESSIONAL ENGINEER P.O. BOX 1745 HONAKER, VIRGINIA 24260 PHONE: (276) 979-6963

Stephen E. Maxfield, P. E. 1745 Roman Ridge Road Honaker, VA 24260

Phone: (276) 979-6963 Email: Coulwood1214@gmail.com

October 16, 2023

Tina Robinson
Tennessee Department of Environment and Conservation
Division of Water Resources
2305 Silverdale Road
Johnson City, TN 37601-2162

Subject: ARAP Permit For Proposed Limestone Quarry

Dear Ms. Robinson:

On behalf of my client, 3 Tees, LLC, we are requesting a ARAP permit associated with a proposed limestone rock quarry to be located at 3725 Sullivan Gardens Parkway.

3 Tees is proposing to develop a quarry would mine limestone rock, crush and screen the rock for aggregate, and stockpile the aggregate for sale for road construction and other uses. The actual quarry pit and processing facilities will be located approximately 1,200 ft from Sullivan Gardens Parkway. However, access to the location will be across Horse Creek. In addition to a new bridge, 3 Tees proposes cut and fill along Horse Creek to improve the property. All proposed disturbance is above and beyond the Ordinary High Water Mark (OHWM) and outside of the jurisdictional limits of the stream. The proposed modifications along Horse Creek will not result in a change of the flood elevation of the stream.

The application forms, plans and design, and maps and drawings have been included in this submittal. Please review the included plan for compliance.

If you have any questions or require any additional information, please contact us.

Sincerely

Stephen E. Maxtield, P. E.

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION

Division of Water Resources

William R. Snodgrass Tennessee Tower, 312 Rosa L. Parks Avenue, 11th Floor, Nashville, Tennessee, 37243

1-888-891-8332 (TDEC)

Item VI1.

Application for Aquatic Resource Alteration Permit (ARAP) & State §401 Water Quality Certification

OFFICIAL STATE USE ONLY Site :	#:		Perm	it #:			
Section 1. Applicant Information (individua	al responsible f	or site, signs o	certification below)	1			
Applicant Name (company or individual):3	Tees, LL0	<u> </u>		SOS #:		Status: N/A	
Primary Contact/Signatory:Vic Davis			Signatory's Title	or Position:Ma	nager		
Mailing Address:1300 Jan Way			City:Kingsp	ort	State: TN	Zip:37660	
Phone:423-817-7300	Fax:		E-mail:vicd@	vdsctn.co	m		
Section 2. Alternate Contact/Consultant II	nformation (a	consultant is n	ot required)				
Alternate Contact Name:							
Company:			Title or Position:			-	
Mailing Address:			City:		State:	Zip:	
Phone:	Fax:		E-mail:				
Section 3. Fee (application will be incomple	te until fee is re	ceived)					
■ No Fee ■ Fee Sub	mitted with App	olication	Amou	nt Submitted: \$	500		
Current application fee schedules can be for https://www.tn.gov/environment/permit-perm or by calling (615) 532-0625. Please make or Billing Contact (if different from Applicant): Address:	nits/water-perm	its1/aquatic-re to "Treasurer	esource-alteration	permitarapht see". Ema			
Address:			Phone	.			
Section 4. Project Details (fill in information	n and check ap	propriate boxe	es)				
Site or Project Name: Horse Creek	Quarry	(Bridge)	Nearest City, T	own or Major La	ındmark: Kir	ngsport	
Street Address or Location (include zip):37	725 Sull	livan G	ardens F	arkway			
County(ies): Sullivan		MS4 Jurisd	iction:	Latitude (dd.dd	Latitude (dd.dddd): 36°28'43"		
Sullivail				Longitude (dd.dddd): 82°34'49"			
Resources Proposed for Alteration:	Stream / Riv	ver	Wetland	Reservoir			
Name of Water Resource (for more informati	on, access http	o://tdeconline.t	n.gov/dwr):TNC	60101020	03_2000		
Brief Project Description (a more detailed de	scription is req	uired under Se	ection 8): Bridg	e & Flood	plain Im	provements	
Does the proposed activity require approval federal, state, or local government agency? If Yes, provide the permit reference number		army Corps of Yes	Engineers, the Te	nnessee Valley	Authority, or a	any other	
Will the activity require a 401 Water Quality (Yes	☐ No				
If Yes, attach any 401 WQC pre-filing meetin	g request docu	mentation					
Is the proposed activity associated with a larg	ger common pla	an of developr	nent:	∕es □No			
If Yes, submit site plans and identify the lo		•					
Plans attached? Yes No If applicable, indicate any other federal, state development) that have been obtained in the	e, or local permi	ts that are ass	sociated with the c	verall project sit	e (common p	lan of	

Application for Aquatic Resource Alteration Permit (ARAP) & State §401 Water Quality Certific Section 5. Project Schedule (fill in information and check appropriate boxes) Proposed start date: June 1, 2024 Estimated end date: Aug 1, 2024 ■ No Is any portion of the activity complete now? Yes If yes, describe the extent of the completed portion: The required information in Sections 6-11 must be submitted on a separate sheet(s) and submitted in the same numbered format as presented below. If any question in not applicable, state the reason why it is not applicable. **Attached** Section 6. Description Yes No A narrative description of the scope of the project 6.1 6.2 USGS topographic map indicating the exact location of the project (can be a photographic copy) Photographs of the resource(s) proposed for alteration with location description (photo locations should be noted on 6.3 map) A narrative description of the existing stream and/or wetland characteristics including, but not limited to, dimensions 6.4 ▣ (e.g., depth, length, average width), substrate and riparian vegetation A narrative description of the **proposed** stream and/or wetland characteristics including, but not limited to, 6.5 ▣ dimensions (e.g., depth, length, average width), substrate and riparian vegetation In the case of wetlands, include a wetland delineation with delineation forms and site map denoting location of 6.6 data points 6.7 A copy of all hydrologic or jurisdictional determination documents issued for water resources on the project site Attached Section 7. Project Rationale Yes No Describe the need for the proposed activity, including, but not limited to the purpose, alternatives considered and rationale for selection of least impactful alternative, and what will be done to avoid or minimize impacts to water resources Attached Section 8. Technical Information Yes No Detailed plans, specifications, blueprints, or legible sketches of present site conditions and the proposed activity. Plans must be 8.5.x 11 inches. Additional larger plans may also be submitted to aid in application 8.1 ▣ review. The detailed plans should be superimposed on existing and new conditions (e.g., stream cross sections where road crossings are proposed) For the proposed activity and compensatory mitigation, provide a discussion regarding the sequencing of 8.2 events and construction methods and any proposed monitoring Depiction and narrative on the location and type of erosion prevention and sediment control (EPSC) measures for 8.3 the proposed alterations and any other measures to treat, control, or manage impacts to waters Section 9. Water Resources Degradation (degree of proposed impact) Note that in most cases, activities that exceed the scope of the General Permit limitations are considered greater than de minimis degradation to water quality. Please provide your basis for concluding the proposed activity will cause one of the following levels of water quality degradation: a. De minimis degradation, no appreciable permanent loss of resource values Greater than de minimis degradation (if greater than de minimis complete Sections 10-11) For information and guidance on the definition of de minimis and degradation, refer to the Antidegradation Statement in Chapter 0400-40-03-.06 of the Tennessee Water Quality Criteria Rule:

For more information on specifics on what General Permits can cover, refer to the Natural Resources Unit webpage at:

https://www.tn.gov/environment/permit-permits/water-permits1/aguatic-resource-alteration-permit--arap-.html

https://publications.tnsosfiles.com/rules/0400/0400-40/0400-40.htm

Application for Aquatic Resource Alteration Permit (ARAP) & State §401 Water Quality Certification

Secti	ion 10. Detailed Alternatives Analysis		ched
10.1	Analyze all reasonable alternatives and describe the level of degradation and permanent loss of resource value caused by each alternative. Assessment must consider options other than the "Preferred" and "No Action" alternatives. Provide associated rationale for selecting or rejecting all alternatives considered and demonstration that the least impactful practicable alternative was selected.	Yes	No
10.2	Discuss the social and economic consequences of each alternative		П
10.3	Demonstrate that the degradation associated with the preferred alternative will not violate water quality criteria for uses designated in the receiving waters, and is necessary to accommodate important economic and social development in the area	▣	
Section	on 11. Compensatory Mitigation	Atta	
11.1	A detailed discussion of the proposed compensatory mitigation. Provide evidence of credit reservation if proposing to utilize a third-party provider.	Yes	No
11.2	Analysis of any proposed appreciable loss of resource value using the TN Stream Mitigation Guidelines. Provide Stream Quantification Tool (SQT) results if applicable. Include Existing Condition Score (ECS) and debit/credit calculations.		<u> </u>
11.3	Describe how the compensatory mitigation would result in no net loss of resource value	П	
11.4	Provide a detailed monitoring plan for the compensatory mitigation site if permittee-responsible project is proposed		
11.5	Describe the long-term protection measures for the compensatory mitigation site if permittee-responsible project is proposed (e.g., deed restrictions, conservation easement)		
Certif	ication and Signature		
An ap	plication submitted by a corporation must be signed by a principal executive officer; from a partnership or proprietoral	in hi:	
signed I certi super that th	affiler of proprietor respectively; from a municipal, state, federal or other public agency or facility, the application mi	loyee.	

specified in Tennessee Code Annotated Section 39-16-702(a)(4), this declaration is made under penalty of perjury.

The project proponent hereby requests that the certifying authority review and take action on this CWA 401 certification request within the applicable reasonable period of time.

Vic Davis

Printed Name

Official Title

Signature

Date

Note that this form must be signed by the principal executive officer, partner or proprietor, or a ranking elected official in the case of a municipality; for details see **Certification and Signature** statement above. For more information, contact your local EFO at the toll-free number 1-888-891-8332 (TDEC). Submit the completed ARAP Application form (keep a copy for your records) to the appropriate EFO for the county(ies) where the proposed activity is located, addressed to **Attention: ARAP Processing**. You may also electronically submit the complete application and all associated attachments to water.permits@tn.gov.

EFO	Street Address	Zip Code	EFO	Street Address	Zip Code
Memphis	8383 Wolf Lake Drive, Bartlett	38133-4119	Cookeville	1221 South Willow Ave.	38506
Jackson	1625 Hollywood Drive	38305-4316	Chattanooga	1301 Riverfront Pkwy., Ste. 206	37402
Nashville	711 R S Gass Boulevard	37243	Knoxville	3711 Middlebrook Pike	37921
Columbia	1421 Hampshire Pike	38401	Johnson City	2305 Silverdale Road	37601

165

SCOPE

3 Tees, LLC is proposing to develop a limestone rock quarry to manufacture stone aggregate for construction on property located at 3725 Sullivan Gardens Parkway, Kingsport, Tennessee. The proposed quarry will be located approximately 1,200 ft from Sullivan Gardens Parkway. Access to the proposed quarry site will be via an existing drive/farm road from Sullivan Gardens Parkway. An existing bridge crosses Horse Creek. These facilities will be upgraded suitable for the proposed use. A new bridge will be constructed adjacent to the existing one. The new bridge will be above the FEMA flood elevation and abutments will be constructed above and beyond the ordinary high water mark (OHWM). Additionally, it is proposed to fill areas within the FEMA mapped flood plain elevation of 1,223 ft. However, a new flood plain will be constructed on the south side of Horse Creek. The new flood plan will be excavated above and beyond the OHWM of the stream. The resulting modifications will not result in an increase in the FEMA flood elevation.

SITE LOCATION

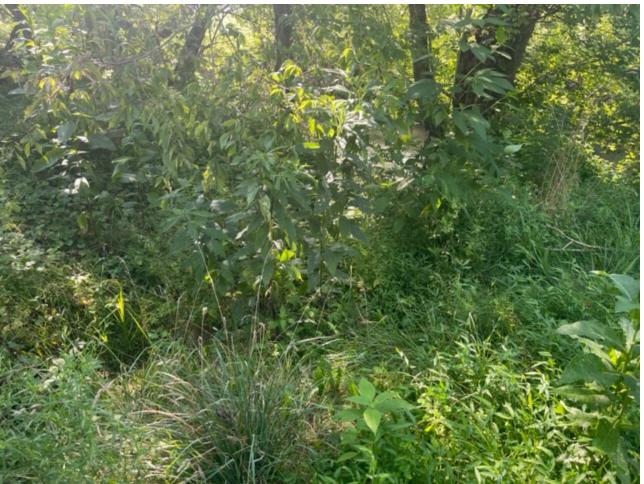
3 Tees proposed operation will be located at 3725 Sullivan Gardens Parkway, Kingsport, Tennessee in Sullivan County.

The site is located in the north west section of the Sullivan Gardens United States Geological Services (U.S.G.S) Sullivan Gardens 7.5' Quadrangle at the geographic coordinates of 36°28'43" North Latitude and 82°34'49" West Longitude. The site is located along Horse Creek. Horse Creek is approximately 1,000 ft. from the proposed quarry at an elevation of 1215 ft. Horse Creek is a first order perennial stream that flows north east to the Holston River.

A location map is included with the drawings.

STREAM INFORMATION

Horse Creek is a first order perennial stream that flows north east to the Holston River. In the vicinity of this project, the stream is approximately 30 ft. wide at the bottom and the channel is approximately 5 ft. deep. The OWHM for the stream is approximately 0.5 ft. The stream gradient is 1.4%. The north side of the stream is agriculture and the south side is riparian vegetation.


Existing bridge over Horse Creek

West of bridge

East of Bridge

South side of creek

A new bridge will replace the existing bridge. The new bridge superstructure will be above the flood elevation so as not impede flow during the event. The flood plain in the north side of Horse Creek will be filled to the elevation of 1226 ft. Except for the road fill to the bridge, the fill will be 50 ft. from the stream. The south side of the stream will be excavated above the OHWM to create a new flood plain at elevation 1216 ft. The flood plain will be approximately 5 to 20 ft wide. The modifications are shown on the plan and sections attached to this application. Calculations are included to demonstrate no rise in the flood elevation.

WETLAND INFORMATION

The area of the proposed quarry and along Horse Creek was investigated for the presence of wetlands. There were no indications of wetlands as would be defined by hydrophilic vegetation, hydric soils, and hydrology.

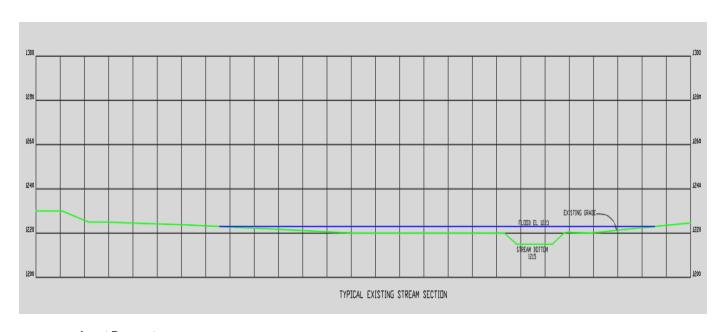
PROJECT RATIONALE

Kingsport and Sullivan County are growing along with the need for infrastructure. Limestone aggregate is a key material necessary for road and site construction and for use in pavement and concrete. This site was deemed a suitable location due to several factors. Geologic drilling of the location revealed suitable deposits of limestone of the quality necessary. The site is located near major highways for access, while also being remotely located away from the public. This makes this site ideal for the proposed use.

EROSION PREVENTION AND SEDIMENT CONTROL (EPSC)

Erosion and sediment control will be provided by a sediment basin and pit drainage (drainage into the quarry pit). These are addressed and designed in detail in the Mining NPDES application submitted for review by the Mining Section of the Department.

DETAILED ALTERNATIVES ANALYSIS


Alternative Access

Alternative access to the site was considered. However, these were deemed unfeasible. Alternative access would require acquisition of several properties and extensive road construction. These locations would involve secondary roads in residential areas not suited to large truck traffic. These areas would also involve crossing smaller streams.

Alternative Crossing

Alternative crossings were also considered. The existing bridge was deemed to narrow and not strong enough for the truck traffic. It is also located below the flood elevation. A new bridge with a shorter span or lower deck would impede stream flow during flooding. Culverts would also present the same issues.

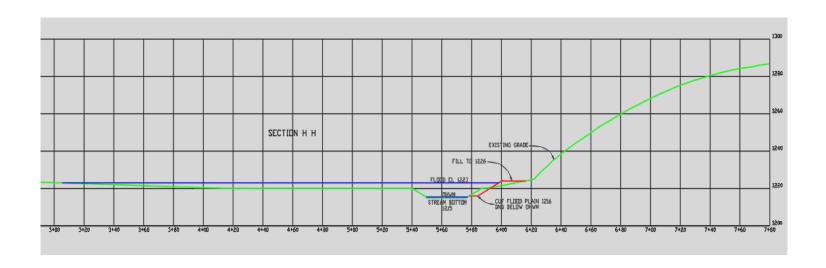
The method proposed the best environmentally sound alternative. The construction will avoid stream impacts and will not result in degradation of water quality.

Input Parameters

Ditch Slope (ft./ft.)

Manning Value (n)

0.0014
0.0350


Manning's Equation Calculations

 $Q=1.49 \times R^{2/3} \times S^{1/2} \times A$ Where R=A/WP and V= Q/A

 Flow Area, A, (sq.ft.)
 922.00 sq.ft.
 Ditch Capacity, Q, (cfs)
 2987.24 cfs

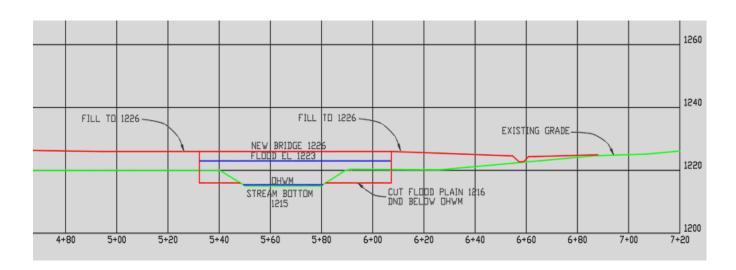
 Wetted Perimeter, WP, (ft.)
 318.00 ft.

 Hydraulic Radius, R, (ft.)
 2.90 ft.
 Flow Velocity, V, (fps)
 3.24 fps

Input Parameters

Ditch Slope (ft./ft.)

Manning Value (n)


0.0014
0.0350

Manning's Equation Calculations

 $Q=1.49 \times R^{2/3} \times S^{1/2} \times A$ Where R=A/WP and V= Q/A

 Flow Area, A, (sq.ft.)
 907.00 sq.ft.
 Ditch Capacity, Q, (cfs)
 3049.03 cfs

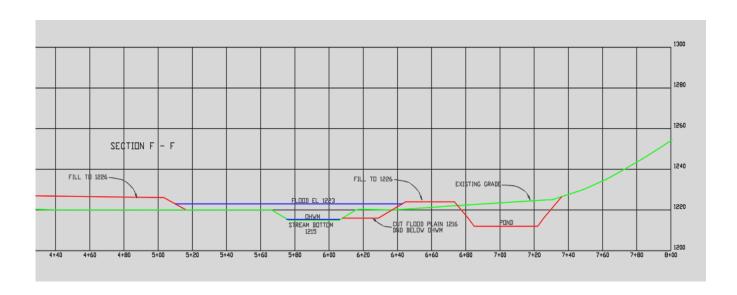
 Wetted Perimeter, WP, (ft.)
 296.00 ft.
 Flow Velocity, V, (fps)
 3.36 fps

Input Parameters

Ditch Slope (ft./ft.)

Manning Value (n)

0.0014
0.0350


Manning's Equation Calculations

 $Q=1.49 \times R^{2/3} \times S^{1/2} \times A$ Where R=A/WP and V= Q/A

Flow Area, **A**, (sq.ft.) 556.00 sq.ft. Ditch Capacity, **Q**, (cfs) 3005.93 cfs

Wetted Perimeter, **WP**, (ft.) 89.00 ft.

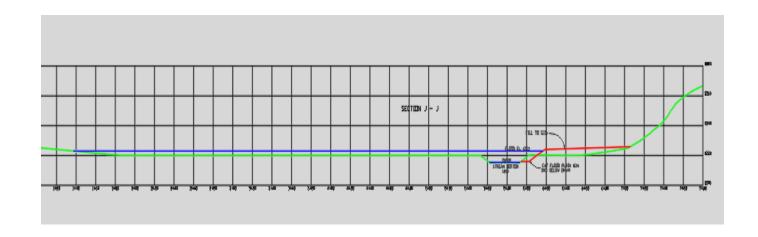
Hydraulic Radius, **R**, (ft.) 6.25 ft. Flow Velocity, **V**, (fps) 5.41 fps

Input Parameters

Ditch Slope (ft./ft.)

Manning Value (n)

0.0014
0.0350


Manning's Equation Calculations

 $Q=1.49 \times R^{2/3} \times S^{1/2} \times A$ Where R=A/WP and V= Q/A

Flow Area, **A**, (sq.ft.) 661.00 sq.ft. Ditch Capacity, **Q**, (cfs) 3022.65 cfs

Wetted Perimeter, **WP**, (ft.) 136.00 ft.

Hydraulic Radius, **R**, (ft.) 4.86 ft. Flow Velocity, **V**, (fps) 4.57 fps

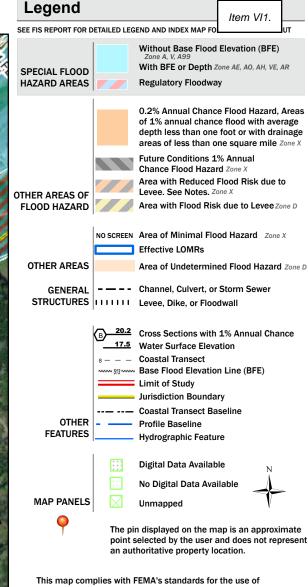
Input Parameters

Ditch Slope (ft./ft.)

