CITY OF KETCHUM, IDAHO
CITY COUNCIL
Monday, December 05, 2022, 4:00 PM
191 5th Street West, Ketchum, Idaho 83340

AGENDA
PUBLIC PARTICIPATION INFORMATION
Public information on this meeting is posted outside City Hall.

We welcome you to watch Council Meetings via live stream.

You will find this option on our website at www.ketchumidaho.org/meetings.
If you would like to comment on a public hearing agenda item, please select the best option for your participation:

1. Join us via Zoom (please mute your device until called upon).

Join the Webinar: https://ketchumidaho-org.zoom.us/j/86425477219
Webinar ID: 86425477219
2. Address the Council in person at City Hall.
3. Submit your comments in writing at participate@ketchumidaho.org (by noon the day of the meeting).

This agenda is subject to revisions. All revisions will be underlined.

CALL TO ORDER: By Mayor Neil Bradshaw

ROLL CALL:

Pursuant to Idaho Code Section 74-204(4), all agenda items are action items, and a vote may be taken on these items.

COMMUNICATIONS FROM MAYOR AND COUNCILORS:

1. Public comments submitted

CONSENT AGENDA:

Note re: ALL ACTION ITEMS - The Council is asked to approve the following listed items by a single vote, except for any items that a Councilmember asks to be removed from the Consent Agenda and considered separately.
2. Recommendation to approve minutes of November 21, 2022 - City Clerk Trent Donat
3. Recommendation to approve Special, Joint meeting of the City Council and Planning and Zoning Commission minutes of November 15, 2022 - City Clerk Trent Donat
4. Authorization and approval of the payroll register - Treasurer Shellie Gallagher
5. Authorization and approval of the disbursement of funds from the City's treasury for the payment of bills - Treasurer Shellie Gallagher
6. Recommendation to approve Purchase Order 23046 for snow hauling contract with Apollo Construction, LLC - Director of Streets and Facilities Brian Christiansen
7. Recommendation to approve Purchase Order 23047 for the purchase of three Dell laptops for ambulances - Fire Chief Bill McLaughlin
8. Recommendation to approve Resolution 22-038 establishing 2023 Planning and Zoning Commission meeting dates - Planning Technician \& Office Administrator Heather Nicolai
9. Recommendation to approve Resolution 22-039 establishing 2023 Historic Preservation Commission meeting dates - Planning Technician \& Office Administrator Heather Nicolai
10. Recommendation to approve Resolution 22-040 establishing 2023 City Council meeting dates City Clerk Trent Donat
11. Recommendation to approve Task Order \#4 with Superbloom Landscape Architects for professional services to advance the Warm Springs Preserve Master Plan

PUBLIC HEARING:

NEW BUSINESS:
12. Recommendation to hold first reading of Ordinance \#1243 amending Chapter 13.04.080 (BUILDING SEWERS and SERVICE CONNECTIONS) of the Ketchum Municipal Code - Wastewater Division Supervisor Mick Mummert
13. Recommendation to receive and file the Audited FY 22 Financial Statements as submitted by City Administrator Jade Riley and Brady Workman, CPA
14. Review final reports for Warm Springs Road and Main Street transportation improvements City Administrator Jade Riley
15. Housing update and discussion on possible purchase of Park Units for temporary housing Housing Director Carissa Connelly
16. Review proposed high priority 2023 sidewalk projects - City Administrator Jade Riley

EXECUTIVE SESSION:
ADJOURNMENT:

From:	Thia Konig thiakonig@gmail.com
Sent:	Thursday, December 1, 2022 10:49 AM
To:	Participate
Subject:	re: Perry's building

Hello,
This letter, and perspective, is in regards to 'The Perry's Project' and the gentrification of Ketchum.
Life and soul are being sucked out of Ketchum at an alarming rate.
Is the Perry's building Ketchum's last gasp? The new building proposed is part of the problem, not part of the solution. Increasing the supply of luxury homes exacerbates the affordable housing crisis.

Visually, the proposed building would turn 4th St into a luxury retail glass and steel gauntlet.
The proposed Perry's building would also diminish the vibrancy within the town core, because it would help turn Ketchum into a ghost town most of the year. Those 'market rate' retail spaces? No local can afford to rent - or shop in them. Do we need more banks? Gucci, Dolce \& Gabbana, and other corporate brands that are so large they can operate at a loss (rent too high for anyone to actually run a business and feed a family and afford to live here) just in order to have a 'brand' presence in a resort town. Those retail spaces (in ALL the new buildings going up in Ketchum!!!!) will be for rich tourists, perhaps staying in Airbnb's in all these 'market rate' units? 'Market rate' units will only be affordable to the wealthy out-of-towners looking for a second home (then they Airbnb it out most of the year so it will 'pencil in' for their wealth management). 'Market rate' units are really luxury units, and we should call them as such. The proposed Perry's building sets the wealthy out-of-towners at an advantage - and the locals at an unfair disadvantage. Increasing supply of luxury homes exacerbates the affordable housing crisis.

In light of the devastating tragedy at the Limelight condos, where 23 units burned - "where will those locals go?" was my first thought - it seems that displacing 11 local businesses for the sake of only 7 work-force housing units is a bandaid on this housing crisis. We need a lot more than 7 affordable units. What we DON'T need any more of in this town is 'market rate' luxury condos, and 'market rate' luxury retail. This out-of-town money storm has blown the market out of local reach. Who will be shopping at those retail stores? Not me. Not the people that went to Perry's for lunch, or who got their hair cut with Lisa, or who got their computers fixed with Marco, or who got alterations upstairs with Aurora. Those were local businesses for locals. The Perry's building is a crappy building - I get it. But it added character to the funky, charming vibe that used to be Ketchum. There are no other crappy buildings left in town, so there is nowhere else where these local businesses can afford to relocate.

I have had a front row seat to this gentrification that is happening. I am Thia Konig, a 30-year local photographer - I own Photos Do Not Bend Gallery - a small, underground photography studio in the present Perry's building. I own my own condo in Ketchum (whew! I got into the market 20 years ago), but now will be forced to close my studio and gallery, because there is nowhere affordable left for small local businesses to rent. Why can't the new owners build some 'affordable studio/retail space'? What about the locals who have a place to live, but now don't have a place to work??

That said, I know this building has to come down someday. But because the new owners are overly ambitious, the unrealistic timeline is causing unnecessary stress on the existing business located in the Perry's building. Four of these businesses have leases through 2023. -The new owners are trying to buy them out, but they are finding out, indeed, that there is nowhere comparable. Since when is it ok for landlords not to honor leases? Leases are to behold tenants to landlords, but not the other way around? I only have a month-to-month lease (because when I renewed my lease the building was pending a sale that didn't go through), so the new owners
don't care about helping me find a new spot. They only 'care' about the businesses with leases that they want to break.

If we are getting kicked out for the sake of 'progress', then the building should be at least beneficial to the community - to help the community, not harm it. At least make ALL of the residential units work-force housing. And how about SOME affordable studio/retail for locals?

Palmer is quoted in the Mountain Express saying "We need affordable housing now". But his first proposal had only 2 affordable units! Clearly he is hiding under the guise of philanthropy for the sake of profit. They are just dabbling in affordable units to get the 4th-story penthouse allowance. Carson Palmer is worth $\$ 90$ million (from Google), can someone ask him if he could just donate the building, and make it all affordable space for locals? That would be a true act of philanthropy.

I liked the original idea. Build on the empty lot - (maybe even create a walkthrough!) and repair and spruce up the existing building, and let the tenants live out their leases. Maybe in 5-7 years, then start to work on the 'second phase'. When it was first sold to Palmer and Smith, we were assured this was the plan, as it was worked into the agreement on the sale of the building.

In development - timing is everything. These new owners are late to the game, (in my opinion), and the skyrocketing costs of construction and materials will be reflected in the inflated price of 'market rate' luxury condos - again exacerbating the affordable housing crisis.

I would like to see a building that benefits the community more, not sucks the life out of it.
how about something with a set back? Trees and greenery? What about a patio with a breakfast joint that locals can afford? How about a community pathway with steps and some art (and tables and chairs like Town Square?). How about affordable local retail? How about something that adds to the town, not takes it away? Access to rooftop hangout with hammocks and coin operated telescopes?

The life-blood (locals) - and soul (character) are being sucked out of Ketchum at an alarming rate. Will the proposed Perry's building be Ketchum's last gasp, or will it be something iconic that also benefits the community?

Thia Konig
30 year local

http://www.thiakonig.com
http://becauselifeisbeautiful.com

From:	H Boyle Boylehp@yahoo.com
Sent:	Saturday, December 3, 2022 6:25 AM
To:	Participate
Subject:	Fwd: Housing funds

For public comment

Begin forwarded message:

From: Aly Swindley aswindley@ketchumidaho.org
Date: December 2, 2022 at 2:35:07 PM EST
To: H Boyle Boylehp@yahoo.com
Subject: RE: Housing funds
Afternoon, Mr. Boyle - thank you for your note - would you like me to forward it to participate@ketchumidaho.org so it is filed under public comment?

ALY SWINDLEY | CITY OF KETCHUM

Management and Communications Analyst
P.O. Box 2315 | 191 5th Street West | Ketchum, ID 83340
o: 208.727.5081 | f: 208.726.7812
aswindley@ketchumidaho.org | www.ketchumidaho.org
-----Original Message-----
From: H Boyle Boylehp@yahoo.com
Sent: Thursday, December 1, 2022 11:17 PM
To: Aly Swindley aswindley@ketchumidaho.org
Subject: Housing funds

From the Mayor's Missive it looks like the City of Ketchum wants the 1\% for Air to be renewed, but maybe not at 1%.

There has been no transparency on 1%, which is particularly disappointing given that Councillor Breen sits on the board of the FSVA.

If this administration pushes for 1% for Air, it will have a spillover impact that will impede its ability to get LOT for housing.

To the average resident, 1% is either not helping us, or making our challenges worse. Airfares for SUN are very high compared to BOI , so what is the subsidy getting us? And half of it has been going to promote tourism via VSV. Even VSV realizes that what is has done has no support from locals. Tourism is what is driving our housing crisis.

The City screwed up the LOT last May by increasing the tax on residents. If that's the strategy for next year, it won't pass. Residents aren't creating the problem, tourism is. It's supposed to be a tourist tax. The fact that only 30% of it is paid by residents isn't relevant. That any percent of it is paid by residents is wrong.

So if the City is good to tax residents for a tourism subsidy and a housing subsidy, it's not going to pass. By all means raise the LOT--on tourists.

And while you are at it, why are AirBNB units assesses and taxed as residences instead of hotels? Tax them like the commercial businesses they are and put that money to housing. And take a shot at limiting the number of STRs in a neighborhood. So what of you get sued. At least you tried to save the town.

You are going to have a problem raising revenue for housing as people figure out Bluebird. The City has never revealed its locals preference-why not? The City has never given any transparency on Northwood Place and it's impact on the workforce housing situation. Why not? Unless you can show that the Bluebird tenants are locals working in local businesses you will have an uphill battle. People now know that the Mayor lied when he said it is housing for teachers and first responders.

And the Mayor's Missive this week is an admission of corruption of in subsidized housing, with the forced sale of four units. How many of the deed restricted rental units are illegally occupied? If you want to raise money for housing you have to build confidence that the system isn't being abused. Get the enforcement done so all the units are in compliance with their deeds, and set up an audit system with teeth.
With Bluebird and Washington lots as highly visible public housing on top of the KETCH fiasco, you need to identify locations for where the money you plan to raise will be spent ahead of the vote. People won't just trust the City anymore. If it's for more low income housing apartment complexes in the retail core, a LOT increase won't pass. Much better locations for it on other City owned lots.

The smartest thing the City has done is partner with WRHT. Unlike Bluebird or Northwood, their model is true workforce housing. Like ARCH is doing with BCSD and STL.

Bottom line: repeating the last LOT referendum will be a loser and will set back workforce housing in Ketchum. Someone needs to carefully think this through and offer the voters a real plan for workforce housing, not just low income housing. The "trust us" route is a loser.

Perry Boyle
Ketchum

From:	Pamela Doucette pameladoucette@gmail.com
Sent:	Monday, December 5, 2022 9:25 AM
To:	Participate
Subject:	Resorce place for odd job helpers,

Resource place for odd job helpers, like shoveling, helping with yard work (temporary), or anything that could pay someone needing work and able to do it. There used to be a "job bank" in Ketchum that folks could leave notices of what they would be willing to help with. Now it is hit or miss on bulletin boards- most of which are monitored and swept clean often!. This would be a great service for our new residents from Peru too!

Pamela Doucette
208-928-7400
cell 208-720-3066

CITY OF KETCHUM
MEETING MINUTES OF THE CITY COUNCIL
Monday, November 21, 2022

CALL TO ORDER: (00:00:23 in video)
Mayor Bradshaw called the meeting of the Ketchum City Council to order at 4:00 p.m.

Roll Call:

Mayor Neil Bradshaw
Michael David (via teleconference)
Jim Slanetz
Amanda Breen
Courtney Hamilton (via teleconference)

Also Present:

Jade Riley - City Administrator
Trent Donat - City Clerk \& Business Manager
Lisa Enourato - Public Affairs \& Administrative Services Manager
COMMUNICATIONS FROM MAYOR AND COUNCILORS: (00:00:40 in video)
No comments

CONSENT AGENDA: (00:01:10 in video)
Items 6, 79 \& 10 requested for discussion

- Courtney Hamilton recused herself from Item 2
- Amanda Breen commented on items 6 \& 7

Mayor Neil Bradshaw introduced items 9 \& 10 and asked for guidance from the council.

DISCUSSION AND COMMENTS BY COUNCIL (00:07:10 in video)

- After discussion, Mayor Neil Bradshaw tabled item 9

Motion to approve consent agenda items 3-8, 10-16 (00:20:40 in video)
Motion made by: Amanda Breen
Seconded by: Jim Slanetz
Ayes: Amanda Breen, Michael David, Jim Slanetz, Courtney Hamilton
Nayes: None

Motion to approve consent agenda item 2 (00:21:20 in video)
Motion made by: Jim Slanetz
Seconded by: Courtney Hamilton
Ayes: Amanda Breen, Michael David, Jim Slanetz,
Nayes: None
Recused: Courtney Hamilton
PUBLIC HEARING (00:21:42 in video)
17. Recommendation to hold a public hearing, review, and approve a Lot Line Shift, Townhouse Preliminary Plat, and associated Phased Development Agreement \#22812 for the Sapp
Townhomes at 780 N 4th Ave. - Senior Planner Morgan Landers
No Public Comment
Public Hearing Closed (00:22:31 in video)
Motion to approve a lot line shift final PLAT for the consolidation of lot 5 and the north half of lot 6 as conditioned and adopt the findings of fact, conclusions of law and decision (00:23:35 in video)
Motion made by: Amanda Breen
Seconded by: Jim Slanetz
Ayes: Amanda Breen, Michael David, Jim Slanetz, Courtney Hamilton
Nayes: None

Motion to approve the Townhouse Preliminary Plat for the SAPP Townhomes at $780 \mathrm{~N} 4^{\text {th }}$ Ave. as conditioned and adopt the Findings of Fact, Conclusions of Law and Decision to approve the associated Phased Development Agreement \#22812 (00:24:10 in video)
Motion made by: Amanda Breen
Seconded by: Jim Slanetz
Ayes: Amanda Breen, Michael David, Jim Slanetz, Courtney Hamilton
Nayes: None

NEW BUSINESS: (00:24:45 in video)
18. Blaine County Sustainability Program Update, Clean Energy Modeling \& Feasibility Analysis Sustainability - Manager Lynne Barker

Mayor Neil Bradshaw shared points from a letter received from community (00:41:52 in video)

Council members commented and asked questions: (00:44:50 in video)

ADJOURNMENT:

Motion to adjourn at 4:53 p.m.
Motion made by Jim Slanetz; Seconded by Amanda Breen
Ayes: Michael David, Amanda Breen, Jim Slanetz, Courtney Hamilton
Nays: None

Neil Bradshaw, Mayor

ATTEST:

Trent Donat, City Clerk

CALL TO ORDER: (00:00:30 in video)
Mayor Bradshaw called the Special Meeting of the Ketchum City Council and Planning and Zoning Commission to order at 4:30 p.m.

Roll Call:

Mayor Neil Bradshaw
Michael David (via teleconference) Brenda Moczygemba
Jim Slanetz
Amanda Breen
Tim Carter

Neil Morrow
Spencer Cordovano
Susan Passovoy - absent
Courtney Hamilton - absent

Also Present:

Jade Riley - City Administrator
Trent Donat - City Clerk \& Business Manager
Lisa Enourato - Public Affairs \& Administrative Services Manager
Rob Richardson -- Rio
Stacey Passmore - Superbloom
Diana Lipovsky - Superbloom
Morgan Landers - Senior Planner
Abby Rivin - Senior Planner
Adam Crutcher - Associate Planner
Tripp Hutchinson - Intern
Ryan Santos - Wood River Trust

COMMUNICATIONS FROM MAYOR AND COUNCILORS:

Mayor Neil Bradshaw mentioned the Warm Springs Preserve Open House, and did an introduction of Rob Richardson from Rio, Stacy Passmore from Superbloom, and Diane Lipovsky from Superbloom.

NEW BUSINESS:

2. Warm Springs Preserve Master Plan (00:02:00 in video)

Presented by Rob Richardson, Stacy Passmore, and Diana Lipovsky
3. Presentation by Superbloom and Rio ASE regarding update concept design and summary of November $14^{\text {th }}$ open house results
-Jade Riley informed commissioners and council of public positive feedback regarding concept design as well as other feedback from the open house held on 11.14.22 (00:41:30 in video) -Mayor Neil Bradshaw made clarification of a change in the upper fairway (00:42:33 in video)
4. Questions from City Council and Planning and Zoning Commission

Amanda Breen (00:43:20 in video)
Neil Morrow (00:44:45 in video)
Mayor Neil Bradshaw (00:45:24 in video)

5. PUBLIC COMMENT

Claire Swanger (00:47:24 in video)
Tripp Hutchinson (00:53:07 in video)
Public Comment Closed (00:53:48 in video)

Mayor Neil Bradshaw responded to the public comments (00:53:51 in video)
6. Direction from City Council and Planning \& Zoning Commission regarding update concept and next steps.

COUNCIL - COMMISSION COMMENTS

Courtney Hamilton (01:29:14 in video)
Spencer Cordovano (01:09:47 in video)
Amanda Breen (01:03:02 in video)
Neil Morrow (01:00:01 in video)

Tim Carter (01:05:35 in video)
Jim Slanetz (01:24:51 in video)
Brenda Moczygemba (01:18:42 in video)
Michael David (01:09:10 in video)

ADJOURNMENT:

Motion to adjourn at 6:05 p.m.
Motion made by: Neil Morrow; Seconded by Jim Slanetz
Ayes: Amanda Breen, Michael David, Courtney Hamilton, Jim Slanetz, Brenda Moczygemba, Tim Carter, Spencer Cordovano.
Nays: None

City of Ketchum	Payment Approval Report - by GL Council	
	Report dates: $11 / 18 / 2022-12 / 5 / 2022$	Nov 30, 2022
	$01: 52$ PM	

Report Criteria:
Invoices with totals above $\$ 0$ included.
Paid and unpaid invoices included.
[Report].GL Account Number $=$ " $0110000000 "-$-"9648008200"," $9910000000 "-$ "9911810000"
Invoice Detail.Voided $=$ No,Yes

Vendor Name
Invoice Number

GENERAL FUND

01-3700-3600 REFUNDS \& REIMBURSEMENTS
 NORTHSTREAM CONSTRUCTIO R 112322

FINEGAN, CARMEN R 112322

Total :

LEGISLATIVE \& EXECUTIVE

01-4110-4200 PROFESSIONAL SERVICES

WORKMAN AND COMPANY 112122

Total LEGISLATIVE \& EXECUTIVE:

ADMINISTRATIVE SERVICES

01-4150-3100 OFFICE SUPPLIES \& POSTAGE			
COPY \& PRINT, L.L.C.	124733	POS-8993: POSTITS, FOLDERS	133.77
COPY \& PRINT, L.L.C.	124755	POS 9061: NOTEBOOKS	28.76
01-4150-4200 PROFESSIONAL SERVICES			
GALENA ENGINEERING, INC.	1318.18811012	1318.188/MP/KETCHUM W1/2 LOTS 5 \& 6 BLK 46 STAKE POWER EASEMENT	567.67
BD CONSULTING LLC	KET 2023-02	GENERAL DISCUSSIONS, IMPACT FEES	320.00
DONAT, TRENT	R 112822	MOVING ALLOWANCE PER HIRING AGREEMENT	8,284.16
01-4150-5110 COMPUTER NETWORK			
CDW GOVERNMENT, INC.	FD63576	MS OFFICE MULTI USER LICENSE	304.99
INTEGRATED TECHNOLOGIES	204101	CO00 CITY OF KETCHUM-02	574.26
DELL FINANCIAL SERVICES	2203087	PROPERTY TAX MGMT FEE	11.30
DELL FINANCIAL SERVICES	2281920	001-9009257-001 DEC 22	1,465.97
01-4150-5150 COMMUNICATIONS			
ALBOUM TRANSLATION SERVIC	I-18772	SNOW REMOVAL DRAFT	50.04
01-4150-5200 UTILITIES			
IDAHO POWER	220399033411	2203990334111122	64.97
IDAHO POWER	220657086911	2206570869	5.31
IDAHO POWER	222412812011	2224128120112222	811.87
INTERMOUNTAIN GAS	449190300051	44919030005112222	49.51
INTERMOUNTAIN GAS	760537450301	76053745030112222	589.76
Total ADMINISTRATIVE SERVI	CES:		13,262.34

LEGAL

01-4160-4200 PROFESSIONAL SERVICES

WHITE PETERSON \quad 24892R 103122 General Services 24892R 103122 11,530.00

City of Ketchum		Payment Approval Report - by GL Council Report dates: 11/18/2022-12/5/2022	Nov 30, $2022 \begin{aligned} & \text { Page: } 2 \\ & \text { 01:52PM }\end{aligned}$	
Vendor Name	Invoice Number	Description	Net Invoice Amount	Purchase Order Number
Total LEGAL:			11,530.00	
PLANNING \& BUILDING				
01-4170-3100 OFFICE SUPPLIES \& POSTAGE				
COPY \& PRINT, L.L.C.	124732	POS-8992: MOUSEPAD, DESK SORTER, ORGANIZER	246.83	
01-4170-3200 OPERATING SUPPLIES				
COPY \& PRINT, L.L.C.	124746	MOUSE PAD FEL 9175101	83.58	
01-4170-4200 PROFESSIONAL SERVICES				
FORSGREN ASSOCIATES, INC.	222384	Engineering Services	5,657.50	
FORSGREN ASSOCIATES, INC.	222547	Engineering Services	5,002.50	
01-4170-4210 PROFESSIONAL SERVICES - IDBS				
DIVISION OF BUILDING SAFETY	0822 BPF	AUGUST BUILDING PERMIT FEE	31,134.40	
DIVISION OF BUILDING SAFETY	0922 BPF	SEPTEMBER 2022 BUILDING PERMIT FEE	26,082.50	
DIVISION OF BUILDING SAFETY	1022 BPF	OCTOBER 2022 BUILDING PERMIT FEES	34,981.00	
01-4170-4900 PERSONNEL TRAINING/TRAVEL/MTG				
LANDERS, MORGAN	R102622	APA CONFERENCE EXPENSES	909.70	
Total PLANNING \& BUILDING:			104,098.01	
NON-DEPARTMENTAL				
01-4193-4500 1ST/WASHINGTON RENT				
URBAN RENEWAL AGENCY	6085	URA RENT	3,000.00	
01-4193-6500 CONTRACT FOR SERVICE				
BLAINE COUNTY TREASURER	SCP-231117	SUSTAINABILITY CONTRACT FY 23	22,200.49	23016
Total NON-DEPARTMENTAL:			25,200.49	
FACILITY MAINTENANCE				
01-4194-3200 OPERATING SUPPLIES				
GEM STATE PAPER \& SUPPLY	1084312	PAPER TOWELS, PINE-SOL, TRASH BAGS	230.69	
GEM STATE PAPER \& SUPPLY	1084312-01	PINESOL, TRASH BAGS	25.37	
01-4194-3500 MOTOR FUELS \& LUBRICANTS				
CHRISTENSEN INC.	1007206	38950111522	975.89	
01-4194-4200 PROFESSIONAL SERVICES				
RAINMAKER LANDSCAPING \& S	8684	SPRINKLER Blowouts	3,440.00	
01-4194-5200 UTILITIES				
IDAHO POWER	220331344611	2203313446111022	5.31	
INTERMOUNTAIN GAS	326493300011	130 S 1 AVE	24.54	
01-4194-5910 REPAIR \& MAINT-491 SV ROAD				
ALSCO - AMERICAN LINEN DIVI	LBOI2035395	491 E SUN VALLEY 111422	178.70	
BLAINE COUNTY TREASURER	LRK000002400	2022 PROPERTY TAX - 491 E SUN VALLEY RD	1,762.60	
SUN VALLEY SERVICES	17490	HOUSEKEEPING SERVICES	3,268.00	
COX BUSINESS	0012401034971	0012401034971402112322	143.00	

City of Ketchum		Payment Approval Report - by GL Council Report dates: 11/18/2022-12/5/2022	Nov 30, $2022 \begin{aligned} & \text { Page: } 3 \\ & 01: 52 P M\end{aligned}$	
Vendor Name	Invoice Number	Description	Net Invoice Amount	Purchase Order Number
01-4194-6100 REPAIR \& MAINT--MACHINERY \& EQ				
SAWTOOTH WOOD PRODUCTS, I	0000137355	V-BELT TRACTION, BELT AUGER	73.51	
01-4194-6950 MAINTENANCE				
CHATEAU DRUG CENTER	2624401	BLK FOAM TAPE	5.68	
PLATT ELECTRIC SUPPLY	3E75976	CONDUIT, LOCKNUT, CEMENT	144.05	
RIVER RUN AUTO PARTS	6538-184614	FUEL STABILIZER	18.95	
Total FACILITY MAINTENANCE:			10,296.29	
POLICE				
01-4210-3620 PARKING OPS EQUIPMENT FEES				
CALE AMERICA, INC.	171940	ACTIVE METERS NOV 2022	169.05	
01-4210-4200 PROFESSIONAL SERVICES				
KETCHUM COMPUTERS, INC.	18914	MONTHLY WORKSTATION MAINT, SPRECIFIC SUPPORT WATCHGUARD	2,004.25	
01-4210-5100 TELEPHONE \& COMMUNICATIONS				
CENTURY LINK	208726784810	2087267848 105B 111322	138.66	
Total POLICE:			2,311.96	
FIRE \& RESCUE				
01-4230-3200 OPERATING SUPPLIES FIRE				
ATKINSONS' MARKET	04285934	WHITE CLOUD COFFEE	27.54	
BUSINESS AS USUAL INC.	160327	OFFICE SUPPLIES	59.88	
GEM STATE PAPER \& SUPPLY	1084750	LAUNDRY DISPENSER, POLY FLEX, SPARCLEAN	. 00	
GEM STATE PAPER \& SUPPLY	1085028	COPY PAPER	36.75	
INTEGRATED TECHNOLOGIES	203668	M7892-01 110822	9.11	
MUNICIPAL EMERGENCY SERIC	IN1782857	ENERGIZER INDUSTIAL ALK AA, AAA	60.04	
01-4230-3210 OPERATING SUPPLIES EMS				
ATKINSONS' MARKET	04285934	WHITE CLOUD COFFEE	27.54	
BUSINESS AS USUAL INC.	160327	OFFICE SUPPLIES	59.87	
GEM STATE PAPER \& SUPPLY	1084750	LAUNDRY DISPENSER, POLY FLEX, SPARCLEAN	. 00	
GEM STATE PAPER \& SUPPLY	1085028	COPY PAPER	36.75	
INTEGRATED TECHNOLOGIES	203668	M7892-01 110822	9.11	
NORCO	36128654	HYDRO AND INSP OF SCBA CYL	261.99	
NORCO	36217473	52355103122	74.40	
NORCO	36218578	54794103122	181.35	
MUNICIPAL EMERGENCY SERIC	IN1782857	ENERGIZER INDUSTRIAL ALK AA, AAA	60.04	
HENRY SCHEIN	27290118	RUBBER BANDS	8.30	
HENRY SCHEIN	27353830	MEDICAL EQUIPMENT	219.77	
HENRY SCHEIN	27850180	MEDICAL EQUIPMENT	223.30	
HENRY SCHEIN	27966823	MEDICAL EQUIPMENT	70.00	
01-4230-3500 MOTOR FUELS \& LUBRICANTS FIRE				
CHRISTENSEN INC.	1007105	37267111522	458.36	
CHRISTENSEN INC.	1007219	39060111522	385.05	
01-4230-3510 MOTOR FUELS \& LUBRICANTS EMS				
CHRISTENSEN INC.	1007105	37267111522	162.00	
01-4230-4900 TRAINING/TRAVEL/MTG FIRE				
IDAHO POWER	222421025811	2224210258110822	26.88	

City of Ketchum		Payment Approval Report - by GL Council Report dates: 11/18/2022-12/5/2022	Nov 30, $2022 \begin{aligned} & \text { Page: } 4 \\ & 01: 52 P M\end{aligned}$	
Vendor Name	Invoice Number	Description	Net Invoice Amount	Purchase Order Number
01-4230-4920 TRAINING-FACILITY				
COX BUSINESS	0012401047339	0012401047339201103022	99.79	
01-4230-5100 TELEPHONE \& COMMUNICATION FIRE				
MTE COMMUNICATIONS	056983110122	DSL ROUTER RENT	15.13	
VERIZON WIRELESS	9918968394	842054354-00001 102322	282.57	
WHITE CLOUD	102035	TECHNICIAN SERVICES- RADIO REPAIR	145.00	
WHITE CLOUD	102197	148-174 MHZ DUAL ISOLATOR, SERVICES	2,487.50	
WHITE CLOUD	102198	TROUBLESHOOT GOLD LINK 3	137.50	
WHITE CLOUD	102198	TROUBLESHOOT GOLD LINK 3	137.50	
WHITE CLOUD	103049	DASH MOUNT, CONNECTOR, HOOD W/POWER	1,540.30	
01-4230-5110 TELEPHONE \& COMMUNICATION EMS				
MTE COMMUNICATIONS	056983110122	DSL ROUTER RENT	15.12	
VERIZON WIRELESS	9918968394	842054354-00001 102322	282.57	
WHITE CLOUD	102035	TECHNICIAN SERVICES- RADIO REPAIR	145.00	
WHITE CLOUD	102197	148-174 MHZ DUAL ISOLATOR, SERVICES	2,487.50	
WHITE CLOUD	103049	DASH MOUNT, CONNECTOR, HOOD W/POWER	1,540.30	
01-4230-5200 UTILITIES				
COX BUSINESS	0012401049446	0012401049446101112722	246.50	
01-4230-6000 REPAIR \& MAINT-AUTO EQUIP FIRE				
BROOKS WELDING	15180	$1 * 8 \mathrm{X} 2 \mathrm{TSX5} 5$ ', $1^{*} 8$ X 5 FB X 48"	88.38	
RIVER RUN AUTO PARTS	6538-183283	STB 65-85 BATTERY, DIATOM OIL	191.85	
RIVER RUN AUTO PARTS	6538-183622	DIATOM OIL ABSORB	16.95	
RIVER RUN AUTO PARTS	6538-184643	OIL FILTER, AIR FILTER, OIL	108.33	
ROCKY MOUNTAIN APPLIANCE	28117	SERVICE- WASHER AND DRYER	98.00	
CURTIS TOOLS FOR HEROES	INV648146	AIR SAMPLE	224.30	
CURTIS TOOLS FOR HEROES	INV650308	CHAIN GRAB HOOKS	143.66	
01-4230-6010 REPAIR \& MAINT-AUTO EQUIP EMS				
ROCKY MOUNTAIN APPLIANCE	28117	SERVICE WASHER \& DRYER	98.00	
01-4230-6100 REPAIR \& MAINT--MACHINERY \& EQ				
MUNICIPAL EMERGENCY SERIC	IN1784303	SCBA FLOW TESTS	2,663.15	
Total FIRE \& RESCUE:			15,652.93	
STREET				
01-4310-3200 OPERATING SUPPLIES				
D \& B SUPPLY INC.	27561	WORK SHIRTS	24.99	
DAVIS EMBROIDERY INC.	40656	EMBRD SERVICE CARHARTT SHIRTS	120.00	
NAPA AUTO PARTS	127709	SHOP GLOVES	49.12	
RIVER RUN AUTO PARTS	6538-184772	ARMORALL	26.95	
01-4310-3400 MINOR EQUIPMENT				
NAPA AUTO PARTS	126455	TIRE GAUGES	167.63	
01-4310-3500 MOTOR FUELS \& LUBRICANTS				
CHRISTENSEN INC.	1007106	37269111522	10,074.19	
CHRISTENSEN INC.	561606	37269111422	213.26	
01-4310-4200 PROFESSIONAL SERVICES				
LUNCEFORD EXCAVATION, INC.	13843	WINTER 22-23 SNOW HAULING SERVICE	10,600.00	23045

City of Ketchum	Payment Approval Report - by GL Council Report dates: 11/18/2022-12/5/2022		Nov
Vendor Name	Invoice Number	Description	Net Invoice Amount
01-4310-5200 UTILITIES			
INTERMOUNTAIN GAS	326493300011	200 E 10 ST	742.59
INTERMOUNTAIN GAS	326493300011	911 WARM SPRINGS	300.69
01-4310-6000 REPAIR \& MAINT--AUTOMOTIVE EQU			
NAPA AUTO PARTS	127139	BIOWER MOTOR RESISTOR	39.60
NAPA AUTO PARTS	127148	OIL FILTER	8.88
01-4310-6100 REPAIR \& MAINT--MACHINERY \& EQ			
FASTENAL COMPANY	IDJER105145	NUTS AND BOLTS	348.63
FASTENAL COMPANY	IDJER105252	TOP LK GR C, AAA BATTERY, 6*3/4* 1 MEDIUM	138.33
WESTERN STATES CAT	IN002196117	TROUBLESHOOT AND REPAIR ELECTRIC SYSTEM 966M LOADER	780.00
01-4310-6910 OTHER PURCHASED SERVICES			
ALSCO - AMERICAN LINEN DIVI	LBOI2036873	200 10TH ST	31.79
01-4310-6920 SIGNS \& SIGNALIZATION			
ECONO SIGNS LLC	10-978535	WINTER OVERNIGHT SIGNS	2,041.56
ECONO SIGNS LLC	10-978677	CUSTOM SIGN	116.68
01-4310-6930 STREET LIGHTING			
IDAHO POWER	222430472111	2224304721111022	5.31
01-4310-6950 MAINTENANCE \& IMPROVEMENTS			
ANDERSON ASPHALT PAVING IN	682	MATERIAL DUMPED	413.04
ANDERSON ASPHALT PAVING IN	682	GRAVEL, ASPHALT PICKED UP	3,653.29
CLEARWATER LANDSCAPING	22-114542	IceBITE, DELIVER	1,864.02
Total STREET:			31,760.55
RECREATION			
01-4510-3200 OPERATING SUPPLIES			
CHATEAU DRUG CENTER	2623928	SUREPAW ICE MELT	71.22
CHATEAU DRUG CENTER	2624340	EMERGEN-C	16.14
01-4510-3250 RECREATION SUPPLIES			
CHATEAU DRUG CENTER	2627939	D BATTERIES	126.28
01-4510-3300 RESALE ITEMS-CONCESSION SUPPLY			
ATKINSONS' MARKET	02629279	POTATO BAKERS, ORANGE SUGAR, INDIAN FALL LEAVE	13.56
ATKINSONS' MARKET	08566067	SUGAR, MILK, BAKING SODA, FLOUR	22.72
01-4510-4200 PROFESSIONAL SERVICE			
WOOD RIVER LOCK SHOP, LLC	19434	115.00	115.00
01-4510-5200 UTILITIES			
INTERMOUNTAIN GAS	319040300091	31904030009112222	144.98
SENTINEL FIRE \& SECURITY, IN	82304	ATKINSONS PARK BUILDING	104.85
01-4510-6000 REPAIR \& MAINT--AUTOMOTIVE EQU			
RIVER RUN AUTO PARTS	6538-184602	WINTER BLADE, WIPER BLADE	47.80
Total RECREATION:			662.55

City of Ketchum	Payment Approval Report - by GL Council Report dates: 11/18/2022-12/5/2022		Nov 30, $2022 \begin{aligned} & \text { Page: } 7 \\ & 01: 52 P M\end{aligned}$	
Vendor Name	Invoice Number	Description	Net Invoice Amount	Purchase Order Number
54-4410-4200 PROFESSIONAL SERVICES				
CONNELLY, CARISSA	13	COMMUNITY HOUSING CONSULTING	3,562.50	
LANDING, INC.	1420	LEASE TO LOCALS RENTAL PROGRAM	7,500.00	22120
54-4410-4210 LEASE TO LOCALS				
AYERS, SUSAN	LTL 112822	LTL INITIAL PAYMENT	1,000.00	
BELLAMY, KIMBERLY	LTL 112822	LTL INITIAL PAYMENT	2,250.00	
DOUCETTE, JACKIE COSTELLO	LTL 112822	LTL INITIAL PAYMENT	2,250.00	
54-4410-4220 EMERGENCY HOUSING				
FERGUSON ENTERPRISES, LLC	0839635	CVR 101N-H 2.38 X 1 IP F/ HDPE 2	625.80	
BLAINE COUNTY CHARITABLE	1038	TRANSITIONAL HOUSING ASSISTANCE- NOV \& DEC	36,100.00	
Total CITY/COUNTY HOUSING EXPENSE:			53,288.30	
Total CITY/COUNTY HOUSING:			53,288.30	
WATER FUND				
WATER EXPENDITURES				
63-4340-3200 OPERATING SUPPLIES				
ALSCO - AMERICAN LINEN DIVI	LBOI2036878	110 RIVER RANCH RD - ADMIN - 111822	30.50	
ALSCO - AMERICAN LINEN DIVI	LBOI2036880	110 RIVER RANCH RD - WATER - 111822	60.59	
D \& B SUPPLY INC.	18245-2022	Work Shirts	72.05	
TREASURE VALLEY COFFEE INC	2160:08600792	COFFEE	67.41	
63-4340-3500 MOTOR FUELS \& LUBRICANTS				
CHRISTENSEN INC.	1007108	37271111522	704.10	
63-4340-4200 PROFESSIONAL SERVICES				
HIGHLAND PLUMBING	408	CONNECT WATER LINE - LIMELIGHT / MATERIALS	875.00	
BOWMAN, PHILLIP	R 112822	PUBLIC WORKS INTERVIEW TRAVEL COSTS	225.06	
63-4340-5200 UTILITIES				
DIG LINE	0069315-IN	Monthly Fee	129.03	
IDAHO POWER	220678625911	2206786259111822	29.16	
INTERMOUNTAIN GAS	326493300011	110 RIVER RANCH RD A	51.51	
63-4340-6000 REPAIR \& MAINT-AUTO EQUIP				
RIVER RUN AUTO PARTS	6538-184694	5W20 OIL \& OIL FILTER	47.62	
63-4340-6100 REPAIR \& MAINT-MACH \& EQUIP				
SILVER CREEK SUPPLY	0008749390-00	5 GALLON RHOMAR	107.00	
SILVER CREEK SUPPLY	0008757796-00	2" X 1-1/2" LEAD FREE BRASS BUSHING MXF	23.89	
Total WATER EXPENDITURES:			2,422.92	
Total WATER FUND:			2,422.92	
WATER CAPITAL IMPROVEMENT FUND				
64-4340-7650 WATER METERS				
FERGUSON ENTERPRISES, LLC	0840347	2 OMNI+ T2 1000GA AMR 1GPL 15.25LL	2,800.00	
FERGUSON ENTERPRISES, LLC	0840348	2 OMNI+ T2 1000GA AMR 1GPL 15.25LL	2,800.00	
FERGUSON ENTERPRISES, LLC	0840349	2 OMNI+ T2 1000GA AMR 1GPL 15.25LL	2,800.00	
FERGUSON ENTERPRISES, LLC	0840350	2 OMNI+ T2 1000GA AMR 1GPL 15.25LL	2,800.00	
FERGUSON ENTERPRISES, LLC	0840351	2 OMNI+ T2 1000GA AMR 1GPL 15.25LL	2,800.00	

City of Ketchum		Payment Approval Report - by GL Council Report dates: 11/18/2022-12/5/2022	$\begin{array}{ll} \text { Page: } 8 \\ \text { Nov 30, } 2022 & 01: 52 \mathrm{PM} \end{array}$	
Vendor Name	Invoice Number	Description	Net Invoice Amount	Purchase Order Number
FERGUSON ENTERPRISES, LLC	0840352	2 OMNI+ T2 1000GA AMR 1GPL 15.25LL	2,800.00	
Total WATER CIP EXPENDITURES:			16,800.00	
Total WATER CAPITAL IMPROVEMENT FUND:			16,800.00	
WASTEWATER FUND				WASTEWATER EXPENDITURES
65-4350-3200 OPERATING SUPPLIES				
A.C. HOUSTON LUMBER CO.	2211-512324	ICE MELT, GLOVES	76.98	
ALSCO - AMERICAN LINEN DIVI	LBOI2036878	110 RIVER RANCH RD - ADMIN - 111822	30.50	
ALSCO - AMERICAN LINEN DIVI	LBOI2036879	110 RIVER RANCH RD - WASTEWATER - 111822	136.40	
ATKINSONS' MARKET	08567114	ICE	23.66	
CHATEAU DRUG CENTER	2626362	BATTERIES	9.49	
D \& B SUPPLY INC.	13780	SHIRTS \& JACKET	224.97	
D \& B SUPPLY INC.	26366	Work Pants	131.97	
D \& B SUPPLY INC.	6773	Work Pants	109.98	
FEDEX	7-942-71639	Ground Shipping	9.83	
FEDEX	7-957-41851	Ground Shipping	9.04	
UPS STORE \#2444	MMN7FR54ZB	WATER SAMPLES	17.22	
UPS STORE \#2444	MMN7FR57M	WATER SAMPLES	15.99	
65-4350-3400 MINOR EQUIPMENT				
A.C. HOUSTON LUMBER CO.	2211-512325	42" ONE-PIECE POLY SCOOP RED, LS 29" D-HANDLE POLY GRAIN SCOOP	82.98	
65-4350-3500 MOTOR FUELS \& LUBRICANTS				
CHRISTENSEN INC.	1007107	37270111522	1,082.50	
65-4350-3800 CHEMICALS				
HACH	13333280	s-TKN TNT+ (0-16 MG/L N), PK/25	206.08	
NORTH CENTRAL LABORATORI	478203	Chemicals/supplies	658.73	
65-4350-4200 PROFESSIONAL SERVICES				
BD CONSULTING LLC	KET 2023-02	WW DEBT/BOND, WW FINANCIAL MODELING	255.00	
BOWMAN, PHILLIP	R 112822	PUBLIC WORKS INTERVIEW TRAVEL COSTS	225.05	
65-4350-5100 TELEPHONE \& COMMUNICATIONS				
CENTURY LINK	208726895340	2087268953 402B 111322	62.75	
VERIZON WIRELESS	9920359233	965494438111022	66.03	
65-4350-5200 UTILITIES				
IDAHO POWER	220215870111	2202158701111422	9,337.61	
IDAHO POWER	220270335711	2202703357111822	92.09	
IDAHO POWER	220678625911	2206786259111822	29.16	
INTERMOUNTAIN GAS	326493300011	110 RIVER RANCH RD GRIT	471.58	
INTERMOUNTAIN GAS	326493300011	110 RIVER RANCH RD C	446.74	
INTERMOUNTAIN GAS	326493300011	110 RIVER RANCH RD SLUDGE	52.53	
INTERMOUNTAIN GAS	326493300011	110 RIVER RANCH RD A	51.51	
INTERMOUNTAIN GAS	582086885511	110 RIVER RANCH RD SLUDGEMECHANICAL BAR SCREE	68.06	
65-4350-6000 REPAIR \& MAINT-AUTO EQUIP				
NAPA AUTO PARTS	127167	HEADLIGHT LENS RESTOR \& D EARTH	39.47	
65-4350-6100 REPAIR \& MAINT-MACH \& EQUIP				
GRAINGER, INC., W.W.	9515850825	AXIAL FAN, SQUARE, 12-45/64" H,353 CFM	579.05	
OVERHEAD DOOR COMPANY, IN	520215	460V BRAKE SOLENOID	148.00	

City of Ketchum		Payment Approval Report - by GL Council Report dates: 11/18/2022-12/5/2022	Nov 30, 2022 Page: 9	
Vendor Name	Invoice Number	Description	Net Invoice Amount	Purchase Order Number
SAVECO NORTH AMERICA INC	PART22184-PL	SCREW AUGER SPW200 W/BRUSH, L 700	5,025.98	23027
SAVECO NORTH AMERICA INC	PART22184-PL	FREIGHT	1,714.62	
GLOBAL INDUSTRIAL	21568915	CONTINENTAL FAN 12" DIA. DESTRATIFICATION FAN, 1055 CFM	607.54	
65-4350-6900 COLLECTION SYSTEM SERVICES/CHA				
DIG LINE	0069315-IN	Monthly Fee	129.03	
NAPA AUTO PARTS	126951	BLUE DEF 2.5 GAL	37.72	
VERIZON WIRELESS	9920359233	965494438111022	41.56	
Total WASTEWATER EXPENDITURES:			22,307.40	
Total WASTEWATER FUND:			22,307.40	
WASTEWATER CAPITAL IMPROVE FND				
WASTEWATER CIP EXPENDITURES				
67-4350-7813 CAPITAL IMP PLAN(NO SHARING)				
COPY CENTER LLC	2426	HALF FOLD MAILERS WW	2,962.26	
Total WASTEWATER CIP EXPENDITURES:			2,962.26	
Total WASTEWATER CAPITAL IMPROVE FND:			2,962.26	
PARKS/REC DEV TRUST FUND				
PARKS/REC TRUST EXPENDITURES				
93-4900-5910 WARM SPRINGS PRESR-RESTORATION				
BLAINE COUNTY TREASURER	RPK057800200	WARM SPRINGS RANCH BLK 2	26.52	
BLAINE COUNTY TREASURER	RPK057800300	WARM SPRINGS RANCH BLK 3	2,281.58	
BLAINE COUNTY TREASURER	RPK057800400	WARM SPRINGS RANCH BLK 4	2,202.62	
BLAINE COUNTY TREASURER	RPK057800500	WARM SPRINGS RANCH BLK 5	2,281.58	
BLAINE COUNTY TREASURER	RPK057800600	WARM SPRINGS RANCH BLK 6	2,684.22	
BLAINE COUNTY TREASURER	RPK057800700	WARM SPRINGS RANCH BLK 7	17.42	
COPY \& PRINT, L.L.C.	124533	POS-8583: POSTERS	149.94	
COPY CENTER LLC	2468	WSP INFO BOARDS	729.00	
Total PARKS/REC TRUST EXPENDITURES:			10,372.88	
Total PARKS/REC DEV TRUST FUND:			10,372.88	
DEVELOPMENT TRUST FUND DEVELOPMENT TRUST EXPENDITURES				
94-4900-8000 PEG GATEWAY MARRIOT AUTOGRAPH				
WHITE PETERSON	24892R 103122	GATEWAY HOTEL DEVELOPMENT PROPOSAL 103122	4,470.00	
94-4900-8005 WILSON CONSTR-460 N MAIN ST				
WILSON CONSTRUCTION	R 111422	SECURITY BOND RETURN	29,905.00	
94-4900-8090 BENOECHEA-191 N 3RD AVE \#1188				
BENGOECHEA, LOWELL	R 111822	DEMOLITION BOND REFUND D22-009	18,000.00	
Total DEVELOPMENT TRUST	XPENDITURES:		52,375.00	
Total DEVELOPMENT TRUST	UND:		52,375.00	

Vendor Name	Invoice Number	Description	Net Invoice Amount	Purchase Order Number
Grand Totals:			423,282.14	

Report Criteria:

Invoices with totals above $\$ 0$ included.
Paid and unpaid invoices included.
[Report].GL Account Number = "0110000000"-"9648008200","9910000000"-"9911810000"
Invoice Detail.Voided $=$ No, Yes

City of Ketchum

December 5, 2022
Mayor Bradshaw and City Councilors
City of Ketchum
Ketchum, Idaho
Mayor Bradshaw and City Councilors:

Recommendation to Approve Snow Hauling Contract for Apollo Construction, LLC (Apollo is replacing Rick's Excavation)

Recommendation and Summary
Staff is recommending the council approve the snow hauling contract and adopt the following motion:
"I move to authorize the Mayor to approve the contract for services with: "Apollo Construction, LLC."
The reasons for the recommendation are as follows:

- The City of Ketchum does not have the staff and equipment necessary to perform the snow hauling duties and meet the historical level of service.
- Standardized contracts provide an economical method of achieving the historical level of service while ensuring fairness amongst the service providers.

Introduction and History

Rick's Excavation is retiring from snow removal and Apollo Construction is taking his place.
The addition of this contract bares no impact on other snow removal contracts or the snow removal budget.
Currently, the City of Ketchum's Streets Division uses contracted snow haulers to remove snow from the right-of-way immediately after snowstorms greater than 3 inches. Doing so ensures that roadways are immediately passable and parking areas are clear while also providing greater visibility to all users.

Prior to 1996, the Street Division would plow snow on the first night of the storm. On the next night, City staff would start hauling snow away using both city-owned and contracted trucks. This process was less costly but considerably slower. During back-to-back storms, the Streets Division would only plow as the staff was unable to haul snow. As a result, the snow would pile up in town to the point where there would be little parking and very narrow travel lanes down each street.

In 1996, the city had a good snow year with several back-to-back storms which left the city core full of snow with little to no parking. The City Council wanted change and so approved funds to upgrade equipment, increase staff and utilize more contracted snow haulers. Today, the City uses up to 14 contract trucks to help haul snow while City staff plows. The contract allows the City to require that the trucks and drivers are safe, professional and follow a list of details specific to completing the snow hauling job safely and responsibly. Having contracts in place also guarantees that the City will not be paying varying hourly amounts to different contractors; all the contractors are on the same pay scale.

Analysis

As stated, the City started using snow hauling contracts to keep the pay and requirements equal for all
contractors. For the coming year, the city will pay $\$ 95.00$ per hour for a truck that holds between 14 and 16 cubic yards and $\$ 100.00$ per hour for a truck that holds more than 16 cubic yards. The city also pays up to an hour travel time, per truck, per day. We are recommending an increase of $\$ 10 . \mathrm{hr}$ to align more closely with the valley's hauling prices. In addition to the above increase, we are recommending a $\$ 5.00$ per hour fuel surcharge for the trucks until the fuel prices come back down. (Current contractor hauling prices are $\$ 125.00$ per hour)

Financial Impact

The Streets Division Professional Services line item funds the contract snow haulers, flagging services and engineering services. This year $\$ 185,000$ is budgeted for the line item. The minimal price change in this contract should not significantly affect this line item.

Sincerely,

Brian Christiansen
Director of Streets and Facilities
Attachments: Snow Hauling Contract and Purchase Order for Apollo Construction, LLC

INDEPENDENT CONTRACTOR AGREEMENT \#23046
(City of Ketchum/Apollo Construction, LLC)
THIS INDEPENDENT CONTRACTOR AGREEMENT is made and entered into as of this 5^{n} day of December 2022, by and between THE CITY OF KETCHUM, an Idaho municipal corporation ("Ketchum") and APOLLO CONSTRUCTION, LLC, an Idaho corporation ("Contractor").

RECITALS

WHEREAS, Ketchum is a municipal corporation duly organized and existing under the laws of the State of Idaho, and
WHEREAS, Pursuant to Idaho Code §50-301 et seq., Ketchum is empowered to contract and be contracted with; and
WHEREAS, it is deemed in the best interest of Ketchum to contract with Contractor for certain snow hauling services as set forth in more detail herein below (the "Services"); and

WHEREAS, Ketchum finds that contracting with Contractor for performance of the Services shall conserve economic resources and improve snow removal throughout Ketchum in furtherance of the health, safety and welfare of the residents and visitors of Ketchum.

NOW, THEREFORE, for the consideration recited herein below, Ketchum and Contractor enter this Agreement according to the following terms and conditions:

1. Incorporation of Recitals. The Recitals set forth herein above are hereby incorporated into and made an integral part of this Agreement.
2. The Services. Contractor shall haul snow from the streets of Ketchum as follows:
a. Contractor shall provide professionally trained and duly licensed drivers, and sage, Idaho-licensed, Idaho-registered, well-maintained trucks necessary to haul snow from ketchum streets designated by the Head of the ketchum Street Division or any other employee of Ketchum designated by such Division Head. Ketchum shall have no responsibility for the security or protection of, maintenance of or damage to, Contractor's supplies or equipment.
b. At all times while performing the Services, Contractor and its drivers shall obey all traffic laws, drive safely and professionally, and act in a polite professional manner. Under no circumstances while performing the Services shall Contractor or any of its drivers be under the influence of any alcohol or other legal or illegal drugs or substances which may impair their driving skills, reaction time or judgment.
c. Ketchum shall plow, collect and place the snow in Contractor's trucks.
d. Contractor's drivers shall haul the snow in Contractor's trucks to a Ketchum designated snow storage site.
e. Contractor's trucks shall use only biodegradable truck bed liner materials to provide for any non-stick surface.
f. Contractor shall provide all tools, equipment, materials, and services to complete and perform the Services, including without limitation, fuel for Contractor's trucks and all maintenance and repair of Contractor's trucks.
g. Ketchum shall make all reasonable efforts to work until all of the snow is hauled; however, Ketchum may allow its employees to take a break before all of the snow is hauled.
h. Ketchum shall not provide meals or any benefits whatsoever to Contractor, its officers, directors, shareholders, members, managers, agents or employees at any time, including without limitation, during breaks.
i. Contractor is solely responsible for freeing any of Contractor's trucks that become stuck.
3. Consideration. Ketchum shall pay Contractor the following consideration:
a. FOR A TRUCK WITH A BED SIZE OF 14 to 16 cubic yards: NINETY-FIVE DOLLARS (\$95) per hour.
b. FOR A TRUCK WITH A BED SIZE OF 16 cubic yards or more: ONE HUNDRED DOLLARS $(\$ 100)$ per hour.
c. Ketchum shall pay Contractor up to THIRTY (30) minutes each way for travel time to and from Ketchum, not to exceed onehour total per truck per day.
d. Ketchum shall only pay Contractor for time actually worked and not for breaks or down time due to any reason including without limitation, equipment failure, labor disputes, strikes, being stuck, adverse weather or traffic accidents.
e. Contractor must submit a written bill to Ketchum prior to receiving any of the compensation due under this Agreement.
4. Waiver. If Contractor requests Ketchum's assistance in any matter such as truck or trailer repair or maintenance or dislodging any stuck truck and Ketchum is able and willing to assist Contractor, Contractor hereby agrees to hold Ketchum, its employees and elected officials harmless and waives, releases, acquits, and forever discharges and indemnifies Ketchum, its employees and elected officials from any and all actions, causes of action, claims, demands, damages, costs, loss of service, expenses and compensation, in any manner related to or arising from such assistance. Such assistance shall be purely voluntary, and this Paragraph 4 shall not create or imply the creation of any agreement or obligation on the part of Ketchum.
5. Time of Performance. Contractor shall provide the Services on an "on call" basis as designated by the Head of the Ketchum Street Division and shall complete such services in a professional and timely manner.
6. Term. This Agreement shall be effective as of the date first above written, and be in full force and effect until May 1, 2023, at which time it shall terminate and neither Party hereto shall have any continuing obligations to the other hereunder.
7. Independent Contractor. Ketchum and Contractor hereby agree that Contractor shall perform the Services exclusively as an independent contractor and not as employee or agent of Ketchum. The Parties do not intend to create through this Agreement any partnership, corporation, employer/employee relationship, joint venture or other business entity or relationship other than that of independent contractor. Contractor, its managers, members, directors, officers, shareholders, agents and employees shall not receive nor be entitled to any employment-related benefits from Ketchum including without limitation, workers compensation insurance, unemployment insurance, health insurance, retirement benefits or any benefit that Ketchum offers to its employees. Contractor shall be solely responsible for the payment of all payroll and withholding taxes for amounts paid to Contractor under this Agreement and for Contractor's payments for work performed in performance of this Agreement by Contractor's managers, members, directors, officers, shareholders, agents and employees; and Contractor hereby releases, holds harmless and agrees to indemnify Ketchum from and against any and all claims or penalties, including without limitation the 100% penalty, which in any manner relate to or arise from any failure to pay such payroll or withholding taxes.
8. Warranty. Contractor warrants that all equipment used to perform this Agreement will function safely, properly, and efficiently and that all services will be performed in a safe, professional and workmanlike manner. Contractor agrees and warrants that all of Contractor's drivers are duly licensed to and capable of operating the trucks contemplated in this Agreement safely and efficiently in adverse or extreme road and weather conditions and that Contractor and its drivers shall obey all traffic laws, drive safely and professionally, and act in a polite professional manner. Contractor warrants and agrees that under no circumstances while performing the Services shall Contractor or any of its drivers be under the influence of any alcohol or other legal or illegal drugs or substances which may impair their driving skills, reaction time or judgment.
9. Indemnification. Contractor agrees to indemnify and hold Ketchum harmless from and against all claims, suits, damages (including without limitation, damages to persons and property including deaths), costs, losses, and expenses, in any manner related to or arising from the acts or omissions of Contractor, its managers, members, directors, officers, shareholders, agents and employees.
10. Registration. Contractor agrees to maintain all registration, license and insurance as required by the laws and decisions of the State of Idaho for all trucks and trailers used in the performance of this Agreement throughout the term of this Agreement. Contractor shall furnish proof of said registration, license and insurance to Ketchum prior to performing any of the Services or being entitled to any pay there for.
11. Insurance. Contractor shall maintain public liability insurance in the amount of $\$ 500,000.00$ and workers compensation insurance from an insurance carrier licensed to do business in the State of Idaho, and furnish proof of said insurance to Ketchum prior to performing any of the Services or being entitled to any pay there for.
12. Compliance with Laws/Public Records. Contractor, its managers, members, directors, officers, shareholders, agents and employees shall comply with all federal, state and local laws, rules and ordinances, including without limitation, the Department of Transportation's rules and regulations, 49 CFR Part 40 Drug Testing Program and the Omnibus Transportation Employee Testing Act of 1991. This Agreement does not relieve Contractor of any obligation or responsibility imposed upon Contractor by law. Without limitation, Contractor hereby acknowledges that all writings and documents, including without limitation email,
containing information relating to the conduct or administration of the public's business prepared by Contractor for City regardless of physical form or characteristics may be public records pursuant to Idaho Code Section 9-337 et seq. Contractor further acknowledges that, subject to certain limitations, the public may examine and take a copy of all such public writings and records. Accordingly, Contractor shall maintain such writings and records in such a manner that they may readily identified, retrieved, and made available for such inspection and copying.
13. Notice. All notices, requests, demands or other communication required or provided for under this Agreement, other than instructions given by Ketchum pursuant to Paragraph 2 herein above shall be in writing. Notices to Ketchum and the Contractor shall be addressed as follows:

KETCHUM:

City of Ketchum
PO Box 2315
Ketchum, ID 83340-2315

CONTRACTOR:
Apollo Construction, LLC
113 N 3rd St.
Bellevue, ID 83333
14. Non-Assignment. Contractor hereby acknowledges that Ketchum has agreed to enter this Agreement based in part on Contractor's unique skills and reputation for professional work. Accordingly, Contractor may not assign or transfer in any manner this Agreement or any of Contractor's right, title or interest in or to this Agreement without the prior written consent of Ketchum which may be withheld for any reason.
15. Amendments. This Agreement may only be changed, modified, or amended in writing executed by all parties.
16. Headings. The headings in the Agreement are inserted for convenience and identification only and are in no way intended to describe, interpret, define, or limit the scope, extent, or intent of this Agreement or any provision hereof.
17. Attorney Fees and Costs. In the event that either party hereto is required to retain the services of an attorney to enforce any of its rights hereunder, the non-prevailing party shall pay to the prevailing party all reasonable costs and attorney fees incurred in such enforcement, whether or not litigation is commenced and including reasonable costs and attorney fees on appeal.
18. No Presumption. No presumption shall exist in favor of or against any party to this Agreement as the result of the drafting and preparation of the document.
19. Governing Law. This Agreement shall be governed by the laws and decisions of the State of Idaho.
20. Entire Agreement. This Agreement contains the entire Agreement between the parties respecting the matters herein set forth and supersedes all prior Agreements between the parties hereto respecting such matter.
21. Execution and Fax Copies and Signatures. This Agreement may be executed simultaneously in one or more counterparts, each of which shall be deemed an original, but all of which together shall constitute one and the same instrument.
22. Authority, The parties executing this Agreement warrant, state, acknowledge, and affirm that they have the authority to sign the same and to bind themselves to the terms contained herein.

IN WITNESS WHEREOF, the Parties execute this Agreement as of this $5^{\text {th }}$ day of December 2022.

> THE CITY OF KETCHUM, An Idaho municipal corporation

By:
Neil Bradshaw, Mayor
City of Ketchum

Apollo Construction, LLC
An Idaho corporation

By: \qquad
Its: \qquad

ATTEST:

CITY OF KETCHUM
 PO BOX 2315 * 191 5TH ST.* KETCHUM, ID 83340
 Administration 208-726-3841 (fax) 208-726-8234

PURCHASE ORDER
 BUDGETED ITEM? _X_Yes ___No

PURCHASE ORDER - NUMBER: 23046

To:	Ship to:
5932	CITY OF KETCHUM
APOLLO CONSTRUCTION LLC	PO BOX 2315
113 N 3RDST	KETCHUM ID 83340
BELLEVUE ID 83313	

P. 0. Date	Created By	Requested By	Department	Req Number	Terms
$11 / 21 / 2022$	kchoma	kchoma		0	

$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Quantity } \\ \text { 1.00 }\end{array} \begin{array}{c}\text { Description } \\ \text { WINTER 22-23 SNOW HAULING SERVICES 01-4310-4200 }\end{array}\right)$

City of Ketchum

November 30, 2022

Mayor Bradshaw and City Councilors
City of Ketchum
Ketchum, Idaho

Mayor Bradshaw and City Councilors:

Recommendation To Approve Purchase Order \#23047 for Laptops from Dell computers

Recommendation and Summary

Staff is recommending the council adopt the following purchase order:
"I move to approve Purchase Order \#23047 for laptops from Dell computers."

The reasons for the recommendation are as follows:

- Blaine County Ambulance District has agreed to fund the installation of rugged laptops in the 3 ambulances.

Introduction and History

The City of Ketchum provides contract ambulance service to the North portion of Blaine County. To improve data collection and patient reporting, the district has authorized installation of laptops in each ambulance. As we are doing the installations ourselves, the district asked us to purchase the equipment. The district will reimburse this purchase.

Sustainability Impact

No impact.

Financial Impact

This is no cost to the city as the ambulance district will reimburse the costs.

Attachments
PO 23047

CITY OF KETCHUM

PO BOX 2315 * 191 5TH ST. * KETCHUM, ID 83340
Administration 208-726-3841 (fax) 208-726-8234

PURCHASE ORDER
 BUDGETED ITEM?
 \qquad Yes
 \qquad No

PURCHASE ORDER - NUMBER: 23047

To:	Ship to:
4888	CITY OF KETCHUM
DELL FINANCIAL SERVICES	PO BOX 2315
PO BOX 6547	KETCHUM ID 83340
CAROL STREAM IL 60197-6549	

P. O. Date	Created By	Requested By	Department	Req Number	Terms
$11 / 29 / 2022$	bancona	bancona	Fire \& Rescue	0	

| Quantity |
| :---: | :---: | :---: | :---: | :---: |
| 1.00 |\quad| Description |
| :---: |
| AMBULANCE LAPTOPS |
| |

City of Ketchum

December 5, 2022

Mayor Bradshaw and City Councilors
City of Ketchum
Ketchum, Idaho

Mayor Bradshaw and City Councilors:

Adoption of Resolution 22-038 establishing 2023 Ketchum Planning and Zoning Commission Meeting Dates

Recommendation

Recommend that the City Council move to:

Approve Resolution Number 22-038 setting the 2023 regular meeting dates of the Planning and Zoning Commission and authorizing the Mayor to sign said resolution

Introduction/History

Each year the City Council passes a resolution setting the dates for the regular Planning and Zoning Commission meetings.

Current Report

Attached is Resolution Number 22-038 setting the regular Planning and Zoning Commission meeting dates for 2023.

Financial Requirement/Impact
The City of Ketchum fiscal year 2022/2023 budget has appropriated $\$ 25,200$ for compensation of Planning and Zoning Commission members for their time and expertise. This budgeted amount is adequate to cover expenses for the Commission in this Fiscal Year.

Attachments

Copy of Resolution 22-038

RESOLUTION NO. 22-038

A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF KETCHUM, IDAHO, ESTABLISHING THE DATES FOR ALL REGULAR PLANNING AND ZONING COMMISSION MEETINGS FOR 2023.

WHEREAS, regular meetings of the Planning and Zoning Commission shall be held on the second and fourth Tuesday of each month at 4:30 p.m. at Ketchum City Hall unless such date is a holiday, in which case the meeting shall be held on the following Wednesday or Thursday; and,

WHEREAS, pursuant to Idaho Code § 67-2343(1), any public agency that holds meetings at regular intervals of at least once per calendar month scheduled in advance over the course of the year may satisfy this meeting notice by giving meeting notices at least once each year of its regular meeting schedule; and,

WHEREAS, the City Council has determined that listing all regular meetings of the Planning and Zoning Commission to be held in 2023 would be beneficial to the residents of and visitors to the City of Ketchum.

NOW, THEREFORE, BE IT RESOLVED BY THE MAYOR AND CITY COUNCIL OF THE CITY OF KETCHUM, IDAHO that the regular meetings of the Planning and Zoning Commission for 2023 are as follows:

Tuesday January 10, 2023
Tuesday, January 24, 2023
Tuesday, February 14, 2023
Tuesday, February 28, 2023
Tuesday, March 14, 2023
Tuesday, March 28, 2023
Tuesday, April 11, 2023
Tuesday, April 25, 2023
Tuesday, May 9, 2023
Tuesday May 23, 2023
Tuesday, June,13, 2023
Tuesday, June 27,2023

Tuesday, July 11, 2023
Tuesday, July 25, 2023
Tuesday, August 8, 2023
Tuesday, August 22, 2023
Tuesday, September 12, 2023
Tuesday, September 26, 2023
Tuesday, October 10, 2023
Tuesday, October 24, 2023
Tuesday, November 14, 2023
Tuesday, November 28, 2023
Tuesday, December 12, 2023
Wednesday, December 27, 2023

This Resolution will be in full force and effect upon its adoption this $5^{\text {th }}$ day of December 2022.

CITY OF KETCHUM, IDAHO

Mayor Neil Bradshaw
ATTEST:

Trent Donat
City Clerk

City of Ketchum

December 5, 2022

Mayor Bradshaw and City Councilors
City of Ketchum
Ketchum, Idaho

Mayor Bradshaw and City Councilors:

Adoption of Resolution 22-039 establishing 2023 Ketchum Historic Preservation Commission Meeting Dates

Recommendation

Recommend that the City Council move to:

Approve Resolution Number 22-039 setting the 2023 regular meeting dates of the Historic Preservation Commission and authorizing the Mayor to sign said resolution

Introduction/History
Each year the City Council passes a resolution setting the dates for the regular Historic Preservation Commission meetings.

Current Report

Attached is Resolution Number 22-039 setting the regular Historic Preservation Commission meeting dates for 2023.

Financial Requirement/Impact
There is no financial impact.

Attachments
Resolution 22-039

A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF KETCHUM, IDAHO, ESTABLISHING THE DATES FOR ALL REGULAR HISTORIC PRESERVATION COMMISSION MEETING FOR 2023.

WHEREAS, regular meetings of the Historic Preservation Commission shall be held on the first Tuesday of the month at 4:30 PM at Ketchum City Hall unless such date is a holiday, in which case the meeting shall be held on the following day; and,

WHEREAS, pursuant to Idaho Code § 67-2343(1), any public agency that holds meetings at regular intervals of at least once per calendar month scheduled in advance over the course of the year may satisfy this meeting notice by giving meeting notices at least once each year of its regular meeting schedule; and,

WHEREAS, the City Council has determined that listing all regular and special meetings of the Historic Preservation Commission to be held in 2023 would be beneficial to the residents of and visitors to the City of Ketchum.

NOW, THEREFORE, BE IT RESOLVED BY THE MAYOR AND CITY COUNCIL OF THE CITY OF KETCHUM, IDAHO that the regular and special meetings of the Historic Preservation Commission for 2023 are as follows:

Wednesday, January 4, 2023
Tuesday, February 7, 2023
Tuesday, March, 7, 2023
Tuesday, April, 4, 2023
Tuesday, May 2, 2023
Tuesday, June 6, 2023

Wednesday July 5, 2023
Tuesday, August 1, 2023
Wednesday, September 6, 2023
Tuesday, October 3, 2023
Tuesday, November 7, 2023
Tuesday, December 5, 2023

This Resolution will be in full force and effect upon its adoption this $5^{\text {th }}$ day of December, 2022.

CITY OF KETCHUM, IDAHO

Mayor Neil Bradshaw

ATTEST:

Trent Donat
City Clerk

RESOLUTION NUMBER 22-040

A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF KETCHUM, IDAHO, ESTABLISHING THE DATES FOR ALL REGULAR CITY COUNCIL MEETINGS FOR 2023.

WHEREAS the regular meetings of the Ketchum CITY COUNCIL shall be held on the first and third Mondays of each month at 4:00 p.m. at Ketchum City Hall unless such date is a holiday, in which the meeting shall be held on the following Tuesday; and

WHEREAS, pursuant to Idaho Code § 67-2343(1), any public agency that holds meetings at regular intervals of at least once per calendar month scheduled in advance over the course of the year may satisfy this meeting notice by giving meeting notices at least once each year of its regular meeting schedule: and

WHEREAS, the City Council has determined that listing all regular meetings to be held in 2023 would be beneficial to the residents of and visitors to the City of Ketchum.

