PLAN COMMISSION

City of Kaukauna **Council Chambers** Municipal Services Building 144 W. Second Street, Kaukauna

Thursday, May 09, 2024 at 4:00 PM

AGENDA

In-Person

- 1. Roll Call.
- Approval of Minutes.
 <u>a.</u> Approve Minutes from April 18, 2024 Meeting
- 3. New Business.
 - a. Site Plan Change Review U-Haul, 1550 Arbor Way
 - b. Relocate Water Treatment Facilities City Owned Property
 - c. Park Donation Review
 - d. Disposition of City Land Remnant Parcel, 122 Island Street
 - e. Additional Easement Review Blue Stem Meadows 3 Plat
- 4. Other Business.
- 5. Adjourn.

NOTICES

IF REQUESTED THREE (3) DAYS PRIOR TO THE MEETING, A SIGN LANGUAGE INTERPRETER WILL BE MADE AVAILABLE AT NO CHARGE.

PLAN COMMISSION

City of Kaukauna **Council Chambers** Municipal Services Building 144 W. Second Street, Kaukauna

Thursday, April 18, 2024 at 4:00 PM

MINUTES

In-Person.

1. Roll Call.

Members present: Giovanna Feller, John Moore, DPW John Neumeier, Mayor Tony Penterman, Pennie Thiele

Member(s) absent: Michael Avanzi, Brett Jensen, Ken Schoenike

Other(s) present: Associate Planner Lily Paul, Planning and Community Development Director Dave Kittel, Andy Deurr - 1800 East Apple Creek Rd; Zurieth Ahmed (via Teleconference) – 441 ½ S Railroad Street, Kimberly; Paul Gauthier of Midwest Properties; and other interested parties.

Moore made a motion to excuse the absent members. Thiele seconded the motion. The motion passed unanimously.

- 2. Approval of Minutes.
 - a. Approve Minutes from March 21, 2024 meeting

Feller made a motion to approve the minutes from the March 21, 2024 meeting. Moore seconded. The motion passed unanimously.

3. Public Hearing.

 Public Hearing - Special Exception to allow community living arrangements/group homes, subject to Wis. Stats. § 62.23(7)(i) pursuant to Section 17.19(3) of City of Kaukauna Code of Ordinances; 154 Plank Road

Mayor Penterman declared the public hearing open. Asked three times if any one wished to speak. No one spoke. Hearing closed.

b. Public Hearing - Special Exception to allow community living arrangements/group homes, subject to Wis. Stats. § 62.23(7)(i) pursuant to Section 17.19(3) of City of Kaukauna Code of Ordinances; 194 Plank Road

Mayor Penterman declared the public hearing open. Asked three times if any one wished to speak. No one spoke. Hearing closed.

- New Business.
 - a. Special Exception Request 154 Plank Road

CITY OF KAUKAUNA

AP Lily read and summarized public comment about the special exception request of an assisted living facility within a multi-family development. Staff assured all those whom inquired that the clientele were disabled adults that need 24 hour care, and there was little concern after that. Staff reviewed the landscaping requirements, and to bring the property in compliance, the property owner would be required to install a dumpster enclosure and a buffer yard between incompatible uses. Police and Fire have given their okay for the special exception. The Fire Inspector will still need to perform his required inspection before occupancy.

Moore made a motion to approve the special exception for 154 Plank Road with the following contingencies:

- Bring the property in compliance with Section 17.52 Landscaping Requirements: which includes a dumpster enclosure and buffer around the property, if feasible after review by staff.
- Yearly inspection done by Planning and Community Development Department or other designee to ensure compliance

Feller seconded the motion. The motion passed unanimously.

b. Special Exception Request - 194 Plank Road

Thiele made a motion to approve the special exception for 194 Plank Road with the following contingencies:

- Bring the property in compliance with Section 17.52 Landscaping Requirements: which includes a dumpster enclosure and buffer around the property, if feasible after review by staff.
- Yearly inspection done by Planning and Community Development Department or other designee to ensure compliance

Moore seconded the motion. The motion passed unanimously.

c. Ordinance Discussion - Shipping Containers

PCDD Kittel mentioned that shipping containers have showed up in the City, and there are currently no requirements regarding them. There are requirements for accessory structures, so if a resident would like to use one as so they would have to follow those regulations. Moore believes language should be put in place for shipping containers specifically, and the language should be separate between residential zones and commercial/industrial zones. DPW Neumeier would support temporary use of shipping containers in all zoning districts, and support permanent use in Industrial districts by permit. There is no support for converting shipping containers into permanent structures in residential districts. PCDD Kittel expressed that shipping containers could cause problems in terms of public health, safety, and welfare since they were not intended for permanent use. Direction was given for staff to begin drafting zoning regulations on shipping containers.

No action was taken.

d. Site Plan Review - Packerland Home Improvement - 2204 Tower Drive; Parcel 322092503

AP Lily presented a site plan for a 7,500 sq ft workshop and storage style building for Packerland Home Improvement. The site plan meets all covenants and zoning requirements.