Manning Value (n)

0.0014
0.0350

Manning's Equation Calculations


 $Q=1.49 \times R^{2/3} \times S^{1/2} \times A$ Where R=A/WP and V= Q/A

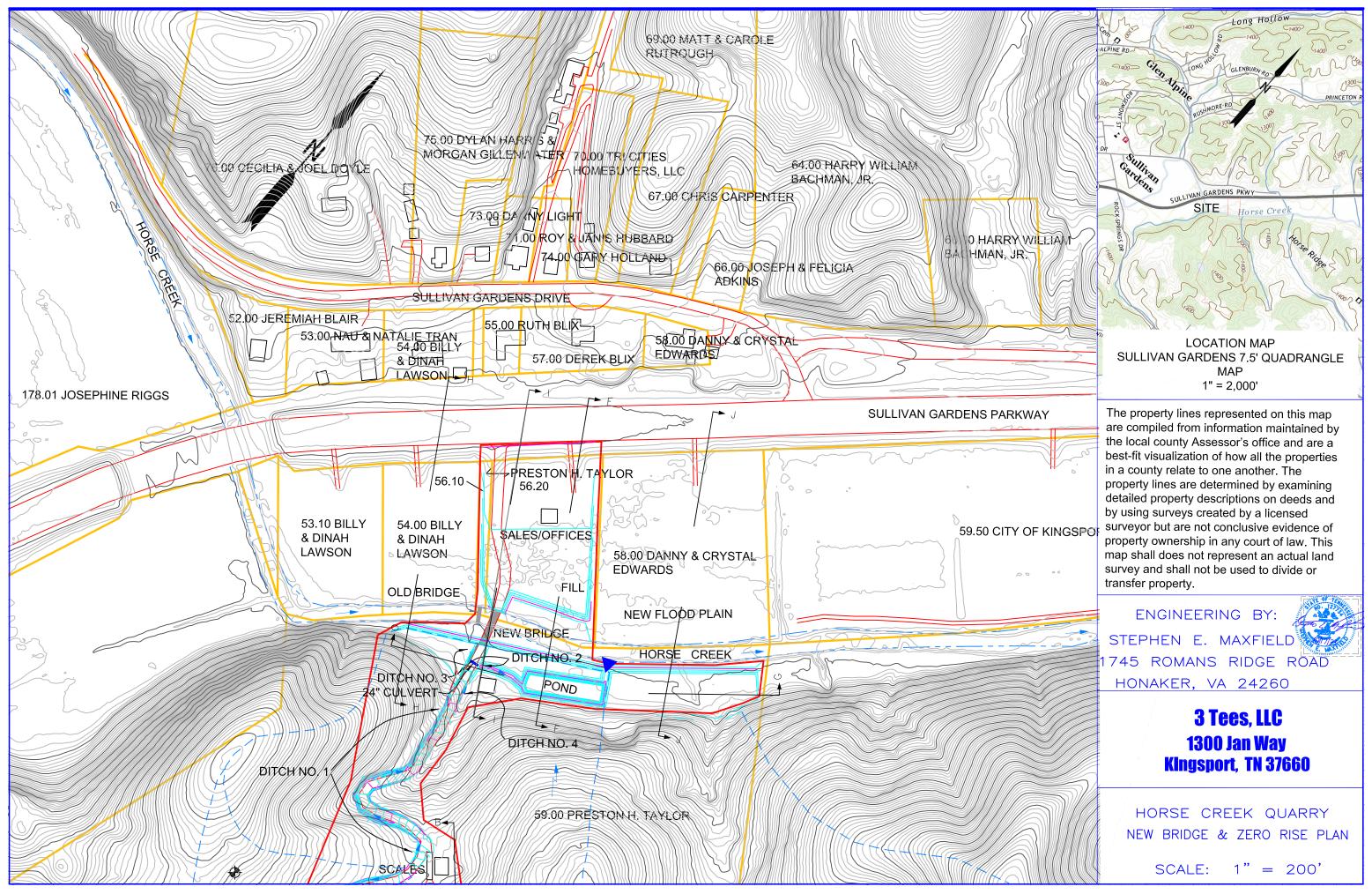
 Flow Area, A, (sq.ft.)
 1553.00 sq.ft.
 Ditch Capacity, Q, (cfs)
 5398.49 cfs

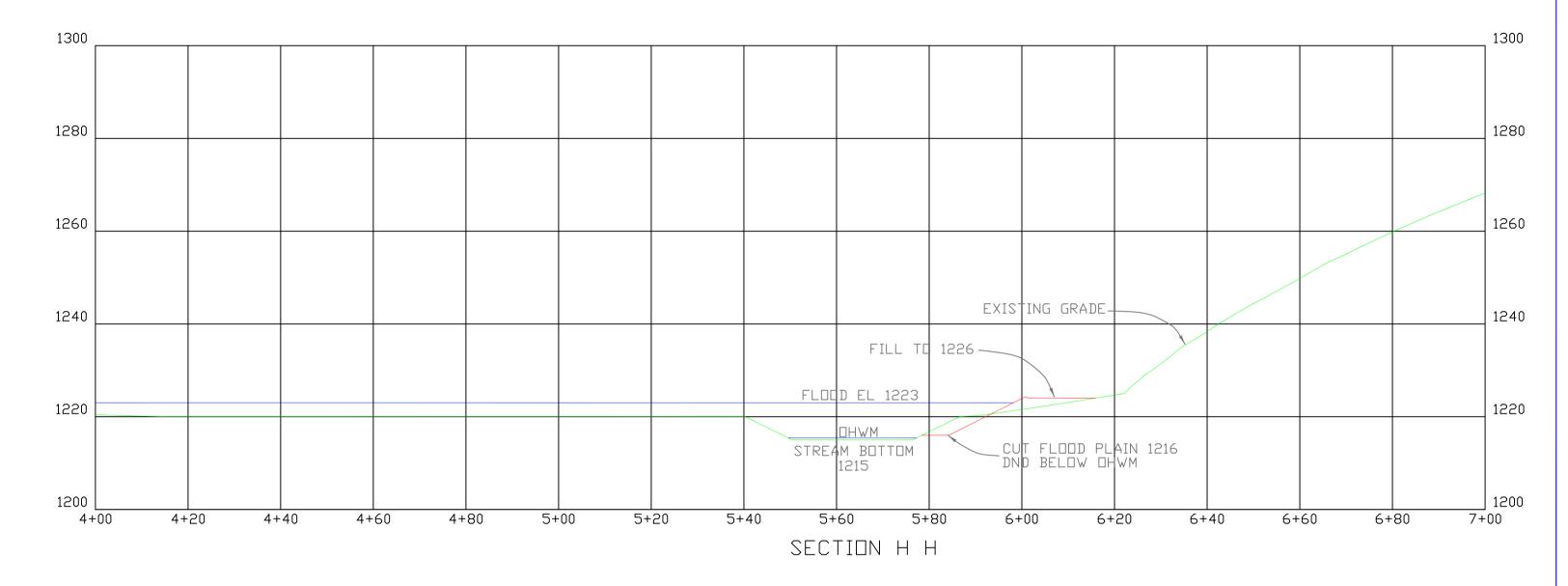
 Wetted Perimeter, WP, (ft.)
 482.00 ft.
 Flow Velocity, V, (fps)
 3.48 fps

National Flood Hazard Layer FIRMette

digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 8/3/2023 at 11:53 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or

This map image is void if the one or more of the following map


elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community id FIRM panel number, and FIRM effective date. Map i


become superseded by new data over time.

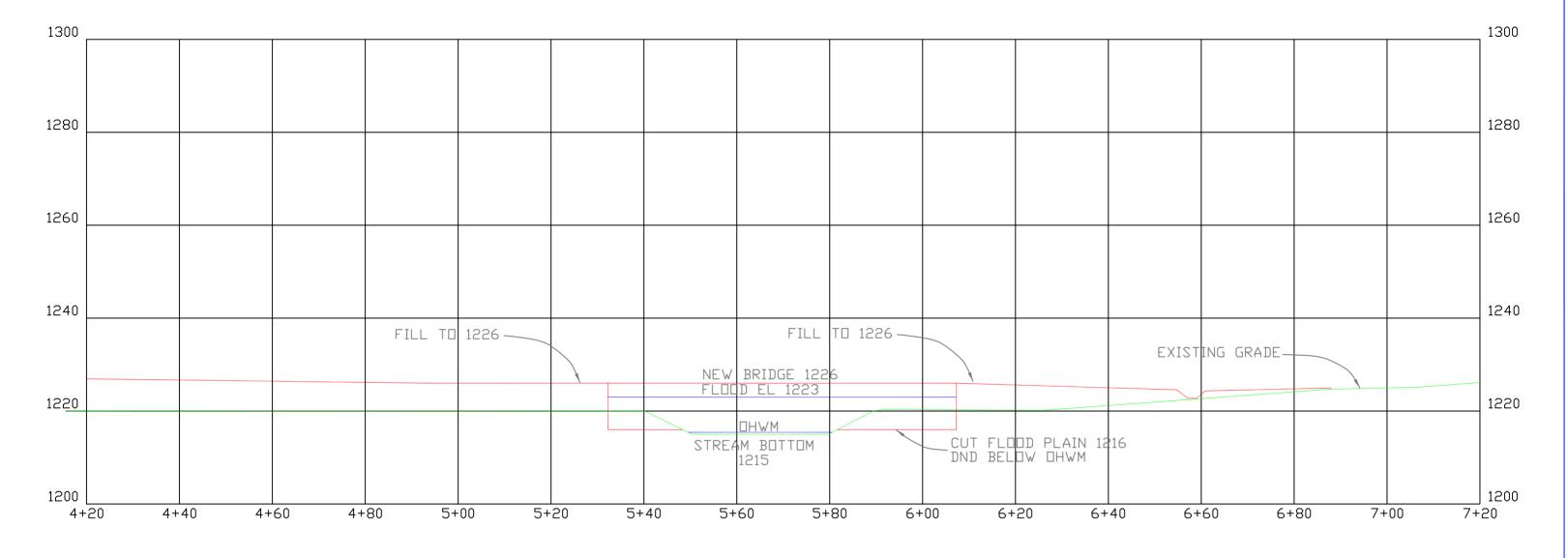
regulatory purposes.

unmapped and unmodernized areas cannot be use

Zone AE S (EL 1221) Fee AREA OF MINIMAL FLOOD HAZARD Kingsport, City Of 470184 Zone AE 47163C0230D eff. 9/29/2006 FLOODWAY Sullivan County 470181 Zone AE 1:6,000 250 500 1,000 1,500 2,000 Basemap Imagery Source: USGS National Map 2023

ENGINEERING BY:

STEPHEN E. MAXFIELD

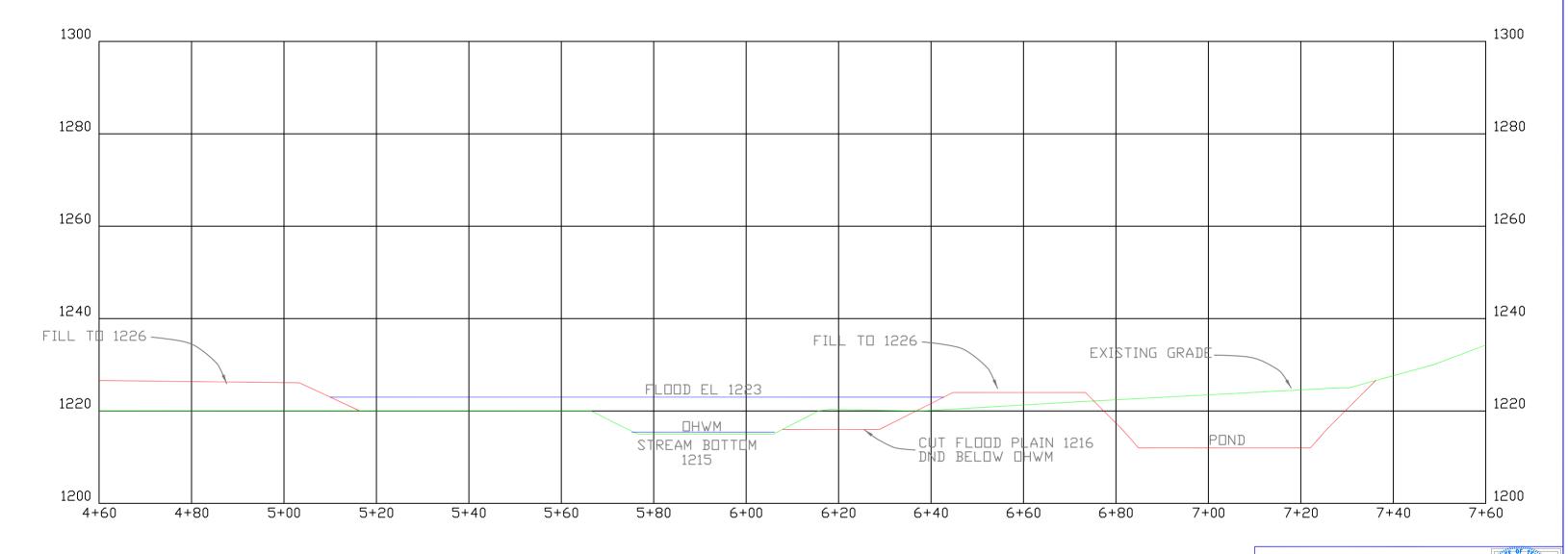

1745 ROMANS RIDGE ROAD

HONAKER, VA 24260

3 Tees, LLC 1300 Jan Way Kingsport, TN 37660

HORSE CREEK QUARRY SECTIONS H — H

SCALE: 1" = 20'


SECTION I - I

ENGINEERING BY:
STEPHEN E. MAXFIELD
1745 ROMANS RIDGE ROAD
HONAKER, VA 24260

3 Tees, LLC 1300 Jan Way Kingsport, TN 37660

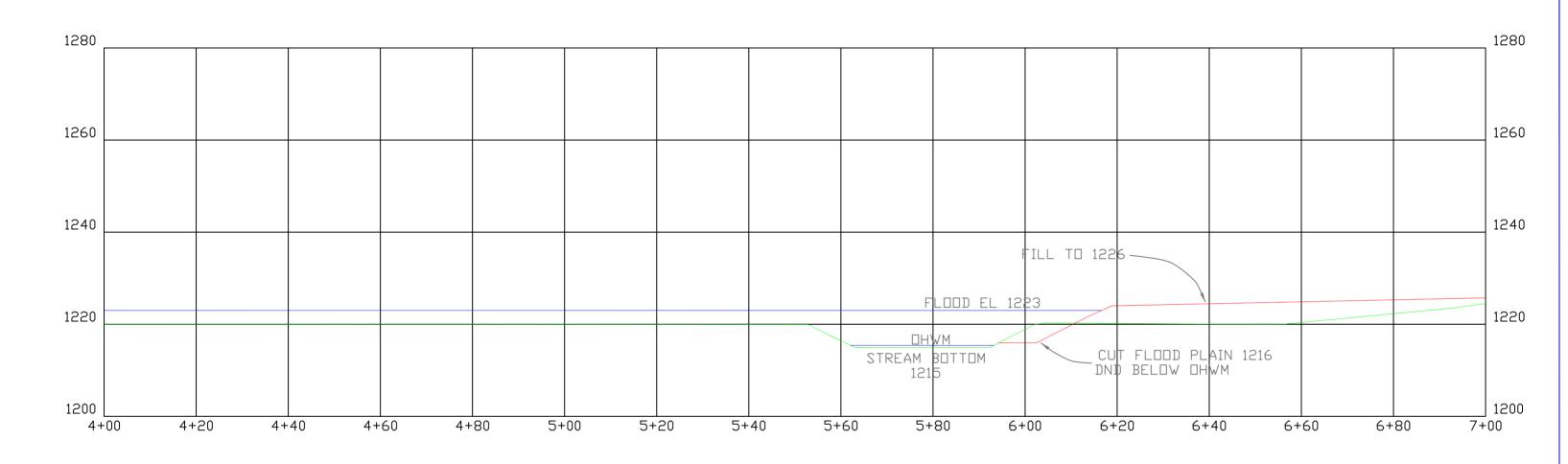
HORSE CREEK QUARRY SECTIONS I — I

SCALE: 1" = 20'

SECTION F - F

ENGINEERING BY:

STEPHEN E. MAXFIELD


1745 ROMANS RIDGE ROAD

HONAKER, VA 24260

3 Tees, LLC 1300 Jan Way Kingsport, TN 37660

HORSE CREEK QUARRY SECTIONS F - F

SCALE: 1" = 20'

SECTION J - J

ENGINEERING BY:

STEPHEN E. MAXFIELD

1745 ROMANS RIDGE ROAD

HONAKER, VA 24260

3 Tees, LLC 1300 Jan Way Kingsport, TN 37660

HORSE CREEK QUARRY SECTIONS J — J

SCALE: 1" = 20'

3 Tees, LLC 1300 Jan Way Kingsport, Tennessee

Horse Creek Quarry Stream and Wetland Delineation

November 16, 2023

PREPARED BY:

STEPHEN E. MAXFIELD, P. E. PROFESSIONAL ENGINEER P.O. BOX 1745 HONAKER, VIRGINIA 24260 PHONE: (276) 979-6963

3 Tees, LLC Proposed Horse Creek Limestone Quarry Horse Creek, Sullivan County, Tennessee Stream and Wetland Delineation

TABLE OF CONTENTS

CORRESPONDENCE

Landowner – TDEC TDEC – Engineer Engineer - TDEC

NARRATIVE

Introduction Methods

Weather Conditions

Results

Summary Table

References

PRECIPITATION DATA

NRCS SOIL SURVEY

WETLAND DETERMINATION DATA FORM
Wetland 1

STREAM IDENTIFICATION FORMS
UNP-1, UNI-1, DS-1, DS-2, DS-3, DS-4

SITE PHOTOGRAPHS

MAPS

HUC MAP
NATIONAL WETLAND INVENTORY MAP (WETLAND)
NATIONAL WETLAND INVENTORY MAP (STREAM)
HORSE CREEK DELINEATION MAP

Preston H. Taylor 1740 Holston Dr Bristol, TN 37620 Hab 13 Dic 1938

December 12, 2023

Tennessee Department of Environment and Conservation Mining Section 3711 Middlebrook Pike Knoxville, TN 37921

Subject: 3 Tees, LLC Proposed Quarry

To whom it may concern:

I am currently the owner of tracts 56.10, 56.20, and 59.00 located 3725 Sullivan Gardens Parkway. 3 Tees has the option to purchase these properties from me if they can be permitted for a quarry.

I understand that 3 Tees must undergo a rigorous permitting process to develop the quarry. I hereby grant access to the property to such agencies or regulators as necessary to evaluate or review any submittals by 3 Tees.

Thank you for your consideration in this matter.

1. Taylor, Ju

11

Sincerely,

Preston H. Taylor

From: Dan Murray < Dan.Murray@tn.gov> Date: Mon, Dec 11, 2023 at 9:15 AM

Subject: RE: [EXTERNAL] 3 Tee application Hydrologic Determination for ARAP

NR23MS.016 & NPDES TN0070724

To: Cool Wood <coulwood1214@gmail.com>

CC: Daniel Lawrence < Daniel.Lawrence@tn.gov>, Bonnie Craighead < Bonnie.Craighead@tn.gov>, Tina Robinson < Tina.A.Robinson@tn.gov>

Mr. Maxfield,

Thank you for the hydrologic determination (HD) submittal for Horse Creek Quarry. Review of the document found the following questions that must be addressed before a concurrence can be provided for the water features associated with this site.

- 1. The landowner's contact information and written permission to access the site must be provided with the HD submittal.
- 2. While the correct TDEC forms were completed it appears the applicant followed the North Carolina guidance document when evaluating the water features. The two organizations' methodologies are similar but they are not the same and use some different terminology that is not interchangeable. Please adjust your HD so that it follows the TDEC HD guidance available at
 - https://www.tn.gov/content/dam/tn/environment/water/policy-and-guidance/dwr-nr-g-03-hydrologic-determinations%E2%80%9304012020.pdf. Alternatively, it is recommended that use a Qualified Hydrologic Professional (QHP) or QHP In Training (QHPIT) to evaluate your site. A list of these individuals is available at https://www.tnhdt.org/.
- 3. Identification of the starting point and ending point for each linear feature determined to be a wet weather conveyance must be provided on a map or within the body of the HD submittal. A point on the HD Field Data Sheet is not sufficient.
- 4. Forms completed do not follow the TDEC HD guidance the submittal. Submittal used determination calls that are not available options (e.g. swale, intermittent stream, perennial stream) linear features can only be classified wet weather conveyance or stream under the TDEC protocol. Additionally, notes were not provided on the field forms that documented the information indicated on the score sheets.
- 5. None of the required precipitation data was provided indicating that the HD was conducted under normal precipitation conditions.
- 6. Information should be provided demonstrating the that cut & fill associated with replacing the crossing will not be in wetlands and that wetlands do not occur within the footprint of the area to be permitted.

When we receive a complete HD report that fully addresses the questions listed either I or someone from the Johnson City Environmental Field Office will schedule a site visit to evaluate the wet weather conveyances and wetlands associated with the proposed activities.

Thank you for your attention to this matter.

Dan

Dan Murray

TDEC Environmental Consultant | Biology &Water Quality Permitting

Tennessee Department of Environment and Conservation

Division of Mineral & Geologic Resources-Mining

3711 Middlebrook Pike

Knoxville, TN 37921

(865) 770-9473

Stephen E. Maxfield, P. E. 1745 Roman Ridge Road Honaker, VA 24260 Phone: (276) 979-6963

Email: Coulwood1214@gmail.com

December 13, 2023

Dan Murray
Tennessee Department of Environment and Conservation
Mining Section
3711 Middlebrook Pike
Knoxville, TN 37921

Subject: 3 Tees Hydrologic Determination

Dear Mr. Murray:

The following is in response to your email dated December 11, 2023 on the above subject item.

- 1. See attached letter from landowner.
- 2. See revised narrative.
- 3. See map for points.
- 4. See revised forms.
- 5. See included precipitation data.
- 6. Wetlands are often found along streams and the area was investigated for such. No wetlands were located other than WL-1 previously noted.

I trust that the revised information shall fully address your comments. However, should you have any additional questions or concerns, please contact me.

Sincerely,

Stephen E. Maxfield, P. E.

INTRODUCTION

This report pertains to 3 Tees, LLC proposed Horse Creek Limestone Quarry in Sullivan County, at 3725 Sullivan Gardens Parkway, Kingsport, Tennessee. The quarry will be located approximately 1,000 ft. south of Horse Creek. The area is within the Sullivan Gardens 7.5" Quadrangle Map. A location map is provided with the delineation map at the end of this report.

The quarry itself shall encompass approximately 45 acres and shall mine limestone by the quarry method. A NPDES permit for the mining operation is currently being pursued through the Tennessee Department of Environment Mining Section.

In order to facilitate mining at this proposed operation roads, bridge, fills diversions, culverts, and sediment basins will be necessary. The proposed mine plan is to avoid the impacts to any jurisdictional waters of the United States (W.O.U.S.).

This report documents efforts on 3 Tees, LLC to locate, document, delineate, and map the water resources within this project area including the W.O. U. S., waters of the state, and other isolated waters. This report is submitted to the Army Corp of Engineers and the Tennessee Department of the Environment for review and confirmation. Following confirmation, all plans for the mine will be finalized and all necessary permits will be submitted to the appropriate regulatory authority.

METHODS

<u>Wetlands</u>

Prior to fieldwork, the site was subjected to a preliminary remote assessment using U.S.G.S. resources. These include the Sullivan Gardens, 7.5' Quadrangle topographic map, U.S.G.S. National Wetlands database and mapping, digital orthophotography. Soils were assessed using the USDA Soil Survey.

Remote assessment indicated a single wetland of 0.83 acres in the southern area of the property and an un-named perennial stream at the eastern boundary of the property. Mapping obtained from the remote assessment are attached.

The wetland field work followed the Routine On-Site Determination methodology for areas equal to or less than 5 acres in size described in the U. S. Army Corps of Engineers Wetlands Delineation Manual (U.S. Army Corps of Engineers Waterways Experiment Station, 1987) and the Eastern Mountains and Piedmont Regional Supplement. Utilization of these methods resulted in the identification of wetlands, which met the criteria for hydrophytic vegetation, hydric soils, and wetland hydrology. The wetland-upland boundaries were identified, located, and mapped to the Tennnessee them by State Plane NAD '83 coordinate system. This was conducted on November 11, 2023. The map data was uploaded into CAD and wetland areas determined.

Once wetland conditions were confirmed in the field, soils, vegetation, and hydrology were evaluated at representative locations within the wetland and along the upland boundary. Plant species dominance was determined based on the percent aerial or basal coverage within a representative plot utilizing the "50/20" rule. Taxonomy was based on the U.S.G.S. List of Wetland Flora. Indicator status of plant species was taken from the National List of Plant Species That Occur in Wetlands: 1988 Region 3.