NOW, THEREFORE, BE IT RESOLVED BY THE MAYOR AND CITY COUNCIL OF THE CITY OF KETCHUM that the meetings of the City Council for 2023 are as follows:

Tuesday, January 3, 2023	Monday, May 1, 2023	Tuesday, September 5, 2023
Tuesday, January 17, 2023	Monday, May 15, 2023	Monday, September 18, 2023
Monday, February 6, 2023	Monday, June 5, 2023	Monday, October 2, 2023
Tuesday, February 21, 2023	Tuesday, June 20, 2023	Monday, October 16, 2023
Monday, March 6, 2023	Monday, July 3, 2023	Monday, November 6, 2023
Monday, March 20, 2023	Monday, July 17, 2023	Monday, November 20, 2023
Monday, April 3, 2023	Monday, August 7, 2023	Monday, December 4, 2023
Monday, April 17, 2023	Monday, August 21, 2023	Monday, December 18, 2023

This Resolution will be in full force and effect upon its adoption this $5^{\text {th }}$ day of December 2022.

CITY OF KETCHUM, IDAHO

Mayor Neil Bradshaw

ATTEST:

[^0]
City of Ketchum

December 5, 2022

Mayor Bradshaw and City Councilors
City of Ketchum
Ketchum, Idaho

Mayor Bradshaw and City Councilors:

Recommendation to approve Task Order \#4 with Superbloom Landscape Architects for Professional Services to advance the Warm Springs Preserve Master Plan

Recommendation and Summary

Staff is recommending approval of Task Order \#4 with Superbloom Landscape Architects to complete the final phase of the Warm Springs Preserve Master Plan. In October, the Council approved Task Order \#3, which consisted of the refinement of the concept plan (entry/parking lot, restroom/storage building and the existing hydraulic model). Those deliverables were shared during a public open house and joint meeting of the City Council and Planning/Zoning Commission. The Wood River Land Trust has agreed to fund a portion of this task order as outlined in the financial section below.
"I move to approve Task Order \#4 with Superbloom Landscape Architects."
The reasons for the recommendation are as follows:

- This task order will complete the following items: illustrated Final Master Plan; proposed Grading Design \& Hydraulic Model; Ecological Design Visuals to explain project objectives relative to fish, water and vegetation; Conceptual Soils, Weed, and Vegetation Management Plans; Amenities \& Donor Design Refinements; Graphic 3d Model; Plant Palettes with Planting Zones (developed with North Fork Natives); and budget estimates for construction.
- The city completed a competitive solicitation for proposals and Superbloom was the unanimous recommendation by the review committee.
- Superbloom has completed similar projects for other public entity clients in the west. Their partnering team (Rio Applied Science) has completed past water engineering work on the Warm Springs Preserve site as well as having significant experience in the Wood River area.

Introduction \& History

On April $14^{\text {th }}$, the city officially acquired the Warm Springs Preserve via private donations. The public was informed early in the fundraising process that the city would complete a detailed master planning process to guide future improvements to the property. The city recently received \$1 million from the Spur Foundation to fund the implementation of the master plan.

During the RFP process, the city sought to engage a professional firm or collection of resources (team) to (1) create a long-term master plan for the Warm Springs Preserve, and (2) serve as architect of record in the development of construction drawings or bid documents to implement the master plan.

The master plan will address the location of the following passive green space amenities:

- Pedestrian connection points to adjacent neighborhood, River Run Lodge and Warm Springs Village
- Walking trails
- Public restroom/maintenance facility /water bottle refill station
- Wayfinding signage
- Donor recognition elements
- History of the property/donor wall
- Picnic tables
- Benches

The plan will also address the following improvement areas:

- Re-vegetation of portions of property from water intensive grass to native grasses
- Warm Springs Creek habitat restoration and floodplain conveyance improvements
- Replacement of irrigation system and recommission intake/holding pond area

Significant public engagement will occur throughout the process with the City Council as the final approval body of the plan. City staff will lead public outreach efforts in concert with the design team.

Sustainability Impact

The master plan will address the following elements:

- New irrigation system to assist with water efficiency
- Revegetation of certain areas from water consumptive grasses to more native species
- Stream restoration to assist with water quality and wildlife habitat
- Flood conveyance improvements

Financial Requirement/Impact

Task Order \#4 is proposed to be a not-to-exceed amount of $\$ 62,515$. The Wood River Land Trust has agreed to fund $\$ 29,055$ of the task order as it relates to the proposed creek/habitat restoration work. Sufficient funds exist in the Warm Springs Preserve Trust Account from donations.

Attachments

Task Order \#4

SUPERBLOOM TASK ORDER \#4

November 30, 2022
Project: WARM SPRINGS PRESERVE \| Ketchum, ID
Scope of Work: This proposal outlines the anticipated goals, services, meetings and deliverables for the third public touch point (heretofore "Touch Point No. 3") for the Warm Springs Preserve project. The scope of this proposal includes only those deliverables and meetings expressly listed herein. The primary intent of this proposal is to further the analysis and design efforts for the next phase of the Master Planning process.

Client: City of Ketchum, Idaho ("The City"), PO Box 2315, Ketchum, ID 83340

04
 Touch Point \#3 - Final Conceptual Master Plan (8-10 weeks)

Budget/Fee
\$62,515
This proposal is for Task Order \#4, which is a continuation of prior work refining the master plan and developing focus areas of the design in
hourly, not-to-exceed greater detail. This task order will synthesize feedback from the previous series of meetings and analysis to develop a final conceptual master plan for review and approval by the City and Wood River Land Trust. We will develop initial proposed grading and hydraulic models which will be translated into a graphic 3d model that incorporates amenity and donor design elements for approval to proceed to the Schematic Design phase (future contract).

Meetings/Site Visits

It is anticipated the Client will make necessary arrangements to meet with stakeholders and obtain site access as needed. This Task Order includes:

- 1 Full-Team Site Visit for Public Meeting \#3 and Planning \& Zoning and City Council Joint Session - Superbloom x Rio x Eco (2 working days) Scheduled: Final Date TBD, anticipated early- to mid-February 2023
- 5-6 Virtual Client Meetings

Deliverables

- Illustrated Final Master Plan
- Proposed Grading Design \& Hydraulic Model
- Ecological Design Visuals to explain project objectives relative to fish, water and vegetation
- Conceptual Soils, Weed, and Vegetation Management Plans
- Amenities \& Donor Design Refinements
- Graphic 3d Model
- Plant Palettes with Planting Zones (developed with North Fork Natives)
- Budget updates
- Presentation boards for Public Meeting \#3 (to be printed by the Client)
- Slide deck for Joint City Council and/or P\&Z Meeting \#3

This exhibit is attached to and made a part of the Client's master agreement dated June 15, 2022 between the Client and Superbloom for the purposes of providing professional landscape services. Additional services or hours beyond above noted hours will be billed at the following rates only with prior approval from Client:

Standard Billing Rates, 2023 (please note new billing rates, effective January 1, 2023)

Team billing rates below, provided for reference only. Rates subject to change annually. Superbloom will notify Client of updates 30 days prior to change.

Superbloom

Principal/Landscape Architect	$\$ 200.00 / \mathrm{hr}$
Senior Associate	$\$ 150.00 / \mathrm{hr}$
Associate	$\$ 135.00 / \mathrm{hr}$
Senior Project Leader	$\$ 125.00 / \mathrm{hr}$
Project Leader	$\$ 115.00 / \mathrm{hr}$
Designer	$\$ 100.00 / \mathrm{hr}$
Intern	$\$ 75.00 / \mathrm{hr}$

Rio ASE

Senior Principal Geomorphologist	$\$ 150$
Principal Geomorphologist	$\$ 145$
Principal Engineer	$\$ 145$
Staff Engineer II	$\$ 115$
Staff Engineer I	$\$ 95-110$
Office Manager	$\$ 85$

Reimbursable Expenses

Expenses are included in the above fees except where noted.

IN WITNESS WHEREOF, the Parties have executed this Agreement.

By: \quad (signature)

Printed Name/Title: \qquad

By signing, Client acknowledges that they have read and understand this proposal, any additional scope of work and material selections and all documents referenced therein, along with the terms and conditions attached hereto. Client agrees that upon signature this Proposal becomes the sole contract between Client and Superbloom. By signing, Client confirms that it is the owner or duly authorized representative of the owner, of the property where work is to be performed and has full, binding, egal authority to enter into this Agreement.

Warm Springs Preserve - Public Touchpoint 3
Scope/Schedule/Budget Summary

City of Ketchum

December 5, 2022

Mayor Bradshaw and City Councilors
City of Ketchum
Ketchum, Idaho

Mayor Bradshaw and City Councilors:

Recommendation to Hold First Reading of Ordinance \#1243 Amending Chapter 13.04.080 (BUILDING SEWERS AND SERVICE CONNECTIONS) of the Ketchum Municipal Code

Recommendation and Summary

Staff is recommending approval of the first reading of Ordinance \#1243 which seeks to update the requirements of sewer and service connections.
"I move to approve the first reading of Ordinance \#1243."

The reasons for the recommendation are as follows:

- Current Code requires every building to have a separate and independent sewer service connection.
- This amendment will authorize an exception for approved accessory dwelling units allowing them to be connected to the sewer service of the primary residence on the property.

Sustainability Impact: None
Financial Requirement/Impact: None
Attachments
Ordinance \#1243

KETCHUM ORDINANCE NO. 1243

AN ORDINANCE OF THE CITY OF KETCHUM, BLAINE COUNTY, IDAHO, AMENDING TITLE 13, CHAPTER 13.04., BUILDING SEWERS AND SERVICE CONNECTIONS, TO UPDATE THE REQUIREMENTS OF SEWER AND SERVICE CONNECTIONS OF SUCH CHAPTER; AND PROVIDING AN EFFECTIVE DATE.
A. The City has determined that an update and revision to Chapter 13.04 .080 of Title 13 are warranted to clarify when a sewer and service connection is required for an approved accessory dwelling unit or a building in the rear of another building.

NOW, THEREFORE, BE IT ORDAINED by the Mayor and City Council of the city of Ketchum, Blaine County, Idaho:

SECTION 1: That Section 13.04.080 of the Ketchum City Code be amended as follows:

13.04.080: Building Sewers and Service Connections

F. A separate and independent building sewer and service connection shall be provided for every building; except where one building is an approved accessory dwelling unit on the same property; or except where one building stands at the rear of another on an interior lot and no separate sewer is available or can be constructed to the rear building through an adjoining alley, court, yard or driveway, the building sewer from the front building may be extended to the rear building and the whole considered as one building sewer.

SECTION 2: EFFECTIVE DATE. This ordinance shall be in full force and effect after its passage, approval and publication, according to law.

PASSED BY the City Council of the City of Ketchum, Idaho, this \qquad day of
\qquad 2022.

APPROVED BY the Mayor of the City of Ketchum, Idaho, this \qquad day of , 2022.

Neil Bradshaw, Mayor

ATTEST:

[^1]
City of Ketchum

December 5, 2022

Mayor Bradshaw and City Councilors
City of Ketchum
Ketchum, Idaho

Mayor Bradshaw and City Councilors:

Recommendation to Receive and File FY22 Audited Financial Statements

Recommendation and Summary

Staff is recommending the council approve the receipt of the FY22 audited financial statements using the following motion:
"I move to approve the FY22 audited financial statements and file in the city's permanent records."

The reason for the recommendation is as follows:

- Section 50-1010 of the Idaho Statutes requires the Council to cause a full and complete audit of the financial statements of the City each fiscal year.

Introduction and History

The City of Ketchum is required under Section 50-1010 of the Idaho Statutes to conduct a "full and complete audit of the financial statements" each fiscal year. Workman \& Company was retained to serve as the external auditing professional and has completed the approved scope of work.

Sustainability Impact

There is no sustainability impact arising from this action.

Financial Impact
No fiscal impact.

Attachments
Management Letter
Audited Financial statements

WORKMAN \& COMPANY

November 4, 2022

Abstract

To the City Council City of Ketchum, Idaho We have audited the financial statements of the governmental activities, the business-type activities, the aggregate discretely presented component units, each major fund, and the aggregate remaining fund information of the City of Ketchum, Idaho, for the year ended September 30, 2022. Professional standards require that we provide you with information about our responsibilities under generally accepted auditing standards (and, if applicable, Government Auditing Standards and the Uniform Guidance), as well as certain information related to the planned scope and timing of our audit. We have communicated such information in our letter to you dated September 6, 2022. Professional standards also require that we communicate to you the following information related to our audit.

Significant Audit Findings

Qualitative Aspects of Accounting Practices

Management is responsible for the selection and use of appropriate accounting policies. The significant accounting policies used by the City of Ketchum, Idaho, are described in Note 1 to the financial statements. No new accounting policies were adopted, and the application of existing policies was not changed during 2022. We noted no transactions entered into by the City of Ketchum, Idaho during the year for which there is a lack of authoritative guidance or consensus. All significant transactions have been recognized in the financial statements in the proper period.
Accounting estimates are an integral part of the financial statements prepared by management and are based on management's knowledge and experience about past and current events and assumptions about future events. Certain accounting estimates are particularly sensitive because of their significance to the financial statements and because of the possibility that future events affecting them may differ significantly from those expected. The most sensitive estimate affecting the City of Ketchum, Idaho's financial statements was:

Management's estimate of the useful lives of fixed assets is based on historical data. We evaluated the key factors and assumptions used to develop the useful lives of fixed assets in determining that it is reasonable in relation to the financial statements taken as a whole.

Certain financial statement disclosures are particularly sensitive because of their significance to financial statement users. The most sensitive disclosure affecting the financial statements was:

The disclosure of Employees' Retirement System in Note 9 to the financial statements is based on information provided by Idaho's Public Employees Retirement System (PERSI) and is relied upon in these financial statements.

The financial statement disclosures are neutral, consistent, and clear.

Difficulties Encountered in Performing the Audit

We encountered no significant difficulties in dealing with management in performing and completing our audit.

Corrected and Uncorrected Misstatements

Professional standards require us to accumulate all known and likely misstatements identified during the audit, other than those that are clearly trivial, and communicate them to the appropriate level of management. Management has corrected all such misstatements. In addition, none of the misstatements detected as a result of audit procedures and corrected by management were material, either individually or in the aggregate, to each opinion unit's financial statements taken as a whole.

Disagreements with Management

For purposes of this letter, a disagreement with management is a financial accounting, reporting, or auditing matter, whether or not resolved to our satisfaction, that could be significant to the financial statements or the auditor's report. We are pleased to report that no such disagreements arose during the course of our audit.

Management Representations

We have requested certain representations from management that are included in the management representation letter dated November 4, 2022.

Other Audit Findings or Issues

We generally discuss a variety of matters, including the application of accounting principles and auditing standards, with management each year prior to retention as the City of Ketchum, Idaho's auditors. However, these discussions occurred in the normal course of our professional relationship and our responses were not a condition to our retention.

Other Matters

We applied certain limited procedures to Management's Discussion and Analysis (MD\&A) and Budgetary Information, which are required supplementary information (RSI) that supplements the basic financial statements. Our procedures consisted of inquiries of management regarding the methods of preparing the information and comparing the information for consistency with management's responses to our inquiries, the basic financial statements, and other knowledge we obtained during our audit of the basic financial statements. We did not audit the RSI and do not express an opinion or provide any assurance on the RSI.
We were engaged to report on the schedules of bond future principle and interest, which accompany the financial statements but are not RSI. With respect to this supplementary information, we made certain inquiries of management and evaluated the form, content, and methods of preparing the information to determine that the information complies with accounting principles generally accepted in the United States of America, the method of preparing it has not changed from the prior period, and the information is appropriate and complete in relation to our audit of the financial statements. We compared and reconciled the supplementary information to the underlying accounting records used to prepare the financial statements or to the financial statements themselves.

Restriction on Use

This information is intended solely for the information and use of the City Council and management of the City of Ketchum, Idaho and is not intended to be, and should not be, used by anyone other than these specified parties.

Very truly yours,
Workman \& Company
WORKMAN AND COMPANY
Certified Public Accountants
Twin Falls, Idaho

CITY OF KETCHUM, IDAHO

Financial Statements
Year Ended September 30, 2022

CITY OF KETCHUM, IDAHO

Financial Statements

 For the year ended September 30, 2022
Table of Contents

Independent Auditor's Report 1-2
Required Supplementary Information - Part I
Management's Discussion and Analysis 3-11
Basic Financial Statements:
Government-Wide Financial Statements:
Statement of Net Position 12
Statement of Activities 13Fund Financial Statements:Balance Sheet14
Statement of Revenues, Expenditures and Changes in Fund Balances 15
Reconciliation of the Statement of Revenues, Expenditures, and Changes in Fund Balances of Governmental Funds to the Statement of Activities 16
Proprietary Funds:
Statement of Net Position 17
Statement of Revenues, Expenditures, and Changes in Net Position 18
Statement of Cash Flows 19
Notes to the Financial Statements 20-35
Required Supplementary Information - Part II
General Fund Budgetary Comparison Schedule 36
City Sales Tax Fund Budgetary Comparison Schedule 37
In-Lieu Housing Fund Budgetary Comparison Schedule 38
General Capital Improvement Fund Budgetary Comparison Schedule 39
Public Employee Pension Information 40
Other Supplementary Information - Part III
Combining Statements:
Balance Sheets - Other Governmental Funds 41
Statement of Revenues, Expenditures - Other Governmental Funds 42
Bond - Future Principal and Interest Requirements 43-46
Report on Compliance and on Internal Control over Financial Reporting Based on an Audit of the General Purpose Financial Statements Performed in Accordance with Government Auditing Standards 47-48

WORKMAN \& COMPANY

2190 Village Park Avenue, Suite 300 • Twin Falls, ID 83301 • 208.733.1161 • Fax: 208.733.6100

INDEPENDENT AUDITOR'S REPORT

November 4, 2022
To the City Council
City of Ketchum, Idaho
Ketchum, Idaho

Opinions

We have audited the accompanying financial statements of the governmental activities, the business-type activities, the aggregate discretely presented component unit, each major fund, and the aggregate remaining fund information of the City of Ketchum, Idaho, as of and for the year ended September 30, 2022, and the related notes to the financial statements, which collectively comprise the City of Ketchum, Idaho's basic financial statements as listed in the table of contents.

In our opinion, the financial statements referred to above present fairly, in all material respects, the respective financial position of the governmental activities, the business-type activities, the aggregate discretely presented component unit, each major fund, and the aggregate remaining fund information of the City of Ketchum, Idaho, as of September 30, 2022, and the respective changes in financial position, and, where applicable, cash flows thereof for the year then ended in accordance with accounting principles generally accepted in the United States of America.

Basis for Opinions

We conducted our audit in accordance with auditing standards generally accepted in the United States of America. Our responsibilities under those standards are further described in the Auditor's Responsibilities for the Audit of the Financial Statements section of our report. We are required to be independent of the City of Ketchum, Idaho, and to meet our other ethical responsibilities, in accordance with the relevant ethical requirements relating to our audit. We believe that the audit evidence we have obtained is sufficient and appropriate to provide a basis for our audit opinions.

Responsibilities of Management for the Financial Statements

Management is responsible for the preparation and fair presentation of these financial statements in accordance with accounting principles generally accepted in the United States of America, and for the design, implementation, and maintenance of internal control relevant to the preparation and fair presentation of financiai statements that are free from material misstatement, whether due to fraud or error.

In preparing the financial statements, management is required to evaluate whether there are conditions or events, considered in the aggregate, that raise substantial doubt about the City of Ketchum, Idaho's ability to continue as a going concern for twelve months beyond the financial statement date, including any currently known information that may raise substantial doubt shortly thereafter.

Auditor's Responsibility

Our objectives are to obtain reasonable assurance about whether the financial statements as a whole are free from material misstatement, whether due to fraud or error, and to issue an auditor's report that includes our opinions. Reasonable assurance is a high level of assurance but is not absolute assurance and therefore is not a guarantee that an audit conducted in accordance with generally accepted auditing standards will always detect a material misstatement when it exists. The risk of not detecting a material misstatement resulting from fraud is higher than for one resulting from error, as fraud may involve collusion, forgery, intentional omissions, misrepresentations, or the override of internal control. Misstatements are considered material if there is a substantial likelihood that, individually or in the aggregate, they would influence the judgement made by a reasonable user based on the financial statements.

Report Continued-

In performing an audit in accordance with generally accepted auditing standards, we:

- Exercise professional judgment and maintain professional skepticism throughout the audit.
- Identify and assess the risks of material misstatement of the financial statements, whether due to fraud or error, and design and perform audit procedures responsive to those risks. Such procedures include examining, on a test basis, evidence regarding the amounts and disclosures in the financial statements.
- Obtain an understanding of internal control relevant to the audit in order to design audit procedures that are appropriate in the circumstances, but not for the purpose of expressing an opinion on the effectiveness of the City of Ketchum, Idaho's internal control. Accordingly, no such opinion is expressed.
- Evaluate the appropriateness of accounting policies used and the reasonableness of significant accounting estimates made by management, as well as evaluate the overall presentation of the financial statements.
- Conclude whether, in our judgment, there are conditions or events, considered in the aggregate, that raise substantial doubt about the City of Ketchum, Idaho's ability to continue as a going concern for a reasonable period of time.
We are required to communicate with those charged with governance regarding, among other matters, the planning scope and timing of the audit, significant audit findings, and certain internal control-related matters that we identified during the audit.

Required Supplementary Information

Accounting principles generally accepted in the United States of America require that the management's discussion and analysis, budgetary comparison information, and post-employment information on pages 3-11 and $36-39$ and 40 be presented to supplement the basic financial statements. Such information, although not a part of the basic financial statements, is required by the Governmental Accounting Standards Board, who considers it to be an essential part of financial reporting for placing the basic financial statements in an appropriate operational, economic, or historical context. We have applied certain limited procedures to the required supplementary information in accordance with auditing standards generally accepted in the United States of America, which consisted of inquiries of management about the methods of preparing the information and comparing the information for consistency with management's responses to our inquiries, the basic financial statements, and other knowledge we obtained during our audit of the basic financial statements. We do not express an opinion or provide any assurance on the information because the limited procedures do not provide us with sufficient evidence to express an opinion or provide any assurance.

Supplementary Information

Our audit was conducted for the purpose of forming opinions on the financial statements that collectively comprise the City of Ketchum, Idaho's basic financial statements. The combining and individual nonmajor fund financial statements and long-term debt payment schedules on pages 41-46 are presented for purposes of additional analysis and are not a required part of the basic financial statements.
The combining and individual nonmajor fund financial statements and long-term debt payment schedules are the responsibility of management and were derived from and relate directly to the underlying accounting and other records used to prepare the basic financial statements. Such information has been subjected to the auditing procedures applied in the audit of the basic financial statements and certain additional procedures, including comparing and reconciling such information directly to the underlying accounting and other records used to prepare the basic financial statements or to the basic financial statements themselves, and other additional procedures in accordance with auditing standards generally accepted in the United States of America. In our opinion, the combining and individual nonmajor fund financial statements are fairly stated in all material respects in relation to the basic financial statements as a whole.

Workman\& Company

Certified Public Accountants
Twin Falls, Idaho

CITY OF KETCHUM, IDAHO

Management's Discussion and Analysis

November 4, 2022
The City of Ketchum, Idaho's general purpose external financial statements are presented in this report. The components of the general purpose external financial statements include:
$>$ Management's Discussion and Analysis (MD\&A)
$>$ Basic Financial Statements
$>$ Other Required Supplementary Information (RSI).

FINANCIAL HIGHLIGHTS

> The total of all fund assets of the City of Ketchum exceeded liabilities at the close of the most recent fiscal year by $\$ 51,914,692$. Of that amount, $\$ 18,601,208$ (unrestricted net position) may be used to meet future obligations and programs.
> The Local Option Tax (LOT) receipts increased $\$ 677,486$ from the previous year. This increase is due in part to the continued economic rebound from the Corona Virus in the current year. This Special Revenue Fund received an amount of, $\$ 6,849,285$ in the current year.
> Governmental Fund Revenues were $\$ 22,225,299$ and expenditures were $\$ 20,843,252$. This increase in revenues over expenditures was mostly due to the receipt of donations for the City's Warm Springs Project.

OVERVIEW OF THE FINANCIAL STATEMENTS

This discussion and analysis is intended to serve as an introduction to the City of Ketchum's basic financial statements. The City's basic financial statements comprise three components: 1) government-wide financial statements, 2) fund financial statements, and 3) notes to the financial statements. This report also contains other supplementary information in addition to the basic financial statements themselves.

Government-wide Financial Statements

Government-wide financial statements provide both long-term and short-term information about the City's overall financial condition. Changes in the City's financial position may be measured over time by increases and decreases in the Statement of Net Position. Information on how the City's net position changed during the fiscal year is presented in the Statement of Activities.

Fund Financial Statements

Fund financial statements focus on individual parts of the City, reporting the City's operations in more detail than the government-wide financial statements. Fund financial statements include the statements for governmental and proprietary funds. Financial statements for the City's component unit are also presented.

City of Ketchum, Idaho MANAGEMENT DISCUSSION AND ANALYSIS

Continued...

Table 1: Major Features of the Basic Financlal Statements			
	Government-wide Financial Statements	Fund Financial Statements	
		Govermmental Funds	Propriatary Funds
Scope	Entire City government and the City's component unit.	Activities of the City that are not proprietary.	Activities of the City that are operated similar to private businesses
Required financial statements	* Statement of net position * Statement of activities	* Balance sheet * Statement of revenues, expenditures, and changes in fund balances	* Statement of net position * Statement of revenues, expenses, and changes in net position * Statement of cash flows
Accounting basis and measurement focus.	Accrual accounting and economic resources focus	Modified accrual accounting and current financial resources focus	Accrual accounting and economic resources focus
Type of assetliability information	All assets and liabilities, both financial and capital, and short-term and long-term	Only assets expected to be used up and liabilities that come due during the year or soon thereatter; no capital assets	All assets and liabilities, both financial and capital, and short-term and long-term
Type of inflowloutflow information	All revenues and expenses during the year, regardess of when cash is received or paid	* Revenues for which cash is received during or soon after the end of the year * Expenditures when goods or services have been received and payment is due during the year or soon thereafter	All revenues and expenses during the year, regardless of when cash is received or paid

Notes to the Financial Statements

Notes to the financial statements provide additional information that is essential to the full understanding of the data provided in the government-wide and fund financial statements.

Refer to Note 1 of the financial statements for more detailed information on the elements of the financial statements. Table 1 above summarizes the major features of the basic financial statements.

CONDENSED FINANCIAL INFORMATION

Condensed Statement of Net Position

The largest component (Total $\$ 51,914,692$) of the City's net position (61.4%) reflects its investment in capital assets (e.g. land, infrastructure, buildings, equipment, and others), less any related debt outstanding that was needed to acquire or construct the assets. The City uses these capital assets to provide services to the citizens and businesses in the City; consequently, this net position amount is not eligible for future spending. Restricted net position totals $\$ 4,188,860$. Restricted net position represents resources that are subject to external restrictions, constitutional provisions, debt service requirements, or enabling

City of Ketchum, Idaho
 MANAGEMENT DISCUSSION AND ANALYSIS

Continued...
legislation on how they can be used. The remaining portion of net position is unrestricted, which can be used to finance government operations.

Table 2 below presents the City's condensed statement of net position as of September 30, 2022, derived from the government-wide Statement of Net Position.

Condensed Statement of Activities

Table 3 below presents the City's condensed statement of activities for the fiscal year ended September 30, 2022, as derived from the government-wide Statement of Activities. Over time, increases and decreases in net position measure whether the City's financial position is improving or deteriorating. During the fiscal year, the net position of the governmental activities increased by $\$ 4,336,631$ or 11.8% percent, the net position of the business-type activities increased by $\$ 1,738,894$ or 13.8%, and the net position of the City's Component Unit (Urban Renewal Agency) increased \$1,605,876 or 48.5\%.

City of Ketchum, Idaho MANAGEMENT DISCUSSION AND ANALYSIS

Continued...

	Table 3: Condensed Statement of Activities As of September 30, 2022							
		vernmental Activities		Businesstype Activities		Total Primary Government		Component Unit Urban Renewal Agency
Revenue: Program revenues								
Charges for services	\$	4,939,856	\$	5,979,057	\$	10,918,913	\$	36,000
Capital grants /contributions		1,550,661				1,550,661		
Total program revenues		6,490,517		5,979,057		12,469,574		36,000
General revenues								
Taxes		12,293,161				12,293,161		2,116,188
Franchise, licenses, permits		1,465,717				1,465,717		
State shared revenues		1,732,909				1,732,909		
Interest		83,266		29,455		112,721		18,534
Gain (Loss) on sale of								
assets		89				89		
Other revenues (Losses)		$(189,361)$		$(21,631)$		$(210,992)$		1,920
Total general revenues		15,385,781		7,824		15,393,605		2,136,642
Total revenues		21,876,298		5,986,881		27,863,179		2,172,642
Program expenses:								
General government		5,675,427				5,675,427		490,063
Public safety		4,957,216				4,957,216		
Streets		2,156,796				2,156,796		
Parks and recreation		492,231				492,231		
Transportation		3,087,000				3,087,000		
Affordable Housing		845,011				845,011		
Wastewater				2,295,296		2,295,296		
Water				1,782,675		1,782,675		
Interest, long-term debt		325,986		170,016		496,002		76,703
Total program expenses		17,539,667		4,247,987		21,787,654		566,766
Change in net position		4,336,631		1,738,894		6,075,525		1,605,876
Beginning net position		32,277,121		13,562,046		45,839,167		3,308,633
Ending net position	\$	36,613,752	\$	15,300,940	\$	51,914,692	\$	4,914,509

City of Ketchum, Idaho MANAGEMENT DISCUSSION AND ANALYSIS

Continued...

Program Expenses and Revenues for Governmental Activities

Table 4 below presents program expenses and revenues for governmental activities. Overall, program revenues were not sufficient to cover program expenses for governmental activities. The net program expenses of these governmental activities were therefore supported by general revenues, mainly taxes.

Table 4: Program Expenses and Revenues for Government Activities For the Fiscal Year Ended September 30, 2022						
		Program Expenses		Program Revenues		et Expense Revenues) (a)
General government	\$	5,675,427	\$	4,698,096	\$	$(977,331)$
Public safety		4,957,216		238,959		$(4,718,257)$
Streets		2,156,796				$(2,156,796)$
Parks and Recreation		492,231		1,205,530		713,299
Transportation		3,087,000				$(3,087,000)$
Affordable Housing		845,011		347,932		$(497,079)$
Interest on long-term debt		325,986				$(325,986)$
Totals	\$	17,539,667	\$	6,490,517	\$	$(11,049,150)$
(a) Net Program Expenses are mainly supported by taxes.						

Program Expenses and Revenues for Business-type Activities

Table 5 below presents program expenses and revenues for business-type activities. Program revenues generated from business-type activities were sufficient to cover program expenses.
$\left.\begin{array}{|llllll|}\hline & \begin{array}{c}\text { Table 5: Program Expenses and Revenues } \\ \text { for Business-type Activities }\end{array} \\ \text { For the Fiscal Year Ended September 30, 2022 }\end{array}\right]$

City of Ketchum, Idaho
 MANAGEMENT DISCUSSION AND ANALYSIS

Continued...
The City of Ketchum, Idaho adopts an annual budget. A budgetary comparison statement of Governmental Funds is provided below. In total, any negative variances are insignificant.

BUDGET VARIANCES IN THE GENERAL FUND

The changes made to the budget format have moved the City into compliance with the budget standards developed by the Government Finance Officers of America (GFOA). An analysis of budget variances this year shows that more assets were budgeted for expenditure than were expended during the current operating cycle.

	Table 6: Analysis of Significant Budget Variances for Major Governmental Funds For the Fiscal Year Ended September 30, 2022								
		Actual Amounts		Original Budget Amounts		Final Budget Amounts		Positive (Negative)	
Taxes	\$	11,643,730	\$	8,849,368	\$	9,215,615	\$	2,428,115	
Franchises, licenses, permits		1,465,717		670,969		1,010,969		454,748	
State of Idaho		1,841,503		1,678,939		1,678,939		162,564	
Fees, fines, \& charges for services		4,654,951		3,576,498		4,157,958		496,993	
Miscellaneous		522,281		772,840		797,840		$(275,559)$	
Total Revenue		20,128,182		15,548,614		16,861,321		3,266,861	
Expenditures:									
General Government		4,651,658		5,022,699		5,528,222		876,564	
Public Safety		4,622,468		4,525,793		4,654,730		32,262	
Streets		1,823,218		1,891,540		1,891,540		68,322	
Capital outlay		4,556,953		6,849,714		8,331,323		3,774,370	
Parks and Recreation		514,798		607.505		607,505		92,707	
Transportation		3,087,000		2,660,753		3,087,000		0	
Affordable Housing		75,000		75,000		75,000		0	
Debt Service		0		0		0		0	
Total Expenditures		19,331,095		21,633,004		24,175,320		4,844,225	
Excess Revenues over (Expenditures)	\$	797,087	\$	$(6,084,390)$	\$	(7,313,999)	\$	8,111,086	
-8-									54

City of Ketchum, Idaho MANAGEMENT DISCUSSION AND ANALYSIS

Continued...

| | Table 7: Comparison of Statement of Net Position
 As of September 30, 2022 and 2021 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

OVERALL ANALYSIS

Financial highlights for the City as a whole during the fiscal year ended September 30, 2022 show the assets of the City exceeded its liabilities (net position) at the close to the fiscal year by $\$ 51,914,692$ (for governmental activities $\$ 36,613,752$, for the business-type activities $\$ 15,300,940$). Additionally, the City's total net position increased during the year by $\$ 6,075,525$. The net position of the governmental activities increased by $\$ 4,336,631$, while the net position of the business-type activities increased by $\$ 1,738,894$.

City of Ketchum, Idaho MANAGEMENT DISCUSSION AND ANALYSIS

Continued...

Table 8: Changes in Fixed Assets for All Funds For the Fiscal Year Ended September 30, 2022						
		Beginning Balance	Additions	Deletions		Ending Balance
Land and Infrastructure	\$	11,859,002	2,009,241		\$	13,868,243
Buildings and Improvements		36,148,301	12,897,411			49,045,712
Vehicles and Equipment		9,505,930	1,050,358			10,556,288
Construction in Progress		12,467,035	749,518	$(12,129,917)$		1,086,636
Totals		69,980,268	16,706,528	(12,129,917)		74,556,879
Accumulated Depreciation		$(25,771,087)$	(1,461,816)	0		(27,232,903)
Net Book Value		44,209,181			\$	47,323,976

CAPITAL ASSET AND LONG-TERM, ACTIVITY

Capital Asset Activity

At September 30, 2022, the City reported $\$ 34,524,432$ in capital assets for governmental activities and $\$ 12,799,544$ in capital assets for business-type activities.

Long-term Debt Activity

See Note 4 of the financial statements for information on the City's long-term debt.
FUNDS ANALYSIS
Funds that experienced significant changes during the year are as follows:
Governmental funds
As of the close of the fiscal year, the City's governmental funds reported a combined ending fund balance of $\$ 15,295,351$. The fund balance increased $\$ 1,385,047$ during the fiscal year. The increase is the result of $\$ 22,225,299$ of revenues reduced by $\$ 20,843,252$ of expenditures. The increase in fund balance follows a fund balance decrease of $\$ 6,125,176$ in FY2021, and results in large part from contributions for the City's Warms Springs Project. The City's management and Council continue to expend resources under approved budgets and strive to strengthen the City's financial position during uncertain economic times. This ongoing accomplishment is due to the commitment and determination of the City Council and staff to make prudent financial decisions while also seeking to preserve levels of service to the community by continually pursuing and implementing cost savings and efficiencies in operations.

Table 9 below presents an analysis of the fund balances in the Governmental Funds and Enterprise Funds.

City of Ketchum, Idaho MANAGEMENT DISCUSSION AND ANALYSIS

Continued...

Table 9: Analysis of Fund Balances for All Funds For the Fiscal Year Ended September 30, 2022							
	Investment in Capital Assets		Restricted or Assigned		Unassigne d		Total Balance
General Fund	\$	\$	93,859	\$	5,763,011	\$	5,856,870
City Sales Tax Fund			1,753,304				1,753,304
In-Lieu Housing Fund			2,366,256				2,366,256
Capital Improvement Funds			3,500,501				3,500,501
Fire Construction Fund							0
GO Bond Debt Fund			$(1,995)$				$(1,995)$
Wagon Days Fund			17,854				17,854
City/County Housing Fund			551,194				551,194
Police Trust Fund			7,333				7,333
Community Development Trust							
Fund			0				0
Park Trust Fund			1,244,034				1,244,034
Water	2,006,360		0		3,094,446		5,100,806
Wastewater	6,934,110		212,000		3,054,024		10,200,134

REQUESTS FOR INFORMATION

Requests for information regarding City finances should be directed to:
Shellie Rubel, City Treasurer
City of Ketchum, Idaho
P.O. Box 2315

Ketchum, Idaho, 83340
Telephone: (208) 726-3841

ACKNOWLEDGMENTS

A special thanks to the City Treasurer, and staff for working so hard to operate the financial department of the City. Also, appreciation is expressed to the Mayor, City Council and all the Department Directors for their cooperation and assistance throughout the year in matters pertaining to the financial affairs of the City.

Respectfully submitted, Jade Riley
CITY ADMINISTRATOR

Governmental Activities	Business-type Activities	Total Primary	Component Unit Urban Renewal

ASSETS

Cash and Deposits	\$	13,629,481	\$	6,433,067	\$	20,062,548	\$	3,773,652
Accounts Receivable \& Prepaid Expenses				55,728		55,728		
Taxes Receivable		364,232				364,232		11,988
Due From Other Governments		418,637		115,114		533,751		
Restricted Cash		1,251,367		212,000		1,463,367		
Other Assets						0		
Totals		15,663,717		6,815,909		22,479,626		3,785,640
Capital Assets:								
Land		8,809,038		15,380		8,824,418		4,768,746
Construction in Progress		551,551		535,085		1,086,636		
Infrastructure		5,043,825				5,043,825		397,136
Buildings and Improvements		22,660,673		26,385,039		49,045,712		
Equipment and Vehicles		9,116,157		1,440,131		10,556,288		
Accumulated Deprecation		(11,656,812)		$(15,576,091)$		$(27,232,903)$		$(59,366)$
Total Capital Asseis		34,524,432		12,799,544		47,323,976		5,106,516
Total Assets		50,188,149		19,615,453		69,803,602		8,892,156
Net Pension Asset \& Deferred Outflows of Resources:								
Deferred Outflows from Pension Activity		1,205,848		360,188		1,566,036		0
LIABILITIES								
Accounts and Interest Payable		392,680		6,490		399,170		2,890
Due To Other Funds								
Long-term Liabilities:								
Portion due or payable within one year: Lease and Bonds Payable		361,948		407,000		768,948		472,588
Portion due or payable after one year:								
Lease and Bonds Payable		10,648,918		3,253,000		13,901,918		3,537,138
Unamortized Bond Discount				$(18,527)$		$(18,527)$		$(34,969)$
Unamortized Bond Premium		603,919		217,601		821,520		
Net Pension Liability		2,396,924		715,964		3,112,888		
Compensated Absences		365,157		89,978		455,135		
Total Liabilities		14,769,546		4,671,506		19,441,052		3,977,647
Deferred Inflows of Resources:								
Deferred Inflows from Pension Activities		10,699		3,195		13,894		0
NET POSITION								
Invested in Capital Assets - net of related debt		22,909,647		8,940,470		31,850,117		0
Restricted For:								
Debt Service				212,000		212,000		0
Other Purposes		1,251,367				1,251,367		1,261,687
Unrestricted		12,452,738		6,148,470		18,601,208		3,652,822
Total Net Position	\$	36,613,752	\$	15,300,940	\$	51,914,692	\$	4,914,509

The accompanying notes are a part of these financial statements.

CITY OF KETCHUM, IDAHO

Statement of Activities For the Year Ended September 30, 2022

Activities:	Expenses		Program Revenues			Net (Expense) Revenues and Changes in Net Assets						Component Unit - Urban Renewal Agency		
			Fees, Fines, and Charges for Services		Capital Grants and Contributions									
			Governmental Activities	Business Type Activities		Total								
Governmental:														
General Government	\$	5,675,427			\$	4,322,207	\$ 375,889	\$	(977,331)			\$	(977,331) \$	36,000
Public Protection:														
Public Safety		4,957,216		238,959			$(4,718,257)$				$(4,718,257)$			
Streets		2,156,796					$(2,156,796)$				$(2,156,796)$			
Parks and Recreation		492,231		30,758	1,174,772		713,299				713,299			
Transportation		3,087,000					$(3,087,000)$				$(3,087,000)$			
Affordable Housing		845,011		347,932			(497.079)				$(497,079)$			
Interest - on long-term debt		325,986					$(325,986)$				$(325,986)$			
Total Governmental Activities		17,539,667		4,939,856	1,550,661		$(11,049,150)$				1,049,150)			
Business Type:														
Water		1,782,675		2,457,493				\$	674,818		674,818			
Wastewater		2,295,296		3,521,564					1,226,268		1,226,268			
Interest - on long-term debt		170,016							$(170,016)$		$(170,016)$			
Total Business-type Activities		4,247,987		5,979,057	0				1,731,070		1,731,070			
Total City of Ketchum, Idaho	\$	21,787,654	\$	10,918,913	\$ 1,550,661		$(11,049,150)$		1,731,070		$(9,318,080)$			
Component Units:														
Urban Renewal Agency	\$	566,766										$(566,766)$		
Total	General Revenues:											$(530,766)$		
		Property taxes					5,418,142				5,418,142	2,108,546		
		Local Option sales taxes					6,849,285				6,849,285			
		Franchises, licenses, permits					1,465,717				1,465,717			
		State of ldaho revenue sharing					1,111,673				1,111,673			
		State of ldaho liquor receipts					404,523				404,523			
		State highway user collections					216,713				216,713			
		Penalty and interest on property taxes					25.734				25,734	7,642		
		County court and parking fines					84,463				84,463			
		Gain (Loss) from Sale of Assets					89				89			
		Earnings on investments					83,266		29.455		112,721	18,534		
		Miscellaneous					75,177				75,177	1,920		
		Amortization of Bond Premium					17,677		16,964		34,641			
		Amortization of Bond Discount							2,119		2,119			
		Gain (Loss) from Pension Activity					$(366,678)$		$(40,714)$		(407,392)			
		Total general revenues and transfers					15,385,781		7,824		15,393,605	2,136,642		
		Changes in net position					4,336,631		1,738,894		6,075,525	1,605,876		
	Net Position - Beginning						$32,277,121$		13,562,046		45,839,167	3,308,633		
	Net Position - Ending					\$ 36,613,752		\$ 15,300,940		\$ 51,914,692		\$ 4,914,509		

CITY OF KETCHUM, IDAHO

Balance Sheet
Governmental Funds
at September 30, 2022

		General Fund		City Sales Tax Fund		In-Lleu Housing Fund		General Capital Improvement Fund		Other Governmenta Funds		\qquad
ASSETS:												
Cash and Cash Deposits	\$	5,499,106	\$	1,422,058	\$	2,366,256	\$	3,503,840	\$	2,089,588	\$	14,880,848
Taxes Receivable		-32,986		331,246								364,232
Due From Other Governments		418,637										418,637
Total Assets	\$	5,950,729		1,753,304	\$	2,366,256		3,503,840	\$	2,089,588		15,663,717

LIABILITIES:

FUND BALANCE:

Non-spendable						0
Restricted					1,251,367	1,251,367
Committed	93,859					93,859
Assigned		1,753,304	2,366,256	3,500,501	567,053	$8,187,114$
Unassigned	5,763,011					5,763,011
Total Fund Balance	5,856,870	1,753,304	2,366,256	3,500,501	1,818,420	15,295,351
Total Liabilities and Fund Balance	5,950,729	1,753,304	2,366,256	3,503,840	2,089,588	

Amounts reported for governmental activities in the Statement of Net Position (page 12) are different because:

Governmental fund capital assets are not financial resources and therefore are not reported in the funds.
The cost of assets is $\$ 46,181,244$ and the accumulated depreciation is $\$ 11,656,812$
34,524,432

Long-term liabilities, including bonds/leases payable, net pension liability, and compensated absences are not payable in the current period and therefore are not reported in the governmental funds \qquad
. 34,524,432

Net Position of Governmental Activities \qquad

CITY OF KETCHUM, IDAHO

Statement of Revenues, Expenditures, and Changes in Fund Balances
Governmental Funds
for the year ended September 30, 2022

		General Fund		$\begin{gathered} \text { City } \\ \text { Sales Tax } \\ \text { Fund } \\ \hline \end{gathered}$	In-Lieu Housing Fund	General Capital Improvement Fund	Other Governmental Funds	Total Governmental Funds
REVENUE:								
Property taxes	\$	4,794,445	\$	\$	\$	\$	623,697 \$	5,418,142
Local Option sales taxes				6.849,285				6,849,285
Franchises, licenses, permits		1,173,851				291,866		1,465,717
State of Idaho shared revenue		1,111,673						1,111,673
State of Idaho liquor receipts		404,523						404,523
State highway user collections		216,713						216,713
Penalty/Interest on property taxes		24,131					1,603	25,734
County court and parking fines		84,463						84,463
Proceeds from sale of assets		89						89
Fees and charges for services		3,487,413			347,932	819,606	284,905	4,939,856
Grants, contributions, bond proceeds		367,271					1,183,390	1,550,661
Earnings on investments		39,839		4,785	14,929	20,191	3,522	83,266
Miscellaneous and Reimbursements		73,457		1,720				75.177
Total Revenue		11,777,868		6,855,790	362,861	1,131,663	2,097,117	22,225,299
EXPENDITURES:								
General Government		4,483,397		168,261			402,097	5,053,755
Public Safety		4,460,912		161,556				4,622,468
Streets		1,823,218						1,823,218
Capital outlay					770,011	3,786,942	451,803	5,008,756
Parks and Recreation		514,798					43,238	558,036
Transportation				3,087,000				3,087,000
Affordable Housing					75,000			75,000
Debt Service							615,019	615,019
Total Expenditures		11,282,325		3,416,817	845,011	3,786,942	1,512,157	20,843,252
EXCESS REVENUE (EXPENDITURES)		495,543		3,438,973	$(482,150)$	(2,655,279)	584,960	1,382,047
OTHER FINANCING SOURCES (USES):								
Operating transfers from other funds Operating transfers (fo) other funds		$\begin{array}{r} 1,718,942 \\ (1,082,154) \\ \hline \end{array}$		$(3,462,034)$		$\begin{array}{r} 1,929,416 \\ (270) \\ \hline \end{array}$	$\begin{aligned} & 991,100 \\ & (95,000) \end{aligned}$	$\begin{array}{r} 4,639,458 \\ (4,639,458) \\ \hline \end{array}$
NET CHANGE IN FUND BALANCES		1,132,331		$(23,061)$	$(482,150)$	$(726,133)$	1,481,060	1,382,047
FUND BALANCE - BEGINNING		4,724.539		1,776,365	2,848,406	4,226,634	337,360	13,913,304
FUND BALANCE - ENDING	\$	5,856,870	\$	1,753,304 \$	2,366,256	3,500,501	\$ 1,818,420 \$	\$ 15,295,351

CITY OF KETCHUM, IDAHO
 Reconciliation of the Statement of Revenues, Expenditures, and Changes in Fund Balances of Governmental Funds
 To the Statement of Activities
 for the year ended September 30, 2022

Net Change in Fund Balance - Total Governmental Funds (Page 15)
Governmental funds report capital outlays as current year expenditures.
Governmental funds report capital outlays as current year expenditures.
In the Statement of Activities the cost of these assets is allocated over their estimated useful lives as depreciation expense. This is the amount of current capital outlay for new fixed assets.

This is the amount of current year depreciation.
This is the amount of new Governmental Fund assets.
This is the amount of disposed of Governmental Fund assets.
Long term liabilities are not recorded in the Governmental funds.
$\begin{array}{lr}\text { This is the amount of new debt } & 0 \\ \text { This is the amount of payments on General Obligation Bonds Payable } & 345,806 \\ \text { This is the amount of changes in net pension activities } & 527,258\end{array}$
Liability for personal leave days are not recorded in Governmental funds.
This is the increase in compensated leave during the year.
(19,590)
Change in Net Assets of Governmental Activities (Page 13)
\$ 1,382,047
$(875,744)$
2,976,854
0
\$ 4,336,631

CITY OF KETCHUM, IDAHO
 Statement of Net Position
 Proprietary Funds at September 30, 2022

	Water		Wastewater		Totals	
Assets:						
Current Assets:						
Cash and Deposits	\$	3,248,329	\$	3,184,738	\$	6,433,067
Accts receivable - customers		36,135		19,593		55,728
Accts receivable - other govts.				115,114		115,114
		3,284,464		3,319,445		6,603,909
Restricted Current Assets:						
Cash and Deposits				212,000		212,000
Total Current Assets		3,284,464		3,531,445		6,815,909
Capital Assets:						
Plant and equipment		13,320,248		15,055,387		28,375,635
Accumulated depreciation		$(8,221,225)$		(7,354,866)		(15,576,091)
Net Plant and equipment		5,099,023		7,700,521		12,799,544
Total Assets		8,383,487		11,231,966		19,615,453
Net Pension Asset \& Deferred Outflow of Resources: Deferred Outflows from Pension Activity		140,943		219,245		360,188
Liabilities:						
Current Liabilities:						
Accounts and Interest Payable		5,031		1,459		6,490
Current portion long-term debt		187,000		220,000		407,000
Total current liabilities		192,031		221,459		413,490
Noncurrent Llabilities:						
Bonds Payable		2,773,000		480,000		3,253,000
Unamortized Bond Discount		$(18,527)$				$(18,527)$
Unamortized Bond Premium		151,190		66,411		217,601
Net Pension Liability		280,160		435,804		715,964
Compensated Absences Payable		44,520		45,458		89,978
Total noncurrent liabilities		3,230,343		1,027,673		4,258,016
Total Liabilities		3,422,374		1,249,132		4,671,506
Deferred Inflow of Resources:						
Deferred Inflows from Pension Activity		1,250		1,945		3,195
Net Position:						
Investment in capital assets net of related debt		2,006,360		6,934,110		8,940,470
Restricted		0		212,000		212,000
Unrestricted		3,094,446		3,054,024		6,148,470
Total Net Position	\$	5,100,806	\$	10,200,134	\$	15,300,940

The accompanying notes are a part of these financial statements.

CITY OF KETCHUM, IDAHO
Statement of Revenues, Expenditures, and Changes in Net Position
Proprietary Funds
for the year ended September 30, 2022

The accompanying notes are a part of these financial statements.

CITY OF KETCHUM, IDAHO

Statement of Cash Flows

Proprietary Funds
for the year ended September 30, 2022

	Water Fund		Wastewater Fund		Total	
Cash Flows From Operating Activities:						
Receipts from customers	\$	2,451,047	\$	3,480,351	\$	5,931,398
Payments to suppliers		$(1,031,569)$		$(1,168,694)$		$(2,200,263)$
Payments to employees		$(488,464)$		$(813,466)$		$(1,301,930)$
Other receipts		1,210		84		1,294
Net cash provided (used) by operations		932,224		1,498,275		2,430,499
Cash Flows From Capital and Related						
Financing Activities:						
Purchase and construction of capital assets		$(197,967)$		$(526,047)$		$(724,014)$
Payments from (to) other funds						0
Principal paid on capital debt		$(182,000)$		$(215,000)$		$(397,000)$
Interest paid on capital debt		$(124,427)$		$(46,196)$		$(170,623)$
Net cash provided (used) by capital and related financing activities		$(504,394)$		$(787,243)$		$(1,291,637)$
Cash Flows From Investing Activities: Interest Income		13,778		15,677		29,455
Net Increase (Decrease) in Cash and Deposits		441,608		726,709		1,168,317
Balances - Beginning of the year		2,806,721		2,670,029		5,476,750
Balances - Ending of the year	\$	3,248,329	\$	3,396,738	\$	6,645,067
Displayed as:						
Pooled Cash and Investments		3,248,329		3,184,738		6,433,067
Restricted Assets				212,000		212,000
Balances - Ending of the year		3,248,329	\$	3,396,738	\$	6,645,067
Reconciliation of Operating Income (Loss) to Net						
Cash Provided (Used) by Operating Activities:						
Operating Income (Loss)		674,818		1,226,268		1,901,086
Adjustments to reconcile operating income to net cash provided (used) by operating activities:						
Depreciation expense		269,689		316,382		586,071
Changes in assets and liabilities:						
Receivables, net		$(5,236)$		$(41,129)$		$(46,365)$
Accounts and other payables		$(7,047)$		$(3,246)$		$(10,293)$
Net Cash Provided (Used) by Operating Activites	\$	932,224	\$	1,498,275	\$	2,430,499

CITY OF KETCHUM, IDAHO Notes to the Financial Statements
 September 30, 2022

NOTE 1 - SUMMARY OF SIGNIFICANT ACCOUNTING POLICIES

The City of Ketchum, Idaho became an incorporated city under the laws of the State of Idaho on October 16, 1961. The accounting policies of the City of Ketchum, Idaho conform to generally accepted accounting principles as applicable to governmental units. The financial statements of the City of Ketchum, Idaho have been prepared in conformity with the generally accepted accounting principles (GAAP) as applied to governmental units. The Governmental Accounting Standards Board (GASB) is the accepted standard-setting body for establishing governmental accounting and financial reporting principles. The City also applies Financial Accounting Standards Board (FASB) statements and interpretations issued on or before November 30, 1989, to its governmental and business-type activities (enterprise funds) provided they do not conflict with or contradict GASB pronouncements. The following is a summary of the more significant policies:

(A) Basis of Presentation - Basis of Accounting

Basis of Presentation:

For this reporting period, the City has conformed its financial statement model to Governmental Auditing Standards Board (GASB) Statement No. 34. This model presents the financial statements as follows:

Government-wide Statements: The statement of net assets and the statement of activities display information about the primary government (the City). These statements distinguish between the governmental and business-type activities of the City. Governmental activities generally are financed through taxes, intergovernmental revenues, and other nonexchange transactions. Business-type activities are financed in whole or in part by fees charged to external parties.

The statement of activities presents a comparison between direct expenses and program revenues for the different business-type activities of the City and for each function of the City's governmental activities. Direct expenses are those that are specifically associated with a program or function and, therefore, are clearly identifiable to a particular function. Indirect expense allocations that have been made in the funds have been reversed for the statement of activities. Program revenues include (a) fees, fines, and charges paid by the recipients of goods or services offered by the programs and (b) grants and contributions that are restricted to meeting the operational or capital requirements of a particular program. Revenues that are not classified as program revenues, including all taxes, are presented as general revenues.

Fund Financial Statements: The fund financial statements provide information about the City's funds. Separate statements for each fund category-governmental and proprietary-are presented. The emphasis of fund financial statements is on major governmental and enterprise funds, each displayed in a separate column.

Proprietary fund operating revenues, such as charges for services, result from exchange transactions associated with the principal activity of the fund. Exchange transactions are those in which each party receives and gives up essentially equal values. Nonoperating revenues, such as subsidies and investment earnings, result from nonexchange transactions or ancillary activities.

CITY OF KETCHUM, IDAHO Notes to the Financial Statements
 September 30, 2022

-Continued
The City reports the following governmental funds:
General Fund. This is the City's operating fund. It accounts for all financial resources of the general government, except those required to be accounted for in another fund.

The City reports the following enterprise funds:
Water and Wastewater Fund. This fund accounts for the operation, maintenance, and development of the City's water and waste-water facilities.

Discretely Presented Component Unit

The Component unit column in the financial statements includes the financial data of the City's only discretely presented component unit, the Ketchum Urban Renewal Agency. It is reported in a separate column to emphasize that it is separate from the City's operations. Complete financial statements of the Ketchum Urban Renewal Agency can be requested.

Measurement Focus, Basis of Accounting

Government-wide and Proprietary Fund Financial Statements. The government-wide and proprietary fund financial statements are reported using the economic resources measurement focus and the accrual basis of accounting. Revenues are recorded when earned and expenses are recorded at the time liabilities are incurred, regardless of when the related cash flows take place. Nonexchange transactions, in which the City gives (or receives) value without directly receiving (or giving) equal value in exchange, include property taxes, grants, entitlements, and donations. On an accrual basis, revenue from property taxes is recognized in the fiscal year for which the taxes are levied. Revenue from grants, entitlements, and donations is recognized in the fiscal year in which all eligibility requirements have been satisfied.

Governmental Fund Financial Statements. Governmental funds are reported using the current financial resources measurement focus and the modified accrual basis of accounting. Under this method, revenues are recognized when measurable and available. The City considers all revenues reported in the governmental funds to be available if the revenues are collected within sixty days after year-end. Property taxes, sales taxes, franchise taxes, licenses, and interest are considered to be susceptible to accrual. Expenditures are recorded when the related fund liability is incurred, except for principal and interest on general long-term debt, claims and judgments, and compensated absences, which are recognized as expenditures to the extent they have matured. General capital asset acquisitions are reported as expenditures in governmental funds. Proceeds of general long-term debt and acquisitions under capital leases are reported as other financing sources.

Budgets and Budgetary Accounting. The City adheres to City budget requirements in Title 50, Chapter 10 of the Idaho Code. The provisions of this chapter include the following procedures to establish budgetary data which is reflected in these financial statements:
A. Prior to certifying the tax levy to the County Commissioners, and prior to passing the annual appropriation ordinance, a public meeting shall be held to adopt a budget by a favorable vote of a majority of the members of the council.
B. Budgets for all funds are adopted on a basis consistent with generally accepted accounting principles. Uncommitted appropriations lapse at year end.
C. There are no provisions in Title 50, Chapter 10 for budget augmentations.

CITY OF KETCHUM, IDAHO
 Notes to the Financial Statements
 September 30, 2022

-continued

Entity Classifications.

A. City-Wide Financial Statements - The City reports net position in three categories - invested in capital assets, restricted and unrestricted.
B. Fund Financial Statements - The City has adopted GASB Statement No. 54 "Fund Balance Reporting and Governmental Fund Type Definitions" (GASB 54) which defines how fund balances of the governmental funds are presented in the financial statements. There are five classifications of fund balances as presented below:

Non-spendable - These funds are not available for expenditures based on legal or contractual requirements. In this category, one would see inventory, long-term receivables, unless proceeds are restricted, committed, or assigned and legally or contractually required to be maintained intact (corpus or a permanent fund).

Restricted - These funds are governed by externally enforceable restrictions. In this category, one would see restricted purpose grant funds, debt service or capital projects.

Committed - Fund balances in this category are limited by the governments' highest level of decision making. Any changes of designation must be done in the same manner that it was implemented and should occur prior to end of the fiscal year, though the exact amount may be determined subsequently.

Assigned - These funds are intended to be used for specific purposes, intent is expressed by governing body or an official delegated by the governing body.

Unassigned - This classification is the default for all funds that do not fit into the other categories. This, however, should not be a negative number for the general fund. If it is, the assigned fund balance must be adjusted.

Order of Use of Fund Balance - The City's policy is to apply expenditures against nonspendable fund balance, restricted fund balance, committed fund balance, assigned fund balance and unassigned fund balance at the end of the fiscal year. For all funds, nonspendable fund balances are determined first and then restricted fund balances for specific purposes are determined.

Allocation of Indirect Expenses. The City allocates indirect expense, primarily comprised of central governmental services, to operating functions and programs benefiting from those services. Central services include overall City management, centralized budgetary formulation and oversight, accounting, financial reporting, payroll, procurement contracting and oversight, investing and cash management, personnel services, and other central administrative services. Allocations are charged to programs based on use of central services determined by various allocation methodologies. As a matter of policy, certain functions that use significant central services are not charged for the use of these services. These functions or programs include police, fire, and certain divisions with public services and parks.

CITY OF KETCHUM, IDAHO
 Notes to the Financial Statements
 September 30, 2022

-Continued

(B) Assets, Liabilities, and Equity

Deposits and Investments

The cash balances of substantially all funds are pooled and invested by the State of Idaho Treasurer's Office for the purpose of increasing earnings through investment activities. The pool's investments are reported at fair value at September 30 of each year based on market prices. The individual funds' portions of the pool's fair value are presented as "Cash and Deposits". Earnings on the pooled funds are apportioned and paid or credited to the funds monthly based on the average daily balance of each participating fund.

Cash and Deposits

The City considers cash and deposits in proprietary funds to be cash on hand. In addition, because the State Treasury Pool is sufficiently liquid to permit withdrawal of cash at any time without prior notice or penalty, equity in the pool is also deemed to be a deposit.

Receivables and Payable

All trade and property tax receivables are shown net of an allowance for uncollectibles.

Property Tax Calendar

Property taxes are levied each November based on the assessed value of property as listed on the previous September tax rolls. Assessed values are an approximation of market value. The Blaine County Assessor establishes assessed values. Property tax payments are due in one-half installments in December and June. Property taxes become a lien on the property when it is levied.

Deferred Outflows/Inflows of Resources

In 2007, the Governmental Accounting Standards Board (GASB) released Concepts Statement No. 4 Elements of Financial Statements which provides a framework for determining the nature of financial accounting or reporting issues. Since the release of the framework, GASB has been looking at the assets and liabilities on the balance sheet to determine if they should continue to be reflected as such. GASB has concluded that, in order to improve financial reporting, there are assets and liabilities that no longer should be reflected as assets and liabilities. These changes are included in the recently issued GASB Statement No. 65, Items Previously Reported as Asset and Liabilities.

These changes include two new items that are reflected on the Statement of Net Position.

- Deferred outflow of resources - the current consumption of net assets that is applicable to a future reporting period.
- Deferred inflows of resources - the current acquisition of net assets that is applicable to a future reporting period.

The City's financial statements may report a separate section for deferred inflows of resources which reflects an increase in resources that applies to a future period.

CITY OF KETCHUM, IDAHO
 Notes to the Financial Statements
 September 30, 2022

-Continued

Capital Assets

Purchased or constructed capital assets used in operations with an initial useful life that extends beyond one year are capitalized. Infrastructure assets such as roads and bridges are also capitalized. They are reported net of accumulated depreciation on the Statement of Net Assets. The City capitalizes assets in excess of $\$ 5,000$.

Under the requirements of GASB Statement No. 34, the City is considered a Phase 3 government, as its total annual revenues are less than $\$ 10$ million. Such governments are not required to report major general infrastructure assets retroactively. Accordingly, the City has determined not to retroactively report this type of capital asset.

Capital assets are recorded at their historical cost and are depreciated using the straight-line method of depreciation over the following estimated useful lives:

Asset Class

Infrastructure 30
Buildings
50
Building Improvements 20
Vehicles 5-15
Office and Other Equipment 3-15
Computer Equipment 3-15

Compensated Absences

The liability for compensated absences reported in the government-wide and proprietary fund statements consists of unpaid, accumulated annual vacation and sick leave balances. The liability has been calculated using the vesting method, in which leave amounts for both employees who currently are eligible to receive termination payments and other employees who are expected to become eligible in the future to receive such payments upon termination are included.

Pensions

For purposes of measuring the net pension liability and pension expense, information about the fiduciary net position of the Public Employee Retirement System of Idaho Base Plan (Base Plan) and additions to/deductions from Base Plan's fiduciary net position have been determined on the same basis as they are reported by the Base Plan. For this purpose, benefit payments (including refunds of employee contributions) are recognized when due and payable in accordance with the benefit terms. Investments are reported at fair value.

NOTE 2 - CASH AND DEPOSITS

Deposits: Custodial credit risk, in the case of deposits, is the risk that in the event of a bank failure, the government's deposits may not be returned to it. The City has no deposit policy for custodial credit risk. At year end, $\$ 1,753,766$ of the City's bank balances were exposed to custodial credit risk because of the $\$ 250,000$ limit insured by the FDIC.

CITY OF KETCHUM, IDAHO Notes to the Financial Statements
 September 30, 2022

-Continued
Investments: Custodial credit risk, in the case of investments, is the risk that in the event of the failure of the counterparty, the government will not be able to recover the value of its investments or collateral securities that are in the possession of an outside party. At year end, the City held the following investments:

Investment Type

Idaho State Local Government Investment Pool \$20,762,802.
These investments are unrated external investment pools sponsored by the Idaho State Treasurer's Office. They are classified as "Investments in an External Investment Pool" and are exempt from custodial credit risk and concentration of credit risk reporting. Interest rate risk is summarized as follows: Asset-backed securities are reported using weighted average life to more accurately reflect the projected term of the security, considering interest rates and repayment factors.

The elected Idaho State Treasurer, following Idaho Code, Section 67-2328, is authorized to sponsor an investment pool in which the City voluntarily participates. The Pool is not registered with the Securities and Exchange Commission or any other regulatory body - oversight is with the State Treasurer, and Idaho Code defines allowable investments. All investments are entirely insured or collateralized with securities held by the Pool or by its agent in the Pool's name. And the fair value of the City's position in the external investment pool is the same as the value of the pool shares.

Credit Risk: The City's policy is to comply with Idaho State statutes which authorize the City to invest in obligations of the United States, obligations of the State or any faxing district in the State, obligations issued by the Farm Credit System, obligations of public corporations of the State of Idaho, repurchase agreements, tax anticipation notes of the State or taxing district in the State, time deposits, savings deposits, revenue bonds of institutions of higher education, and the State Treasurer's Pool.

Interest rate risk and concentration of credit risk: The City has no policy regarding these two investment risk categories.

The City maintains a cash and investment pool that is available for use by all funds. Each fund type's portion of this pool is presented on the combined balance sheet as "Cash and Deposits".

Cash and Deposits are comprised of the following at the financial statement date:

Cash on Hand
Deposits with financial institutions:
Demand deposits
State of Idaho Investment Pool
Total
$\$ 21,525,570$

CITY OF KETCHUM, IDAHO Notes to the Financial Statements
 September 30, 2022

- Continued

NOTE 3 - CAPITAL ASSETS

Capital asset activity for the current year ended was as follows:

		Beginning Balances		Increases		Decreases		Ending Balances
Governmental Activities:								
Capital Assets not being depreciated:								
Land	\$	8,809,038	\$		\$		\$	8,809,038
Construction in Progress		12,129,917		551,551		(12,129,917)		551,551
Total		20,938,955		551,551		$(12,129,917)$		9,360,589
Capital Assets being depreciated:								
Buildings \& Improvements		9,785,787		12,874,886				22,660,673
Infrastructure		3,034,584		2,009,241				5,043,825
Vehicles and Equipment		8,569,320		546,837				9,116,157
Total		21,389,691		15,430,964		0		36,820,655
Less: Accumulated Depreciation:		10,781,068		875,744				11,656,812
Total Net Depreciated Assets		10,608,623		14,555,220		0		25,163,843
Governmental capital assets, net	\$	31,547,578	\$	15,106,771	\$	$\underline{(12,129,917)}$	\$	34,524,432
Business-type activities:								
Capital Assets not being depreciated:								
Land	\$	15,380	\$		\$		\$	15,380
Construction in Progress		337,118		197,967				535,085
Total		352,498		197,967		0		550,465
Capital Assets being depreciated:								
Buildings \& Improvements		26,362,514		22,525				26,385,039
Vehicles and Equipment		936,610		503,521				1,440,131
Total		27,299,124		526,046		0		27,825,170
Less: Accumulated Depreciation		14,990,019		586,072				15,576,091
Total Net Depreciated Assets		12,309,105		$(60,026)$		0		12,249,079
Business-type capital assets, net	\$	12,661,603	\$	137,941	\$	0	\$	12,799,544

CITY OF KETCHUM, IDAHO
 Notes to the Financial Statements
 September 30, 2022

- Continued

NOTE 4 -BONDS PAYABLE

In December of 2004, the City sold $\$ 1,990,000$ of Sewer Revenue Bonds, Series 2004. The proceeds of this issue were used to make improvements to the City's wastewater system. The bonds were retired with funds from the 2014 Wastewater Refunding Bonds 2014.

In May of 2006, the City sold $\$ 1,730,000$ of Sewer Revenue Bonds, Series 2006A. The proceeds of this issue were used to make improvements to the City's wastewater system. The bonds were retired by the 2014 bond issue.

In November of 2014 the City sold $\$ 1,950,000$ of Sewer Revenue Refunding Bonds, Series 2014. The proceeds from this bond issue retired the City's 2004 and 2006 bond series. This bond issue is to be retired by user fees generated by the City's enterprise fund.

In 2006 outstanding bonds from the City's series 1998 issue were defeased by placing proceeds of a new bond issue, Water Revenue Refunding Bonds Series 2006B for $\$ 3,030,000$, in an irrevocable trust to provide for all future debt payments on the old bonds. These bonds were retired by the City's Water Revenue Refunding Bonds Series 2016.

In September of 2016 the City sold $\$ 1,697,000$ of Water Revenue Refunding Bonds, Series 2016. The proceeds from this bond issue retired the City's 2006B bond series. This bond issue is to be retired by user fees generated by the City's enterprise fund.

In May of 2006, the City sold $\$ 2,780,000$ of Water Revenue Bonds, Series 2006A. The proceeds of this issue were used to make improvements to the City's water system. These bonds were retired by the City's Water Revenue Refunding Bonds Series 2015.

In September of 2015 the City sold \$ 2,310,000 of Water Revenue Refunding Bonds, Series 2015. The proceeds from this bond issue retired the City's 2006A bond series. This bond issue is to be retired by user fees generated by the City's enterprise fund.

In March of 2020, the City sold $\$ 10,870,000$ of General Obligation Bonds, Series 2020. These bonds were sold at a premium of $\$ 630,000$, providing the City with $\$ 11,500,000$ in cash to construct a new fire facility. Construction began in the FY 2020 period and was completed in FY 2021.