Neumeier made a motion to approve the site plan for Packerland Home Improvement. Moore seconded the motion. The motion passed unanimously.

e. Certified Survey Map Review - St. Paul Elder Services; Parcels 324034000, 324034100, 324034300, 324034400, 324043200

AP Lily explained a lot combination CSM to make all lots owned by St.Paul Elder Services into one lot. The main campus is already one large parcel, but there are a few lots that are currently being used by St. Paul Elder home, and a few that were purchased for the purpose of renovating the facility that would make sense to combine into one. There needs to be consistent zoning on all parcels before the CSM can be recorded.

Neumeier made a motion to approve the Lot Combination CSM for Parcels 324034000, 324034100, 324034300, 324034400, 324043200 with the following contingency:

- An easement is shown on the CSM where an existing storm sewer is currently Feller seconded the motion. The motion passed unanimously.

f. Rezone Request - St. Paul Elder Services; Parcels 324034000, 324034100, 324034300, 324034400

AP Lily presented a request for St. Paul Elder Home to rezone parcels 324034000, 324034100, 324034300, 324034400 to Institutional Zoning. This would match the zoning of their main campus.

Neumeier made a motion to approve the Rezone of Parcels 324034000, 324034100, 324034300 and 324034400 from Residential Single Family (RSF) and Residential Two-Family (RTF) to Institutional District and recommend the same to the Common Council. Thiele seconded the motion. The motion passed unanimously.

g. Letter of Support - 2024 Inflation Reduction Act Urban Forestry Grant

DPW Neumeier asked for support to apply for the Inflation Reduction Act Urban Forestry Grant. This is a 0% match grant that benefits disadvantaged communities. Grignon Park, Strassburg Park, and LaFollette Park fall into that category. City Street Crews have been working on removing diseased/dead ash trees effected by Emerald Ash Borer in those parks. AP Lily created planting and reforestation plans to help bring diversity and interest back to those parks. This grant will help fund the reforestation efforts.

Moore made a motion to approve the planting and reforestation plans and authorize the Mayor to send a letter of support for the 2024 Inflation Reduction Act Urban Forestry Grant from the Plan Commission. Feller seconded the motion. The motion passed unanimously.

- 5. Other Business. There was no other business.
- 6. Adjourn.

Moore made a motion to adjourn the meeting. Neumeier seconded the motion. The motion passed unanimously. Meeting adjourned at 5:15 PM.

MEMO

PLANNING AND COMMUNITY DEVELOPMENT

To:	Plan Commission
From:	Dave Kittel, Director of Planning and Community Development
Date:	5/3/2024
Re:	U-Haul site plan change

U-Haul would like to add Propane services to this property and as per the Protective Covenants in this area all Site plan approvals must come from the Plan Commission. As part of this they would like to add a canopy to the site as well as storage tanks. No changes to impervious area are proposed, the canopy would be over existing parking areas and some of the parking previously planned will be slightly altered to allow for the canopy and Propane tank area. Attached is an updated site plan and information from U-Haul on how this looks at other existing facilities.

Recommendation:

To approve the proposed changes to the site plan for U-Haul for a canopy and propane filling area contingent all state and local regulations are met.