Soils profiles were characterized by digging test pits a minimum depth of 18 inches (or refusal) and utilizing Munsell Soil Color Charts and standard soil texturing methodology.

Wetland hydrology criteria were assessed by evaluating the geology and hydrologic regimes in the setting, visual observations, and soil pits in the surrounding area.

The wetland data obtained during the field evaluations was compiled on the 1987 COE Routine Wetland Determination Data Forms. Each wetland identified in the review area was numbered and compiled on a single form. The wetland and soil profiles were documented by digital photography. All wetlands were shown to scale on the delineation drawing, with photographs cross referenced on the drawing and forms.

Streams

Streams were assessed in accordance with the Tennessee Department of Environment and Conservation Division of Water Resources **Guidance for Making Hydrologic Determinations.** This document was based upon concepts and methodologies originally developed by the North Carolina Division of Water Quality's (NCDWQ). This method has been adopted and followed by many agencies. The method utilizes a scoring system to evaluated 28 attributes of geomorphic, hydrologic, and biologic indicators. Wet weather conveyances (WWC) were identified by scores of less than 19, intermittent streams were identified by scores greater than 19, but less than 30, and perennial streams were indicated by scores greater than 30.

Stream evaluation points were initially selected within the lower reach of streams within the review and scored utilizing the method. The data from each evaluation point was recorded on the Tennessee Division of Water Resources, Hydrologic Determination Field Data Sheet. The scores were tallied and the stream type was determined from the score. Additional evaluation points were selected upstream to determine the origin or transitions of perennial and intermittent stream reaches.

The locations of the stream evaluation points and transitions and origins of streams types were located in the Tennessee State Plane NAD '83 coordinate system. The data was uploaded into CAD and stream lengths determined. Each stream identified in the review area was numbered and shown to scale on the delineation drawing.

WEATHER CONDITIONS

Field work for the stream and wetland delineations was conducted on November 11, 2023. Weather conditions was assessed in accordance with the TDEC Guidelines. The 30 year mean and standard deviation of the precipitation for Kingsport, TN was obtained from the National Oceanic and Atmospheric Association (NOAA) Climatic Data Center. Monthly averages for the 3 month period preceding the field work was also obtained. This data is included at the end of this report. The table was evaluated in the table below and a determination was made that the weather conditions during the investigation was average.

	Month	Actual Rainfall 2023	Average Rainfall 30 yr.	Standard Deviation	Minus One Std. Deviation (DRY)	Plus One Std. Deviation (WET)	Condition (Elevated, Low, Average)	Condition Value	Month Weight value	Product of previous two columns
1st prior	October	2.3	2.43	1.4	1.03	3.83	Average	2	3	6
2nd prior month	September	2.6	2.98	1.6	1.38	4.58	Average	2	2	4
3rd prior	August	3.0	3.21	1.53	1.68	4.74	Average	2	1	2
									Sum	12

Note:	
If sum is:	
6-9	then prior period has been abnormally dry
10-14	then prior period has been normal (average)
15- 1 8	Then prior period has been abnormally wet

Condition value:	
Low -	1
Average =	2
Elevated =	3

Conclusions: A total of 12 indicates the weater conditions (precipitation were in the average range for the three months prior to November 11, 2023 for Kingsport, TN.

RESULTS

This study identified a single wetland area totaling 0.80 acres and 2 un-named tributaries to Horse Creek totaling 750 linear ft. in the review area. The local geology and the previous land alterations are major factors influencing the hydrology of the wetland identified. A dam was previously constructed in the stream to create an impoundment; however, it appears the karst topography did not allow the water to collect at any depth and provided the necessary hydrology for wetland development. As such this wetland and contributing streams are severed and not considered jurisdictional W.O.U.S. However, the intermittent stream is connected and is considered W.O.U.S. The drainage swale connecting to this stream does not have characteristics to be considered W.O.U.S. Regardless of the jurisdiction, these features will not be impacted by the proposed operation.

A summary of the wetlands and streams identified during this evaluation are included in following Table:

ID	Name	Quantity	Delineation
WL-1	NA	0.8 ac.	Palustrine Emergent Wetland
UNP-1	NA	636 ft.	Stream
DS-1	NA	797 ft.	WWC
DS-2	NA	275 ft.	WWC
DS-3	NA	478 ft.	WWC
DS-4	NA	430 ft.	WWC
UNI-1	NA	166 ft.	Stream
HC-1	Horse Creek	1,135 ft.	Stream

Notes:

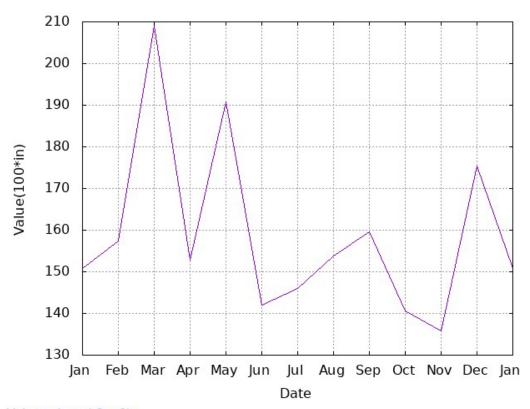
- 1. Wetland WL-1 is isolated with no significant nexus to W.O. U. S.; however, impacts will be avoided.
- 2. Perennial Stream UNP-1 is isolated with no significant nexus to W.O. U. S.; however, impacts will be avoided.
- 3. Intermittent Stream UNI-1 has connection to Traditional Navigable Waters and impacts will be avoided.
- 4. Horse Creek has a length of 1,135 ft through the project area. A new bridge is proposed and excavation of a flood plain along the south side. However, all impacts shall be above the Ordinary High Water Mark (OHWM) which is the jurisdictional boundary of the stream.

REFERENCES

- Cowardin, Lewis, etal. Classification of Wetlands and Deepwater Habitats of the United States. U. S. Department of the Interior, Washington, D. C.
- Mitsch, William J., Wetlands. 2007 John Wiley and Sons, Inc., Hoboken, New Jersey.
- Munsell Color. 1998. Munsell soil color charts. 1998 revised washable edition. GregtagMacbeth. New Windsor, New York.
- North Carolina Division of Water Quality. 2005. Identification Methods for the Origins of Intermittent and Perennial Streams, Version 3.1. North Carolina Department of Environment and Natural Resources, Division of Water Quality. Raleigh, NC.
- Reed, P.B. 1988. National list of plant species that occur in wetlands: Region III.

Seelinger, Marc. USACE Wetland Delineation with Regional Supplements. 2006 The Swamp School, Angier, NC.

- U.S. Army Corps of Engineers. 1987. Corps of Engineers wetlands delineation manual. Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- U.S. Army Corps of Engineers. 2022. National Ordinary High Water Mark Field Delineation Manual for Rivers and Streams. Technical Report 22-26, Wetlands Regulatory Assistance Program (WRAP), Vicksburg, Mississippi.
- U.S. Department of Agriculture, Natural Resource Conservation Service. 2006. Soil survey geographic database for Sullivan County, Tennessee. http://nrcs.usda.gov


30 Year Precipitation Average by Month Kingsport TN

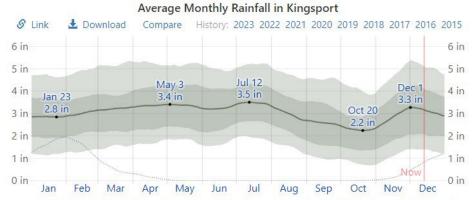
Values plotted Get file

Date submitted: 12/13/2023 at 12:47

30 Year Precipitation Standard Deviation by Month Kingsport TN

Values plotted Get file

Date submitted: 12/13/2023 at 12:46


Monthly Precipitation Kingsport TN 2023

Rainfall

To show variation within the months and not just the monthly totals, we show the rainfall accumulated over a sliding 31-day period centered around each day of the year. Kingsport experiences some seasonal variation in monthly rainfall.

Rain falls throughout the year in Kingsport. The month with the most rain in Kingsport is July, with an average rainfall of 3.5 inches.

The month with the least rain in Kingsport is October, with an average rainfall of 2.3 inches.

The average rainfall (solid line) accumulated over the course of a sliding 31-day period centered on the day in question, with 25th to 75th and 10th to 90th percentile bands. The thin dotted line is the corresponding average snowfall.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Rainfall	2.8"	3.0"	3.2"	3.4"	3.4"	3.2"	3.5"	3.0"	2.6"	2.3"	2.8"	3.1"	

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area

Stony Spot

Very Stony Spot

Wet Spot Other

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Sullivan County, Tennessee Survey Area Data: Version 20, Sep 12, 2023

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: May 5, 2022—Jun 19. 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
	·		
BaD2	Bays silty clay loam, 12 to 20 percent slopes, eroded	1.6	0.5%
BaE2	Bays silty clay loam, 20 to 35 percent slopes, eroded	3.4	1.2%
BaF2	Bays silty clay loam, 35 to 65 percent slopes, eroded	3.0	1.1%
ВеВ	Bellamy loam, 2 to 5 percent slopes	8.1	2.8%
Bm	Bloomingdale silty clay loam, 0 to 2 percent slopes, occasionally flooded	14.9	5.2%
CeD3	Collegedale-Etowah complex, 12 to 20 percent slopes, severely eroded	9.2	3.2%
MoD	Montevallo channery silt loam, 12 to 20 percent slopes	9.1	3.2%
MoE	Montevallo channery silt loam, 20 to 35 percent slopes	4.4	1.5%
MoF	Montevallo channery silt loam, 35 to 50 percent slopes	18.4	6.4%
MoG	Montevallo channery silt loam, 50 to 80 percent slopes	6.8	2.4%
Pt	Pettyjon loam, 0 to 2 percent slopes, rarely flooded	7.1	2.5%
St	Steadman silty clay loam, 0 to 2 percent slopes, occasionally flooded	35.8	12.5%
TbD2	Talbott-Rock outcrop-Bradyville complex, 12 to 20 percent slopes, eroded	79.0	27.6%
TbE2	Talbott-Rock outcrop-Bradyville complex, 20 to 50 percent slopes, eroded	83.6	29.2%
W	Water	1.9	0.7%
Totals for Area of Interest	'	286.3	100.0%

U.S. Army Corps of Engineers

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region See ERDC/EL TR-12-9; the proponent agency is CECW-CO-R

OMB Control #: 0710-0024, Exp:11/3 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

Project/Site: Horse Creek Quarry		City/County: Sullivan	Sampling Date: 11/11/23					
Applicant/Owner: 3 Tees, LLC			State: TN	Sampling Point: WL-1				
Investigator(s): Stephen E. Maxfield, P. E. Section, Township, Range:								
andform (hillside, terrace, etc.): Valley Local relief (concave, convex, none): Concave Slope (%): 35								
Subregion (LRR or MLRA): LRR N, MLRA 128 Lat: 36 deg 28' 34" Long: 82 deg 34' 47" Datum: WGS84								
Soil Map Unit Name: Talbot Rock Outcrop -			NWI classifica					
		0						
Are climatic / hydrologic conditions on the sit	,,			explain in Remarks.)				
Are Vegetation, SoilX_, or Hydro			Circumstances" present	? Yes X No				
Are Vegetation, Soil, or Hydro	ologynaturally probl	ematic? (If needed, ex	plain any answers in Re	emarks.)				
SUMMARY OF FINDINGS – Attach	site map showing s	sampling point locati	ons, transects, im	portant features, etc.				
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area						
Hydric Soil Present?	Yes X No	within a Wetland?	Yes X	No				
Wetland Hydrology Present?	Yes X No							
Remarks: A dam was constructed in this valley years a development likely due to karst topography.	•	However, the pond never im	oounded enough water	to prevent wetland				
HYDROLOGY								
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)				
Primary Indicators (minimum of one is requi	red; check all that apply)		Surface Soil Crac	cks (B6)				
X Surface Water (A1)	X True Aquatic Plants			ed Concave Surface (B8)				
High Water Table (A2)	Hydrogen Sulfide Oc		Drainage Patterns (B10)					
X Saturation (A3)		res on Living Roots (C3)	Moss Trim Lines					
Water Marks (B1)	Presence of Reduce	` '	Dry-Season Water Table (C2)					
Sediment Deposits (B2)		on in Tilled Soils (C6)	Crayfish Burrows					
Drift Deposits (B3)	Thin Muck Surface (·		e on Aerial Imagery (C9)				
X Algal Mat or Crust (B4)	Other (Explain in Re	marks)	Stunted or Stress	` '				
Iron Deposits (B5) X Inundation Visible on Aerial Imagery (B	7\		X Geomorphic Posi					
Water-Stained Leaves (B9)	<i>(</i>)		Shallow Aquitard Microtopographic					
Aquatic Fauna (B13)			X FAC-Neutral Test	` '				
Field Observations:				T (D3)				
Surface Water Present? Yes X	No Depth (inch	06): 6						
Water Table Present? Yes	No X Depth (inch							
Saturation Present? Yes X	No Depth (inch		Hydrology Present?	Yes X No				
(includes capillary fringe)			,	<u></u>				
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos	s, previous inspections), if a	vailable:					
Aerial Photos								
Remarks:								

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: WL-1

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size:)	% Cover	Species?	Status	Dominance Test worksheet:
1				Number of Dominant Species That Are OBL, FACW, or FAC:(A)
3. 4.				Total Number of Dominant Species Across All Strata: (B)
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:		of total cover:		OBL species 80 x 1 = 80
Sapling/Shrub Stratum (Plot size:)				FACW species 0 x 2 = 0
1				FAC species 0 x 3 = 0
2.				FACU species 0 x 4 = 0
3.				UPL species 0 x 5 = 0
4				Column Totals: 80 (A) 80 (B)
5.				Prevalence Index = B/A = 1.00
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				X 2 - Dominance Test is >50%
9				$\frac{\times}{2}$ 2 - Dominance Test is >30% $\frac{\times}{2}$ 3 - Prevalence Index is \leq 3.01
9.		=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
F00/ - 54-4-1				data in Remarks or on a separate sheet)
50% of total cover:	20%	of total cover:		·
Herb Stratum (Plot size: 3000 sqft)			0.01	Problematic Hydrophytic Vegetation ¹ (Explain)
1. cattail	70	Yes	OBL	¹ Indicators of hydric soil and wetland hydrology must be
2. Rush	10	No	OBL	present, unless disturbed or problematic.
3				Definitions of Four Vegetation Strata:
4				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5. 6.				more in diameter at breast height (DBH), regardless of height.
7.				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
9				
10 11.				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
	80	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 40	20%	of total cover:	16	height.
Woody Vine Stratum (Plot size:)				
2				
3.				
4.				
5.		-Total Cavar		Hydrophytic
50% of total cover		=Total Cover of total cover:		Vegetation Present? Yes X No
50% of total cover:		oi total cover:		Present?
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

SOIL Sampling Point:

Depth Matrix Redox Features Remarks	Profile Desc	ription: (Describe	to the dep	oth needed to doc	ument t	he indica	tor or co	onfirm the absen	ce of indicators.)
1-	Depth	Matrix			x Featu				
2-9 N2 7/10BG 40 9-17 N2 4/10B 55 N2 4/10B 55 N2 4/1	(inches)	Color (moist)	<u>%</u>	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
9-17 N2 4/10B 55 Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. Location: PL=Pore Lining, M=Matrix.	0-2	7.5YR 7/6	5						
Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. 1 Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. 2 Location: PL=Pore Lining, M=Matrix. 1 Indicators for Problematic Hydric Soils ³ : 2 cm Muck (A10) (MLRA 147) 2 cm Muck (A10) (MLRA 147) 3 lack Histic (A3) 4 Loamy Mucky Mineral (F1) (MLRA 136) 3 ly Hydrogen Sulfide (A4) 5 Stratified Layers (A5) 5 Depleted Matrix (F3) 6 Depleted Matrix (F3) 7 Depleted Below Dark Surface (A11) 7 Depleted Dark Surface (F6) 7 Depleted Below Dark Surface (A11) 7 Depleted Below Dark Surface (A12) 8 Sandy Mucky Mineral (S1) 8 Sandy Gleyed Matrix (S4) 8 Sandy Redox (S5) 9 Umbric Surface (F13) (MLRA 122, 136) Stripped Matrix (S6) 9 Piedmont Floodplain Soils (F19) 1 (outside MLRA 127, 147, 148) 2 very Shallow Dark Surface (F22) Other (Explain in Remarks) 3 Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes X No	2-9	N2 7/10BG	40						
Hydric Soil Indicators: X Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thic Dark Surface (A12) Black Depleted Below Dark Surface (A12) Sandy Mucky Mineral (A12) Sandy Mucky Mineral (A12) Sandy Gleyed Matrix (A12) Sandy Gleyed Matrix (A13) Surface (A13) Black Histic (A3) Hydrogen Sulfide (A4) Surface (A12) Surface (A12) Sandy Mucky Mineral (A13) Surface (A13) Surface (A14) Surface (A15) Surface (A15) Surface (A16) Surface (A17) Surface (A18) Surface (A19) S	9-17	N2 4/10B	55						
Hydric Soil Indicators: X Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F2) Depleted Below Dark Surface (A11) Thic Dark Surface (A12) Bandy Mucky Mineral (B1) Depleted Dark Surface (A12) Sandy Mucky Mineral (B1) Sandy Gleyed Matrix (B3) Sundy Redox (B5) Sandy									_
Hydric Soil Indicators: X Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F2) Depleted Below Dark Surface (A11) Thic Dark Surface (A12) Bandy Mucky Mineral (B1) Depleted Dark Surface (A12) Sandy Mucky Mineral (B1) Sandy Gleyed Matrix (B3) Sundy Redox (B5) Sandy							_		
Hydric Soil Indicators: X Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Matrix (F2) Depleted Below Dark Surface (A11) Thic Dark Surface (A12) Bandy Mucky Mineral (B1) Depleted Dark Surface (A12) Sandy Mucky Mineral (B1) Sandy Gleyed Matrix (B3) Sundy Redox (B5) Sandy	17			Dada ad Matria				21	E. D. Dan Links M. Makis
X Histosol (A1)			etion, Rivi	=Reduced Matrix, i	vi5=ivias	sked Sand	Grains.		
Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) MLRA 136) Sandy Redox (S5) Multiple Matrix (S6) Dark Surface (S7) Restrictive Layer (if observed): Type: Depth (inches): Iron-Manganese Masses (F12) (LRR N, MLRA 126) Iron-Manganese Masses (F12) (LRR N, MLRA 127, 148) MLRA 126, MLRA 122, 136) Piedmont Floodplain Soils (F19) (MLRA 148) Wetland hydrology must be present, unless disturbed or problematic. Hydric Soil Present? Yes X No	Histic Ep Black His Hydroger Stratified 2 cm Mu	ipedon (A2) stic (A3) n Sulfide (A4) Layers (A5) ck (A10) (LRR N)	e (A11)	Thin Dark S X Loamy Muc X Loamy Gley Depleted Ma Redox Dark	urface (ky Miner ed Matri atrix (F3 Surface	S9) (MLR ral (F1) (N ix (F2)) e (F6)	A 147, 1	48)	Coast Prairie Redox (A16) (MLRA 147, 148) Piedmont Floodplain Soils (F19) (MLRA 136, 147) Red Parent Material (F21)
Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) MLRA 136) Sandy Redox (S5) Multiple Matrix (S6) Dark Surface (S7) Restrictive Layer (if observed): Type: Depth (inches): Iron-Manganese Masses (F12) (LRR N, MLRA 126) Iron-Manganese Masses (F12) (LRR N, MLRA 127, 148) MLRA 126, MLRA 122, 136) Piedmont Floodplain Soils (F19) (MLRA 148) Wetland hydrology must be present, unless disturbed or problematic. Hydric Soil Present? Yes X No			,						
Sandy Redox (S5)		` '				-	2) (LRR N		_ ` ` '
Stripped Matrix (S6) Dark Surface (S7) Red Parent Material (F21) (MLRA 127, 147, 148) Piedmont Floodplain Soils (F19) (MLRA 148) Red Parent Material (F21) (MLRA 127, 147, 148) Restrictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes X No						•		_	
Dark Surface (S7) Red Parent Material (F21) (MLRA 127, 147, 148) unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes X No	Sandy R	edox (S5)		Umbric Surf	ace (F1	3) (MLRA	122, 136	3) 3 ₁	ndicators of hydrophytic vegetation and
Restrictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes X No	Stripped	Matrix (S6)		Piedmont Fl	oodplair	n Soils (F	19) (MLR	A 148)	wetland hydrology must be present,
Type:	Dark Sur	face (S7)		Red Parent	Material	(F21) (M	LRA 127	, 147, 148)	unless disturbed or problematic.
Depth (inches): Hydric Soil Present? Yes X No	Restrictive L	ayer (if observed):							
	Type:								
Remarks:	Depth (in	ches):						Hydric Soil Pr	esent? Yes X No
	Remarks.								

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Resources, Version 1.5

Named Waterbody: Un-named tributary of Horse Creek	UNP-1	Date/Time: 11/11/23	
Assessors/Affiliation: Stephen E. Maxfield		Project ID :	
Site Name/Description: Proposed Horse Creek Quarry			
Site Location: 3725 Sullivan Gardens Parkway, Kingsport, Tennessee			
HUC (12 digit): 060101020702	Latitude: 336°28	'31"	
Previous Rainfall (7-days) :	Longitude: 82°34'42"		
Precipitation this Season vs. Normal: abnormally wet elevated av Source of recent & seasonal precip. data:	verage low abnorr	mally dry unknown	
Watershed Size: 85 ac.	County: Sulliva	n	
Soil Type(s) / Geology: Talbot Rock Outcrop - Bradyville Complex	Source: NRCS		
Surrounding Land Use : Agricultural			
Degree of historical alteration to natural channel morphology & hydrology Severe Moderate Slight	gy (circle one & desc X Abs	,	

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Х	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species	Χ	WWC
3. Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	WWC
4. Daily flow and precipitation records showing feature only flows in direct response to rainfall	Х	WWC
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 		X Stream
6. Presence of fish (except Gambusia)		χ Stream
7. Presence of naturally occurring ground water table connection		X Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed		X Stream
9. Evidence watercourse has been used as a supply of drinking water	Х	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary & secondary indicators is provided in *TDEC-WPC Guidance For Making Hydrologic Determinations, Version 1.5*

Overall Hydrologic Determination = Perrenial Stream	
Secondary Indicator Score (if applicable) =	
Justification / Notes :	_

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal = 23)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank 3	0	1	2	3
2. Sinuous channel 2	0	1	2	3
3. In-channel structure: riffle-pool sequences 2	0	1	2	3
4. Sorting of soil textures or other substrate 3	0	1	2	3
5. Active/relic floodplain 2	0	0.5	1	1.5
6. Depositional bars or benches 2	0	1	2	3
7. Braided channel 0	0	1	2	3
8. Recent alluvial deposits 1	0	0.5	1	1.5
9. Natural levees 1	0	1	2	3
10. Headcuts 1	0	1	2	3
11. Grade controls 3	0	0.5	1	1.5
12. Natural valley or drainageway 3	0	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map 0	0	1	2	3

B. Hydrology (Subtotal = 6.5)		Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel 2		0	1	2	3
15. Water in channel and >48 hours since sig. rair	1 3	0	1	2	3
16. Leaf litter in channel 1.5		1.5	1	0.5	0
17. Sediment on plants or on debris 0		0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channe	l 0	No = 0 Yes = 1.5		= 1.5	

C. Biology (Subtotal = 7)		Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed ¹	3	3	2	1	0
21. Rooted plants in the thalweg ¹ 2		3	2	1	0
22. Crayfish in stream (exclude in floodplain)	0	0	1	2	3
23. Bivalves/mussels	0	0	1	2	3
24. Amphibians	0	0	0.5	1	1.5
25. Macrobenthos (record type & abundance)	2	0	1	2	3
26. Filamentous algae; periphyton	0	0	1	2	3
27. Iron oxidizing bacteria/fungus 0		0	0.5	1	1.5
28. Wetland plants in channel bed ²	0	0	0.5	1	1.5

¹ Focus is on the presence of terrestrial plants.