The following is a list of the interest and principal payments through the end of the bond issues:

CITY OF KETCHUM, IDAHO
 Notes to the Financial Statements

 September 30, 2022Bonds Payable - Continued
Wastewater Refunding Bond Series 2014

FY

2023
2024
2025
2026
2027
2028-2032
2033-2034

Water Refunding Bonds 2015
Interest \quad Principal

Water Revenue Bonds 2016
\qquad
Interest Principal

\$	106,475	\$	30,000
	105,500		30,000
	104,000		35,000
	102,250		35,000
	100,500		30,000
	360,250		1,415,000
	40,000		565,000
\$	918,975	\$	2,140,000

105,500
104,000
102,250
100,500 30,000
360,250
$\$ \quad 918,975 \$ \xlongequal{2,140,000}$
路

General Obligation Bonds Series 2020

FY		Interest		Principal	
2023		\$	291,769	\$	320,000
2024			275,769		335,000
2025			259,019		355,000
2026			241,269		370,000
2027			222,769		390,000
2028-2032			842,645		2,220,000
2033-2037			570,645		2,490,000
2038-2042			309,267		2,755,000
2043-2044			40,161		1,185,000
	Totals	\$	3,053,313	\$	10,420,000

CITY OF KETCHUM, IDAHO Notes to the Financial Statements
 September 30, 2022

- Continued

NOTE 5 - CAPITAL LEASES

The City has entered into a municipal lease agreement for the purchase of a 2020 Hughes Aerial Fire Ladder Trust to be used by the General Fund of the City. The obligation is recorded in the respective fund. Annual lease payments are paid on July 1 of each year. Unless sooner terminated as set forth in the lease, ownership will transfer to the City upon expiration of the lease. Depreciation expense has been computed on assets acquired under municipal lease agreements.

Detail of the Capital Leases follows:

		Balance Financed		2023		2024		2025	2026-34		Total
Governmental Activities 2019 Hughes Aerial Fire Ladder Truck											
Zions Bancorporaton	\$	588,613	\$	41,948	\$	43,123	\$	44,330	459,212	\$	588,613
Computed Interest 2.8\%				16,481		15,307		14,099	66,655		112,542
		588,613		58,429		58,430		58,429	525,867		701,155
Total Capital Leases	\$	588,613	\$	58,429	\$	58,430	\$	58,429	525,867	\$	701,155

NOTE 6 - MISCELLANEOUS REVENUES, GOVERNMENTAL FUND TYPES

The miscellaneous revenues section of the combined statement of revenues and expenditures includes the following amounts:

Rents
Sale of Unusable Equipment
Miscellaneous
Total

Total
Governmental
\$ 73,408
89
1,680
$\$ \quad 75,177$

CITY OF KETCHUM, IDAHO Notes to the Financial Statements
 September 30, 2022

NOTE 7 - LITIGATION

The City, at the financial statement date, is not involved in any material disputes as either plaintiff or defendant.

NOTE 8 - RESTRICTED NET ASSETS

The ordinance authorizing the Enterprise Fund revenue bonds requires that the City establish certain restricted cash accounts to be used in the retirement of the bonds and improvements to the waste-water systems. In addition, certain cash amounts are restricted for use in law enforcement, zoning ordinance enforcement, and for other restrictions imposed by the City Council in the general fund, and for debt retirement in the long-term debt group of accounts. The City's policy is to first apply unrestricted resources when an expense is incurred for purposes for which both restricted and unrestricted net assets are available. These restricted amounts are as follows:

	General Fund		Enterprise Fund	
Various Trust Cash and Fire GO Bond	\$	1,251,367		
Wastewater Bonds Debt Reserve Cash			\$	212,000
Totals	\$	1,251,367	\$	$\underline{212,000}$

NOTE 9 - RISK MANAGEMENT

A City is exposed to various risks of loss related to torts; theft of, damage to, and destruction of assets; errors and omissions; injuries to employees; and natural disasters. During the fiscal year, the City is contracted with Idaho County Risk Management Program (ICRMP) for property, crime and fleet insurance and the State Insurance Fund for workman's compensation. Under the terms of the ICRMP policy, the City of Ketchum's liability is limited to the amount of annual financial membership contributions, including a per occurrence deductible. There has been no significant reduction in insurance coverage in the current year. Settlement amounts have not exceeded insurance coverage for the current year or the three prior years.

NOTE 10 - KETCHUM URBAN RENEWAL AGENCY

The component unit column in the combined financial statements includes the financial data of the Ketchum Urban Renewal Agency, the City's only discretely presented component unit. It is reported in a separate column to emphasize that it is legally separate from the City in accordance with State Urban Renewal law. The Agency has authority to construct public improvements including the acquisition of public right-of-way within the blighted area legally designated as the redevelopment district. The City appoints the governing board of the Agency. The Agency derives its funding from tax increment financing. Complete financial statements for the current year are available from the Agency.

The City advanced $\$ 1,495,830$ of cash held for affordable housing construction to the Agency to begin their operations. The Agency has determined to pay this amount back to the City over the next several years as funds become available. These amounts are not accrued in the City's records but will be recognized as revenue when received in the "In-Lieu Housing Fund". The balance remaining unpaid at the date of these financial statements is \$195,514.

CITY OF KETCHUM, IDAHO
Notes to the Financial Statements
September 30, 2022

-Continued

NOTE 11 - EMPLOYEE RETIREMENT PLAN

Plan Description

The City of Ketchum contributes to the Base Plan which is a cost-sharing multiple-employer defined benefit pension plan administered by Public Employee Retirement System of Idaho (PERSI or System) that covers substantially all employees of the State of Idaho, its agencies, and various participating political subdivisions. The cost to administer the plan is financed through the contributions and investment earnings of the plan. PERSI issues a publicly available financial report that includes financial statements and the required supplementary information for PERSI. That report may be obtained on the PERSI website at www.persi.idaho.gov.

Responsibility for administration of the Base Plan is assigned to the Board comprised of five members appointed by the Governor and confirmed by the Idaho Senate. State law requires that two members of the Board be active Base Plan members with at least ten years of service and three members who are Idaho citizens not members of the Base Plan except by reason of having served on the Board.

Pension Benefits

The Base Plan provides retirement, disability, death and survivor benefits of eligible members or beneficiaries. Benefits are based on members' years of service, age and highest average salary. Members become fully vested in their retirement benefits with five years of credited services (5 months for elected or appointed officials). Members are eligible for retirement benefits upon attainment of the ages specified for their employment classification. The annual service retirement allowance for each month of credited service is 2.0% (2.3% for police/firefighters) of the average monthly salary for the highest consecutive 42 months.

The benefit payments for the Base Plan are calculated using a benefit formula adopted by the Idaho Legislature. The Base Plan is required to provide a 1% minimum cost of living increase per year provided the Consumer Price Index increases 1\% or more. The PERSI Board has the authority to provide higher cost of living increases to a maximum of the Consumer Price Index movement or 6%, whichever is less; however, any amount above the 1% minimum is subject to review by the Idaho Legislature.

Member and Employer Contributions

Member and employer contributions paid to the Base Plan are set by statute and are established as a percent of covered compensation. Contribution rates are determined by the PERSI Board within limitations, as defined by state law. The Board may make periodic changes to employer and employee contribution rates (expressed as percentages of annual covered payroll) that are adequate to accumulate sufficient assets to pay benefits when due.

The contribution rates for employees are set by statute at 60% of employer rate for general employees and 74\% for police and firefighters. As of June 30, 2022, it was 7.16% for general employees and 9.13% for police and firefighters. The employer contribution rate, as s percent of covered payroll, is set by the Retirement Board and was 11.94% for general employees and 12.28% for police and firefighters. The City's contributions were $\$ 420,730$ for the year ended September 30, 2022.

CITY OF KETCHUM, IDAHO Notes to the Financial Statements September 30, 2022

-Continued

Pension Liabilities, Pension Expense (Revenue), and Deferred Outflows of Resources and Deferred Inflows of Resources Related to Pensions.

At September 30, 2022, the City reported a liability for its proportionate share of the net pension liability. The net pension liability was measured as of June 30, 2022, and the total pension liability used to calculate the net pension liability was determined by an actuarial valuation as of that date. The City's proportion of the net pension liability was based on the City's share of contributions in the Base Plan pension plan relative to the total contributions of all participating PERSI Base Plan employers. At June 30, 2022, the City's proportion was 0.0790322 percent.

For the year ended September 30, 2022, the City recognized pension expense (revenue) of $\$ 407,392$. At September 30, 2022, the City reported deferred outflows of resources and deferred inflows of resources related to pensions from the following sources:

	Deferred Outflows of Resources	Deferred Inflows of Resources	
Differences between expected and actual experience	$\$$ 716,238	$\$$	13,894
Changes in assumptions or other inputs	$\$$ 507,494		
Net difference between projected and actual earnings on pension plan investments	$\$ 342,304$		
Changes in the employer's proportion and differences between the employer's contributions and the employer's proportionate contributions	$\$(105,182)$		
	$\$ 105,182$		
City's contributions subsequent to the measurement date	$\$ 1,566,036$	$\$$	13,894

\$ 105, 182 reported as deferred outflows of resources related to pensions resulting from Employer contributions subsequent to the measurement date will be recognized as a reduction of the net pension liability in the year ending September 30, 2023.

The average of the expected remaining service lives of all employees that are provided with pensions through the System (active and inactive employees) determined at July 1, 2020, the beginning of the measurement period ended June 30, 2021, is 4.6 and 4.6 for the measurement period June 30, 2022.

Other amounts reported as deferred outflows of resources and deferred inflows of resources related to pensions will be recognized in pension expense (revenue) as follows:

CITY OF KETCHUM, IDAHO
 Notes to the Financial Statements
 September 30, 2022

-Continued
Year ended September 30, 2022:

2023	$\$ 371,174$
2024	$\$ 402,945$
2025	$\$ 186,362$
2026	$\$ 591,662$

Actuarial Assumptions

Valuations are based on actuarial assumptions, the benefit formulas, and employee groups. Level percentages of payroll normal costs are determined using the Entry Age Normal Cost Method. Under the Entry Age Normal Cost Method, the actuarial present value of the projected benefits of each individual included in the actuarial valuation is allocated as a level percentage of each year's earnings of the individual between entry age and assumed exit age. The Base Plan amortizes any unfunded actuarial accrued liability based on a level percentage of payroll. The maximum amortization period for the Base Plan permitted under Section 59-1322, Idaho Code, is 25 years.

The total pension liability in the June 30, 2022, actuarial valuation was determined using the following actuarial assumptions, applied to all periods included in the measurement:

Inflation
Salary increases
Salary inflation
Investment rate of return
Cost-of-living adjustments
2.30\%
3.05\%
3.05\%
6.35\%, net of investment expenses 1\%

Contributing Members, Service Retirement Members, and Beneficiaries
General Employees and All Beneficiaries - Males Pub-2010 General Tables, increased 11\%
General Employees and All Beneficiaries - Females Pub-2010 General Tables, increased 21\%
Fire \& Police - Males Pub-2010 Safety Tables, increased 21\%
Fire \& Police - Females Pub-2010 Safety Tables, increased 26\%
Disabled Members - Males Pub-2010 Disabled Tables, increased 38\%
Disabled Members - Females Pub-2010 Disabled Tables, increased 36\%

An experience study was performed for the period July 1, 2015, through June 30, 2020, which reviewed all economic and demographic assumptions including mortality. The Total Pension Liability as of June 30, 2022, is based on the results of an actuarial valuation date of July 1, 2022.

The long-term expected rate of return on pension plan investments was determined using the building block approach and a forward-looking model in which best estimate ranges of expected future real rates of return (expected returns, net of pension plan investment expense and inflation) are developed for each major asset class. These ranges are combined to produce the long-term expected rate of return by weighing the expected future real rates of return by the target asset allocation percentage and by adding expected inflation.

CITY OF KETCHUM, IDAHO
Notes to the Financial Statements
September 30, 2022

-Continued
Even though history provides a valuable perspective for setting the investment return assumption, the System relies primarily on an approach which builds upon the latest capital market assumptions. Specifically, the System uses consultants, investment managers and trustees to develop capital market assumptions in analyzing the System's asset allocation. The assumptions and the System's formal policy for asset allocation are shown below. The formal asset allocation policy is somewhat more conservative than the current allocation of System's assets. The best-estimate range for the long-term expected rate of return is determined by adding expected inflation to expected long-term real returns and reflecting expected volatility and correlation. The capital market assumptions are as of 2022.

DB Plans

30.00%	50.00%
55.00%	39.30%
15.00%	10.70%
0.00%	0.00%

Discount Rate

The discount rate used to measure the total pension liability was 7.05%. The projection of cash flows used to determine the discount rate assumed that contributions from plan members will be made at the current contribution rate. Based on these assumptions, the pension plans' net position was projected to be available to make all projected future benefit payments of current plan members. Therefore, the long-term expected rate of return on pension plan investments was applied to all periods of projected benefit payments to determine the total pension liability. The long-term expected rate of return was determined net of pension plan investment expense but without reduction for pension plan administrative expense.

Sensitivity of the Employer's proportionate share of the net pension liability to changes in the discount rate.

The following presents the Employer's proportionate share of the net pension liability calculated using the discount rate of 6.35%, as well as what the Employer's proportionate share of the net pension liability would be if it were calculated using a discount rate that is 1-percentage-point lower (5.35%) or 1-percentage-point higher (7.35%) than the current rate:

	1\% Decrease (5.35%)	Current Discount Rate (6.35%)	1% Increase (7.35%)
Employer's proportionate share of the net pension liability (asset)			$\$$

CITY OF KETCHUM, IDAHO
 Notes to the Financial Statements
 September 30, 2022

-Continued

Pension plan fiduciary net position
Detailed information about the pension plan's fiduciary net position is available in the separately issued PERSI financial report.

PERSI issues a publicly available financial report that includes financial statements and the required supplementary information for PERSI. That report may be obtained on the PERSI website at www.persi.idaho.gov

Payables to the pension plan
At September 30, 2022, the City reported payables to the defined benefit pension plan of $\$ 0$ for legally required employer contributions and $\$ 0$ for legally required employee contributions which had been withheld from employee wages but not yet remitted to PERSI.

NOTE 12 - SUBSEQUENT EVENTS

Subsequent events were evaluated through the date of the auditor's report, which is the date the financial statements were available to be issued.

```
    REQUIRED
SUPPLEMENTARY INFORMATION
```


CITY OF KETCHUM, IDAHO

 Schedule of Revenues, Expenditures and Changes in Fund Balances Budget and Actual -- General FundREVENUE:
Property taxes
Local Option sales taxes
Franchises, licenses, permits
State of Idaho shared revenue
State of Idaho liquor receipts
State highway user collections
Penalty and interest on property taxes
County court and parking fines
Fees, fines and charges for services
Grants and contributions
Earnings on investments
Miscellaneous
Total Revenue
$\begin{array}{r}\$ 4,616,115 \\ 670,969 \\ 1,108,723 \\ 385,000 \\ 138,216 \\ 12,000 \\ 35,000 \\ 3,284,448 \\ 327,050 \\ 35,000 \\ 380,290 \\ \hline\end{array}$ 10,992,811

EXPENDITURES:
General Government
Public Safety
Streets
Capital outiay
Parks and Recreation
Transportation
Affordable Housing
Debt Service
Total Expenditures
EXCESS REVENUE (EXPENDITURES)

OTHER FINANCING SOURCES (USES):

Operating transfers from other funds Operating transfers (to) other funds	$\begin{gathered} 1,310,656 \\ (1,082,154) \\ \hline \end{gathered}$	$\begin{gathered} 1,721,884 \\ (1,082,154) \\ \hline \end{gathered}$	$\begin{array}{r} 1,718,942 \\ (1,082,154) \\ \hline \end{array}$	$\begin{array}{r} 2,942 \\ 0 \\ \hline \end{array}$
NET CHANGE IN FUND BALANCES	$(661,668)$	$(557,050)$	1,132,331	1,689,381
FUND BALANCE - BEGINNING	4,724,539	4,724,539	4,724,539	
FUND BALANCE - ENDING	4,062,871	\$ 4,167,489	\$ 5,856,870	

\$ 178,330
427,882
2,950
19,523
78,497
12,131
49,463
136,625
15,221
4,839
$(306,744)$
618,717

880,315
32,262
68,322
92,707

11,882,981	12,355,931	11,282,325	1,073,606
$(890,170)$	(1,196,780)	495,543	1,692,323

$5,019,699$	$5,363,712$	$4,483,397$	880,315
$4,364,237$	$4,493,174$	$4,460,912$	32,262
$1,891,540$	$1,891,540$	$1,823,218$	68,322
607,505	607,505	514,798	92,707

(890,170)

$4,616,115$
745,969
$1,108,723$
385,000
138,216
12,000
35,00
$3,350,788$
352,050
35,000
380,290

\$ 4,794,445

$$
\begin{array}{r}
1,173,851 \\
1,111,673 \\
404,523 \\
216,713 \\
24,131 \\
84,463 \\
3,487,413 \\
367,271 \\
39,839 \\
73,546 \\
\hline
\end{array}
$$

$11,777,868$
618,717
,

Variance with
Final Budget
Positive
(Negative)

CITY OF KETCHUM, IDAHO

Schedule of Revenues, Expenditures and Changes in Fund Balances

 Budget and Actual -- City Sales Tax Fund for the year ended September 30, 2022Original
Budget

Amounts \quad\begin{tabular}{c}
Final

Budget

Amounts

\quad

Actual

Amounts
\end{tabular}

REVENUE:

Property taxes	\$		\$		\$		\$
Local Option sales taxes		4,233,253		4,599,500		6,849,285	2,249,785
Franchises, licenses, permits							
State of Idaho shared revenue							
State of Idaho liquor receipts							
State highway user collections							
Penalty and interest on property taxes							
County court fines							
Fees, fines and charges for services							
Grants and contributions							
Earnings on investments		500		500		4,785	4,285
Miscellaneous						1,720	1,720
Total Revenue		4,233,753		4,600,000		6,855,790	2,255,790
EXPENDITURES:							
General Government		3,000		164,510		168,261	$(3,751)$
Public Safety		161,556		161,556		161,556	0
Streets							
Capital outlay							
Parks and Recreation							
Transportation		2,660,753		3,087,000		3,087,000	0
Affordable Housing							
Debt Service							
Total Expenditures		2,825,309		3,413,066		3,416,817	(3,751)
EXCESS REVENUE (EXPENDITURES)		1,408,444		1,186,934		3,438,973	2,252,039
OTHER FINANCING SOURCES (USES):							
Operating transfers from other funds							0
Operating transfers (to) other funds		$(1,424,444)$		$(3,462,034)$		$(3,462,034)$	0
NET CHANGE IN FUND BALANCES		$(16,000)$		$(2,275,100)$		$(23,061)$	2,252,039
FUND BALANCE - BEGINNING		1,776,365		1,776,365		1,776,365	
FUND BALANCE - ENDING	\$	1,760,365	\$	$(498,735)$	\$	1,753,304	

Variance with Final Budget Positive (Negative)

Property taxes

Local Option sales taxes
Franchises, licenses, permits
State of Idaho shared revenue
State of Idaho liquor receipts
State highway user collections
Penalty and interest on property taxes
County court fines
Fees, fines and charges for services
Grants and contributions
Earnings on investments 500

Total Revenue
EXPENDITURES:

CITY OF KETCHUM, IDAHO Schedule of Revenues, Expenditures and Changes in Fund Balances Budget and Actual -- In-Lieu Housing Fund for the year ended September 30, 2022

		Original Budget Amounts		Final Budget Amounts		Actual Amounts	Variance with Final Budget Positive (Negative)
REVENUE:							
Property taxes	\$		\$		\$		\$
Local Option sales taxes							
Franchises, licenses, permits							
State of Idaho shared revenue							
State of Idaho liquor receipts							
State highway user collections							
Penalty and interest on property taxes							
County court fines							
Fees, fines and charges for services		292,050		421,594		347.932	73,662
Grants and contributions							
Earnings on investments		30,000		30,000		14,929	15,071
Miscellaneous							0
Total Revenue		322,050		451,594		362,861	88,733
EXPENDITURES:							
General Government							
Public Safety							
Streets							
Capital outlay		3,095,456		3,225,000		770,011	2,454,989
Parks and Recreation							
Transportation							
Affordable Housing		75,000		75,000		75,000	0
Debt Service _- _ _ _ _ _ [
Total Expenditures		3,170,456		3,300,000		845,011	2,454,989
EXCESS REVENUE (EXPENDITURES)		$(2,848,406)$		$(2,848,406)$		$(482,150)$	2,543,722
OTHER FINANCING SOURCES (USES):							
Operating transfers from other funds							
NET CHANGE IN FUND BALANCES		$(2,848,406)$		$(2,848,406)$		$(482,150)$	2,543,722
FUND BALANCE - BEGINNING		2,848,406		2,848,406		2,848,406	
FUND BALANCE - ENDING	\$	0	\$	0	\$	2,366,256	

CITY OF KETCHUM, IDAHO

Schedule of Revenues, Expenditures and Changes in Fund Balances
Budget and Actual -- General Capital Improvement Fund
for the year ended September 30, 2022

REVENUE:

Property taxes
Local Option sales taxes
Franchises, licenses, permits
State of Idaho shared revenue
State of Idaho liquor receipts
State highway user collections
Penalty and interest on property taxes
County court fines
Fees, fines and charges for services
Grants, contributions, band proceeds
Earnings on investments
Miscellaneous

Total Revenue
EXPENDITURES:

General Government
Public Safety
Streets
Capital outlay
Parks and Recreation
Transportation
Affordable Housing
Debt Service

Total Expenditures

EXCESS REVENUE (EXPENDITURES)

OTHER FINANCING SOURCES (USES):
Operating transfers from other funds
Operating transfers (to) other funds
NET CHANGE IN FUND BALANCES
FUND BALANCE - BEGINNING
FUND BALANCE - ENDING

Original
Budget
Amounts

Final Budget Amounts

Variance with
Final Budget Positive (Negative)

26,866

434,030
20,191

481,087

1,319,381

3,754,258	5,106,323	3,786,942	1,319,381
$(3,754,258)$	$(4,455,747)$	$(2,655,279)$	1,800,468
829,949	$\begin{array}{r} 1,929,416 \\ (270) \\ \hline \end{array}$	$\begin{array}{r} 1,929,416 \\ (270) \\ \hline \end{array}$	
$(2,924,309)$	$(2,526,601)$	$(726,133)$	1,800,468
4,226,634	4,226,634	4,226,634	
\$ 1,302,325	\$ 1,700,033	3,500,501	

CITY OF KETCHUM, IDAHO PUBLIC EMPLOYEE PENSION INFORMATION For the year ended September 30, 2022

Required Supplementary Information

Schedule of Employer's Share of Net Pension Liability PERSI - Base Plan Last 10 - Fiscal Years*										
		$\underline{2019}$		$\underline{2018}$		2017		2016		2015
Employer's portion of the net pension liability		.0865200\%		.0799402\%		.0866389\%		.0857958\%		.0889864\%
Employer's proportionate share of the net pension liability	\$	987,602 \$		1,179,132	\$	1,361,846 \$		1,739,214 \$		1,171,806
Employers covered-employee payroll	\$	3,625,685 \$		3,742,286	\$	3,585,052 \$		3,435,203 \$	\$	2,691,486
Employer's proportional share of the net pension liability as a percentage of its covered-employee payroll		27.24\%		31.51\%		37.99\%		50.63\%		43.54\%
Plan fiduciary net position as a percentage of the total pension liability		93.79\%		91.69\%		90.68\%		87.26\%		91.38\%
						2022		2021		3020
						.0790322\%		.0809575\%		.0833870\%
Employer's proportionate share of the net pension liability (Net Asset)					\$	3,112,888	\$	$(63,939)$		1,936,356
Employer's covered-employee payroll					\$	3,462,905	\$	4,052,180	\$	3,822,116
Employer's proportional share of the net pension liability as a percentage of its covered-employee payroll						89.89\%		-1.58\%		50,66\%
Plan fiduciary net position as a percentage of the total pension liability						83.09\%		100.36\%		88.22\%
* GASB Statement No. 68 required ten years of information to be presented in this table. However, until a full 10 -year trend is compiled, the City will present information for those years for which information is available.										
Data reported is measured as of June 30, 2022										
Schodule of Employer's Contributions PERSI - Base Plan Last 10 - Fiscal Years*										
		$\underline{2019}$		2018		2017		2016		2015
Statutorily required contributions	\$	441,262		455,247	\$	445,468	\$	425,702	\$	393,730
Contributions in relation to the statutorily required contribution	\$	$(441,262)$		$(455,247)$		(445,468)	\$	(425,702)	\$	(393,730)
Contribution (deficiency) excess	\$	0	\$	0	\$	0	\$	0	\$	0
Employer's covered-employee payroll	S	3,625,685	\$	3,742,286	\$	3,585,052	\$	3,435,203	\$	2,691,486
Contributions as a percentage of covered-employee payroll		12.17\%		12.16\%		12.43\%		12.39\%		12.03\%
						2022		2021		2020
Statutorily required contributions.						420,730	\$	484,563	\$	465,534
Contributions in relation to the statutorily required contribution						$(420,730)$)	$(484,563)$		$(465,534)$
Contribution (deficiency) excess						0	\$	0	\$	0
Employer's covered-employee payroll						3,462,905	\$	4,052,180	\$	3,822,116
Contributions as a percentage of covered-employee payroll						12.15\%		11.96\%		12.18\%

OTHER
 SUPPLEMENTARY INFORMATION

CITY OF KETCHUM, IDAHO

Statement of Revenues, Expenditures, and Changes in Fund Balances
Combining Other Governmental Funds
for the year ended September 30, 2022
Total

CITY OF KETCHUM, IDAHO

Bond-Future Principal and Interest Requirements
at September 30, 2022

Annual Payment

Interest	Fiscal Rate	Principal Year	Interest Payment

General Obligation Bond:
$\$ 11,500,000$ General Obligation Bonds Series 2020

5.00%	2023	$\$$	320,000	$\$$
5.00%	2024		335,000	291,769
5.00%	2025	355,000	275,769	
5.00%	2026	370,000	259,019	
5.00%	2027	390,000	241,269	
5.00%	2028	410,000	222,769	
5.00%	2029	430,000	203,269	
2.00%	2030	450,000	182,769	
2.00%	2031	460,000	161,269	
2.00%	2032	470,000	152,269	
2.00%	2033	480,000	143,069	
2.00%	2034	490,000	133,669	
2.00%	2035	495,000	124,069	
2.00%	2036	505,000	114,269	
2.00%	2037	520,000	94,369	
2.00%	2038	530,000	93,269	
2.00%	2039	540,000	73,869	
2.125%	2040	550,000	62,269	
2.150%	2041	560,000	50,780	
2.125%	2042	575,000	38,881	
2.250%	2043	585,000	26,661	
2.250%	2044	600,000	13,500	
		$\$ 10,420,000$	$\$ 3,053,313$	

CITY OF KETCHUM, IDAHO
Bond-Future Principal and Interest Requirements
at September 30, 2022

	Annual Payment					
Water	Interest Rate	$\begin{aligned} & \text { Fiscal } \\ & \text { Year } \\ & \hline \end{aligned}$		Principal Payment		Interest Payment
Revenue Bond:						
Water Refunding Bond 2016 \$ 1,697,000, September 8, 2016 1.74\%						
	1.74\%	2023	\$	157,000	\$	14,269
	1.74\%	2024		162,000		11,537
	1.74\%	2025		162,000		8,717
	1.74\%	2026		166,000		5,899
	1.74\%	2027		173,000		3,010
			\$	820,000	\$	43,432

CITY OF KETCHUM, IDAHO
 Bond-Future Principal and Interest Requirements at September 30, 2022

Water

Annual Payment			
Interest	Fiscal	Principal	Interest
Rate	Year	Payment	Payment

Revenue Bond:
Water Revenue Refunding Bonds 2015 \$2,310,000, September 2, 2015 2.00\% - 5.00%

3.25\%	2023	\$	30,000	\$	106,475
5.00\%	2024		30,000		105,500
5.00\%	2025		35,000		104,000
5.00\%	2026		35,000		102,250
5.00\%	2027		30,000		100,500
5.00\%	2028		255,000		99,000
5.00\%	2029		270,000		86,250
5.00\%	2030		285,000		72,750
5.00\%	2031		295,000		58,500
5.00\%	2032		310,000		43,750
5.00\%	2033		330,000		28,250
5.00\%	2034		235,000		11,750
		\$	2,140,000	\$	918,975

CITY OF KETCHUM, IDAHO

Bond-Future Principal and Interest Requirements
at September 30, 2022

Annual Payment

Wastewater
Revenue Bond:
Wastewater Revenue Refunding Bonds 2014 \$1,950,000, November 18, 2014
2.00\%-5.00\%

		Annual Payment	
Interest Rate	Fiscal Year	Principal Payment	Interest Payment

5.00\%	2023	\$	220,000	\$	35,000
5.00\%	2024		230,000		24,000
5.00\%	2025		250,000		12,500
		\$	700,000	\$	71,500

WORKMAN \& COMPANY

2190 Village Park Avenue, Suite 300 • Twin Falls, ID 83301 • 208.733.1161 • Fax: 208.733.6100

INDEPENDENT AUDITOR'S REPORT ON INTERNAL. CONTROL OVER FINANCIAL REPORTING AND ON COMPLIANCE AND OTHER MATTERS BASED ON AN AUDIT OF FINANCIAL STATEMENTS PERFORMED IN ACCORDANCE WITH GOVERNMENT AUDITING STANDARDS

November 4, 2022

To the City Council
City of Ketchum, Idaho
We have audited, in accordance with the auditing standards generally accepted in the United States of America and the standards applicable to financial audits contained in Government Auditing Standards issued by the Comptroller General of the United States, the financial statements of the governmental activities, the business-type activities, the aggregate discretely presented component units, each major fund, and the aggregate remaining fund information of the City of Ketchum, Idaho, as of and for the year ended September 30, 2022, and the related notes to the financial statements, which collectively comprise the City of Ketchum, Idaho's basic financial statements, and have issued our report thereon dated November 4, 2022.

Internal Control over Financial Reporting

In planning and performing our audit of the financial statements, we considered the City of Ketchum, Idaho's internal control over financial reporting (internal control) to determine the audit procedures that are appropriate in the circumstances for the purpose of expressing our opinions on the financial statements, but not for the purpose of expressing an opinion on the effectiveness of the City of Ketchum, Idaho's internal control. Accordingly, we do not express an opinion on the effectiveness of the City of Ketchum, Idaho's internal control.

A deficiency in internal control exists when the design or operation of a control does not allow management or employees, in the normal course of performing their assigned functions, to prevent, or detect and correct, misstatements on a timely basis. A material weakness is a deficiency, or a combination of deficiencies, in internal control, such that there is a reasonable possibility that a material misstatement of the entity's financial statements will not be prevented, or detected and corrected on a timely basis. A significant deficiency is a deficiency, or a combination of deficiencies, in internal control that is less severe than a material weakness, yet important enough to merit attention by those charged with governance.
Our consideration of internal control was for the limited purpose described in the first paragraph of this section and was not designed to identify all deficiencies in internal control that might be material weaknesses or, significant deficiencies. Given these limitations, during our audit we did not identify any deficiencies in internal control that we consider to be material weaknesses. However, material weaknesses may exist that have not been identified.

Compliance and Other Matters

As part of obtaining reasonable assurance about whether the City of Ketchum, Idaho's financial statements are free from material misstatement, we performed tests of its compliance with certain provisions of laws, regulations, contracts, and grant agreements, noncompliance with which could have a direct and material effect on the determination of financial statement amounts. However, providing an opinion on compliance with those provisions was not an objective of our audit, and accordingly, we do not express such an opinion. The results of our tests disclosed no instances of noncompliance or other matters that are required to be reported under Government Auditing Standards.

Report Continued-

Purpose of this Report

The purpose of this report is solely to describe the scope of our testing of internal control and compliance and the results of that testing, and not to provide an opinion on the effectiveness of the entity's internal control or on compliance. This report is an integral part of an audit performed in accordance with Government Auditing Standards in considering the entity's internal control and compliance. Accordingly, this communication is not suitable for any other purpose.

Workman\& Company

WORKMAN AND COMPANY
Certified Public Accountants
Twin Falls, Idaho

City of Ketchum

December 5, 2022

Mayor Bradshaw and City Councilors
City of Ketchum
Ketchum, Idaho

Mayor Bradshaw and City Councilors:

Provide Feedback on Final Reports for Warm Springs Road and Main Street Transportation Improvements

Recommendation and Summary

The city retained HDR Engineering to complete a technical analysis of future transportation enhancements on Main Street and Warm Springs Road. HDR presented the details of the proposed enhancements during the October $3^{\text {rd }}$ Council meeting. HDR and City staff then conducted three open houses and an on-line survey to solicit public feedback. Staff and HDR did meeting with ITD staff to review the proposed changes to Main Street to solicit any concerns. Staff reviewed findings from the public engagement effort and ITD's feedback during the October $17^{\text {th }}$ City Council meeting. HDR has completed their full technical analysis and has memorialized the recommendations in the attached draft reports. HDR will provide a quick summary presentation and then solicit feedback/direction from the City Council.

Introduction \& Background

Main Street Objectives

- Improve vehicular flow through the corridor
- Create new timing plan for signals (complete)
- Recommendation to add dedicated turn lanes at Sun Valley Road
- Modernize signals (partially complete)
- Extend transition lanes beyond River Street to Trail Creek Bridge
- Improve pedestrian realm/crosswalk
- Bulb-outs at each intersection where possible
- Evaluate transition from 4 travel lanes, 2 with turn lane (complete)
- Reduce travel lanes by one foot to allow for sidewalk expansion

Warm Springs Objectives

- Improve safety for all travel modes at Lewis Street and $10^{\text {th }}$ Street intersections
- Improve pedestrian/bike experience throughout the corridor (Saddle to Main Street)

During the July $18^{\text {th }}$ Council meeting, HDR presented five potential future Warm Springs intersection configurations. Council was requested to select two options to move forward for deeper technical review. The Council endorsed alternate \#2 (roundabout at Lewis Street) and alternate \#4 (realign $10^{\text {th }}$ street with Lewis Street via one roundabout).

Sustainability Impact
No direct impact. The project seeks to improve pedestrian and bicycle facilities along the corridor which should increase alternative mobility choices.

Financial Impact
None currently.

Attachments

Draft Warm Springs Road Technical Memorandum
Draft Main Street Technical Memorandum

H?

Warm Springs Road Alternatives Analysis Concept Report

City of Ketchum
Ketchum, Idaho
November 28, 2022

Executive Summary

The City of Ketchum, Idaho (City) Master Transportation Plan (2021) identified the Warm Springs Road corridor between $10^{\text {th }}$ Street and Lewis Street for enhancement and development of conceptual alternatives to improve the area. This corridor experiences relatively high traffic volumes connecting recreation and residences to the downtown core and beyond. The study area for conceptual alternatives includes the intersections of $10^{\text {th }}$ Street and Main Street (SH75), Warm Springs Road and $10^{\text {th }}$ Street, and Warm Springs Road and Lewis Street.

The Warm Springs Road corridor - from its diversion from Main Street at $6^{\text {th }}$ Street to its entry into residential West Ketchum - is diverse in its land use and is a nexus of several neighborhoods and zoning districts. Currently, the three zoning districts in the area provide an abrupt transition from one to the next and do not provide a gateway experience. The area lacks many of the basic public realm amenities or elements to make it feel a part of the City, including comfortable and consistent sidewalks and a diversity of shared open space. Overall, the area lacks a consistent and safe public realm, which is critical to extend the vibrancy of downtown to this area, provide an identity, or present a gateway to or from the downtown core or Warms Springs Road.

Under existing conditions, the study intersections are all estimated to operate at a level of service (LOS) C or better during peak season morning (AM) and evening (PM) peak hours. The worst performing intersection is the $10^{\text {th }}$ Street and Warm Springs Road intersection, which experiences 17 -second delays during the peak hours for the left turning movements from $10^{\text {th }}$ Street. During the off-peak periods, the intersections operate at a LOS B or better during the AM and PM peak hours, meaning delays are less than 15 seconds at each intersection.

During the 5 -year study period, there was one crash near the intersection of Warm Springs Road/Lewis Street and one crash at the intersection of Warm Springs Road/10 ${ }^{\text {th }}$ Street. Both crashes occurred during the noon hour on a weekday with clear conditions. The cause of the possible injury crash near Warm Springs Road and Lewis Street was caused by a driver following too close and was not related to the intersection. The crash at the intersection of Warm Springs Road/10th Street was a left turning crash were the driver failed to yield. There were no injuries associated with this crash.

Although the number of crashes in the study area is low, conversations with the public at public involvement meetings, City staff, and City Council members revealed safety concerns with the corridor. These concerns increase the amount of stress that pedestrians, bicyclists and motorists feel while traversing the area. These perceived safety issues include restricted sight distance for a southbound vehicle turning left at $10^{\text {th }}$ Street onto Warm Springs with the gas station pumps, long pedestrian crossings across intersections or private approaches, inconsistent and aged sidewalks, and a lack of facilities compliant with the Americans with Disabilities Act (ADA) and Public Rights-of-Way Accessibility Guidelines (PROWAG).

The project team developed and proposed five alternatives for qualitative analysis to improve the surrounding land use in the study area:

- Alternative 1: $10^{\text {th }}$ Street Roundabout
- Alternative 2: Lewis Street Roundabout
- Alternative 3: $10^{\text {th }}$ Street and Lewis Street Dog bone roundabout
- Alternative 4: $10^{\text {th }}$ Street and Lewis Street Realignment \& Roundabout
- Alternative 5: Block/Street Realignment.

The five build alternatives and a No Build option were presented to the public for comment and feedback at public meetings. The project team developed a screening process to evaluate each of the alternatives using 11 criteria identified in discussion with City staff. City staff and members of the project team rated each alternative as good, neutral, or poor for each of the criteria. Based on an aggregated score and public feedback, HDR and City staff recommended Alternative 2, Alternative 4, and the No Build option move forward to the City Council (July 18, 2022). The City Council concurred with the recommendation and advanced the three alternatives.

In terms of public realm improvements and future land use, Alternative 4 has the most potential benefit followed by Alternative 2, while the No Build option provides few opportunities. Both the roundabout options would maintain the opportunity for the Albertson's property to redevelop and provide opportunities for a placemaking. Both alternatives would enhance bike and pedestrian connectivity and safety by removing conflict points with vehicles and shortening pedestrian exposure. In conversations with Mountain Rides, bus transit facilities would need to be relocated in the general area, but operations would not be negatively impacted by either option. Mountain Rides commented that Alternative 4 would enhance operations by removing a difficult turn.

The City does not lie within boundaries of a Municipal Planning Organization (MPO) that would produce a travel demand model that projects trip generation out into the future. HDR instead calculated a 1.44 percent historical growth rate to represent traffic volume growth based on historical data from Idaho Transportation Department's (ITD) Automated Traffic Recorders (ATRs) on State Highway 75 (SH-75). Design year 2042 was selected for the purposes of this analysis and LOS D was set for the target LOS threshold. HDR analyzed the study intersections using the forecasted volumes and found that both Alternatives 2 and 4 are estimated to operate well in the design year, with vehicle delays at approximately 10 seconds for the improved intersections. The unimproved intersections are expected to operate adequately in the design year.

The following table shows the opinion of probable costs for each of the two build alternatives:

Cost	Alternative 2	Alternative 4
Engineering Fee	$\$ 288,000$	$\$ 398,000$
Construction Cost	$\$ 1,532,000$	$\$ 2,117,000$
Right-of-way Cost	$\$ 1,075,100$	$\$ 4,461,700$
Total Project Cost	$\$ 3,278,100$	$\$ 7,506,700$

The realigned roadway in Alternative 4 requires purchasing large amounts of right-of-way (ROW) and these costs make up the largest difference between the two alternatives. Alternative 4 also creates an opportunity for the City to vacate the abandoned $10^{\text {th }}$ Street connection and sell it to adjacent land owners. The vacated parcel's estimated value is $\$ 1,277,325$ and the revenue from the sale could be used to offset some of the ROW costs. This would be determined during ROW negotiations.

If the City can acquire funding to cover the higher ROW and construction costs, Alternative 4 is recommended. This alternative best improves multi-modal connectivity and operations, simplifies the roadway network, provides the most opportunity for placemaking, and is preferred by both Mountain Rides and the public. However, Alternative 4 costs are significantly higher; therefore, Alternative 2 is recommended if funding for Alternative 4 cannot be secured. Alternative 2 still provides traffic calming, multi-modal, placemaking, and safety benefits to the area. The No Build option is not recommended as it does not provide benefits meeting the City's goals. Appendix G contains final concept exhibits for each alternative.

As the City pursues funding for the larger aspects of the build alternatives, there are several opportunities to enhance the area in the meantime. Even if the City chooses the No Build option, the City could consider the following improvements. Appendix H contains conceptual exhibits of potential improvements.

- Restripe the two-way left turn (TWLT) lane in front of the gas station to be a dedicated left turn lane. This will prevent delivery vehicles from parking close to the intersection.
- Replace dilapidated sidewalk, install sidewalk where none exists within the study area, and install ADA/PROWAG-complaint pedestrian ramps.
- Install bulb-outs at the Lewis Street and Warm Springs Road intersection to shorten pedestrian crossings.
- Explore one or more of the following options to mitigate the difficult $10^{\text {th }}$ Street left turn sight distance issue:
- Prohibit southbound left turns at the intersection by signage or adding a diverter in the intersection.
- Convert the intersection from two-way stop control to all-way stop control.

Contents

Executive Summary i
1 Introduction 1
1.1 Background and Purpose 1
1.2 Study Area 1
1.3 Study Process 1
1.4 Organization of Report 2
2 Existing Conditions Evaluation 3
2.1 Land Use 3
2.2 Public Realm 4
2.3 Existing Traffic Operations 5
2.4 Existing Safety Analysis 11
2.5 Transit Facilities 14
3 Qualitative Alternatives Analysis 15
3.1 Alternatives 15
3.2 First Public Involvement Summary 19
3.3 High Level Screening 20
3.4 Alternatives Selected 23
4 Detailed Analysis 23
4.1 Future Land Use and Public Realm Opportunities 23
4.2 Forecasted Travel Patterns 24
4.3 Future Capacity Analysis 27
4.4 Impacts to Transit, Pedestrians and Bikes 29
4.5 Future Safety Analysis 30
4.6 Opinion of Probable Costs 31
4.7 Second Public Meeting Summary 32
5 Recommendations and Next Steps 32
5.1 Comparing the Alternatives 32
5.2 Recommendation and Interim Improvements 33
5.3 Mitigating Impact of Future Nearby Developments 34
5.4 Nearby Enhancements to Consider 34
5.5 Next Steps 36

Figures

Figure 1. Study Area 1
Figure 2: Study Process 2
Figure 3. Character Areas of Warm Springs Road 3
Figure 4: Lewis Street and Warm Springs Road Intersection Area 5
Figure 5. 10th Street and Warm Springs Road Intersection Area 6
Figure 6. 10th Street and Main Street (SH-75) Intersection Area 7
Figure 7. Warm Springs AM and PM Peak Hour Turning Movement Counts 8
Figure 8: Left Turn Sight Triangles 12
Figure 9. Aged Sidewalk and Large Approach At $10^{\text {th }} \&$ Warm Springs. Source: Google Earth 13
Figure 10. Large Pedestrian Crossing Across Lewis Street 13
Figure 11: Existing Mountain Rides Bus Pullout. Source: Google Earth 14
Figure 12. Concept Alternative 1 15
Figure 13. Concept Alternative 2 16
Figure 14. Concept Alternative 3 17
Figure 15. Concept Alternative 4 18
Figure 16. Concept Alternative 5 19
Figure 17. Total Scores 22
Figure 18. Traffic Volumes since 1990 25
Figure 19. Alternative 4 Peak Volumes 26
Figure 20: No Build and Alternative 2 Peak Volumes 27
Figure 21. Example Bulb-outs at Lewis Street 33
Figure 22. Example Bulb-outs at 8th Street 35
Figure 23. Example Separated Pathway Along Warm Springs Road 36
Tables
Table 1. Monthly Seasonal Factors 8
Table 2. LOS Thresholds for Motor Vehicles at Intersections 9
Table 3. Warm Springs Road Intersections - Seasonal Adjustment 2021 AM \& PM Peak 10
Table 4. Warm Springs Road Intersections - August 2021 AM \& PM Peak 10
Table 5. Screening Matrix 21
Table 6. No Build Traffic Operations - August 2042 AM \& (PM) Peak 28
Table 7. Alternate 2 Traffic Operations - August 2042 AM \& (PM) Peak. 28
Table 8. Alternative 4 Traffic Operations - August 2042 AM \& (PM) Peak 29
Table 9. Project Alternatives - Total Project Costs 32

Appendicies

Appendix A: Existing Turning Movement Counts
Appendix B: Existing Capacity Analysis Reports
Appendix C: First Public Involvement Summary
Appendix D: High Level Screening Criterion Definitions
Appendix E: Future Operations Results
Appendix F: Second Public Meeting Summary
Appendix G: Final Concept Exhibits
Appendix H: Additional Improvement Concepts

Acronyms/Abbreviations

Acronyms and abbreviations used more than once in the report text.

ADA	Americans with Disabilities Act
ATR	automated traffic recorders
City	City of Ketchum
CMF	crash modification factor
HCM	Highway Capacity Manual
ITD	Idaho Transportation Department
LOS	level of service
NBL	Northbound left
NBT/L	Northbound through left
NEL	Northeast left
NET/L/R	Northeast through left right
NET/LR	Northeast through left right
PROWAG	Public Rights-of-Way Accessibility Guidelines
ROW	right-of-way
SBL	Southbound Left
SBR	Southbound right
SEL	Southeast left
SWT/L/R	Southwest through left right
TWLT	two-way left turn
v/c	volume to capacity ratio
vpd	vehicles per day

1 Introduction

1.1 Background and Purpose

The City of Ketchum, Idaho (City) Master Transportation Plan (2021) ${ }^{1}$ identified the Warm Springs Road corridor between $10^{\text {th }}$ Street and Lewis Street for enhancement. This corridor experiences high traffic volumes connecting recreation and residences to the downtown core and beyond. The Master Transportation Plan identified the intersections at $10^{\text {th }}$ Street and Lewis Street for further evaluation and development of conceptual alternatives to improve the area. The purpose of this report is to document the concept study process and the decision-making process and recommend an alternative to meet the City's goals.

1.2 Study Area

The study area is bounded by the following three intersections: $10^{\text {th }}$ Street and Main Street (State Highway 75 [SH-75]), Warm Springs Road and $10^{\text {th }}$ Street, and Warm Springs Road and Lewis Street. The study area is shown in Figure 1. The surrounding land use is zoned as light industrial and features several small businesses, including a gas station on the southeast corner of Warm Springs Road and $10^{\text {th }}$ Street. The Warm Springs Road corridor provides access from residential developments in the northwest part of the City to the downtown core. Nearby traffic generators include the Ernest Hemingway STEAM School to the southwest, the YMCA to the northwest, and the City's downtown core to the southeast. A large undeveloped lot, owned by Albertsons Corporation, is located along Warm Springs Road between $10^{\text {th }}$ Street and Lewis Street.

1.3 Study Process

Figure 1. Study Area

The study process followed the procedure outlined in Figure 2. The project team performed an initial evaluation of existing conditions in the study area that evaluated the existing traffic operations, determined the safety needs and examined the public realm needs. Then, the project team developed a series of potential alternatives for presentation to the public that were also evaluated by City and consultant staff based on 11 criteria, developed in consultation with the City. The City and project team recommended two alternatives for detailed analysis to the City Council. This detailed analysis included identifying potential public realm enhancements, future traffic capacity analysis, safety benefits, and a cost comparison. Finally, the project team

[^2]revised the alternatives, as necessary, prepared a final report, and presented it to the City Council for adoption.

At each stage during the process, the project team engaged stakeholders, including Mountain Rides, surrounding businesses, the YMCA, and adjacent landowners. Public comment was solicited at two public meetings where residents could evaluate the alternatives, ask questions, and provide feedback. Online surveys accompanied each public meeting for those unable to make the in-person meetings.

| 4. Final
 Evaluation and
 Recommend
 Alternative | Revise
 Exhibits as
 necessary | Final Report |
| :---: | :---: | :---: |\quad| Council |
| :---: |
| Adoption |

Figure 2: Study Process

1.4 Organization of Report

Following the introduction in Section 1, this report is also organized following the general structure of the study process shown in Figure 2.

- Section 2 describes existing conditions and determines needs;
- Section 3 reviews the first public meeting and qualitative alternatives analysis;
- Section 4 describes the detailed analysis and reviews the second public meeting; and
- Section 5 compares the alternatives, considers mitigation and other issues, makes recommendations, and describes next steps.

2 Existing Conditions Evaluation

2.1 Land Use

The Warm Springs Road corridor - from its diversion from Main Street at 6 ${ }^{\text {th }}$ Street to its entry into residential West Ketchum at the Big Wood River crossing - is diverse in its land use and is a nexus of several neighborhoods and districts. At its southeastern end, the corridor acts as a lower-intensity extension of the downtown core and has an eclectic mix of uses, including restaurants, homes, and retail. In this stretch, Warm Springs Road is straight and contributes to the downtown block structure and scale found in the downtown core and neighborhoods further to the east.

Figure 3. Character Areas of Warm Springs Road
Approaching $10^{\text {th }}$ Street, the corridor begins to exhibit uses and features indicating its connection to the industrial zone that extends north along Lewis Street. This area includes a mix of light industrial and commercial spaces. The most prominent land use in this section is the large, vacant parcel on the northern edge of the corridor and west of $10^{\text {th }}$ Street along Lewis

Street. Ketchum's 2014 Comprehensive Plan² identifies this stretch as a part of the industrial neighborhood and as having a future Mixed-Use Industrial land use.

Crossing the popular Wood River Trail, the land use shifts again with single- and multi-family residences defining its southern edge and the substantial YMCA recreation and community center. Beyond the YMCA, the Guy Coles Skate Park occupies the stretch of land leading to the Wood River. This public institutional land use defines this part of the corridor and acts as a landmark.

Though the YMCA is a large, recognizable landmark, the transition from this portion of the corridor into the downtown core is not well-defined through the land uses or buildings. The three distinct zones, described above and shown in Figure 3, provide a somewhat erratic transition from one to the next and do not provide a gateway experience. This corridor is a primary corridor connecting Downtown to the Warm Springs neighborhood and ski mountain; therefore, there is an opportunity for this portion of the corridor to act as a gateway between the areas.

2.2 Public Realm

Currently, the Warm Springs Road corridor from Main Street (SH-75) to the Wood River lacks many basic public realm amenities or elements to make it feel like a part of the City. Many of the amenities and facilities found in or around the downtown core - such as comfortable and consistent sidewalks and a diversity of shared open space, among others - are not found throughout this portion of the corridor. Some areas, such as the stretch from Main Street (SH75) to $10^{\text {th }}$ Street, lack sidewalks altogether, whereas others have small, attached sidewalks that do not provide a safe or a comfortable experience for pedestrians. Similarly, there is no comfortable, on-street cycling infrastructure along much of the corridor other than a 5 ' wide bike line on the west side of Warm Springs Road from $9^{\text {th }}$ Street to $6^{\text {th }}$ Street and the Wood River trail connection just south of the YMCA. The Wood River Trail is an important connector through the community and is well-used by residents and visitors, though it does not supplant the need for safer, street-adjacent sidewalks or cycle facilities as prescribed in Goal M-4 of the 2014 Comprehensive Plan.

Other amenities and pedestrian-oriented lighting, are almost entirely absent in this area. The Blue and Bronze route bus stops at Lewis Street, for example, only provide seating in the eastbound direction and this single bench is unprotected from the elements.

The area has several open spaces nearby, including Atkinson Park (connected by the Wood River Trail), and the public spaces around the YMCA, including the Guy Coles Skate Park. These open spaces are important to the area and provide well-used amenities for the community but act more as "community" open spaces as opposed to "neighborhood" open spaces, as defined in the 2014 Comprehensive Plan.

[^3]Overall, the area lacks a consistent and safe public realm critical to extend the vibrancy of downtown to this area, provide an identity, or present a gateway to or from the downtown core or Warms Springs Road.

2.3 Existing Traffic Operations

2.3.1 Intersection Layout and Traffic Control

The Lewis Street intersection is a T-intersection with stop control on the Lewis Street leg. At this intersection, Warm Springs Road has three-lanes with one travel lane in each direction and a center continuous two-way left turn (TWLT) lane. Additionally, the east leg of the intersection features a dedicated right-turn lane for westbound traffic to turn onto Lewis Street. Lewis Street features one right-turn lane, one left turn lane and one receiving lane with diagonal on-street parking on the west side and parallel on-street parking on the east side. Sidewalk is present along the south side of Warm Springs Road and the west side of $10^{\text {th }}$ Street. The east leg of the intersection has sidewalk on both sides of the road. A crosswalk exists on the north leg of the intersection. Transit stops are present in both directions east of the intersection. Figure 4 shows the Lewis Street Warm Springs Intersection.

Figure 4: Lewis Street and Warm Springs Road Intersection Area

The $10^{\text {th }}$ Street intersection is a four-leg intersection with stop control on the $10^{\text {th }}$ Street legs. Warm Springs Road is currently striped as a three-lane section with one lane in each direction and a TWLT lane. $10^{\text {th }}$ Street features one lane in each direction on each leg and on-street parking on the northeast side of the east leg. Sidewalk is present south of the intersection to the Hemmingway STEAM school and on the south side of Warm Springs Road. Crosswalks exist on all four legs of the intersection; however, no sidewalk is present on the north side of Warm Springs Road or along $10^{\text {th }}$ Street to the north. Figure 5 shows the $10^{\text {th }}$ Street and Warm Springs Road intersection area.

Figure 5. 10th Street and Warm Springs Road Intersection Area
The $10^{\text {th }}$ Street intersection with Main Street (SH-75) is a T-intersection with stop control on the $10^{\text {th }}$ Street leg. Main Street (SH-75) is one lane in each direction and has on street parking on the east side of the roadway. $10^{\text {th }}$ Street is one lane in each direction with parking on the northeast side of the roadway. No Sidewalks or marked pedestrian crossings are present at this intersection. Figure 6 Shows the $10^{\text {th }}$ Street and Main Street (SH-75) intersection area.

Figure 6. 10th Street and Main Street (SH-75) Intersection Area

2.3.2 Existing Volume Development

L2 Data Collection acquired turning movement counts for the study intersections on August 31, 2021, between the hours of 7:00AM to 9:00AM and 4:00PM and 6:00PM. For the Warm Springs Road intersections, the AM or morning peak hour was found to begin at $7: 45 \mathrm{AM}$ while the evening or PM peak hour begins at 4:00PM. At the $10^{\text {th }}$ Street and Main Street (SH-75) intersection, the AM peak hour begins at 8:00AM and the PM peak hour begins at 4:00 PM.
Appendix A contains summaries of the traffic counts.
In general, the traffic counts indicate a travel pattern where commuters are going to work along the light industrial areas near Lewis Street or Saddle Road in the morning and then commuting home in the evening.

The City of Ketchum is a resort destination community with travel patterns that vary throughout the year. Although the City of Ketchum has no automated traffic recorders (ATR) stations of their own, the Idaho Transportation Department (ITD) has two ATRs at the following locations to record traffic volumes and estimate seasonal variations on SH-75 near Ketchum:

- ATR \#28 - SH-75 @ mile post (MP) 135.95 (7.6 miles north of Sun Valley Road)
- ATR \#68 - SH-75 @ MP 119.4 (2.9 miles north of Bullion Street in Hailey, ID)

Traffic volumes on SH-75 were analyzed using data from the ATRs to see how they fluctuate throughout a given year. The highest volumes were observed in the summer months, averaging over 15,000 vehicles per day (vpd) in June, July, and August at ATR \#68 and around 2,400 vpd at ATR \#28. The lowest volumes were observed in the winter months of December, January,
and February with volumes less than 1,200 vpd at ATR \#68 and less than 900 vpd at ATR \#28. There is a significant drop in volume on the highway from north and south of Ketchum. Table 1 shows the average monthly seasonal factors determined from the historical ATR data. Volumes from 2020 are not included in the analysis due to the Covid-19 pandemic and associated shutdowns.

Table 1. Monthly Seasonal Factors

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Avg MSF	0.90	0.94	0.88	0.85	0.93	1.11	1.24	1.19	1.08	1.03	0.88	0.98
w/o 2020	$\mathbf{0 . 8 9}$	$\mathbf{0 . 9 3}$	$\mathbf{0 . 8 9}$	$\mathbf{0 . 8 9}$	$\mathbf{0 . 9 4}$	$\mathbf{1 . 1 1}$	$\mathbf{1 . 2 4}$	$\mathbf{1 . 1 8}$	$\mathbf{1 . 0 6}$	$\mathbf{1 . 0 2}$	$\mathbf{0 . 8 8}$	$\mathbf{0 . 9 7}$

The seasonal adjustment results were calculated by dividing the August 2021 counts by a factor of 1.18. This represents an 18 percent decrease in volumes to represent a typical day. Figure 7 details the results of the volume adjustments.

Figure 7. Warm Springs AM and PM Peak Hour Turning Movement Counts

2.3.3 Existing Traffic Operations

Capacity is defined as the maximum rate at which vehicles can pass through a given point in an hour under prevailing conditions. Intersection capacity is measured by evaluating the critical lane groups that experience the most delay for stop-controlled intersections. A volume to capacity (v / c) ratio less than 0.85 generally indicates that adequate capacity is available, and vehicles are not expected to experience significant queues or delays. As the v/c ratio approaches 1.0, traffic flow may become unstable and significant delay and queuing conditions may occur. Once the demand exceeds capacity, defined as a v/c ratio greater than 1.0, traffic flow is unstable and excessive delay and queuing is expected. The concept of level of service (LOS) was developed to correlate numerical traffic operational data to subjective descriptions of traffic performance at intersections. LOS is defined as the system of six designated ranges, from "A" (best) to " F " (worst), used to evaluate performance. Table 2 presents the Highway Capacity Manual (HCM) thresholds based on delay at stop-controlled intersections.

Table 2. LOS Thresholds for Motor Vehicles at Intersections

LOS	Stop Control Intersection Control Delay (seconds/vehicle)	Roundabout Intersection Control Delay (seconds/vehicle)
A	≤ 10	≤ 10
B	$10-15$	$10-15$
C	$15-25$	$15-25$
D	$25-35$	$25-35$
E	$35-50$	$35-50$
F	>50	>50
Source: Mutimodal		

The project team used Synchro 11 software to model and analyze study area intersections under existing conditions and HCM $6^{\text {th }}$ edition analysis methods to produce the analysis reports.

Given the large variability of the traffic volumes during the summer months compared to other months, the project team analyzed intersections with the unadjusted August volumes for comparison. In this scenario, the Warm Springs Road study intersections are all estimated to operate at LOS B or better during off-peak season AM and PM peak hours. Detailed reports from the capacity analyses are available in Appendix B.

Table 3 summarizes the capacity analysis results for the Warm Springs study intersections, using the existing traffic counts depicted in Figure 7. In general, the intersections are operating well over capacity with delays under 15 seconds for each movement. All the intersections operate at LOS A or B with vehicle queue lengths under 30 feet.

Table 3. Warm Springs Road Intersections - Seasonal Adjustment 2021 AM \& PM Peak

Intersection	Overall Intersection LOS	Movement	Delay(s)	LOS	$95^{\text {th }}$ Percentile Queue Length (feet)	V/C
$10^{\text {th }}$ Street $/$ Warm Springs Road	B (B)	NET/L/R	14.2 (14.3)	B (B)	4.4 (2.2)	0.052 (0.037)
		SWT/L/R	13.3 (14.1)	B (B)	8.8 (13.2)	0.13 (0.174)
		SBL	8.3 (8.1)	A (A)	2.2 (2.2)	0.027 (0.04)
		NBL	7.8 (8.2)	A (A)	0 (0)	0.007 (0.003)
$10^{\text {th }}$ Street / SH-75	B (B)	NEL	10.7 (12.4)	B (B)	6.6 (11)	0.096 (0.15)
		NBT/L	7.5 (8.1)	A (A)	2.2 (2.2)	0.017 (0.032)
Warm Springs Road/ Lewis Street	B (B)	SBL	12 (14.9)	B (B)	11 (28.6)	0.137 (0.316)
		SBR	9.6 (9.9)	A (A)	2.2 (2.2)	0.024 (0.042)
		SEL	8.1	A	0 (2.2)	0.015 (0.026)

2.3.4 Summer Peak Operations

Given the large variability of the traffic volumes during the summer months compared to other months, the project team analyzed the intersections with the unadjusted August volumes for comparison. The ad study intersections are all estimated to operate at LOS C or better during peak season AM and PM peak hours and Table 4. Warm Springs Road Intersections - August 2021 AM \& PM Peak outlines the operational results. Detailed reports from the capacity analyses are available in Appendix B.

Table 4. Warm Springs Road Intersections - August 2021 AM \& PM Peak

Intersection	Overall Intersection LOS	Movement	Delay (s)	Los		V/C
$10^{\text {th }}$ Street / Warm Springs Road	C (C)	NET/L/R	16.3 (16.9)	C (C)	4.4 (4.4)	0.076 (0.054)
		SWT/L/R	15.1 (17)	C (C)	13.2 (22)	0.174 (0.245)
		SBL	8.6 (8.3)	A (A)	2.2 (4.4)	0.034 (0.049)
		NBL	7.9 (8.4)	A (A)	0 (0)	0.009 (0.003)
$10^{\text {th }}$ Street / SH-75	B (B)	NEL	11.4 (13.8)	B (B)	8.8 (15.4)	0.123 (0.198)
		NBT/L	7.6 (8.3)	A (A)	2.2 (2.2)	0.021 (0.04)
Warm Springs Road / Lewis Street	B (B)	SBL	12.9 (17.7)	B (C)	13.2 (44)	0.175 (0.412)
		SBR	9.9 (10.3)	A (B)	2.2 (4.4)	0.03 (0.053)
		SEL	8.5 (8.3)	A (A)	2.2 (2.2)	0.019 (0.032)

2.4 Existing Safety Analysis

2.4.1 Crash History

During the 5-year study period (2016-2020), there was one crash near the intersection of Warm Springs Road/Lewis Street and one crash at the intersection of Warm Springs Road/10 ${ }^{\text {th }}$ Street. Both crashes occurred during the noon hour on a weekday with clear conditions. The possible injury crash near Warm Springs Road and Lewis Street was caused by a driver following too close and was not related to the intersection. The crash at the intersection of Warm Springs Road/10th Street was a left turning crash where the driver failed to yield. There were no injuries associated with this crash.

2.4.2 Qualitative Safety Analysis

Although the number of crashes in the study area is low, conversations with the public at public involvement meetings, with City staff, and at City Council meetings revealed safety concerns with the corridor, as described in the following bullets. While the concerns may not be producing crashes within the study area, they do increase the amount of stress that pedestrians, bicyclists and motorists feel while traversing the area.

- A southbound driver turning left from $10^{\text {th }}$ Street onto Warm Springs has a difficult time seeing cross traffic as the visibility is blocked by the gas station pumps. Multiple individuals commented that they specifically avoided the intersection because of the sight distance issues. An intersection sight triangle analysis was performed using methodologies outlined in Sections 9.5.2.3 and 9.5.3 of the AASHTO Policy on Geometric Design of Highways and Streets ${ }^{3}$. A 25 mph design speed was used to evaluate the sight distance. As shown in Figure 8, the gas station blocks the turning vehicle's view of oncoming traffic on Warm Springs Road.

[^4]

Figure 8: Left Turn Sight Triangles

- Multiple private approaches are within 60 feet of the intersection creating conflicts throughout the intersection.
- Pedestrians and bikes are also overexposed. The sidewalks in this area are in disrepair or missing for long sections. Some business approaches are longer than necessary and overexpose pedestrians traversing the sidewalk to turning traffic entering the business as shown in Figure 9. Lewis Street's wide cross section and skewed intersection with Warm Springs creates an approximately 90 -foot crossing for pedestrians in that area, shown in Figure 10. Facilities complaint with the Americans with Disabilities Act (ADA) and Public Rights-of-Way Accessibility Guidelines (PROWAG) are not present to alert visually impaired pedestrians that they are entering a conflict area. The Lack of ADA/PROWAG compliant facilities also creates difficulties for disabled individuals to traverse the area.

Figure 9. Aged Sidewalk and Large Approach At $10^{\text {th }} \&$ Warm Springs. Source: Google Earth

Figure 10. Large Pedestrian Crossing Across Lewis Street

- The Warm Springs Road shoulder widths between Lewis Street and $10^{\text {th }}$ Street are too narrow to support bike lanes, which prevents continuity of the network. This forces cyclists into the travel lanes and increases user stress.

2.5 Transit Facilities

Mountain Rides is the local transit authority maintaining bus routes throughout the City of Ketchum. The Blue, Bronze and Valley Routes all provide transit access through this corridor. One stop exists on either side of Warm Springs Road west of Lewis Street. There is a pullout on the route going toward downtown that is no longer of sufficient length for the buses Mountain Rides is using. The pullout is shown in Figure 11. Also, the stops do not feature shelters, or safety lighting. In conversations with Mountain Rides, they expressed concerns with the 10th Street intersection, specifically with how difficult it is to turn right onto Warm Springs Road.

Figure 11: Existing Mountain Rides Bus Pullout. Source: Google Earth

3 Qualitative Alternatives Analysis

3.1 Alternatives

The project team developed five conceptual alternatives for the study area to improve the surrounding land use.

3.1.1 Concept Alternative $\mathbf{1} \mathbf{- 1 0}{ }^{\text {th }}$ Street Roundabout

Figure 12 shows the concept for Alternative 1. This alternative replaces the existing two-way stop-controlled Warm Springs Road and $10^{\text {th }}$ Street intersection with a single lane roundabout. This concept provides good vehicle operations while requiring drivers to slow down approaching and moving through the intersection. Pedestrian facilities would be provided on all legs, connecting to existing facilities, and bikes would be able to travel through the roundabout due to low vehicle speeds or on pathways around the circle, crossing the legs in the pedestrian crosswalks. This concept would require widening the intersection with estimated private and public parking, gas pump, access, and building impacts. The adjacent Warm Springs Road and Lewis Street intersection is not improved with this alternative.

Figure 12. Concept Alternative 1

3.1.2 Concept Alternative 2 - Lewis Street Roundabout

Figure 13 shows the concept for Alternative 2. This alternative replaces the existing stopcontrolled Warm Springs Road and Lewis Street intersection with a single lane roundabout. This concept provides good vehicle operations while requiring drivers to slow down approaching and moving through the intersection. Pedestrian facilities would be provided on all legs, connecting to existing facilities, and bikes would be able to travel through the roundabout due to low vehicle speeds or on pathways around the circle, crossing the legs in the pedestrian crosswalks. The bus stop on the west leg would be updated with this alternative. This concept would require widening the intersection with estimated private and public parking and access impacts. The adjacent Warm Springs Road and $10^{\text {th }}$ Street intersection is not improved with this alternative.

Figure 13. Concept Alternative 2

3.1.3 Concept Alternative 3-10 ${ }^{\text {th }}$ Street and Lewis Street Dog Bone Roundabout

Figure 14 shows the concept for Alternative 3. This alternative replaces the existing stopcontrolled Warm Springs Road intersections at both $10^{\text {th }}$ Street and Lewis Street with a single lane "dog bone" roundabout. A dog bone roundabout does not form a complete circle but instead has a "raindrop" or "teardrop shape" in the middle that connects two roundabout intersections. In this case, the two intersections operate as a single larger intersection connected by the dog bone roundabout. This alternative has similar benefits and impacts described for Alternatives 1 and 2. It increases out-of-direction travel for vehicles turning left from some approaches as they must navigate around the entire dog bone to reach the desired street. Pedestrians and bikes potentially have more out-of-direction travel as well.

Figure 14. Concept Alternative 3

3.1.4 Concept Alternative 4 - 10 $^{\text {th }}$ Street \& Lewis Street Realignment \& Roundabout

Figure 15 shows the concept for Alternative 4. This alternative realigns $10^{\text {th }}$ Street between Warms Springs Road and SH-75 to the north and west to match into the Lewis Street and Warm Springs Road intersection, cutting through the adjacent property. The Lewis Street leg is realigned to the east and a single lane roundabout is developed to serve the new four-leg intersection. The existing $10^{\text {th }}$ Street between Warms Springs Road and SH-75 is proposed to be disconnected from Warm Springs Road but could remain as an access to existing businesses along with Leadville Avenue. The abandoned roadway could also be negotiable for incorporation in development opportunities for adjacent landowners.

As with the other roundabout alternatives, this concept provides good vehicle operations while requiring drivers to slow down approaching and moving through the intersection. Pedestrian facilities would be provided on all legs, connecting to existing facilities, and bikes would be able to travel through the roundabout due to low vehicle speeds or on pathways around the circle, crossing the legs in the pedestrian crosswalks. The bus stop on the west leg of Warm Springs Road would be updated with this alternative. This concept would require widening the intersection with estimated private and public parking, access, and building impacts along with splitting the parcel in the northeast corner. The adjacent Warm Springs Road and $10^{\text {th }}$ Street intersection is updated with this alternative by removing the east leg, as described.

Figure 15. Concept Alternative 4

3.1.5 Concept Alternative 5 - Block/Street Realignment

Figure 16 shows the concept for Alternative 5. This alternative realigns Lewis Street to line up with Leadville Avenue and realigns Warm Springs to be a more direct north/south connection through the adjacent parcel. A new east/west street connects Warm Springs Road and Lewis Street, creating a new block between the realigned Warm Springs Road, realigned Lewis Road, 10th Street, and the new street. The intersections are assumed to be stop controlled in each corner of the new block.

Alternative 5 differs from the others because it includes new local street alignments that impact several parcels. It removes most of the curves in these streets while introducing more intersections to the area.

Figure 16. Concept Alternative 5

3.2 First Public Involvement Summary

The first public involvement meeting was held on May 5,2022 , to show the public the different improvement concept alternatives. Online surveys were also available for 2 weeks after the inperson meeting to allow the public to view the alternatives and provide feedback. Public involvement results are shown in Appendix C. In total, 219 responses were recorded via the online survey. Not every respondent answered every question.

The results of the public involvement meetings indicated that most people were dissatisfied with the existing intersection configurations and 77 percent of individuals (137 out of 177) said the intersections should be reconfigured or adjusted. One hundred forty-four of 172 individuals (84 percent) said pedestrian enhancements should occur. When asked to rank the different alternatives from first to last, Alternative 4 received the most support, followed by Alternative 1. Alternative 5 received the least support.

3.3 High Level Screening

The project team developed a screening process to evaluate each of the alternatives using 11 separate criteria identified in discussion with the City staff, at the public meeting, and during other project update meetings. Detailed descriptions of each criterion can be found in Appendix D.

- Safety
- Improved Connectivity for All Modes
- Warms Springs Road Crossings Improvements
- Split Parcels
- Building Removal
- Parking Impacts
- Improve Existing Business Access \& Connectivity
- Opportunity for Redevelopment and/or Placemaking
- Traffic Calming
- Reduce the Number of Intersections/Driveways on Warm Springs Road
- Serve as Parade Detour Route

City staff and members of the project team gave each alternative a score of GOOD, NEUTRAL, or POOR for each of the criteria. A GOOD score received +1 point while a POOR score received -1 point. A NEUTRAL score received 0 points. An overall "score" was given to each alternative by adding up the number of GOOD scores and subtracting the number of POOR scores. A NEUTRAL score for a given criterion neither helped nor hurt an alternative.

3.3.1 Concept Alternative Screening Results

A meeting was held on July 8, 2022, to discuss each alternative, compare the criteria evaluations, and reconcile screening from each evaluator to identify the top two alternatives to move into a more detailed qualitative analysis and screening. City staff and the project team were consistent in identifying the two alternatives to carry forward as Concept Alternative 2 Lewis Street Roundabout and Concept Alternative $4-10^{\text {th }}$ Street \& Lewis Street Realignment \& Roundabout. Table 5 summarizes the screening process final scoring. Figure 17 also shows a graphical representation of the final score totals.

Table 5. Screening Matrix

Concept Alternative / Criterion	No Build	1-10 ${ }^{\text {th }}$ Street Roundabout	2 - Lewis Street Roundabout	3-10 ${ }^{\text {th }}$ Street and Lewis Street Dog Bone Roundabout	4-10 ${ }^{\text {th }}$ Street \& Lewis Street Realignment \& Roundabout	5 - Block/Street Realignment
Safety	NEUTRAL	GOOD	GOOD	GOOD	GOOD	POOR
Improved Connectivity for All Modes	POOR	GOOD	GOOD	POOR	GOOD	GOOD
Warms Springs Road Crossings Improvements	POOR	NEUTRAL	GOOD	GOOD	GOOD	POOR
Split Parcels	GOOD	GOOD	GOOD	POOR	POOR	POOR
Building Removal	GOOD	POOR	GOOD	POOR	POOR	POOR
Parking Impacts	GOOD	POOR	GOOD	POOR	GOOD	POOR
Improve Existing Business Access \& Connectivity	POOR	POOR	NEUTRAL	POOR	GOOD	GOOD
Opportunity for Redevelopment and/or Placemaking	POOR	NEUTRAL	NEUTRAL	NEUTRAL	GOOD	GOOD
Traffic Calming	POOR	GOOD	GOOD	GOOD	GOOD	GOOD
Reduce the Number of Intersections/Driveways on Warm Springs Road	NEUTRAL	GOOD	NEUTRAL	GOOD	GOOD	POOR
Serve as Parade Detour Route	GOOD	GOOD	GOOD	POOR	GOOD	GOOD
Total Green Score	4	6	8	4	9	5
Total Red Score	-5	-3	0	-6	-2	-6
Green - Red Total Score	-1	3	8	-2	7	-1

Figure 17. Total Scores

3.4 Alternatives Selected

At a City Council meeting on July 18, 2022, HDR and City staff recommended that the City move Alternative 2, Alternative 4, and the No Build option into a qualitative analysis. The City Council concurred with the recommendation and advanced the three alternatives for more analysis.

Each of the identified alternatives had issues requiring further investigation, mitigation, and comparison in the qualitative analysis. The project team updated the conceptual layouts to address the following issues, as appropriate.

- No Build
- Add sidewalk to eliminate sidewalk gaps and improve pedestrian ramps, where possible, to improve pedestrian connectivity and ADA/PROWAG compliance.
- Evaluate existing access near Warms Springs Road/10th Street intersection to improve safety and pedestrian facilities.
- Concept Alternative 2 - Lewis Street Roundabout
- Verify and update access changes to adjacent properties/businesses.
- Address Warms Springs Road/10 ${ }^{\text {th }}$ Street intersection skew, if possible.
- Adjust on street parking on Lewis Street.
- Concept Alternative $4-10^{\text {th }}$ Street \& Lewis Street Realignment \& Roundabout
- Verify and update access changes to adjacent properties/businesses.
- Address Warms Springs Road/10 ${ }^{\text {th }}$ Street intersection/business access.
- Update intersection of $10^{\text {th }}$ Street/SH-75 to avoid right-of-way (ROW)/building impacts.

4 Detailed Analysis

4.1 Future Land Use and Public Realm Opportunities

The three alternatives feature differing options to enhance the area. Alternative 4 has the most potential benefit followed by Alternative 2, while the No Build option provides fewer opportunities. Coordination with adjacent business owners will be required to fully realize the benefits of each alternative. The following sections summarize the opportunities that each alternative could provide the City.

4.1.1 No Build

The No Build option provides no changes to the land use or public realm opportunities. The large, underdeveloped parcel owned by Albertsons could still be redeveloped. The transition from the downtown core to the light industrial zone on Warm Springs Road would not be improved. The quick transition of land uses in the area may still lead to a disjointed experience.

4.1.2 Alternative 2 - Lewis Street Roundabout

Alternative 2 provides several opportunities to enhance the area. The alternative allows for development of the large undeveloped parcel owned by Albertsons, and there is potential to
provide enhanced features for pedestrians, bikes, and placemaking. Extra space at the southern portion of the Albertsons' parcel could allow for a distinctive plaza to be created providing the needed space for a gateway element identifying a transition in and out of the downtown core. The roadway improvements will require some ROW from surrounding businesses but the impact to the parcels is minimal.

The opportunity also has potential to enhance placemaking in the area. Space inside the roundabout could be used for public realm enhancements such as artwork, specialty landscaping, or signage and wayfinding. New roadway improvements enable public realm and placemaking elements to continue farther down Warm Springs Road and Lewis Street along the streets themselves. Public realm and placemaking elements that could be incorporated include wide detached sidewalks/pathways, tree coverage, specialty paving, signage and wayfinding, and/or artwork.

4.1.3 Alternative $\mathbf{4}-\mathbf{1 0}^{\text {th }}$ Street \& Lewis Street Realignment \& Roundabout

Similar to Alternative 2, the realigned roundabout in Alternative 4 provides opportunity to enhance the area. The alternative allows for developing the large undeveloped parcel owned by Albertsons, and there is potential to provide enhanced features for pedestrians, bikes, and placemaking. A new parcel would be formed between Warm Springs Road and Leadville Avenue with frontage to the proposed roundabout. Land use at this site could be commercial, continuing the downtown feel farther up Warm Springs Road. The parcel could also be sold to adjacent businesses to aid in the redevelopment and enhancement of those parcels. Roadway improvements will have impacts to existing businesses and roads such as $10^{\text {th }}$ Street, Leadville Avenue and Lewis Street.

4.2 Forecasted Travel Patterns

4.2.1 Study Year, Target LOS and Growth Rates

For the purposes of this study, the project team identified year 2042 as the design year for the improvements. Per section A. 15 of the Idaho Transportation Department's Roadway Design Manual, a target LOS D was set to analyze the intersection improvements. According to the manual, this LOS standard is "applicable for Federal-aid construction on State and local highway excluding highways on the National Highway System." Should the project receive federal funding, identified improvements would need to meet the LOS D threshold.

Since $10^{\text {th }}$ Street intersects Main Street (SH-75), which is an ITD roadway, a target LOS D was set for the intersection improvements per Table A-3 in section A.15.01 of ITD's Roadway Design Manual ${ }^{4}$.

The City of Ketchum does not lie within boundaries of a Municipal Planning Organization (MPO) that would produce a travel demand model that projects trip generation out into the future. Therefore, the project team calculated an average growth rate to represent traffic volume growth.

[^5]Traffic volumes on SH-75 were analyzed using historical data from ITD's ATRs to see how they have grown between 1990 and 2019. Due to the Covid 19 pandemic shutdowns, 2020 data was again excluded. Historical data from the ATR stations show patterns of steady and rapid growth on SH-75 up to the early 2000s, followed by a steep decline that coincides with the Great Recession. Traffic volumes started increasing again around 2012 and have steadily increased each year approaching the highest volumes seen before the Great Recession. Using the ATR data, the project team calculated a historical annual average growth rate of 1.44 percent for SH75 and applied it as a regional growth factor for the City of Ketchum. Figure 18 shows the change in traffic volumes since 1990.

Figure 18. Traffic Volumes since 1990
While the City of Ketchum has experienced recent traffic growth, it also is a resort destination City that is sensitive to economic downturns. Over the design life of the improvements, one can reasonably expect an economic downturn and traffic growth to slow or decline as compared to recent trends. The historical 1.44 percent calculated smooths out the ups and downs that the City may experience throughout the future economic cycles and provides a growth scenario consistent with historical trends.

4.2.2 Forecasted Travel Patterns

HDR applied the historical growth rates to the unadjusted August count volumes to estimate future travel demand. For Alternative 2 and the No Build option, the growth rate was applied to the turning movements directly. However, Alternative 4 removes a portion of $10^{\text {th }}$ Street and converts the intersection of $10^{\text {th }}$ Street and Warm Springs from a four-way intersection into a Tintersection. $10^{\text {th }}$ Street traffic is then rerouted to a new four-way intersection at Warm Springs Road and Lewis Street. For this new intersection, traffic demand entering and leaving the study
area was assumed to remain the same and turning movement volumes were estimated using the iterative procedure - directional method outlined in National Cooperative Highway Research Program (NCHRP) 765, Analytical Travel Forecasting Approaches for Project-Level Planning and Design ${ }^{5}$. The directional method uses an iterative approach to alternatively balance entering traffic and departing traffic volumes until an acceptable level of convergence is reached. The T-intersections turning movements were manually reconfigured assuming similar traffic patterns. Results of the turning movement analysis are shown in Figure 19 and Figure 20.

Figure 19. Alternative 4 Peak Volumes

[^6]

Figure 20: No Build and Alternative 2 Peak Volumes

4.3 Future Capacity Analysis

4.3.1 Analysis Software and Settings

The project team used SIDRA 9 software to analyze the roundabout alternatives and Synchro 11 software to analyze the stop-controlled intersections. Both software programs use the HCM methodology to compute delay, LOS, and V/C ratios. The peak hour factor for the future scenarios was set at 0.92 per HCM recommendations.

4.3.2 No Build Results

In the No Build option, the three study intersections are expected to experience longer delays than in the existing conditions; however, they are estimated to operate at or above the LOS D threshold. The movements on Warm Springs Road continue to see shorter delays; however, the increased volume on Warm Springs Road decreases the number of gaps available for vehicles on the side streets. The $10^{\text {th }}$ Street and Warm Springs Road intersection side street operations
decrease from LOS B to LOS C or D and the Warm Springs Road and Lewis Street intersection decreases to a LOS D from LOS B. Results are presented in Table 6 and detailed results can be found in Appendix E.

Table 6. No Build Traffic Operations - August 2042 AM \& (PM) Peak

Intersection	Overall Intersection LOS	Movement	Delay (s)	Los	95 Percentile Queue Length (feet)	V/C
$10^{\text {th }}$ Street / Warm Springs Road	C (D)	NET/L/R	18 (23.5)	C (C)	6.6 (6.6)	0.09 (0.10)
		SWT/L/R	16.7 (27.7)	C (D)	17.6 (48.4)	0.22 (0.45)
		SBL	8.8 (8.7)	A (A)	2.2 (4.4)	0.04 (0.07)
		NBL	8 (8.8)	A (A)	0 (0)	0.01 (0.01)
$10^{\text {th }}$ Street / SH-75	B (C)	NEL	7.7 (18.2)	A (C)	2.2 (30.8)	0.03 (0.32)
		NBT/L	12.4 (8.7)	B (A)	13.2 (4.4)	0.16 (0.06)
Warm Springs Road/ Lewis Street	C (D)	SBL	15.2 (27.3)	C (D)	22.0 (88.0)	0.26 (0.62)
		SBR	14.3 (11.0)	B (B)	2.2 (4.4)	0.04 (0.08)
		SEL	9.0 (8.7)	A (A)	2.2 (2.2)	0.03 (0.05)

The presence of a TWLT lane at the Warm Springs Road and Lewis Street intersection allows for a two-stage southbound left turn movement; vehicles will first turn into the turn lane and then merge into traffic. The HCM methodology assumes a smaller gap acceptance with a TWLT lane than if traffic were to pull out directly into traffic. Therefore, the HCM assumes TWLT lanes increase capacity at an intersection. Without the TWLT lane, the southbound left turn at Lewis Street is estimated to operate at LOS F in the PM peak hour with delays exceeding 90 seconds.

4.3.3 Alternative 2 - Lewis Street Roundabout

Table 7. Alternate 2 Traffic Operations - August 2042 AM \& (PM) Peak

Intersection	Overall Intersection LOS	Movement	Delay (s)	LOS	95 Percentile Queue Length (feet)	V/C
Warm Springs Road/ Lewis Street	A (A)	NET/L/R	8.2 (7.3)	A (A)	$\begin{aligned} & 103.0 \\ & (79.2) \end{aligned}$	0.51 (0.45)
		SWT/L/R	5.6 (7.9)	A (A)	18.8 (42.3)	0.17 (0.34)
		ET/L/R	6.0 (9.3	A (A)	42.6 (78.6)	0.31 (0.49)

The results of the analysis presented in Table 7 show that the proposed roundabout at $10^{\text {th }}$ Street and Warm Springs Road is estimated to operate at LOS A during the design year using the August 2042 volumes. The V/C ratios for each leg are all under 0.85 suggesting that excess
capacity exists to handle an increase in traffic volumes if they increase faster than projected. The $10^{\text {th }}$ Street intersections will not be improved and are expected to operate similarly to the No Build option scenario.

4.3.4 Alternative 4

Table 8. Alternative 4 Traffic Operations - August 2042 AM \& (PM) Peak

Intersection	Overall Intersection LOS	Movement	Delay (s)	LOS	$95^{\text {th }}$ Percentil e Queue Length (feet)	V/C
$10^{\text {th }}$ Street $/$ Warm Springs Road / Lewis Street	A (A)	NBT/L/R	9.5 (7.7)	A (A)	$\begin{aligned} & 116.1 \\ & (73.9) \end{aligned}$	0.56 (0.45)
		WBT/L/R	6.7 (6.4)	A (A)	$\begin{gathered} 14.2 \\ (17.3) \end{gathered}$	0.14 (0.16)
		SBT/L/R	5.9 (8.4)	A (A)	$\begin{gathered} 19.6 \\ (43.8) \end{gathered}$	0.18 (0.35)
		EBT/L/R	$\begin{gathered} 6.3 \\ (10.0) \end{gathered}$	A (B)	$\begin{gathered} 44.5 \\ (93.3) \end{gathered}$	0.32 (0.52)
10 ${ }^{\text {th }}$ Street $/$ Warm Springs Road	C (C)	NWL	8.2 (8.9)	A (A)	0 (0)	0.01 (0.01)
		NEL/R	$\begin{gathered} 17.4 \\ (17.7) \end{gathered}$	C (C)	6.6 (4.4)	0.10 (0.07)

The re-aligned roundabout provides nearly the same LOS for the roundabout as Alternative 2 as presented in Table 8. The roundabout delays remain low at 10 seconds or less and V/C ratios under 0.85 . Again, excess capacity is present in the roundabout for an increase in traffic. The overall LOS for the roundabout is A in both the AM and PM peaks. The $10^{\text {th }}$ Street intersection near the Ernest Hemingway STEAM School is converted into a T-intersection and Warm Springs Road is expected to operate with minimal delays. The side street of the T-intersection will operate at LOS C and experience approximately 17 seconds of delay during the peak hours. The $10^{\text {th }}$ Street intersection with Main Street will operate as shown in the No Build option scenario.

4.4 Impacts to Transit, Pedestrians and Bikes

4.4.1 No Build

The No Build option provides no improvement for transit, pedestrians, or bikes.

4.4.2 Alternative 2 - Lewis Street Roundabout

Mountain Rides eastbound bus stop facilities on Warm Springs Road would likely need to be relocated to provide access to the adjacent parcel. Based on conversations with Mountain Rides, bus routes would be unimproved by the change, but not negatively impacted by the roundabout.

This option would enhance bike connectivity. The bike lanes can be extended to the roundabout where ramps would transition cyclists to multi-use pathways to circulate around the roundabout away from vehicle traffic. Roundabouts generally slow traffic, which would provide an opportunity for experienced cyclists to traverse the intersection in the vehicle lanes, if desired.

Pedestrian connectivity would be improved with this option. The long crossing distance at Lewis Street would be eliminated. Sidewalks would be installed on Warm Springs Road where there are none, thereby enhancing connectivity. Slower vehicle speeds would decrease pedestrian stress while using the intersection. Although the Warm Springs and Lewis Street intersection would be improved with the change, the $10^{\text {th }}$ Street intersection would still present a challenge to pedestrians. Due to the skewed intersection and tight ROW, the long crossing distances are likely to remain. Installing ADA/PROWAG-complaint ramps would bring the intersection into compliance.

4.4.3 Alternative 4

In Alternative 4, Mountain Rides eastbound bus stop facilities on Warm Springs Road would likely need to be relocated to provide access to the adjacent parcel. Based on conversations with Mountain Rides, bus operations would be improved with this option. Instead of busses turning right onto Warm Springs from $10^{\text {th }}$ Street, this movement would become a through movement in the roundabout once $10^{\text {th }}$ Street is realigned.

Like Alternative 2, this option would enhance bike connectivity. The bike lanes could be extended to the roundabout where ramps would transition cyclists to multi-use pathways to circulate around the roundabout away from vehicle traffic. Roundabouts generally slow traffic, which would provide an opportunity for experienced cyclists to traverse the intersection in the vehicle lanes, if desired.

Pedestrian connectivity would be improved with this option. The long crossing distance at Lewis Street would be eliminated. Sidewalks would be installed on Warm Springs Road where there are none, thereby enhancing connectivity. Slower vehicle speeds would decrease pedestrian stress while using the intersection. This option would also eliminate the skewed crossings at the $10^{\text {th }}$ Street intersection.

4.5 Future Safety Analysis

The project team used the Federal Highway Administration's (FHWA) Crash Modification Factor (CMF) Clearinghouse ${ }^{6}$ to identify the potential change in crash frequency or severity associated with the possible changes to the intersections. CMFs were selected based on study similarities to Warm Springs Road roadway conditions and star rating (minimum of three stars). Each CMF also needed to include all crash types and crash severities. When there are no CMFs available for the specific situation, a qualitative discussion is provided. The following sections summarize the findings:

[^7]
4.5.1 No Build

The No Build option would not improve safety at the location.

4.5.2 Alternative 2

The proposed treatments of converting the minor road stop control to a roundabout is covered by CMF ID 227 (3 Stars), which estimates a 44 percent decrease in all crashes. With this alternative, the long pedestrian crossing on Lewis Street is split into a two-stage crossing at the roundabout. The improvements propose installing rectangular rapid flashing beacons on all three legs of the roundabout, which are covered by CMF ID 11158. This CMF estimates a 31 percent decrease in crashes.

The left-turn sight distance issue on $10^{\text {th }}$ Street onto Warm Springs Road would not be eliminated with these improvements. Some mitigation measures with this option could include:

- Prohibiting this left turn movement and requiring individuals to turn right and make a Uturn through the roundabout to complete the movement.
- Eliminate parking on $10^{\text {th }}$ Street to move the turn lane closer to the curbing.
- Revising the striping on the east leg of the $10^{\text {th }}$ Street and Warm Springs to be a left-turn lane instead of a TWLT lane, which would prevent delivery vehicles from parking so close to the intersection.

4.5.3 Alternative 4

The proposed treatments of converting the minor road stop control to a roundabout is covered by CMF ID 227 (3 Stars), which estimates a 44 percent decrease in all crashes. With this alternative, the long pedestrian crossing on Lewis Street is split into a two-stage crossing at the roundabout. The improvements propose installing rectangular rapid flashing beacons on all four legs of the roundabout, which are covered by CMF ID 11158. This CMF estimates a 31 percent decrease in crashes. The $10^{\text {th }}$ Street left-turn sight distance issue would be eliminated.

4.6 Opinion of Probable Costs

Typically, roadway projects can be evaluated using a cost/benefit analysis, where alternative costs can be compared to potential safety benefits to determine if the alternative would be beneficial to the public. In this case, crashes within the project area are so infrequent that it would be hard to reach an acceptable benefit-over-cost ratio with any alternative. The benefits to the community may come from improvements to the public realm and a decrease to pedestrian and biker stress when using the roadway. These factors are hard to quantify; therefore, the alternatives are evaluated on total project costs.

The build alternatives probable costs are summarized in Table 9. Three costs were estimated for each alternative: engineering fee, construction costs, and right-of-way costs. Based on experience, the engineering fee is estimated to be approximately 15% of the construction costs. The ROW costs are estimated based upon conceptual layouts and prices provided by a ROW agent contracted with the City.

Table 9. Project Alternatives - Total Project Costs

Cost	Alternative $\mathbf{2}$	Alternative 4
Engineering Fee	$\$ 288,000$	$\$ 398,000$
Construction Cost	$\$ 1,532,000$	$\$ 2,117,000$
Right-of-way Cost	$\$ 1,075,100$	$\$ 4,461,700$
Total Project Cost	$\$ 3,278,100$	$\$ 7,506,700$

As with all costs, ROW and construction costs are subject to market changes and could increase or decrease depending on economic conditions. Each cost is based on current year (2022) unit prices and dollar values and adjustment factors are not applied for a future construction year. Comparatively, Alternative 4 would remain more costly than Alternative 2 in future years.

ROW costs make up the largest difference between the two alternatives. Alternative 4 creates an opportunity for the City to vacate the abandoned $10^{\text {th }}$ Street connection and sell it to adjacent land owners. The vacated parcel's estimated value is $\$ 1,277,325$ and the revenue from the sale could be used to offset some of the ROW costs, but that would need to be determined during ROW negotiations.

4.7 Second Public Meeting Summary

A second public meeting was held on October 3, 2022, followed by 2 weeks of online public comment. The public meeting consisted of three separate presentations (one each in the morning, mid-day and evening) that outlined the results of the concept study, presented revised concept exhibits for Alternatives 2 and 4, and reported the benefits or drawbacks of each alternative. For individuals who could not go to the meeting in person, an online form was made available for the public to provide feedback. Additionally, the public meeting included a presentation on a concept study project concerning Main Street between 6 ${ }^{\text {th }}$ Street and River Street and the online survey reflected both projects.

The results of the in-person meetings showed most people preferred Alternative 4 at 60 percent compared to 40 percent for Alternative 2. A summary of the online public involvement results can be found in Appendix F.

5 Recommendations and Next Steps

5.1 Comparing the Alternatives

Alternative 4 provides the most benefit to all modes of travel and has the most opportunity to improve the public realm. The re-aligned roadway would simplify the roadway network and remove most of the perceived safety issues. To achieve these benefits, the alternative would greatly impact adjacent parcels. Alternative 2 would similarly calm traffic and remove safety issues at the Lewis Street and Warm Springs Road intersection but would not address issues at the Warm Springs Road and $10^{\text {th }}$ Street intersection. The placemaking opportunities would not be as robust as with Alternative 4 but could still be significant in providing a transition from the
downtown core to the light industrial or residential areas. Final concept exhibits can be found in Appendix G.

Alternative 2 is expected to be significantly less expensive than Alternative 4 primarily because it does not require purchase of large amount of ROW on the undeveloped Albertsons parcel. There could be opportunities to reduce ROW costs for Alternative 4 during the negotiation process. For example, the City could vacate the $10^{\text {th }}$ Street parcel and the adjacent landowners could purchase the property, thereby offsetting ROW costs elsewhere.

5.2 Recommendation and Interim Improvements

If the City can acquire funding to cover the higher ROW and construction costs, Alternative 4 is recommended. The alternative best improves multi-modal connectivity and operation, simplifies the roadway network, provides the most opportunity for placemaking, and is preferred by both Mountain Rides and the public. If the higher amount of funding is not available, then Alternative 2 is recommended as this option still provides traffic calming, multi-modal, placemaking, and safety benefits to the area. The No Build option is not recommended as it does not provide benefits meeting the City's goals.

As the City pursues funding for the larger aspects of the build alternatives, there are several opportunities to enhance the area in the meantime. Even if the City chooses the No Build option, the City could consider the following improvements.

- Restripe the TWLT in front of the gas station to be a dedicated left turn lane. This will prevent delivery vehicles from parking close to the intersection.
- Replace dilapidated sidewalk, install sidewalk where none exists within the study area, and install ADA/PROWAG complaint pedestrian ramps.
- Install bulb-outs at the Lewis Street and Warm Springs Road intersection to shorten pedestrian crossings (Figure 21).

Figure 21. Example Bulb-outs at Lewis Street

- Explore one or more of the following options to mitigate the difficult $10^{\text {th }}$ Street left turn sight distance issue:
- Prohibit southbound left turns at the intersection by signage or adding a diverter in the intersection.
- Convert the intersection from two-way stop control to all-way stop control.

5.3 Mitigating Impact of Future Nearby Developments

If there is a large time gap between the selection of the preferred alternative and construction such that nearby parcels are developed, the City should require the developments to submit a traffic impact study and evaluate how those developments will impact the selected alternative. Large high-density developments, multi-family homes, or new traffic generators along Warm Springs Road could impact estimated future operations. The roundabout options are shown to have excess capacity, but major changes to travel patterns may require re-evaluation with the traffic generated specifically by the new development. Opportunities may exist to coordinate placemaking opportunities with adjacent development as well as mitigate traffic impact.

Traffic circulation of developments will need to be considered depending on which alternative is selected. For example, if Alternative 2 is selected, the developer of the Albertson's parcel should avoid creating a situation that increases the number of vehicles performing southbound left turns at $10^{\text {th }}$ Street onto Warm Springs Road. Although not generating crashes today, the sight distance problems at this intersection could be exacerbated if the number of vehicles making this movement is increased. One possible solution is to have most vehicles access the development from Lewis Street to reduce conflicts at $10^{\text {th }}$ Street. The City should work with the developer to identify the best traffic circulation patterns as the development goes through the permitting process.

5.4 Nearby Enhancements to Consider

To fully realize the benefits of enhancing Alternative 2 or Alternative 4, the City should consider programming improvements between Saddle Road and $6{ }^{\text {th }}$ Street on Warm Springs Road. These improvements should be targeted at reducing pedestrian crossing widths, providing sidewalk connectivity and creating more placemaking opportunities. The following are suggested improvements:

- Install sidewalk on the north side of Warm Springs Road between $10^{\text {th }}$ Street and $7^{\text {th }}$ Street.
- Install bulb-outs at $9^{\text {th }}$ Street, $8^{\text {th }}$ Street, and $7^{\text {th }}$ Street to better delineate parking and shorten pedestrian crossings (Figure 22).

Figure 22. Example Bulb-outs at 8th Street

- Evaluate opportunities to convert the informal pathways people use to traverse down the hill from Main Street to Warm Springs Road into formal pathways.
- Install bike lanes from $6^{\text {th }}$ Street to the Wood River Trail Crossings. To reduce the need for a retaining wall, a sharrow can be installed in the downhill direction between $6^{\text {th }}$ Street and $9^{\text {th }}$ Street until a full lane bike lane can be developed.
- Provide a multi-use pathway on the west side of Warm Springs Road Between the Wood River Trail crossing and Saddle Road to provide access to the Wood River Trail pathway and easier pedestrian connection to the bus stops (Figure 23). This could be implemented with a lane reconfiguration to remove the center turn lane, which could also help in providing traffic calming.

Figure 23. Example Separated Pathway Along Warm Springs Road

- Revise the trail crossing at Saddle Road to be set back from the intersection.
- Evaluate a roundabout at the Saddle Road intersection.
- Install sidewalk on $10^{\text {th }}$ Street between Warm Springs Road and Main Street.

Appendix H contains conceptual exhibits of possible enhancements.

5.5 Next Steps

The City should pursue grant opportunities to fund the recommended improvements. Outreach for stakeholder participation in the grant pursuits should occur, including Mountain Rides, Blaine County School District, and the Ketchum Urban Renewal Agency.

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: SH-75 / 10th Street
City, State: Ketchum, Idaho
File Name: SH-75 \& 10th St
Site Code : 00000000
Start Date: 8/31/2021
Control: Stop Sign
Page No : 1

Groups Printed- General Traffic - 3+ Axle Heavy Trucks													Int. Total
	SH-75 From North				SH-75 From South				10th Street From Southwest				
Start Time	Bear Right	Thru	Peds	App. Total	Thru	Hard Left	Peds	App. Total	Hard Right	Bear Left	Peds	App. Total	
07:00 AM	3	12	0	15	35	2	1	38	3	4	1	8	61
07:15 AM	5	13	0	18	54	2	0	56	4	4	0	8	82
07:30 AM	7	20	0	27	65	2	0	67	3	5	0	8	102
07:45 AM	6	25	0	31	63	9	0	72	7	14	0	21	124
Total	21	70	0	91	217	15	1	233	17	27	1	45	369
08:00 AM	7	22	2	31	71	6	0	77	6	21	0	27	135
08:15 AM	7	36	0	43	64	4	1	69	7	11	1	19	131
08:30 AM	6	28	0	34	62	9	0	71	9	8	0	17	122
08:45 AM	5	42	0	47	56	9	2	67	8	6	1	15	129
Total	25	128	2	155	253	28	3	284	30	46	2	78	517
04:00 PM	14	87	0	101	46	9	0	55	17	10	0	27	183
04:15 PM	9	97	1	107	51	13	4	68	12	7	0	19	194
04:30 PM	11	87	0	98	67	12	1	80	16	8	0	24	202
04:45 PM	8	64	0	72	36	6	0	42	10	9	0	19	133
Total	42	335	1	378	200	40	5	245	55	34	0	89	712
05:00 PM	8	67	0	75	56	6	0	62	6	10	0	16	153
05:15 PM	8	64	0	72	62	13	0	75	12	5	0	17	164
05:30 PM	9	54	0	63	42	6	3	51	9	11	0	20	134
05:45 PM	4	58	0	62	60	8	0	68	8	10	0	18	148
Total	29	243	0	272	220	33	3	256	35	36	0	71	599
Grand Total	117	776	3	896	890	116	12	1018	137	143	3	283	2197
Apprch \%	13.1	86.6	0.3		87.4	11.4	1.2		48.4	50.5	1.1		
Total \%	5.3	35.3	0.1	40.8	40.5	5.3	0.5	46.3	6.2	6.5	0.1	12.9	
General Traffic	114	768	3	885	873	116	12	1001	135	143	3	281	2167
\% General Traffic	97.4	99	100	98.8	98.1	100	100	98.3	98.5	100	100	99.3	98.6
3+ Axle Heavy Trucks	3	8	0	11	17	0	0	17	2	0	0	2	30
\% 3+Axle Heavy Trucks	2.6	1	0	1.2	1.9	0	0	1.7	1.5	0	0	0.7	1.4

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: SH-75 / 10th Street
City, State: Ketchum, Idaho
Control: Stop Sign
File Name : SH-75 \& 10th St
Site Code : 00000000
Start Date : 8/31/2021
Page No : 2

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: SH-75 / 10th Street
File Name: SH-75 \& 10th St
City, State: Ketchum, Idaho
Site Code : 00000000
Control: Stop Sign
Start Date: 8/31/2021
Page No : 3

	SH-75 From North				SH-75 From South				10th Street From Southwest				
Start Time	Bear Right	Thru	Peds	App. Total	Thru	Hard Left	Peds	App. Total	Hard Right	Bear Left	Peds	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 11:45 AM - Peak 1 of 1													
Peak Hour for Entire Intersection Begins at 08:00 AM													
08:00 AM	7	22	2	31	71	6	0	77	6	21	0	27	135
08:15 AM	7	36	0	43	64	4	1	69	7	11	1	19	131
08:30 AM	6	28	0	34	62	9	0	71	9	8	0	17	122
08:45 AM	5	42	0	47	56	9	2	67	8	6	1	15	129
Total Volume	25	128	2	155	253	28	3	284	30	46	2	78	517
\% App. Total	16.1	82.6	1.3		89.1	9.9	1.1		38.5	59	2.6		
PHF	. 893	. 762	. 250	. 824	. 891	. 778	375	. 922	. 833	. 548	. 500	722	. 957
General Traffic	22	125	2	149	244	28	3	275	29	46	2	77	501
\% General Traffic	88.0	97.7	100	96.1	96.4	100	100	96.8	96.7	100	100	98.7	96.9
3+ Axle Heavy Trucks	3	3	0	6	9	0	0	9	1	0	0	1	16
\% 3+ Axle Heavy Trucks	12.0	2.3	0	3.9	3.6	0	0	3.2	3.3	0	0	1.3	3.1

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: SH-75 / 10th Street
City, State: Ketchum, Idaho
File Name: SH-75 \& 10th St

Control: Stop Sign
Site Code : 00000000
Start Date: 8/31/2021
Page No : 4

	SH-75 From North				SH-75 From South				10th Street From Southwest					
Start Time	Bear Right	Thru	Peds	App. Total	Thru	Hard Left	Peds	App. Total	Hard Right	Bear Left	Peds	App. Total		t. Total

Peak Hour Analysis From 07:00 AM to 11:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	08:00 AM				07:45 AM				07:45 AM			
+0 mins.	7	22	2	31	63	9	0	72	7	14	0	21
+15 mins.	7	36	0	43	71	6	0	77	6	21	0	27
+30 mins.	6	28	0	34	64	4	1	69	7	11	1	19
+45 mins.	5	42	0	47	62	9	0	71	9	8	0	17
Total Volume	25	128	2	155	260	28	1	289	29	54	1	84
\% App. Total	16.1	82.6	1.3		90	9.7	0.3		34.5	64.3	1.2	
PHF	. 893	. 762	. 250	. 824	. 915	. 778	. 250	. 938	. 806	. 643	. 250	. 778
General Traffic	22	125	2	149	250	28	1	279	28	54	1	83
\% General Traffic	88	97.7	100	96.1	96.2	100	100	96.5	96.6	100	100	98.8
3+ Axle Heavy Trucks	3	3	0	6	10	0	0	10	1	0	0	1
\% 3+Axle Heavy Trucks	12	2.3	0	3.9	3.8	0	0	3.5	3.4	0	0	1.2

	Peak Hour Data

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: SH-75 / 10th Street
City, State: Ketchum, Idaho
File Name : SH-75 \& 10th St

Control: Stop Sign
Site Code : 00000000
Start Date: 8/31/2021
Page No : 5

	SH-75 From North				SH-75 From South				10th Street From Southwest				
Start Time	Bear Right	Thru	Peds	App. Total	Thru	Hard Left	Peds	App. Total	Hard Right	Bear Left	Peds	App. Total	Int. Total

Peak Hour Analysis From 12:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 04:00 PM

04:00 PM	14	87	0	101	46	9	0	55	17	10	0	27	183
04:15 PM	9	97	1	107	51	13	4	68	12	7	0	19	194
04:30 PM	11	87	0	98	67	12	1	80	16	8	0	24	202
04:45 PM	8	64	0	72	36	6	0	42	10	9	0	19	133
Total Volume	42	335	1	378	200	40	5	245	55	34	0	89	712
\% App. Total	11.1	88.6	0.3		81.6	16.3	2		61.8	38.2	0		
PHF	. 750	. 863	. 250	. 883	. 746	. 769	. 313	. 766	. 809	. 850	. 000	. 824	. 881
General Traffic	42	332	1	375	199	40	5	244	55	34	0	89	708
\% General Traffic	100	99.1	100	99.2	99.5	100	100	99.6	100	100	0	100	99.4
3+ Axle Heavy Trucks	0	3	0	3	1	0	0	1	0	0	0	0	4
\% 3+ Axle Heavy Trucks	0	0.9	0	0.8	0.5	0	0	0.4	0	0	0	0	0.6

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: SH-75 / 10th Street
City, State: Ketchum, Idaho
File Name: SH-75 \& 10th St

Control: Stop Sign
Site Code : 00000000
Start Date: 8/31/2021
Page No : 6

Peak Hour Analysis From 12:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

+0 mins.+15 mins.+30 mins.+45 mins.	$04: 00 \mathrm{PM}$$\mathbf{1 4}$9118	$\begin{aligned} & 87 \\ & 97 \\ & 87 \\ & 64 \\ & \hline \end{aligned}$	$\begin{array}{r} 0 \\ \mathbf{1} \\ 0 \\ 0 \\ \hline \end{array}$		04:30 PM$\mathbf{6 7}$365662	$\begin{array}{r} 12 \\ 6 \\ 6 \\ \mathbf{1 3} \\ \hline \end{array}$	1000	$\begin{aligned} & \mathbf{8 0} \\ & 42 \\ & 62 \\ & 75 \end{aligned}$	$\begin{gathered} \hline 04: 00 \mathrm{PM} \\ \mathbf{1 7} \\ 12 \\ 16 \\ 10 \\ \hline \end{gathered}$	10789	0000	$\begin{aligned} & 27 \\ & 19 \\ & 24 \\ & 19 \end{aligned}$
				101								
				107								
				98								
				72								
Total Volume	42	335	1	378	221	37	1	259	55	34	0	89
\% App. Total	11.1	88.6	0.3		85.3	14.3	0.4		61.8	38.2	0	
PHF	. 750	. 863	. 250	. 883	. 825	. 712	. 250	. 809	. 809	. 850	. 000	. 824
General Traffic	42	332	1	375	220	37	1	258	55	34	0	89
\% General Traffic	100	99.1	100	99.2	99.5	100	100	99.6	100	100	0	100
3+ Axle Heavy Trucks	0	3	0	3	1	0	0	1	0	0	0	0
\% 3+ Axle Heary Trucks	0	0.9	0	0.8	0.5	0	0	0.4	0	0	0	0

	Peak Hour Data North General Traffic 3+ Axle Heavy Trucks In - Peak Hour: 04:30 PM SH-75

L2 Data Collection
 L2DataCollection.com

Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: SH-75 / 10th Street City, State: Ketchum, Idaho Control: Stop Sign

File Name: SH-75 \& 10th St
Site Code : 00000000
Start Date: 8/31/2021
Page No : 7

Image 1

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: Warm Springs / 10th Street
City, State: Ketchum, Idaho
File Name : Warm Springs Rd \& 10th St

Control: Stop Sign
Site Code : 00000000
Start Date: 8/31/2021
Page No : 1

Groups Printed- General Traffic - 3+ Axle Heavy Trucks

	10th Street From Northeast					Warm Springs Road From Southeast					10th Street From Southwest					Warm Springs Road From Northwest					
Start Time	Right	Thru	Left	Peds	App. Toal	Right	Thru	Left	Peds	App. Toal	Right	Thru	Left	Peds	App. Toal	Right	Thru	Left	Peds	App. Te	Int. Total
07:00 AM	3	0	1	0	4	2	35	4	2	43	0	0	0	1	1	0	24	3	0	27	75
07:15 AM	7	2	1	0	10	6	47	6	1	60	0	0	0	1	1	3	29	3	1	36	107
07:30 AM	4	2	4	0	10	2	51	7	0	60	9	0	0	0	9	1	40	7	1	49	128
07:45 AM	13	0	7	1	21	28	91	5	0	124	7	1	5	0	13	8	79	4	0	91	249
Total	27	4	13	1	45	38	224	22	3	287	16	1	5	2	24	12	172	17	2	203	559
08:00 AM	12	1	3	0	16	18	131	1	0	150	1	3	2	0	6	2	69	6	2	79	251
08:15 AM	7	0	4	1	12	12	92	1	0	105	2	0	0	0	2	0	60	11	0	71	190
08:30 AM	17	0	2	0	19	9	82	3	0	94	1	0	1	2	4	1	61	10	0	72	189
08:45 AM	10	0	0	0	10	6	81	2	1	90	1	0	0	0	1	0	93	12	1	106	207
Total	46	1	9	1	57	45	386	7	1	439	5	3	3	2	13	3	283	39	3	328	837

04:00 PM	20	0	10	2	32	6	104	0	0	110	2	2	2	2	8	0	110	15	0	125	275
04:15 PM	19	0	6	0	25	6	86	3	2	97	3	0	1	1	5	3	118	8	5	134	261
04:30 PM	13	0	4	0	17	8	70	0	0	78	2	0	1	0	3	0	101	15	1	117	215
04:45 PM	8	0	5	1	14	8	67	0	0	75	2	0	0	0	2	0	105	11	1	117	208
Total	60	0	25	3	88	28	327	3	2	360	9	2	4	3	18	3	434	49	7	493	959
05:00 PM	16	0	5	1	22	2	94	0	0	96	1	0	0	1	2	0	138	13	1	152	272
05:15 PM	22	0	7	2	31	8	95	0	4	107	3	0	1	2	6	0	91	12	1	104	248
05:30 PM	7	0	0	0	7	9	81	0	0	90	1	0	0	1	2	1	96	9	0	106	205
05:45 PM	8	0	7	1	16	10	71	1	0	82	3	0	0	0	3	2	72	8	1	83	184
Total	53	0	19	4	76	29	341	1	4	375	8	0	1		13	3	397	42	3	445	909
Grand Total	186	5	66	9	266	140	1278	33	10	1461	38	6	13	11	68	21	1286	147	15	1469	3264
Apprch \%	69.9	1.9	24.8	3.4		9.6	87.5	2.3	0.7		55.9	8.8	19.1	16.2		1.4	87.5	10	1		
Total \%	5.7	0.2	2	0.3	8.1	4.3	39.2	1	0.3	44.8	1.2	0.2	0.4	0.3	2.1	0.6	39.4	4.5	0.5	45	
General Traffic	186	5	66	9	266	138	1273	32	10	1453	38	6	13	11	68	21	1275	146	15	1457	3244
$\%_{6}$ General T Taffic	100	100	100	100	100	98.6	99.6	97	100	99.5	100	100	100	100	100	100	99.1	99.3	100	99.2	99.4
3 3+Ase teayy Traces	0	0	0	0	0	2	5	1	0	8	0	0	0	0	0	0	11	1	0	12	20
$\xrightarrow{\text { +Axte heay }}$ Trucs	0	0	0	0	0	1.4	0.4	3	0	0.5	0	0	0	0	0	0	0.9	0.7	0	0.8	0.6

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: Warm Springs / 10th Street
City, State: Ketchum, Idaho
Control: Stop Sign

File Name : Warm Springs Rd \& 10th St
Site Code : 00000000
Start Date: 8/31/2021
Page No : 2

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: Warm Springs / 10th Street
City, State: Ketchum, Idaho
Control: Stop Sign

File Name : Warm Springs Rd \& 10th St
Site Code : 00000000
Start Date: 8/31/2021
Page No : 3

	10th Street From Northeast					Warm Springs Road From Southeast					10th Street From Southwest					Warm Springs Road From Northwest					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total

Peak Hour Analysis From 07:00 AM to 11:45 AM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 07:45 AM

07:45 AM	13	0	7	1	21	28	91	5	0	124	7	1	5	0	13	8	79	4	0	91	249
08:00 AM	12	1	3	0	16	18	131	1	0	150	1	3	2	0	6	2	69	6	2	79	251
08:15 AM	7	0	4	1	12	12	92	1	0	105	2	0	0	0	2	0	60	11	0	71	190
08:30 AM	17	0	2	0	19	9	82	3	0	94	1	0	1	2	4	1	61	10	0	72	189
Total Volume	49	1	16	2	68	67	396	10	0	473	11	4	8	2	25	11	269	31	2	313	879
\% App. Total	72.1	1.5	23.5	2.9		14.2	83.7	2.1	0		44	16	32	8		3.5	85.9	9.9	0.6		
PHF	. 721	. 250	. 571	. 500	. 810	. 598	. 756	. 500	. 000	. 788	. 393	. 333	. 400	. 250	. 481	. 344	. 851	. 705	. 250	. 860	. 875
General Traffic	49	1	16	2	68	65	394	10	0	469	11	4	8	2	25	11	264	31	2	308	870
\% General Trafic	100	100	100	100	100	97.0	99.5	100	0	99.2	100	100	100	100	100	100	98.1	100	100	98.4	99.0
${ }^{3+}$ Axte Heary Trucks	0	0	0	0	0	2	2	0	0	4	0	0	0	0	0	0	5	0	0	5	9
\% $3+$ Axle Heavy	0	0	0	0	0	3.0	0.5	0	0	0.8	0	0	0	0	0	0	1.9	0	0	1.6	1.0

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: Warm Springs / 10th Street
City, State: Ketchum, Idaho
Control: Stop Sign

File Name : Warm Springs Rd \& 10th St
Site Code : 00000000
Start Date: 8/31/2021
Page No : 4

	10th Street From Northeast					Warm Springs Road From Southeast					10th Street From Southwest					Warm Springs Road From Northwest					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total

Peak Hour Analysis From 07:00 AM to 11:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	07:45 AM					07:45 AM					07:30 AM					08:00 AM				
+0 mins.	13	0	7	1	21	28	91	5	0	124	9	0	0	0	9	2	69	6	2	79
+15 mins.	12	1	3	0	16	18	131	1	0	150	7	1	5	0	13	0	60	11	0	71
+30 mins.	7	0	4	1	12	12	92	1	0	105	1	3	2	0	6	1	61	10	0	72
+45 mins.	17	0	2	0	19	9	82	3	0	94	2	0	0	0	2	0	93	12	1	106
Total Volume	49	1	16	2	68	67	396	10	0	473	19	4	7	0	30	3	283	39	3	328
\% App. Total	72.1	1.5	23.5	2.9		14.2	83.7	2.1	0		63.3	13.3	23.3	0		0.9	86.3	11.9	0.9	
PHF	. 721	. 250	. 571	. 500	. 810	. 598	. 756	. 500	. 000	. 788	. 528	. 333	. 350	. 000	. 577	. 375	. 761	. 813	. 375	774
General Traffic	49	1	16	2	68	65	394	10	0	469	19	4	7	0	30	3	280	39	3	325
\% General Traffic	100	100	100	100	100	97	99.	100	0	99.2	100	100	100	0	100	100	98. 9	100	100	99.1
${ }^{3+}$ Axle Heary Trucks	0	0	0	0	0	2	2	0	0	4	0	0	0	0	0	0	3	0	0	3
$\begin{gathered} 8_{3}+\text { Axile Heary } \\ \text { Trucks } \end{gathered}$	0	0	0	0	0	3	0.5	0	0	0.8	0	0	0	0	0	0	1.1	0	0	0.9

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: Warm Springs / 10th Street
City, State: Ketchum, Idaho
Control: Stop Sign

File Name : Warm Springs Rd \& 10th St
Site Code : 00000000
Start Date: 8/31/2021
Page No : 5

	10th Street From Northeast					Warm Springs Road From Southeast					10th Street From Southwest					Warm Springs Road From Northwest					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analysis From 12:00 PM to 05:45 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 04:00 PM																					
04:00 PM	20	0	10	2	32	6	104	0	0	110	2	2	2	2	8	0	110	15	0	125	275
04:15 PM	19	0	6	0	25	6	86	3	2	97	3	0	1	1	5	3	118	8	5	134	261
04:30 PM	13	0	4	0	17	8	70	0	0	78	2	0	1	0	3	0	101	15	1	117	215
04:45 PM	8	0	5	1	14	8	67	0	0	75	2	0	0	0	2	0	105	11	1	117	208
Total Volume	60	0	25	3	88	28	327	3	2	360	9	2	4	3	18	3	434	49	7	493	959
\% App. Total	68.2	0	28.4	3.4		7.8	90.8	0.8	0.6		50	11.1	22.2	16.7		0.6	88	9.9	1.4		
PHF	. 750	. 000	. 625	. 375	. 688	. 875	. 786	. 250	. 250	. 818	. 750	. 250	. 500	. 375	. 563	. 250	. 919	. 817	. 350	. 920	. 872
General Traffic	60	0	25	3	88	28	327	3	2	360	9	2	4	3	18	3	431	49	7	490	956
\% General Traffic	100	0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	99.3	100	100	99.4	99.7
3+Axle Heary Trecks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	3
\% 3+ Axle Heavy Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.7	0	0	0.6	0.3

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: Warm Springs / 10th Street
City, State: Ketchum, Idaho
Control: Stop Sign

File Name : Warm Springs Rd \& 10th St
Site Code : 00000000
Start Date: 8/31/2021
Page No : 6

	10th Street From Northeast					Warm Springs Road From Southeast					10th Street From Southwest					Warm Springs Road From Northwest					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total

Peak Hour Analysis From 12:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	04:00 PM					05:00 PM					04:00 PM					04:15 PM				
+0 mins.	20	0	10	2	32	2	94	0	0	96	2	2	2	2	8	3	118	8	5	134
+15 mins.	19	0	6	0	25	8	95	0	4	107	3	0	1	1	5	0	101	15	1	117
+30 mins.	13	0	4	0	17	9	81	0	0	90	2	0	1	0	3	0	105	11	1	117
+45 mins.	8	0	5	1	14	10	71	1	0	82	2	0	0	0	2	0	138	13	1	152
Total Volume	60	0	25	3	88	29	341	1	4	375	9	2	4	3	18	3	462	47	8	520
\% App. Total	68.2	0	28.4	3.4		7.7	90.9	0.3	1.1		50	11.1	22.2	16.7		0.6	88.8	9	1.5	
PHF	. 750	. 000	. 625	. 375	. 688	. 725	. 897	. 250	. 250	. 876	. 750	. 250	. 500	. 375	. 563	. 250	. 837	. 783	. 400	. 855
General Traffic	60	0	25	3	88	29	340	1	4	374	9	2	4	3	18	3	458	47	8	516
\% General Traffic	100	0	100	100	100	100	$\begin{array}{r} 99 . \\ 7 \end{array}$	100	100	99.7	100	100	100	100	100	100	99.	100	100	99.2
${ }^{3+}$ Axte Heary Trucks	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	4	0	0	4
\% 3+ Axle Heavy	0	0	0	0	0	0	0.3	0	0	0.3	0	0	0	0	0	0	0.9	0	0	0.8

L2 Data Collection
 L2DataCollection.com

Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: Warm Springs / 10th Street City, State: Ketchum, Idaho Control: Stop Sign

File Name : Warm Springs Rd \& 10th St
Site Code : 00000000
Start Date: 8/31/2021
Page No : 7

Image 1

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: Warm Springs / Lewis St
City, State: Ketchum, Idaho
Control: Stop Sign

File Name : Warm Springs Rd \& Lewis St
Site Code : 00000000
Start Date: 8/31/2021
Page No : 1

Groups Printed- General Traffic - 3+ Axle Heavy Trucks

	Lewis Street From North				Warm Springs Road From Southeast				Warm Springs Road From West				
Start Time	Right	Bear Left	Peds	App. Total	Bear Right	Bear Left	Peds	App. Total	Bear Right	Left	Peds	App. Total	Int. Total
07:00 AM	2	5	0	7	17	23	0	40	23	1	1	25	72
07:15 AM	5	5	0	10	25	29	0	54	29	2	1	32	96
07:30 AM	4	13	0	17	30	21	0	51	36	5	0	41	109
07:45 AM	4	8	1	13	58	53	0	111	86	5	1	92	216
Total	15	31	1	47	130	126	0	256	174	13	3	190	493
08:00 AM	7	24	0	31	67	76	0	143	53	3	1	57	231
08:15 AM	3	28	1	32	39	62	0	101	42	4	0	46	179
08:30 AM	6	25	3	34	39	61	0	100	47	6	0	53	187
08:45 AM	6	26	0	32	37	56	0	93	78	5	0	83	208
Total	22	103	4	129	182	255	0	437	220	18	1	239	805

04:00 PM	12	46	4	62	38	87	1	126	84	6	0	90	278
04:15 PM	5	37	4	46	27	78	0	105	90	9	0	99	250
04:30 PM	9	40	1	50	36	49	0	85	72	6	0	78	213
04:45 PM	7	46	3	56	11	64	0	75	70	10	0	80	211
Total	33	169	12	214	112	278	1	391	316	31	0	347	952
05:00 PM	4	57	3	64	14	95	0	109	94	1	1	96	269
05:15 PM	10	33	4	47	21	93	0	114	63	4	1	68	229
05:30 PM	2	28	0	30	12	77	0	89	74	5	0	79	198
05:45 PM	5	33	3	41	6	74	0	80	50	3	3	56	177
Total	21	151	10	182	53	339	0	392	281	13	5	299	873
Grand Total	91	454	27	572	477	998	1	1476	991	75	9	1075	3123
Apprch \%	15.9	79.4	4.7		32.3	67.6	0.1		92.2	7	0.8		
Total \%	2.9	14.5	0.9	18.3	15.3	32	0	47.3	31.7	2.4	0.3	34.4	
General Traffic	91	451	27	569	473	992	1	1466	983	75	9	1067	3102
\% General Traffic	100	99.3	100	99.5	99.2	99.4	100	99.3	99.2	100	100	99.3	99.3
3+ Axle Heavy Trucks	0	3	0	3	4	6	0	10	8	0	0	8	21
\% 3+ Axle Heavy Trucks	0	0.7	0	0.5	0.8	0.6	0	0.7	0.8	0	0	0.7	0.7

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: Warm Springs / Lewis St
City, State: Ketchum, Idaho
Control: Stop Sign

File Name : Warm Springs Rd \& Lewis St
Site Code : 00000000
Start Date: 8/31/2021
Page No : 2

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: Warm Springs / Lewis St
City, State: Ketchum, Idaho
Control: Stop Sign

File Name : Warm Springs Rd \& Lewis St
Site Code : 00000000
Start Date: 8/31/2021
Page No : 3

	Lewis Street From North				Warm Springs Road From Southeast				Warm Springs Road From West				
Start Time	Right	Bear Left	Peds	App. Total	Bear Right	Bear Left	Peds	App. Total	Bear Right	Left	Peds	App. Total	Int. Total

Peak Hour Analysis From 07:00 AM to 11:45 AM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 07:45 AM

07:45 AM	4	8	1	13	58	53	0	111	86	5	1	92	216
08:00 AM	7	24	0	31	67	76	0	143	53	3	1	57	231
08:15 AM	3	28	1	32	39	62	0	101	42	4	0	46	179
08:30 AM	6	25	3	34	39	61	0	100	47	6	0	53	187
Total Volume	20	85	5	110	203	252	0	455	228	18	2	248	813
\% App. Total	18.2	77.3	4.5		44.6	55.4	0		91.9	7.3	0.8		
PHF	. 714	. 759	. 417	. 809	. 757	. 829	. 000	. 795	. 663	750	. 500	. 674	. 880
General Traffic	20	83	5	108	203	248	0	451	226	18	2	246	805
\% General Traffic	100	97.6	100	98.2	100	98.4	0	99.1	99.1	100	100	99.2	99.0
3+ Axle Heavy Trucks	0	2	0	2	0	4	0	4	2	0	0	2	8
\% 3+ Axle Heavy Trucks	0	2.4	0	1.8	0	1.6	0	0.9	0.9	0	0	0.8	1.0

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: Warm Springs / Lewis St
City, State: Ketchum, Idaho
Control: Stop Sign

File Name : Warm Springs Rd \& Lewis St
Site Code : 00000000
Start Date: 8/31/2021
Page No : 4

	Lewis Street From North				Warm Springs Road From Southeast				Warm Springs Road From West					
Start Time	Right	Bear Left	Peds	App. Total	Bear Right	Bear Left	Peds	App. Total	Bear Right	Left	Peds	App. Total		t. Total

Peak Hour Analysis From 07:00 AM to 11:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

+0 mins.+15 mins.+30 mins.+45 mins.	$\begin{array}{\|c\|} \hline 08: 00 \mathrm{AM} \\ 7 \\ 3 \\ 6 \\ 6 \\ \hline \end{array}$	$\begin{aligned} & 24 \\ & \mathbf{2 8} \\ & 25 \\ & 26 \\ & \hline \end{aligned}$	0 31 1 32 $\mathbf{3}$ $\mathbf{3 4}$ 0 32		$\begin{array}{\|c} \hline 07: 45 \mathrm{AM} \\ 58 \\ \mathbf{6 7} \\ 39 \\ 39 \\ \hline \end{array}$	$\begin{aligned} & 53 \\ & 76 \\ & 62 \\ & 61 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 111 \\ & \mathbf{1 4 3} \\ & 101 \\ & 100 \\ & \hline \end{aligned}$	07:45 AM$\mathbf{8 6}$534247	5346	1	$\begin{aligned} & \mathbf{9 2} \\ & 57 \\ & 46 \\ & 53 \end{aligned}$
Total Volume	22	103	4	129	203	252	0	455	228	18	2	248
\% App. Total	17.1	79.8	3.1		44.6	55.4	0		91.9	7.3	0.8	
PHF	. 786	. 920	. 333	. 949	. 757	. 829	. 000	795	. 663	. 750	. 500	. 674
General Traffic	22	102	4	128	203	248	0	451	226	18	2	246
\% General Traffic	100	99	100	99.2	100	98.4	0	99.1	99.1	100	100	99.2
3+ Axle Heavy Trucks	0	1	0	1	0	4	0	4	2	0	0	2
\% 3+Axle Heavy Trucks	0	1	0	0.8	0	1.6	0	0.9	0.9	0	0	0.8

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: Warm Springs / Lewis St
City, State: Ketchum, Idaho
Control: Stop Sign

File Name : Warm Springs Rd \& Lewis St
Site Code : 00000000
Start Date: 8/31/2021
Page No : 5

	Lewis Street From North				Warm Springs Road From Southeast				Warm Springs Road From West				
Start Time	Right	Bear Left	Peds	App. Total	Bear Right	Bear Left	Peds	App. Total	Bear Right	Left	Peds	App. Total	Int. Total
Peak Hour Analysis From 12:00 PM to 05:45 PM - Peak 1 of 1													
Peak Hour for Entire Intersection Begins at 04:00 PM													
04:00 PM	12	46	4	62	38	87	1	126	84	6	0	90	278
04:15 PM	5	37	4	46	27	78	0	105	90	9	0	99	250
04:30 PM	9	40	1	50	36	49	0	85	72	6	0	78	213
04:45 PM	7	46	3	56	11	64	0	75	70	10	0	80	211
Total Volume	33	169	12	214	112	278	1	391	316	31	0	347	952
\% App. Total	15.4	79	5.6		28.6	71.1	0.3		91.1	8.9	0		
PHF	. 688	. 918	. 750	. 863	. 737	. 799	. 250	. 776	. 878	. 775	. 000	. 876	. 856
General Traffic	33	168	12	213	112	276	1	389	314	31	0	345	947
\% General Traffic	100	99.4	100	99.5	100	99.3	100	99.5	99.4	100	0	99.4	99.5
3+ Axle Heavy Trucks	0	1	0	1	0	2	0	2	2	0	0	2	5
\% 3+ Axle Heavy Trucks	0	0.6	0	0.5	0	0.7	0	0.5	0.6	0	0	0.6	0.5

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: Warm Springs / Lewis St
City, State: Ketchum, Idaho
Control: Stop Sign

File Name : Warm Springs Rd \& Lewis St
Site Code : 00000000
Start Date: 8/31/2021
Page No : 6

Peak Hour Analysis From 12:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	04:30 PM				05:00 PM				04:15 PM			
+0 mins.	9	40	1	50	14	95	0	109	90	9	0	99
+15 mins.	7	46	3	56	21	93	0	114	72	6	0	78
+30 mins.	4	57	3	64	12	77	0	89	70	10	0	80
+45 mins.	10	33	4	47	6	74	0	80	94	1	1	96
Total Volume	30	176	11	217	53	339	0	392	326	26	1	353
\% App. Total	13.8	81.1	5.1		13.5	86.5	0		92.4	7.4	0.3	
PHF	. 750	. 772	. 688	. 848	. 631	. 892	. 000	. 860	. 867	. 650	. 250	. 891
General Traffic	30	176	11	217	52	339	0	391	322	26	1	349
\% General Traffic	100	100	100	100	98.1	100	0	99.7	98.8	100	100	98.9
3+ Axle Heavy Trucks	0	0	0	0	1	0	0	1	4	0	0	4
\% 3+ Axle Heavy Trucks	0	0	0	0	1.9	0	0	0.3	1.2	0	0	1.1

L2 Data Collection

L2DataCollection.com
Idaho (208) 860-7554 Utah (801) 413-2993

Study: HDR0026
Intersection: Warm Springs / Lewis St City, State: Ketchum, Idaho Control: Stop Sign

File Name : Warm Springs Rd \& Lewis St
Site Code : 00000000
Start Date : 8/31/2021
Page No : 7

Image 1

B

Existing Capacity Analysis Reports

Intersection						
Int Delay, s/veh	2					
Movement	NBL	NBT	SBT	SBR	NEL	NER
Lane Configurations		4	个		Mr	
Traffic Vol, veh/h	24	214	108	21	39	25
Future Vol, veh/h	24	214	108	21	39	25
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, \%	3	3	4	4	1	1
Mvmt Flow	25	223	113	22	41	26

Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	135	0	-	0	397	124
Stage 1	-		-	-	124	-
Stage 2	-	-	-	-	273	-
Critical Hdwy	4.13	-	-	-	6.41	6.21
Critical Hdwy Stg 1	-	-	-	-	5.41	-
Critical Hdwy Stg 2	-	-	-	-	5.41	-
Follow-up Hdwy	2.227	-	-	-	3.509	3.309
Pot Cap-1 Maneuver	1443	-	-	-	610	929
Stage 1	-	-	-	-	904	-
Stage 2	-	-	-	-	775	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1443	-	-	-	598	929
Mov Cap-2 Maneuver	-	-	-	-	598	-
Stage 1	-	-	-	-	886	-
Stage 2	-	-	-	-	775	-
Approach	NB		SB		NE	
HCM Control Delay, s	0.8		0		10.7	
HCM LOS					B	
Minor Lane/Major Mvmt		NELn1	NBL	NBT	SBT	SBR
Capacity (veh/h)		695	1443	-	-	-
HCM Lane V/C Ratio		0.096	0.017	-	-	-
HCM Control Delay (s)		10.7	7.5	-	-	-
HCM Lane LOS		B	A	-	-	-
HCM 95th \%tile Q(veh)		0.3	0.1	-	-	-

Intersection						
Int Delay, s/veh	2.1					
Movement	NBL	NBT	SBT	SBR	NEL	NER
Lane Configurations		4	个		I	
Traffic Vol, veh/h	28	253	128	25	46	30
Future Vol, veh/h	28	253	128	25	46	30
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, \%	3	3	4	4	1	1
Mvmt Flow	29	264	133	26	48	31

Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	159	0	-	0	468	146
Stage 1	-		-	-	146	-
Stage 2	-	-	-	-	322	-
Critical Hdwy	4.13	-	-	-	6.41	6.21
Critical Hdwy Stg 1	-	-	-	-	5.41	-
Critical Hdwy Stg 2	-	-	-	-	5.41	-
Follow-up Hdwy	2.227	-	-	-	3.509	3.309
Pot Cap-1 Maneuver	1414	-	-	-	555	904
Stage 1	-	-	-	-	884	-
Stage 2	-	-	-	-	737	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1414	-	-	-	542	904
Mov Cap-2 Maneuver	-	-	-	-	542	-
Stage 1	-	-	-	-	863	-
Stage 2	-	-	-	-	737	-
Approach	NB		SB		NE	
HCM Control Delay, s	0.8		0		11.4	
HCM LOS					B	
Minor Lane/Major Mvmt		NELn1	NBL	NBT	SBT	SBR
Capacity (veh/h)		644	1414	-	-	-
HCM Lane V/C Ratio		0.123	0.021	-	-	-
HCM Control Delay (s)		11.4	7.6	-	-	-
HCM Lane LOS		B	A	-	-	-
HCM 95th \%tile Q(veh)		0.4	0.1	-	-	-

Intersection						
Int Delay, s/veh	2					
Movement	NBL	NBT	SBT	SBR	NEL	NER
Lane Configurations		4	4		Mr	
Traffic Vol, veh/h	34	169	284	36	29	47
Future Vol, veh/h	34	169	284	36	29	47
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	0	0	1	1	0	0
Mvmt Flow	39	192	323	41	33	53

Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	364	0	-	0	614	344
Stage 1	-		-	-	344	-
Stage 2	-	-	-	-	270	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1206	-	-	-	459	703
Stage 1	-	-	-	-	722	-
Stage 2	-	-	-	-	780	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1206	-	-	-	442	703
Mov Cap-2 Maneuver	-	-	-	-	442	-
Stage 1	-	-	-	-	696	-
Stage 2	-	-	-	-	780	-
Approach	NB		SB		NE	
HCM Control Delay, s	1.4		0		12.4	
HCM LOS					B	
Minor Lane/Major Mvmt		NELn1	NBL	NBT	SBT	SBR
Capacity (veh/h)		574	1206	-	-	-
HCM Lane V/C Ratio		0.15	0.032	-	-	-
HCM Control Delay (s)		12.4	8.1	-	-	-
HCM Lane LOS		B	A	-	-	-
HCM 95th \%tile Q(veh)		0.5	0.1	-	-	-

Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	429	0	-	0	722	405
Stage 1	-	-	-	-	405	-
Stage 2	-	-	-	-	317	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1141	-	-	-	397	650
Stage 1	-	-	-	-	678	-
Stage 2	-	-	-	-	743	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1141	-	-	-	379	650
Mov Cap-2 Maneuver	-	-	-	-	379	-
Stage 1	-	-	-	-	647	-
Stage 2	-	-	-	-	743	-
Approach	NB		SB		NE	
HCM Control Delay, s	1.4		0		13.8	
HCM LOS					B	
Minor Lane/Major Mvmt		NELn1	NBL	NBT	SBT	SBR
Capacity (veh/h)		511	1141	-	-	-
HCM Lane V/C Ratio		0.198	0.04	-	-	-
HCM Control Delay (s)		13.8	8.3	-	-	-
HCM Lane LOS		B	A	-	-	-
HCM 95th \%tile Q(veh)		0.7	0.1	-	-	-

Intersection													
Int Delay, s/veh	1.8												
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations	7	\hat{F}		\%	\dagger			\$			¢		
Traffic Vol, veh/h	8	336	57	26	228	9	7	,	9	14	1	42	
Future Vol, veh/h	8	336	57	26	228	9	7	3	9	14	1	42	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-		None	
Storage Length	50	-	-	50	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88	
Heavy Vehicles, \%	1	1	1	2	2	2	0	0	0	0	0	0	
Mvmt Flow	9	382	65	30	259	10	8	3	10	16	1	48	

Intersection												

Intersection												

Intersection						
Int Delay，s／veh 1.7						
Movement	SBL	SBR	SEL	SET	NWT	NWR
Lane Configurations	${ }^{4}$	「7		4	4	「て
Traffic Vol，veh／h	72	17	15	193	214	172
Future Vol，veh／h	72	17	15	193	214	172
Conflicting Peds，\＃／hr	0	0	0	0	0	0
Sign Control S	Stop	Stop	Free	Free	Free	Free
RT Channelized	－	None	－	None	－	None
Storage Length	140	0	－	－	－	0
Veh in Median Storage，\＃	\＃ 0	－	－	0	0	－
Grade，\％	0	－	－	0	0	－
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles，\％	2	2	1	1	1	1
Mvmt Flow	82	19	17	219	243	195

Intersection						
Int Delay, s/veh 1	1.8					
Movement	SBL	SBR	SEL	SET	NWT	NWR
Lane Configurations	\%	7゙		4	4	「7
Traffic Vol, veh/h	85	20	18	228	252	203
Future Vol, veh/h	85	20	18	228	252	203
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control S	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	140	0	-	-	-	0
Veh in Median Storage, \#	\# 0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, \%	2	2	1	1	1	1
Mvmt Flow	97	23	20	259	286	231

Q1 Are you a business or property owner along Warm Springs Road (between Main Street and Saddle Road)

ANSWER CHOICES	RESPONSES
Yes	18.26%
No	81.74%

Total Respondents: 219

Q2 How frequently do you travel along Warm Springs Road?

Answered: 219 Skipped: 0

ANSWER CHOICES	RESPONSES	
Multiple times a day	56.62%	124
Multiple times a week	30.14%	66
A few times a month	12.33%	27
I try to avoid Warm Springs Road	0.91%	2
TOTAL		219

Q3 How satisfied are you with the current intersections and roadway configurations?