Total Points =36.5	
Under Normal Conditions, Watercourse is a Wet Weather Conveyance if Secondary Indicator Score < 19 points	

Notes :			
			_
-			

² Focus is on the presence of aquatic or wetland plants.

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Resources, Version 1.5

Named Waterbody: Un-named tributary of Horse Creek	UNI-1	Date/Time: 11/11/23
Assessors/Affiliation: Stephen E. Maxfield		Project ID :
Site Name/Description: Proposed Horse Creek Quarry		
Site Location: 3725 Sullivan Gardens Parkway, Kingsport, Tennessee		
HUC (12 digit): 060101020702	Latitude: 36°28'5	51"
Previous Rainfall (7-days) :	Longitude: 82°34	'47"
Precipitation this Season vs. Normal: abnormally wet elevated av Source of recent & seasonal precip. data:	verage low abnorr	mally dry unknown
Watershed Size: 5 ac.	County: Sulliva	n
Soil Type(s) / Geology: Talbot Rock Outcrop - Bradyville Complex	Source: NRCS	
Surrounding Land Use: Agricultural		
Degree of historical alteration to natural channel morphology & hydrology Severe Moderate Slight	gy (circle one & desc X Abs	,

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Х	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species	Х	WWC
3. Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions		x wwc
Daily flow and precipitation records showing feature only flows in direct response to rainfall	Х	WWC
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Х	Stream
7. Presence of naturally occurring ground water table connection		X Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed		X Stream
9. Evidence watercourse has been used as a supply of drinking water	Х	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary & secondary indicators is provided in *TDEC-WPC Guidance For Making Hydrologic Determinations, Version 1.5*

Overall Hydrologic Determination = Intermittent Stream
Secondary Indicator Score (if applicable) =
Justification / Notes :

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal = 11.5)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank 3	0	1	2	3
2. Sinuous channel 0	0	1	2	3
3. In-channel structure: riffle-pool sequences 0	0	1	2	3
4. Sorting of soil textures or other substrate 1	0	1	2	3
5. Active/relic floodplain 0	0	0.5	1	1.5
6. Depositional bars or benches 0	0	1	2	3
7. Braided channel 0	0	1	2	3
8. Recent alluvial deposits 1	0	0.5	1	1.5
9. Natural levees 1	0	1	2	3
10. Headcuts 1	0	1	2	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway 0.5	0	0.5	1	1.5
13. At least second order channel on existing USGS	0	1	2	3
or NRCS map 3				

B. Hydrology (Subtotal = 6.5)		Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel 2		0	1	2	3
15. Water in channel and >48 hours since sig. rair	1 3	0	1	2	3
16. Leaf litter in channel 1.5		1.5	1	0.5	0
17. Sediment on plants or on debris 0		0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channe	l 0	No = 0 Yes = 1.5		= 1.5	

C. Biology (Subtotal = 0)		Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed ¹	0	3	2	1	0
21. Rooted plants in the thalweg ¹ 0		3	2	1	0
22. Crayfish in stream (exclude in floodplain)	0	0	1	2	3
23. Bivalves/mussels	0	0	1	2	3
24. Amphibians	0	0	0.5	1	1.5
25. Macrobenthos (record type & abundance)	0	0	1	2	3
26. Filamentous algae; periphyton	0	0	1	2	3
27. Iron oxidizing bacteria/fungus 0		0	0.5	1	1.5
28. Wetland plants in channel bed ²	0	0	0.5	1	1.5

¹ Focus is on the presence of terrestrial plants.

Total Points =17.5
Under Normal Conditions, Watercourse is a Wet Weather Conveyance if Secondary Indicator Score < 19 points

Notes :			

² Focus is on the presence of aquatic or wetland plants.

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Resources, Version 1.5

Named Waterbody: Un-named tributary of Horse Creek	DS-1	Date/Time: 11/11/23
Assessors/Affiliation: Stephen E. Maxfield		Project ID :
Site Name/Description: Proposed Horse Creek Quarry		
Site Location: 3725 Sullivan Gardens Parkway, Kingsport, Tennessee		
HUC (12 digit): 060101020702	Latitude: 36°28'3	33"
Previous Rainfall (7-days) :	Longitude: 82°34	'36"
Precipitation this Season vs. Normal: abnormally wet elevated av Source of recent & seasonal precip. data:	verage low abnorr	mally dry unknown
Watershed Size: 7.3 ac.	County: Sulliva	n
Soil Type(s) / Geology: Talbot Rock Outcrop - Bradyville Complex	Source: NRCS	
Surrounding Land Use : Agricultural		
Degree of historical alteration to natural channel morphology & hydrology Severe Moderate Slight	gy (circle one & desc X Abs	,

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Х	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species	Х	WWC
Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	wwc
4. Daily flow and precipitation records showing feature only flows in direct response to rainfall		x WWC
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	х	Stream
6. Presence of fish (except Gambusia)	Х	Stream
7. Presence of naturally occurring ground water table connection	Х	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	Х	Stream
Evidence watercourse has been used as a supply of drinking water	Х	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary & secondary indicators is provided in *TDEC-WPC Guidance For Making Hydrologic Determinations, Version 1.5*

Overall Hydrologic Determination = WWC	
Secondary Indicator Score (if applicable) = ³	
Justification / Notes :	
No flow present. No defined bed or bank. Covered with leaf litter, tree limbs, branches with no recent flow evidence.	

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal =	1.5	Absent	Weak	Moderate	Strong
Continuous bed and bank	0	0	1	2	3
2. Sinuous channel	0	0	1	2	3
3. In-channel structure: riffle-pool s	equences 0	0	1	2	3
4. Sorting of soil textures or other s	substrate 0	0	1	2	3
5. Active/relic floodplain	0	0	0.5	1	1.5
6. Depositional bars or benches	0	0	1	2	3
7. Braided channel	0	0	1	2	3
Recent alluvial deposits	0	0	0.5	1	1.5
Natural levees	0	0	1	2	3
10. Headcuts	0	0	1	2	3
11. Grade controls	0	0	0.5	1	1.5
12. Natural valley or drainageway	1.5	0	0.5	1	1.5
13. At least second order channel of	n existing USGS	0	1	2	3
or NRCS map 0					

B. Hydrology (Subtotal = 1.5	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel 0	0	1	2	3
15. Water in channel and >48 hours since sig. rain 0	0	1	2	3
16. Leaf litter in channel 1.5	1.5	1	0.5	0
17. Sediment on plants or on debris 0	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channel 0	No	= 0	Yes =	= 1.5

C. Biology (Subtotal = 0)		Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed ¹	0	3	2	1	0
21. Rooted plants in the thalweg ¹ 0		3	2	1	0
22. Crayfish in stream (exclude in floodplain)	0	0	1	2	3
23. Bivalves/mussels	0	0	1	2	3
24. Amphibians	0	0	0.5	1	1.5
25. Macrobenthos (record type & abundance)	0	0	1	2	3
26. Filamentous algae; periphyton	0	0	1	2	3
27. Iron oxidizing bacteria/fungus 0		0	0.5	1	1.5
28. Wetland plants in channel bed ²	0	0	0.5	1	1.5

¹ Focus is on the presence of terrestrial plants.

Total Points =3
Under Normal Conditions, Watercourse is a Wet Weather Conveyance if Secondary Indicator Score < 19 points

Notes :			
			_

² Focus is on the presence of aquatic or wetland plants.

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Resources, Version 1.5

Named Waterbody: Un-named tributary of Horse Creek	DS-2	Date/Time: 11/11/23
Assessors/Affiliation: Stephen E. Maxfield		Project ID :
Site Name/Description: Proposed Horse Creek Quarry		
Site Location: 3725 Sullivan Gardens Parkway, Kingsport, Tennessee		
HUC (12 digit): 060101020702	Latitude: 36°28'3	30"
Previous Rainfall (7-days) :	Longitude: 82°34	'43"
Precipitation this Season vs. Normal: abnormally wet elevated av Source of recent & seasonal precip. data:	verage low abnorr	nally dry unknown
Watershed Size: 7.3 ac.	County: Sulliva	n
Soil Type(s) / Geology: Talbot Rock Outcrop - Bradyville Complex	Source: NRCS	
Surrounding Land Use: Agricultural		
Degree of historical alteration to natural channel morphology & hydrology Severe Moderate Slight	gy (circle one & desc X Abs	,

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Х	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species	Х	WWC
Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	WWC
Daily flow and precipitation records showing feature only flows in direct response to rainfall		x wwc
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Х	Stream
7. Presence of naturally occurring ground water table connection	Х	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	Х	Stream
Evidence watercourse has been used as a supply of drinking water	Х	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary & secondary indicators is provided in *TDEC-WPC Guidance For Making Hydrologic Determinations, Version 1.5*

Overall Hydrologic Determination = WWC	
Secondary Indicator Score (if applicable) = 1	
Justification / Notes :	
No flow present. No defined bed or bank. Covered with leaf litter, tree limbs, branches with no recent flow evidence.	

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal = 1.	0	Absent	Weak	Moderate	Strong
Continuous bed and bank	0	0	1	2	3
2. Sinuous channel	0	0	1	2	3
3. In-channel structure: riffle-pool sed	quences 0	0	1	2	3
4. Sorting of soil textures or other sul	ostrate 0	0	1	2	3
5. Active/relic floodplain	0	0	0.5	1	1.5
6. Depositional bars or benches	0	0	1	2	3
7. Braided channel	0	0	1	2	3
8. Recent alluvial deposits	0	0	0.5	1	1.5
9. Natural levees	0	0	1	2	3
10. Headcuts	0	0	1	2	3
11. Grade controls	0	0	0.5	1	1.5
12. Natural valley or drainageway	1.0	0	0.5	1	1.5
13. At least second order channel on	existing USGS	0	1	2	3
or NRCS map 0					

B. Hydrology (Subtotal = 0	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel 0	0	1	2	3
15. Water in channel and >48 hours since sig. rain 0	0	1	2	3
16. Leaf litter in channel 0	1.5	1	0.5	0
17. Sediment on plants or on debris 0	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines) 0	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channel 0	No:	= 0	Yes =	= 1.5

C. Biology (Subtotal = 0)		Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed ¹	0	3	2	1	0
21. Rooted plants in the thalweg ¹ 0		3	2	1	0
22. Crayfish in stream (exclude in floodplain)	0	0	1	2	3
23. Bivalves/mussels	0	0	1	2	3
24. Amphibians	0	0	0.5	1	1.5
25. Macrobenthos (record type & abundance)	0	0	1	2	3
26. Filamentous algae; periphyton	0	0	1	2	3
27. Iron oxidizing bacteria/fungus 0		0	0.5	1	1.5
28. Wetland plants in channel bed ²	0	0	0.5	1	1.5

¹ Focus is on the presence of terrestrial plants.

Total Points = _____1.0____

Under Normal Conditions, Watercourse is a Wet Weather Conveyance if Secondary Indicator Score < 19 points	
Notes:	

² Focus is on the presence of aquatic or wetland plants.

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Resources, Version 1.5

Named Waterbody: Un-named tributary of Horse Creek	DS-3	Date/Time: 11/11/23
Assessors/Affiliation: Stephen E. Maxfield		Project ID :
Site Name/Description: Proposed Horse Creek Quarry		
Site Location: 3725 Sullivan Gardens Parkway, Kingsport, Tennessee		
HUC (12 digit): 060101020702	Latitude: 36°28'5	50"
Previous Rainfall (7-days) :	Longitude: 82°34	'45"
Precipitation this Season vs. Normal: abnormally wet elevated av Source of recent & seasonal precip. data:	rerage low abnorr	mally dry unknown
Watershed Size: 64 ac.	County: Sulliva	n
Soil Type(s) / Geology: Talbot Rock Outcrop - Bradyville Complex	Source: NRCS	
Surrounding Land Use : Agricultural		
Degree of historical alteration to natural channel morphology & hydrology Severe Moderate Slight	gy (circle one & desc X Abs	,

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Х	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species	Х	WWC
3. Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	WWC
4. Daily flow and precipitation records showing feature only flows in direct response to rainfall		x wwc
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Х	Stream
7. Presence of naturally occurring ground water table connection	Х	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	Х	Stream
9. Evidence watercourse has been used as a supply of drinking water	Х	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary & secondary indicators is provided in *TDEC-WPC Guidance For Making Hydrologic Determinations, Version 1.5*

Overall Hydrologic Determination = WWC
Secondary Indicator Score (if applicable) = 1.5
Justification / Notes :
No flow present. No defined bed or bank. Covered with leaf litter, tree limbs, branches with no recent flow evidence.

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal = 1.	0	Absent	Weak	Moderate	Strong
Continuous bed and bank	0	0	1	2	3
2. Sinuous channel	0	0	1	2	3
3. In-channel structure: riffle-pool sed	quences 0	0	1	2	3
4. Sorting of soil textures or other sul	ostrate 0	0	1	2	3
5. Active/relic floodplain	0	0	0.5	1	1.5
6. Depositional bars or benches	0	0	1	2	3
7. Braided channel	0	0	1	2	3
8. Recent alluvial deposits	0	0	0.5	1	1.5
9. Natural levees	0	0	1	2	3
10. Headcuts	0	0	1	2	3
11. Grade controls	0	0	0.5	1	1.5
12. Natural valley or drainageway	1.0	0	0.5	1	1.5
13. At least second order channel on	existing USGS	0	1	2	3
or NRCS map 0					

B. Hydrology (Subtotal = 0.5	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel 0	0	1	2	3
15. Water in channel and >48 hours since sig. rain 0	0	1	2	3
16. Leaf litter in channel 0.5	1.5	1	0.5	0
17. Sediment on plants or on debris 0	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channel 0	No	0 = 0	Yes =	= 1.5

C. Biology (Subtotal = 0)		Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed ¹	0	3	2	1	0
21. Rooted plants in the thalweg ¹ 0		3	2	1	0
22. Crayfish in stream (exclude in floodplain)	0	0	1	2	3
23. Bivalves/mussels	0	0	1	2	3
24. Amphibians	0	0	0.5	1	1.5
25. Macrobenthos (record type & abundance)	0	0	1	2	3
26. Filamentous algae; periphyton	0	0	1	2	3
27. Iron oxidizing bacteria/fungus 0		0	0.5	1	1.5
28. Wetland plants in channel bed ²	0	0	0.5	1	1.5

¹ Focus is on the presence of terrestrial plants.

Total Points = _____1.5___

	onditions, Watercourse is a Wet Weat econdary Indicator Score < 19 points	ther	
Notes :			

² Focus is on the presence of aquatic or wetland plants.

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Resources, Version 1.5

Named Waterbody: Un-named tributary of Horse Creek	DS-4	Date/Time: 11/11/23	
Assessors/Affiliation: Stephen E. Maxfield		Project ID :	
Site Name/Description: Proposed Horse Creek Quarry			
Site Location: 3725 Sullivan Gardens Parkway, Kingsport, Tennessee			
HUC (12 digit): 060101020702	Latitude: 36°28'5	50"	
Previous Rainfall (7-days) :	Longitude: 82°34'45"		
Precipitation this Season vs. Normal : abnormally wet elevated av Source of recent & seasonal precip. data :	verage low abnorr	mally dry unknown	
Watershed Size: 64 ac.	County: Sulliva	n	
Soil Type(s) / Geology: Talbot Rock Outcrop - Bradyville Complex	Source: NRCS		
Surrounding Land Use : Agricultural			
Degree of historical alteration to natural channel morphology & hydrology Severe Moderate Slight	gy (circle one & desc X Abs	, ,	

Primary Field Indicators Observed

Primary Indicators	NO	YES
Hydrologic feature exists solely due to a process discharge	Х	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species	Х	WWC
3. Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	Х	wwc
4. Daily flow and precipitation records showing feature only flows in direct response to rainfall		x wwc
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	Х	Stream
6. Presence of fish (except Gambusia)	Х	Stream
7. Presence of naturally occurring ground water table connection	Х	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	Х	Stream
9. Evidence watercourse has been used as a supply of drinking water	Х	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary & secondary indicators is provided in *TDEC-WPC Guidance For Making Hydrologic Determinations, Version 1.5*

Overall Hydrologic Determination = WWC	
Secondary Indicator Score (if applicable) = 1.5	
Justification / Notes :	
No flow present. No defined bed or bank. No recent flow evidence.	

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal = 1	.0	Absent	Weak	Moderate	Strong
Continuous bed and bank	0	0	1	2	3
2. Sinuous channel	0	0	1	2	3
3. In-channel structure: riffle-pool se	quences 0	0	1	2	3
4. Sorting of soil textures or other su	bstrate 0	0	1	2	3
5. Active/relic floodplain	0	0	0.5	1	1.5
6. Depositional bars or benches	0	0	1	2	3
7. Braided channel	0	0	1	2	3
8. Recent alluvial deposits	0	0	0.5	1	1.5
9. Natural levees	0	0	1	2	3
10. Headcuts	0	0	1	2	3
11. Grade controls	0	0	0.5	1	1.5
12. Natural valley or drainageway	1.0	0	0.5	1	1.5
13. At least second order channel on	existing USGS	0	1	2	3
or NRCS map 0					

B. Hydrology (Subtotal =1.5	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel 0	0	1	2	3
15. Water in channel and >48 hours since sig. rain 0	0	1	2	3
16. Leaf litter in channel	1.5	1	0.5	0
17. Sediment on plants or on debris 0	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines) 0.5	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channel	No	= 0	Yes =	= 1.5

C. Biology (Subtotal = 0)		Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed ¹	0	3	2	1	0
21. Rooted plants in the thalweg ¹ 0		3	2	1	0
22. Crayfish in stream (exclude in floodplain)	0	0	1	2	3
23. Bivalves/mussels	0	0	1	2	3
24. Amphibians	0	0	0.5	1	1.5
25. Macrobenthos (record type & abundance)	0	0	1	2	3
26. Filamentous algae; periphyton	0	0	1	2	3
27. Iron oxidizing bacteria/fungus 0		0	0.5	1	1.5
28. Wetland plants in channel bed ²	0	0	0.5	1	1.5

¹ Focus is on the presence of terrestrial plants.

Notes :	Under Normal Conditions, Watercourse is a Wet Weather Conveyance if Secondary Indicator Score < 19 points Notes:

² Focus is on the presence of aquatic or wetland plants.

Wetland WL-1

Wetland WL-1

Pit WL-1

Old spillway pipe from failed pond construction WL-1

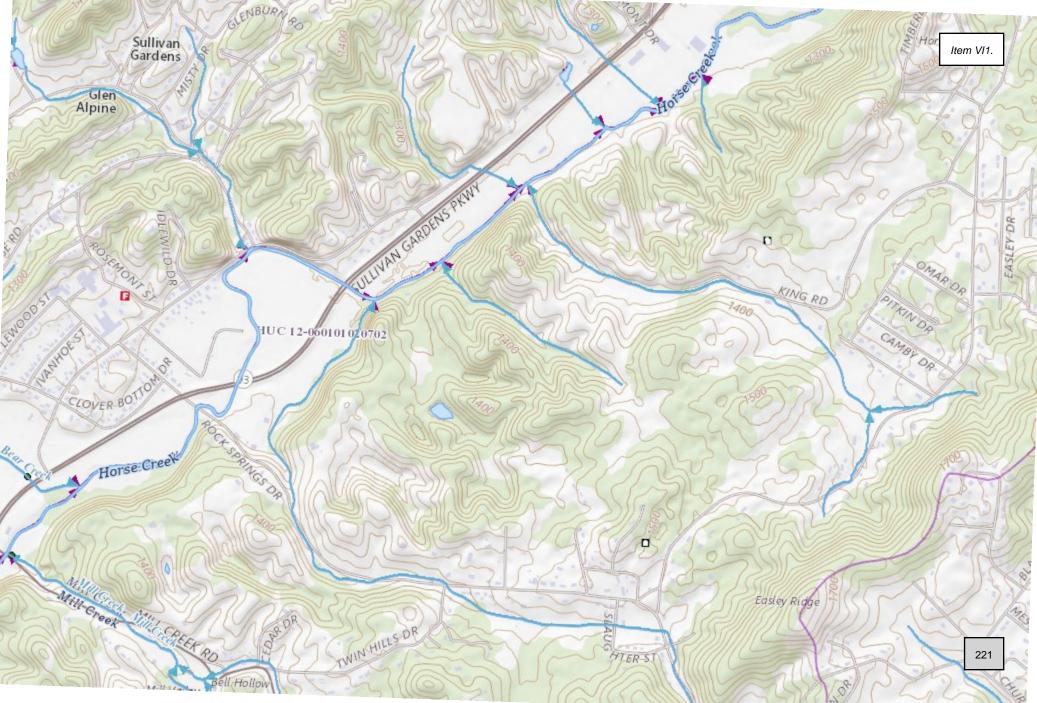
Stream UNP-1

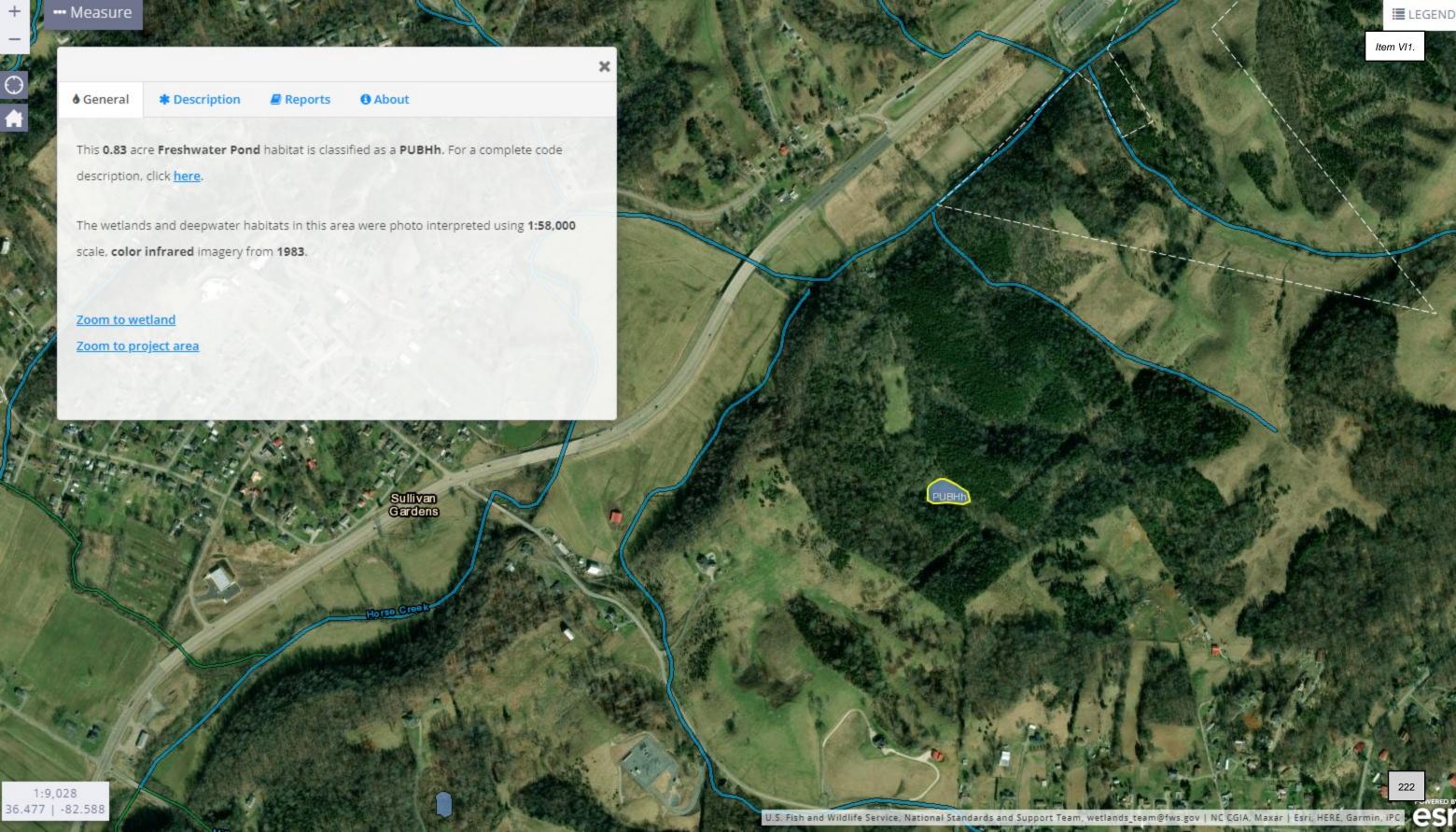
Stream UNP-1

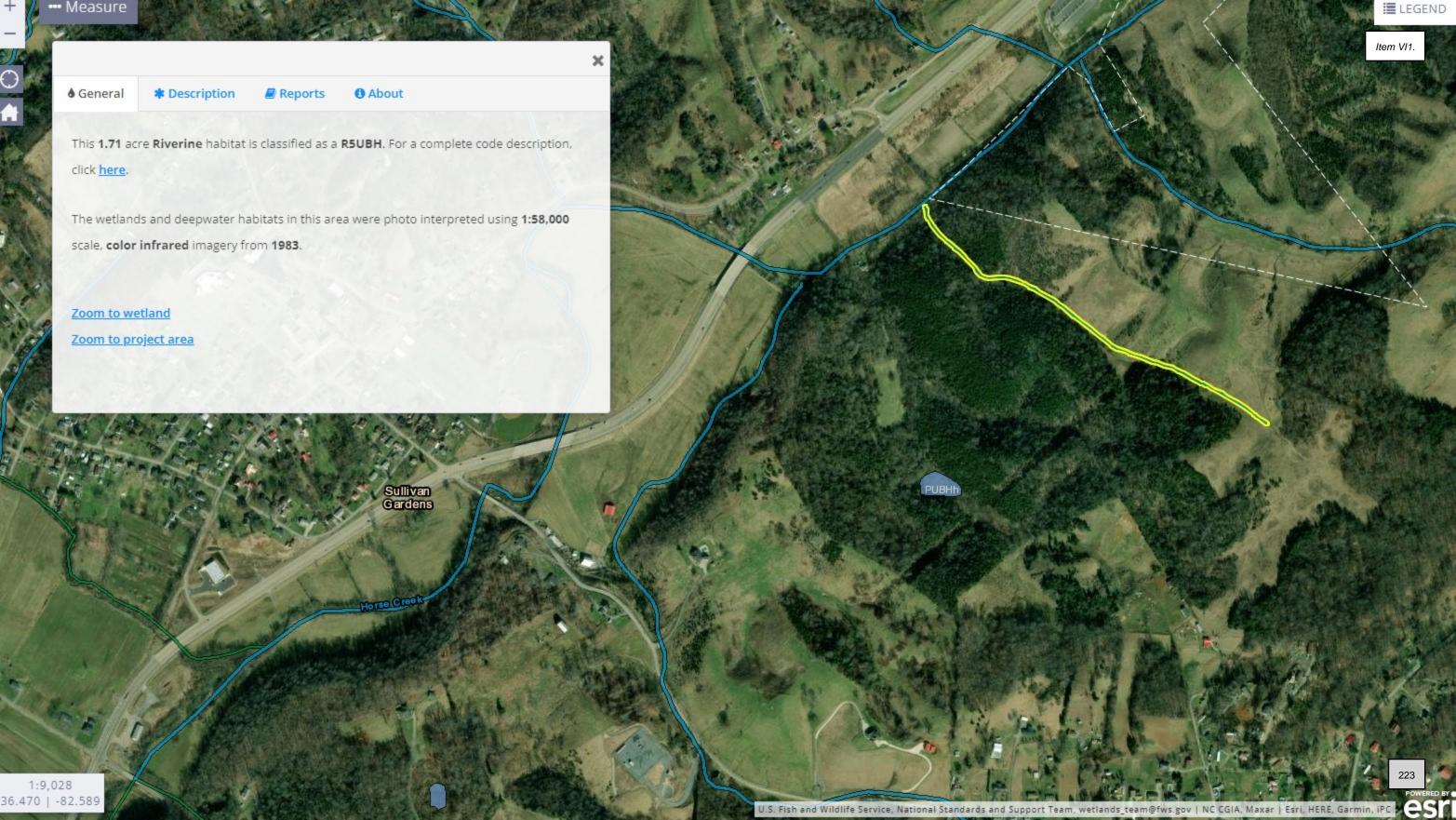
Stream UNP-1 extending beyond property

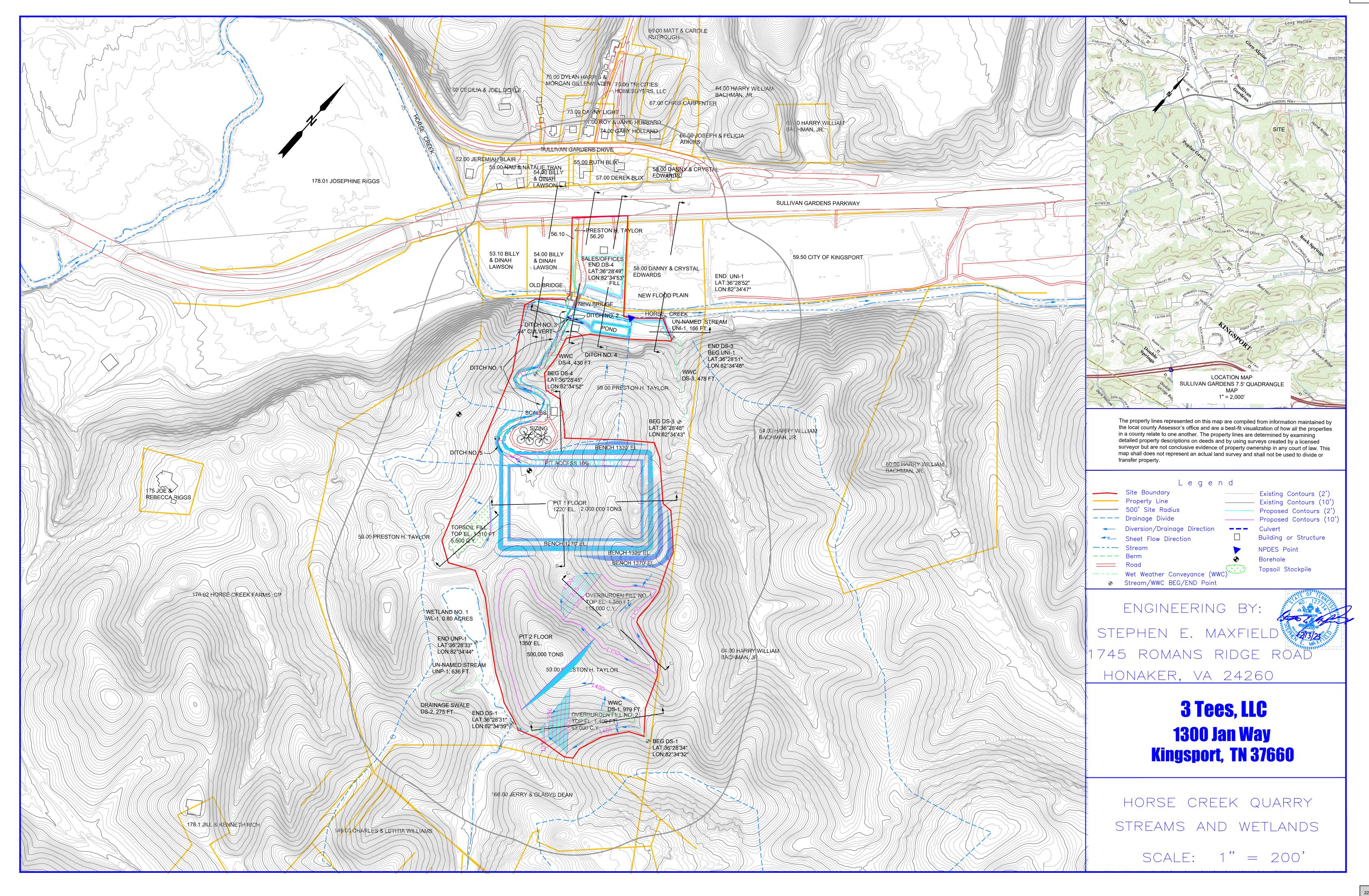
WWC DS-1

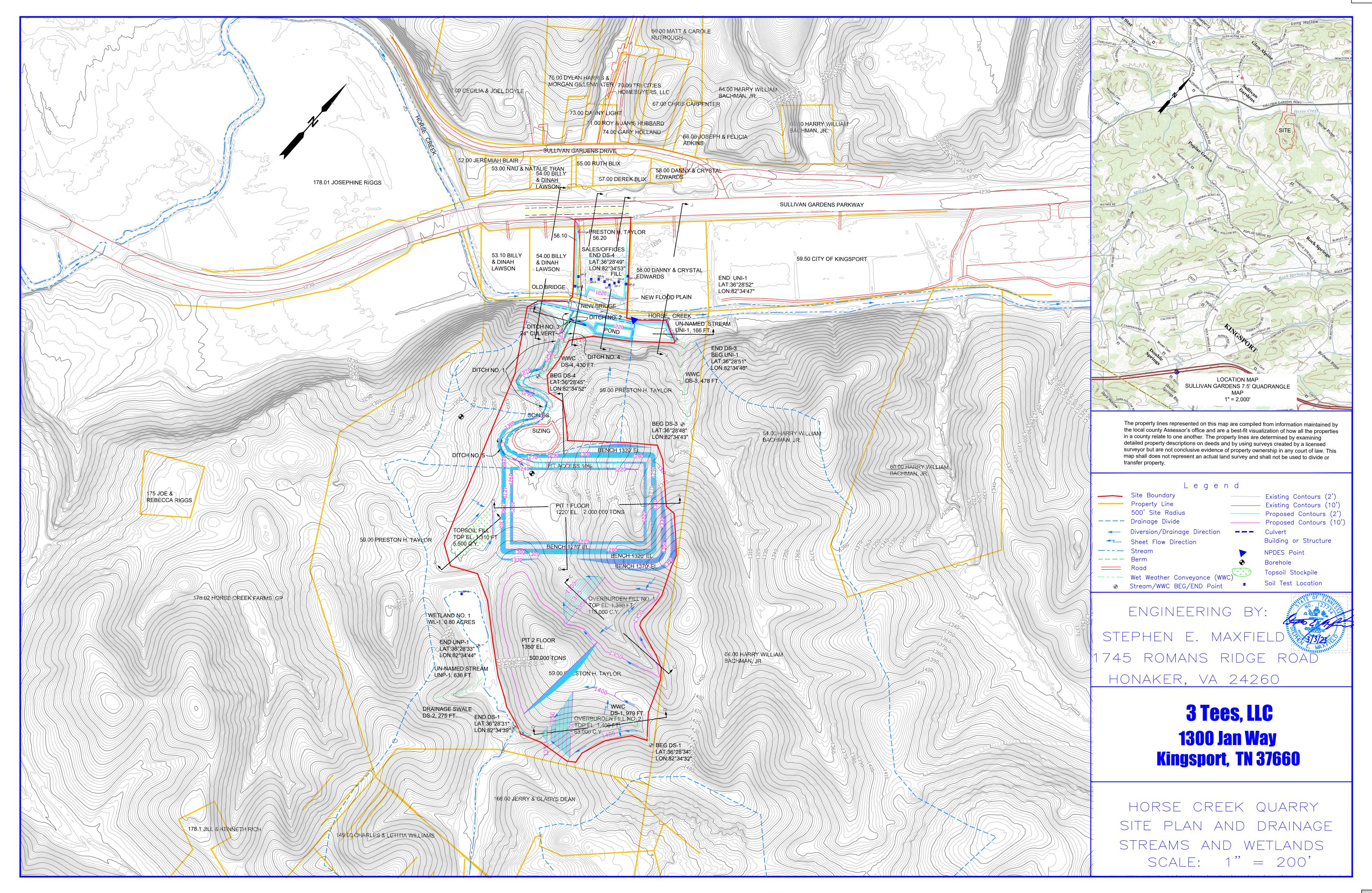
WWC DS-2


WWC DS-3




WWC DS-4




Stream UNI-1

PETITION TO SULLIVAN COUNTY FOR REZONING

A request for rezoning is made by the person named below; said request to go before the Planning Commission for recommendation to the Sullivan County Board of Commissioners.
Date: 03/21/24
Property Owner: Daniel V Davis ,dba 3Tees,llc on behalf of Preston H. Taylor, Jr

Group:

Zoning District: A-1

Address: 1300 Jan Way Kingsport, TN 37660

Phone number: 423-817-7300

Tax Map: 090

Zoning Map:

Email: vicd@vdctn.com

Property Identification

Parcel: 059-00

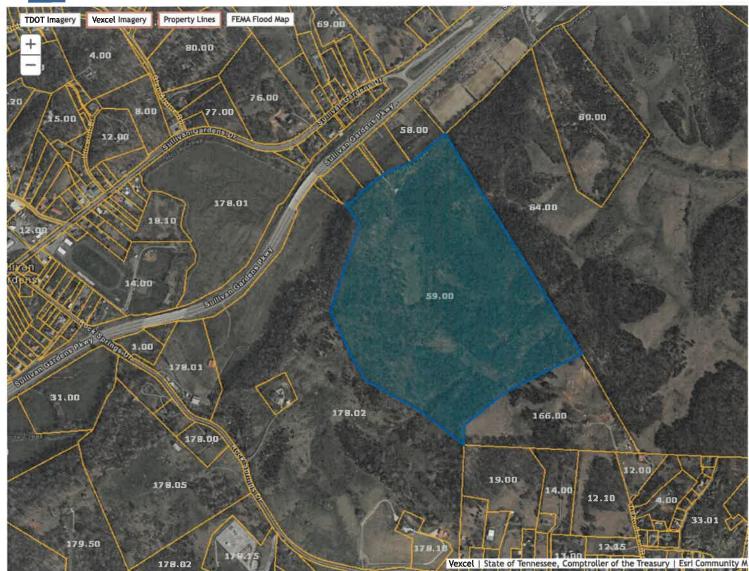
Civil District: 13

Proposed District: M-2

Denied: _____

Property Location: 3725 Sullivan Gardens Pky Kingsport , TN 3766	Commission District: 8							
Purpose of Rezoning: Agriculture to Heavy Manufacturing rock quarry/borrow site								
Planning Commission: hingsport Planning Complete: Historic Courthouse, 2nd Floor, 3411 Hwy 126 Blountville Date: 5/16/24 Time: 5:30PM	nmission TN							
Approved: Denied: _								
County Commission:								
Place: Historic Courthouse 2 nd Floor Commission Chambers 3411 Highway 12	26, Blountville TN							
Date: 6/13/24 Time: 6:00 PM								

DEED RESTRICTIONS


Approved: ____

I understand that rezoning does not release my property from the requirements of private deed/Subdivision restrictions. The undersign, being duly sworn, hereby acknowledges that the information provided in this petition to Sullivan County for

Rezonling is true and correct to the best of my information, knowledge and	d belief.
	Date: 3/21/24 My Commission Expires

Tennessee Property viewer

Traffic Analysis

FOR:

3 Tees, LLC
Horse Creek Quarry
Commercial Entrance

LOCATED ON:

3725 Sullivan Gardens Parkway
SULLIVAN COUNTY, TENNESSEE

DESIGNED BY:

Stephen E. Maxfield 1745 Roman Ridge Road Honaker, VA, 24260

March 23, 2024

Executive Summary

A commercial entrance has been designed for the proposed quarry at 3725 Sullivan Gardens Parkway, Kingsport Tennessee in accordance with American Association of State Highway and Transportation Officials (AASHTO) Policy on Geometric Design of Highways and Streets (Green Book) based on site conditions and a traffic analysis. No deceleration or acceleration lanes are proposed. Entrance shall accommodate WB-62 type trucks.

Proposed Location

The proposed location is at 3725 Sullivan Gardens Parkway (Route 93) between Regional Park Drive and Rock Springs Road. This entrance is approximately 1.8 miles South of Interstate 26. The purpose of this entrance is to provide access to the proposed 3 Tees, LLC Horse Creek Quarry.

Topography

Route 93 is an undivided five (5) lane Principal Urban Arterial Route, with a continuous center turn lane. The new commercial entrance will be a two (2) lane entrance leading into a rock quarry. The surrounding land use is primarily a combination of residential and farmland. In the vicinity of the proposed entrance, the Route 93 profile is nearly level, with no grades over 1% or crests or sags from vertical curves.

Site Drainage

There are no drainage structures within TDOT R.O.W. The entrance will be graded to direct the drainage away from Route 93. Therefore, the post development run-off on TDOT R.O.W. is less than or equal to the pre-development run-off.

Sight Distance

As noted above in the Topography Section, Route 93 is an undivided 5-lane highway, with a dedicated turn lane. In the location of the proposed entrance the road is nearly level and straight with no sags or crests. The sight distances were measured in accordance with the AASHTO criteria for eye level height, object height, and measuring location. All aspects of

sight distance at this location are well within the design criteria of the AASHTO Manual. The sight distances are summarized in the table below:

Aspect	Speed Limit	Grade	Sight Distance	Min. Req'd
Stopping Westbound	45 mph	0.4 % up	>1,000 ft	360 ft
Stopping Eastbound	45 mph	0.0 %	580 ft	360ft
Left	45 mph	0.0 %	580 ft	565 ft
Right	45 mph	0.4 % down	>1,000 ft	600 ft

The entrance is designed to accommodate WB-62 trucks; however, the majority of vehicles on Route 92 are passenger vehicles that must react to vehicles using the entrance. Therefore, minimum requirements are for passenger vehicles.

Vehicle Volume

Vehicle volumes for this section of Route 93 were acquired from 2023 Tennessee Department of Transportation (TDOT) Traffic Count Database System (TCDS). TDOT continuously collects traffic information on Tennessee's roadways as part of the Department's responsibility to monitor, collect, analyze, manage, and disseminate transportation data. Traffic data includes volume counts, vehicle classification counts, and speed data (see attached Appendix B). Annual Average Daily Traffic (AADT) volume is used throughout the Long-Range Planning process. TDOT collects Average Daily Traffic (ADT), which is based on a 24-hour count. This information is transformed in AADT by using the raw traffic data, which is statistically corrected by a seasonal variation factor that considers time of year and day of the week, as well as adjustments for vehicle type, determined by seasonal and axle correction factors. The peak hour volume (PHV) was determined as follows: (AADT) x (K) x (Direction Factor); where, K is a factor is based on the 30th highest hour of the year and is used to compute design hour volumes. Directional factors (D-factor) are measures of the peak hour directionality. They are based on the average weekday peak hour.

PHV = (13,614) x (0.10) x (0.59) = 803 vpd $\div 8$ hrs ≈ 100 vehicles per hour.

This value was used for traffic in both directions as worst case scenario for designing the entrance.

Vehicular Speeds

The Posted Speed Limit at this location on Route 93 is 45 MPH.

Types of Vehicles

The type of vehicle used for the worst case design would be a WB-62 Truck.

Entrance Geometry

The entrance has been designed to accommodate the WB-62 Truck. This is an Interstate Semi type truck. This is not the typical truck in and out of a quarry but would be an infrequent basis such as special shipment or delivery. The entrance design is a 3 centered compound curve, with radii of 200 ft, 50 ft, and 600 ft. from the AASHTO Design Manual. This design ensures that the path of the outer front wheel and the inner rear wheel of the vehicle are maintained in the designated paved lane.

Pedestrian Movements

No crosswalks are present at the proposed entrance location. Due to the nature of the entrance, few pedestrians are anticipated.

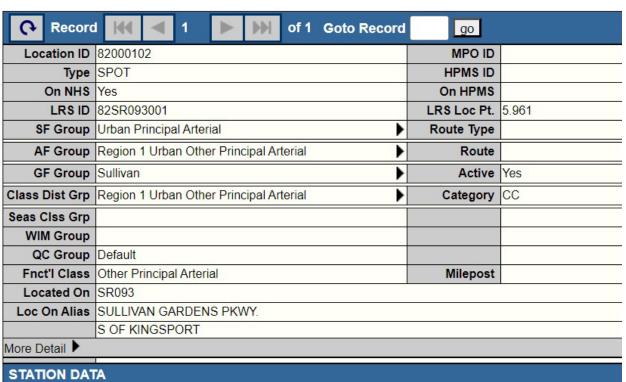
Trip Generation

The traffic generation of the proposed entrance was determined by assuming production/sales = 200,000 tpy or 770 tpd and 20 tons per truck; 770/20=39 trucks per day + employees, salesmans, etc. say 55 vpd. A maximum of 55 vehicles per day was determined. A total of 22 vehicles per peak hour were determined by the following: If all truck drivers and quarry employees were to arrive at the same time for work that day as well as any additional deliveries that may come in for that day, then that should be a maximum of 40% of the total daily vehicle trips; thus, $(0.4) \times (55) = 22$. Table 2 summarizes the estimated peak hour generation based on the proposed development.

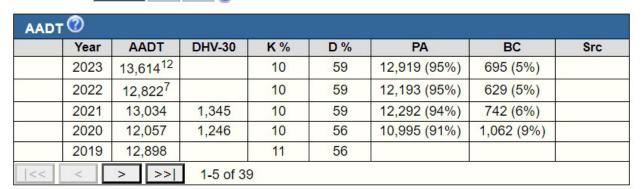
Since 22 vph is the peak amount, and Interstate 26 is 1.8 miles north and Interstate 81 is 6.6 miles south, it is assumed that there are 80% of vehicles turning left into site and 20% turning right into site. Similarly, egress traffic will be 80% right turn onto 93 and 20% left onto 93.

Table 2							
Trip Gen	eration Volumes fo	r					
the Proposed Entrance							
Parking Spaces	Ample Parking						
Period	Entering	Exiting					
Peak	22	22					
Daily Total	55	55					

Highway 93, being a 5-lane undivided highway with a dedicated continuous center turn lane, no improvements will be necessary for traffic turning left into the quarry. As noted above, an estimated 20% of the traffic volume will turn right into the quarry. At the peak volume this would be 5 vph (20% of 22). According to AASHTO Design Manual, no left turn lanes or tapers are required (see attached Appendix). The entrance is proposed to be constructed to provide adequate site distance in both directions (+500 left and +1000 right).