Answered: 177 Skipped: 42

ANSWER CHOICES		AVERAGE NUMBER	TOTAL NUMBER		RESPONSES
				669	177
Total Respondents: 177					
\#					DATE
1	1				5/28/2022 8:42 AM
2	8				5/28/2022 7:28 AM
3	7				5/26/2022 10:23 AM
4	6				5/24/2022 12:41 AM
5	4				5/23/2022 5:37 PM
6	3				5/23/2022 5:07 PM
7	0				5/23/2022 4:54 PM
8	5				5/23/2022 2:34 PM
9	7				5/23/2022 12:39 PM
10	5				5/23/2022 11:54 AM
11	4				5/23/2022 11:46 AM
12	5				5/22/2022 7:55 PM
13	3				5/22/2022 7:46 PM
14	2				5/22/2022 1:09 PM
15	1				5/22/2022 11:54 AM
16	4				5/22/2022 11:07 AM
17	2				5/22/2022 10:04 AM
18	1				5/22/2022 9:37 AM
19	9				5/22/2022 7:54 AM

Warm Springs Road Alternatives \& Improvements

20	10	5/21/2022 8:58 PM
21	3	5/21/2022 5:00 PM
22	0	5/21/2022 1:58 PM
23	5	5/21/2022 12:23 PM
24	9	5/21/2022 11:56 AM
25	8	5/21/2022 11:36 AM
26	2	5/21/2022 10:57 AM
27	5	5/21/2022 10:34 AM
28	4	5/21/2022 10:17 AM
29	2	5/21/2022 9:46 AM
30	5	5/21/2022 9:01 AM
31	2	5/21/2022 8:38 AM
32	6	5/21/2022 7:45 AM
33	1	5/21/2022 7:21 AM
34	3	5/21/2022 7:19 AM
35	1	5/21/2022 6:55 AM
36	2	5/21/2022 6:22 AM
37	10	5/21/2022 6:06 AM
38	5	5/21/2022 12:46 AM
39	7	5/20/2022 11:51 PM
40	4	5/20/2022 10:55 PM
41	1	5/20/2022 10:22 PM
42	5	5/20/2022 9:59 PM
43	2	5/20/2022 9:36 PM
44	4	5/20/2022 9:29 PM
45	2	5/20/2022 9:06 PM
46	6	5/20/2022 8:55 PM
47	3	5/20/2022 8:14 PM
48	10	5/20/2022 7:12 PM
49	8	5/20/2022 7:07 PM
50	5	5/20/2022 7:02 PM
51	1	5/20/2022 6:30 PM
52	4	5/20/2022 6:30 PM
53	7	5/20/2022 5:48 PM
54	3	5/20/2022 5:45 PM
55	10	5/20/2022 5:10 PM
56	5	5/20/2022 4:31 PM
57	5	5/20/2022 4:15 PM

Warm Springs Road Alternatives \& Improvements

58	5	5/20/2022 4:06 PM
59	4	5/20/2022 3:45 PM
60	1	5/20/2022 3:21 PM
61	6	5/20/2022 3:16 PM
62	5	5/20/2022 3:12 PM
63	0	5/20/2022 3:10 PM
64	10	5/20/2022 3:05 PM
65	1	5/20/2022 2:54 PM
66	5	5/20/2022 2:18 PM
67	8	5/20/2022 2:16 PM
68	2	5/20/2022 2:16 PM
69	10	5/20/2022 2:13 PM
70	0	5/20/2022 2:08 PM
71	3	5/20/2022 1:45 PM
72	4	5/20/2022 1:45 PM
73	1	5/20/2022 1:31 PM
74	10	5/20/2022 1:29 PM
75	5	5/20/2022 1:22 PM
76	3	5/20/2022 1:13 PM
77	5	5/20/2022 12:58 PM
78	2	5/20/2022 12:56 PM
79	9	5/20/2022 12:43 PM
80	0	5/20/2022 12:30 PM
81	4	5/20/2022 12:22 PM
82	1	5/20/2022 12:18 PM
83	7	5/20/2022 12:14 PM
84	1	5/20/2022 12:12 PM
85	7	5/20/2022 12:12 PM
86	2	5/20/2022 12:06 PM
87	1	5/20/2022 12:04 PM
88	1	5/20/2022 12:02 PM
89	4	5/20/2022 11:59 AM
90	1	5/20/2022 11:58 AM
91	3	5/20/2022 11:56 AM
92	0	5/20/2022 9:43 AM
93	0	5/19/2022 10:40 AM
94	4	5/19/2022 8:16 AM
95	5	5/18/2022 5:10 PM

Warm Springs Road Alternatives \& Improvements

96	2	5/18/2022 5:09 PM
97	5	5/18/2022 4:09 PM
98	3	5/18/2022 3:10 PM
99	0	5/18/2022 2:26 PM
100	4	5/18/2022 12:49 PM
101	2	5/18/2022 12:27 PM
102	1	5/18/2022 10:38 AM
103	1	5/18/2022 9:10 AM
104	3	5/18/2022 8:37 AM
105	7	5/18/2022 8:35 AM
106	1	5/18/2022 7:57 AM
107	1	5/18/2022 7:00 AM
108	1	5/18/2022 6:46 AM
109	1	5/18/2022 6:12 AM
110	2	5/17/2022 10:38 PM
111	2	5/17/2022 9:40 PM
112	2	5/17/2022 6:10 PM
113	3	5/17/2022 5:35 PM
114	5	5/17/2022 4:57 PM
115	1	5/17/2022 4:40 PM
116	2	5/17/2022 4:12 PM
117	8	5/17/2022 4:11 PM
118	1	5/17/2022 4:08 PM
119	0	5/17/2022 3:54 PM
120	5	5/17/2022 2:45 PM
121	8	5/17/2022 2:08 PM
122	4	5/17/2022 1:50 PM
123	8	5/17/2022 1:01 PM
124	7	5/17/2022 12:48 PM
125	5	5/17/2022 12:45 PM
126	1	5/17/2022 12:23 PM
127	7	5/17/2022 10:18 AM
128	5	5/17/2022 9:19 AM
129	10	5/17/2022 9:10 AM
130	1	5/17/2022 8:54 AM
131	2	5/17/2022 8:13 AM
132	2	5/17/2022 7:58 AM
133	2	5/17/2022 7:57 AM

Warm Springs Road Alternatives \& Improvements

134	2	5/17/2022 7:34 AM
135	7	5/17/2022 7:06 AM
136	1	5/17/2022 5:55 AM
137	9	5/17/2022 3:14 AM
138	1	5/17/2022 12:16 AM
139	3	5/16/2022 11:06 PM
140	2	5/16/2022 10:42 PM
141	3	5/16/2022 10:27 PM
142	5	5/16/2022 10:10 PM
143	8	5/16/2022 10:03 PM
144	5	5/16/2022 9:25 PM
145	10	5/16/2022 9:23 PM
146	6	5/16/2022 8:51 PM
147	0	5/16/2022 7:46 PM
148	5	5/16/2022 7:40 PM
149	0	5/16/2022 6:57 PM
150	2	5/16/2022 6:34 PM
151	5	5/16/2022 6:33 PM
152	4	5/16/2022 6:07 PM
153	4	5/16/2022 1:58 PM
154	4	5/16/2022 1:12 PM
155	3	5/16/2022 1:04 PM
156	2	5/16/2022 12:58 PM
157	7	5/16/2022 12:33 PM
158	6	5/16/2022 12:31 PM
159	3	5/16/2022 12:25 PM
160	1	5/16/2022 12:22 PM
161	4	5/16/2022 12:13 PM
162	3	5/16/2022 12:01 PM
163	2	5/16/2022 11:59 AM
164	2	5/16/2022 11:52 AM
165	1	5/16/2022 11:48 AM
166	1	5/16/2022 11:27 AM
167	5	5/16/2022 11:10 AM
168	4	5/16/2022 10:53 AM
169	5	5/16/2022 10:43 AM
170	5	5/16/2022 10:35 AM
171	3	5/16/2022 10:22 AM

Warm Springs Road Alternatives \& Improvements

| 172 | 1 | $5 / 16 / 2022 ~ 10: 20 ~ A M ~$ |
| :--- | :--- | :--- | :--- |
| 173 | 1 | $5 / 16 / 2022$ 10:07 AM |
| 174 | 2 | $5 / 16 / 2022$ 10:07 AM |
| 175 | 1 | $5 / 16 / 20229: 40 \mathrm{AM}$ |
| 176 | 3 | $5 / 16 / 20229: 33 \mathrm{AM}$ |
| 177 | 1 | $5 / 16 / 20228: 42 \mathrm{AM}$ |

Q4 Should the intersections be reconfigured or adjusted?

Q5 Should pedestrian safety enhancements occur?

Answered: 177 Skipped: 42

ANSWER CHOICES	RESPONSES
Yes	85.88%
No	14.12%
TOTAL	

Q6 Please rank the locations - 1 being the spot in most need of attention:

Answered: 177 Skipped: 42

	1	2	3	4	LEAVE ASIS	TOTAL	SCORE
Warm Springs \& Saddle intersection	$\begin{array}{r} 13.56 \% \\ 24 \end{array}$	$\begin{array}{r} 11.30 \% \\ 20 \end{array}$	$\begin{array}{r} 16.95 \% \\ 30 \end{array}$	$\begin{array}{r} 24.29 \% \\ 43 \end{array}$	$\begin{array}{r} 33.90 \% \\ 60 \end{array}$	177	2.21
Warm Springs \& Lewis intersection	$\begin{array}{r} 35.03 \% \\ 62 \end{array}$	$\begin{array}{r} 22.03 \% \\ 39 \end{array}$	$\begin{array}{r} 20.34 \% \\ 36 \end{array}$	$\begin{array}{r} 4.52 \% \\ 8 \end{array}$	$\begin{array}{r} 18.08 \% \\ 32 \end{array}$	177	3.07
Warm Springs \& 10th intersection	$\begin{array}{r} 26.55 \% \\ 47 \end{array}$	$\begin{array}{r} 32.20 \% \\ 57 \end{array}$	$\begin{array}{r} 16.95 \% \\ 30 \end{array}$	$\begin{array}{r} 8.47 \% \\ 15 \end{array}$	$\begin{array}{r} 15.82 \% \\ 28 \end{array}$	177	2.91
Lack of sidewalks - 10th Street and between 10th \& Lewis	$\begin{array}{r} 16.95 \% \\ 30 \end{array}$	$\begin{array}{r} 21.47 \% \\ 38 \end{array}$	$\begin{array}{r} 23.16 \% \\ 41 \end{array}$	$\begin{array}{r} 22.60 \% \\ 40 \end{array}$	$\begin{array}{r} 15.82 \% \\ 28 \end{array}$	177	2.39

Q7 How satisfied are you with the current intersections and roadway configurations?

Answered: 172 Skipped: 47

ANSWER CHOICES		AVERAGE NUMBER	TOTAL NUMBER	RESPONSES	
				172	
Total Respondents: 172					
\#					DATE
1	10			5/28/2022 8:45 AM	
2	8			5/28/2022 7:29 AM	
3	7			5/26/2022 10:23 AM	
4	6			5/24/2022 12:41 AM	
5	6			5/23/2022 5:37 PM	
6	8			5/23/2022 5:07 PM	
7	0			5/23/2022 4:54 PM	
8	6			5/23/2022 2:34 PM	
9	7			5/23/2022 12:40 PM	
10	9			5/23/2022 11:55 AM	
11	1			5/23/2022 11:46 AM	
12	7			5/22/2022 7:56 PM	
13	2			5/22/2022 7:47 PM	
14	2			5/22/2022 1:14 PM	
15	3			5/22/2022 11:58 AM	
16	1			5/22/2022 11:07 AM	
17	6			5/22/2022 10:04 AM	
18	7			5/22/2022 9:38 AM	
19	9			5/22/2022 7:54 AM	

Warm Springs Road Alternatives \& Improvements

20	10	5/21/2022 8:59 PM
21	5	5/21/2022 5:02 PM
22	5	5/21/2022 1:59 PM
23	5	5/21/2022 12:24 PM
24	9	5/21/2022 11:57 AM
25	8	5/21/2022 11:36 AM
26	6	5/21/2022 10:57 AM
27	5	5/21/2022 10:34 AM
28	9	5/21/2022 10:19 AM
29	3	5/21/2022 9:46 AM
30	5	5/21/2022 9:01 AM
31	1	5/21/2022 8:38 AM
32	5	5/21/2022 7:45 AM
33	3	5/21/2022 7:23 AM
34	1	5/21/2022 7:19 AM
35	1	5/21/2022 6:56 AM
36	2	5/21/2022 6:23 AM
37	10	5/21/2022 6:07 AM
38	6	5/21/2022 12:47 AM
39	7	5/20/2022 11:52 PM
40	7	5/20/2022 10:55 PM
41	1	5/20/2022 10:23 PM
42	5	5/20/2022 9:36 PM
43	2	5/20/2022 9:06 PM
44	1	5/20/2022 8:14 PM
45	10	5/20/2022 7:12 PM
46	8	5/20/2022 7:08 PM
47	2	5/20/2022 7:02 PM
48	3	5/20/2022 6:31 PM
49	1	5/20/2022 6:30 PM
50	4	5/20/2022 5:49 PM
51	7	5/20/2022 5:48 PM
52	10	5/20/2022 5:11 PM
53	6	5/20/2022 4:31 PM
54	2	5/20/2022 4:15 PM
55	6	5/20/2022 4:07 PM
56	9	5/20/2022 3:45 PM
57	1	5/20/2022 3:21 PM

Warm Springs Road Alternatives \& Improvements

58	6	5/20/2022 3:16 PM
59	5	5/20/2022 3:13 PM
60	0	5/20/2022 3:11 PM
61	9	5/20/2022 3:05 PM
62	1	5/20/2022 2:54 PM
63	5	5/20/2022 2:18 PM
64	5	5/20/2022 2:18 PM
65	7	5/20/2022 2:17 PM
66	6	5/20/2022 2:13 PM
67	0	5/20/2022 2:09 PM
68	1	5/20/2022 1:46 PM
69	6	5/20/2022 1:46 PM
70	6	5/20/2022 1:33 PM
71	10	5/20/2022 1:30 PM
72	5	5/20/2022 1:22 PM
73	2	5/20/2022 1:14 PM
74	3	5/20/2022 12:58 PM
75	2	5/20/2022 12:56 PM
76	9	5/20/2022 12:43 PM
77	1	5/20/2022 12:30 PM
78	4	5/20/2022 12:22 PM
79	1	5/20/2022 12:19 PM
80	7	5/20/2022 12:14 PM
81	1	5/20/2022 12:13 PM
82	6	5/20/2022 12:13 PM
83	2	5/20/2022 12:06 PM
84	1	5/20/2022 12:04 PM
85	2	5/20/2022 12:03 PM
86	6	5/20/2022 11:59 AM
87	1	5/20/2022 11:58 AM
88	1	5/20/2022 11:57 AM
89	0	5/20/2022 9:44 AM
90	1	5/19/2022 10:40 AM
91	1	5/19/2022 8:17 AM
92	2	5/18/2022 5:10 PM
93	1	5/18/2022 5:10 PM
94	5	5/18/2022 4:10 PM
95	3	5/18/2022 3:10 PM

Warm Springs Road Alternatives \& Improvements

96	0	5/18/2022 2:26 PM
97	8	5/18/2022 1:40 PM
98	6	5/18/2022 12:29 PM
99	3	5/18/2022 10:38 AM
100	1	5/18/2022 9:10 AM
101	3	5/18/2022 8:37 AM
102	5	5/18/2022 8:36 AM
103	1	5/18/2022 7:58 AM
104	3	5/18/2022 7:04 AM
105	1	5/18/2022 6:46 AM
106	3	5/18/2022 6:12 AM
107	1	5/17/2022 10:38 PM
108	2	5/17/2022 9:41 PM
109	2	5/17/2022 6:11 PM
110	3	5/17/2022 5:35 PM
111	7	5/17/2022 4:58 PM
112	1	5/17/2022 4:40 PM
113	5	5/17/2022 4:12 PM
114	1	5/17/2022 4:08 PM
115	0	5/17/2022 3:55 PM
116	5	5/17/2022 2:46 PM
117	8	5/17/2022 2:08 PM
118	3	5/17/2022 1:52 PM
119	8	5/17/2022 1:03 PM
120	6	5/17/2022 12:49 PM
121	1	5/17/2022 12:46 PM
122	3	5/17/2022 12:26 PM
123	9	5/17/2022 10:18 AM
124	0	5/17/2022 9:19 AM
125	10	5/17/2022 9:10 AM
126	3	5/17/2022 8:54 AM
127	2	5/17/2022 8:14 AM
128	8	5/17/2022 7:59 AM
129	1	5/17/2022 7:57 AM
130	2	5/17/2022 7:35 AM
131	5	5/17/2022 7:07 AM
132	3	5/17/2022 5:56 AM
133	9	5/17/2022 3:15 AM

Warm Springs Road Alternatives \& Improvements

134	5	5/17/2022 12:17 AM
135	5	5/16/2022 11:07 PM
136	1	5/16/2022 10:42 PM
137	3	5/16/2022 10:28 PM
138	3	5/16/2022 10:10 PM
139	8	5/16/2022 9:26 PM
140	10	5/16/2022 9:23 PM
141	7	5/16/2022 8:52 PM
142	0	5/16/2022 7:46 PM
143	3	5/16/2022 7:40 PM
144	2	5/16/2022 6:59 PM
145	1	5/16/2022 6:34 PM
146	4	5/16/2022 6:33 PM
147	3	5/16/2022 6:08 PM
148	5	5/16/2022 1:58 PM
149	4	5/16/2022 1:12 PM
150	2	5/16/2022 1:04 PM
151	2	5/16/2022 12:59 PM
152	7	5/16/2022 12:34 PM
153	9	5/16/2022 12:32 PM
154	3	5/16/2022 12:25 PM
155	0	5/16/2022 12:22 PM
156	6	5/16/2022 12:13 PM
157	2	5/16/2022 12:02 PM
158	1	5/16/2022 11:59 AM
159	3	5/16/2022 11:53 AM
160	3	5/16/2022 11:49 AM
161	1	5/16/2022 11:27 AM
162	2	5/16/2022 11:11 AM
163	4	5/16/2022 10:54 AM
164	5	5/16/2022 10:44 AM
165	5	5/16/2022 10:35 AM
166	3	5/16/2022 10:23 AM
167	5	5/16/2022 10:21 AM
168	1	5/16/2022 10:07 AM
169	2	5/16/2022 10:07 AM
170	1	5/16/2022 9:41 AM
171	3	5/16/2022 9:33 AM

Q8 Should pedestrian safety enhancements occur?

Answered: 172 Skipped: 47

ANSWER CHOICES	RESPONSES	
Yes	83.72%	144
No	16.28%	28
TOTAL		172

Q9 Please rank the above options in order from first choice to last.
Answered: 143 Skipped: 76

	1	2	3	4	5	DON'T EXPLORE THIS OPTION.	TOTAL	SCORE
10th Street roundabout	$\begin{array}{r} 16.78 \% \\ 24 \end{array}$	$\begin{array}{r} 22.38 \% \\ 32 \end{array}$	$\begin{array}{r} 17.48 \% \\ 25 \end{array}$	$\begin{array}{r} 9.09 \% \\ 13 \end{array}$	$\begin{array}{r} 4.90 \% \\ 7 \end{array}$	$\begin{array}{r} 29.37 \% \\ 42 \end{array}$	143	3.52
Lewis Street roundabout	$\begin{array}{r} 17.48 \% \\ 25 \end{array}$	$\begin{array}{r} 16.08 \% \\ 23 \end{array}$	$\begin{array}{r} 23.78 \% \\ 34 \end{array}$	$\begin{array}{r} 11.19 \% \\ 16 \end{array}$	$\begin{array}{r} 2.80 \% \\ 4 \end{array}$	$\begin{array}{r} 28.67 \% \\ 41 \end{array}$	143	3.48
10th Street \& Lewis Street realignment and roundabout	$\begin{array}{r} 31.47 \% \\ 45 \end{array}$	$\begin{array}{r} 16.08 \% \\ 23 \end{array}$	$\begin{array}{r} 13.99 \% \\ 20 \end{array}$	$\begin{array}{r} 8.39 \% \\ 12 \end{array}$	$\begin{array}{r} 1.40 \% \\ 2 \end{array}$	$\begin{array}{r} 28.67 \% \\ 41 \end{array}$	143	3.95
Block/street realignment	$\begin{array}{r} 7.69 \% \\ 11 \end{array}$	$\begin{array}{r} 6.29 \% \\ 9 \end{array}$	$\begin{array}{r} 5.59 \% \\ 8 \end{array}$	$\begin{array}{r} 16.78 \% \\ 24 \end{array}$	$\begin{array}{r} 14.69 \% \\ 21 \end{array}$	$\begin{array}{r} 48.95 \% \\ 70 \end{array}$	143	2.52
Dog Bone roundabout	$\begin{array}{r} 12.68 \% \\ 18 \end{array}$	$\begin{array}{r} 14.79 \% \\ 21 \end{array}$	$\begin{array}{r} 9.15 \% \\ 13 \end{array}$	$\begin{array}{r} 8.45 \% \\ 12 \end{array}$	$\begin{array}{r} 9.86 \% \\ 14 \end{array}$	$\begin{array}{r} 45.07 \% \\ 64 \end{array}$	142	3.22

Q10 How important would these safety enhancements be to you?

ANSWER CHOICES	AVERAGE NUMBER	TOTAL NUMBER		RESPONSES
	6	901	140	

Total Respondents: 140

\#		DATE
1	8	5/26/2022 10:25 AM
2	10	5/25/2022 7:30 PM
3	10	5/23/2022 5:43 PM
4	3	5/23/2022 5:09 PM
5	5	5/23/2022 4:58 PM
6	7	5/23/2022 2:36 PM
7	1	5/23/2022 12:43 PM
8	10	5/23/2022 11:47 AM
9	10	5/22/2022 8:02 PM
10	2	5/22/2022 7:48 PM
11	9	5/22/2022 1:19 PM
12	8	5/22/2022 11:59 AM
13	7	5/22/2022 11:10 AM
14	5	5/22/2022 10:06 AM
15	2	5/22/2022 9:41 AM
16	1	5/22/2022 7:55 AM
17	9	5/21/2022 8:59 PM
18	6	5/21/2022 5:18 PM
19	6	5/21/2022 12:26 PM
20	3	5/21/2022 12:00 PM

Warm Springs Road Alternatives \& Improvements

21	4	5/21/2022 10:22 AM
22	8	5/21/2022 9:47 AM
23	5	5/21/2022 9:04 AM
24	8	5/21/2022 8:42 AM
25	7	5/21/2022 7:49 AM
26	7	5/21/2022 7:26 AM
27	5	5/21/2022 6:58 AM
28	10	5/21/2022 6:45 AM
29	2	5/21/2022 6:35 AM
30	1	5/21/2022 6:08 AM
31	7	5/21/2022 12:52 AM
32	7	5/20/2022 11:58 PM
33	5	5/20/2022 10:57 PM
34	2	5/20/2022 10:27 PM
35	8	5/20/2022 9:10 PM
36	1	5/20/2022 7:13 PM
37	4	5/20/2022 7:11 PM
38	8	5/20/2022 7:04 PM
39	10	5/20/2022 6:35 PM
40	8	5/20/2022 6:32 PM
41	8	5/20/2022 5:51 PM
42	2	5/20/2022 5:13 PM
43	8	5/20/2022 4:48 PM
44	3	5/20/2022 4:17 PM
45	7	5/20/2022 4:10 PM
46	5	5/20/2022 3:47 PM
47	10	5/20/2022 3:24 PM
48	8	5/20/2022 3:19 PM
49	8	5/20/2022 3:14 PM
50	10	5/20/2022 3:12 PM
51	10	5/20/2022 2:57 PM
52	3	5/20/2022 2:29 PM
53	4	5/20/2022 2:23 PM
54	9	5/20/2022 2:21 PM
55	5	5/20/2022 2:14 PM
56	2	5/20/2022 1:48 PM
57	1	5/20/2022 1:31 PM
58	3	5/20/2022 1:25 PM

Warm Springs Road Alternatives \& Improvements

59	9	5/20/2022 1:18 PM
60	10	5/20/2022 12:58 PM
61	2	5/20/2022 12:46 PM
62	1	5/20/2022 12:33 PM
63	6	5/20/2022 12:27 PM
64	2	5/20/2022 12:17 PM
65	10	5/20/2022 12:09 PM
66	5	5/20/2022 12:06 PM
67	6	5/20/2022 12:02 PM
68	10	5/20/2022 12:01 PM
69	10	5/19/2022 10:42 AM
70	10	5/19/2022 8:19 AM
71	7	5/18/2022 5:13 PM
72	9	5/18/2022 5:12 PM
73	5	5/18/2022 4:11 PM
74	8	5/18/2022 3:12 PM
75	10	5/18/2022 2:28 PM
76	10	5/18/2022 1:42 PM
77	6	5/18/2022 12:31 PM
78	3	5/18/2022 10:41 AM
79	10	5/18/2022 9:13 AM
80	10	5/18/2022 8:38 AM
81	5	5/18/2022 8:02 AM
82	10	5/18/2022 7:07 AM
83	9	5/18/2022 6:52 AM
84	5	5/18/2022 6:16 AM
85	6	5/17/2022 10:41 PM
86	3	5/17/2022 6:16 PM
87	10	5/17/2022 5:37 PM
88	8	5/17/2022 5:11 PM
89	5	5/17/2022 4:16 PM
90	10	5/17/2022 4:10 PM
91	10	5/17/2022 3:58 PM
92	3	5/17/2022 2:48 PM
93	8	5/17/2022 2:12 PM
94	1	5/17/2022 1:59 PM
95	7	5/17/2022 1:07 PM
96	7	5/17/2022 12:29 PM

Warm Springs Road Alternatives \& Improvements

97	2	5/17/2022 10:20 AM
98	2	5/17/2022 9:12 AM
99	4	5/17/2022 9:01 AM
100	9	5/17/2022 8:16 AM
101	5	5/17/2022 8:14 AM
102	10	5/17/2022 8:00 AM
103	7	5/17/2022 7:41 AM
104	4	5/17/2022 7:14 AM
105	10	5/17/2022 6:02 AM
106	9	5/17/2022 3:23 AM
107	2	5/17/2022 12:20 AM
108	8	5/16/2022 11:10 PM
109	8	5/16/2022 10:30 PM
110	5	5/16/2022 10:13 PM
111	6	5/16/2022 9:31 PM
112	1	5/16/2022 9:25 PM
113	10	5/16/2022 7:47 PM
114	10	5/16/2022 7:42 PM
115	10	5/16/2022 6:38 PM
116	10	5/16/2022 6:36 PM
117	2	5/16/2022 6:10 PM
118	2	5/16/2022 2:00 PM
119	9	5/16/2022 1:14 PM
120	1	5/16/2022 1:07 PM
121	10	5/16/2022 1:05 PM
122	3	5/16/2022 1:00 PM
123	1	5/16/2022 12:35 PM
124	10	5/16/2022 12:27 PM
125	5	5/16/2022 12:16 PM
126	4	5/16/2022 12:13 PM
127	3	5/16/2022 12:04 PM
128	8	5/16/2022 12:01 PM
129	8	5/16/2022 11:56 AM
130	10	5/16/2022 11:32 AM
131	6	5/16/2022 11:14 AM
132	10	5/16/2022 11:09 AM
133	5	5/16/2022 10:45 AM
134	5	5/16/2022 10:41 AM

Warm Springs Road Alternatives \& Improvements

135	10	$5 / 16 / 2022$ 10:30 AM
136	9	$5 / 16 / 2022$ 10:28 AM
137	9	$5 / 16 / 202210: 10 \mathrm{AM}$
138	10	$5 / 16 / 2022$ 10:09 AM
139	8	$5 / 16 / 20229: 35 \mathrm{AM}$
140	10	$5 / 16 / 20228: 44 \mathrm{AM}$

Q11 How important would these safety enhancements be to you?

Answered: 140 Skipped: 79

ANSWER CHOICES	AVERAGE NUMBER	TOTAL NUMBER		RESPONSES
	6	864	140	

Total Respondents: 140

\#		DATE
1	10	5/26/2022 10:25 AM
2	10	5/25/2022 7:30 PM
3	8	5/23/2022 5:43 PM
4	2	5/23/2022 5:09 PM
5	4	5/23/2022 4:58 PM
6	5	5/23/2022 2:36 PM
7	1	5/23/2022 12:43 PM
8	10	5/23/2022 11:47 AM
9	7	5/22/2022 8:02 PM
10	4	5/22/2022 7:48 PM
11	4	5/22/2022 1:19 PM
12	7	5/22/2022 11:59 AM
13	7	5/22/2022 11:10 AM
14	5	5/22/2022 10:06 AM
15	2	5/22/2022 9:41 AM
16	1	5/22/2022 7:55 AM
17	10	5/21/2022 8:59 PM
18	2	5/21/2022 5:18 PM
19	6	5/21/2022 12:26 PM
20	3	5/21/2022 12:00 PM

Warm Springs Road Alternatives \& Improvements

21	2	5/21/2022 10:22 AM
22	6	5/21/2022 9:47 AM
23	5	5/21/2022 9:04 AM
24	6	5/21/2022 8:42 AM
25	6	5/21/2022 7:49 AM
26	9	5/21/2022 7:26 AM
27	6	5/21/2022 6:58 AM
28	10	5/21/2022 6:45 AM
29	2	5/21/2022 6:35 AM
30	1	5/21/2022 6:08 AM
31	7	5/21/2022 12:52 AM
32	2	5/20/2022 11:58 PM
33	6	5/20/2022 10:57 PM
34	2	5/20/2022 10:27 PM
35	7	5/20/2022 9:10 PM
36	4	5/20/2022 7:13 PM
37	4	5/20/2022 7:11 PM
38	8	5/20/2022 7:04 PM
39	10	5/20/2022 6:35 PM
40	10	5/20/2022 6:32 PM
41	8	5/20/2022 5:51 PM
42	2	5/20/2022 5:13 PM
43	8	5/20/2022 4:48 PM
44	9	5/20/2022 4:17 PM
45	7	5/20/2022 4:10 PM
46	3	5/20/2022 3:47 PM
47	10	5/20/2022 3:24 PM
48	7	5/20/2022 3:19 PM
49	7	5/20/2022 3:14 PM
50	10	5/20/2022 3:12 PM
51	10	5/20/2022 2:57 PM
52	8	5/20/2022 2:29 PM
53	3	5/20/2022 2:23 PM
54	7	5/20/2022 2:21 PM
55	4	5/20/2022 2:14 PM
56	2	5/20/2022 1:48 PM
57	1	5/20/2022 1:31 PM
58	5	5/20/2022 1:25 PM

Warm Springs Road Alternatives \& Improvements

59	2	5/20/2022 1:18 PM
60	10	5/20/2022 12:58 PM
61	2	5/20/2022 12:46 PM
62	1	5/20/2022 12:33 PM
63	8	5/20/2022 12:27 PM
64	2	5/20/2022 12:17 PM
65	6	5/20/2022 12:09 PM
66	8	5/20/2022 12:06 PM
67	6	5/20/2022 12:02 PM
68	10	5/20/2022 12:01 PM
69	10	5/19/2022 10:42 AM
70	10	5/19/2022 8:19 AM
71	7	5/18/2022 5:13 PM
72	7	5/18/2022 5:12 PM
73	1	5/18/2022 4:11 PM
74	8	5/18/2022 3:12 PM
75	10	5/18/2022 2:28 PM
76	5	5/18/2022 1:42 PM
77	4	5/18/2022 12:31 PM
78	2	5/18/2022 10:41 AM
79	10	5/18/2022 9:13 AM
80	10	5/18/2022 8:38 AM
81	5	5/18/2022 8:02 AM
82	10	5/18/2022 7:07 AM
83	9	5/18/2022 6:52 AM
84	4	5/18/2022 6:16 AM
85	7	5/17/2022 10:41 PM
86	3	5/17/2022 6:16 PM
87	9	5/17/2022 5:37 PM
88	8	5/17/2022 5:11 PM
89	5	5/17/2022 4:16 PM
90	10	5/17/2022 4:10 PM
91	9	5/17/2022 3:58 PM
92	7	5/17/2022 2:48 PM
93	4	5/17/2022 2:12 PM
94	1	5/17/2022 1:59 PM
95	7	5/17/2022 1:07 PM
96	7	5/17/2022 12:29 PM

Warm Springs Road Alternatives \& Improvements

97	2	5/17/2022 10:20 AM
98	2	5/17/2022 9:12 AM
99	8	5/17/2022 9:01 AM
100	5	5/17/2022 8:16 AM
101	5	5/17/2022 8:14 AM
102	10	5/17/2022 8:00 AM
103	4	5/17/2022 7:41 AM
104	2	5/17/2022 7:14 AM
105	6	5/17/2022 6:02 AM
106	9	5/17/2022 3:23 AM
107	5	5/17/2022 12:20 AM
108	6	5/16/2022 11:10 PM
109	8	5/16/2022 10:30 PM
110	5	5/16/2022 10:13 PM
111	8	5/16/2022 9:31 PM
112	2	5/16/2022 9:25 PM
113	10	5/16/2022 7:47 PM
114	10	5/16/2022 7:42 PM
115	10	5/16/2022 6:38 PM
116	10	5/16/2022 6:36 PM
117	5	5/16/2022 6:10 PM
118	6	5/16/2022 2:00 PM
119	8	5/16/2022 1:14 PM
120	1	5/16/2022 1:07 PM
121	9	5/16/2022 1:05 PM
122	9	5/16/2022 1:00 PM
123	1	5/16/2022 12:35 PM
124	10	5/16/2022 12:27 PM
125	2	5/16/2022 12:16 PM
126	8	5/16/2022 12:13 PM
127	3	5/16/2022 12:04 PM
128	8	5/16/2022 12:01 PM
129	8	5/16/2022 11:56 AM
130	10	5/16/2022 11:32 AM
131	4	5/16/2022 11:14 AM
132	10	5/16/2022 11:09 AM
133	7	5/16/2022 10:45 AM
134	2	5/16/2022 10:41 AM

Warm Springs Road Alternatives \& Improvements

| 135 | 6 | $5 / 16 / 2022$ 10:30 AM |
| :--- | :--- | :--- | :--- |
| 136 | 9 | $5 / 16 / 202210: 28$ AM |
| 137 | 9 | $5 / 16 / 202210: 10 \mathrm{AM}$ |
| 138 | 10 | $5 / 16 / 2022$ 10:09 AM |
| 139 | 8 | $5 / 16 / 20229: 35 \mathrm{AM}$ |
| 140 | 8 | $5 / 16 / 20228: 44 \mathrm{AM}$ |

Q12 Please share any additional thoughts or feedback and/or leave your email address to sign up for ProjectKetchum.org newsletters.

Answered: 44 Skipped: 175

\#	RESPONSES	DATE
1	The most important element is missing and that is the enhancement of safe bike access. The bike path only functions for through traffic and a limited number of destinations. We need bike lanes and bike safety features on Warm Springs road (from 6th to lewis and a safer bike path beyond the bridge on ws), Lewis and 10th street. Additionally, we need safe access for riders going to and from northwood place and the fire station. Even something simple like a crosswalk from that side of the road to the bike path would be an easy improvement (combined with lowering the speed limit in that stretch). The current bike path is great (in parts) but not sufficient to get riders safely where they need to go. Thank you for addressing this important element especially as we as a community try to reduce our carbon footprint.	5/25/2022 7:41 PM
2	Additional sidewalks designed in the same way as the one going up the hill toward Sawtooth Brewery would be a huge improvement. Connecting the bike path/creating a sidewalk up 10th st could also be a welcome a solution. Thank you City of Ketchum for seeking community feedback on this issue!	5/23/2022 2:38 PM
3	don't forget there is currently a bike path for walking on. Rarely do I see pedestrians walking from Lewis Street to 10th street, and they do have the option of walking on the west side of the road if they desired more space for walking. Please don't waste money needlessly. Pulling out from Hemingway to head back towards Lewis Street is a nightmare, a round about there would be handy, however I frequently use the roundabout in Hailey headed to the high school, and am often astounded at the lack of knowledge US drivers have at how to operated a roundabout.	5/23/2022 12:47 PM
4	If there is to be more retail or living in the light industrial area then sidewalks and bump outs are important!!! If the area will continue to be majority light industry the the need is less.	5/22/2022 1:22 PM
5	Lewis St is the most important thing to address. SO MANY businesses that have to come in and out including 5 wine and beer distributors that have to do delivery's all day. Plus the only car wash in town. 90% of lower 10th street traffic then turn right on Lewis St.	5/22/2022 9:51 AM
6	It's all fine as it is. Let's stop "improving" Ketchum. Slow down development in general. Better yet, just stop.	5/21/2022 9:01 PM
7	I generally dislike roundabouts. The primary issue, I think, is trying to make a left from 10th St. onto warm Spring Road. Visibility is completely blocked if there are cars filling up at the gas station. That intersection is dangerous and needs attention. Safer Pedestrian walkways to and from the YMCA to town are also important. But it's equalky important to make it safer to and from town for bicyclists across 10th and Lewis toward the ymca. The rest of the changes seem unnecessary in my humble opinion. Making a left from Lewis onto warm Springs isn't great, but it doesn't seem to be a major problem. Nothing like trying to make a left from 10th St. onto warm Springs. thanks.	5/21/2022 5:26 PM
8	It seems most American drivers don't know how to use roundabouts (signals, signage, bike paths, etc. are often used wrong or not at all). Please don't add more roundabouts. They're also a pain to plow and often too small for emergency service vehicles.	5/21/2022 12:02 PM
9	This is a terribly written survey and maps/proposals are not explained at all. These survey results should be dismissed	5/21/2022 10:24 AM
10	Thank you for making projects on Warm Springs a priority. As someone who frequently drives, walks, and bikes on this stretch, it can be a frightening commute. Anything that can help the flow of large trucks in particular between 10th/Lewis and Warm Springs will be a tremendous update.	5/21/2022 9:49 AM
11	bulbouts and new sidewalks would be welcome, and less disruptive to install	5/21/2022 9:05 AM
12	Any way to get a pedestrian light or something at the bike path crossing? I frequently am not	5/21/2022 8:44 AM

Warm Springs Road Alternatives \& Improvements

able to stop my car in time because bicyclists quickly approach and I don't see them coming. Have had some close calls. If there was a way for both cyclists and drivers to agree on when the cyclist will be crossing (ie with a light) that would be a much safer situation.

13	Police/speed enforcement would be helpful by the YMCA and near Grumpy's	5/20/2022 11:59 PM
14	FIX MAIN STREET!!! \& if you can't.....! get Hailey to do what needs to be done for the last decade	5/20/2022 7:16 PM
15	I honestly think that making the left lane heading north out of town a turn only lane to warm springs while the right lane is the straight ahead lane would ease congestion and confusion on Main Street heading north....	5/20/2022 7:05 PM
16	My family lives right next to the fire station and we use this route multiple times per day either by car or bicycle. I'm so happy the city is finally working towards making this a safer area for children.	5/20/2022 6:37 PM
17	coburn9526@gmail.com	5/20/2022 3:24 PM
18	The streets are fine for driving. Time abs money should be spent on pedestrian and bicycle safety. All routes out if warm springs neighborhoods should have a cross walk to the bike path. There should be safe abs clear alternate side of the street use for pedestrians or bikes - for neighborhoods on the other side of the bike path. Cars are fine. Take care of the children and people!	5/20/2022 3:16 PM
19	The scariest intersection from a motorist's perspective is the intersection of Saddle and Warm Springs with bicycles speeding down Warm Springs and across Saddle without stopping. It is very blind when approaching Warm Springs from Saddle. Bicyclists are suppose to stop but many don't.	5/20/2022 2:32 PM
20	Please don't make changes that will Make it worse. Better to leave it alone.	5/20/2022 2:15 PM
21	Thanks for keeping us safe out there	5/20/2022 1:19 PM
22	This street and these intersections seem to function fine now and are part of the charm of Ketchum. All of these proposals are way too complicated and will create more problems than they solve.	5/20/2022 12:48 PM
23	if you do the new block then the new property could be rezoned for apartments	5/20/2022 12:03 PM
24	There should be mention of bike traffic and either a protected bike lane or a separate bike road through this area. It is dangerous once you have to leave the bike path and go onto warm springs road to go to the vet/grumpys/basecamp ect.	5/18/2022 9:14 AM
25	this plan has lots of advantages, but lots of issues...Start with one round about and then see how it works...instead of tearing everything up at once...Lewis Street First....	5/18/2022 8:03 AM
26	Please keep the school and related pedestrian and vehicle traffic along 10th street in mind.	5/17/2022 10:42 PM
27	People speeding in front of YMCA is awful and I have had people go around me thru the crosswalk when i was stopped at crosswalk.	5/17/2022 4:00 PM
28	I think that the pedestrian improvements are far more important and a significantly better and more cost effective means of addressing pedestrian safety than roundabouts. Functional "warning/caution" lights and adding to/improving the sidewalks, adding bulb outs, and more defined marking/painting and signage would make each of the identified intersections significantly safer for pedestrians and on-road cyclists... and would also be significantly more cost effective/efficient.	5/17/2022 1:12 PM
29	Roundabouts save lives, save money in the long run over traffic lights, ease congestion and frustration, and are beautiful!!!	5/17/2022 12:30 PM
30	pedestrians can wait too. if we really cared about pedestrian safety we would stop encouraging them from blindly walking in front of moving vehicles.	5/17/2022 10:24 AM
31	Roundabouts are confusing and difficult for pedestrians to cross. With potentially more housing development in this area, walkability needs to be prioritized.	5/17/2022 8:02 AM
32	Don't do whatever the stoplight is on Main/4th. That's terrible. Please get rid of it. It really only needs a blinking button crosswalk	5/17/2022 7:43 AM

Warm Springs Road Alternatives \& Improvements

33	My kids have almost been hit multiple times. Thank you for addressing this. My kids go to Boulder Clay works and there is no safe way to get there if you are 8 years old.	5/16/2022 7:49 PM
34	You have not addressed the most significant problem in 10th street, which is the automotive repair business that utilizes a great portion of the street as parking for their business, and has cars backing into 10th street regularly. This is the single biggest issue for 10th street. I live in Wm Springs, take the bus, drive, walk and bike into Ketchum regularly for the past twenty years. The 10th street automotive business is the big problem on 10th street.	5/16/2022 6:40 PM
35	As a warm springs resident who has seen the traffic through this area increase a crazy amount over the last 5 years, I believe that this area is in need of improvements, thank you for looking at it. However I also believe that improvements are needed in order to connect the bike path with the downtown core/Atkinson's area. I love riding my bike to town to meet friends or do chores but hate getting from the bike path west of main street up in to the downtown core. More people biking to town regularly $=$ less parking issues...	5/16/2022 1:17 PM
36	While some changes here can be positive the city has a track record of making things worse when trying to make things better. Main st / SV Rd pedestrian scramble is example. Sometimes less intervention is better.	5/16/2022 12:38 PM
37	Short term, low cost solution to saddle and warm springs: make it a 4 way stop intersection	5/16/2022 12:28 PM
38	The area where Warm Springs breaks off of Main St is a major car \& pedestrian danger too.	5/16/2022 12:15 PM
39	monarch83340@hotmail.com	5/16/2022 12:05 PM
40	Love roundabouts- hope it happens!	5/16/2022 12:02 PM
41	A roundabout at the Warm Springs Rd and Saddle Rd intersection should be considered a top priority.	5/16/2022 11:57 AM
42	Appreciated. More focus is needed on Saddle/WmSpgs intersection! From a human injury standpoint, this is the highest priority, since accidents here are much more likely to involve a cyclist or pedestrian. A fender bender on Lewis is not the same as a ghost bike in front of the YMCA!	5/16/2022 10:33 AM
43	Living on Warm Spring Rd we have been concerned about the increase in traffic over the years. Too many cars, too much noise, and cars making multiple trips.	5/16/2022 10:15 AM
44	Lots of pedestrian traffic with Hemingway school and ymca. I am also concerned about the bike path crossing and traffic into Hemingway on 10th st - disaster waiting to happen	5/16/2022 10:10 AM

High Level Screening Criterion Definitions

Memo

Date:	Monday, June 27, 2022
Project:	Warm Springs Road Alternative Analysis
To:	Jade Riley, City of Ketchum Sherri Newland, S\&C Associates LLC
From:	Cameron Waite, HDR Brett Kohring, HDR
Subject:	Draft Concept Alternative Comparisons \& Recommendations

Introduction

This memo summarizes the high-level screening of different intersection alternatives for the Warm Springs Road corridor within the City of Ketchum, Idaho. Previously, an Existing Conditions Memo was submitted that details the analysis of existing operational, safety and land use of the corridor.

Concept Alternatives Development

The five alternative concepts developed all improve operations for all modes of travel along Warm Springs Road and provide opportunities to improve connectivity for pedestrians, bikes, and transit while having unique impacts to adjacent properties. The concept alternatives are presented in Figures 1 through 5 and are described below.

No-Build Alternative

The no-build alternative was evaluated along with the concept alternatives for comparison purposes.

Concept Alternative $1-10^{\text {th }}$ Street Roundabout

Figure 1 shows the concept for Alternative 1. This alternative replaces the existing two-way stop controlled Warm Springs Road and $10^{\text {th }}$ Street intersection with a single lane roundabout. This concept provides good vehicle operations while requiring drivers to slow down approaching and moving through the intersection. Pedestrian facilities would be provided on all legs, connecting to existing facilities, and bikes would be able to travel through the roundabout due to low vehicle speeds or could travel around on pathways around the circle, crossing the legs in the pedestrian crosswalks. This concept would require widening the intersection with estimated private and public parking, gas pump, access, and building impacts. The adjacent Warm Springs Road and Lewis Street intersection is not improved with this alternative.

Figure 1. Concept Alternative 1

Concept Alternative 2 - Lewis Street Roundabout

Figure 2 shows the concept for Alternative 2. This alternative replaces the existing stop controlled Warm Springs Road and Lewis Street intersection with a single lane roundabout. This concept provides good vehicle operations while requiring drivers to slow down approaching and moving through the intersection. Pedestrian facilities would be provided on all legs, connecting to existing facilities, and bikes would be able to travel through the roundabout due to low vehicle speeds or could travel around on pathways around the circle, crossing the legs in the pedestrian crosswalks. The bus stop on the west leg would be updated with this alternative. This concept would require widening the intersection with estimated private and public parking and access impacts. The adjacent Warm Springs Road and $10^{\text {th }}$ Street intersection is not improved with this alternative.

Figure 2. Concept Alternative 2

Concept Alternative 3-10 ${ }^{\text {th }}$ Street and Lewis Street Dog bone Roundabout

Figure 3 shows the concept for Alternative 3. This alternative replaces the existing stop controlled Warm Springs Road intersections at both $10^{\text {th }}$ Street and Lewis Street with a single lane "dog bone" roundabout. A dog bone roundabout does not form a complete circle, but instead has a "raindrop" or "teardrop shape" in the middle that connects two roundabout intersections. In this case, the two intersections operate as a single larger intersection connected by the dog-bone roundabout. This alternative has the benefits and impacts described for Alternatives 1 and 2. It also increases out of direction travel for vehicles turning left from some approaches as they must navigate around the entire dog bone to reach the desired street. Pedestrians and bikes potentially have more out of direction travel as well.

Figure 3. Concept Alternative 3

Concept Alternative $4-10^{\text {th }}$ Street \& Lewis Street Realignment \& Roundabout

Figure 4 shows the concept for Alternative 4. This alternative realigns $10^{\text {th }}$ Street between Warms Springs Road and SH-75 to the north and west to match into the Lewis Street and Warm Springs Road intersection, cutting through the adjacent property. The Lewis Street leg is realigned to the east and a single lane roundabout is developed to serve the new four-leg intersection. The existing $10^{\text {th }}$ Street between Warms Springs Road and SH-75 is proposed to be disconnected from Warm Springs Road but could remain as an access to existing businesses along with Leadville Avenue. The abandoned roadway could also be negotiated to incorporated with adjacent landowners for development opportunities.

As with the other roundabout alternatives, this concept provides good vehicle operations while requiring drivers to slow down approaching and moving through the intersection. Pedestrian facilities would be provided on all legs, connecting to existing facilities, and bikes would be able to travel through the roundabout due to low vehicle speeds or could travel around on pathways around the circle, crossing the legs in the pedestrian crosswalks. The bus stop on the west leg of Warm Springs Road would be updated with this alternative. This concept would require widening the intersection with estimated private and public parking, access, and building impacts along with splitting the parcel in the northeast corner. The adjacent Warm Springs Road and $10^{\text {th }}$ Street intersection is updated with this alternative by removing the east leg as described.

Figure 4. Concept Alternative 4

Concept Alternative 5 - Block/Street Realignment

Figure 5 shows the concept for Alternative 5. This alternate realigns Lewis Street to line up with Leadville Avenue and realigns Warm Springs to be a more direct north/south connection through the adjacent parcel. A new east/west street connects Warm Springs Road and Lewis Street, creating a new block between the realigned Warm Springs Road, realigned Lewis Road, 10th Street, and the new street. The intersections are assumed to be stop controlled in each corner of the new block.

Alternative 5 differs from the others because it includes new local street alignments that impact several parcels. It removes most of the curves in these streets while introducing more intersections to the area.

Figure 5. Concept Alternative 5

Screening Process and Criteria

A screening process was developed to evaluate each of the alternatives using criteria identified with the City staff in discussion, at the public meeting, and during other project update meetings. Five categories with a total of eleven criteria were established and are described below. Each alternative was given a score of GOOD, NEUTRAL, or POOR for each of the criteria. A GOOD score received +1 point while a POOR score received -1 point. A NEUTRAL score received 0 points. An overall "score" was given to each alternative by adding up the number of GOOD scores and subtracting the number of POOR scores. A NEUTRAL score for a given criterion neither helped nor hurt an alternative.

Safety Criterion

Safety is the number one priority of the City of Ketchum in providing mobility and access for the users of their system. This criterion qualitatively evaluates each concept alternative for its potential to make the streets and intersections safer.

- If the alternative reduces the number of potential conflicts between vehicles, pedestrians, and bikes, or improves safety, it was scored as GOOD.
- If the alternative does not include any features that will reduce conflicts or improve safety, it was scored as NEUTRAL.
- If the alternative increases the number of potential conflicts between vehicles, pedestrians, and bikes it was scored as POOR.

Multi-Modal Mobility Criteria

Two criteria were identified to evaluate how each concept alternative would improve the area for pedestrian, bike and transit connectivity and operations.

Improved Connectivity For All Modes

The existing pedestrian, bike, and transit facilities are not connected, do not meet ADA requirements, and do not adequately serve all users in the area. This criterion qualitatively evaluates each concept alternative for its potential to improve connectivity and ADA compliance, including reducing or removing out of direction travel.

- If the alternative provides consistent ADA access and connectivity for pedestrians, bikes, and transit vehicles, it was scored as GOOD.
- If the alternative does not provide consistent ADA access and connectivity for pedestrians, bikes, and transit vehicles, it was scored as POOR.

Warms Springs Road Crossings improvements

The current pedestrian and bike crossings of Warm Springs Road are wide and difficult for users to cross due to perceived high speeds on Warm Springs Road and less than desirable distance and visibility. This criterion qualitatively evaluates each concept alternative for its potential to improve Warm Springs Road crossings for pedestrians and bikes.

- If the alternative reduces the width of crossings and/or limits crossings to one direction of vehicular traffic, it was scored as GOOD.
- If the alternative does not reduce the width of the crossings and/or limits crossings to one direction of vehicular traffic, it was scored as POOR.

Right-of-Way Impact Criteria

Right-of-way also is a major cost and impact consideration when developing a project. Three criteria were developed to qualify the impacts each concept alternative would have on property owners in the area.

Split Parcels

- If the alternative does not split any parcels, it was scored as GOOD.
- If the alternative splits 1 or more parcels, it was scored as POOR.

Building Removal

- If the alternative does not require the removal of any buildings, it was scored as GOOD.
- If the alternative requires removal of one or more buildings, it was scored as POOR.

Parking Impacts

- If the alternative does not remove existing private parking or creates the opportunity to replace that parking elsewhere, it was scored as GOOD.
- If the alternative removes existing private parking, it was scored as POOR.

Community Value Criteria

Improve Existing Business Access \& Connectivity

Providing better access to the properties Warm Springs Road, $10^{\text {th }}$ Street, and Lewis Street could encourage continued development of the area as a light industrial hub for the City of Ketchum and even expand to other development opportunities. This criterion qualitatively evaluates the ability of each alternative to encourage development by improving connectivity and reliability along these corridors. This criterion is weighted due to its importance.

- If the alternative provides improved access to Warm Springs Road and another street, it was scored as GOOD.
- If the alternative only provides improved access to Warm Springs Road, it was scored as NEUTRAL.
- If the alternative did not improve access to Warm Springs Road and other streets, it was scored as POOR.

Opportunity for Redevelopment and/or Placemaking

This criterion evaluates how the alternative matches the surrounding land use and provides for future redevelopment opportunities. The alternative should work well with the current and future zoning and existing land uses including retail and commercial business, Ernest Hemingway STEAM School, and the YMCA. The alternative should allow for placemaking within the infrastructure improvements.

- If the alternative matches well with the existing land use and provides for future redevelopment and placemaking, it was scored as GOOD.
- If the alternative matches well with the existing land use but does not provide for future redevelopment and placemaking, it was scored as NEUTRAL.
- If the alternative does not match well with the existing land use and does not provide for future redevelopment and placemaking, it was scored as POOR.

Vehicle Operations Criteria

All the concept alternatives are estimated to operate at acceptable levels of service (LOS) for vehicles, pedestrians, and bikes, so other criteria were established to evaluate how the concept alternative would improve the overall operations of the Warms Springs Road area. Once the two recommended alternatives are selected, a deeper operations analysis will be performed to confirm operations.

Traffic Calming

Calming traffic to maintain lower and consistent speeds is a priority of the City and will enhance the overall operations of the roadways and intersections along with the connections to other mode facilities.

- If the alternative provides positive guidance to calm vehicular traffic, it was scored as GOOD.
- If the alternative does not provide positive guidance to calm vehicular traffic, it was scored as POOR.

Reduce the Number of Intersections/Driveways on Warm Springs Road

This criterion measures the benefits of fewer intersections and driveways along Warm Springs Road as it will reduce the number of conflicts and disruptions to vehicle, pedestrian, and bike movements. Removing conflicts and disruptions will improve operations for all users.

- If the alternative removes one or more intersections and/or driveways from Warm Springs Road, it was scored as GOOD.
- If the alternative does not remove an intersection and/or driveway from Warm Springs Road, it was scored as NEUTRAL.
- If the alternative adds intersections and/or driveways to Warm Springs Road, it was scored as POOR.

Serve as Parade Detour Route

This criterion measures the ability of the alternative to serve as a accommodate State Highway 75 (SH-75) traffic as a detour when parades occur on SH-75.

- If the alternative components will accommodate $\mathrm{SH}-75$ detoured traffic, it was scored as GOOD.
- If the alternative will not accommodate SH-75 detoured traffic or is seen as difficult to do so, it was scored as POOR.

Screening Matrix

Concept Alternative	No Build	$1-10^{\text {th }}$ Street Roundabout	2- Lewis Street Roundabout	3-10 ${ }^{\text {th }}$ Street and Lewis Street Dog bone Roundabout	4-10 ${ }^{\text {th }}$ Street \& Lewis Street Realignment \& Roundabout	5 - Block/Street Realignment
Safety						
Improved Connectivity For All Modes						
Warms Springs Road Crossings Improvements						
Split Parcels						
Building Removal						
Parking Impacts						
Improve Existing Business Access \& Connectivity						
Opportunity for Redevelopment and/or Placemaking						
Traffic Calming						
Reduce the Number of Intersections/Driveways on Warm Springs Road						
Serve as Parade Detour Route						
Total Green Score						
Total Red Score						
Green - Red Total						

Screening

The matrix above will be used by City and consultant staff screeners to evaluate each alternative against the established criteria. Once all screeners have completed their screening, we will hold a meeting to reconcile screening and identify the top two alternatives to move into a more detailed qualitative analysis and screening.

Next Steps

HDR will work with the City of Ketchum to compete the screening, identify which two alternative concepts should be advanced, and conduct the qualitative analysis to identify a preferred alternative.

Intersection						
Int Delay, s/veh	0.6					
Movement	SET	SER	NWL	NWT	NEL	NER
Lane Configurations	\boldsymbol{F}			4	Mr	
Traffic Vol, veh/h	385	16	14	625	16	15
Future Vol, veh/h	385	16	14	625	16	15
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	1	1	0	0
Mvmt Flow	418	17	15	679	17	16

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	435	0	1136	427
Stage 1	-		-	-	427	-
Stage 2	-	-	-	-	709	-
Critical Hdwy	-	-	4.11	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-		2.209	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1130	-	225	632
Stage 1	-	-	-	-	662	-
Stage 2	-	-	-	-	491	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1130	-	222	632
Mov Cap-2 Maneuver	-	-	-	-	222	-
Stage 1	-	-	-	-	662	-
Stage 2	-	-	-	-	485	-
Approach	SE		NW		NE	
HCM Control Delay, s	0		0.2		17.4	
HCM LOS					C	
Minor Lane/Major Mvmt		NELn1	NWL	NWT	SET	SER
Capacity (veh/h)		324	1130	-	-	-
HCM Lane V/C Ratio		0.104	0.013	-	-	-
HCM Control Delay (s)		17.4	8.2	-	-	-
HCM Lane LOS		C	A	-	-	-
HCM 95th \%tile Q(veh)		0.3	0	-	-	-

Intersection						
Int Delay, s/veh	0.4					
Movement	SET	SER	NWL	NWT	NEL	NER
Lane Configurations	\uparrow		1	4	ri	
Traffic Vol, veh/h	620	4	4	479	8	12
Future Vol, veh/h	620	4	4	479	8	12
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	1	1	0	0
Mvmt Flow	674	4	4	521	9	13

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	678	0	1205	676
Stage 1	-		-	-	676	-
Stage 2	-	-	-	-	529	-
Critical Hdwy	-	-	4.11	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-		2.209	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	919	-	205	457
Stage 1	-	-	-	-	509	-
Stage 2	-	-	-	-	595	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	919	-	204	457
Mov Cap-2 Maneuver	-	-	-	-	204	-
Stage 1	-	-	-	-	509	-
Stage 2	-	-	-	-	593	-
Approach	SE		NW		NE	
HCM Control Delay, s	0		0.1		17.7	
HCM LOS					C	
Minor Lane/Major Mvmt		NELn1	NWL	NWT	SET	SER
Capacity (veh/h)		305	919	-	-	-
HCM Lane V/C Ratio		0.071	0.005	-	-	-
HCM Control Delay (s)		17.7	8.9	-	-	-
HCM Lane LOS		C	A	-	-	-
HCM 95th \%tile Q(veh)		0.2	0	-	-	-

LANE SUMMARY

∇ Site: 101 [Warm Springs \& Lewis - 2042 Un-Adjusted AM (Site
Folder: 2042 Un-Adjusted AM)]
Warm Springs \& Lewis
Site Category: (None)
Roundabout

Lane Use and Performance													
		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \qquad \%	Aver. Delay sec	Level of Service	$\begin{array}{r} 95 \% \\ \text { Q } \\ \text { [Veh } \end{array}$	$\begin{gathered} \text { SK OF } \\ \text { JE } \\ \text { Dist] } \\ \mathrm{ft} \end{gathered}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
SouthEast: Warm Springs													
Lane $1^{\text {d }}$	667	3.0	1304	0.512	100	8.2	LOS A	4.0	103.0	Full	1600	0.0	0.0
Approach	667	3.0		0.512		8.2	LOS A	4.0	103.0				
North: Lewis Street													
Lane $1^{\text {d }}$	154	3.0	909	0.170	100	5.6	LOS A	0.7	18.8	Full	1600	0.0	0.0
Approach	154	3.0		0.170		5.6	LOS A	0.7	18.8				
West: Warm Springs													
Lane $1^{\text {d }}$	361	3.0	1175	0.307	100	6.0	LOS A	1.7	42.6	Full	1600	0.0	0.0
Approach	361	3.0		0.307		6.0	LOS A	1.7	42.6				
Intersectio n	1183	3.0		0.512		7.2	LOS A	4.0	103.0				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v / c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Approach Lane Flows (veh/h)								
SouthEast: Warm Springs								
Mov. From SE To Exit:	L1 W	$\begin{aligned} & \mathrm{R} 1 \\ & \mathrm{~N} \end{aligned}$	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	370	298	667	3.0	1304	0.512	100 NA	NA
Approach	370	298	667	3.0		0.512		
North: Lewis Street								
Mov. From N To Exit	L1	R2 W	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. $\%$	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	125	29	154	3.0	909	0.170	100 NA	NA
Approach	125	29	154	3.0		0.170		
West: Warm Springs								
Mov. From W To Exit:	L2 N	R1 SE	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. $\underset{\%}{\text { Util. SL Ov. }}$	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	26	335	361	3.0	1175	0.307	100 NA	NA
Approach	26	335	361	3.0		0.307		

	Total	\%HV Deg.Satn (v/c)	
Intersection	1183	3.0	0.512

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

Merge Analysis							
	Short Percent Opposing Lane Opng in Flow Rate Length Lane $\mathrm{ft} \quad \%$ veh/h pcu/h	Critical Gap sec	Follow-up Lane C Headway Flow Rate sec veh/h	pacity veh/h	Deg. Satn v/c	Min. elay sec	Merge Delay sec
SouthEast Exit: Warm Springs Merge Type: Not Applied							
Full Length Lane	Merge Analysis not applied.						
North Exit: Lewis Street Merge Type: Not Applied							
Full Length Lane	Merge Analysis not applied.						
West Exit: Warm Springs Merge Type: Not Applied							
Full Length Lane	Merge Analysis not applied.						

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HDR, INC. | Licence: PLUS / Enterprise | Processed: Monday, August 22, 2022 9:45:04 AM
Project: C:IUserslbfochtlOneDrive - HDR, InclSIDRA\Ketchuml2042 Warm Springs \& Lewis Roundabout_Cpt. 2.sip9

LANE LEVEL OF SERVICE

Lane Level of Service
\square Site: 101 [Warm Springs \& Lewis - 2042 Un-Adjusted AM (Site
Folder: 2042 Un-Adjusted AM)]
Warm Springs \& Lewis
Site Category: (None)
Roundabout

	Approaches			Intersection
	Southeast	North	West	
LOS	A	A	A	A

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $v / c>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).
Delay Model: HCM Delay Formula (Geometric Delay is not included).

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HDR, INC. | Licence: PLUS / Enterprise | Processed: Monday, August 22, 2022 9:45:04 AM
Project: C:IUserslbfochtlOneDrive - HDR, InclSIDRAIKetchuml2042 Warm Springs \& Lewis Roundabout_Cpt. 2.sip9

INPUT REPORT

Site: 101 [Warm Springs \& Lewis - 2042 Un-Adjusted AM]

Warm Springs \& Lewis
Site Category: (None)
Roundabout

Intersection - Site Data	
Site Name	Warm Springs \& Lewis - 2042 Un-
	Adjusted AM
Site ID	101
Site Category	(None)
Site Title	Warm Springs \& Lewis

Intersection - Site Properties	
Site (Intersection) Type	Roundabout
Setup Name	US HCM (Customary)
Base Setup	NA
Drive Rule	Right-hand side of the road
HCM Version	Yes
Units	US
First Created	-------------------------------
Date	1/26/2022 3:35:14 PM
Created By	LMENG
Organisation	HDR, INC.
Version	9.0.3.9771
Last Modified	------------------------------------
Date	8/12/2022 12:25:27 PM
Modified By	BFOCHT
Organisation	HDR, INC.
Version	9.0.3.9771

Intersection - Approach \& Exit Data										
Location	Name	Type	$\begin{aligned} & \text { No. of } \\ & \text { App. } \\ & \text { Lanes } \end{aligned}$	No. of Exit Lanes	Approach Distance ft	Extra Bunching (Site Analysis) \%	Bunching (Network Analysis) \%	ExitDistance	Approach Area Type Control Factor	
SouthEa st	Warm Springs	Two-way	1	1	1600.0	0	-	-	-	- -
North	Lewis Street	Two-way	1	1	1600.0	0	-	-	-	- -
West	Warm Springs	Two-way	1	1	1600.0	0	-	-	-	-

Movement Definitions - Included Movement Classes			
Name	ID	Model	Designation

Movement Definitions - Origin-Destination Movements		
To	Turn	OD Mov ID
Approach	Warm Springs	
From: SouthEast	L1	3ax
West	R1	18ax
North	Lewis Street	
From: North	L1	$7 a$
SouthEast	R2	14
West		

From: West	Warm Springs	
North	L2	5
SouthEast	R1	12a
Approach	U-Turn Before Intersection	Exclude U-Turn Before Intersection From
	-	Signal Analysis
SouthEast	-	-
North	-	-
West	-	-

Lanes are numbered from left to right in the direction of travel.

Lane Geometry - Lane Disciplines				
To	Turn	Free Queue Distance Approach	Movement Class(es)	
from: SouthEast	App. Lane 1			
West	L1	0	LV, HV	
North	R1	0	LV, HV	
From: North	App. Lane 1			
SouthEast	L1	0	LV, HV	
West	R2	0	LV, HV	
From: West	App. Lane 1			
North	L2	0	LV, HV	
SouthEast	R1	0	LV, HV	

Lane Movements - Flow Proportions			
Exit Lane	SouthEast $\%$	it Leg North \qquad	$\begin{array}{r} \text { West } \\ \% \end{array}$
Light Vehicles (LV)			
From: SouthEast App. Lane 1			
Exit Lane 1	-	100	100
From: North	App.		
Exit Lane 1	100	-	100
From: West	App.		
Exit Lane 1	100	100	-
Heavy Vehicles (HV)			
From: SouthEast App. Lane 1			
Exit Lane 1	-	100	100
From: North App. Lane 1			
Exit Lane 1	100	-	100
From: West App. Lane 1			
Exit Lane 1	100	100	-

Lane Movements - Blockage Calibration			
To Exit Leg			
From: SouthEast App. Lane 1			
Exit Lane 1	-	1.0	1.0
From: North App			
Exit Lane 1	1.0	-	1.0
From: West App. Lane 1			
Exit Lane 1	1.0	1.0	-

Roundabouts - Options

Roundabout Model Options
Roundabout Capacity Model
Roundabout LOS Method
Exclude Geometric Delay
HCM Delay Formula
Apply the SIDRA Model for Unbalanced Flow Conditions for HCM 2010
Apply the SIDRA Model for Unbalanced Flow Conditions for HCM 6
Other Roundabout Models FHWA 2000 Same as Sign Control Yes
Yes-

Use Urban Compact	-
Roundabout	
HCM 2000	No
NAASRA 1986	No

Roundabouts - Geometry									
Location Name	Circ. Lanes	Circ. Island Inscribed WidthDiameterDiameter			Entry Radius	Entry Raindrop Angle Design		Circ Trans Line	Downstr eam Circ Lanes
		ft	ft	ft	ft				
SouthEastWarm	1	20.0	100.0	-	65.0	30.0	No	No	-
Springs									
North Lewis Street	1	20.0	100.0	-	65.0	30.0	No	No	-
West Warm	1	20.0	100.0	-	65.0	30.0	No	No	-
Springs									

HCM 6 Roundabout Capacity Model Parameters					
Location Name	Single L.Circ: Single L.Entry Para. A Para. B	Single L.Circ: Multi L.Entry Para. A Para. B	Multi L.Circ: Single L.Entry Para. A Para. B	Multi L.Circ: Dominant Lane Para. A Para. B	Multi L.Circ: Subdominant Lane Para. A Para. B
SouthEa Warm Springs st	1380.00 .001020	1420.00 .000910	1420.00 .000850	1420.00 .000850	1350.00 .00092
North Lewis Street	1380.00 .001020	1420.00 .000910	1420.00 .000850	1420.00 .000850	1350.00 .00092
West Warm Springs	1380.00 .001020	1420.00 .000910	1420.00 .000850	1420.00 .000850	0 1350.00 .00092
West Warm Springs	1380.00 .001020	1420.00 .000910	1420.00 .000850	1420.00 .000850	1350.0 0

HCM 6 Roundabout Model Calibration

Location	Name	Model Calib.	Entry/Circ. Flow Factor						
		Adjust.							
(HCM6)	(HCM6)			$	$	SouthEast Warm Springs	1.00	None	
:---	:---	:---	:---						
North	Lewis Street	1.00	None						
West	Warm Springs	1.00	None						

Pedestrians - Pedestrian Movements			
Unit Time for Volumes: 60 minutes			
Peak Flow Period: 15 minutes		Flow	Growth
Main Crossing/	Volume	Flow	Scale

No Ped Movements

Volumes - Vehicle Volumes

Unit Time for Volumes: 60 minutes
Peak Flow Period: 15 minutes

Volume Data Method: Total and \%
$\begin{array}{lrrr}\text { Movement } & \text { To Exit Leg } \\ \text { MouthEast } & \text { North } & \text { West } \\ \text { Class } & \text { veh } & \text { veh } & \text { veh }\end{array}$

From: SouthEast	Warm Springs		
Total (veh)	-	274.0	340.0
LV (\%)	-	97.000	97.000
HV (\%)	-	3.000	3.000
From: North	Lewis Street		
Total (veh)	115.0	-	27.0
LV (\%)	97.000	-	97.000
HV (\%)	3.000	-	3.000
From: West	Warm Springs		
Total (veh)	308.0	24.0	-
LV (\%)	97.000	97.00	-
HV (\%)	3.000	3.000	-

$\left.\begin{array}{|lrrr|}\hline \text { Volumes - Volume Factors } \\ \text { To } \\ \text { Peak Flow } \\ \text { Factor } \\ \text { Approach }\end{array} \quad \begin{array}{r}\text { Flow } \\ \text { Scale } \\ \%\end{array}\right)$

Gap Acceptance - Gap Acceptance Data						
Gap Acceptance Data						
Opposed Movement	Critical Gap sec	Follow-up Headway sec	Minimum Departures veh/min	Exiting Flow Effect \%	\% Opp. By Nearest Lane \%	Opng. Peds (UnSig)
SouthEast Warm Springs						
L1	-	-	2.50	0	0.00	Prg(Flow)
R1	-	-	2.50	0	0.00	Prg(Flow)
North Lewis Street						
L1	-	-	2.50	0	0.00	Prg(Flow)
R2	-	-	2.50	0	0.00	Prg(Flow)
West Warm Springs						
L2	-	-	2.50	0	0.00	Prg(Flow)
R1	-	-	2.50	0	0.00	Prg(Flow)

Gap Acceptance - Settings

Gap Acceptance Options				
Gap Acceptance Capacity Model : -				
Merge Analysis \& Zebra Crossing Analysis Parameters				
Parameters	Zebra Crossing on Slip/ Bypass Lane	Midblock Zebra Crossing	[Exit Short Lane	Merge Lane]
Light Vehicles				
Gap Acceptance Factor	1.0	1.0	1.0	1.0
Opposing Vehicle Factor	-	-	1.0	1.0
Continuous Lane	-	-	1800	1800
Capacity				
Heavy Vehicles				
Gap Acceptance Factor	2.0	2.0	2.0	2.0
Opposing Vehicle Factor	-	-	2.0	2.0
Continuous Lane	-	-	1800	1800
Capacity				

Vehicle Movement Data - Path Data						
Turn Ap	Approach Cruise Speed Cruise mph	Exit Speed mph	$\begin{aligned} & \text { Negotiation } \\ & \text { Speed } \\ & \text { mph } \end{aligned}$	Negotiation Distance ft	Downstream Distance ft	Negotiation Radius ft
Light Vehicles (LV)						
From: SouthEast Warm Springs						
L1	40.0	40.0	-	-	-	-
R1	40.0	40.0	-	-	-	-
From: North	Lewis Street					
L1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-
From: West Warm Springs						
L2	40.0	40.0	-	-	-	-
R1	40.0	40.0	-	-	-	-
Heavy Vehicles (HV)						
From: SouthEast Warm Springs						
L1	40.0	40.0	-	-	-	-
R1	40.0	40.0	-	-	-	-
From: North Lewis Street						
L1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-
From: West Warm Springs						
L2	40.0	40.0	-	-	-	-
R1	40.0	40.0	-	-	-	-

L1	45.00	36.00	1.20	1.05	-	2	2	-	
R2	45.00	36.00	1.20	1.18	-	2	2	-	
From: West	Warm	Springs							
L2	45.00	36.00	1.20	1.05	-	2	2	-	
R1	45.00	36.00	1.20	1.05	-	2	2	-	

Site Demand \& Sensitivity

Analysis Method: None

Parameter Settings - Options	
General Options	
Site Level of Service Method	Delay \& v/c (HCM 6)
Site Level of Service Target	LOS D
Pedestrian Level of Service Target	LOS D
Site Performance Measure	Delay
Queue in Output	Average
Percentile Queue	95%
Hours per Year	480 h
Include Short Lanes in determining	No
Approach Queue Storage Ratio	

Parameter Settings - Model Parameters	
Passenger Car Equivalents	
Light Vehicles (LV)	1.00 pcu/veh
Heavy Vehicles (HV)	2.00 pcu/veh
Queue Blockage	0
Blockage Tolerance	
Delay and Queue	Yes
Exclude Geometric Delay	Yes
HCM Delay Formula	Yes
HCM Queue Formula	7.0
Midblock Detection Data	
Effective Detection Zone Length	

Parameter Settings - Vehicle Parameters

Movement Class	lb	kW	Fuel Rate
Light Vehicles (LV)	3500.0	120	2.35
Heavy Vehicles (HV)	33000.0	170	2.633

Parameter Settings - Fuel Consumption				
Movement Class	fi	A	B	Beta
Light Vehicles (LV)	1200	16	0.004	0.1
Heavy Vehicles (HV)	2300	200	0.009	0.075

Parameter Settings - CO Emission				
Movement Class	fi	A	B	Beta
Light Vehicles (LV)	1620	-138	0.0743	0.294
Heavy Vehicles (HV)	25000	320	-0.06	0.04

| Parameter Settings $\mathbf{- H C}$ Emission | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Movement Class | fi | A | B | Beta |
| Light Vehicles (LV) | 340 | -9 | 0.0031 | 0.029 |
| Heavy Vehicles (HV) | 3000 | 1 | -0.0016 | 0.0013 |

Parameter Settings $\boldsymbol{-}$ NOx Emission			Beta	
Movement Class	fi	A	B	Bet
Light Vehicles (LV)	300	-14	0.0068	0.166
Heavy Vehicles (HV)	44000	2820	0.21	1.9

Parameter Settings -Advanced	
Platoon Dispersion Model	
fpf	0.80
fpmin	1.00
fpmax	1.25
Lpmin	200.0 ft
Lpmax	1000.0 ft
n	0.60
Exit (Downstream) Short Lane Model	
Minimum Downstream Utilisation Ratio	20%
Minimum Downstream Distance	100 ft
Distance for Full Lane Utilisation	660 ft
Calibration Parameter	1.2

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HDR, INC. | Licence: PLUS / Enterprise | Created: Friday, August 12, 2022 2:17:52 PM
Project: C:IUserslbfochtlOneDrive - HDR, InclSIDRA\Ketchuml2042 Warm Springs \& Lewis Roundabout_Cpt. 2.sip9

LANE SUMMARY

∇ Site: 101 [Warm Springs \& Lewis - 2042 Un-Adjusted PM (Site
Folder: 2042 Un-Adjusted PM)]
Warm Springs \& Lewis
Site Category: (None)
Roundabout

Lane Use and Performance													
		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \qquad \%	Aver. Delay sec	Level of Service	$\begin{array}{r} 95 \% \\ \text { Q } \\ \text { [Veh } \end{array}$	$\begin{gathered} \text { SK OF } \\ \text { JE } \\ \text { Dist] } \\ \mathrm{ft} \end{gathered}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
SouthEast: Warm Springs													
Lane $1^{\text {d }}$	572	3.0	1277	0.448	100	7.3	LOS A	3.1	79.2	Full	1600	0.0	0.0
Approach	572	3.0		0.448		7.3	LOS A	3.1	79.2				
North: Lewis Street													
Lane $1^{\text {d }}$	297	3.0	873	0.340	100	7.9	LOS A	1.7	42.3	Full	1600	0.0	0.0
Approach	297	3.0		0.340		7.9	LOS A	1.7	42.3				
West: Warm Springs													
Lane $1^{\text {d }}$	510	3.0	1033	0.494	100	9.3	LOS A	3.1	78.6	Full	1600	0.0	0.0
Approach	510	3.0		0.494		9.3	LOS A	3.1	78.6				
Intersectio n	1378	3.0		0.494		8.2	LOS A	3.1	79.2				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v / c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Approach Lane Flows (veh/h)								
SouthEast: Warm Springs								
Mov. From SE To Exit:	$\begin{aligned} & \text { L1 } \\ & \text { W } \end{aligned}$	$\begin{array}{r} \mathrm{R} 1 \\ \mathrm{~N} \end{array}$	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. $\underset{\%}{\text { Util. SL Ov. }}$	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	408	164	572	3.0	1277	0.448	100 NA	NA
Approach	408	164	572	3.0		0.448		
North: Lewis Street								
Mov. From N To Exit:	L1 SE	$\begin{aligned} & \mathrm{R} 2 \\ & \mathrm{~W} \end{aligned}$	Total	\%HV	Cap. veh/h	Deg. Satn v/c	$\begin{gathered} \text { Lane Prob. } \\ \text { Util. SL Ov. } \\ \% \quad \% \end{gathered}$	$\begin{gathered} \text { Ov. } \\ \text { Lane } \\ \text { No. } \end{gathered}$
Lane 1	248	49	297	3.0	873	0.340	100 NA	NA
Approach	248	49	297	3.0		0.340		
West: Warm Springs								
Mov. From W To Exit:	$\begin{gathered} \mathrm{L} 2 \\ \mathrm{~N} \end{gathered}$	R1 SE	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. $\%$	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	46	464	510	3.0	1033	0.494	100 NA	NA
Approach	46	464	510	3.0		0.494		

	Total	\%HV Deg.Satn (v/c)	
Intersection	1378	3.0	0.494

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

Merge Analysis							
	Short Percent Opposing Lane Opng in Flow Rate Length Lane $\mathrm{ft} \quad \%$ veh/h pcu/h	Critical Gap sec	Follow-up Lane C Headway Flow Rate sec veh/h	pacity veh/h	Deg. Satn v/c	Min. elay sec	Merge Delay sec
SouthEast Exit: Warm Springs Merge Type: Not Applied							
Full Length Lane	Merge Analysis not applied.						
North Exit: Lewis Street Merge Type: Not Applied							
Full Length Lane	Merge Analysis not applied.						
West Exit: Warm Springs Merge Type: Not Applied							
Full Length Lane	Merge Analysis not applied.						