Conclusion

The proposed commercial entrance will have a use of 55 vpd and have a peak hour volume of 22 vph, and will not require a right or left turn lane. There is adequate sight distance in both directions and an entrance geometry is proposed for larger trucks than will use the entrance.


PREPARED BY: Stephen E. Maxfield, P. E.

March 23, 2024

8402 Mg

Directions: 2-WAY NB SB (2)

Travel Demand Model										
	Model Year	Model AADT	AM PHV	AM PPV	MD PHV	MD PPV	PM PHV	PM PPV	NTPHV	NT PPV

Stopping Sight Distance

Stopping sight distances exceeding those shown in the table below should be used as basis for design wherever practical.

In computing and measuring stopping sight distances, the height of the driverce eye is estimated to be 3.5 feet and the height of the object to be seen by the driver is 2 feet, equivalent to the taillight height of a passenger car. The % Values+ shown are a coefficient by which the algebraic difference in grade may be multiplied to determine the length in feet of the vertical curve that will provide minimum sight distance. Crest vertical curves shall meet or exceed AASHTO design criteria for Stopping Sight Distance, not the "k" Values. Sag vertical curves shall meet or exceed the AASHTO design criteria for headlight sight distance and "k" Values.

Height of Eye 3.5' Height of Object 2'								2'			
Design Speed (mph) **	25	30	35	40	45	50	55	60	65	70	75
MIN. SIGHT DISTANCE (FT.)	155	200	250	305	360	425	495	570	645	730	820
MINIMUM K VALUE FOR:											
CREST VERTICAL CURVES	12	19	29	44	61	84	114	151	193	247	312
SAG VERTICAL CURVES	26	37	49	64	79	96	115	136	157	181	206

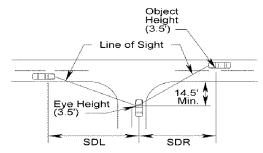
Source: 2011 AASHTO Green Book, Chapter 3, Section 3.2.2, page 3-4

TABLE 2-5 STOPPING SIGHT DISTANCE

When a highway is on a grade, the sight distances in the table below shall be used.

Design	Stopping Sight Distance on Grades								
Speed		Downgrades	S	Upgrades					
(mph) **	3%	6%	9%	3%	6%	9%			
15	80	82	85	75	74	73			
20	116	120	126	109	107	104			
25	158	165	173	147	143	140			
30	205	215	227	200	184	179			
35	257	271	287	237	229	222			
40	315	333	354	289	278	269			
45	378	400	427	344	331	320			
50	446	474	507	405	388	375			
55	520	553	593	469	450	433			
60	598	638	686	538	515	495			
65	682	728	785	612	584	561			
70	771	825	891	690	658	631			
75	866	927	1003	772	736	704			

TABLE 2-6 STOPPING SIGHT DISTANCE ON GRADES


(See 2011 AASHTO Green Book, Chapter 3, Section 3.2.2, page 3-5)

235

^{*} Rev. 1/14

Intersection Sight Distance

The following table shows intersection sight distance requirements for various speeds along major roads:

SDR = Sight Distance Right (For a vehicle making a left turn) SDL = Sight Distance Left (For a vehicle making a right or left turn)

Height of Eye 3.5' Height of Object									3.5'			
Design Speed (mph)*	*	20	25	30	35	40	45	50	55	60	65	70
SDL=SDR: 2 Lane Major Road		225	280	335	390	445	500	555	610	665	720	775
SDR: 4 Lane Major Road (Undivided) or 3 Lane		250	315	375	440	500	565	625	690	750	815	875
SDL: 4 Lane Major Road (Undivided) or 3 Lane		240	295	355	415	475	530	590	650	710	765	825
SDR: 4 Lane Major Road (Divided . 18qMedian)		275	340	410	480	545	615	680	750	820	885	955
SDL: 4 Lane Major Road (Divided . 18qMedian)	eet	240	295	355	415	475	530	590	650	710	765	825
SDR: 5 Lane Major Road (continuous two-way turn- lane)	In Fe	265	335	400	465	530	600	665	730	800	860	930
SDL: 5 Lane Major Road (continuous two-way turn- lane)		250	315	375	440	500	565	625	690	750	815	875
SDR: 6 Lane Major Road (Divided . 18qMedian)		290	360	430	505	575	645	720	790	860	935	1005
SDL: 6 Lane Major Road (Divided . 18qMedian)		250	315	375	440	500	565	625	690	750	815	875
SDL: (Where left turns are physically restricted)		210	260	310	365	415	465	515	566	620	670	725

TABLE 2-7 INTERSECTION SIGHT DISTANCE

Source: AASHTO Green Book, Chapter 9, Section 9.5.3, page 9-37 thru 9-52, * Table 9-5 thru 9-14

236

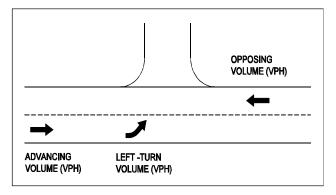
^{**}For all tables, use design speed if available, if not use legal speed.

^{*} Rev. 1/14

Warrants for Left Turn Storage Lanes on Two-Lane Highways

Advancing volume and opposing volumes (VPH), speed and percent left turns are used to determine whether a left turn storage lane is warranted on two-lane highways.

The warrants in table below are taken from the 2011 AASHTO Green Book, Chapter 9, Section 9.7.3, Page 9-132, Table 9-23. They were derived from Highway Research Report No. 211, Figures 2 through 19, for required storage length determinations.


WARRANTS FOR LEFT TURN LANES ON TWO-LANE HIGHWAYS

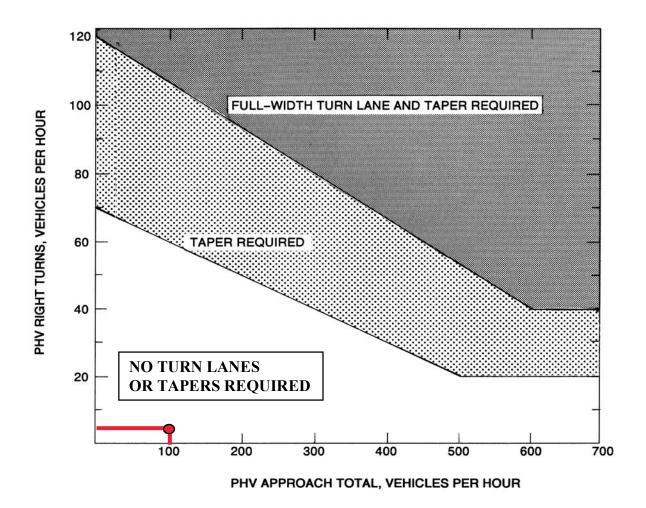
VPH	ADVANCING VOLUME							
OPPOSING VOLUME	5% LEFT TURNS	10% LEFT TURNS	20% S LEFT TURN	30% S LEFT TURNS				
		40-MPH DE	SIGN SPEEI	O*				
800	330	240	180	160				
600	410	305	225	200				
400	510	380	275	245				
200	640	470	350	305				
100	720	515	390	340				
		50-MPH DESIGN SPEED*						
800	280	210	165	135				
600	350	280	195	170				
400	430	320	240	210				
200	550	400	300	270				
100	615	445	335	295				
		60-MPH DESIGN SPEED*						
800	230	170	125	115				
600	290	210	160	140				
400	365	270	200	175				
200	450	330	250	215				
100	505	370	275	240				

TABLE 3-1

Source: Adapted from 2011 AASHTO Green Book, Chapter 9, Section 9.7.3, Page 9-132, Table 9-23

* USE DESIGN SPEED IF AVAILABLE, IF NOT USE LEGAL SPEED LIMIT.*

Example:


Two-lane highway with 40-MPH operating speed

Opposing Volume (VPH) - 600 Advancing Volume (VPH) - 440 Left-Turn Volume (VPH) - 44 or 10% of Advancing Volume

With opposing volume (VPH) of 600 and 10% of advancing volume (VPH) making left turns, and advancing volume (VPH) of 305 or more will warrant a left-turn lane.

When the Average Running Speed on an existing facility is available, the corresponding Design Speed may be obtained from Appendix A, Section A-1.

^{*} Rev. 7/14

Appropriate Radius required at all Intersections and Entrances (Commercial or Private).

LEGEND

PHV - Peak Hour Volume (also Design Hourly Volume equivalent)

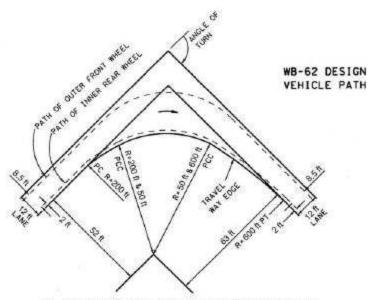
Adjustment for Right Turns

For posted speeds at or under 45 mph, PHV right turns > 40, and PHV total < 300.

Adjusted right turns = PHV Right Turns - 20

If PHV is not known use formula: PHV = ADT x K x D

K = the percent of AADT occurring in the peak hour


D = the percent of traffic in the peak direction of flow

Note: An average of 11% for K x D will suffice.

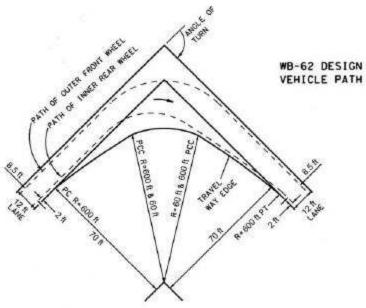

When right turn facilities are warranted, see Figure 3-1 for design criteria.

FIGURE 3-26 WARRANTS FOR RIGHT TURN TREATMENT (2-LANE HIGHWAY)

^{*} Rev. 1/15

WB-62 INTERSTATE SEMITRAILER COMBINATION 3 CENTERED COMPOUND CURVE, 200 ft - 50 ft - 600 ft RADII, OFFSET 2 ft AND 13 ft

WB-62 INTERSTATE SEMITRAILER COMBINATION 3 CENTERED COMPOUND CURVE, 600 ft - 60 ft - 600 ft RADII, OFFSET 10 ft

US Customary

Exhibit 9-26. Minimum Edge-of-Traveled-Way Designs (WB-19 [WB-62] Design Vehicle Path) (Continued)

Rezoning Report

File Number REZONE24-0061

1258 E. Center Street Rezoning

Property Information								
Address	1258 E. Center Street							
Tax Map, Group, Parcel	Tax Map 046N Group H	Parcel 016.00						
Civil District	11							
Overlay District	N/A							
Land Use Designation	Retail/Commercial							
Acres	Rezone Site 0.47 acres +/-							
Existing Use	Vacant Commercial	Existing Zoning	R-1B					
	Building (Dentist Office)							
Proposed Use	Beauty Salon (Blackheart	Proposed Zoning	B-1					
	Salon)							
Owner /Applicant Inform	ation							
Name: Frank Merendino		Intent: To rezone from	R-1B (Residential District) to B-1					
Address: 1045 Rotherwoo	nd Drive	(Neighborhood Business District) to accommodate the						
City: Kingsport	ou bille	relocation of Blackhea	rt Beauty Salon.					
State: TN	Zip Code: 37660							
Email:	2.p couc. 37000							
Liliali.								

Planning Department Recommendation

Phone Number:

The Kingsport Planning Division recommends sending a POSITIVE recommendation to the Kingsport Board of Mayor and Alderman for the following reasons:

- The proposal conforms to the Future Land Use Plan as a commercial use.
- The zoning change to B-1 allows for businesses providing goods and services, not for the entire community, but rather for only a neighborhood area in order to reduce travel time for the acquisition of the most frequently needed services and goods.

Staff Field Notes and General Comments:

- The rezoning site contains a vacant commercial building.
- The building's prior use was a dentist office.
- Water and sewer available at the rezoning site.
- The development review team is supportive of the request.

Planner:	Jessica McMurray	Date:	April 4, 2024
Planning Commission Action		Meeting Date:	May 16, 2024
Approval:			
Denial:		Reason for Denial:	
Deferred:		Reason for Deferral:	

Prepared by Kingsport Planning Department for the Kingsport Regional Planning Commission Meeting on May 16, 2024

Rezoning Report

File Number REZONE24-0061

PROPERTY INFORMATION

ADDRESS Parcel 016.00

DISTRICT 11

OVERLAY DISTRICT N/A

EXISTING ZONING R-1B

PROPOSED ZONING B-1 (Neighborhood Business District)

ACRES Rezone Site 0.47 acres +/-

EXISTING USE vacant commercial building

PROPOSED USE Beauty Salon (Blackheart Salon)

PETITIONER

ADDRESS 1045 Rotherwood Drive, Kingsport, TN 37660

REPRESENTATIVE

PHONE

INTENT

To rezone from R-1B (Residential District) to B-1 (Neighborhood Business District) to accommodate the relocation of Blackheart Beauty Salon.

Kingsport Regional Planning Commission File Number REZONE24-0061

Rezoning Report

Vicinity Map

Rezoning Report

Kingsport Regional Planning Commission File Number REZONE24-0061

Surrounding City Zoning Map

Rezoning Report

Kingsport Regional Planning Commission File Number REZONE24-0061

Future Land Use Plan 2030

244

Rezoning Report

File Number REZONE24-0061

Aerial

Rezoning Report

Kingsport Regional Planning Commission File Number REZONE24-0061

View facing Center Street

Rezoning Report

Kingsport Regional Planning Commission File Number REZONE24-0061

View facing Wabash Street

Rezoning Report File Number REZONE24-0061


View from Wasbash Street

Rezoning Report

Kingsport Regional Planning Commission File Number REZONE24-0061

View from Center Street

Kingsport Regional Planning Commission File Number REZONE24-0061

Rezoning Report

EXISTING USES LOCATION MAP

Rezoning Report

File Number REZONE24-0061

Existing Zoning/Land Use Table

Location	Parcel / Zoning Petition	Zoning / Name	History Zoning Action Variance Action
North	1	Zone: City R-1B Use: single family	
Northeast	2	Zone: City R-1B Use: single family	
East	3	Zone: City R-1B Use: single family	
Southeast	4	Zone: City R-1B Use: single family	
South	5	Zone: City P-1 Use: professional offices	
Southwest	6	Zone: City R-1B Use: single family	
Northwest	7	Zone: City R-1B Use: single family	

File Number REZONE24-0061

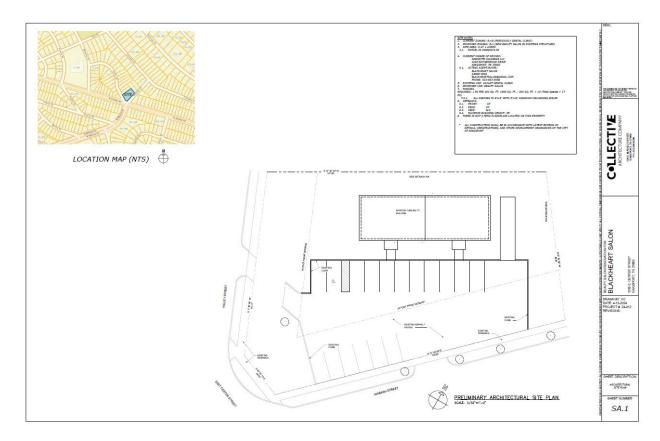
Rezoning Report

Standards of Review

Planning Staff shall, with respect to each zoning application, investigate and make a recommendation with respect to factors 1 through 6, below, as well as any other factors it may find relevant.

- 1. Whether or not the proposal will permit a use that is suitable in view of the use and development of adjacent and nearby Property? Rezoning will permit an appropriate use that is compatible with the current 2030 Future Land Use plan.
- 2. Whether or not the proposal will adversely affect the existing use or usability of adjacent or nearby property? The adjacent and nearby property will not be adversely affected by the proposal. Rezoning to B-1 appropriately matches the current Land Use designation for retail/commercial use.
- **3.** Whether the property to be affected by the proposal has a reasonable economic use as currently zoned? The property has a reasonable economic use as currently zoned. There is also a reasonable economic use for the proposed zone.
- 4. Whether the proposal is in conformity with the policies and intent of the land use plan? The B-1 rezoning proposal does conform to the 2030 Land Use Plan and should serve the area well.

Proposed use: New Beauty Salon (Blackheart Beauty Salon)


The Future Land Use Plan Map recommends retail/commercial.

- 5. Whether there are other existing or changed conditions affecting the use and development of the property which gives supporting grounds for either approval or disapproval of the proposal? The existing conditions support approval of the proposed rezoning, as the B-1 rezoning proposal does conform to the 2030 Land Use Plan.
- 6. Whether there are other existing or changed conditions affecting the use and development of the property which give supporting grounds for either approval or disapproval of the proposal? The site contains a vacant commercial building that has previously been used a dentist office. The zoning change to B-1 allows for businesses providing goods and services, not for the entire community, but rather for only a neighborhood area in order to reduce travel time for the acquisition of the most frequently needed services and goods.

Rezoning Report

File Number REZONE24-0061

Zoning Development Plan (A Full Size Copy Available For Meeting)

CONCLUSION

Staff recommends sending a positive recommendation to rezone from R-1B zone to the B-1 zone based upon conformance with the future land use plan.

Rezoning Report

File Number REZONE24-0071

Airport Parkway Rezoning

Property Information					
Address	Airport Parkway	Airport Parkway			
Tax Map, Group, Parcel	Tax Map 094 Parcel 014.	50 & Parcel 015.00			
Civil District	18				
Overlay District	N/A				
Land Use Designation	Retail/Commercial				
Acres	Rezone Site 40.0 acres +/-				
Existing Use	Vacant land Existing Zoning MX				
Proposed Use	New single family	Proposed Zoning PD			
	residential development				
Owner /Applicant Inform	nation				
Name: Industrial Develop	oment Board of Kingsport	Intent: To rezone from MX (Mixed Use District) to PD			
Address: 400 Clinchfield		(Planned Development District) to accommodate futu			
City: Kingsport		single family residential development.			
State: TN	Zip Code: 37660				
Email:	•				
Phone Number:					

Planning Department Recommendation

The Kingsport Planning Division recommends sending a POSITIVE recommendation to the Kingsport Board of Mayor and Alderman for the following reasons:

- The zoning change is compatible with adjacent residential zoning districts.
- The zoning change will appropriately match the proposed use.
- The current MX zone does allow for single family uses, however rezoning to PD will allow the developer to fully utilize the property for housing development.

Staff Field Notes and General Comments:

- The parcels lie at the intersection of Airport Parkway and Airport Road, directly across from Tri-Cities Airport and beside Hamlett-Dobson Funeral Home and Memorial Park.
- The rezoning site is currently vacant with two dilapidated barns located on the property.
- The land lies in a gentle roll, with undulating slopes that rise and fall over green pasture.

Planner:	Jessica McMurray	Date:	April 29, 2024
Planning Commission Action		Meeting Date:	May 16, 2024
Approval:			
Denial:		Reason for Denial:	
Deferred:		Reason for Deferral:	

Prepared by Kingsport Planning Department for the Kingsport Regional Planning Commission Meeting on May 16, 2024

Rezoning Report

File Number REZONE24-0071

PROPERTY INFORMATION

ADDRESS Parcel 014.50 & Parcel 015.00

DISTRICT 18

OVERLAY DISTRICT N/A

EXISTING ZONING MX (Mixed Use District)

PROPOSED ZONING PD (Planned Development District)

ACRES Rezone Site 40.0 acres +/-

EXISTING USE vacant land

PROPOSED USE New single family residential development

PETITIONER

ADDRESS 400 Clinchfield Street, Kingsport, TN 37660

REPRESENTATIVE

PHONE

INTENT

To rezone from MX (Mixed Use District) to PD (Planned Development District) to accommodate future single family residential development.

Kingsport Regional Planning Commission File Number REZONE24-0071

Rezoning Report

Vicinity Map

Kingsport Regional Planning Commission File Number REZONE24-0071

Surrounding City Zoning Map

Kingsport Regional Planning Commission File Number REZONE24-0071

Future Land Use Plan 2030

Rezoning Report

File Number REZONE24-0071

Aerial

Kingsport Regional Planning Commission File Number REZONE24-0071

View from Airport Parkway

Kingsport Regional Planning Commission File Number REZONE24-0071

View from Airport Road

Kingsport Regional Planning Commission File Number REZONE24-0071

View from Airport Parkway (facing Airport Rd)

Kingsport Regional Planning Commission File Number REZONE24-0071

View from Airport Parkway (facing west)

Kingsport Regional Planning Commission File Number REZONE24-0071

View from Airport Parkway (facing north)

Kingsport Regional Planning Commission File Number REZONE24-0071

Rezoning Report

View facing Airport Road

Kingsport Regional Planning Commission File Number REZONE24-0071

Rezoning Report

EXISTING USES LOCATION MAP

Rezoning Report

File Number REZONE24-0071

Existing Zoning/Land Use Table

Location	Parcel / Zoning Petition	Zoning / Name	History Zoning Action Variance Action
North	1	Zone: City MX Use: industry/manufacturing	
Northeast	2	Zone: County R-1 Use: single family	
East	3	Zone: County A-1 Use: airport	
Southeast	4	Zone: City B-4 Use: memorial gardens/funeral services	
South	5	Zone: County R-1 Use: single-family	
Southwest	6	Zone: County A-1 Use: vacant	
West	7	Zone: City MX Use: industry/manufacturing	

Rezoning Report

File Number REZONE24-0071

Standards of Review

Planning Staff shall, with respect to each zoning application, investigate and make a recommendation with respect to factors 1 through 6, below, as well as any other factors it may find relevant.

- 1. Whether or not the proposal will permit a use that is suitable in view of the use and development of adjacent and nearby Property? The proposal would permit a use that is most appropriately described as a transition zone between existing single family residences and the commercial-oriented uses. The current MX zone does allow for single family uses, however rezoning to PD will allow the developer to fully utilize the property for housing development.
- 2. Whether or not the proposal will adversely affect the existing use or usability of adjacent or nearby property? The adjacent and nearby property will not be adversely affected by the proposal.
- 3. Whether the property to be affected by the proposal has a reasonable economic use as currently zoned? The property has a reasonable economic use as currently zoned. There is also a reasonable economic use for the proposed zone. The current MX zone does allow for single family uses, however rezoning to PD will allow the developer to fully utilize the property for housing development.
- 4. Whether the proposal is in conformity with the policies and intent of the land use plan? The PD rezoning proposal does not conform to the 2030 Land Use Plan, however the PD proposal for this particular site should serve the area well. The current MX zone does allow for single family uses, however rezoning to PD will allow the developer to fully utilize the property for housing development.

Proposed use: New single family residential district.

The Future Land Use Plan Map recommends retail/commercial.