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HDR, INC. | Licence: PLUS / Enterprise | Processed: Friday, August 12, 2022 12:24:20 PM
Project: C:IUserslbfochtlOneDrive - HDR, InclSIDRAlKetchuml2042 Warm Springs \& Lewis Roundabout_Cpt. 2.sip9

LANE LEVEL OF SERVICE

Lane Level of Service
∇ Site: 101 [Warm Springs \& Lewis - 2042 Un-Adjusted PM (Site Folder: 2042 Un-Adjusted PM)]
Warm Springs \& Lewis
Site Category: (None)
Roundabout

	Approaches			Intersection
	Southeast	North	West	
LOS	A	A	A	A

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $v / c>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).
Delay Model: HCM Delay Formula (Geometric Delay is not included).

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HDR, INC. | Licence: PLUS / Enterprise | Processed: Friday, August 12, 2022 12:24:20 PM
Project: C:IUserslbfochtlOneDrive - HDR, InclSIDRA\Ketchuml2042 Warm Springs \& Lewis Roundabout_Cpt. 2.sip9

INPUT REPORT

Site: 101 [Warm Springs \& Lewis - 2042 Un-Adjusted PM]

Warm Springs \& Lewis
Site Category: (None)
Roundabout

Intersection - Site Data

Site Name	Warm Springs \& Lewis - 2042 Un-
Adjusted PM	
Site ID	101
Site Category	(None)
Site Title	Warm Springs \& Lewis

Intersection - Site Properties	
Site (Intersection) Type	Roundabout
Setup Name	US HCM (Customary)
Base Setup	NA
Drive Rule	Right-hand side of the road
HCM Version	Yes
Units	US
First Created	--------------------------------------
\quad Date	$1 / 26 / 2022$ 3:35:14 PM
Created By	LMENG
Organisation	HDR, INC.
Version	9.0 .3 .9771
Last Modified	------------------------------------
\quad Date	$8 / 12 / 2022 \quad 12: 25: 27$ PM
Modified By	BFOCHT
Organisation	HDR, INC.
Version	9.0 .3 .9771

Movement Definitions - Included Movement Classes			
Name	ID	Model	Type
Light Vehicles	LV	Lesignation	Standard
Heavy Vehicles	HV	Heavy Vehicle	Standard

Movement Definitions - Origin-Destination Movements		
To Approach	Turn	OD Mov ID
From: SouthEast	Warm	
West	L1	3ax
North	R1	18ax
From: North	Lewis S	
SouthEast	L1	7a
West	R2	14

From: West	Warm Springs	
North	L2	5
SouthEast	R1	12a
Approach	U-Turn Before Intersection	Exclude U-Turn Before Intersection From
	-	Signal Analysis
SouthEast	-	-
North	-	-
West	-	-

Lanes are numbered from left to right in the direction of travel.

Lane Geometry - Lane Disciplines				
To	Turn	Free Queue Distance Approach	Movement Class(es)	
from: SouthEast	App. Lane 1			
West	L1	0	LV, HV	
North	R1	0	LV, HV	
From: North	App. Lane 1			
SouthEast	L1	0	LV, HV	
West	R2	0	LV, HV	
From: West	App. Lane 1			
North	L2	0	LV, HV	
SouthEast	R1	0	LV, HV	

Lane Geometry - Lane Data										
Approach Lane Data										
Approach Lane	Basic Satn Flow tcu/h	Util Ratio \%	Satn Speed	Capacity Adj	Use Given Cap Adj in Network Analysis	Set As Dominant Lane	Include SLip/ ByPass Lane in Entry Lane Count	Apply Satn Flow Est	Short Lane Capacity	Delay Model Param
SouthEast Warm Springs										
App. Lane 1	-	-	-	0.0	No	-	-	-	-	-
North	Lewis Stree									

Lane Movements - Flow Proportions			
Exit Lane	SouthEast $\%$	it Leg North \qquad	$\begin{array}{r} \text { West } \\ \% \end{array}$
Light Vehicles (LV)			
From: SouthEast App. Lane 1			
Exit Lane 1	-	100	100
From: North	App.		
Exit Lane 1	100	-	100
From: West	App.		
Exit Lane 1	100	100	-
Heavy Vehicles (HV)			
From: SouthEast App. Lane 1			
Exit Lane 1	-	100	100
From: North App. Lane 1			
Exit Lane 1	100	-	100
From: West App. Lane 1			
Exit Lane 1	100	100	-

Lane Movements - Blockage Calibration			
To Exit Leg			
From: SouthEast App. Lane 1			
Exit Lane 1	-	1.0	1.0
From: North App			
Exit Lane 1	1.0	-	1.0
From: West App. Lane 1			
Exit Lane 1	1.0	1.0	-

Roundabouts - Options

Roundabout Model Options
Roundabout Capacity Model
Roundabout LOS Method
Exclude Geometric Delay
HCM Delay Formula
Apply the SIDRA Model for Unbalanced Flow Conditions for HCM 2010
Apply the SIDRA Model for Unbalanced Flow Conditions for HCM 6
Other Roundabout Models FHWA 2000

US HCM 6
Same as Sign Control
Yes
Yes
-

No

No

Use Urban Compact	-
Roundabout	
HCM 2000	No
NAASRA 1986	No

Roundabouts - Geometry									
Location Name	Circ. Lanes	Circ. Island Inscribed WidthDiameterDiameter			Entry Radius	Entry Raindrop Angle Design		Circ Trans Line	Downstr eam Circ Lanes
		ft	ft	ft	ft				
SouthEastWarm	1	20.0	100.0	-	65.0	30.0	No	No	-
Springs									
North Lewis Street	1	20.0	100.0	-	65.0	30.0	No	No	-
West Warm	1	20.0	100.0	-	65.0	30.0	No	No	-
Springs									

HCM 6 Roundabout Capacity Model Parameters					
Location Name	Single L.Circ: Single L.Entry Para. A Para. B	Single L.Circ: Multi L.Entry Para. A Para. B	Multi L.Circ: Single L.Entry Para. A Para. B	Multi L.Circ: Dominant Lane Para. A Para. B	Multi L.Circ: Subdominant Lane Para. A Para. B
SouthEa Warm Springs st	1380.00 .001020	1420.00 .000910	1420.00 .000850	1420.00 .000850	1350.00 .00092
North Lewis Street	1380.00 .001020	1420.00 .000910	1420.00 .000850	1420.00 .000850	1350.00 .00092
West Warm Springs	1380.00 .001020	1420.00 .000910	1420.00 .000850	1420.00 .000850	0 1350.00 .00092
West Warm Springs	1380.00 .001020	1420.00 .000910	1420.00 .000850	1420.00 .000850	1350.0 0

HCM 6 Roundabout Model Calibration

Location	Name	Model Calib.	Entry/Circ. Flow Factor						
		Adjust.							
(HCM6)	(HCM6)			$	$	SouthEast Warm Springs	1.00	None	
:---	:---	:---	:---						
North	Lewis Street	1.00	None						
West	Warm Springs	1.00	None						

Pedestrians - Pedestrian Movements			
Unit Time for Volumes: 60 minutes			
Peak Flow Period: 15 minutes		Flow	Growth
Main Crossing/	Volume	Flow	Scale

No Ped Movements

Volumes - Vehicle Volumes

Unit Time for Volumes: 60 minutes
Peak Flow Period: 15 minutes

Volume Data Method: Total and \%
$\begin{array}{lrrr}\text { Movement } & \text { To Exit Leg } \\ \text { MouthEast } & \text { North } & \text { West } \\ \text { Class } & \text { veh } & \text { veh } & \text { veh }\end{array}$

From: SouthEast	Warm Springs		
Total (veh)	-	151.0	375.0
LV (\%)	-	97.000	97.000
HV (\%)	-	3.000	3.000
From: North	Lewis Street		
Total (veh)	228.0	-	45.0
LV (\%)	97.000	-	97.000
HV (\%)	3.000	-	3.000
From: West	Warm Springs		
Total (veh)	427.0	42.0	-
LV (\%)	97.000	97.000	-
HV (\%)	3.000	3.000	-

$\left.\begin{array}{|lrrr|}\hline \text { Volumes - Volume Factors } \\ \text { To } \\ \text { Peak Flow } \\ \text { Factor } \\ \text { Approach }\end{array} \quad \begin{array}{r}\text { Flow } \\ \text { Scale } \\ \%\end{array}\right)$

Gap Acceptance - Gap Acceptance Data						
Gap Acceptance Data						
Opposed Movement	Critical Gap sec	Follow-up Headway sec	Minimum Departures veh/min	Exiting Flow Effect \%	\% Opp. By Nearest Lane \%	Opng. Peds (UnSig)
SouthEast Warm Springs						
L1	-	-	2.50	0	0.00	Prg(Flow)
R1	-	-	2.50	0	0.00	Prg(Flow)
North Lewis Street						
L1	-	-	2.50	0	0.00	Prg(Flow)
R2	-	-	2.50	0	0.00	Prg(Flow)
West Warm Springs						
L2	-	-	2.50	0	0.00	Prg(Flow)
R1	-	-	2.50	0	0.00	Prg(Flow)

Gap Acceptance - Settings

Gap Acceptance Options				
Gap Acceptance Capacity Model : -				
Merge Analysis \& Zebra Crossing Analysis Parameters				
Parameters	Zebra Crossing on Slip/ Bypass Lane	Midblock Zebra Crossing	[Exit Short Lane	Merge Lane]
Light Vehicles				
Gap Acceptance Factor	1.0	1.0	1.0	1.0
Opposing Vehicle Factor	-	-	1.0	1.0
Continuous Lane	-	-	1800	1800
Capacity				
Heavy Vehicles				
Gap Acceptance Factor	2.0	2.0	2.0	2.0
Opposing Vehicle Factor	-	-	2.0	2.0
Continuous Lane	-	-	1800	1800
Capacity				

Vehicle Movement Data - Path Data						
Turn Ap	Approach Cruise Speed Cruise mph	Exit Speed mph	$\begin{aligned} & \text { Negotiation } \\ & \text { Speed } \\ & \text { mph } \end{aligned}$	Negotiation Distance ft	Downstream Distance ft	Negotiation Radius ft
Light Vehicles (LV)						
From: SouthEast Warm Springs						
L1	40.0	40.0	-	-	-	-
R1	40.0	40.0	-	-	-	-
From: North	Lewis Street					
L1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-
From: West Warm Springs						
L2	40.0	40.0	-	-	-	-
R1	40.0	40.0	-	-	-	-
Heavy Vehicles (HV)						
From: SouthEast Warm Springs						
L1	40.0	40.0	-	-	-	-
R1	40.0	40.0	-	-	-	-
From: North Lewis Street						
L1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-
From: West Warm Springs						
L2	40.0	40.0	-	-	-	-
R1	40.0	40.0	-	-	-	-

L1	45.00	36.00	1.20	1.05	-	2	2	-	
R2	45.00	36.00	1.20	1.18	-	2	2	-	
From: West	Warm	Springs							
L2	45.00	36.00	1.20	1.05	-	2	2	-	
R1	45.00	36.00	1.20	1.05	-	2	2	-	

Site Demand \& Sensitivity

Analysis Method: None

Parameter Settings - Options	
General Options	
Site Level of Service Method	Delay \& v/c (HCM 6)
Site Level of Service Target	LOS D
Pedestrian Level of Service Target	LOS D
Site Performance Measure	Delay
Queue in Output	Average
Percentile Queue	95%
Hours per Year	480 h
Include Short Lanes in determining	No
Approach Queue Storage Ratio	

Parameter Settings - Model Parameters	
Passenger Car Equivalents	
Light Vehicles (LV)	1.00 pcu/veh
Heavy Vehicles (HV)	2.00 pcu/veh
Queue Blockage	0
Blockage Tolerance	
Delay and Queue	Yes
Exclude Geometric Delay	Yes
HCM Delay Formula	Yes
HCM Queue Formula	7.0
Midblock Detection Data	
Effective Detection Zone Length	

Parameter Settings - Vehicle Parameters

Movement Class	lb	kW	Fuel Rate
Light Vehicles (LV)	3500.0	120	2.35
Heavy Vehicles (HV)	33000.0	170	2.633

Parameter Settings - Fuel Consumption								
Movement Class	fi	A	B	Beta				
Light Vehicles (LV)	1200	16	0.004	0.1				
Heavy Vehicles (HV)	2300	200	0.009	0.075				

Parameter Settings - CO Emission				
Movement Class	fi	A	B	Beta
Light Vehicles (LV)	1620	-138	0.0743	0.294
Heavy Vehicles (HV)	25000	320	-0.06	0.04

| Parameter Settings $\mathbf{- H C}$ Emission | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Movement Class | fi | A | B | Beta |
| Light Vehicles (LV) | 340 | -9 | 0.0031 | 0.029 |
| Heavy Vehicles (HV) | 3000 | 1 | -0.0016 | 0.0013 |

Parameter Settings $\boldsymbol{-}$ NOx Emission			Beta	
Movement Class	fi	A	B	Bet
Light Vehicles (LV)	300	-14	0.0068	0.166
Heavy Vehicles (HV)	44000	2820	0.21	1.9

Parameter Settings -Advanced	
Platoon Dispersion Model	
fpf	0.80
fpmin	1.00
fpmax	1.25
Lpmin	200.0 ft
Lpmax	1000.0 ft
n	0.60
Exit (Downstream) Short Lane Model	
Minimum Downstream Utilisation Ratio	20%
Minimum Downstream Distance	100 ft
Distance for Full Lane Utilisation	660 ft
Calibration Parameter	1.2

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HDR, INC. | Licence: PLUS / Enterprise | Created: Friday, August 12, 2022 2:18:32 PM
Project: C:IUserslbfochtlOneDrive - HDR, InclSIDRA\Ketchuml2042 Warm Springs \& Lewis Roundabout_Cpt. 2.sip9

LANE SUMMARY

© Site: 101 [Warm Springs Re-Alg. - 2042 Un-Adjusted AM (Site
Folder: 2042 Un-Adjusted AM)]
Warm Springs Re-Aligned Roundabout
Site Category: (None)
Roundabout

Lane Use and Performance													
		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \\ \text { Q } \\ \text { [Veh } \end{gathered}$		Lane Config	Lane Length	Cap. Adj. \%	Prob. Block.
South: Warm Springs													
Lane $1^{\text {d }}$	690	3.0	1224	0.564	100	9.5	LOS A	4.5	116.1	Full	1600	0.0	0.0
Approach	690	3.0		0.564		9.5	LOS A	4.5	116.1				
East: 10th Street													
Lane $1^{\text {d }}$	97	3.0	693	0.140	100	6.7	LOS A	0.6	14.2	Full	1600	0.0	0.0
Approach	97	3.0		0.140		6.7	LOS A	0.6	14.2				
North: Lewis Street													
Lane $1^{\text {d }}$	157	3.0	881	0.178	100	5.9	LOS A	0.8	19.6	Full	1600	0.0	0.0
Approach	157	3.0		0.178		5.9	LOS A	0.8	19.6				
West: Warm Springs													
Lane $1^{\text {d }}$	365	3.0	1138	0.321	100	6.3	LOS A	1.7	44.5	Full	1600	0.0	0.0
Approach	365	3.0		0.321		6.3	LOS A	1.7	44.5				
Intersectio n	1309	3.0		0.564		7.9	LOS A	4.5	116.1				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Approach Lane Flows (veh/h)

South: Warm Springs

Mov. From S To Exit:	L2 W	T1 N	R2 E	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. $\% \quad \%$	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	333	268	89	690	3.0	1224	0.564	100 NA	NA
Approach	333	268	89	690	3.0		0.564		
East: 10th Street									
Mov. From E To Exit:	L2 S	T1 W	R2 N	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov.	$\begin{aligned} & \text { Ov. } \\ & \text { Lane } \\ & \text { No. } \end{aligned}$
Lane 1	26	40	30	97	3.0	693	0.140	100 NA	NA
Approach	26	40	30	97	3.0		0.140		
North: Lewis Street									
Mov. From N	L2	T1	R2	Total	\%HV	Cap.	Deg. Satn	Lane Prob. Util. SL Ov.	Ov. Lane

To Exit:	E	S	W			veh/h	v/c	\% \%	No.
Lane 1	14	115	27	157	3.0	881	0.178	100 NA	NA
Approach	14	115	27	157	3.0		0.178		
West: Warm Springs									
Mov. From W To Exit:	L2 N	T1 E	R2 S	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	Ov. Lane No.
Lane 1	26	46	293	365	3.0	1138	0.321	100 NA	NA
Approach	26	46	293	365	3.0		0.321		
Total \%HV Deg.Satn (v/c)									
Intersection	1309	3.0		0.564					

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

Merge Analysis							
$\begin{gathered} \text { Exit } \\ \text { Lane } \\ \text { Number } \end{gathered}$	Short Percent Opposing Lane Opng in Flow Rate Length Lane \qquad	Critical Gap	Follow-up Headway	Lane Capacity Flow Rate veh/h veh/h	Deg. Satn v/c		Merge Delay sec
South Exit: Warm Springs Merge Type: Not Applied							
Full Length Lane	Merge Analysis not applied.						
East Exit: 10th Street Merge Type: Not Applied							
Full Length Lane 1	Merge Analysis not applied.						
North Exit: Lewis Street Merge Type: Not Applied							
Full Length Lane 1	Merge Analysis not applied.						
West Exit: Warm Springs Merge Type: Not Applied							
Full Length Lane 1	Merge Analysis not applied.						

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HDR, INC. | Licence: PLUS / Enterprise | Processed: Monday, August 22, 2022 9:00:24 AM
Project: C:IUserslbfochtlOneDrive - HDR, InclSIDRA\Ketchuml2042 Warm Springs Re-Alg. Roundabout_Cpt. 4.sip9

LANE LEVEL OF SERVICE

Lane Level of Service

- Site: 101 [Warm Springs Re-Alg. - 2042 Un-Adjusted AM (Site Folder: 2042 Un-Adjusted AM)]
Warm Springs Re-Aligned Roundabout
Site Category: (None)
Roundabout

	Approaches				Intersection
	South	East	North	West	
LOS	A	A	A	A	A

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).
Delay Model: HCM Delay Formula (Geometric Delay is not included).

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HDR, INC. | Licence: PLUS / Enterprise | Processed: Monday, August 22, 2022 9:00:24 AM
Project: C:IUserslbfochtlOneDrive - HDR, InclSIDRA\Ketchuml2042 Warm Springs Re-Alg. Roundabout_Cpt. 4.sip9

INPUT REPORT

Site: 101 [Warm Springs Re-Alg. - 2042 Un-Adjusted AM]
Warm Springs Re-Aligned Roundabout
Site Category: (None)
Roundabout

Intersection - Site Data		
Site Name	Warm Springs Re-Alg. - 2042 Un-	
	Adjusted AM	
Site ID	101	
Site Category	(None)	
Site Title	Warm Springs	Re-Aligned
	Roundabout	

Intersection - Site Properties	
Site (Intersection) Type	Roundabout
Setup Name	US HCM (Customary)
Base Setup	NA
Drive Rule	Right-hand side of the road
HCM Version	Yes
Units	US
First Created	
Date	1/26/2022 3:35:14 PM
Created By	LMENG
Organisation	HDR, INC.
Version	9.0.3.9771
Last Modified	
Date	8/12/2022 12:09:35 PM
Modified By	BFOCHT
Organisation	HDR, INC.
Version	9.0.3.9771

Intersection - Approach \& Exit Data										
Location	Name	Type	No. of App. Lanes	No. of Exit Lanes	Approach Distance	Extra Bunching (Site Analysis)	Extra Bunching (Network Analysis)	Exit Distance	Approach Control	a Type Factor
South	Warm Springs	Two-way	1	1	1600.0	0	-	-	-	-
East	10th Street	Two-way	1	1	1600.0	0	-	-	-	-
North	Lewis Street	Two-way		1	1600.0	0	-	-	-	-
West	Warm Springs	Two-way	1	1	1600.0	0	-	-	-	-

Movement Definitions - Included Movement Classes			
Name	ID	Model	Type
Light Vehicles	LV	Designation	Standard
Heavy Vehicles	HV	Heavy Vehicle	Standard

Movement To		
Approach	Turn	OD Mov ID
From: South	Warm Springs	
West	L2	3
North	T1	8
East	R2	18
From: East	10th Street	
South	L2	1

West	T1	6
North	R2	16
From: North	Lewis Street	
East	L2	7
South	T1	4
West	R2	14
From: West	Warm Springs	
North	L2	5
East	T1	2
South	R2	12
Approach	U-Turn Before	Exclude U-Turn Before
	Intersection	Intersection From
		Signal Analysis
South	-	-
East	-	-
North	-	-
West	-	-

Lanes are numbered from left to right in the direction of travel.

Lane Geometry - Lane Disciplines			
To Approach	Turn	$\begin{aligned} & \text { Free Queue } \\ & \text { Distance } \\ & \mathrm{ft} \end{aligned}$	Movement Class(es)
From: South	App. L		
West	L2	0	LV, HV
North	T1	0	LV, HV
East	R2	0	LV, HV
From: East	App. L		
South	L2	0	LV, HV
West	T1	0	LV, HV
North	R2	0	LV, HV
From: North	App. L		
East	L2	0	LV, HV
South	T1	0	LV, HV

West	R2	0	LV, HV
From: West	App. Lane 1		
North	L2	0	LV, HV
East	T1	0	LV, HV
South	R2	0	LV, HV

Lane Geometry - Lane Data											
Approach Lane Data											
Approach Lane	Basic Satn Flow tcu/h	Util Ratio \%	Satn Speed	Capacity Use Given Adj Cap Adj in Network Analysis		Set As Dominant Lane	Include SLip/ ByPass Lane in Entry Lane Count		Apply Satn Flow Est	Short Lane Capacity	Delay Model Param
South Warm Springs											
App. Lane 1	-	-	-	0.0	No	-	-		-	-	-
East 10th Street											
App. Lane 1	-	-	-	0.0	No	-	-		-	-	-
North Lewis Street											
App. Lane 1	-	-	-	0.0	No	-	-		-	-	-
West Warm Springs											
App. Lane 1	-	-	-	0.0	No	-	-		-	-	-
Merge Analysis											
Exit Lane	Merge Lane Number	Apply Merge Analysis	$\begin{aligned} & \text { ge } \\ & \text { sis } \end{aligned}$	rge Type	Percen Opposing in Short Lane $\%$	Per in Opposin e Merge L			cal Gap sec	Follow-up Headway sec	Minimum Departures veh/min
South Warm Springs											
Exit Lane 1	-		-	-	-	-	-		-	-	-
East 10th Street											
Exit Lane 1	-		-	-	-	-	-		-	-	-
North Lewis Street											
Exit Lane 1	-		-	-	-	-	-		-	-	-
West Warm Springs											
Exit Lane 1	-		-	-		-	-		-	-	-

Lane Movements - Flow Proportions				
Exit Lane	South	$\begin{aligned} & \text { To Exil } \\ & \text { East } \\ & \% \end{aligned}$	North	West
Light Vehicles (LV)				
From: South App. Lane 1				
Exit Lane 1	-	100	100	100
From: East App. Lane 1				
Exit Lane 1	100	-	100	100
From: North App. Lane 1				
Exit Lane 1	100	100	-	100
From: West App. Lane 1				
Exit Lane 1	100	100	100	-
Heavy Vehicles (HV)				
From: South App. Lane 1				
Exit Lane 1	-	100	100	100
From: East App. Lane 1				
Exit Lane 1	100	-	100	100
From: North App. Lane 1				

Exit Lane 1	100	100	-	100
From: West	App. Lane 1			
Exit Lane 1	100	100	100	-
Lane Movements - Blockage Calibration				
Exit Lane	To Exit Leg			West
From: South	App. Lane 1			
Exit Lane 1	-	1.0	1.0	1.0
From: East	App. Lane 1			
Exit Lane 1	1.0	-	1.0	1.0
From: North	App. Lane 1			
Exit Lane 1	1.0	1.0	-	1.0
From: West	App. Lane 1			
Exit Lane 1	1.0	1.0	1.0	-

Roundabouts - Options

Roundabout Model Options
Roundabout Capacity Model
Roundabout LOS Method
Exclude Geometric Delay
HCM Delay Formula
US HCM 6
Same as Sign Control
Yes
Yes
Apply the SIDRA Model for -
Unbalanced Flow Conditions for
HCM 2010
Apply the SIDRA Model for N
Unbalanced Flow Conditions for HCM 6
Other Roundabout Models
FHWA 2000
No
Use Urban Compact

Roundabout
HCM 2000
NAASRA 1986

HCM 6 Roundabout Capacity Model Parameters						
Location	Name	Single L.Circ: Single L.Entry	Single L.Circ: Multi L.Entry	Multi L.Circ: Single L.Entry	Multi L.Circ: Dominant Lane	Multi L.Circ Subdominant Lane
		Para. A Para. B				
South	Warm Springs	1380.00 .001020	1420.00 .000910	1420.00 .000850	1420.00 .000850	1350.00 .00092
East	10th Street	1380.00 .001020	1420.00 .000910	1420.00 .000850	1420.00 .000850	1350.0 0.00092
						0
North	Lewis Street	1380.00 .001020	1420.00 .000910	1420.00 .000850	1420.00 .000850	1350.00 .00092
						0
West	Warm Springs	1380.00 .001020	1420.00 .000910	1420.00 .000850	1420.00 .000850	1350.00 .00092
						0

HCM 6 Roundabout Model Calibration			
Location	Name	Model Calib Factor (HCM6	Entry/Circ. Flow Adjust. (HCM6
South	Warm Springs	1.00	None
East	10th Street	1.00	None
North	Lewis Street	1.00	None
West	Warm Springs	1.00	None

Pedestrians - Pedestrian Movements				
Unit Time for Volumes: 60 minutes				
Peak Flow Period: 15 minutes		Peak	Flow	Growth
Main Crossing/	Volume	Flow	Scale	Rate
Slip/Bypass Lane	ped	$\%$	$\%$	$\%$
				$\%$

No Ped Movements

Pedestrians - Pedestrian Movement Data									
Main	Mov.	Crossing	Conflict Zone	Oppng	P.Deg.	Walking	App. Trav.	Downst.	Queue
Crossing/	ID	Distance	Length	Ped.Fac.	Satn	Speed	Distance	Distance	Space
Slip/									
Bypass									
Lane									
Crossing									
		ft	ft			ft/sec	ft	ft	ft
No Ped M	ements								

Volumes - Vehicle Volumes				
Unit Time for Volumes: 60 minutes Peak Flow Period: 15 minutes Volume Data Method: Total and \%				
Movement Class	South veh	$\begin{aligned} & \text { To Exil } \\ & \text { East } \\ & \text { veh } \end{aligned}$	North veh	West veh
From: South Total (veh) LV (\%) HV (\%)	Warm	$\begin{array}{r} \text { rings } \\ 82.0 \\ 97.000 \\ 3.000 \end{array}$	$\begin{array}{r} 247.0 \\ 97.000 \\ 3.000 \end{array}$	$\begin{array}{r} 306.0 \\ 97.000 \\ 3.000 \end{array}$
From: East Total (veh) LV (\%) HV (\%)	$\begin{array}{r} 10 \text { th } \\ 24.0 \\ 97.000 \\ 3.000 \end{array}$	et	$\begin{array}{r} 28.0 \\ 97.000 \\ 3.000 \end{array}$	$\begin{array}{r} 37.0 \\ 97.000 \\ 3.000 \end{array}$
From: North Total (veh)	Lewis 106.0	13.0	-	25.0

LV (\%)	97.000	97.000	-	97.000
HV (\%)	3.000	3.000	-	3.000
From: West	Warm Springs			
Total (veh)	270.0	42.0	24.0	-
LV (\%)	97.000	97.000	97.000	-
HV (\%)	3.000	3.000	3.000	-

Volumes - Volume Factors			
To Approach	Peak Flow Factor \%	Flow Scale \%	Growth Rate \%/year
Light Vehicles (LV)			
From: South	Warm Springs		
West	92.0	100.00	2.00
North	92.0	100.00	2.00
East	92.0	100.00	2.00
From: East	10th Street		
South	92.0	100.00	2.00
West	92.0	100.00	2.00
North	92.0	100.00	2.00
From: North	Lewis Street		
East	92.0	100.00	2.00
South	92.0	100.00	2.00
West	92.0	100.00	2.00
From: West	Warm Springs		
North	92.0	100.00	2.00
East	92.0	100.00	2.00
South	92.0	100.00	2.00
Heavy Vehicles (HV)			
From: South	Warm Springs		
West	92.0	100.00	2.00
North	92.0	100.00	2.00
East	92.0	100.00	2.00
From: East	10th Street		
South	92.0	100.00	2.00
West	92.0	100.00	2.00
North	92.0	100.00	2.00
From: North	Lewis Street		
East	92.0	100.00	2.00
South	92.0	100.00	2.00
West	92.0	100.00	2.00
From: West	Warm Springs		
North	92.0	100.00	2.00
East	92.0	100.00	2.00
South	92.0	100.00	2.00

Gap Acceptance - Gap Acceptance Data						
Gap Acceptance Data						
Opposed Movement	Critical Gap sec	Follow-up Headway sec	Minimum Departures veh/min	Exiting Flow Effect \%	\% Opp. By Nearest Lane \%	Opng. Peds (UnSig)
South Warm Springs						
L2	-	-	2.50	0	0.00	Prg(Flow)
T1	-	-	2.50	0	0.00	Prg(Flow)
R2	-	-	2.50	0	0.00	Prg(Flow)
East 10th Street						
L2	-	-	2.50	0	0.00	Prg(Flow)
T1	-	-	2.50	0	0.00	Prg(Flow)
R2	-	-	2.50	0	0.00	Prg(Flow)
North Lewis Street						
L2	-	-	2.50	0	0.00	Prg(Flow)
T1	-	-	2.50	0	0.00	Prg(Flow)
R2	-	-	2.50	0	0.00	Prg(Flow)

West Warm Springs						
L2	-	-	2.50	0	0.00	Prg(Flow)
T1	-	-	2.50	0	0.00	Prg(Flow)
R2	-	-	2.50	0	0.00	Prg(Flow)

Gap Acceptance - Settings				
Gap Acceptance Options				
Gap Acceptance Capacity Model : -				
Merge Analysis \& Zebra Crossing Analysis Parameters				
Parameters	Zebra Crossing on Slip/ Bypass Lane	Midblock Zebra Crossing	[Exit Short Lane	sis Merge Lane]
Light Vehicles				
Gap Acceptance Factor	1.0	1.0	1.0	1.0
Opposing Vehicle Factor	-	-	1.0	1.0
Continuous Lane Capacity	-	-	1800	1800
Heavy Vehicles				
Gap Acceptance Factor	2.0	2.0	2.0	2.0
Opposing Vehicle Factor	-	- -	2.0	2.0
Continuous Lane Capacity	-	-	1800	1800

Vehicle Movement Data - Path Data						
Turn	Approach Cruise Speed mph	Exit Speed mph	Negotiation Speed mph	Negotiation Distance ft	Downstream Distance ft	Negotiation Radius ft
Light Vehicles (LV)						
From: South	Warm S					
L2	40.0	40.0	-	-	-	-
T1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-
From: East	10th Str					
L2	40.0	40.0	-	-	-	-
T1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-
From: North	Lewis S					
L2	40.0	40.0	-	-	-	-
T1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-
From: West	Warm S					
L2	40.0	40.0	-	-	-	-
T1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-
Heavy Vehicles (HV)						
From: South	Warm S					
L2	40.0	40.0	-	-	-	-
T1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-
From: East	10th Str					
L2	40.0	40.0	-	-	-	-
T1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-
From: North	Lewis S					
L2	40.0	40.0	-	-	-	-
T1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-
From: West	Warm S					
L2	40.0	40.0	-	-	-	-
T1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-

Turn	Queue	Vehicle	Vehicle	Turn Veh Effect		Gap Accp Factor	Opng. Veh Factor	Prac. Deg. Of Satn.
	Space	Length	Occupancy	[Factor	Radius]			
	ft	ft	pers/veh		ft			

Light Vehicles (LV)

Heavy Vehicles (HV)

Site Demand \& Sensitivity

Analysis Method: None

Parameter Settings - Options

General Options
Site Level of Service Method
Site Level of Service Target
Pedestrian Level of Service Target
Site Performance Measure
Queue in Output
Percentile Queue
Hours per Year
LOS D
LOS D
Delay
Average
95\%
480 h
Include Short Lanes in determining
No
Approach Queue Storage Ratio

Parameter Settings - Model Parameters

Passenger Car Equivalents	
Light Vehicles (LV)	$1.00 \mathrm{pcu} / \mathrm{veh}$
Heavy Vehicles (HV)	$2.00 \mathrm{pcu} / \mathrm{veh}$
Queue Blockage	

Blockage Tolerance	0
Delay and Queue	Yes
Exclude Geometric Delay	Yes
HCM Delay Formula	Yes
HCM Queue Formula	
Midblock Detection Data	7.0
Effective Detection Zone Length	

Parameter Settings - Cost						
Efficiency Parameters						
Movement Class		Desired Speed mph		Lower Limit of Speed Efficiency for TTI		
Light Vehicles (LV)		-				0.1
Heavy Vehicles (HV)		-			0.1	
Vehicle Cost Parameters						
Movement Class	Veh Cost Method	Veh Operating Cost			Veh Time Cost	
		[Pump Price of Fuel	Fuel Res. Cost Factor	Ratio of Running Cost to Fuel Cost]	[Avg. Income	Time Value Factor]
		\$/Gal			\$/h	
Light Vehicles (LV)	Operating Cost	2.500	0.700	3.00	29.00	0.400
Heavy Vehicles (HV)	Operating Cost	2.500	0.700	3.00	29.00	0.400
Cost Options						
Cost Unit	\$					

Parameter Settings - Vehicle Parameters			
Movement Class	Mass	lb	Max Power
Light Vehicles (LV)	3500.0	kW	CO2 to
Heavy Vehicles (HV)	33000.0	120	2.35

Parameter Settings - Fuel Consumption				
Movement Class	fi	A	B	Beta
Light Vehicles (LV)	1200	16	0.004	0.1
Heavy Vehicles (HV)	2300	200	0.009	0.075

Parameter Settings - CO Emission			B	Beta
Movement Class	fi	A	0.0743	0.294
Light Vehicles (LV)	1620	-138	-0.06	0.04
Heavy Vehicles (HV)	25000	320		

Parameter Settings - HC Emission					
Movement Class	fi	A	B	Beta	
Light Vehicles (LV)	340	-9	0.0031	0.029	
Heavy Vehicles (HV)	3000	1	-0.0016	0.0013	
Parameter Settings - NOx Emission					
Movement Class	fi	A	B	Beta	
Light Vehicles (LV)	300	-14	0.0068	0.166	
Heavy Vehicles (HV)	44000	2820	0.21	1.9	

Parameter Settings - Advanced
 Platoon Dispersion Model

fpf

fpmin	1.00
fpmax	1.25
Lpmin	200.0 ft
Lpmax	1000.0 ft
n	0.60
Exit (Downstream)	Short Lane Model
Minimum Downstream Utilisation Ratio	20%
Minimum Downstream Distance	100 ft
Distance for Full Lane Utilisation	660 ft
Calibration Parameter	1.2

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HDR, INC. | Licence: PLUS / Enterprise | Created: Monday, August 22, 2022 9:37:45 AM
Project: C:IUserslbfochtlOneDrive - HDR, InclSIDRAIKetchuml2042 Warm Springs Re-Alg. Roundabout_Cpt. 4.sip9

LANE SUMMARY

∇ Site: 101 [Warm Springs Re-Alg. - 2042 Un-Adjusted PM (Site
Folder: 2042 Un-Adjusted PM)]
Warm Springs Re-Aligned Roundabout
Site Category: (None)
Roundabout

Lane Use and Performance													
	DEMAND FLOWS		Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Aver. Delay sec	Level of Service	95\% BACK OF QUEUE		Lane Config	Lane Length	Cap. Prob. Adj. Block.	
South: Warm Springs													
Lane $1^{\text {d }}$	527	3.0	1182	0.446	100	7.7	LOS A	2.9	73.9	Full	1600	0.0	0.0
Approach	527	3.0		0.446		7.7	LOS A	2.9	73.9				
East: 10th Street													
Lane $1^{\text {d }}$	126	3.0	767	0.164	100	6.4	LOS A	0.7	17.3	Full	1600	0.0	0.0
Approach	126	3.0		0.164		6.4	LOS A	0.7	17.3				
North: Lewis Street													
Lane $1^{\text {d }}$	297	3.0	838	0.354	100	8.4	LOS A	1.7	43.8	Full	1600	0.0	0.0
Approach	297	3.0		0.354		8.4	LOS A	1.7	43.8				
West: Warm Springs													
Lane $1^{\text {d }}$	511	3.0	991	0.515	100	10.0	LOS B	3.6	93.3	Full	1600	0.0	0.0
Approach	511	3.0		0.515		10.0	LOS B	3.6	93.3				
Intersectio n	1461	3.0		0.515		8.5	LOS A	3.6	93.3				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Approach Lane Flows (veh/h)

South: Warm Springs

To Exit:	E	S	W			veh/h	v/c	\% \%	No.
Lane 1	13	235	49	297	3.0	838	0.354	100 NA	NA
Approach	13	235	49	297	3.0		0.354		
West: Warm Springs									
Mov. From W To Exit:	L2 N	T1 E	R2 S	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	
Lane 1	41	65	404	511	3.0	991	0.515	100 NA	NA
Approach	41	65	404	511	3.0		0.515		
Total \%HV Deg.Satn (v/c)									
Intersection	1461	3.0		0.515					

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

Merge Analysis							
$\begin{gathered} \text { Exit } \\ \text { Lane } \\ \text { Number } \end{gathered}$	Short Percent Opposing Lane Opng in Flow Rate Length Lane \qquad	Critical Gap	Follow-up Headway	Lane Capacity Flow Rate veh/h veh/h	Deg. Satn v/c		Merge Delay sec
South Exit: Warm Springs Merge Type: Not Applied							
Full Length Lane	Merge Analysis not applied.						
East Exit: 10th Street Merge Type: Not Applied							
Full Length Lane 1	Merge Analysis not applied.						
North Exit: Lewis Street Merge Type: Not Applied							
Full Length Lane 1	Merge Analysis not applied.						
West Exit: Warm Springs Merge Type: Not Applied							
Full Length Lane 1	Merge Analysis not applied.						

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HDR, INC. | Licence: PLUS / Enterprise | Processed: Monday, August 22, 2022 8:58:54 AM
Project: C:IUserslbfochtlOneDrive - HDR, InclSIDRA\Ketchuml2042 Warm Springs Re-Alg. Roundabout_Cpt. 4.sip9

LANE LEVEL OF SERVICE

Lane Level of Service
∇ Site: 101 [Warm Springs Re-Alg. - 2042 Un-Adjusted PM (Site Folder: 2042 Un-Adjusted PM)]
Warm Springs Re-Aligned Roundabout
Site Category: (None)
Roundabout

	Approaches				Intersection
	South	East	North	West	
LOS	A	A	A	B	A

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).
Delay Model: HCM Delay Formula (Geometric Delay is not included).

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HDR, INC. | Licence: PLUS / Enterprise | Processed: Monday, August 22, 2022 8:58:54 AM
Project: C:IUserslbfochtlOneDrive - HDR, InclSIDRA\Ketchuml2042 Warm Springs Re-Alg. Roundabout_Cpt. 4.sip9

INPUT REPORT

Site: 101 [Warm Springs Re-Alg. - 2042 Un-Adjusted PM]

Warm Springs Re-Aligned Roundabout
Site Category: (None)
Roundabout

Intersection - Site Data		
Site Name	Warm Springs Re-Alg. - 2042 Un-	
	Adjusted PM	
Site ID	101	
Site Category	(None)	
Site Title	Warm Springs	Re-Aligned
	Roundabout	

Intersection - Site Properties	
Site (Intersection) Type	Roundabout
Setup Name	US HCM (Customary)
Base Setup	NA
Drive Rule	Right-hand side of the road
HCM Version	Yes
Units	US
First Created	
Date	1/26/2022 3:35:14 PM
Created By	LMENG
Organisation	HDR, INC.
Version	9.0.3.9771
Last Modified	----------
Date	8/12/2022 12:23:53 PM
Modified By	BFOCHT
Organisation	HDR, INC.
Version	9.0.3.9771

Movement Definitions - Included Movement Classes			
		Model	Type
Name	LV	Designation	Standard
Light Vehicles	HV	Light Vehicle	Standard
Heavy Vehicles			

Movement To		
Approach	Turn	OD Mov ID
From: South	Warm Springs	
West	L2	3
North	T1	8
East	R2	18
From: East	10th Street	
South	L2	1

West	T1	6
North	R2	16
From: North	Lewis Street	
East	L2	7
South	T1	4
West	R2	14
From: West	Warm Springs	
North	L2	5
East	T1	2
South	R2	12
Approach	U-Turn Before	Exclude U-Turn Before
	Intersection	Intersection From
		Signal Analysis
South	-	-
East	-	-
North	-	-
West	-	-

Lanes are numbered from left to right in the direction of travel.

Lane Geometry - Lane Disciplines			
To Approach	Turn	Free Queue Distance ft	Movement Class(es)
From: South	App. L		
West	L2	0	LV, HV
North	T1	0	LV, HV
East	R2	0	LV, HV
From: East	App. L		
South	L2	0	LV, HV
West	T1	0	LV, HV
North	R2	0	LV, HV
From: North	App. L		
East	L2	0	LV, HV
South	T1	0	LV, HV

West	R2	0	LV, HV
From: West	App. Lane 1		
North	L2	0	LV, HV
East	T1	0	LV, HV
South	R2	0	LV, HV

Lane Geometry - Lane Data											
Approach Lane Data											
Approach Lane	Basic Satn Flow tcu/h	Util Ratio \%	Satn Speed	Capacity Use Given Adj Cap Adj in Network Analysis		Set As Dominant Lane	Include SLip/ ByPass Lane in Entry Lane Count		Apply Satn Flow Est	Short Lane Capacity	Delay Model Param
South Warm Springs											
App. Lane 1	-	-	-	0.0	No	-	-		-	-	-
East 10th Street											
App. Lane 1	-	-	-	0.0	No	-	-		-	-	-
North Lewis Street											
App. Lane 1	-	-	-	0.0	No	-	-		-	-	-
West Warm Springs											
App. Lane 1	-	-	-	0.0	No	-	-		-	-	-
Merge Analysis											
Exit Lane	Merge Lane Number	Apply Merge Analysis	$\begin{aligned} & \text { ge } \\ & \text { sis } \end{aligned}$	rge Type	Percen Opposing in Short Lane $\%$	Per in Opposin e Merge L			cal Gap sec	Follow-up Headway sec	Minimum Departures veh/min
South Warm Springs											
Exit Lane 1	-		-	-	-	-	-		-	-	-
East 10th Street											
Exit Lane 1	-		-	-	-	-	-		-	-	-
North Lewis Street											
Exit Lane 1	-		-	-	-	-	-		-	-	-
West Warm Springs											
Exit Lane 1	-		-	-		-	-		-	-	-

Lane Movements - Flow Proportions				
Exit Lane	South	$\begin{aligned} & \text { To Exil } \\ & \text { East } \\ & \% \end{aligned}$	North	West
Light Vehicles (LV)				
From: South App. Lane 1				
Exit Lane 1	-	100	100	100
From: East App. Lane 1				
Exit Lane 1	100	-	100	100
From: North App. Lane 1				
Exit Lane 1	100	100	-	100
From: West App. Lane 1				
Exit Lane 1	100	100	100	-
Heavy Vehicles (HV)				
From: South App. Lane 1				
Exit Lane 1	-	100	100	100
From: East App. Lane 1				
Exit Lane 1	100	-	100	100
From: North App. Lane 1				

Exit Lane 1	100	100	-	100
From: West	App. Lane 1			
Exit Lane 1	100	100	100	-
Lane Movements - Blockage Calibration				
Exit Lane	To Exit Leg			West
From: South	App. Lane 1			
Exit Lane 1	-	1.0	1.0	1.0
From: East	App. Lane 1			
Exit Lane 1	1.0	-	1.0	1.0
From: North	App. Lane 1			
Exit Lane 1	1.0	1.0	-	1.0
From: West	App. Lane 1			
Exit Lane 1	1.0	1.0	1.0	-

Roundabouts - Options

Roundabout Model Options
Roundabout Capacity Model
Roundabout LOS Method
Exclude Geometric Delay
HCM Delay Formula
US HCM 6
Same as Sign Control
Yes
Yes
Apply the SIDRA Model for -
Unbalanced Flow Conditions for
HCM 2010
Apply the SIDRA Model for N
Unbalanced Flow Conditions for HCM 6
Other Roundabout Models
FHWA 2000
No
Use Urban Compact

Roundabout
HCM 2000
NAASRA 1986

Roundabouts - Geometry										
Location	Name	Circ. Lanes	Circ. Island Inscribed WidthDiameterDiameter			Entry Radius	Entry Raindrop Angle Design		Circ Trans Line	Downstr eam Circ Lanes
			ft	ft	ft	ft	-			
South	Warm	1	20.0	100.0	-	65.0	30.0	No	No	-
	Springs									
East	10th Street	1	20.0	100.0	-	65.0	30.0	No	No	-
North	Lewis Street	1	20.0	100.0	-	65.0	30.0	No	No	-
West	Warm	1	20.0	100.0	-	65.0	30.0	No	No	-
	Springs									

HCM 6 Roundabout Capacity Model Parameters						
Location	Name	Single L.Circ: Single L.Entry	Single L.Circ: Multi L.Entry	Multi L.Circ: Single L.Entry	Multi L.Circ: Dominant Lane	Multi L.Circ Subdominant Lane
		Para. A Para. B				
South	Warm Springs	1380.00 .001020	1420.00 .000910	1420.00 .000850	1420.00 .000850	1350.00 .00092
East	10th Street	1380.00 .001020	1420.00 .000910	1420.00 .000850	1420.00 .000850	1350.0 0.00092
						0
North	Lewis Street	1380.00 .001020	1420.00 .000910	1420.00 .000850	1420.00 .000850	1350.00 .00092
						0
West	Warm Springs	1380.00 .001020	1420.00 .000910	1420.00 .000850	1420.00 .000850	1350.00 .00092
						0

HCM 6 Roundabout Model Calibration			
Location	Name	Model Calib Factor (HCM6	Entry/Circ. Flow Adjust. (HCM6
South	Warm Springs	1.00	None
East	10th Street	1.00	None
North	Lewis Street	1.00	None
West	Warm Springs	1.00	None

Pedestrians - Pedestrian Movements				
Unit Time for Volumes: 60 minutes				
Peak Flow Period: 15 minutes		Peak	Flow	Growth
Main Crossing/	Volume	Flow	Scale	Rate
Slip/Bypass Lane	ped	$\%$	$\%$	$\%$
				$\%$

No Ped Movements

Pedestrians - Pedestrian Movement Data									
Main	Mov.	Crossing	Conflict Zone	Oppng	P.Deg.	Walking	App. Trav.	Downst.	Queue
Crossing/	ID	Distance	Length	Ped.Fac.	Satn	Speed	Distance	Distance	Space
Slip/									
Bypass									
Lane									
Crossing									
		ft	ft			ft/sec	ft	ft	ft
No Ped M	ements								

Volumes - Vehicle Volumes				
Unit Time for Volumes: 60 minutes Peak Flow Period: 15 minutes Volume Data Method: Total and \%				
Movement Class	South veh	To Exi East veh	North veh	West veh
From: South Total (veh) LV (\%) HV (\%)	Warm	$\begin{array}{r} \text { rings } \\ 35.0 \\ 97.000 \\ 3.000 \end{array}$	$\begin{array}{r} 131.0 \\ 97.000 \\ 3.000 \end{array}$	$\begin{array}{r} 319.0 \\ 97.000 \\ 3.000 \end{array}$
From: East Total (veh) LV (\%) HV (\%)	$\begin{array}{r} 10 \text { th } \\ 36.0 \\ 97.000 \\ 3.000 \end{array}$	et $\begin{array}{r}\text { - } \\ - \\ -\end{array}$	$\begin{array}{r} 24.0 \\ 97.000 \\ 3.000 \end{array}$	$\begin{array}{r} 56.0 \\ 97.000 \\ 3.000 \end{array}$
From: North Total (veh)	Lewis	eet 12.0	-	45.0

LV (\%)	97.000	97.000	-	97.000
HV (\%)	3.000	3.000	-	3.000
From: West	Warm Springs			
Total (veh)	372.0	60.0	38.0	-
LV (\%)	97.000	97.000	97.000	-
HV (\%)	3.000	3.000	3.000	-

Volumes - Volume Factors			
To Approach	Peak Flow Factor \%	Flow Scale \%	Growth Rate \%/year
Light Vehicles (LV)			
From: South	Warm Springs		
West	92.0	100.00	2.00
North	92.0	100.00	2.00
East	92.0	100.00	2.00
From: East	10th Street		
South	92.0	100.00	2.00
West	92.0	100.00	2.00
North	92.0	100.00	2.00
From: North	Lewis Street		
East	92.0	100.00	2.00
South	92.0	100.00	2.00
West	92.0	100.00	2.00
From: West	Warm Springs		
North	92.0	100.00	2.00
East	92.0	100.00	2.00
South	92.0	100.00	2.00
Heavy Vehicles (HV)			
From: South	Warm Springs		
West	92.0	100.00	2.00
North	92.0	100.00	2.00
East	92.0	100.00	2.00
From: East 10th Street			
South	92.0	100.00	2.00
West	92.0	100.00	2.00
North	92.0	100.00	2.00
From: North	Lewis Street		
East	92.0	100.00	2.00
South	92.0	100.00	2.00
West	92.0	100.00	2.00
From: West Warm Springs			
North	92.0	100.00	2.00
East	92.0	100.00	2.00
South	92.0	100.00	2.00

Gap Acceptance - Gap Acceptance Data						
Gap Acceptance Data						
Opposed Movement	Critical Gap sec	Follow-up Headway sec	Minimum Departures veh/min	Exiting Flow Effect \%	\% Opp. By Nearest Lane \%	Opng. Peds (UnSig)
South Warm Springs						
L2	-	-	2.50	0	0.00	Prg(Flow)
T1	-	-	2.50	0	0.00	Prg(Flow)
R2	-	-	2.50	0	0.00	Prg(Flow)
East 10th Street						
L2	-	-	2.50	0	0.00	Prg(Flow)
T1	-	-	2.50	0	0.00	Prg(Flow)
R2	-	-	2.50	0	0.00	Prg(Flow)
North Lewis Street						
L2	-	-	2.50	0	0.00	Prg(Flow)
T1	-	-	2.50	0	0.00	Prg(Flow)
R2	-	-	2.50	0	0.00	Prg(Flow)

West Warm Springs						
L2	-	-	2.50	0	0.00	Prg(Flow)
T1	-	-	2.50	0	0.00	Prg(Flow)
R2	-	-	2.50	0	0.00	Prg(Flow)

Gap Acceptance - Settings				
Gap Acceptance Options				
Gap Acceptance Capacity Model : -				
Merge Analysis \& Zebra Crossing Analysis Parameters				
Parameters	Zebra Crossing on Slip/ Bypass Lane	Midblock Zebra Crossing	[Exit Short Lane	sis Merge Lane]
Light Vehicles				
Gap Acceptance Factor	1.0	1.0	1.0	1.0
Opposing Vehicle Factor	-	-	1.0	1.0
Continuous Lane Capacity	-	-	1800	1800
Heavy Vehicles				
Gap Acceptance Factor	2.0	2.0	2.0	2.0
Opposing Vehicle Factor	-	- -	2.0	2.0
Continuous Lane Capacity	-	-	1800	1800

Vehicle Movement Data - Path Data						
Turn	Approach Cruise Speed mph	Exit Speed mph	Negotiation Speed mph	Negotiation Distance ft	Downstream Distance ft	Negotiation Radius ft
Light Vehicles (LV)						
From: South	Warm S					
L2	40.0	40.0	-	-	-	-
T1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-
From: East	10th Str					
L2	40.0	40.0	-	-	-	-
T1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-
From: North	Lewis S					
L2	40.0	40.0	-	-	-	-
T1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-
From: West	Warm S					
L2	40.0	40.0	-	-	-	-
T1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-
Heavy Vehicles (HV)						
From: South	Warm S					
L2	40.0	40.0	-	-	-	-
T1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-
From: East	10th Str					
L2	40.0	40.0	-	-	-	-
T1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-
From: North	Lewis S					
L2	40.0	40.0	-	-	-	-
T1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-
From: West	Warm S					
L2	40.0	40.0	-	-	-	-
T1	40.0	40.0	-	-	-	-
R2	40.0	40.0	-	-	-	-

Turn	Queue	Vehicle	Vehicle	Turn Veh Effect		Gap Accp Factor	Opng. Veh Factor	Prac. Deg. Of Satn.
	Space	Length	Occupancy	[Factor	Radius]			
	ft	ft	pers/veh		ft			

Light Vehicles (LV)

Heavy Vehicles (HV)

Site Demand \& Sensitivity

Analysis Method: None

Parameter Settings - Options

General Options
Site Level of Service Method
Site Level of Service Target
Pedestrian Level of Service Target
Site Performance Measure
Queue in Output
Percentile Queue
Hours per Year
LOS D
LOS D
Delay
Average
95\%
480 h
Include Short Lanes in determining
No
Approach Queue Storage Ratio

Parameter Settings - Model Parameters

Passenger Car Equivalents	
Light Vehicles (LV)	$1.00 \mathrm{pcu} / \mathrm{veh}$
Heavy Vehicles (HV)	$2.00 \mathrm{pcu} / \mathrm{veh}$
Queue Blockage	

Blockage Tolerance	0
Delay and Queue	Yes
Exclude Geometric Delay	Yes
HCM Delay Formula	Yes
HCM Queue Formula	
Midblock Detection Data	7.0
Effective Detection Zone Length	

Parameter Settings - Cost						
Efficiency Parameters						
Movement Class		Desired Speed mph		Lower Limit of Speed Efficiency for TTI		
Light Vehicles (LV)		-				0.1
Heavy Vehicles (HV)		-			0.1	
Vehicle Cost Parameters						
Movement Class	Veh Cost Method	Veh Operating Cost			Veh Time Cost	
		[Pump Price of Fuel	Fuel Res. Cost Factor	Ratio of Running Cost to Fuel Cost]	[Avg. Income	Time Value Factor]
		\$/Gal			\$/h	
Light Vehicles (LV)	Operating Cost	2.500	0.700	3.00	29.00	0.400
Heavy Vehicles (HV)	Operating Cost	2.500	0.700	3.00	29.00	0.400
Cost Options						
Cost Unit	\$					

Parameter Settings - Vehicle Parameters			
Movement Class	Mass	lb	Max Power
Light Vehicles (LV)	3500.0	kW	CO2 to
Heavy Vehicles (HV)	33000.0	120	2.35

Parameter Settings - Fuel Consumption				
Movement Class	fi	A	B	Beta
Light Vehicles (LV)	1200	16	0.004	0.1
Heavy Vehicles (HV)	2300	200	0.009	0.075

Parameter Settings - CO Emission			B	Beta
Movement Class	fi	A	0.0743	0.294
Light Vehicles (LV)	1620	-138	-0.06	0.04
Heavy Vehicles (HV)	25000	320		

Parameter Settings - HC Emission					
Movement Class	fi	A	B	Beta	
Light Vehicles (LV)	340	-9	0.0031	0.029	
Heavy Vehicles (HV)	3000	1	-0.0016	0.0013	
Parameter Settings - NOx Emission					
Movement Class	fi	A	B	Beta	
Light Vehicles (LV)	300	-14	0.0068	0.166	
Heavy Vehicles (HV)	44000	2820	0.21	1.9	

Parameter Settings - Advanced
 Platoon Dispersion Model

fpf

fpmin	1.00
fpmax	1.25
Lpmin	200.0 ft
Lpmax	1000.0 ft
n	0.60
Exit (Downstream)	Short Lane Model
Minimum Downstream Utilisation Ratio	20%
Minimum Downstream Distance	100 ft
Distance for Full Lane Utilisation	660 ft
Calibration Parameter	1.2

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: HDR, INC. | Licence: PLUS / Enterprise | Created: Monday, August 22, 2022 9:41:35 AM
Project: C:IUserslbfochtlOneDrive - HDR, InclSIDRAIKetchuml2042 Warm Springs Re-Alg. Roundabout_Cpt. 4.sip9

Warm Springs Road \& the Main Street corridor

Q1 Which option do you prefer?

Answered: 151 Skipped: 0

ANSWER CHOICES	RESPONSES	
Alternative \#2 - Lewis Street Roundabout	40.40%	61
Alternative \#4 - Realigned Roundabout	59.60%	90

Total Respondents: 151

Q2 What do you like most about your preferred choice?

Answered: 113 Skipped: 38

\#	RESPONSES	DATE
1	better sight lines at 10th street	10/17/2022 10:05 AM
2	Least amount of change to surrounding areas.	10/17/2022 9:43 AM
3	Simple	10/17/2022 7:04 AM
4	Thinking that maybe we don't need such a large roundabout in this location perhaps the smaller 3 way will work fine and be less impactful to other streets.	10/16/2022 9:46 PM
5	simpler, cheaper	10/16/2022 6:03 PM
6	the sharp turn off of 10th is avoided. safer for people walking and biking.	10/16/2022 1:53 PM
7	Solves all the traffic and safety problems	10/16/2022 9:10 AM
8	There isn't that much traffic coming from 10th. And this looks like it would be the less expensive option.	10/16/2022 9:05 AM
9	It takes care of the difficult sight lines at 10th street, but at what cost? There is no discussion of costs and I'm concerned that this solution will be much more costly! If there were a way to realigned the roads at 10th street without taking private property that would be a better solution!	10/16/2022 7:54 AM
10	I works	10/16/2022 12:27 AM
11	It will better disperse the traffic and allow it to flow helping eliminate congestion at that intersection.	10/15/2022 11:27 PM
12	Looks like it will flow better	10/15/2022 10:24 PM
13	Seems more logical and balanced for traffic safety. Also will look better. Provides for better future growth of 10th street.	10/15/2022 8:38 PM
14	Affordable housing	10/15/2022 8:03 PM
15	Illuminates unprotected turns	10/15/2022 7:17 PM
16	I had to choose in order to submit. This survey is missing other choices and the cost of these should be available to evaluate.	10/15/2022 6:04 PM
17	Straightforward	10/15/2022 5:58 PM
18	better flow of traffic	10/15/2022 5:57 PM
19	That it has less impact on private property and will be less expensive	10/15/2022 5:05 PM
20	Access to 10th st	10/15/2022 4:47 PM
21	reduces number of interruptions on warm springs. consolidate into one traffic circle	10/15/2022 4:25 PM
22	Least invasive, roundabouts are excellent.	10/15/2022 4:13 PM
23	Better alignment and less confusion.	10/15/2022 3:15 PM
24	I feel it will make traffic flow better than alternative 2	10/15/2022 1:53 PM
25	better pedestrian safety	10/15/2022 1:08 PM
26	Eliminates blind turns and congestion on tenth by Basecamp and Ketchum auto	10/15/2022 1:07 PM
27	Not as annoying.	10/15/2022 1:06 PM
28	If you're going to fix it, fix it fully. Not partially.	10/15/2022 12:57 PM
		279

Warm Springs Road \& the Main Street corridor

29	It will allow me to drive much faster.	10/15/2022 12:48 PM
30	Less renovation to surrounding properties	10/15/2022 12:47 PM
31	It keeps 10th street still intact.	10/15/2022 12:40 PM
32	Ease to go any direction without left turns into oncoming traffic	10/15/2022 12:07 PM
33	\#4 is more functional and that landowner is doing nothing with their valuable property, which could solve many housing issues for Ketchum, they deserve to have an eminent domain taking.	10/15/2022 11:58 AM
34	It addresses the access problem from 10th street and Lewis Street to access warm springs road without creating more angles and disrupting the Albertson property.	10/15/2022 9:45 AM
35	affordability, likely online sooner	10/15/2022 9:43 AM
36	2 is enough	10/15/2022 9:24 AM
37	I will nolt have to make a left turn into traffic from 10th street	10/15/2022 8:22 AM
38	10th street needs to be included into the roundabout design. The Basecamp gas station obscures the view of traffic coming down Warm Springs road from Highway 75, especially from cars on 10th street. It's dangerous now, and you're always guessing if it's safe to pull onto ERm Springs Road.	10/15/2022 6:58 AM
39	Roundabout but calm	10/15/2022 5:48 AM
40	I like how it includes 10th st.	10/14/2022 9:52 PM
41	It includes 10th Strret	10/14/2022 7:03 PM
42	Less impactful on private property	10/14/2022 6:11 PM
43	Coming down 10th to get to Hemingway in the morning is too dangerous now - you can hardly see cars coming behind gas station.	10/14/2022 4:03 PM
44	Planning farther ahead	10/14/2022 3:00 PM
45	Roundabouts can be stressful to negotiate, especially in snowy/slippery conditions. Having three streets come into the roundabout should cause less problems than having four streets come into the roundabout.	10/14/2022 2:51 PM
46	I like both. \#4 because it alleviates frequently difficult left turn from 10th onto Warm Springs.	10/14/2022 2:40 PM
47	Less impactful to private property.	10/14/2022 2:29 PM
48	It addresses all impacted intersections; but there must be some guidance/support for any displaced property owners (Alberstons?)	10/14/2022 2:24 PM
49	Clean. Easy to understand flow. No impact to current property owner (still have hopes that one day soon the owners will see this property as a perfect spot for community housing)	10/14/2022 2:24 PM
50	It will be a better flow for the left turning traffic from 10th to Lewis	10/14/2022 2:23 PM
51	Better traffic flow from Hwy 75	10/14/2022 2:02 PM
52	It improves the visibility situation on 10th. Alternative 2 doesn't seem to do that. Also seems more seamless.	10/14/2022 1:25 PM
53	Removes a blind corner	10/14/2022 1:20 PM
54	improves blind spots at the basecamp left turn on 10th street	10/12/2022 12:50 PM
55	Neither but the "survey" did not allow that as an option, you had to check one of your comments would not post - it is not clear what has been presented as the actual problem, which makes it impossible to determine if this will solve the problem. Statements such as "enhance public realm" and "traffic calming" are not quantifiable terms to define a problem and its resolution. One of the main problems with the appearance and traffic flow issues on 10th Street are public roadways being used as storage areas for auto repair businesses. Resolving that issue would not cost the city anything and would vastly increase the connectivity of 10th Street. Putting concrete or other structures in the middle of the roadway has not been shown to	10/11/2022 3:38 PM

Warm Springs Road \& the Main Street corridor

be effective in the past, i.e., remember the median that was installed by the Elkhorn traffic light

56	It has less of an impact to private property.	10/11/2022 3:37 PM
57	ease of access to gas station	10/11/2022 10:29 AM
58	It provides ease of access to the main routes most utilized and in need of improvement for traffic flow and safety without impacting private property. Tenth street coming westbound from 75 gets far less access, so impact to private property seems less justifiable (and less needed) in my opinion.	10/11/2022 6:56 AM
59	Much less confusion with motorists unfamiliar with the intersection and better for small cars with big trucks.	10/10/2022 6:17 PM
60	Less disruptive	10/10/2022 4:05 PM
61	This seems more likely to execute and that will make sense for the street space.	10/10/2022 11:02 AM
62	If there was a stop light or other way to manage the flow of traffic from 10th street to highway 75 then the realignment would make more sense.	10/10/2022 9:49 AM
63	Better traffic flow	10/9/2022 11:14 PM
64	Better traffic flow	10/9/2022 2:25 PM
65	It i simply less reconfiguration, less construction, less large, less city like. Although both options are too city like.	10/9/2022 12:05 PM
66	less costly	10/9/2022 11:00 AM
67	Traffic from 10 street E flows into the roundabout, instead of there being traffic trying to negotiate the roundabout exit trying to cross Warm Springs rd or turn southbound. Better road alignment and sight lines in general.	10/9/2022 8:47 AM
68	It doesn't require the government to our base land from the Albertsons family which would be very expensive.	10/9/2022 7:00 AM
69	I like the 3-way Lewis street roundabout since folks who are trying to go left onto WS off of Lewis can simply turn right, go around the roundabout, and head the way they want. This seems like the easiest solution and people can still use the roundabout off of Lewis without making it a massive and therefore time wasting roundabout with 4 lanes feeding into it.	10/9/2022 6:25 AM
70	Doing something useful with that abandoned lot	10/8/2022 7:56 PM
71	Least expense to city...	10/8/2022 3:58 PM
72	If its going to get done do it all the way!	10/8/2022 3:07 PM
73	The gradual turn form 10th.	10/8/2022 10:20 AM
74	It takes out the 10th street debacle. Ideally it will also offer wider than average sidewalks or a true "bike path" extension and put non car traffic first.	10/8/2022 10:15 AM
75	Less confusing	10/8/2022 9:19 AM
76	Better traffic long term	10/8/2022 8:58 AM
77	Less confusing	10/8/2022 8:30 AM
78	Roundabouts are far more efficient, I like this option that creates a better thoroughfare and has less impact on existing property.	10/8/2022 8:12 AM
79	Takes care of all intersections And let Albertsons build a grocery store!! The location suits it, it has parking!	10/8/2022 7:40 AM
80	Much better Access to/from WS and 75 Main Street	10/7/2022 8:56 PM
81	It accounts for the traffic at the 10th st intersection as well as Lewis st	10/7/2022 7:34 PM
82	straight forward, less invasive to private property - less expensive and equally effective.	10/7/2022 7:29 PM
83	I don't like either. If the Albertsons lot is going to be housing and the YMCA lots then there will	10/7/2022 6:59 PM

Warm Springs Road \& the Main Street corridor

be a lot more pedestrians. Round abhors are not pedestrian friendly, they're super intimidating and dangerous.