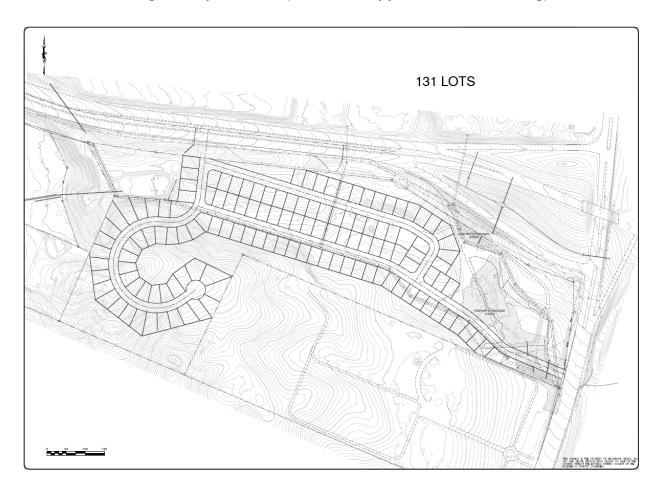
5. Whether there are other existing or changed conditions affecting the use and development of the property which gives supporting grounds for either approval or disapproval of the proposal? The existing conditions support approval of the proposed rezoning. The location of the parcel requested for rezoning demonstrates a reasonable transition from the MX, Mixed Use zone to the PD, Planned Development District, along Airport Parkway. The current MX zone does allow for single family uses, however rezoning to PD will allow the developer to fully utilize the property for housing development.

Prepared by Kingsport Planning Department for the Kingsport Regional Planning Commission Meeting on May 16, 2024

Item VI3.

Kingsport Regional Planning Commission

Rezoning Report


File Number REZONE24-0071

6. Whether there are other existing or changed conditions affecting the use and development of the property which give supporting grounds for either approval or disapproval of the proposal? The rezoning site abuts existing county residential districts. The vacant land mass is appropriately sized for a new development that will meet zoning restrictions of the PD zone.

Kingsport Regional Planning Commission File Number REZONE24-0071

Rezoning Report

Zoning Development Plan (A Full Size Copy Available For Meeting)

CONCLUSION

Staff recommends sending a positive recommendation to rezone from the MX zone to the PD zone based upon the rezoning site acting as a smooth transition from the existing commercial district to nearby residential districts.

Rezoning Report

File Number REZONE24-0072

Overhill County Rezoning

Property Information						
Address	Highway 126 & Overhill F	Highway 126 & Overhill Rd				
Tax Map, Group, Parcel	Tax Map 049, Parcel 068.0	00				
Civil District	5					
Overlay District	n/a					
Land Use Designation	Retail/Commercial					
Acres	19.5 acres +/-					
Existing Use	Vacant Existing Zoning County R-1					
Proposed Use	Future Commercial Proposed Zoning County PBD-SC					
Owner /Applicant Inform	nation					
Name: George M. Moody Address: 1312 Linville St. City: Kingsport		=	County R-1 to County PBD-SC for future commercial use on the			
State: TN	Zip Code: 37660					
Email: glmoody@charter	.net					
Phone Number: (423) 782-7901						

Planning Department Recommendation

The Kingsport Planning Division recommends sending a POSITIVE recommendation to the Sullivan County Commission for the following reasons:

• The requested PBD-SC zone conforms to the 2030 Future Land Use Plan as a future retail/commercial use.

Staff Field Notes and General Comments:

- The rezoning site is currently undeveloped
- The parcel proposed for rezoning contains over 1,400 feet of frontage along Overhill Drive

Planner:	Ken Weems	Date:	May 1, 2024
Planning Commissio	n Action	Meeting Date:	May 16, 2024
Approval:			
Denial:		Reason for Denial:	
Deferred:		Reason for Deferral:	

Rezoning Report File Number REZONE24-0072

PROPERTY INFORMATION

ADDRESS Overhill Drive

DISTRICT 5

OVERLAY DISTRICT n/a

EXISTING ZONING R-1 (Low Density /Single-Family District)

PROPOSED ZONING PBD-SC (Planned Business and/or Shopping Center District)

ACRES 19.5 +/-

EXISTING USE undeveloped

PROPOSED USE future commercial

PETITIONER

ADDRESS 1312 Linville St. Kingsport, TN 37660

REPRESENTATIVE

PHONE (423) 782-7901

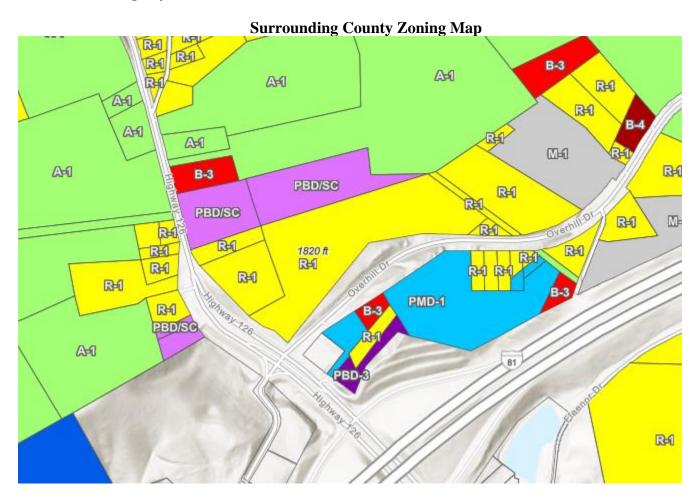
INTENT

To rezone from County R-1 to County PBD-SC for the purpose of having future commercial use on the property.

Rezoning Report

File Number REZONE24-0072

Vicinity Map



274

Kingsport Regional Planning Commission

Rezoning Report

File Number REZONE24-0072

Prepared by Kingsport Planning Department for the Kingsport Regional Planning Commission Meeting on May 16, 2024

Rezoning Report

File Number REZONE24-0072

Future Land Use Plan 2030: Retail/Commercial Designation Single Femily Single Family Industrial Multi-Family (motostrila) Relet/Commercie) Industrial Refail/Commercial Retail@mmerdel
Rezoning Site Ratal/Commarcial Refel/Commercial Single Family Industrial Industrial Industrial Single Pamily Industrial Relatiformmental Shgle Family Industrial Single Family Retel/Commercial Retal/Commercial Relative mmerelat

Rezoning Report

File Number REZONE24-0072

Sullivan County R-1 Zone District Purpose (source: Sullivan County Zoning Resolution)

5. R-1, Low Density/Single-Family Residential District - These districts are designed to provide suitable areas for single-family residential development within areas that are predominantly characterized by low-density suburban residential development. Residential development consists of single-family detached dwellings and other accessory structures thereto. The intensity of development permitted within these districts is directly related to the availability of public water service and sewage capabilities. These districts also include community facilities, public utilities, and open uses that serve specifically the residents of these districts, or that are benefited by an open residential environment without creating objectionable or undesirable influences upon residential developments. It is the express purpose of this resolution to exclude from these districts all buildings or other structures and uses having commercial characteristics, whether operated for profit or otherwise, except that uses on review, with supplementary provision and home occupations specifically provided by these regulations for these districts shall be considered as not having such characteristics if they otherwise conform to the provisions of this resolution.

Rezoning Report

File Number REZONE24-0072

Sullivan County PBD/SC Zone District Purpose

2. PBD/SC, Planned Business and/or Shopping Center District - This district is designed to provide adequate space along major arterial and collector roads, while serving the needs of the motoring public. This district is compatible with the Planned Corridor Business District in all aspects yet offers a broader scope of uses permitted. This district is designed to promote the clustering of developments along major routes through the use of access streets or interior roads while providing adequate buffering between existing abutting residential and agricultural land uses. Community facilities and utilities necessary to serve these districts or uses necessary for the general community welfare are also permitted. The previous zoning code had a separate category for the Shopping Center District; however, the setbacks and development standards were the same and the uses were very similar. These districts have been combined for simplicity.

Sullivan County PBD/SC Zone District Uses and Structures (source: Sullivan County Zoning Resolution)

TABLE 4-102A USES AND STRUCTURES ALLOWABLE WITHIN MIXED USE AND COMMERCIAL DISTRICTS

DISTRICTS	PBD-3	PBD/ SC	B-4	B-3	B-2	B-1
I. Residential Activities						
A. Permanent						
Single Family Dwelling	X	X	X	Р	Р	P
Duplex Dwelling	PC	PC	Р	Р	X	Р
Multi-Family Dwelling	PC	PC	SUP	SUP	X	X
 Single-Family Flats on 2nd story & above within mixed-use 	PC	PC	SUP	SUP	SUP	SUP
B. Semi-Transient						
Lodging House	X	X	Р	Р	X	X
Boarding House	X	X	Р	Р	X	X
II. COMMUNITY FACILITY ACTIVITIES						
A. Administrative Services	PC	PC	SUP	SUP	SUP	SUP
B. Child Care Facilities	PC	PC	SUP	SUP	SUP	SUP
C. Community Assembly	PC	PC	SUP	SUP	SUP	SUP
D. Cultural and Recreational Facilities	PC	PC	SUP	SUP	SUP	PC
E. Educational Facilities	PC	PC	SUP	SUP	SUP	SUP
F. Essential Public Transport, Communication & Utility	PC	PC	SUP	SUP	SUP	SUP
G. Extensive Impact Facilities	X	X	X	X	X	X
H. Health Care Facilities	PC	PC	SUP	SUP	SUP	SUP
 Intermediate Impact Facilities – see Supplemental Regulations 	PC	PC	SUP	SUP	SUP	SUP
Telecommunication Transmission Facilities	PC	PC	PC	PC	PC	PC
Funeral Homes and Crematoriums		SUP	SUP	X	X	X
J. Religious Facilities		PC	SUP	SUP	SUP	SUP
K. Special Institutional Care Facilities	BZA	BZA	X	X	X	X
L. Special Personal and Group Care Facilities	PC	PC	SUP	X	X	X
M. Waste Disposal Operations	X	Х	X	X	X	X

Rezoning Report

File Number REZONE24-0072

DISTRICTS	PBD-3	PBD/ SC	B-4	B-3	B-2	B-1
III. COMMERCIAL ACTIVITIES - Amended 09 17 07						
A. Adult Entertainment Establishments	X	X	X	X	X	X
B. Animal Care and Veterinary Services	PC	PC	SUP	SUP	SUP	SUP
 C. Automotive Parking – open lots only in B-2 and B-1, no public garages or parking structures 	PC	PC	Р	Р	P*	P*
 D. Automotive and Marine Craft Sales and Accessory Services 	PC	PC	Р	Р	X	Х
E. Automotive Body and Repair Shops	X	PC	X	Р	X	X
F. Auto Towing and temporary storage	X	X	Х	SUP	X	Х
G. Banking, Financial, Insurance and Real Estate Services	PC	PC	Р	Р	Р	Р
H. Convenience Retail Sales and Services	PC	PC	SUP	SUP	SUP	SUP
Entertainment and Amusement Services - Limited	PC	PC	SUP	SUP	SUP	Х
J. General Business and Communications	PC	PC	Р	Р	Р	Х
K. General Retail Trade	PC	PC	Р	Р	Р	X
L. Group Assembly and Commercial Outdoor Recreation	PC	PC	SUP	SUP	SUP	X
M. Outdoor Material and Equipment Sales and Repair	PC	PC	Р	Р	X	X
N. Professional Services – Medical	PC	PC	Р	Р	Р	Р
O. Professional Services – Non-medical/Professional Offices	PC	PC	Р	Р	Р	Р
P. Restaurant, Full Service	PC	PC	Р	Р	Р	X
Q. Restaurant, Fast Food	PC	PC	Р	Р	X	X
R. Scrap Operations/junk yards	X	X	X	Х	X	X
S. Self-Storage/Mini-Warehouse Facilities	PC	PC	Р	Р	X	X
T. Transient Habitation	PC	PC	PC	X	X	X
U. Warehousing, Goods, Transport, and Storage	X	PC	X	Х	X	X
V. Wholesale Sales		PC	Р	Р	X	X
W. Indoor Sport Shooting Range Facilities amended on 3/15/10	PC PC	PC	PC	PC	X	Х
IV. MANUFACTURING ACTIVITIES (deleted 02/16/2023)						
V. AGRICULTURAL AND EXTRACTIVE ACTIVITIES						
A. Agricultural – General	Р	Р	Р	Р	Р	Р
B. Agricultural – Intensive	PC	PC	PC	PC	PC	PC
C. Agricultural Services	Р	Р	Р	Р	Р	Р
D. Plant and Forest Nurseries	PC	PC	PC	PC	PC	PC
VI. ACCESSORY ACTIVITIES						
A. Commercial Accessory Storage – Enclosed	X	PC	X	Р	Х	Х
(residential accessory structures permitted where residential land uses are permitted)			CLID	CLID	CLID	CLID
B. Accessory Day Care within business ctr.	PC PC	PC	SUP	SUP	SUP	
C. Administrative Office		PC	SUP	SUP	SUP	SUP
D. Bed and Breakfast Inn		PC	PC	PC	PC	PC
E. Columbarium/Mausoleum		SUP	SUP	SUP	SUP	SUP
F. Operation of a Cafeteria	PC	PC	PC	PC	X	X
G. Parents Day Out	SUP	SUP	SUP	SUP	SUP	SUP
H. Production for Retail Sale	PC	PC	SUP	SUP	SUP	X
Residential Occupancy (approved administratively)	SUP	SUP	SUP	SUP	P	Р
J. Special Public Event on Private Property	BZA	BZA	BZA	BZA	SUP	BZA

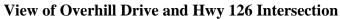
KEY TO INTERPRETING USE CLASSIFICATIONS

BZA = Special Exception of Use with Approval from Board of Zoning Appeals

P = Use Permitted by Right Within the District

SUP = Principal Use Permitted with Supplemental Provisions

PC = Subject to Review and Approval by the Planning Commission


X - Not permitted

Kingsport Regional Planning Commission File Number REZONE24-0072

Rezoning Report

View Along Overhill Drive

Kingsport Regional Planning Commission File Number REZONE24-0072

Rezoning Report

EXISTING USES LOCATION MAP

Prepared by Kingsport Planning Department for the Kingsport Regional Planning Commission Meeting on May 16, 2024

Rezoning Report

File Number REZONE24-0072

Existing Zoning/Land Use Table

Location	Parcel / Zoning Petition	Zoning / Name	History Zoning Action Variance Action
North	1	Zone: County PBD-SC Use: residential	Rezoned to PBD-SC
East	2	Zone: County A-1 Use: Ag/ vacant	n/a
Southeast	3	Zone: County A-1 Use: Ag/ vacant	n/a
South	4	Zone: County A-1 Use: low density residential	n/a
West	5	Zone: County A-1 Use: low density residential	n/a

Standards of Review

Planning Staff shall, with respect to each zoning application, investigate and make a recommendation with respect to factors 1 through 4, below, as well as any other factors it may find relevant.

- 1. Whether or not the proposal will permit a use that is suitable in view of the use and development of adjacent and nearby Property? The site abuts to another PBD/SC zone.
- 2. Whether the property to be affected by the proposal has a reasonable economic use as currently zoned? The site has a reasonable economic use as currently zoned. The proposed activity is well suited for the site as well.
- 3. Whether the proposal is in conformity with the policies and intent of the land use plan? The proposal matches the 2030 Future Land Use Plan as appropriate for retail/commercial use

Proposed use: future commercial

Item VI4.

Kingsport Regional Planning Commission

Rezoning Report

File Number REZONE24-0072

The Future Land Use Plan Map recommends City: Single Family Residential; Sullivan County: Ag/ Open Space.

4. Whether there are other existing or changed conditions affecting the use and development of the property which gives supporting grounds for either approval or disapproval of the proposal? The abutting parcel to the north was recently rezoned to PBD/SC.

CONCLUSION

Staff recommends sending a POSITIVE recommendation to the Sullivan County Commission to rezone from Sullivan County R-1 to Sullivan County PBD/SC based upon conformance with the 2030 Future Land Use Plan.

Zoning Text Amendment Report File Number ZTA24-0087

Item VI5.

Mural Zoning Text Amendment

Property Information	City-wide		
Address			
Tax Map, Group, Parcel			
Civil District			
Overlay District			
Land Use Designation			
Acres			
Existing Use		Existing Zoning	
Proposed Use		Proposed Zoning	
Owner /Applicant Inform	nation		
Name: City staff initiated	I	Intent: To amend Chap	ter 114, Zoning, as it pertains to
Address:		mural regulations.	, 5, 1
City:			
State:	Zip Code:		
Email:	•		
Phone Number:			
Planning Department Re	commendation		
(Approve, Deny, or Defer	r)		
The Kingsport Planni	ing Division recommends A	PPR () V A I	
The Kingsport Flamin	ing Division recommends A	TROVAL	
-			
	en Weems	Date:	5/1/2024
Planning Commission	on Action	Meeting Date:	5/16/2024
Approval:			
Denial:		Reason for	
		Denial:	
Deferred:		Reason for	
		Deferral:	

INTENT

To amend Chapter 114, Zoning, as it pertains to mural regulations.

Zoning Text Amendment Report File Number ZTA24-0087

Item VI5.

Introduction:

City staff is proposing several zoning text changes in an effort to hasten the approval process for murals proposed inside City limits.

Presentation:

Currently, murals proposed in the B-2 and B-2E (downtown) zones are required to have approval granted by the Board of Mayor and Aldermen (BMA). Murals outside the downtown zones of B-2 and B-2E do not require BMA approval. Staff if proposing the deletion of the BMA approval aspect for downtown murals in favor of a staff level approval. The rationale for this change is that BMA approval is unnecessary if the guidelines are met with a mural proposal. Additionally, this change will treat murals proposed in the downtown zones the same way murals are treated in all other city zones.

Additionally, staff is proposing a change in the definition of a mural in the zoning text, to help staff make a more defensible decision for future mural proposals. The definition change will allow letters and words that do not reference a business as part a mural. With the current mural definition, letters cannot be permitted as part of a mural.

Finally, staff is proposing basic permitting guidelines that will be staff level approval. The criteria only requires the address of the site, confirmation of property owner consent for the mural, contact information for the artist, and a scale drawing or color photo of the proposal with dimensions. A \$50 application fee to accompany these requirements has been proposed to start in July 2024.

The specific mechanics of the changes are presented in the following pages along with the accompanying four sections to be amended.

Zoning Text Amendment Report File Number ZTA24-0087

Four proposed changes to the zoning code as it pertains to murals:

Change 1

Sec. 114-1. – Definitions.

Sign, mural, means any mosaic, painting, photograph, graphic art technique, or combination thereof placed on the wall and containing no copy, advertising symbols, lettering, trademarks or other references to the premises or to the products and/or service offered for sale on the premises.

Replace with:

Mural means a work of art painted or otherwise directly applied on a building, structure, fence, or other object within public view. The work does not contain text, graphics, or symbols which specifically advertise or promote a business, product, or service.

Change 2

Sec 114-194. – B-2, Central Business District

(g)Signs.(1) Freestanding Signs. Freestanding signs are permitted only for existing buildings with a setback from the front property line of ten feet or greater. Freestanding signs must be monument signs, not to exceed eight feet in height, including the sign base. Maximum sign square footage shall not exceed 50 square feet, with no more than 25 square feet per side. Sign bases should be constructed of brick, stone, or other durable materials.

(2) Wall Signs. Single-tenant businesses and multitenant centers are permitted wall signs equivalent to one percent of the business's building ground coverage area up to 100 square feet total signage. Businesses having less than 5,000 square feet area may utilize up to 50 square feet of signage.

(3)Murals and banners shall not be permitted in the B-2 district, except as approved by the board of mayor and aldermen.

- (4) Electronic message boards are prohibited in the B-2 district.
- (5)Blade Signs. Blade signs are encouraged and a blade sign not exceed six (6) square feet can be provided in addition to wall signage on any façade that has a sidewalk or entrance. One blade sign per exterior wall is permitted. A blade sign is an ornamental rod extending perpendicular from the building no more than six (6) linear feet with a hanging sign suspended from it at a 90 degree angle from building face and street right-of-way. Blade signs shall be placed a minimum of nine (9) feet above sidewalk level to the bottom of the blade sign. Text and graphics on either or both ends of an awning that are oriented perpendicular to the building face for pedestrian view and are no more than six (6) square feet may be provided in lieu of a blade sign.

Prepared by Kingsport Planning Department for the Kingsport Regional Planning Commission Meeting on May 16, 2024

Change 3

Sec 114-203. - B-2, Central Business District

(g)Signs.(1)Freestanding Signs. Freestanding signs are permitted only for existing buildings or new construction with a setback from the front property line of ten feet or greater. Freestanding signs must be monument signs, not to exceed eight feet in height, including the sign base. Maximum sign square footage shall not exceed 50 square feet, with no more than 25 square feet per side. Sign bases should be constructed of brick, stone, or other durable materials.

(2) Wall Signs. Single-tenant businesses and multitenant centers are permitted wall signs equivalent to one percent of the business's building ground coverage area up to 150 square feet total signage. Businesses having less than 5,000 square feet area may utilize up to 50 square feet of signage.

(3)Murals and banners shall not be permitted in the B-2E district, except as approved by the board of mayor and aldermen.

- (4) Electronic message boards are prohibited in the B-2E district.
- (5)Blade Signs. Blade signs are encouraged and a blade sign not exceed six square feet can be provided in addition to wall signage on any façade that has a sidewalk or entrance. One blade sign per exterior wall is permitted. A blade sign is an ornamental rod extending perpendicular from the building no more than six linear feet with a hanging sign suspended from it at a 90 degree angle from building face and street right-of-way. Blade signs shall be placed a minimum of nine feet above sidewalk level to the bottom of the blade sign. Text and graphics on either or both ends of an awning that are oriented perpendicular to the building face for pedestrian view and are no more than six square feet may be provided in lieu of a blade sign.