84	Not as over constructed. More reasonable.	10/7/2022 6:29 PM
85	As a result of the access from Highway 75	10/7/2022 5:58 PM
86	It would make ketchum Automotive not be on the busiest street in the core. The city has allowed them to make 10th a dangerous situation for many years.	10/7/2022 5:46 PM
87	includes all 4 intersecting roads	10/7/2022 5:24 PM
88	It helps with the line of sight issues at 10th St that are so scary and it's one less intersection for those going down WS Rd	10/7/2022 5:22 PM
89	That private land is just sitting there being useless to the community.	10/7/2022 5:12 PM
90	More route options that are safer and more efficient.	10/7/2022 4:51 PM
91	It seems guaranteed that people in this valley are going to STRUGGLE to learn roundabouts. A four way roundabout seems more complex to me.	10/7/2022 4:27 PM
92	10th street inclusion, safety	10/7/2022 4:22 PM
93	includes the traffic on 10th street. might help parking for autos at Ketchum Auto. small use of Alberstons LLC's awkward corner. open up more business on 10th.	10/7/2022 4:17 PM
94	It focuses on the streets and intersection where there are problems	10/7/2022 4:16 PM
95	Fewer difficult left hand turns	10/7/2022 4:05 PM
96	Better traffic control	10/7/2022 4:01 PM
97	Crossing to the south by Base Camp is a nightmare. \#4 solves that too...total no brainer.	10/7/2022 3:59 PM
98	It looks less expensive	10/7/2022 3:51 PM
99	less impact to private property	10/7/2022 3:50 PM
100	Better for traffic flow	10/7/2022 3:49 PM
101	more in scale with small town leaves more room for the development of parcel labeled Albertson's LLC...affordable housing?	10/7/2022 3:38 PM
102	It eliminates the dangerous traffic that occurs in and out of the base camp gas station by rerouting the traffic that comes from 10st	10/7/2022 3:33 PM
103	Test	10/7/2022 3:20 PM
104	Traffic flow and safety	10/7/2022 2:17 PM
105	It addresses both intersections.	10/7/2022 1:59 PM
106	Combines the 10th street intersection to reduce potential conflicts	10/7/2022 1:56 PM
107	better sight lines. turning left onto warm springs from 10th is a challenge to see around the gas station	10/7/2022 12:41 PM
108	Alternative \#4 makes the most sense for traffic management - while allowing for bikes and pedestrians.	10/7/2022 12:37 PM
109	Coming down 10th street; I can never make a left turn to go to Moss Nursery.....or if I was on Lewis Street....stick you neck out there and "could get hit" by on coming cars. This round about will be very important to the city in the future years with the school and fire department.	10/7/2022 12:04 PM
110	I think \#4 is better suited for long-term traffic issues. \#2 is half ass in my opinion. just a temporary fix.	10/7/2022 11:58 AM
111	Solves issue coming off 10th to Warm Springs and vice versa better. That is a horrible intersection presently. Many missed accidents with cars trying to pull out of 10th quickly	10/7/2022 11:29 AM
112	Solves the blind spot at 10th street	10/7/2022 11:27 AM
113	Should hold up longer in the future. As Ketchum develops there will be more traffic between 75 $5 / 31$	$\text { 10/7/2022 11:19 AM } 282$

and the LI zone and 4 addresses that. If we don't do that in this iteration, it will be another Ketchum cheap out mistake.

Warm Springs Road \& the Main Street corridor

Q3 What do you dislike about the other option?

Answered: 91 Skipped: 60

\#	RESPONSES	DATE
1	Wipes out existing buildings on 10th Street.	10/17/2022 9:43 AM
2	Complex	10/17/2022 7:04 AM
3	Maybe just too large overall for this area if the smaller one will work well enough.	10/16/2022 9:46 PM
4	too complicated, too expensive	10/16/2022 6:03 PM
5	keeps the sharp turn where people tend to accelerate quickly to avoid getting hit. dangerous for people walking/biking.	10/16/2022 1:53 PM
6	Doesn't address the lack of visibility for drivers on 10th st.	10/16/2022 9:10 AM
7	I like option 4 too, but 3 look like it can be completed faster and for less money.	10/16/2022 9:05 AM
8	It ignores the difficult sight lines when exiting 10th onto WS Road.	10/16/2022 7:54 AM
9	Taking private property	10/16/2022 12:27 AM
10	Doesn't seem as balanced as a roundabout	10/15/2022 8:38 PM
11	No affordable housing	10/15/2022 8:03 PM
12	Still has the 4 way intersection	10/15/2022 7:17 PM
13	Alt 1 is the better of two poor options. Alt 2 leaves land in a circumstance where it would be difficult and costly to develop. What do these options cost?	10/15/2022 6:04 PM
14	Doesn't seem as beneficial to long term planning	10/15/2022 5:57 PM
15	I don't dislike the other option.	10/15/2022 5:05 PM
16	Pulling out on 10 th	10/15/2022 4:47 PM
17	it feels to me that 75% or more of the traffic continues on warm springs, which means that ALL that traffic has to traverse a full $3 / 4$ of the traffic circle. this seems needlessly complicated	10/15/2022 4:25 PM
18	No reason for it to be that big.	10/15/2022 4:13 PM
19	A mix of the two may be confusing to folks.	10/15/2022 3:15 PM
20	I feel there will still be traffic congestion.	10/15/2022 1:53 PM
21	Annoying	10/15/2022 1:06 PM
22	I don't dislike it, but again if you're going to fix it, fix it.	10/15/2022 12:57 PM
23	It would slow traffic too much.	10/15/2022 12:48 PM
24	Too much work to propeties	10/15/2022 12:47 PM
25	Higher cost, more private space eaten up	10/15/2022 12:47 PM
26	Eliminating 10th st access to main st.	10/15/2022 12:40 PM
27	Still a challenging intersection at base camp and 10th	10/15/2022 12:07 PM
28	I don't. They are both great.	10/15/2022 11:58 AM
29	Too convoluted	10/15/2022 9:45 AM
30	cost, time to establish, no need to change 10th St	10/15/2022 9:43 AM
31	Might be more than enough	10/15/2022 9:24 AM

Warm Springs Road \& the Main Street corridor

32	I hate making left turns into traffic, which I will still have to do if the roundabout does not include 10th St.	10/15/2022 8:22 AM
33	It doesn't include 10th street.	10/15/2022 6:58 AM
34	Too large. Too much of an impact bringing 75 traffic down to warm springs by a major route	10/15/2022 5:48 AM
35	Assume 10th St would have a stop sign... You'd be waiting forever to turn south onto Warm Springs rd from 10th St.	10/14/2022 9:52 PM
36	Turning from 10th St onto Warm Springs Road in either direction is difficult as vision is blocked by the gas station.	10/14/2022 7:03 PM
37	Doesn't solve traffic at 10th coming on to Warm springs road	10/14/2022 4:03 PM
38	Less is not as efficient	10/14/2022 3:00 PM
39	I foresee work trucks coming out of Lewis Street, entering the roundabout heading towards downtown, and then needing to stop in the middle waiting for an opening in the south traveling lane. This could block the main traffic flow heading out Warm Springs and create snow-day collisions.	10/14/2022 2:51 PM
40	Doesn't address the 10th Street intersection. It's frequently difficult left turn from 10th onto Warm Springs.	10/14/2022 2:40 PM
41	Requires a lot more private property.	10/14/2022 2:29 PM
42	Addresses only part of the congestion issues...	10/14/2022 2:24 PM
43	Leaves a blind corner	10/14/2022 1:20 PM
44	doesn't address \#2	10/12/2022 12:50 PM
45	Neither but the "survey" did not allow that as an option, you had to check one of your comments would not post - it is not clear what has been presented as the actual problem, which makes it impossible to determine if this will solve the problem. Statements such as "enhance public realm" and "traffic calming" are not quantifiable terms to define a problem and its resolution. One of the main problems with the appearance and traffic flow issues on 10th Street are public roadways being used as storage areas for auto repair businesses. Resolving that issue would not cost the city anything and would vastly increase the connectivity of 10th Street. Putting concrete or other structures in the middle of the roadway has not been shown to be effective in the past, i.e., remember the median that was installed by the Elkhorn traffic light	10/11/2022 3:38 PM
46	It was has more of an impact to private property.	10/11/2022 3:37 PM
47	seems like it would be tough to get to tenth	10/11/2022 10:29 AM
48	The opposite almost exactly to my answer in \#2.	10/10/2022 6:17 PM
49	If anything is ever built on the Albertsons' lot it would be very challenging to enter with \#4. Also the sight issue isn't resolved since there is still a business access that will be used frequently for the gas station.	10/10/2022 11:02 AM
50	It encourages a faster pace off hwy 75 down into Warm Springs corridor because of easier non slowed traffic. It encourages continuation without mindful slowing as we enter WmSpgs residential area \& other direction speeding into town.	10/9/2022 12:05 PM
51	more costly	10/9/2022 11:00 AM
52	Doesnt take 10th street into consideration, which is a messy and congested intersection with the gas station traffic.	10/9/2022 8:47 AM
53	It is potentially very expensive.	10/9/2022 7:00 AM
54	How's through private property, more pavement, I like smaller roundabouts since they seem more efficient and more cars can get into them.	10/9/2022 6:25 AM
55	3 way roundabout is fine too, but better to go all the way	10/8/2022 7:56 PM
56	Expense of both options seems very unnecessary	10/8/2022 3:58 PM

Warm Springs Road \& the Main Street corridor

57	Just fixing half the problem and probably create my more confusion	10/8/2022 3:07 PM
58	Often times people are so focused on car traffic they forget about people walking. Also- the left turn from 10th is dangerous for everyone.	10/8/2022 10:20 AM
59	It's a bandaid on the issue of both of those intersections.	10/8/2022 10:15 AM
60	Takes away private property	10/8/2022 9:19 AM
61	Taking private property	10/8/2022 8:30 AM
62	It looks too big, and assuming the impact to surrounding private property triggers legal action, I don't think it's worth the time, energy or added expense when you have a viable alternative.	10/8/2022 8:12 AM
63	It doesn't help 10th st at all	10/7/2022 7:34 PM
64	invasive to immediate businesses and property and presumably a much more of an expense.	10/7/2022 7:29 PM
65	Lose more of the Albertsons lot for housing.	10/7/2022 6:59 PM
66	The intersection isn't that busy. It looks overbuilt and requires changing the entire layout of the thoroughfare.	10/7/2022 6:29 PM
67	Turning off of 10th will still suck.	10/7/2022 5:46 PM
68	not much	10/7/2022 5:24 PM
69	It doesn't solve the 10th St issue	10/7/2022 5:22 PM
70	Getting out of the gas station and tenth street needs to be improved.	10/7/2022 5:12 PM
71	I don't dislike it, I just think alternative 4 is more efficient than alternative 2.	10/7/2022 4:51 PM
72	Complexity of a four way, especially in such a small zone	10/7/2022 4:27 PM
73	10th st not included - that is the biggest problem!	10/7/2022 4:22 PM
74	doesn't include 10th st.	10/7/2022 4:17 PM
75	Seems unnecessary complicated	10/7/2022 4:16 PM
76	You still have to try and turn left onto Warm Springs from 10th and you can't see past the gas station to see if it's safe	10/7/2022 4:05 PM
77	Doesn't solve all of the problems	10/7/2022 3:59 PM
78	Seems like you're adding unneeded additional routes	10/7/2022 3:51 PM
79	impact to private property	10/7/2022 3:50 PM
80	Doesn't solve the issue	10/7/2022 3:49 PM
81	Too large, too massive for small town...too impactful on private property	10/7/2022 3:38 PM
82	It ignores the congestion and blind corners in and around base camp gas station.	10/7/2022 3:33 PM
83	Test	10/7/2022 3:20 PM
84	Still have to pull out onto WS Road from 10th street. Yikes!	10/7/2022 2:17 PM
85	Doesn't address saddle road problem.	10/7/2022 1:59 PM
86	Does not streamline access and causes two areas of traffic concerns	10/7/2022 1:56 PM
87	same as above	10/7/2022 12:41 PM
88	Alternative \#3 seems short-sighted, it does not allow for future growth.	10/7/2022 12:37 PM
89	\#2 looks sloppy.	10/7/2022 11:58 AM
90	Doesn't solve 10th street issues	10/7/2022 11:29 AM
91	Still a blind spot at 10th	10/7/2022 11:27 AM

Q4 Is there anything we missed/haven't considered?

Answered: 64 Skipped: 87

\#	RESPONSES	DATE
1	If go with \#2, can coming off 10th Street be restricted to right-turns only, to minimize traffic delays and/or wrecks from people trying to turn left or go straight?	10/17/2022 9:43 AM
2	what does the traffic patterns suggest ass far as overall size of roundabout, seems like the 4 way may be too large for this location if the smaller one accomplishes what is most needed.	10/16/2022 9:46 PM
3	added convenience and efficiency (and safety) for fire department in response to certain calls	10/16/2022 6:03 PM
4	On \#2: Move the south section of the road WEST from the south end of round-a-bout to better align with the road from Ketchum. It would require taking several feet from the very wide parking area in front of the group of stores that includes Janie's photos. Once done, 10th Ave road \& stop sign on the east side of 10th could be moved forward to give drivers a better sight line to see cars heading north on WS road.	10/16/2022 7:54 AM
5	You say \#4 will impact private property. That is unfortunate.	10/15/2022 10:24 PM
6	No	10/15/2022 8:38 PM
7	Affordable housing	10/15/2022 8:03 PM
8	Nope love adding a roundabout! Makes us all safer!	10/15/2022 7:17 PM
9	Why no choice for do nothing? Alternate traffic patterns? Cost should be available in the choice description...	10/15/2022 6:04 PM
10	Just hope it's easy for bikes and pedestrians.	10/15/2022 4:47 PM
11	would be nice to see an alternative that has warm springs traffic flow smoothly and consistently and moves the peripheral traffic (lewis and 10th) off the main artery to cut down on the total amount of traffic and to ease the flow. think of a summer Friday when thousands of RV's and huge trailers are trying to go north...and they all have to go around $3 / 4$ of the traffic circle.	10/15/2022 4:25 PM
12	Na	10/15/2022 3:15 PM
13	Bike and pedestrian options are extremely important as well. This is a dangerous and confusing intersection for pedestrian and bike traffic as well	10/15/2022 3:08 PM
14	Purchasing and removing the 1007 building and straightening the road	10/15/2022 1:07 PM
15	Not doing it at all. Use the money to increase the affordable housing chances.	10/15/2022 1:06 PM
16	Pretty much everything. But you do you.	10/15/2022 12:48 PM
17	Not to me	10/15/2022 12:40 PM
18	I would buy the Albertsons property even with \#4. Nick.Thomson@KinshipCapital.com (full time Ketchum resident)	10/15/2022 11:58 AM
19	Be sore snow removal is not an issue and the round about is large enough for large trailer trucks	10/15/2022 9:45 AM
20	Creating this solution in either scenario is much better than doing nothing!	10/15/2022 9:24 AM
21	We must look forward and realize there will be increased traffic. \# 4 makes more sense.	10/15/2022 6:58 AM
22	what are the projected costs? why does a mandatory question fail to included options to answer no change or undecided?	10/14/2022 3:49 PM
23	What is truck apron? I'm 'thinking' it would be a very tight turn.	10/14/2022 3:00 PM
24	I believe that the main reason for these plans is to make it easier for traffic from Lewis St to	

Warm Springs Road \& the Main Street corridor

get onto Warm Springs Rd which is the major traffic flow. An alternative would be to connect Lewis directly to the proposed revision of 10th street so that it bypasses this intersection entirely and routes southbound traffic from Lewis St directly up to the highway thereby avoiding impacting Warm Springs Rd altogether. The lesser amount of traffic from Lewis heading towards Warm Springs neighborhoods would head north on Lewis and connect to Warm Springs by taking Northwood Way to Saddle Rd and then to the YMCA intersection. This would provide a free flow of traffic between Lewis St and downtown as well as heading south towards Hailey via 10th St to Hwy 75 without impacting Warm Springs Rd or the current intersection. The lesser amount of Lewis St traffic heading out Warm Springs would be re-routed by just a couple of blocks by using Northwood Way to Saddle Rd. This solution eliminates the congestion at the Warm Springs Rd and Lewis St intersection, provides for a continued smooth flow of traffic on Warm Springs Rd, and provides Lewis St with smooth access to Hwy 75 going north or south. The couple of extra blocks to access Warm Springs neighborhoods from Lewis street is a small price to pay for the other advantages. We live in the Warm Springs area and already use the Saddle Rd/ Northwood Way route to access Lewis St because it avoids the problem intersection. I think having a roundabout on the major access to the Warm Springs area is asking for trouble on winter days with slick roads.

25	Not sure.	10/14/2022 2:29 PM
26	Possibly: (1)use of the additional non-traffic surface created by the 4th alternative and the impact on the business (gas station) now cut off from direct access to the former main traffic flow. (2) review of any parking considerations/needs in that area; (3) Hopefully there is an involvement of merchants/landlords impacted so they feel their concerns/interests/dreams are heard and feel part of the process for betterment of the whole area. Listen to them! Maybe there is a more comprehensive assessment needed for the whole area.	10/14/2022 2:24 PM
27	3 way stop...WS Rd to town/Lewis St/WS Rd heading out towards Y (put stop sign just before the turn off to Lewis). Still have free right coming from town onto Lewis.	10/14/2022 2:24 PM
28	Neither but the "survey" did not allow that as an option, you had to check one of your comments would not post - it is not clear what has been presented as the actual problem, which makes it impossible to determine if this will solve the problem. Statements such as "enhance public realm" and "traffic calming" are not quantifiable terms to define a problem and its resolution. One of the main problems with the appearance and traffic flow issues on 10th Street are public roadways being used as storage areas for auto repair businesses. Resolving that issue would not cost the city anything and would vastly increase the connectivity of 10th Street. Putting concrete or other structures in the middle of the roadway has not been shown to be effective in the past, i.e., remember the median that was installed by the Elkhorn traffic light	10/11/2022 3:38 PM
29	I wonder how it affects the busses for the school	10/11/2022 10:29 AM
30	You have not provided the overall cost to the community along with these two options. To make an informed decision, this should be provided (including costs associated with taking the private property, whether through eminent domain or through purchase from the property owner).	10/11/2022 6:56 AM
31	N/A	10/10/2022 6:17 PM
32	Addressing the 10th street corridor. Evaluation of traffic in and out of the Basecamp gas station.	10/10/2022 9:49 AM
33	We are constantly putting bandaids on situations, rarely getting to the root cause; therefore we do not solve problems but exacerbate them. We must reclaim the culture of Ketchum. 'Ketchum time' is all but disappeared. New people expect their city ways to carry over here without realizing what they are doing. Too fast, too money focused, too entitled makes Ketchum into a city of greed \& fast paced lifestyle. It's not just about being kind as city propaganda states. It's about being a small town with values of neighbors, a ski town \& outdoor lifestyles where the more affluent \& the less affluent coexists harmoniously, where we consider others all the time as humans. Period. Slow down in every way on every level including in vehicles. A tiny decrease in your speed allows the left hand turning car that you can easily see time to make that turn without any fuss or major infrastructure changes. if we constantly accommodate the newcomers we become just like anyplace else. We loose our magic our charm. This is not about stopping 'progress' or living in a vacuum it is about preserving our culture. Listen to this!!!!!	10/9/2022 12:05 PM

Warm Springs Road \& the Main Street corridor

34	Need a crosswalk on Warm Springs at 10th.	10/9/2022 11:00 AM
35	You're asking questions of the public without providing full information to the public. Statements like: "is more impactful on private property" don't paint a comprehensive picture. What would it cost? How would the transaction work? How would alt 4 proceed? Is one option less expensive than the other? By how much (estimated)? Etc.	10/9/2022 7:00 AM
36	You haven't stated the cost difference between the two. Won't that be important for everyone's decision?	10/8/2022 7:56 PM
37	Status quo is just wonderful	10/8/2022 3:58 PM
38	I couldn't make the meetings, so I don't know the full changes.	10/8/2022 10:20 AM
39	Expanding the sidewalks and non motorized path areas. The explosion of e bikes and scooters needs to be addressed and made room for.	10/8/2022 10:15 AM
40	This is a waste of time. Without more information, such as cost, traffic, impacts on private property, etc, you've asked me which picture I like best. This is an uninformed, useless pick. I hope you don't pay attention to this survey.	10/8/2022 8:01 AM
41	No left turns out of the industrial area, route that traffic to 75 . Or Monorail from Ketchum to Hailey	10/7/2022 8:10 PM
42	Police enforcement of existing speed limits instead of this project that's unneeded	10/7/2022 7:54 PM
43	No	10/7/2022 7:34 PM
44	no	10/7/2022 7:29 PM
45	Increased density = more pedestrians	10/7/2022 6:59 PM
46	The intersection of warm springs and Broadway. Way heavier traffic and pedestrian use. Extremely unsafe with lack of cross walks or 40th stop to slow downhill traffic.	10/7/2022 6:29 PM
47	Driver Education would be a good start.	10/7/2022 5:46 PM
48	snow removal?	10/7/2022 5:24 PM
49	Pedestrian/sidewalk options along 10th street going up the hill towards Knob Hill and along warm springs in front of Grumpy's.	10/7/2022 4:51 PM
50	How will bikes get through? This may be solved for an just not seeing it from these graphics	10/7/2022 4:27 PM
51	ideally reviewing ability to turn north on warm springs from the 8th, 9th, 10th streets...it's so hard with cars coming down fast from main and lots of traffic the other direction too...hopefully this will help but anything else to make those turns more visible/safe would be good	10/7/2022 4:22 PM
52	You have done a good job with due diligence. Thanks	10/7/2022 4:05 PM
53	Not sure	10/7/2022 3:59 PM
54	What if you just added a light	10/7/2022 3:51 PM
55	where wii the mountain ride bus stop/stops be relocated? Also pedestrian crosswalk safety to access the bus stop in new location	10/7/2022 3:50 PM
56	Muti-lane roundabout	10/7/2022 3:49 PM
57	concrete median on both alternatives will be subject to snowplow damage! traffic flow to Warm Springs off Main St. now seems to work well...making 10th Street as another major entry to and from Warm Springs could create traffic issues on Main St. and 10th...unintended consequence?	10/7/2022 3:38 PM
58	Where will the bus stops be and how might this affect the route?	10/7/2022 3:33 PM
59	Test	10/7/2022 3:20 PM
60	Thoughtful landscaping - you have an opportunity to make it even more carbon-emissionslowering by planting thoughtfully.	10/7/2022 2:17 PM
61	Taking down the power lines on warm springs road.	10/7/2022 1:59 PM

Definitely- bike access is hugely important and does not appear to be addressed. Access at
the existing crossing (between park side and the LI) should be prioritized to keep the flow and
safety that currently exists (plan looks to create a problem by making a jog where the path
intersects with ws road). And bicycle access through tenth, northwood way and warm springs
road should be identified on the plan and should be equally safe even as it will not be the
preferred bike path route. It should still be accessible and safe for people to get to and from
the LI on bikes, especially since we as a community want to be known as a bike-friendly town

and also want to support reducing car trips. \quad| 10/7/2022 1:56 PM |
| :--- |

Additional Improvement Concepts

トア

Draft Main Street Alternatives Analysis Report

City of Ketchum
Ketchum, Idaho
November 21, 2022

Executive Summary

The City of Ketchum, Idaho (City) Master Transportation Plan (2020) ${ }^{1}$ identified the opportunity to reduce the number of vehicle travel lanes on Main Street (State Highway 75 [SH-75]) from four lanes to three lanes, with a travel lane in each direction and a center median lane that can provide dedicated left-turn pockets. This configuration has the potential to reduce pedestrian vehicle conflicts and expand the sidewalks. As noted in the Master Transportation Plan, some potential drawbacks to the lane reconfiguration could include reduced roadway capacity for general vehicular traffic, emergency vehicles, mail trucks, and transit vehicles. These vehicles may be delayed with increased traffic volumes in the single through lane, left-turn lanes may be hard to access during high demand periods, and it may create some issues with snow removal.

The goals of this project are to improve vehicle progression on the corridor without shifting traffic to local streets, improve pedestrian and bike facilities and crossings, and enhance the streetscape and pedestrian realm. The purpose of this report is to document the alternatives analysis and the decision-making process that led to a recommended alternative.

Existing Conditions

The Main Street corridor is within the Downtown Core neighborhood and the Community Core specifically Retail Core - Districts within the Ketchum zoning map. These designations match the land uses on the ground, which is evident by a thriving main street corridor. The City's 2014 Comprehensive Plan² identifies potential gateways to the City located at River Street and $6^{\text {th }}$ Street along Main Street

Of the six blocks that make up the Main Street corridor, some blocks are more successful at providing a public realm that supports the walkable, vibrant downtown feel associated with Ketchum than others. For instance, the blocks along Main Street from $4^{\text {th }}$ to $6^{\text {th }}$ Streets have a strong public realm supporting pedestrians with amenities such as identity and wayfinding signage, landscaping, larger sidewalks, benches, and bike racks. However, moving north or south, the amenities along the blocks oscillate between having a less comfortable and safe public realm and providing certain desirable elements.

The project team analyzed crashes between 2016 and 2020 to assess the safety of the corridor. There were 25 crashes at intersections on Main Street. The most frequent crash type was rear end (13 crashes), and the most frequent contributing circumstance was following too close (8 crashes). Most of the crashes were property damage only (PDO) (15 crashes), with two suspected serious injury (A Injury) crashes, four minor injury (B Injury), and four possible injury (C injury) crashes.

During the 5-year study period, there were 18 non-intersection related crashes on Main Street. The most frequent crash type was rear end (9 crashes), and the most frequent contributing circumstance was following too close (4 crashes). Most of the crashes were PDO (11 crashes),

[^8]with two suspected serious injury (A Injury) crashes, and five possible injury crashes (C Crashes).

Corridor intersection traffic operations are operating at a level of service (LOS) D or better in both the AM and PM peak hours. During the summer peak travel periods, some intersections experience longer delays; however, the LOS remains above LOS D for all intersections. The following are existing inefficiencies identified on the corridor:

- Movements experience long queue lengths that may back up several blocks.
- The Sun Valley Road intersection is currently split phased on the north-south (Main Street) movements, meaning the movements occur separately from each other and are not timed concurrently. This impedes two-way progression on the corridor and increases the cycle length at the intersection, which in turn, increases delays.
- The pedestrian scramble at Sun Valley Road increases the signal cycle length. At the pedestrian clearance, time is calculated using the diagonal distance across the intersection instead of the shorter distance on the legs of the intersection.
- The signals on the corridor are not interconnected, which does not allow for implementing a coordinated signal timing plan. This limits vehicle progression through the corridor as green bands are unlikely to line up.
- The southbound travel lanes must merge from two lanes to one lane between River Street and $1^{\text {st }}$ Street. Drivers were observed getting into the continuous left lane before $1^{\text {st }}$ Street to avoid having to perform the merge maneuver before River Street. This creates an underutilization of lanes at the $1^{\text {st }}$ Street intersection, degrading operations and capacity at the intersection.
- The "split" of Main Street at the $6^{\text {th }}$ Street intersection causes some confusion due to the lack of proper pavement markings and way finding signage in advance of the intersection.

Initial Future Conditions Analysis

HDR calculated a 1.44 percent historical growth rate to represent traffic volume growth based on historical data from Idaho Transportation Department's (ITD) Automated Traffic Recorders (ATRs) on SH-75. The project team selected 2042 as the design year for the purposes of this analysis and LOS D was set for the target LOS threshold based on ITD's requirements in their Roadway Design Manual ${ }^{3}$. HDR initially analyzed the following four scenarios.

[^9]| No. | Volumes Used | Scenario | Main Street Cross Section | Signal Operations | Peak Hour Factor |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2042 Average | No-Build | Two lanes in each direction, no dedicated turn lanes at intersections | Existing signal timing parameters | 0.92 |
| 2 | 2042 Summer | | | | |
| 3 | 2042 Average | Build | One lane in each direction, dedicated leftturn lane at each intersection on Main Street | 100 second cycle length, flashing yellow arrows (FYA) for left turns | |
| 4 | 2042 Summer | | | | |

In the No-Build scenarios 1 and 2, the corridor is expected to operate poorly as queue lengths at Sun Valley Road begin to approach 600 feet. Northbound traffic at Sun Valley Road is expected to exceed capacity and experience delays.

At first glance, reducing the number of lanes from four to three and adding flashing yellow arrows (FYAs) for left turns, analyzed in scenarios 3 and 4, appears to improve the LOS along the corridor. For example, the Sun Valley Road/Main Street intersection operations improve from a LOS F in the PM peak hour to LOS C with these improvements. However, the estimated queue lengths at the intersections can exceed 1,000 feet in some cases with the reconfigured cross section. These excessive queues are significantly longer than those estimated under the No-Build scenarios and would back up from one signal through the upstream signalized intersections, causing significant congestion and potential gridlock.

Side street queue lengths also increase from the No-build to the Build scenarios under average conditions and get even worse under summer conditions. Short city block lengths, on-street parking, and a single lane in each direction limit the amount of storage available on the side streets. Overall, these results indicate that there is significant operational improvement by removing the split phasing at Sun Valley Road and installing left-turn lanes with FYAs. The closely spaced intersections prevent the large volume of traffic from being stored, ultimately creating congestion.

The project team then analyzed three additional scenarios using 2042 summer volumes.

- Scenario 5: Add left-turn lanes on Main Street at Sun valley Road, removing split phasing and pedestrian scramble.
- Scenario 6: Prohibit left-turn movements from Main Street, except at Sun Valley Road, where left-turn lanes are added.
- Scenario 7: Install a five-lane section along Main Street with left-turn lanes at each intersection.

When compared to the No-Build or three-lane scenarios, scenarios 5, 6, and 7 decrease congestion on the corridor and reduce travel times. Each alternative provides better LOS, less congestion/gridlock, and better progression and travel time for vehicles and pedestrians. The
shorter cycle lengths with these scenarios would shorten the wait times for pedestrians at intersections. Scenario 7 achieves vehicle progression goals; however, it's adverse impacts include removing parking along the corridor and limiting opportunities to install curb extensions on Main Street to shorten the pedestrian crossings.

Initial Recommendations and Limitations of the Analysis

HDR presented the findings of the deterministic analysis to the City Council on April 11, 2022. HDR recommended against pursuing the three-lane section due to the significant impacts to motorized vehicle flow and travel time. Congestion on Main Street could cause traffic to use adjacent streets to get through town, increasing volumes, congestion, and conflicts on local streets. Instead, HDR recommended the City pursue adding left-turn lanes at the Sun Valley Road Intersection (Scenario 5).

The City Council asked for a visual representation of the corridor operations to understand the potential impacts of the different lane reconfiguration scenarios. HDR explained the limitations of the macroscopic methodologies and recommended a microsimulation analysis to improve the confidence of the analysis and provide videos of the operations.

Interim Improvements

At the City's request, HDR and the project team implemented short-term solutions to enhance the corridor operations in the interim period.

- The project team coordinated with ITD to interconnect the signals in order to implement a coordinated signal timing plan.
- The City and ITD agreed to remove the pedestrian scramble.
- HDR developed signal timing plans for the AM and PM peak hours to reduce the number of stops and increase progression during the peak hours. Additionally, HDR recalculated the pedestrian clearance intervals to increase pedestrian safety.
- ITD is currently designing a project south of Ketchum that is scheduled to be built before improvements on Main Street and would provide an opportunity to revise the location of the merge taper between $1^{\text {st }}$ Street and River Street to be south of River Street.

Microsimulation Analysis

Based on the City Council feedback, the project team developed specific alternatives to analyze with Vissim software:

- Existing conditions
- Alternative 1: No-Build
- Alternative 2: Adding left-turn lanes at Sun Valley Road
- Alternative 3: Three-lane section

Comparing the Alternatives

Alternative 3 provides many benefits to the pedestrian and public realms, but at a significant cost to traffic flow. This alternative would increase vehicle congestion and would not serve all traffic during the peak periods. This level of congestion could push traffic onto neighboring streets, increasing conflicts and negating large safety benefits from the potential lane reconfiguration. This alternative also would not meet ITD's LOS D threshold for state highways.

Although the three-lane section could decrease the number of lanes pedestrians need to cross the roadway, vehicle congestion would be likely to reduce gaps pedestrians have to cross at unsignalized intersections. Side streets would be expected to see large increases in vehicle queue lengths as vehicles are unable to enter the Main Street due to a lack of gaps.

Alternative 2, which removes parking for two blocks to add turn lanes at the Sun Valley Road intersection, would serve all estimated traffic during the design year. Estimated travel times for future vehicles would be similar to existing conditions. By removing the split phasing, the bottle neck at Sun Valley Road would be removed and all other intersections on the corridor could increase operational efficiency for both pedestrians and vehicles. The safety benefits of Alternative 2 may not be as great as for Alternative 3; however, the remaining intersections could still see improvements to the pedestrian and public realms with bulb-outs and wider sidewalks.

Recommendation and Costs

Alternative 2 is recommended over the Alternative 3 (three-lane configuration). Alternative 2 best serves vehicular traffic and improves traffic operations, it meets ITD's LOS D threshold, and provides excess capacity. Excess capacity allows some contingency for performance i.e., suggesting that if Ketchum sees a greater increase in vehicle traffic than estimated, this alternative would best be able to handle that increase. Although the opportunity to widen the pedestrian space is not as great as with Alternative 3, there would still be opportunities to enhance the public realm, improve the placemaking feel of Ketchum's Main Street, and further enhance the corridor's safety performance. Final conceptual exhibits are presented in

Appendix F.

The project team developed an opinion of probable cost based upon the conceptual exhibits. ITD has programmed a project to resurface Main Street in the near future and the estimated costs assume that ITD will pay for the resurfacing, including base material. The Alternative 2 probable costs are summarized in the following table.

Cost	Amount
Engineering Fee:	$\$ 353,000$
Construction Costs:	$\$ 3,880,000$
Right-of-way Costs:	$\$ 10,000$
Total Project Costs:	$\$ 4,243,000$

Next Steps

The City should coordinate with ITD to get approval for the recommended Alternative 2. Additionally, the City should coordinate the improvement designs to align with an upcoming ITD maintenance project on $\mathrm{SH}-75$. Coordination will decrease the amount of mobilization required to improve the roadway and reduce the impacts to the public. The curb extensions and a raised intersection will need to be evaluated in coordination with ITD during design to evaluate truck turning movements and stormwater needs in detail.

The City should also pursue grant opportunities to fund the improvements. Outreach for stakeholder participation in the grant pursuits should occur, including with Mountain Rides, Blaine County School District, and the Ketchum Urban Renewal Agency.

Contents

Executive Summary i
Existing Conditions i
Initial Future Conditions Analysis ii
Initial Recommendations and Limitations of the Analysis iv
Interim Improvements iv
Microsimulation Analysis iv
Comparing the Alternatives v
Recommendation and Costs v
Next Steps vi
1 Introduction 1
1.1 Background and Purpose. 1
1.2 Study Area 1
1.3 Study Process 2
1.4 Organization of Report 2
2 Existing Conditions Evaluation 3
2.1 Land Use 3
2.2 Public Realm 4
2.3 Transit Facilities 5
2.4 Existing Traffic Operations 5
2.5 Crash History \& Evaluation 12
3 Future Conditions and Initial Alternatives 23
3.1 Study Year and Target LOS 23
3.2 Forecasted Traffic Patterns 23
3.3 Future Scenario Evaluation 27
3.4 Additional Scenarios 30
3.5 Initial Recommendation and Limitations of the Analysis 32
4 Interim Improvements 33
5 Microsimulation Analysis 34
5.1 Existing Conditions Alternative 35
5.2 Alternative 1: No-Build 35
5.3 Alternative 2: Install Left-Turn Lanes at Sun Valley 36
5.4 Alternative 3: Three-Lane Section 36
5.5 Travel Times and Average Speeds 39
6 Safety and Public Realm Enhancements 41
6.1 Safety and Public Realm Enhancements 41
6.2 Future Safety Evaluation 47
6.3 Future Transit Impact 48
7 Public Meeting Summary 48
8 Recommendations and Additional Opportunities 49
8.1 Comparing the Alternatives 49
8.2 Recommendation. 50
8.3 Opinion of Probable Costs 50
8.4 Additional Opportunities 51
8.5 Next Steps 52
Figures
Figure 1. Study Area 1
Figure 2. Study Process 2
Figure 3. Ketchum Neighborhoods and Districts 3
Figure 4. Successful Public Realm 4
Figure 5. Challenged Public Realm 4
Figure 6. Main Street AM and PM Peak Hour Turning Movement Counts 7
Figure 7. Intersection Crashes by Location and Severity (2016-2020) 14
Figure 8. Segment related crashes by location and severity. 17
Figure 9. Large Access and Lack of ADA/PROWAG Complaint Facilities at $1^{\text {St }}$ Street. 21
Figure 10. Multiple Approaches Close to the 5th Street Intersection 21
Figure 11. ADA/PROWAG Noncompliant Corner at Sun Valley Road and Main Street 22
Figure 12. River Street Intersection View from the South. 23
Figure 13. ATR \#68 Historic AADT. 24
Figure 14. ATR \#28 Historic AADT. 25
Figure 15. Average Main Street 2042 Volumes 26
Figure 16. Summer Main Street 2042 Volumes 27
Figure 17. PM Peak Travel Time Comparison of Additional Scenarios 32
Figure 18. PM Peak Average Speed Comparison of Additional Scenarios 32
Figure 19. Conceptual Rendering of Adding Left Turns at Sun Valley Road. 33
Figure 20. Alternative 3 Long Queue Lengths - South End 38
Figure 21. Alternative 3 Long Queue Lengths - North End 38
Figure 22. AM Peak Microsimulation Travel Time Comparison 39
Figure 23. PM Peak Microsimulation Travel Time Comparison 39
Figure 24. Microsimulation AM Peak Average Speed Comparison. 40
Figure 25. Microsimulation PM Peak Average Speed Comparison. 41
Figure 26. Additional Sidewalk Concept 42
Figure 27. Additional Sidewalk Concept 43
Figure 28. NACTO Bulb-out Rendering 44
Figure 29. Existing Bulb-out at 4th Street 44
Figure 30. Example Public Realm Improvements 45
Figure 31. NACTO Raised Intersection Rendering 46
Tables
Table 1. Monthly Seasonal Factors (MSFs) 6
Table 2. LOS Thresholds for Motor Vehicles at Intersections 8
Table 3. Summer Peak Existing Traffic Operations 9
Table 4. Seasonally Adjusted Traffic Operations 11
Table 5. Economical Crash Costs 13
Table 6. Intersection Crash Types (2016-2020) 14
Table 7. Intersection Contributing Circumstances (2016-2020) 15
Table 8. Intersections - Frequency, Crash Rate, EPDO Score (2016-2020) 16
Table 9. Intersection - Potential for Safety Improvement (2016-2020) 16
Table 10. Segment Crash Types (2016-2020) 18
Table 11. Segment Contributing Circumstances (2016-2020) 18
Table 12. Segment - Frequency, Crash Rate, EPDO Score (2016-2020) 19
Table 13. Segment - Crash rate vs Critical Crash Rate (2016-2020) 19
Table 14. Segment - Potential for Safety Improvement (2016-2020) 20
Table 15. Main Street Analysis Scenarios 28
Table 16. Existing Conditions Microsimulation Results. 35
Table 17. Alternative 1: No-Build Microsimulation Results 36
Table 18. Alternative 2: Install Left-Turn Lanes at Sun Valley Microsimulation Results 36
Table 19. Alternative 3: Three-Lane Section Microsimulation Results 37
Table 20. Microsimulation Travel Time Comparison 40
Table 21. Opinion Of Probable Costs 50
AppendiciesAppendix A: Traffic CountsAppendix B: Existing Conditions Synchro ReportsAppendix C: Draft Future Conditions Memo
Appendix D: Microsimulation Results
Appendix E: Public Involvement Summary
Appendix F: Final Concept Exhibits

Acronyms/Abbreviations

Acronyms and abbreviations used more than once in the report text.

AADT	annual average daily traffic
ADA	Americans with Disabilities Act
ATR	automated traffic recorders
City	City of Ketchum
CMF	crash modification factor EPDO
equivalent property damage only FYA	flashing yellow arrow
HCM	Highway Capacity Manual
ITD	Idaho Transportation Department
LHTAC	Local Highway Technical Assistance Council
LOS	level of service
LPI	leading pedestrian interval
MP	mile post
mph	miles per hour
NACTO	National Association of City Transportation Officials
PDO	property damage only
PHB	pedestrian hybrid beacon
PROWAG	Public Rights-of-Way Accessibility Guidelines
RRFB	rectangular rapid flashing beacon
SH-75	State Highway 75
v/c	volume to capacity ratio
vpd	vehicles per day

1 Introduction

1.1 Background and Purpose

The City of Ketchum, Idaho (City) Master Transportation Plan (2020) ${ }^{4}$ identified the opportunity to reconfigure Main Street (State Highway 75 [SH-75]) to reduce the number of vehicle travel lanes from the existing four lanes to three, with a travel lane in each direction and a center median lane that can provide dedicated left-turn pockets. This configuration has the potential to reduce pedestrian/vehicle conflicts and expand the sidewalks. As noted in the Master Transportation Plan, some potential drawbacks to the lane reconfiguration could include reduced roadway capacity for vehicular traffic; mail trucks and transit vehicles may stop traffic in the single through lane; left-turn lanes may be hard to access during high demand periods; and it may create some issues with snow removal.

The goals of this project are to improve vehicle progression on the corridor without shifting traffic to local streets, improve pedestrian and bike facilities and crossings, and enhance the streetscape and pedestrian realm. The purpose of this report is to document the alternatives analysis and the decision-making process that led to a recommended alternative that balances the need for improved public environment with the future traffic volume demand on Main Street.

1.2 Study Area

The study area (shown in Figure 1) begins at the intersection of Main Street and River Street and continues six blocks north to the $6^{\text {th }}$ Street intersection where Main Street splits into Warm Springs Road to the northwest and Main Street to the northeast. Main Street runs through the core of Downtown Ketchum. The adjacent land use is zoned as Retail Core, featuring several small businesses, restaurants, and hotels. Main Street is also known as $\mathrm{SH}-75$ and is owned by the Idaho Transportation Department (ITD). The highway connects southern Idaho to the Sawtooth Valley in central Idaho and serves as a commuter route for individuals working in Ketchum or Sun Valley communities. Ketchum is a

Figure 1. Study Area

[^10]resort, destination city with regional traffic generators, including two ski hills and outdoor recreational locations to the north and south.

1.3 Study Process

The study process followed the general procedure outlined in Figure 2. The project team performed an initial evaluation of existing conditions in the study area that considered existing traffic operations using deterministic methodologies, determined safety issues and needs, and examined the public realm needs. In coordination with ITD, the project team identified shortterm improvements that could be implemented during the study to improve operations until a larger project could be completed. Signal timing improvements were analyzed and implemented in coordination with ITD under a separate project for the City.

Next, the project team analyzed different scenarios using a deterministic methodology to identify potential alternatives along the corridor. After consulting with the City Council, the team advanced three alternatives to a microsimulation analysis and presented the results of the microsimulation and additional safety opportunities at a public meeting where residents could evaluate the alternatives, ask questions, and provide feedback. An online survey accompanied the public meeting for those unable to attend the in-person meeting. Finally, the project team revised the alternatives, as necessary, prepared a final report, and presented it to the City Council for adoption.

Figure 2. Study Process

1.4 Organization of Report

Following the introduction in Section 1, this report is also organized following the general structure of the study process shown in Figure 2.

- Section 2 describes existing conditions and determines needs;
- Section 3 presents the forecasted travel models and presents the deterministic modeling results;
- Section 4 describes the interim improvements;
- Section 5 discusses the microsimulation analysis;
- Section 6 details the safety evaluation and presents safety recommendations for each alternative;
- Section 7 summarizes the public meeting; and
- Section 8 compares alternatives, recommends a preferred alternative, presents a cost estimate, and discusses next steps.

2 Existing Conditions Evaluation

2.1 Land Use

The Main Street corridor is entirely within the Downtown Core neighborhood and the Community Core - specifically Retail Core - districts within the Ketchum zoning map. These designations match the land uses on the ground, as evident by a thriving main street corridor. The City's 2014 Comprehensive Plan ${ }^{5}$ identifies potential gateways to the city located at River Street and $6{ }^{\text {th }}$ Street along Main Street that are intended to let travelers to know they are entering an important part of Ketchum. Though it is evident that a traveler is entering a special district as a result of the walkable, Main Street land uses, no specific gateway elements exist. This stretch of town is a major part of the heart of Ketchum, supporting small businesses, restaurants, tourist destinations, and local life.

This corridor is expected to continue with commercial land uses in the future as it provides a core identity to the town. The

Figure 3. Ketchum Neighborhoods and Districts

[^11]2014 Comprehensive Plan points to a slight differentiation in land uses along this stretch, with a specific focus on the portion between $1^{\text {st }}$ and $5^{\text {th }}$ Streets acting as the Retail Core. The areas bookending that segment are designated as either Commercial Employment or Mixed-Use Commercial, indicating a slightly decreased focus in the Main Street retail environment but a continuation of the diverse mix of uses that comprise much of the rest of downtown. With the construction of the mixed-use building on the south side of Main Street between River and $1^{\text {st }}$ Streets, and the potential development diagonally across the intersection east of River Street, this distinction is not likely evident to most users. Similar change is possible west of $5^{\text {th }}$ Street as well. As a result, the larger stretch between River and $6{ }^{\text {th }}$ Streets largely feels like one place type.

2.2 Public Realm

Of the six blocks that make up the Main Street corridor between River and $6{ }^{\text {th }}$ Streets, some blocks are more successful than others at providing a public realm that supports the walkable, vibrant downtown feel associated with Ketchum. However, more challenging than the success of any given block is the inconsistency of the public realm along the stretch. For instance, the blocks along Main Street from $4^{\text {th }}$ to $6^{\text {th }}$ Streets have a strong public realm supporting pedestrians with amenities such as identity and wayfinding signage, landscaping, larger sidewalks, benches, and bike racks. This stretch feels consistent and promotes a cohesive feel to the corridor (Figure 4). However, moving north or south, the amenities along the blocks oscillate between having a less comfortable and safe public realm and providing certain desirable elements (Figure 5).

Figure 4. Successful Public Realm

Figure 5. Challenged Public Realm

Areas with an inadequate public realm along the corridor currently consists of small, attached sidewalks that share limited space with retail shops, either making walking uncomfortable or lending to a cramped feeling for the adjacent establishments. Many areas along the corridor have limited or no amenities such as trash receptables or benches, as well as limited or no landscaping or tree canopy. The investment in a consistent tree canopy is one of the most successful methods of creating a desirable and safe walking environment. This public realm inconsistency from block to block prevents the downtown core from being unified from a pedestrian point of view and creates smaller segments of the street, rather than one combined corridor. Even the stronger segments of the corridor are limited in their space and amenities,
pointing to an opportunity to reconsider the entire corridor's streetscape in the future. A potential reconfiguration of the roadway may provide a rare opportunity to attempt a larger overhaul.

2.3 Transit Facilities

Mountain Rides is the local transit authority maintaining bus routes throughout the City. Main Street serves as one of the main connection points for the bus system with several different lines running along the roadway. Stops are present in both directions at the $4^{\text {th }}$ Street intersection near the Wells Fargo and at the $1^{\text {st }}$ Street intersection near the Limelight Hotel and Kentwood Lodges. A single Mountain Rides sign delineates the stops but the stops themselves do not feature shelters, safety lighting, or other enhancements.

In conversations with Mountain Rides, the merge taper between $1^{\text {st }}$ Street and River Street makes it difficult for busses to merge back into traffic after picking up passengers.

2.4 Existing Traffic Operations

2.4.1 Existing Intersection Control

The Main Street corridor features a variety of intersection controls along the six blocks. Sun Valley Road, $1^{\text {st }}$ Street, and $5^{\text {th }}$ Street are all signal controlled. $2^{\text {nd }}$ Street and River Street are two-way stop controlled (TWSC) on the side streets and uncontrolled on Main Street. $4^{\text {th }}$ Street is a right out on the side streets with a pedestrian hybrid beacon (PHB) or high intensity activated crosswalk (HAWK) beacon to stop traffic on Main Street for pedestrian crossings.

The Sun Valley Road intersection with Main Street is currently split phased on the north-south (Main Street) movements, meaning these movements occur separately from each other and are not timed concurrently. The east and west (Sun Valley Road) movements feature dedicated leftturn lanes with three section green-arrow signal heads allowing for a protected left-turn phase to occur. Until recently, no pedestrian movements were allowed at Sun Valley Road during vehicular movements but pedestrians were allowed to cross in any direction, even diagonally, during an exclusive pedestrian phase. This pedestrian phase is known as a "pedestrian scramble" or "barn dance" where all vehicles are stopped while pedestrians cross the intersection. As noted in Section 4 of this report, the pedestrian scramble was decommissioned as part of the interim improvements.

The $1^{\text {st }}$ and $5^{\text {th }}$ Street intersections with Main Street are two-phase intersections, meaning the northbound and southbound traffic (Main Street traffic) has a green light to proceed and then the east and westbound traffic proceeds. No exclusive left-turn phases exist and the pedestrian phases occur with the corresponding vehicle through movements. The $4^{\text {th }}$ Street PHB is timed to operate twice during the Sun Valley Road cycle; however, poor compliance is observed with both pedestrians and vehicles, and this causes additional delay and queuing along Main Street.

2.4.2 Existing Volume Development

The project team took traffic counts on August 31, 2021 and identified an AM peak hour beginning at 8:00am and a PM peak hour beginning at 4:15pm. In the AM peak, the northbound movements are the largest traffic volumes throughout the corridor. Conversely, the PM peak is
characterized by commuters traveling southbound, with larger volumes at the southern end of the corridor. Additionally, in the PM peak hour, the number of vehicles taking the westbound left turn at Sun Valley Road increases by a factor of approximately 2.5 times the volume in the AM peak. Traffic counts are provided in Appendix A.

The City is a resort destination community with travel patterns that vary throughout the year. The City does not have any automated traffic recorder (ATR) stations of their own, but ITD has two ATRs at the following locations to estimate seasonal variations on SH-75 near Ketchum:

- ATR \#28 - SH-75 @ mile post (MP) 135.95 (7.6 miles north of the SH-75 Spur junction)
- ATR \#68 - SH-75 @ MP 119.4 (2.9 miles north of Bullion Street in Hailey, ID)

Using data from the ATRs, the project team analyzed traffic volumes on $\mathrm{SH}-75$ for fluctuations throughout a given year. The highest traffic volumes were observed in the summer months, averaging over 15,000 vehicles per day (vpd) in June, July, and August at ATR \#68 and around $2,400 \mathrm{vpd}$ at ATR \#28. The lowest traffic volumes were observed in the winter months of December, January, and February with volumes less than 12,000 vpd at ATR \#68 and less than 900 vpd at ART \#28. There is a significant drop in volume on the highway from north and south of Ketchum. Table 1 shows the average monthly seasonal factors determined from the historical ATR data. Volumes from 2020 are not included in the analysis due to the Covid-19 pandemic and associated shutdowns.

Table 1. Monthly Seasonal Factors (MSFs)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aud	Sep	Oct	Nov	Dec
Avg MSF	0.90	0.94	0.88	0.85	0.93	$\mathbf{1 . 1 1}$	1.24	1.19	1.08	1.03	0.88	0.98
w/o 2020	$\mathbf{0 . 8 9}$	$\mathbf{0 . 9 3}$	$\mathbf{0 . 8 9}$	$\mathbf{0 . 8 9}$	$\mathbf{0 . 9 4}$	$\mathbf{1 . 1 1}$	$\mathbf{1 . 2 4}$	$\mathbf{1 . 1 8}$	$\mathbf{1 . 0 6}$	$\mathbf{1 . 0 2}$	$\mathbf{0 . 8 8}$	$\mathbf{0 . 9 7}$

The seasonal adjustments results are calculated by dividing the August 2021 count by a factor of 1.18. This represents an 18 percent decrease in volumes to represent a typical day. Figure 4 details the results of the volume adjustments.

Figure 6. Main Street AM and PM Peak Hour Turning Movement Counts

2.4.3 Capacity and Level of Service

Capacity is defined as the maximum rate at which vehicles can pass through a given point in an hour under prevailing conditions. Intersection capacity is measured by evaluating the critical lane groups that experience the most delay for stop-controlled intersections. A volume to capacity (v / c) ratio less than 0.85 generally indicates that adequate capacity is available, and vehicles are not expected to experience significant queues or delays. As the v/c ratio approaches 1.0, traffic flow may become unstable and significant delay and queuing conditions may occur. Once the demand exceeds capacity, defined as a v/c ratio greater than 1.0, traffic flow is unstable and excessive delay and queuing is expected. The concept of level of service (LOS) was developed to correlate numerical traffic operational data to subjective descriptions of traffic performance at intersections. LOS is defined as the system of six designated ranges, from "A" (best) to "F" (worst), used to evaluate performance. Table 2 presents the Highway

Capacity Manual (HCM) ${ }^{6}$ thresholds based on delay at stop-controlled and signalized intersections.

Table 2. LOS Thresholds for Motor Vehicles at Intersections

Los	Stop Control Intersection Control Delay (seconds/vehicle)	Signalized Intersection Control Delay (seconds/vehicle)
A	≤ 10	≤ 10
B	$10-15$	$10-20$
C	$15-25$	$20-35$
D	$25-35$	$35-55$
E	$35-50$	$55-80$
F	>50	>80

Source: National Academies Press. Highway Capacity Manual, 6th Ed. A Guide for Multimodal Mobility Analysis.

The project team used Synchro 11 software to model and analyze study area intersections under existing conditions, and HCM $6^{\text {th }}$ Edition and HCM 2000 analysis methods to produce the analysis reports.

2.4.4 Existing Corridor Inefficiencies

The corridor had several operational inefficiencies that affect intersection performance that were modeled in the initial deterministic analysis. A separate signal timing update occurred parallel to this analysis and HDR worked with City staff and ITD to implement some mitigation measures, described in Section 4. The inefficiencies include:

- The Sun Valley Road intersection is currently split phased on the north-south (Main Street) movements, meaning the movements occur separately from each other and are not timed concurrently. This impedes two-way progression on the corridor and increases the cycle length at the intersection, which intern increases delay;
- The pedestrian scramble at Sun Valley Road increases the signal cycle length. At the pedestrian clearance, time is calculated using the diagonal distance across the intersection instead of the shorter distance on the legs of the intersection;
- Although the signals along the corridor are closely spaced, they are not interconnected, which does not allow for a coordinated signal timing plan to be implemented. This limits vehicle progression through the corridor as green bands are unlikely to line up;
- The southbound travel lanes must merge from two lanes to one lane between River Street and $1^{\text {st }}$ Street. Drivers were observed getting into the continuous left lane before $1^{\text {st }}$ Street to avoid having to perform the merge maneuver before River Street. This creates an underutilization of lanes at the $1^{\text {st }}$ Street intersection, degrading operations and capacity at the intersection; and

[^12]- The "split" of Main Street at the $6^{\text {th }}$ Street intersection causes some confusion due to the lack of proper pavement markings and way finding signage in advance of the intersection.

2.4.5 Summer Peak Existing Traffic Operations

Given the large variability of traffic volumes during the summer months compared to other months, the project team analyzed the intersections with the unadjusted August volumes for comparison with the seasonally adjusted volumes.

Table 3. Summer Peak Existing Traffic Operations

Intersection	Overall Intersection LOS	Movement				
		Lane Group	Delay (s)	LOS	$95^{\text {h }}$ Percentile Queue Length (feet)	V/C Ratio
1, River / Main	C (D)	NET/L/R	18.1 (24.7)	C (C)	4.4 (15.4)	0.072 (0.199)
		SWT/L/R	23.4 (28.9)	C (D)	2.2 (4.4)	0.033 (0.053)
		NWT/L/R	8.2 (10.5)	A (B)	2.2 (2.2)	0.032 (0.022)
		SET/L/R	0 (8.4)	A (A)	0 (0)	0 (0.004)
2, First / Main	A (A)	NET/L/R	16.7 (15.1)	B (B)	15.4 (50.6)	0.19 (0.34)
		SET/L	3.2 (7.7)	A (A)	13.2 (77)	0.16 (0.39)
		SET/R	3.2 (7.7)	A (A)	13.2 (72.6)	0.17 (0.42)
		NWT/L	4.7 (6.6)	A (A)	46.2 (50.6)	0.40 (0.26)
		NWT/R	4.7 (6.6)	A (A)	44 (44)	0.44 (0.29)
		SWT/L/R	17 (16.8)	B (B)	22 (99)	0.26 (0.58)
3, Second / Main	C (B)	NET/L/R	16.6 (14)	C (B)	4.4 (4.4)	0.052 (0.087)
		SWT/L/R	19.3 (14)	C (B)	2.2 (2.2)	0.044 (0.049)
		SET/L	9.1 (8.2)	A (A)	0 (0)	0.005 (0.004)
		SET/R	0 (0)	A (A)	0 (0)	0 (0)
		NWT/L	8 (9.1)	A (A)	2.2 (2.2)	0.025 (0.024)
		NWT/R	0.1 (0.1)	A (A)	0.1 (0)	0 (0)
4, Sun Valley / Main*	D (D)	NWT/L/R	57.6 (52.4)	E (D)	\#345 (\#250)	0.95 (0.83)
		NEL	47.3 (51.1)	D (D)	48 (66)	0.43 (0.44)
		NET/R	43.8 (48.5	D (D)	88 (122)	0.42 (0.52
		SWL	48.8 (50.2)	D (D)	90 (199)	0.37 (0.41)
		SWT/R	43.2 (44.7)	D (D)	95 (153)	0.37 (0.41)
		SET/L/R	28.3 (41.5)	C (D)	138 (281)	0.41 (0.73)

Intersection	Overall Intersection LOS	Movement				
		Lane Group	Delay (s)	LOS	95 ${ }^{\text {h }}$ Percentile Queue Length (feet)	V/C Ratio
5, Fourth / Main ${ }^{*}$	A (A)	SET/L/R	0.1 (0.2)	A (A)	0 (0)	0.14 (0.21)
		NWT/L/R	0.1 (0.1)	A (A)	0 (0)	0.19 (0.14)
		NER	0 (0)	A (A)	0 (0)	0.01 (0.01)
		SWR	0 (0)	A (A)	0 (0)	0.03 (0.04)
6, Fifth / Main	A (A)	NET/L/R	19.5 (19.2)	B (B)	72 (61.6)	0.43 (0.45)
		NWT/L	3.9 (4)	A (A)	33 (26.4)	0.27 (0.19)
		NWT/R	4 (4.1)	A (A)	33 (24.2)	0.28 (0.21)
		SET/L	3.7 (4.9)	A (A)	24.2 (50.6)	0.23 (0.35)
		SET/R	3.8 (5.2)	A (A)	26.4 (50.6)	0.24 (0.37)
		SWT/L/R	18.5 (19.5)	B (B)	31 (63.8)	0.22 (0.51)
7, Sixth / Main	B (B)	NEL	10.2 (10.9)	B (B)	2.2 (2.2)	0.023 (0.036)
		SWL	10.2 (9.8)	B (A)	2.2 (4.4)	0.03 (0.051)

AM (PM) results

\# = 95th percentile volume exceeds capacity, queue may be longer
*Indicates that HCM 2000 was used due to pedestrian phase methodology not being supported

Table 3 represents the overall operations of intersections during the month of August, which is projected to see higher than average traffic due to tourism in the Ketchum region. Overall, the intersections operate well during each peak hour under existing conditions with some leftturning movements that have longer than desirable delays. The intersection of Main Street and Sun Valley Road operates poorly during the PM peak hour as the existing pedestrian scramble phase causes added delay to the intersection. In addition, the Main Street and Sun Valley Road intersection had significant delay of over 50 seconds for the NWT and left-turn movements onto Main Street in the AM and PM peaks. The NWT AM peak had the longest delay of 57.6 seconds at LOS E. The overall for this intersection is LOS D. The River and Main Street intersection also experienced high delays for the NEL and SWL movements. The delay for these movements was about 21 seconds in the AM and 26 seconds in the PM. The intersection has an overall LOS C for the AM peak and LOS D for the PM peak. Several queue lengths from intersections are estimated to be long and impact adjacent intersections. Detailed reports are provided in Appendix B.

2.4.6 Seasonally-Adjusted Traffic Operations

Table 4. Seasonally Adjusted Traffic Operations

Intersection	Overall Intersection LOS	Movement				
		Lane Group	Delay (s)	LOS	95^{h} Percentile Queue Length (feet)	V/C Ratio
1, River / Main	C (C)	NET/L/R	14.6 (19.5)	B (C)	2.2 (11)	0.045 (0.136)
		SWT/L/R	19.7 (22.3)	C (C)	2.2 (2.2)	0.022 (0.034)
		NWT/L/R	8 (9.7)	A (A)	2.2 (2.2)	0.026 (0.016)
		SET/L/R	0 (8.2)	A (A)	0 (0)	0 (0.003)
2, First / Main	A (A)	NET/L/R	16.7 (15.4)	B (B)	13.2 (41.8)	0.17 (0.31)
		SET/L	2.9 (6.1)	A (A)	11 (55)	0.13 (0.32)
		SET/R	3 (6.4)	A (A)	11 (50.6)	0.14 (0.34)
		NWT/L	3.9 (5.4)	A (A)	33 (33)	0.34 (0.22)
		NWT/R	4.3 (5.6)	A (A)	33 (30.8)	0.37 (0.24)
		SWT/L/R	16.9 (16.8)	B (B)	19.8 (81.4)	0.13 (0.54)
3, Second / Main	C (B)	NET/L/R	14.4 (12.5)	B (B)	2.2 (4.4)	0.038 (0.063)
		SWT/L/R	15.7 (12.4)	C (B)	2.2 (4.4)	0.028 (0.054)
		SET/L	8.7 (8)	A (A)	0 (0)	0.003 (0.003)
		SET/R	0 (0)	A (A)	0 (0)	0 (0)
		NWT/L	7.9 (8.7)	A (A)	2.2 (4.4)	0.021 (0.019)
		NWT/R	0 (0.1)	A (A)	0 (0)	0 (0)
4, Sun Valley / Main*	D (D)	NWT/L/R	46.4 (47)	D (D)	\#252 (178)	0.39 (0.43)
		NEL	56.2 (51.9)	E (D)	43 (58)	0.57 (0.49)
		NET/R	46.4 (47)	D (D)	76 (105)	0.39 (0.43)
		SWL	47.1 (50.4)	D (D)	78 (168)	0.55 (0.68)
		SWT/R	42.4 (44.2)	D (D)	81 (129)	0.30 (0.36)
		SET/L/R	26.3 (36.1)	C (D)	113 (229)	0.33 (0.59)
5, Fourth / Main*	A (A)	SET/L/R	0.1 (0.1)	A (A)	0 (0)	0.11 (0.18)
		NWT/L/R	0.1 (0.1)	A (A)	0 (0)	0.16 (0.11)
		NER	0 (0)	A (A)	0 (0)	0.01 (0.01)
		SWR	0 (0)	A (A)	0 (0)	0.02 (0.04)
6, Fifth / Main	A (A)	NET/L/R	19.6 (19.2)	B (B)	63 (72)	0.39 (0.41)
		NWT/L	3.3 (4.4)	A (A)	24.2 (11)	0.20 (0.16)
		NWT/R	3.5 (3.6)	A (A)	24.2 (11)	0.23 (0.17)

Intersection	Overall Intersection LOS	Movement				
		Lane Group	Delay (s)	LOS	95 ${ }^{\text {th }}$ Percentile Queue Length (feet)	V/C Ratio
		SET/L	3.2 (4.2)	A (A)	17.6 (19.8)	0.19 (0.29)
		SET/R	3.3 (4.4)	A (A)	17.6 (19.8)	0.20 (0.31)
		SWT/L/R	18.7 (19.5)	B (B)	29 (59)	0.21 (0.47)
7, Sixth / Main	A (A)	NEL	9.9 (10.4)	A (B)	2.2 (2.2)	0.018 (0.028)
		SWL	9.9 (9.6)	A (A)	2.2 (2.2)	0.024 (0.04)

The seasonal adjusted volume operations reduced the overall delay times (Table 4); however, the Sun Valley Road and Main Street intersection still has significant delays for the NET movement in both the AM and PM peak hours. The intersection has an overall LOS D as generally the queues clear during one signal cycle. All other intersections operate with a LOS C or better during both AM and PM peak hours. Detailed reports are provided in Appendix B.

2.5 Crash History \& Evaluation

2.5.1 Annual Average Daily Traffic Volume

The project team converted PM peak hour traffic volume data to annual average daily traffic (AADT) by using a conversion factor of 8.70 . This factor was developed by comparing the AADT values on Main Street between $4^{\text {th }}$ Street and $5^{\text {th }}$ Street and between $2^{\text {nd }}$ Street and Sun Valley Road to the related PM peak volume. The AADTs were divided by the PM peak hour traffic volumes to estimate a conversion factor from peak to AADT volumes on the corridor. The calculated factors were 8.72 for the segment between $2^{\text {nd }}$ Street and Sun Valley Road and 8.68 for the segment between $4^{\text {th }}$ Street and $5^{\text {th }}$ Street. The average of these two values (8.70) was applied throughout the corridor.

2.5.2 Crash Costs and EPDO Weighting Factor

Average crash costs by severity are used in the existing conditions equivalent property damage only (EPDO) crash analysis. Average crash costs, shown in Table 5, are taken from ITD's 2020 traffic crash resource ${ }^{7}$. The costs are economic costs reflecting the tangible (e.g., medical bills, car repairs, towing, legal, loss of productivity, etc.) cost of crashes. The EPDO weighting factors in Table 5 are calculated relative to property damage only (PDO) crash costs (i.e., fatal crash cost of $\$ 10,322,433$ divided by PDO crash cost of $\$ 3,430$ equals a weighting factor of 2,968).

[^13]Table 5. Economical Crash Costs

Crash Severity	Economic Crash Costs	EPDO Weighting Factor
K - Fatal	$\$ 10,322,433$	2,968
A - Suspected Serious Injury	$\$ 493,671$	142
B - Suspected Minor Injury	$\$ 134,460$	39
C - Possible Injury	$\$ 68,660$	20
Property Damage Only (PDO)	$\$ 3,478$	1

The project team conducted a crash analysis on Main Street for the intersections and the blocks (or segments) between the intersections. Crashes are considered intersection crashes if coded as so in the Local Highway Technical Assistance Council (LHTAC) data; otherwise, the crashes are considered segment crashes. Crashes are summarized by frequency, type, and severity.

In addition, the project team ranked intersections and segments separately using a combined ranking of crash frequency, crash rate, and EPDO. EPDO assigns the weighting factors from Table 5 to crashes, by severity, to develop a score that reflects frequency and severity. The combined rank is developed by ranking the intersections and segments three times; according to 1) crash frequency (the number of crashes), 2) crash rate and 3) EPDO. The intersection crash rate is calculated by dividing the crash frequency by the total entering traffic volume from 2016 to 2020. The rankings are summed for each location and the location with the lowest score has the highest potential for safety improvement.

2.5.3 Intersection Crashes

During the 5 -year study period (2016-2020) there were 25 crashes at intersections on Main Street between River Street and $6{ }^{\text {th }}$ Street. The most frequent crash type was rear end (13 crashes), and the most frequent contributing circumstance was following too close (8 crashes). Most of the crashes were PDO (15 crashes), with two suspected serious injury (A Injury) crashes, four minor injury (B Injury), and four possible injury (C injury) crashes. Most of the crashes occurred in daylight conditions (21 crashes) and on dry roads (17 crashes).

These types of crash patterns are consistent with congested signalized corridors and poor vehicular progression. The congestion increases the likelihood drivers are following too close and will rear-end another vehicle. Poor vehicular progression also increases the number rear end crashes as drivers behave in a stop-and-go pattern, instead of a consistent flow.