Change 4

Sec 114-530. – Applicability to all zoning districts

(12) Devices. Any streamer, flag, air- or gas-filled device, searchlight or any other device whose purpose is to attract the attention of the public shall be allowed two times per calendar year per proprietor, for a maximum of 15 days per event, and such devices shall require a permit issued by the building official.

proposed new text shown as the new # 13 below

(13) Mural Application Permit: Applications for a mural permit shall provide the following information:

A. Address of the property of proposed mural;

Prepared by Kingsport Planning Department for the Kingsport Regional Planning Commission Meeting on May 16, 2024

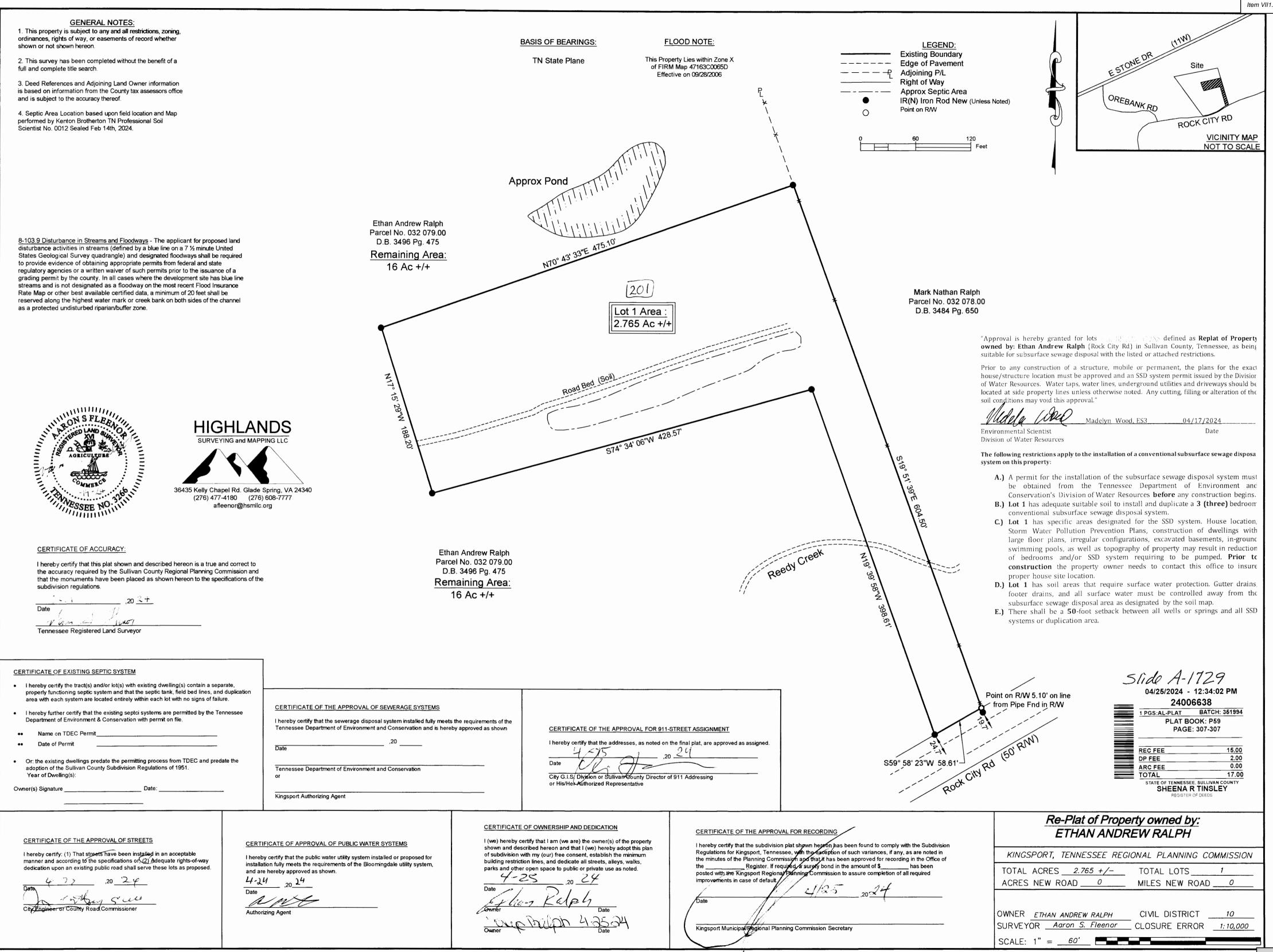
Zoning Text Amendment Report File Number ZTA24-0087

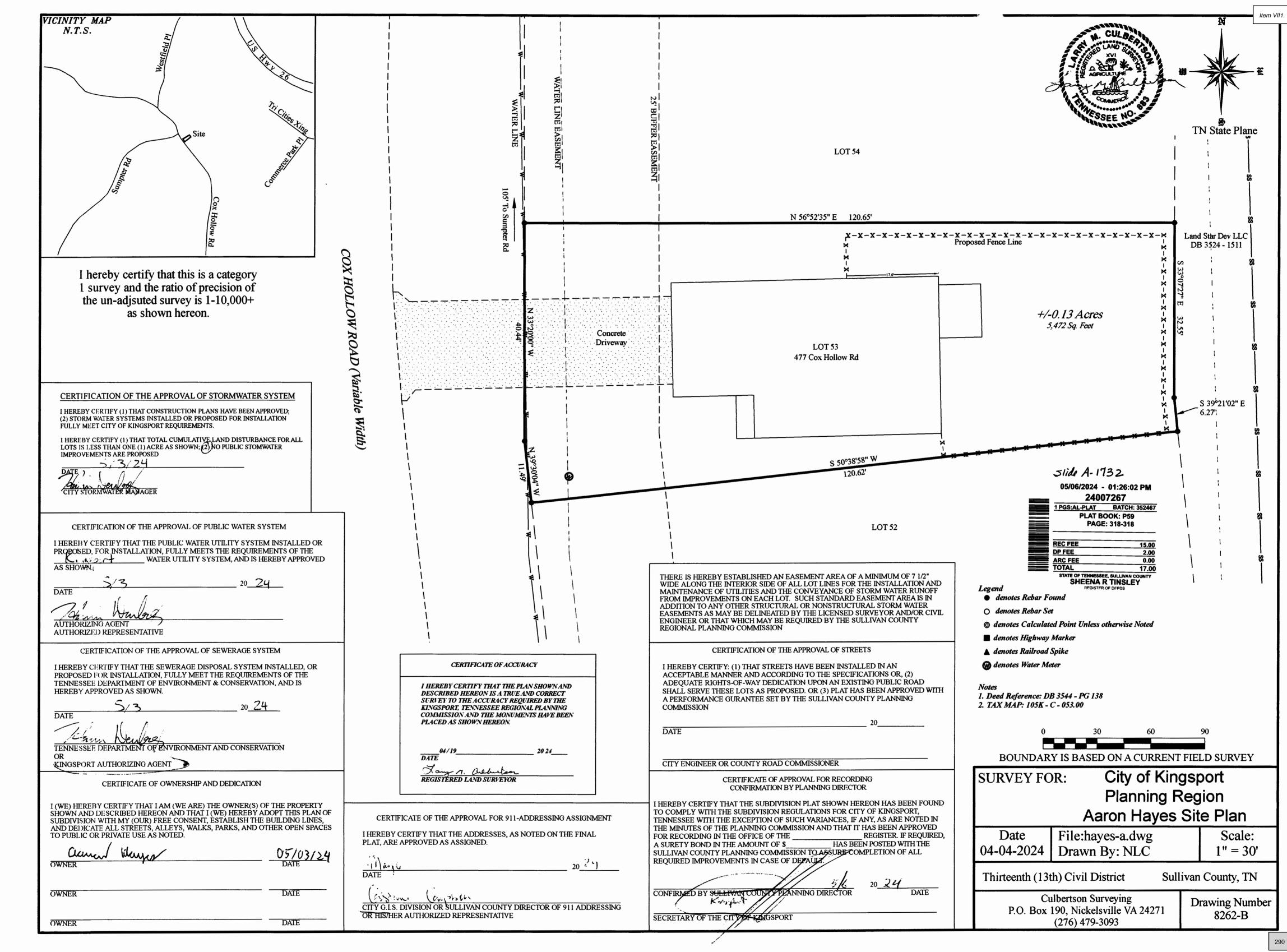
- Item VI5.
- B. Written consent from the property owner giving permission to place the mural on the building;
- C. Contact information of artist/team leader;
- D. Scale drawing and color photo of the building showing proposed size and location of the mural. Drawings shall include the dimensions, construction supports, sizes, foundation, electrical wiring and components, materials of the mural and method of attachment and character of structure members to which attachment is to be made. The design, quality, materials and loading shall conform to the requirements of the adopted Building Code.

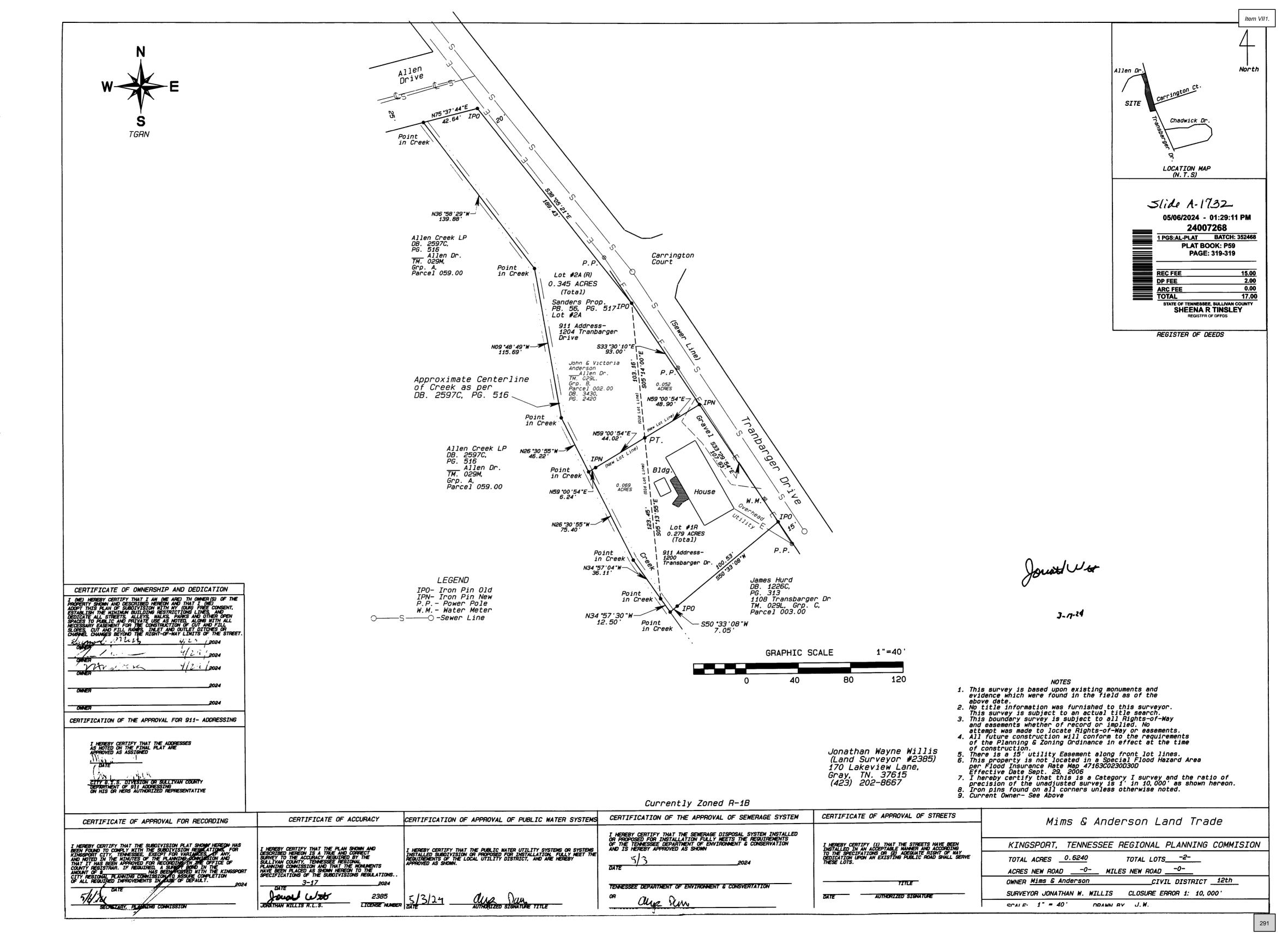
Staff recommends sending a positive recommendation to the Board of Mayor and Aldermen in support of the proposed zoning text changes.

May 7, 2024

Sharon Duncan, Chairman Kingsport Regional Planning Commission 415 Broad Street Kingsport, TN 37660


Chairman Duncan:


This letter is to inform you that I, as Secretary for the Kingsport Regional Planning Commission, certify the subdivision of the following lots meet(s) the Minimum Standards for Subdivision Development within the Kingsport Planning Region. The staff certifies these plat(s) as acceptable to be signed by the Secretary of the Planning Commission for recording purposes.


- 1. 193 Rock City Road
- 2. 477 Cox Hollow Road
- 3. 1200 Tranbarger Drive
- 4. 1720 Pendleton Street

Sincerely,

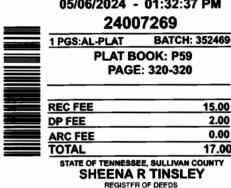
Ken Weems, AICP Planning Manager C: Kingsport Regional Planning Commission

- * This is a survey of existing lots, being Lots 8 and 9 in Block B of West View Park Addition to Kingsport as shown on plat of record in the Register's Office for Sullivan County, TN in Plat Book A Page 32.
- * This survey was prepared without benefit of abstract title and matters of title should be referred to an attorney-at-law.
- * This survey may be subject to all rights-of-way, easements, reservations and restrictions, written and unwritten, recorded and unrecorded.
- * No underground utilities were located.
- * The certification shown hereon is not a certification of title, zoning or freedom from encumbrances.
- * This property is subject to all zoning, setbacks, restrictions, and regulations as set forth by local planning and other agencies. Consult local authorities for additional information prior to any construction. ALWAYS CALL 811 BEFORE DIGGING.
- * At time of Survey, property is zoned R-1B. Setbacks- Front: 30' Rear: 30' Side: 8'
- * Dashed Adjoiner lines not surveyed unless annotated.

Required Notes:

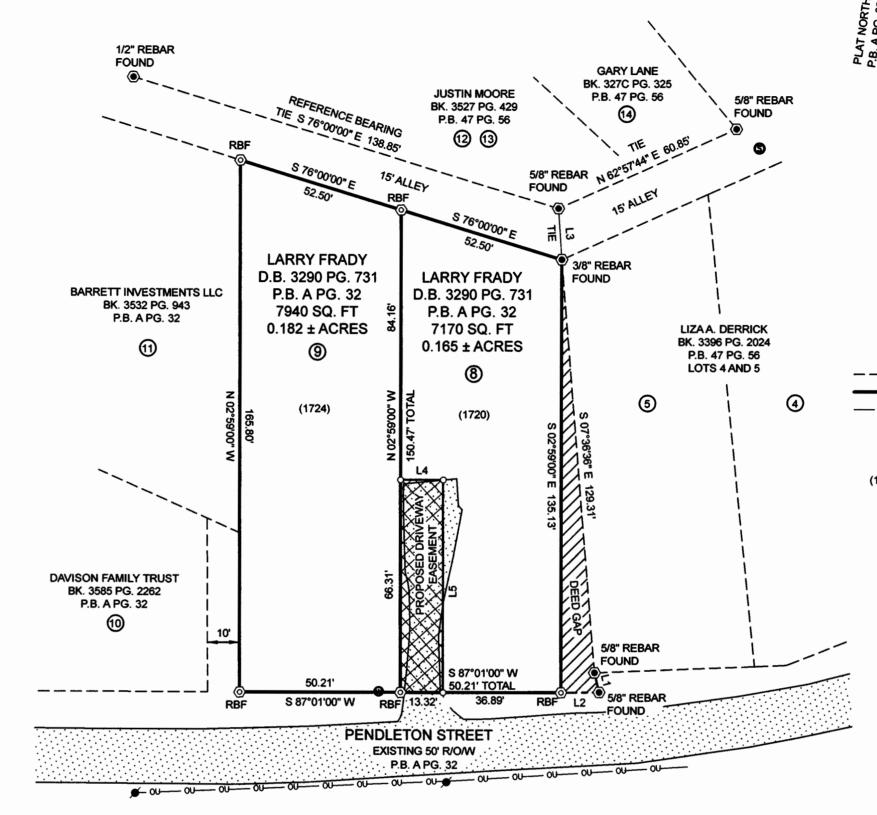
- 1) SETBACKS TO CONFORM TO ZONING DESIGNATION 2) THIS IS TO CERTIFY THAT I HAVE CONSULTED THE FEDERAL FLOOD INSURANCE RATE MAP NO. 47163C0030D EFFECTIVE DATE SEPTEMBER 29, 2006 AND FOUND THAT THE ABOVE PROPERTY IS LOCATED IN ZONE X, AREAS DETERMINED TO BE OUTSIDE THE 0.2% ANNUAL CHANCE FLOODPLAIN.
- 3) SANITARY SEWER SERVICE PROVIDED BY THE CITY OF KINGSPORT, TN. 4) WATER SERVICE BY CITY OF KINGSPORT.

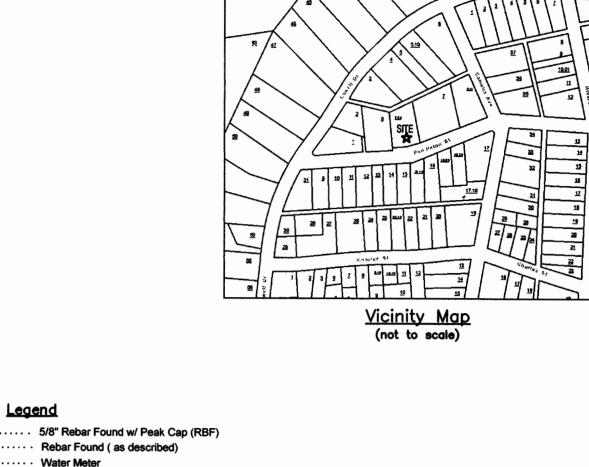
Slide A-1733


05/06/2024 - 01:32:37 PM

CERTIFICATION OF THE APPROVAL FOR 911 ADDRESSING ASSIGNMENT

I HEREBY CERTIFY THAT THE ADDRESSES, AS NOTED ON THE FINAL PLAT, ARE APPROVED AS ASSIGNED.


CITY G.I.S. DIVISION OR SULLIVAN COUNTY DIRECTOR OF 911


OR HIS/HER AUTHORIZED REPRESENATIVE

Peak Geomatics, LLC P.O. Box 891 Johnson City, TN 37605 423.202.7093 matt@peakg.com

1720/1724 PENDLETON ST. KINGSPORT, TN

· · · · Rebar Found (as described · · · · · Sanitary Sewer Manhole — — — — — Deed Line (not surveyed) Surveyed Boundary Line --- OU---- OU---- Overhead Utility

PG. · · · · Page (1720) · · · · · 911 Addres

Legend

Deed Gap: Area = 740.9 Sq. feet

I HEREBY CERTIFY THAT THIS IS A CATEGORY I SURVEY AND THAT THE RATIO OF PRECISION OF THIS SURVEY IS BETTER THAN 1:10,000 AND WAS DONE IN COMPLIANCE WITH THE TENNESSEE MINIMUM STANDARDS OF PRACTICE

Matthew D. Lindvall RLS # 2847 4/26/2024

HEREBY CERTIFY THAT THE STREET LIGHT SYSTEM DESIGNED FOR THIS SUBDIVISION COMPLIES WITH THE CITY OF KINGSPORT'S POLICIES ON ROADWAY LIGHTLING WITHIN THE CITY OF KINGSPORT, AND ANY REQUIRED CHARGES FOR THE PURCHASE AND INSTALLATION HAVE BEEN MET. 5-2-24 DATE

EASEMENT FOR STORMWATER DRAINAGE NOTE: THERE IS HEREBY ESTABLISHED AN EASEMENT AREA A MINIMUM OF 7.5'
MIDE ALONG THE INTERIOR SIDE OF ALL LOT LINES FOR THE INSTALLATION
AND MAINTENANCE OF UTILITIES AND THE CONVEYANCE OF STORMWATER
RUNOFF FROM IMPROVEMENTS ON EACH LOT. SUCH STANDARD EASEMENT
AREA IS IN ADDITION TO ANY OTHER STRUCTURAL OR NON-STRUCTURAL
STORMWATER EASEMENTS AS MAY BE DELINEATED BY THE LICENSED.

SIDNEYOR AND OR CIVIL ENCANSED OR THAT MAICH MAY BE DECILIBED BY SURVEYOR AND/OR CIVIL ENGINEER OR THAT WHICH MAY BE REQUIRED BY THE KINGSPORT REGIONAL PLANNING COMMISSION.

CERTIFICATION OF THE APPROVAL OF SEWERAGE SYSTEM

CERTIFICATE OF APPROVAL FOR RECORDING I HEREBY CERTIFY THAT THE SUBDIVISION PLAT SHOWN HEREON HAS BEEN FOUND TO COMPLY WITH THE SUBDIVISION REGULATIONS FOR KINGSPORT, TENNESSEE, WITH THE EXCEPTION OF SUCH VARIANCES IF ANY, AS ARE NOTED IN THE MINUTES OF THE PLANNING COMMISSION AND THAT IT HAS BEEN APPROVED FOR RECORDING IN THE OFFICE OF THE SULLIVAN COUNTY REGISTER. IF REQUIRED, A SURETY BOND IN THE AMOUNT OF THE REQUIRED HAS BEEN POSTED WITH THE KINGSFORT REGIONAL PLANNING COMMISSION TO ASSURE COMPLETION OF THE REQUIRED IMPROVEMENTS IN CASE OF DEFAULT.

SCALE 1"=30'

WEST VIEW ADDITION PLAT KINGSPORT REGIONAL PLANNING COMMISSION 0.347 TOTAL ACRES TOTAL LOTS ACRES NEW ROAD MILES NEW ROAD ___O LARRY FRADY CIVIL DISTRICT 12th MATTHEW LINDVALL CLOSURE ERROR 1:10.000 SURVEYOR . 30'

BOUNDARY RETRACEMENT SURVEY FOR

LARRY FRADY

REFERENCES

Deed Book 3290 Page 731

Lots 8 and 9, Block 35 West View Addition to Kingsport, TN Plat Book A Page 32

Tax Map 029N Group F Parcel 008.00 12th Civil District, Washington County, TN

FIELDWORK DATE: 4-12-24 DRAWN BY: ARS

PROJECT #24039 CHECKED BY: MDL

CERTIFICATE OF OWNERSHIP AND DEDICATION CERTIFICATE OF APPROVAL OF STREET LIGHTING SYSTEM CERTIFICATE OF ACCURACY I HEREBY CERTIFY THAT THE PLAN SHOWN AND DESCRIBED HEREON IS A TRUE AND CORRECT SURVEY TO THE ACCURACY REQUIRED BY THE KINGSPORT, TENNESSEE REGIONAL PLANNING COMMISSIO AND THAT THE MONUMENTS HAVE BEEN PLACED AS SHOWN HEREON. I(WE) HEREBY CERTIFY THAT I AM (WE ARE) THE OWNER(S) OF THE PROPERTY SHOWN AND DESCRIBED HEREON AND THAT I (WE) HEREBY ADOPT THIS PLAN OF SUBDIVISION WITH MY (OUR) FREE CONSENT, ESTABLISH THE MINIMUM BUILDING RESTRICTION LINES, AND DEDICATE ALL STREETS, ALLEYS, WALKS, PARKS, AND OTHER OPEN SPACES TO PUBLIC OR PRIVATE USE AS NOTED.

> TENNESSEE REGISTERED LAND SURVEYOR TRAFFIC ENGINEERING MANAGER CERTIFICATE OF THE APPROVAL OF WATER SYSTEMS

I HEREBY CERTIFY THAT THE PUBLIC WATER UTILITY SYSTEM INSTALLED OR PROPOSED FOR INSTALLATION FULLY MEETS THE REQUIREMENTS OF THE KINGSPORT WATER UTILITY SYSTEM AND IS HEREBY APPROVED

KINGSPORT AUTHORIZING AGENT

DATE

HEREBY CERTIFY: THAT STREETS HAVE BEEN INSTALLED IN AN ACCEPTABLE MANNER AND ACCORDING TO THE SPECIFICATIONS OR.
 ADEQUATE RIGHTS—OF—WAY DEDICATION UPON AN EXISTING PUBLIC ROAD SHALL SERVE THESE LOTS AS PROPOSED. OR
 PLAT HAS BEEN APPROVED WITH A PERFORMANCE GUARANTEE SET BY THE SULLIVAN COUNTY PLANNING COMMISSION.

COMMISSIONER OF HIGHWAYS

CERTIFICATE OF APPROVAL OF STREETS

I HEREBY CERTIFY THAT THE SEWERAGE DISPOSAL SYSTEM INSTALLED OR PROPOSED FOR INSTALLATION FULLY MEETS THE REQUIREMENTS OF THE TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION AND IS HEREBY APPROVED AS SHOWN.

SECRETARY, KINGSPORT MUNICIPAL/REGIONAL PLANNING COMMISSION

DATE