Figure 7 shows the number and severity of crashes at the study intersections. Table 6 shows the crash types at the study intersections, and Table 7 shows most frequent crash contributing circumstances.

Figure 7. Intersection Crashes by Location and Severity (2016-2020)
Table 6. Intersection Crash Types (2016-2020)

		Crash Types					
Intersection	Total		$\begin{aligned} & \frac{0}{2} \\ & \text { 心 } \\ & \frac{0}{\circ} \\ & \frac{0}{\omega} \end{aligned}$	$\frac{9}{\frac{0}{0}}$			
E River Street / Main Street*	2	1	1				
$1^{\text {st }}$ Street / Main Street**	5	1		2	1	1	
$2^{\text {nd }}$ Street / Main Street*	4	2	1		1		
Sun Valley Road / Main Street**	4	3	1				
$4^{\text {th }}$ Street / Main Street ${ }^{* * *}$	5	3	1				1

		Crash Types					
Intersection	Total	$$	\circ $\%$ 0	$\frac{9}{\frac{9}{4}}$			
$5^{\text {th }}$ Street / Main Street**	3	1	2				
$6{ }^{\text {th }}$ Street / Main Street ${ }^{* * * *}$	2	2					
Total	25	13	6	2	2	1	1

* Two-way stop-controlled intersection
** Signalized intersection
*** Two-way stop-controlled with rectangular rapid flashing beacon (RRFB) intersection
**** Five-way intersection with two-way stop-controlled

Table 7. Intersection Contributing Circumstances (2016-2020)

		Circumstances						
Intersection	Total							
E River Street / Main Street*	2	1			1			
$1^{\text {st }}$ Street / Main Street**	5	1	1			2	1	
$2^{\text {nd }}$ Street / Main Street*	4	2	1	1				
Sun Valley Road / Main Street**	4			2	1			1
$4^{\text {th }}$ Street / Main Street***	5	2	1	1	1			
$5^{\text {th }}$ Street / Main Street**	3	1	1				1	
$6^{\text {th }}$ Street / Main Street ${ }^{* * * *}$	2	1		1				
Total	25	8	4	5	3	2	2	1

* Two-way stop-controlled intersection
** Signalized intersection
*** Two-way stop-controlled with rectangular rapid flashing beacon (RRFB) intersection
**** Five-way intersection with two-way stop-controlled

Table 8 shows the frequency, crash rate and EPDO scores for each of the study intersections, and Table 9 shows the resulting ranking and potential for safety improvement. The $1^{\text {st }}$ Street and Sun Valley Road intersections ranked first and second, respectively. They each have experienced one suspected major injury (A injury) crash and rank in the top half of crash frequency.

Table 8. Intersections - Frequency, Crash Rate, EPDO Score (2016-2020)

Intersection	Crash Frequency (Total Crashes from 2016-2020)	Crash Rate (Crashes per Million Entering Vehicles (MEV))	EPDO Score
E River Street / Main Street	2	0.12	21
$1^{\text {st }}$ Street / Main Street	5	0.28	184
$2^{\text {nd }}$ Street / Main Street	4	0.28	61
Sun Valley Road / Main Street	2	0.25	202
$4^{\text {th }}$ Street / Main Street	4	0.37	5
$5^{\text {th }}$ Street / Main Street	5	0.18	41
$6^{\text {th }}$ Street / Main Street	3	0.13	21

EPDO = equivalent property damage only

Table 9. Intersection - Potential for Safety Improvement (2016-2020)

Intersection	Crash Frequency Rank	Crash Rate Rank	EPDO Score Rank	Combined Score
$1{ }^{\text {st }}$ Street / Main Street	1	2	2	5
Sun Valley Road / Main Street	3	4	1	8
$2^{\text {nd }}$ Street / Main Street	3	3	3	9
$4^{\text {th }}$ Street / Main Street	1	1	7	9
$5{ }^{\text {th }}$ Street / Main Street	5	5	4	14
$6{ }^{\text {th }}$ Street / Main Street	6	6	5	17
E River Street / Main Street	6	7	5	18

EPDO = equivalent property damage only

2.5.4 Segment Crashes

During the 5-year study period, there were 18 non-intersection related crashes on Main Street between E River Street and $6^{\text {th }}$ Street. The most frequent crash type was rear end (9 crashes), and the most frequent contributing circumstance was following too close (4 crashes). Most of the crashes were PDO (11 crashes), with two suspected serious injury (A Injury) crashes, and five possible injury crashes (C Crashes). Most of the crashes occurred in daylight conditions (17 crashes) and clear sky (17 crashes).

Figure 8 shows the number and severity of crashes at the study segments. Table 10 shows the crash types on each segment, and Table 11 shows most frequent crash contributing circumstances. As with the intersection crashes, these types of crash patterns are consistent with congested signalized corridors and poor vehicular progression. The congestion increases the likelihood drivers are following too close and will rear-end another vehicle. Poor vehicular
progression also increases the number rear end crashes as drivers behave in a stop-and-go pattern, instead of a consistent flow.

Figure 8. Segment related crashes by location and severity

Table 10. Segment Crash Types (2016-2020)

		Crash Types							
Intersection	Total					든 눙 8 0			$\frac{\stackrel{1}{0}}{\frac{C}{4}}$
E River Street to $1^{\text {st }}$ Street	4	3		1					
$1^{\text {st }}$ Street to $2^{\text {nd }}$ Street	1	1							
$2^{\text {nd }}$ Street to Sun Valley Road	3	3							
Sun Valley Road to $4^{\text {th }}$ Street	3				1			1	1
$4^{\text {th }}$ Street to $5^{\text {th }}$ Street	2	1		1					
$5^{\text {th }}$ Street to $6^{\text {th }}$ Street	5	1	2			1	1		
Total	18	9	2	2	1	1	1	1	1

Table 11. Segment Contributing Circumstances (2016-2020)

		Circumstances								
Intersection	Total						$\begin{aligned} & \text { 읗 } \\ & \text { 发 } \\ & \stackrel{0}{0} \end{aligned}$			
E River Street to ${ }^{\text {st }}$ Street	4	2		2						
$1^{\text {st }}$ Street to $2^{\text {nd }}$ Street	1							1		
$2^{\text {nd }}$ Street to Sun Valley Road	3	1	1				1			
Sun Valley Road to $4^{\text {th }}$ Street	3		1			2				
$4^{\text {th }}$ Street to $5^{\text {th }}$ Street	2	1	1							
$5^{\text {th }}$ Street to $6^{\text {th }}$ Street	5		1		2				1	1
Total	18	4	4	2	2	2	1	1	1	1

Table 12 shows the frequency, crash rate and EPDO scores for each of the study segments and Table 14 shows the resulting ranking and potential for safety improvement. Table 13 shows the crash rates and the related critical crash rates using a level of confidence of . 95 ($\mathrm{K}=1.645$). Idaho's 2020 crash rate for local roads was 1.653^{8}. Critical crash rate was calculated by adding

[^14]1.653 (Idaho's 2020 crash rate for local roads) to $K^{*}(1.653 / \mathrm{MVM})^{1 / 2}+.5 / \mathrm{MVMT}$. Million vehicle miles (MVM) was specific to each segment. Critical crash rates were calculated since the segment lengths are only .05 miles each. The highest ranking for segment crashes is between $5^{\text {th }}$ Street and $6^{\text {th }}$ Street, and it is the only segment to be over the critical crash rate. In addition, the crash rate for the entire Main Street segment is over the calculated critical crash rate.

Table 12. Segment - Frequency, Crash Rate, EPDO Score (2016-2020)

Segment	Crash Frequency (Total Crashes from 2016-2020)	Crash Rate (Crashes per MVM)	EPDO Score
E River Street to $1^{\text {st }}$ Street	4	3.45	42
$1^{\text {st }}$ Street to 2 ${ }^{\text {nd }}$ Street	1	1.09	1
$2^{\text {nd }}$ Street to Sun Valley Road	3	3.37	144
Sun Valley Road to 4th Street	3	3.91	144
$4^{\text {th }}$ Street to $5^{\text {th }}$ Street	2	2.44	2
$5^{\text {th }}$ Street to $6^{\text {th }}$ Street	5	5.26	62

MVM = million vehicle miles; EPDO = equivalent property damage only

Table 13. Segment - Crash rate vs Critical Crash Rate (2016-2020)

Segment	Crash Rate (Crashes per MVM)	Critical Crash Rate (Crashes per MVM)	Over or under Critical Crash Rate
E River Street to $1^{\text {st }}$ Street	3.45	4.05	Under
$1^{\text {st }}$ Street to $2^{\text {nd }}$ Street	1.09	4.41	Under
$2^{\text {nd }}$ Street to Sun Valley Road	3.37	4.46	Under
Sun Valley Road to $4^{\text {th }}$ Street	3.91	4.72	Under
$4^{\text {th }}$ Street to $5^{\text {th }}$ Street	2.44	4.60	Under
$5^{\text {th }}$ Street to $6^{\text {th }}$ Street	5.26	4.35	Over
Entire Segment	3.27	2.65	Over

MVM $=$ million vehicle miles

Table 14. Segment - Potential for Safety Improvement (2016-2020)

Segment	Crash Frequency Rank	Crash Rate Rank	EPDO Score Rank	Combined Score
$5^{\text {th }}$ Street to $6^{\text {th }}$ Street	1	1	3	5
Sun Valley Road to $4^{\text {th }}$ Street	3	2	1	6
$2^{\text {th }}$ Street to Sun Valley Road	3	4	1	8
E River Street to $1^{\text {st }}$ Street	2	3	4	9
$4^{\text {th }}$ Street to $5^{\text {th }}$ Street	5	5	6	15
$1^{\text {st }}$ Street to $2^{\text {th }}$ Street	6	6	5	18

EPDO = equivalent property damage only

2.5.5 Additional Qualitative Safety Issues

The project team learned of safety concerns with the corridor from conversations with City staff, the public at public involvement meetings, and with the City Council. These concerns may not be directly contributing to crashes within the study area, but they do increase the amount of stress that pedestrians, bicyclists, and motorists feel when navigating the area.

Several intersections have multiple approaches to single parcels or long vehicle approaches that could be consolidated. For example, at $1^{\text {st }}$ Street, the access to the Village Market is very long and close to the intersection, which creates more turning conflicts with pedestrians than necessary if the access was consolidated. Additionally, the Veltex property has two access points less than 10 feet away from the intersection, which cause confusion at the intersection. City staff noted that some individuals use the two approaches to avoid the intersection by cutting through the Veltex parking lot. Figure 9 and Figure 10 show the existing conditions at these locations.

Figure 9. Large Access and Lack of ADA/PROWAG Complaint Facilities at $1^{\text {st }}$ Street

Figure 10. Multiple Approaches Close to the 5th Street Intersection
The Main Street Corridor also is lacking facilities that are compliant with the Americans with Disabilities Act (ADA) and Public Rights-of-Way Accessibility Guidelines (PROWAG). Most of the curb ramps do not have truncated domes or wheelchair-accessible pedestrian pushbuttons. This increases the likelihood that visually impaired and wheelchair-dependent users may enter the intersection during a conflicting vehicle movement. Figure 11 shows a non-compliant corner on the corridor.

Figure 11. ADA/PROWAG Noncompliant Corner at Sun Valley Road and Main Street
In conversations with City staff, and during a walking tour, concerns were raised about the ability of northbound traffic seeing pedestrians crossing at the River Street intersection. Vehicular traffic is traversing up a hill and the crosswalk markings on the north side of the intersection are difficult to see. With two new hotels expected to redevelop adjacent lots on the corner, there is concern for an increase in pedestrians and that drivers may not be able to stop in time when a pedestrian is crossing. Figure 12 shows the existing conditions at the River Street Intersection.

Figure 12. River Street Intersection View from the South.

3 Future Conditions and Initial Alternatives

3.1 Study Year and Target LOS

For the purposes of this study, the project team identified year 2042 as the design year for the improvements. Per section A. 15 of ITD's Roadway Design Manual ${ }^{9}$ LOS D is "applicable for Federal-aid construction on State and local highway excluding highways on the National Highway System." Since ITD owns Main Street, the project team set a target LOS D for the operations analysis.

3.2 Forecasted Traffic Patterns

The City of Ketchum does not lie within boundaries of a Municipal Planning Organization (MPO) that would produce a travel demand model that projects trip generation out into the future. Therefore, the project team calculated an average growth rate to represent traffic volume growth.

Traffic volumes on SH-75 were analyzed using historical data from ITD's ATRs to see how they have grown between 1990 and 2019. Due to the Covid 19 pandemic shutdowns, 2020 data was

[^15]again excluded. Historical data from the ATR stations show patterns of steady and rapid growth on SH-75 up to the early 2000s, followed by a steep decline that coincides with the Great Recession. Traffic volumes started increasing again around 2012 and have steadily increased each year approaching the highest volumes seen before the Great Recession. Using the ATR data, the project team calculated a historical annual average growth rate of 1.44 percent for SH75 and applied it as a regional growth factor for the City of Ketchum. Figure 13 and Figure 14 show the historical patterns of the AADT along SH-75.

Figure 13. ATR \#68 Historic AADT

Figure 14. ATR \#28 Historic AADT
The project team developed two separate volume scenarios for this study: 1) applying the growth rate to the unadjusted August counts, called the summer volumes, and 2) applying the growth rate to the adjusted counts, called the average volumes. Forecasted traffic volumes for the AM and PM peak hours are provided in Figure 15 and Figure 16.

Figure 15. Average Main Street 2042 Volumes

Figure 16. Summer Main Street 2042 Volumes

3.3 Future Scenario Evaluation

The project team developed two scenarios (No-Build and Build 3-lane configuration) along Main Street for both the average and summer volumes conditions for a total of four analysis scenarios (AM and PM peak for each). Table 15 summarizes different analysis scenarios. The analysis results of each are discussed in detail in Appendix C - Draft Future Conditions Memo.

Table 15. Main Street Analysis Scenarios

No.	Volumes Used	Scenario	Main Street Cross Section	Signal Operations	Peak Hour Factor
1	2042 Average	No-Build	Two lanes in each direction, no dedicated turn lanes at intersections	Existing signal timing parameters	
2	2042 Summer		One lane in each direction, dedicated left-turn lane at each intersection on Main Street	100 second cycle length, flashing yellow arrows (FYA) for left turns	0.92
3	2042 Average	Build			
4	2042 Summer				

3.3.1 Main Street Scenario 1

The first scenario on Main Street evaluates the existing four-lane section and timing parameters with the 2042 average volumes. Only the Sun Valley Road intersection and River Street intersection perform below ITD's recommended LOS D threshold. Sun Valley Road is estimated to operate at LOS F during the AM peak hour and LOS E during the PM peak hour, largely due to the split phasing of Main Street traffic.

Side street traffic at River Street looking to turn onto Main Street becomes overwhelmed by the large PM peak volumes of southbound traffic and cannot find a gap to turn left. This reduces River Street to an estimated LOS F. The remaining intersections are estimated to operate at an LOS C or better in the AM and PM peak hours. The average speed through the corridor is expected to be 14 miles per hour (mph) in the AM peak and 10 mph in the PM peak.

3.3.2 Main Street Scenario 2

Like the first scenario, the second scenario evaluates the existing four-lane section and timing parameters but with the summer 2042 volumes. Again, the Sun Valley Road and River Street intersections operate below ITD's recommended LOS D threshold. Sun Valley Road is estimated to operate at LOS F in both peak hours with northbound queues approaching 600 feet in the AM peak hour. The northbound traffic is expected to exceed the capacity of the intersection in both the AM and PM peak hours and the southbound traffic is expected to exceed capacity in the PM peak.

River Street continues to operate at LOS F in the PM peak hour, with the remaining intersections operating at an estimated LOS D or better in both peak hours.

The average speed through the corridor is expected to be approximately 8 mph in the morning and 7 mph in the evening peak. The capacity of the corridor is exceeded and over 200 vehicles are estimated to not be served during the peak hours.

3.3.3 Main Street Scenario 3

In scenario three, the 2042 average volumes are analyzed with a three-lane section, one lane in each direction with dedicated left-turn lanes at each intersection along Main Street. Side streets will remain in their existing configurations. The signalized intersections were evaluated with 100second cycle lengths and flashing yellow arrow (FYA) left-turn operations. Pedestrian clearance
times were reduced due to the smaller crossing distances expected. Sun Valley Road's split phasing and pedestrian scramble phase were replaced with a standard signal phasing.

Overall, the intersections through the corridor are expected to operate at a better LOS in 2042, with the Sun Valley Road intersection experiencing the largest improvement to LOS B in both peak hours.

In terms of the corridor's performance, the average speed through the corridor is expected to be 14 mph in the morning peak and 10 mph in the evening peak. However, the corridor's capacity is exceeded in the evening and 28 vehicles will not be served.

Unfortunately, the LOS and delay benefits expected at the intersections may not be fully realized due to excessive queue lengths. For example, the southbound queue lengths at $1^{\text {st }}$ Street are expected to exceed 330 feet, which would back up traffic through the $2^{\text {nd }}$ Street intersection. $5^{\text {th }}$ Street's estimated queue lengths are also large in the evening peak with southbound traffic backing up nearly 370 feet, which would clog the $6^{\text {th }}$ Street intersection. The HCM's methodology analyzes intersections in isolation and does not consider queue spillback. It's expected that these large queue lengths would interfere with upstream intersection operations, degrading their LOS. Therefore, reported LOS and delay benefits should be read with caution and within the context of the queue lengths.

3.3.4 Main Street Scenario 4

The final scenario on Main Street analyzes the same roadway cross section as Scenario 3, but with the 2042 summer volumes. Signal operations, pedestrian clearances, and phasing are also the same as in Scenario 3.

With the increase in volumes in the summer months, River Street, $1^{\text {st }}$ Street, and $2^{\text {nd }}$ Street are expected to operate at LOS E or LOS F during the peak hours. The traffic at River Street and $2^{\text {nd }}$ Street, both stop-controlled intersections, struggle to find a gap to turn left onto Main Street, increasing delays. In the case of the signalized operations at $1^{\text {st }}$ Street, it is estimated to operate at LOS E in the PM peak hour with the southbound movements experiencing LOS F. The remaining intersections are expected to operate at an acceptable LOS.

As with Scenario 3, the LOS and delay benefits experienced at the intersection may not be fully realized due to excessive queue lengths. For example, at $1^{\text {st }}$ Street, the PM peak southbound traffic experiences an estimated queue length of 1,309 feet. This long of a queue would back traffic up nearly to $6^{\text {th }}$ Street, blocking the other intersections on the corridor. Similarly, the queued northbound traffic at $1^{\text {st }}$ Street in the morning is expected to back up 721 feet, extending beyond River Street.

3.3.5 Main Street Initial Scenarios Comparison

At first glance, reducing the number of lanes from four to three and adding FYA for left turns, analyzed in scenarios 3 and 4, appears to improve the LOS along the corridor. For example, the Sun Valley Road/Main Street intersection operations improve from an LOS F in the PM peak hour to an LOS C with these improvements. However, when looking at the estimated queue lengths at the intersections, they can exceed 1,000 feet in some cases with the reconfigured
cross section. These excessive queues are significantly longer than those estimated under the No-Build scenarios and would back up from one signal through the upstream signalized intersections, causing significant congestion and potential gridlock.

The HCM capacity analysis methodology and the reported measures of effectiveness (MOE) generally do not consider how closely spaced signals interact with one another. Long queue lengths from one signalized intersection would interfere with another's operations, ultimately increasing delay and reducing LOS. By separating the left-turn traffic from the through traffic and adding FYA left-turn operations along Main Street in the 2042 Build scenario, traffic flow tends to improve, but there simply is not enough room on Main Street to store the queued traffic without blocking adjacent intersections.

Side street queue lengths also increase from the No-Build to the Build alternatives under average conditions and get even worse under summer conditions. Short city block lengths, onstreet parking, and a single lane in each direction limit the amount of storage available on the side streets. Operations at the stop-controlled intersections are not expected to improve in the Build scenario and delays are expected to increase during the summer peak.

Overall, these results indicate that there is significant operational improvement by removing the split phasing at Sun Valley Road and installing left-turn lanes with FYA. The closely spaced intersections prevent the large volume of traffic from being stored, ultimately creating congestion.

3.4 Additional Scenarios

In consultation with City staff, the project team evaluated the following three additional scenarios, using 2042 summer volumes, to quantify the potential benefits and trade-offs to improve the corridor

- Scenario 5: Add left-turn lanes on Main Street at Sun Valley Road, removing split phasing and pedestrian scramble.
- Scenario 6: Prohibit left-turn movements from Main Street, except at Sun Valley Road where left-turn lanes are added.
- Scenario 7: Install a five-lane section along Main Street with left-turn lanes at each intersection.

Scenario results are summarized below. Summary tables and detailed reports are provided in Appendix C.

3.4.1 Main Street Scenario 5 - Add Left-Turn Lanes at Sun Valley Road

In this scenario, parking is removed along two blocks at the Sun Valley Road intersection to add a left-turn lane in each direction on Main Street. The split phasing and pedestrian scramble are removed creating an intersection with traditional phasing. The results show a marked decrease in queue lengths, with queue lengths at Sun Valley Road at less than 65 feet.

3.4.2 Main Street Scenario 6 - Add Left Turns at Sun Valley Road and Prohibit at Other Intersections

This scenario is similar to Scenario 5 in that it adds turn lanes on Main Street at the Sun Valley Road intersection, but it also prohibits left turns at the $1^{\text {st }}$ and $5^{\text {th }}$ street intersections. This pushes all left-turning traffic from Main Street to the Sun Valley Road intersection. This scenario also decreases queue lengths along the corridor, but slightly increases travel times as compared to Scenario 5.

3.4.3 Main Street Scenario 7 - Create a 5-lane Section along Main Street

The final scenario removes parking along the entirety of Main Street to add left-turn lanes at each intersection. The configuration removes the split phasing and pedestrian scramble at the Sun Valley Road intersection. It improves operations to LOS A at $1^{\text {st }}$ Street, Sun Valley Road and $5^{\text {th }}$ Street in the AM peak hour. In the PM peak hour, Sun Valley Road and $5^{\text {th }}$ Street are expected to operate at an LOS B, while $1^{\text {st }}$ Street operates at an LOS C. Travel times for this scenario are expected to be higher than scenarios 5 and 6 , but less than the three-lane scenario.

3.4.4 Comparing Additional Scenarios

When compared to the No-Build or three-lane scenarios, scenarios 5, 6, and 7 decrease congestion on the corridor and reduce travel times. Each scenario provides better LOS, less congestion/gridlock, and better progression and travel time for vehicles and pedestrians. The shorter cycle lengths with these scenarios will shorten the wait times for pedestrians at intersections. Scenario 7 achieves vehicle progression goals; however, it produces the greatest impact by removing parking along the corridor. The Scenario 7 configuration may also limit opportunities to install curb extensions on Main Street to shorten the pedestrian crossings.

Figure 17 shows a comparison of the travel times between the three-lane scenario and the other scenarios. During the PM peak hour, the three-lane configuration southbound travel time is nearly double the other alternatives. Adding the left turns at Sun Valley Road reduces the travel times the most. Scenarios 6 and 7 also reduce travel times; however, they have a greater impact on the public in turn restrictions or removing more parking than Scenario 5. Average speeds, shown in Figure 18, are lowest in the three-lane scenario due to the increase in congestion and limited capacity of the roadway.

Figure 17. PM Peak Travel Time Comparison of Additional Scenarios

Figure 18. PM Peak Average Speed Comparison of Additional Scenarios

3.5 Initial Recommendation and Limitations of the Analysis

HDR presented the findings of the deterministic analysis to the City Council on April 11, 2022. HDR recommended against pursuing the three-lane section due to the significant impacts to motorized vehicle flow and travel time. Congestion on Main Street could cause traffic to use adjacent streets to get through town, increasing volumes, congestion, and conflicts on local streets. Instead, HDR recommended the City pursue adding left-turn lanes at the Sun Valley Road Intersection, similar to scenario 5, and HDR provided a conceptual rendering, shown in Figure 19.

Figure 19. Conceptual Rendering of Adding Left Turns at Sun Valley Road
The above results were performed using HCM methodologies, which are deterministic in nature. The methodologies use parameters, including volume, saturation flow rates, signal timing settings, and others to estimate a statistical model representing traffic. This methodology, employed in Synchro, is usually accurate enough for basic projects, but generally does not consider the immediate influences of adjacent intersection or impacts to individual drivers. Deterministic analysis also does not produce a visual representation of the operations.

The City Council asked for a visual representation of the corridor operations to understand the potential impacts of the different lane reconfiguration scenarios. HDR explained the limitations of the macroscope methodologies and recommended performing a microsimulation analysis to improve the confidence of the analysis and provide videos of the operations.

4 Interim Improvements

At the City's request, HDR and the project team implemented short-term solutions to enhance the corridor operations in the interim period. These improvements were in response to inefficiencies previously identified in Section 2.4.4.

- The project team coordinated with ITD to interconnect the signals to implement a coordinated signal timing plan.
- The City and ITD agreed to remove the pedestrian scramble. While good in its intentions to provide more opportunities for pedestrians to cross Main Street, the scramble added undo delay to vehicles along the corridor.
- HDR developed signal timing plans for the AM and PM peak hours to reduce the number of stops and increase progression during the peak hours. Additionally, HDR recalculated the pedestrian clearance intervals to increase pedestrian safety.
- ITD is currently designing a project south of Ketchum that is scheduled to be built before improvements on Main Street and would provide an opportunity to revise the location of the merge taper between $1^{\text {st }}$ Street and River Street to be south of River Street. This would allow drivers to stay in their lanes for a longer period of time before merging and reduce the impact of the merge on the $1^{\text {st }}$ Street signal.

5 Microsimulation Analysis

The project team performed a microsimulation analysis using Vissim software. The microsimulation is a higher-grade analysis than the previously described deterministic analysis that treats vehicles individually instead of in flow relationship equations. This level of analysis creates a higher confidence in vehicle-to-vehicle interaction and a visual example of estimated operations can be produced. The project team analyzed the following specific alternatives:

- Existing Conditions
- Alternative 1: No-Build
- Alternative 2: Adding Main Street left-turn lanes at Sun Valley Road
- Alternative 3: Three-lane section

The Existing Conditions alternative and Alternative 1 were developed under the following assumptions:

- the pedestrian scramble was removed,
- the new signal timing plans were implemented,
- the merge taper was moved south of River Street, and
- Left turns were protected only and FYA's were not used.

Each alternative evaluated August 2042 volumes grown by the 1.44 percent average annual growth rate and no seasonal adjustments were made to traffic volumes.

In Vissim, the intersection LOS is computed from a microsimulation analysis that is reported as an "estimated LOS." Vissim quantifies overall intersection delays more realistically than typical equation based HCM methods because it models the entire network and how operations at one intersection influences adjacent intersection as it tracks individual vehicle movements and interactions. The estimated LOS for existing conditions is based on HCM criteria and thresholds for signalized and unsignalized intersections. The overall intersection delay and LOS for signalized intersections is based on the total control delay of all movements. The overall intersection delay and LOS for unsignalized intersections is based on the worst stop-controlled movement per HCM standards. Detailed measures of effectiveness tables for individual
movements are provided in Appendix D. Unlike in the deterministic analysis, FYAs were not considered for left-turn lanes.

5.1 Existing Conditions Alternative

Like the earlier analysis, the existing conditions are modeled using August 2022 volumes with results shown in Table 16. Each intersection is operating at an estimated LOS C or better in the AM peak hour. The average delay at the Sun Valley Road intersection is at 31 seconds with northbound and southbound queue lengths at approximately 240 feet, or nearly the entire block. In the PM peak hour, each intersection operates at LOS D or better with 40 seconds of average vehicle delay at the Sun Valley Road intersection. At $1^{\text {st }}$ Street and Sun Valley Road, the queue lengths are estimated to be at or exceeding 300 feet both westbound and southbound.

Table 16. Existing Conditions Microsimulation Results

Intersection	Traffic Control	AM Peak Delay (sec/veh)		Estimated Los	Delay (sec/veh)	Estimated Los
SH-75 and 6th St		6.5	A	7.4	A	
SH-75 and 5th St	Signalized	9.3	A	9.9	A	
SH-75 and 4th St	Unsignalized	15.5	C	15.4	C	
SH-75 and Sun Valley Rd	Signalized	31.4	C	38.2	D	
SH-75 and 2nd St	Unsignalized	12.0	B	13.1	B	
SH-75 and 1st St	Signalized	7.0	A	18.2	B	
SH-75 and River Rd	Unsignalized	16.2	C	24.8	C	

$\mathrm{sec} / \mathrm{veh}=$ seconds per vehicle; LOS = level of service

5.2 Alternative 1: No-Build

In the 2042 No-Build conditions, each intersection operates at an LOS C or better in the AM peak with delays at Sun Valley Road approaching 31.3 seconds. The $6^{\text {th }}$ Street intersection performs the worst in the PM peak with an average delay of 146.7 seconds and an LOS F. Although the average delay at the Sun Valley Road intersection is only 47.4 seconds per vehicle, the westbound left turn is estimated to experience delays exceeding 80 seconds at LOS F and queue lengths approaching 590 feet. The $1^{\text {st }}$ Street intersection is expected to have queue lengths exceed 500 feet in the PM peak hour. Table 17 shows a LOS summary for each of the intersections.

Table 17. Alternative 1: No-Build Microsimulation Results

Intersection	Traffic Control	AM Peak (sec/veh)		Estimated Los	Delay (sec/veh)	Estimated LoS
SH-75 and 6th St		7.1	A	146.7	F	
SH-75 and 5th St	Signalized	11.3	B	24.6	C	
SH-75 and 4th St	Unsignalized	15.7	C	48.2	E	
SH-75 and Sun Valley Rd	Signalized	33.9	C	47.4	D	
SH-75 and 2nd St	Unsignalized	19.4	C	16.9	C	
SH-75 and 1st St	Signalized	9.3	A	20.3	C	
SH-75 and River Rd	Unsignalized	30.8	D	28.7	D	

$\mathrm{sec} / \mathrm{veh}=$ seconds per vehicle; LOS = level of service

5.3 Alternative 2: Install Left-Turn Lanes at Sun Valley

In Alternative 2, the 2042 volumes are analyzed with left-turn lanes added at the Sun Valley Road intersection. During the AM peak hour, each intersection performs above ITD's LOS D threshold, with River Street performing the worst at LOS D and 31.0 seconds of average delay. In the PM peak hour, each intersection performs at an LOS C or better with River Street again operating the worst at LOS D with 32.2 seconds of delay. The westbound left-turn lane at Sun Valley Road has a queue length of 413 feet in the PM peak hour, but only experiences an average delay of 49.1 seconds. Queue lengths for the $1^{\text {st }}$ Street westbound movements again exceed 500 feet. Table 18 shows a LOS summary for each intersection.

Table 18. Alternative 2: Install Left-Turn Lanes at Sun Valley Microsimulation Results

Intersection	Traffic Control	AM Peak		PM Peak	
		Delay (sec/veh)	Estimated LOS	Delay (sec/veh)	Estimated LOS
SH-75 and 6th St	Unsignalized	7.1	A	9.1	A
SH-75 and 5th St	Signalized	10.6	B	12.6	B
SH-75 and 4th St	Unsignalized	7.5	A	16.6	C
SH-75 and Sun Valley Rd	Signalized	22.9	C	28.1	C
SH-75 and 2nd St	Unsignalized	15.8	C	13.8	B
SH-75 and 1st St	Signalized	8.1	A	16.3	B
SH-75 and River Rd	Unsignalized	31.0	D	32.2	D

$\mathrm{sec} /$ veh $=$ seconds per vehicle; LOS = level of service

5.4 Alternative 3: Three-Lane Section

In Alternative 3, the 2042 volumes are analyzed with the roadway lanes configured into one lane in each direction and left-turn lanes at each of the intersections. During the AM peak hour, the River Street intersection operates at an LOS F with 69.7 seconds of delay. The remaining
intersections operate at LOS D or better. In the PM peak hour, the operations at the $6^{\text {th }}$ Street intersection severely degrade. Delay is expected to exceed 11 minutes at this intersection. Main Street splits at $6^{\text {th }}$ Street with SH-75 going northeast and Warm Springs Road going northwest. In the PM peak hour, these two lanes must merge down to one between $6^{\text {th }}$ Street and $5^{\text {th }}$ Street; however, there is such a large number of vehicles that this merge causes a more severe delay at the intersection.

Table 19. Alternative 3: Three-Lane Section Microsimulation Results

Intersection	Traffic Control	AM Peak		PM Peak	
		Delay (sec/veh)	Estimated LOS	Delay (sec/veh)	Estimated LOS
SH-75 and 6th St	Unsignalized	7.5	A	668.3	F
SH-75 and 5th St	Signalized	22.5	C	52.2	D
SH-75 and 4th St	Unsignalized	18.8	C	27.4	D
SH-75 and Sun Valley Rd	Signalized	26.5	C	37.4	D
SH-75 and 2nd St	Unsignalized	41.5	E	46.8	E
SH-75 and 1st St	Signalized	16.3	B	36.2	D
SH-75 and River Rd	Unsignalized	82.5	F	45.3	E

$\mathrm{sec} / \mathrm{veh}=$ seconds per vehicle; LOS = level of service
Unlike the other three alternatives, the three-lane section does not fully serve the forecasted vehicle demand. In the VISSIM simulations, the model only serves about 81 to 89 percent of the forecasted vehicle traffic. This is due to both no room for vehicles to turn onto Main Street and the long wait north of $6{ }^{\text {th }}$ Street. Figure 20 and Figure 21 show the long queue lengths and congestion.

Figure 20. Alternative 3 Long Queue Lengths - South End

Figure 21. Alternative 3 Long Queue Lengths - North End

5.5 Travel Times and Average Speeds

Figure 22 and Figure 23 summarize the estimated travel times of each alternative under 2042 conditions and the existing conditions (2022) model. The travel time segments are assumed to begin and end 500 feet north of $6^{\text {th }}$ Street and 500 feet south of River Street.

Figure 22. AM Peak Microsimulation Travel Time Comparison

Figure 23. PM Peak Microsimulation Travel Time Comparison
Table 20 outlines the differences in travel times between the alternatives. Alterative 2 decreases the total travel time when compared to the other alternatives.

Table 20. Microsimulation Travel Time Comparison

Travel Time Segments		Difference (minutes)			
Peak Hour	Direction	Alt 1: No-Build vs Existing	Alt 2: Add Left-Turn Lanes vs Alt 1: NoBuild	Alt 3: ThreeLane Section vs Alt 1: No-Build	Alt 2: Add Left Turns vs Alt 3: ThreeLane Section
	NB	0.29	-0.37	0.54	-0.91
	SB	0.06	-0.91	-0.79	-0.12
	NB	0.27	-0.34	1.25	-1.59
	SB	2.36	-2.88	1.51	-4.39

Figure 24 and Figure 25 present the average vehicle speed through the corridor. In both the AM and PM peaks, the average speed is highest in Alternative 2, although still below the posted speed limit. The added left-turn lanes allow for removing the split phasing, which provides better two-way progression. In turn, more vehicles can proceed through the corridor without stopping. The three-lane section is considerably slower than other alternatives in the PM peak hour, nearly slowing vehicles to a crawl in the southbound direction.

Figure 24. Microsimulation AM Peak Average Speed Comparison

Figure 25. Microsimulation PM Peak Average Speed Comparison

6 Safety and Public Realm Enhancements

6.1 Safety and Public Realm Enhancements

The project team evaluated the corridor for recommendations that could be applied to either Alternative 2 or Alternative 3 to further enhance corridor safety. Following are the recommended treatments as part of the project.

6.1.1 Narrow the Travel Lanes from 12 Feet to 11 Feet

The existing travel lanes are 12 feet wide. These could reasonably be reduced to 11 feet, thereby providing 4 feet to increase the pedestrian space (2 feet on each side). Reducing the parking lane width from 8.5 feet to 8 feet from the face to curb would give an additional half-foot to the pedestrian realm on each side of the roadway. Figure 26 and Figure 27 are conceptual drawings of the increased pedestrian space. The reduced travel lane width would reinforce slower speeds and calm traffic through the corridor.

Figure 26. Additional Sidewalk Concept

Figure 27. Additional Sidewalk Concept

6.1.2 Provide Bulb-Outs at Intersections

Bulb-outs, also known as curb extensions, shorten the pedestrian crossing distance by extending the curb out into the adjacent parking lane. Bulb-outs increase pedestrian safety by increasing their visibility as they are no longer hidden to drivers behind adjacent parked
vehicles. Figure 28 is a National Association of City Transportation Officials (NACTO) rendering of a bulb-out. The extra curb space can be used to provide placemaking signs or landscaping along the corridor to enhance the public realm. As shown in Figure 29, there are bulb-outs presently at the $4^{\text {th }}$ Street intersection. Similar bulb-outs could be implemented with minimal impacts to parking along the rest of the corridor.

Figure 28. NACTO Bulb-out Rendering

Figure 29. Existing Bulb-out at 4th Street

6.1.3 Public Realm Improvements

The extra space afforded by narrowing the lanes and providing bulb-outs where applicable, may allow the City to install public realm improvements that would provide a place-making feel and redefine the downtown area. These can include specialty landscaping, identifying signage, banner poles, artwork and sculpture, tree-lined street, and enhancing seating options. Some examples are shown below in Figure 30.

Figure 30. Example Public Realm Improvements

6.1.4 Raised Intersection at Sun Valley Road

A raised intersection may be explored at Sun Valley Road to improve the pedestrian experience along the corridor (Figure 31). According to the NACTO Urban Street Design Guide ${ }^{10}$, "Raised intersections create a safe, slow-speed crossing and public space...they reinforce slow speeds and encourage motorist to yield to pedestrians at the crosswalk." This type of intersection treatment may keep speeds low along the Main Street corridor, helping facilitate a calmer presence along the corridor.

[^16]

Figure 31. NACTO Raised Intersection Rendering
The Sun Valley Road intersection features corners without truncated domes and curb ramps with steep grades, making the intersection out of compliance with ADA/PROWAG guidelines. The intersection is also likely to prove challenging to bring into compliance because the building entrances and sidewalk height on the northeast corner are higher above the roadway than is typical. Installing ramps may prove challenging as the grades and tight corner do not allow much flexibility. However, a raised intersection could be feasible because instead of lowering the pedestrian to the level of the roadway, the roadway would rise to the pedestrian. Then, the sidewalk would not need to ramp down unnecessarily steep grades and long pedestrian ramp runs can potentially be avoided.

This intersection treatment would need to be evaluated in coordination with ITD during design to ensure that the design vehicles can safely traverse the intersection. Additionally, drainage may be an issue as the raised intersection would change the drainage patterns of the intersection.

6.1.5 Leading Pedestrian Interval

According to the NACTO's Urban Street Design Guide, "A leading pedestrian interval (LPI) typically gives pedestrians a 3-7 second head start when entering an intersection with a corresponding green signal in the same direction of travel." The LPI enhances pedestrian visibility as they establish their presence in the crosswalk prior to the vehicles getting a green. This can be implemented with any of the alternatives and would need to be evaluated in coordination with ITD when programing the signal timing.

6.2 Future Safety Evaluation

The project team used the Federal Highway Administration's (FHWA's) Crash Modification Factor (CMF) Clearinghouse ${ }^{11}$ to identify the potential change in crash frequency or severity associated with the possible intersection changes and/or changes to the number of lanes on Main Street. CMFs were selected based on study similarities to Main Street's roadway conditions and star rating (i.e., minimum of three stars). Each CMF also needed to include all crash types and crash severities. When there were no CMFs available for the specific situation, a qualitative discussion is provided.

6.2.1 Alternative 1: No-Build

Few opportunities existing within the No-Build alternative. The City and ITD could implement a LPI, which according to CFM ID 9910 (5 stars) shows a 16 percent decrease in crashes when LPIs are used on either all crossings or only across the minor roadway.

6.2.2 Alternative 2: Adding Left-Turn Lanes

The following CMFs can be applied to Alternative 2:

- CMF ID 153 (3 stars) shows a 20 percent decrease in crashes when prohibiting onstreet parking.
- CFM ID 9910 (5 stars) shows a 16 percent decrease in crashes when LPI are used on either all crossings or only across the minor roadway.
- Installing a raised intersection at the Sun Valley Road intersection may help keep Main Street's speeds low.
- Bulb-outs have been shown to increase safety by decreasing the pedestrian crossing distance, reducing speeds caused by a decreased roadway width, and increasing pedestrian visibility to drivers.
- Install a rectangular rapid flashing beacon (RRFB) at the River Street intersection and disallow crossings on the south side of the intersection. This would enhance the visibility of pedestrians at the intersection and help alleviate the issues caused by the steep grade on the south side of the intersection as described in Section 2.5.5 and Figure 12.

6.2.3 Alternative 3: Three-Lane Section

The following CMFs can be applied to Alternative 3:

- CMF ID 2841 (5 stars) estimates a 47 percent reduction in crashes when converting the existing four-lane roadway to a three-lane roadway.
- CFM ID 9910 (5 stars) shows a 16 percent decrease in crashes when LPIs are used on either all crossings or only across the minor roadway.
- Installing a raised intersection at the Sun Valley Road intersection may help keep Main Street speeds low.

[^17]- Bulb-outs have been shown to increase safety by decreasing the pedestrian crossing distance, reducing speeds caused by a decreased roadway width, and increasing pedestrian visibility to drivers.
- Install a rectangular rapid flashing beacon (RRFB) at the River Street intersection and disallow crossings on the south side of the intersection. This would enhance the visibility of pedestrians at the intersection and help alleviate the issues caused by the steep grade on the south side of the intersection as described in Section 2.5.5 and Figure 12.

6.3 Future Transit Impact

6.3.1 Alternative 1: No-Build

Alternative 1 would provide no or minimal benefit to the transit network. There are no dedicated bus lanes on Main Street and congestion is shown to get worse in the design year; therefore, the decrease in travel times along the corridor would negatively impact the headways of Mountain Rides. Additionally, with the pedestrian realm and sidewalk remaining unchanged, there is little opportunity to enhance the bus stops.

6.3.2 Alternative 2: Adding Left-Turn Lanes at Sun Valley

Alternative 2 would improve the transit operations on Main Street. Travel times along the corridor in the design year are expected to be similar to today's travel times, meaning Mountain Ride's headways are expected to improve or not be impacted by the change. The changes proposed to the public realm would allow an opportunity to enhance bus stops along the corridor and improve the ridership experience.

6.3.3 Alternative 3: Three-lane Section

Alternative 3 would be mixed in its impact to transit. The potential narrowing of the roadway may allow for more room on the sidewalk to enhance bus stops like Alternative 2. The drastic increase in congestion would negatively impact transit operations along the corridor. As congestion and travel times increase, bus headways would increase as they may be stuck in long queues of vehicles. Without another direct alternative route through town, busses would need to travel either across or through Main Street likely preventing an alternate bus route from being effective.

$7 \quad$ Public Meeting Summary

A public meeting was held on October 3, 2022, followed by 2-week online public comment period. The public meeting consisted of three separate presentations (one each in the morning, mid-day, and evening) that outlined the results of the microsimulation analysis, showed videos of the estimated operations for each alternative, and presented the benefits and draw backs of each alternative. For individuals who could not attend the meetings in person, an online form was made available to provide feedback. Additionally, the public meeting included a presentation and survey on a concept study project concerning the Lewis Street and $10^{\text {th }}$ Street intersections on Warm Springs Road.

No every person at the in person public meeting answered every question. The results of the in person public meetings were as follows:

- When asked if the city should choose the "No Build" alternative, 33 percent (4 of 12 attendees) said "yes", 8% were neutral (1 of 12), and 58 percent (7 of 12) said "No"
- When asked if the city should explore the "Left turn Lanes" alternative: Sixty-three percent (7 of 11) said "yes", 18 percent (2 of 11) were neutral and 18 percent (2 of 11) said "No"
- When asked if the city should explore the "lane reconfiguration" alternative: 18 percent (2 of 12) said "yes", 25 percent (4 of 12) were neutral and 58 percent (7 of 12) said "No"

A total of 151 respondents filled out the online survey and not every respondent answered every question. The online results were as follows:

- When asked if the city should explore the "No Build" alternative, 44 percent (41 of 93) said "yes", 23 percent (21 of 93) were neutral, 31 percent (29 of 93) said "No", and 2\% (2 of 93) responded other.
- When asked if the city should explore the "Left turn Lanes" alternative, 42 percent (39 of 93) said "yes", 15 percent (14 of 93) were neutral, 39% (36 of 93) said "No", and $4 \% ~(4$ of 93) responded other.
- When asked if the city should explore the "Lane Reconfiguration" alternative, 22 percent (20 of 93) said "yes", 16 percent (15 of 93) were neutral, 61 percent (57 of 93) said "No", and 1 percent (1 of 93) responded other.

A summary of the public involvement results is provided in Appendix E.

8 Recommendations and Additional Opportunities

8.1 Comparing the Alternatives

Alternative 3 provides many benefits to the pedestrian and public realms, but at a significant cost to vehicle traffic flow. Based on historical growth rates, this alternative produces congestion and does not serve all traffic during future peak periods. This level of congestion could push traffic onto neighboring streets, increasing conflicts and negating large safety benefits from the potential lane reconfiguration. This alterative also does not meet ITD's LOS D threshold.

Although the three-lane section may decrease the number of lanes pedestrians need to cross the roadway, vehicle congestion is likely to reduce gaps pedestrians will have to cross at unsignalized intersections. Side streets are expected to see large increases in vehicle queue lengths as vehicles are unable to enter Main Street due to a lack of gaps. The $6^{\text {th }}$ Street intersection is especially problematic with delays exceeding 11 minutes.

Alternative 2, which removes parking for two blocks to add turn lanes at the Sun Valley Road intersection, serves all estimated traffic during the design year. Estimated travel times for future vehicles are similar to existing conditions. By removing the split phasing, the bottle neck at Sun Valley Road is removed and all other intersections on the corridor are able to increase operational efficiency for both pedestrians and vehicles. The safety benefits of Alternative 2 may not be as great as for Alternative 3; however, many safety improvements discussed in Section 6 can be implemented along the corridor to enhance pedestrian and multi-modal safety. The remaining intersections could still see improvements to the pedestrian and public realms with bulb-outs and wider sidewalks.

8.2 Recommendation

Alternative 2 is recommended over Alternative 3. Alternative 2 serves vehicular traffic and improves traffic operations; it meets ITD's LOS D threshold for improvements on a state highway; and provides excess capacity. Excess capacity allows some contingency for performance i.e., suggesting that if Ketchum sees a greater increase in vehicle traffic than estimated, this alternative would best be able to handle that increase. Although the opportunity to widen the pedestrian space is not as great as with Alternative 3, there are still opportunities to enhance the public realm, improve the placemaking feel of Ketchum's Main Street, and further enhance corridor safety performance. Final conceptual exhibits are provided in Appendix F. During design, the city should implement enhancements discussed in Section 6 of this report.

8.3 Opinion of Probable Costs

8.3.1 Opinion of the Probable Cost of the Recommended Alternative

The project team developed cost estimates based upon the conceptual exhibits. ITD has programmed a project to resurface Main Street in the near future and the cost estimate assumes that ITD will pay for the resurfacing, including base material. Three costs are estimated: engineering fee, construction costs, and right-of-way costs. The Alternative 2 probable costs are summarized in Table 21.

Table 21. Opinion Of Probable Costs

Cost	Amount
Engineering Fee:	$\$ 353,000$
Construction Costs:	$\$ 3,880,000$
Right-of-way Costs:	$\$ 10,000$
Total Project Costs:	$\$ 4,243,000$

The costs assume the following:

- All costs are in current (2022 dollars)
- Curb, gutter, and sidewalk will be removed and replaced along the length of the corridor.
- The pedestrian realm will be expanded by narrowing the travel lanes to 11 feet and the extra space given to the sidewalk.
- Tree cells will be installed to improve the tree canopy and provide a sustainable option for stormwater treatment.
- The traffic signal at the Sun Valley Road intersection will be completely rebuilt and no signal materials will be salvaged.
- The traffic signals at $1^{\text {st }}$ Street and $5^{\text {th }}$ Street as well as the PHB at $4^{\text {th }}$ Street will be removed and reset as needed as their components are likely to be able to be reused.
- Bulb-outs will be installed at every intersection except at Sun Valley Road where vehicle turning movements may preclude their installation.
- ITD will pay for the raised intersection at Sun Valley Road as part of their improvements.
- 20 percent of the construction costs are assumed for contingency items that may arise.
- 10 percent of the construction costs are assumed for the engineer fee to complete the City's portion of the work.
- The right-of-way costs are estimated for the unlikely event of an easement or other access to a private property require complete construction.

8.3.2 Opportunities to Reduce Costs

As previously stated, the cost to construct the preferred alternative includes replacing sidewalk and installing bulb-outs at each intersection. This substantially increases project costs; however, the City may reduce total project costs by limiting the number of bulb-outs installed and not narrowing the travel lanes. This would decrease the benefits to the public realm and pedestrians.

The tree cell system is estimated to improve the tree canopy on Main Street; however, drainage benefits may be redundant with the existing storm sewer system in place. Excavation and material costs can be reduced by eliminating the tree cells from the concept.

8.4 Additional Opportunities

The following minor opportunities exist to enhance the corridor and provide longevity to the recommended improvements.

- Install mast arms long enough to add future dedicated left-turn lanes at $1^{\text {st }}$ Street. Although the analysis indicates that future queue lengths and delays are acceptable, if the City experiences more growth than estimated, the longer mast arms would decrease costs associated with adding left-turn lanes on $1^{\text {st }}$ Street.
- The City should look at controlling access at businesses along the corridor to mitigate conflicts and reduce confusion at the intersections. Coordination with the Village Market and the Valtrex property will be necessary.
- Enhance the wayfinding in advance of the $6^{\text {th }}$ Street intersection to help non-locals identify which lane they need to be in before Main Street splits.

8.5 Next Steps

City staff should review this report for completeness and provide any comments. HDR will revise and resubmit the report for adoption by the City Council. After adoption, the City should pursue grant opportunities to fund the improvements. Outreach for stakeholder participation in the grant pursuits should occur, including with Mountain Rides, Blaine County School District, and the Ketchum Urban Renewal Agency.

The City should coordinate with ITD to get approval for the preferred alternative. ITD owns Main Street and will have final say on the implementation of any chosen alternative. Additionally, the City should coordinate design improvements to align with an upcoming maintenance project on SH-75. Coordination will decrease the amount of mobilization required to improve the roadway and reduce impacts to the public. The curb extensions and raised intersection will need to be evaluated in coordination with ITD during design to evaluate truck turning movements and stormwater needs in detail.

City of Ketchum

December 1, 2022

Mayor Bradshaw and City Councilors
City of Ketchum
Ketchum, Idaho

Mayor Bradshaw and City Councilors:

RECOMMENDATION TO ACQUIRE PREFABRICATED HOUSING

Recommendation and Summary

The arrival of snow means an increased cost of preparing Lewis Street to accommodate previously owned, prefabricated housing. The Meadows mobile home park has adequate space and utilities to house the park models and families until mid-May, by which time Lewis Street would be ready. Staff recommends ground leasing the land at the Meadows - most of the cost will be offset by tenant payments - and acquired pre-owned park models that can then be relocated to the Lewis Street lot. An alternative is waiting through the winter for Lewis Street to be ready and acquiring and placing park models directly there.

The reasons for the recommendation are as follows:

- Acquiring housing is a long-term investment that can be divested or transitioned to alternative locations, as needed. The Housing Action Plan specifies supporting this type of investment.
- The city currently has adequate funds for this from FY22 expense savings and revenue performance.
"I move to approve the temporary ground lease at the Meadows and acquisition of park models"

Context

The Ketchum Housing Action Plan outlines the following related objectives:
Goal 3: Expand + Improve Services to Create Housing Stability
Action 8: Identify and support physical housing options for unhoused and at-risk households:

- Explore purchasing RV's and prefabricated homes for transitional purposes.

Due to the arrival of snow, the cost of setting up utilities at Lewis Street increased significantly. Given this, staff sought alternative temporary locations for setting up park models / tiny homes. The Meadows has adequate sites available immediately with utility hookups: These sites would be available until May $15^{\text {th }}$. Staff anticipates Lewis Street being ready to receive these homes in late April or early May.

Ground leasing sites in the Meadows is a temporary, different cost structure then Lewis Street. As a master leaser of multiple sites, the ground lease per site would be $\$ 800$, including utilities. We anticipate households to pay an average of $\$ 650$ per month - based on the maximum amount recommended to charge the households Blaine County Charitable Fund is already working with (30% of their income). This signifies $\$ 5,400$ needed to cover the remaining cost of the ground leases for six months for six sites.

If or when prefabricated models are on Lewis Street, there would be no ground lease, so those tenant payments would go towards paying down the upfront cost of the investment at an average of $\$ 30,000$ for each pre-owned park model. The investment in six units, equaling about $\$ 180,000$ in acquisition and about $\$ 90,000$ to set up Lewis Street, would be paid off in under six years unless the units are resold before then.

BREAKOUT OF ANTICIPATED SETUP COSTS

DESCRIPTION	BUDGET
Demolition - City to self perform	$\$ 0$
Site Grading	$\$ 6,000$
IP electrical upgrades	$\$ 13,000$
Onsite electrical upgrades - 6 meter pack	$\$ 9,000$
Onsite electrical connections	$\$ 10,000$
Fence/screening	$\$ 6,000$
Main Sewer Service Connection and 6 service lines	$\$ 10,000$
Sewer Service Lines- 6 units	$\$ 10,000$
Main Water Service Line Connection and servie lines	$\$ 0$
Water Service Line Connections - 6 Units	$\$ 0$
Construction Traffic Control - City to self perform	$\$ 0$
Striping - City to self perform	$\$ 0$
Signage - City to self perform	$\$ 0$
Approach work - asphalt - City to self perform	$\$ 0$
Light pole base	$\$ 0$
Snowmelt	$\$ 3,000$
Drainage Improvements	$\$ 0$
Park Model Delivery to Meadows	$\$ 5,000$
Park Model Set-up at Meadows (electrical, water, sewer. skirting)	$\$ 0$
Park Model relocation to Lewis St. - City to self perform	$\$ 3,000$
Park Model Connection - Electrical	$\$ 3,000$
Park Model Connection - Water	$\$ 3,000$
Park Model Connection - Sewer	$\$ 8,100$
Construction Contingency (10\%)	$\$ 89,100$

Staff will review costs with Council during the meeting. For the sake of achieving the City's housing goals, staff recommend purchasing the units now to be temporarily placed in the Meadows and then relocating those units to Lewis Street once that is ready.

Sustainability impact
Ability to house employees and community participants locally decreases commuter vehicular trips.
Financial Impact
Funds will come from FY22 budget expense savings and revenues performing stronger than forecasted.

City of Ketchum

December 5, 2022

Mayor Bradshaw and City Councilors
City of Ketchum
Ketchum, Idaho

Mayor Bradshaw and City Councilors:

Provide feedback regarding recommended priority Sidewalk Projects for 2023

Recommendation and Summary

City staff is recommending the following 2023 sidewalk priorities:

- Rebuild Fourth Street corridor (both pavers and curb)
- Fifth Street from Main Street (alley) to Leadville
- Main Street bulb-outs should ITD advance rebuild of roadway
"I move to approve the recommended 2023 sidewalk projects."

Introduction \& Background

Staff is recommending the above priorities based on the following reasoning:

- Fourth Street: Maintenance of the pavers is very labor intensive for the streets department. This distracts from other spring/summer street maintenance tasks such as crack sealing. The current pavers have a low lifecycle and degrade quickly causing trip hazards. The Council recently approved a new city standard paver with a much longer life cycle. The goal would be to complete the entire corridor should budget allow. If that is not possible, staff would propose a block-by-block strategy starting at Walnut Street working west.
- Fifth Street: There is not currently a sidewalk facility from Main Street to Leadville. This is a key pedestrian corridor. Recently, private construction has commenced in the area which will be required to complete a new sidewalk from Main Street to the alley. Staff is proposing to complete from the alley to Leadville. This will require removing a tree that is currently in the public right of way (see attached). Staff is also evaluating whether the large above ground planters can be reduced or removed on the north corner of Leadville and Fifth Street as they create a significant sight distance barrier for drivers on Leadville.
- Main Street: The city has requested the Idaho Transportation Department (ITD) advance the rebuilding of Main Street to 2022 from 2024 due to its current unsafe condition. ITD is currently working through the design, but initial geotechnical tests have indicated the road will require a full rebuild similar to Sun Valley Road. ITD has not solidified whether they will be able to execute in 2022, but should they be able to complete, the city would be required to fund the majority of any sidewalk enhancements. ITD will fund a very small portion associated with ADA ramps. The recently completed Main Street Transportation Enhancement Report by HDR outlined future sidewalk bulb-outs at First Street, Sun Valley Road, Fifth Street and Sixth Street.

Should the City Council affirm the priorities outlined above, staff will proceed with design and bidding for construction.

Staff did complete an analysis of other pending downtown private development that might pose other partnership projects such as the Fifth Street example. Three projects are moving through the entitlement process adjacent to Second Street between Main Street and East Avenue. There is the potential for public funding in FY24 to sync up with those projects in order to complete a full sidewalk network. A package of other sidewalk projects (attached) was previously designed, however staff is not recommending those projects at this time due to budget constraints. Staff is also evaluating the feasibility of rebuilding the sidewalk on $2^{\text {nd }}$ Street from Main Street to Washington due to its very narrow width and the presence of a delivery ramp that prevents the sidewalk from being ADA compliant.

Sustainability Impact

Improvements to pedestrian facilities increases alternative mobility choices.

Financial Impact

There is currently $\$ 375,212$ available for miscellaneous sidewalk projects. The FY23 CIP also allocates $\$ 374,100$ for Main Street sidewalk enhancements. City staff would recommend approaching KURA to inquire if they would be willing to allocate a similar amount.

Attachments

Master Sidewalk Map
Concept Design and Engineer Estimate for Fifth Street
Map of other sidewalk projects not recommended at this time

2022 CITY OF KETCHUM SIDEWALK IMPROVEMENTS 5TH ST (MAIN ST TO LEADVILLE)
 Engineer's Construction and Engineering Cost Estimate

| $\#$ | REF | Item | Unit | Qnty | Unit Cost | Item Cost |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

CONSTRUCTION CONTRACTOR BID ITEMS

1	Contractor mobilization (12\% of Construction Bid Items)	Is	1	\$15,100.65	\$15,100.65
2	Traffic Control and Detours	Is	1	\$7,550.33	\$7,550.33
3	Sawcut asphalt			Incidental to	Removal
4	Existing Asphalt Removal	sy	239	\$8.25	\$1,971.75
5	Remove And Dispose of Concrete	sf	207	\$17.50	\$3,622.50
6	Site clearing and grubbing	sy	65	\$9.00	\$585.00
7	Remove and dispose of tree and root ball system	ea	1	\$300.00	\$300.00
8	Relocate fire hydrant			Incidental	C11
9	Remove and dispose of exiaring retaining Wall	ea	1	\$10,000.00	\$10,000.00
10	Remove and dispose landscape wall	If	0	\$15.00	\$0.00
11	Relocate Utilities (by others). Contractor to coordinate work with utility owner.			By Utility Company	
12	Excavation	cy	148	\$30.00	\$4,440.00

CONSTRUCTION CONTRACTOR BID ITEMS CONTINUED

13	\|TD SP-3 HMA, 1/2" gradation, PG58-28	ton	20	\$125.00	\$2,500.00
14	Concrete 6 " rolled curb and gutter	If	107	\$70.00	\$7,490.00
15	Concrete curb transition (6" rolled to zero reveal)	If	18	\$75.00	\$1,350.00
16	Concrete zero reveal curb and gutter	If	53	\$70.00	\$3,710.00
17	Concrete curb transition (0" rolled to 6" vertical)	If	6	\$75.00	\$450.00
18	Construct concrete sidewalk: Flat work	sy	158	\$82.50	\$13,035.00
19	$2^{\prime \prime}(-)$ crushed aggregate subbase	ton	89	\$33.00	\$2,928.36
20	$3 / 4{ }^{\prime \prime}(-)$ crushed aggregate base (4" compacted depth)	ton	41	\$33.00	\$1,348.17
21	Pavement Striping (12" crosswalk striping)	If	142	\$3.00	\$426.00
22	Pavement Striping (4" parking)	If	294	\$1.00	\$294.00
23	Pavement Striping (Thermoplastic crosswalk/stop bar, 24" wide)	If	23	\$6.00	\$138.00
24	Cast Iron Truncated Dome Detectable Warning Insert	sf	30	\$75.00	\$2,250.00
25	Construct H -piles and boards retaining wall < 4' high	If	105	\$400.00	\$42,000.00
26	Install Street light	ea	2	\$12,500.00	\$25,000.00
27	Erosion and Sediment Control	Is	1	\$2,000.00	\$2,000.00
	CONSTRUCTION CONTRACTOR BID ITEMS SUBTOTAL				\$148,490.00

CONSTRUCTION ACTIVITIES ENGINEERING

29		Construction Staking (1.5\% of Construction Subtotal)	Is	1	$\$ 2,450.00$	$\$ 2,450.00$
30		Construction Observation (1\% of Construction Subtotal)	Is	1	$\$ 1,630.00$	$\$ 1,630.00$
31		Construction Materials Testing Field Sampling and Lab Work	Is	1	$\$ 1,500.00$	$\$ 1,500.00$
32		Contract Documents Review and Support (0.5\% of Construction	Is	1	$\$ 820.00$	$\$ 820.00$
$\$ \mathbf{\$ 6 , 4 0 0 . 0 0}$						

TOTAL (C + D)

KETCHUM 2022 SIDEWALK INFILL MARCH 2022

```
NSTRUCTION NOTES
    AL CONSTRUCTON SHALL BE IN CONFORMANCE WTH THE MOST CURRENT EDITION OF THE "IDAHO STANDARDS FOR
    M,
    MESPNIDLEFROBTA
    TMELOCATION OF EXISTIGG UNDERGROUND UTLITIES ARE SHOWNONTHE PLANS IN AN APPROXIMATE WAY. THE 
```



```
    M,
    *
    CONTRACTOR SHALL COORDINATE
```



```
    *)
TE CONTRACTOR SHALL OBTAIN ALL NECESSARY PERMITS PRIOR TO CONSTRUCTION (THIS MAY INCLUDE 
#NCROACHMENT PERMIT AND NATONAL POLU
*)
M, ALLEXCAVATIN & EMBANKMENT SHALL CONFORM TO IPWWC SECTINN OO2. SUBGRADE SHALL EE EXCAVATED AND 
OE
MRCOF-ROLLED TO THE APPROVAL OF THE ENGINEER.
    OROOFROLLNG: AFTER EXCAVATIN TO THE SUBGRADE ELEVYTION AND DRIOR TO PACING COURSE GRAVEL,THE
```



```
    M,
    IFINTHS OPNINON OF THE ENGINERSTHE TONTRACTORS OOERATIONS RESULTIN DAMAGE TO, OR PROTECTION OF
```



```
    OVREECAVATON OF UNSUTABL
```



``` MATERILL SHALL BE 90\％OF MAXIMUM LABORATORY DENSITY A D DETERMINED BY AASHTO T－9．
```



``` be Allowed．
```



```
C．ALL TRENCHING SAALL CONFORM TO ISPWC STANDARD DRAWING SD－30．TRENCHES SHALL BE BACKFLLED AND
COMPACTED TO A MNIMUM O O S5\％OF MAXIUUM DENSITY AS DETERMNED BY AASHTO T－99．
```



``` DAH STANDROS For Publch
```



``` All water
COMPLANT．
```



``` THE CONTRACTOR SHALL USE ANSIINF STANDARD 60 CHEMICALS AND COMPOUNDS DURING INTTALLATION
IINNFECTIN OF FOTABLE WATER MAIN
```



``` （05／2219）．
\begin{tabular}{|c|c|c|c|c|c|}
\hline Eximurtus & Properivine & & MmA Wenarenumpoic & Prooosesontes & \\
\hline － & centrine of remio wax & \(\stackrel{\square}{\bullet}\) & Prmeerr & 17111 &  \\
\hline & RNo Fenceline & \(\stackrel{\text { ®10 }}{ }\) &  & \(\bigcirc\) & － \\
\hline &  & & sout stormoan mannock & & concerere \\
\hline ד－\({ }_{\text {ckn }}\) &  & © &  & ＂ & cuin \\
\hline － & （kerimu criw wer we & \％ &  & & cher \\
\hline －\({ }^{\text {ceve－}}\) & Keichum ar marerew（f） & 廌 &  & － &  \\
\hline － \(\mathrm{Cs} \mathrm{sl}^{\circ} \mathrm{c}\) & Keratum Sene wes & & OT＝ECOCOUNus reet & & retamme wa \\
\hline \({ }^{\text {csen }}\) &  & ＊ & CT Cownerer ree & \％ &  \\
\hline &  & &  & －\(\%\) &  \\
\hline －s－ & ssesmerserver & &  & \({ }^{8}{ }^{\circ}\) &  \\
\hline &  & &  & & Watr in \\
\hline &  & & Cubir cousire & － &  \\
\hline － &  & &  & & penes \\
\hline － & （convor neekal & &  & प717］ & \\
\hline \(\xrightarrow{\square}\) &  & &  & （ & \\
\hline &  & & cition & © & ormel \\
\hline 四 & panges & &  & & stremozean \\
\hline & concerete & & LIP \(=\) LIP OF GUTTER
NG \(=\) NATURAL GROUND & 䍖 & CATCH BASIN \\
\hline & sulume & &  & &  \\
\hline \％ &  & &  & & \\
\hline \(\stackrel{8}{\circ}{ }_{\text {¢ }}\) &  & &  &  &  \\
\hline － & Vevalut box & & civele & & \\
\hline 図 & FIBER OPTIC VAU & & Min & & \\
\hline \％ &  & & & & \\
\hline & PHBOX＝TELEPHONE RISER
PHMH＝TELEPHONE MANHOLE & & & & \\
\hline \(\bar{O}\) &  & & & & \\
\hline
\end{tabular}
```

SITE	SHEET\＃	DESCRIPTION
	c0．3	detall sheet

Q3－2：SOUTH CORNER OF
ND WASHINGTON AVE

ST．（FROM 6TH ST．TO 191 E 5TH
$\underset{\text { Q3－3．1 }}{\text { Q3－3．0 }}$－
ST．AT N．E．CORNER of bLK 14
a

tedining wali structural pian
Q3－6：EAST SIDE OF 1 ST AVE．（FROM 780 N IST AVE．TO 7TH ST
Q3－6．0
Q3－6．
TRAFFIC Control Pla
DEMOLTITIN PLAN
S2
Q3－8：WASH．AVE．（ALONG BK 13）\＆7TH ST（FROM WASH

Q3－8．2 SIDEWALK DESIGN PLAN SIDEEALL DESIGN PLAN
RETANING EALI STRUCTUPAL PLAN

2 (cis) $\frac{\text { POTABLE AND NON-POTABLE WATER LINE (NPWL) SEPARATION }}{\text { N.T. }}$

(${ }^{\text {C0.3 }} \frac{\text { TYPICAL HANDRAIL DETALL }}{\text { N.T. }}$

SIDEWALK DESIGN: SITE Q3-4 -7TH ST (FROM ALLEY OF BLOCK 14 TO WARM SPRINGS RD)

SITE Q3-8: WASHINGTON AVE (ALONG BLOCK 13 - STA $0+7$ (750 TO STA $2+10$) LIP OF GUTTER PROFLLE

[^0]: Trent Donat, City Clerk

[^1]: Trent Donat, City Clerk

[^2]: ${ }^{1}$ City of Ketchum, Master Transportation Plan. March 15, 2021.

[^3]: ${ }^{2}$ City of Ketchum, 2014 Comprehensive Plan. February 18, 2014. Accessible online: https://www.ketchumidaho.org/sites/default/files/fileattachments/planning and building/page/2131/2014 compplan a dopted cc 2-18-14 final 201403281009599481.pdf

[^4]: ${ }^{3}$ American Association of State Highway and Transportation Officials (AASHTO). A Policy On Geometric
 Design of Highways and Streets, $7^{\text {th }}$ Edition. 2018

[^5]: ${ }^{4}$ Idaho Transportation Department (ITD). Roadway Design manual. 2012

[^6]: ${ }^{5}$ National Cooperative Highway Research Program (NCHRP). Report 765. Analytical Travel Forecasting Approaches for Project-Level Planning and Design. Transportation Research Board of the National Academies. 2014.

[^7]: ${ }^{6}$ Crash Modification Factors Clearinghouse. https://www.cmfclearinghouse.org/

[^8]: ${ }^{1}$ City of Ketchum, Master Transportation Plan. March 15, 2021.
 ${ }^{2}$ City of Ketchum. 2014 Comprehensive Plan. February 18, 2014. Available online:
 https://www.ketchumidaho.org/planning-building/page/comprehensive-plan

[^9]: ${ }^{3}$ Idaho Transportation Department. Roadway Design Manual. August 2013. Available online: https://apps.itd.idaho.gov/apps/manuals/roadwaydesign/files/Roadwaydesignprintable.pdf

[^10]: ${ }^{4}$ City of Ketchum, Master Transportation Plan. March 15, 2021.

[^11]: ${ }^{5}$ City of Ketchum. 2014 Comprehensive Plan. February 18, 2014. Available online:
 https://www.ketchumidaho.org/planning-building/page/comprehensive-plan

[^12]: ${ }^{6}$ National Academies Press. Highway Capacity Manual, Sixth Edition: A Guide for Multimodal Mobility Analysis.

[^13]: ${ }^{7}$ Idaho Traffic Crashes 2020 ; https://apps.itd.idaho.gov/Apps/OHS/Crash/20/Analysis.pdf

[^14]: ${ }^{8}$ Idaho Traffic Crashes 2020 ; https://apps.itd.idaho.gov/Apps/OHS/Crash/20/Analysis.pdf

[^15]: ${ }^{9}$ Idaho Transportation Department (ITD). Roadway Design manual. 2012

[^16]: ${ }^{10}$ National Association of City Transportation Officials. 2013. Urban Street Design Guide.

[^17]: ${ }^{11}$ FHWA CMF Clearinghouse, http://www.cmfclearinghouse.org/index.cfm