			-						
				ΣΣ	Σ	З З	4 2	\rightarrow	╉
				15/23	8/23	1/202	1/202		
xxxx	PROPOSED FENCE			05/1	07/2	1/03	3/20		
					-			-	╉
	PROPOSED CURB A	AND GUTTER							
	PROPOSED HEAVY	DUTY ASPHALT							
	PROPOSED STAND	ARD DUTY ASPHALT		SNC	SIONS		SNC		
	PROPOSED HEAVY	DUTY CONCRETE PAVEMENT		REVISIO	G REVIS		REVISIO		
	PROPOSED STORM	WATER MANAGEMENT AREA		ERMIT I	RADING	FI 38	WNER		
	PROPOSED CONCR	RETE SIDEWALK		∃ G S		A R	<u>(5</u>) O		
*** **	PROPOSED RIP RA	P	,						
PR	OPERTY SU	MMARY							
U-H/	AUL MOVING & S	STORAGE						55114	
TOTAL PROPERTY ARE	Ā	202,901 SF (4.7 AC)					, INC	MM	
PROPOSED IMPERVIOU	JS AREA	171,526 SF (4.0 AC)					ATES	AUL,	Σ
PERCENT IMPERVIOUS	ALLOWED	85.0% MAX					soci	ST. P	4197 N CO
PERCENT IMPERVIOUS	PROVIDED	84.5%					D AS	100,	-645- 10R
PROPOSED PERVIOUS	AREA	31,375 SF (0.7AC)					NAN	UITE	: 651. I E < -
PERCENT PERVIOUS R	EQUIRED	15.0%					HORI	ET, SI	
	ROVIDED	15.5%					LEY-I	TREE	Hd
	FA	204 627 SF (4 7 AC)					2 KIM	TIS S	>
) 2022	EUS	
							0	767	
EXISTING ZONING									
PROPOSED ZONING		CHD - COMMERCIAL	1 I						
		HIGHWAY DISTRICT							
PARKING SETBACKS		SIDE/REAR = 5' ROAD = 5'							
BUILDING SETBACKS		FRONT = 25' SIDE = 10' REAR = 10'							
BUILD	DING DATAS		†						
		-	∔ 						
	ANEAJ								
	/		ļ						
PROPOSED PROPERTY	/	202,901 SF (4.7 AC)							
PROPOSED PROPERTY BUILDING AREA	/	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA)	-						
PROPOSED PROPERTY BUILDING AREA	PARKING	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA)	 - 		,				
PROPOSED PROPERTY BUILDING AREA	PARKING	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA)	 				NMC	SLM	RAV
PROPOSED PROPERTY BUILDING AREA	PARKING	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/300 SF=11,277/300=38 SPACES (WAREHOUSE)		2JECT 7002	щ	2024	S SHOWN	SfM	RAV
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING PROPOSED PARKING	PARKING	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/300 SF=11,277/300=38 SPACES (WAREHOUSE) 70 SPACES		HA PROJECT 160007002	DATE	03/20/2024	E AS SHOWN	SNED BY MJS	VNBY RAV
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING PROPOSED PARKING ADA STALLS REQ'D / PF	PARKING	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) ¹ SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/300 SF=11,277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS		KHA PROJECT 160007002	DATE	03/20/2024	SCALE AS SHOWN		DRAWN BY RAV
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING PROPOSED PARKING ADA STALLS REQ'D / PF SITE PLAN NOT	PARKING PARKING ROVIDED	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) ¹ SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/300 SF=11,277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS		KHA PROJECT 160007002	DATE	03/20/2024	SCALE AS SHOWN		DRAWN BY RAV
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING PROPOSED PARKING ADA STALLS REQ'D / PF SITE PLAN NOT ALL WORK AND MATERI/ AND CODES AND 0.S.H./	PARKING PARKING ROVIDED TES ALS SHALL COMPLY WITA. STANDARDS.	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/300 SF=11,277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS		KHA PROJECT 160007002	DATE	03/20/2024	SCALE AS SHOWN		DRAWN BY RAV
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING PROPOSED PARKING ADA STALLS REQ'D / PF SITE PLAN NOT ALL WORK AND MATERI/ AND CODES AND O.S.H./ CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK	PARKING PARKING ROVIDED TES ALS SHALL COMPLY WITA. STANDARDS. EFER TO THE ARCHITEC SIONS OF VESTIBULES, (S, PRECISE BUILDING I	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/300 SF=11,277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS TH ALL CITY/COUNTY REGULATIONS CTURAL PLANS FOR EXACT SLOPE PAVING, SIDEWALKS, EXIT DIMENSIONS AND EXACT BUILDING		KHA PROJECT 160007002	DATE	03/20/2024	SCALE AS SHOWN		
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING PROPOSED PARKING ADA STALLS REQ'D / PF SITE PLAN NOT . ALL WORK AND MATERI/ AND CODES AND O.S.H./ 2. CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC/ 3. ALL INNER CURBED RAD UNLESS OTHERWISE MC	PARKING PARKING ROVIDED TES ALS SHALL COMPLY WITA A. STANDARDS. EFER TO THE ARCHITEC SIONS OF VESTIBULES, (S, PRECISE BUILDING I SATIONS. DII ARE TO BE 5' AND OL DIED. STRIPED RADII A	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/300 SF=11,277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS TH ALL CITY/COUNTY REGULATIONS CTURAL PLANS FOR EXACT SLOPE PAVING, SIDEWALKS, EXIT DIMENSIONS AND EXACT BUILDING JTER CURBED RADII ARE TO BE 10' RE TO BE 5'.		KHA PROJECT 160007002	DATE	03/20/2024	SCALE AS SHOWN		DRAWN BY RAV
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING PROPOSED PARKING ADA STALLS REQ'D / PF SITE PLAN NOT SITE PLAN NOT CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC. ALL INNER CURBED RAD UNLESS OTHERWISE NO	PARKING PARKING ROVIDED TES ALS SHALL COMPLY WITA. STANDARDS. EFER TO THE ARCHITEC SIONS OF VESTIBULES, (S, PRECISE BUILDING I ATIONS. DII ARE TO BE 5' AND OL DIED. STRIPED RADII AF	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/300 SF=11,277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS TH ALL CITY/COUNTY REGULATIONS CTURAL PLANS FOR EXACT SLOPE PAVING, SIDEWALKS, EXIT DIMENSIONS AND EXACT BUILDING PTER CURBED RADII ARE TO BE 10' RE TO BE 5'. OF CURB UNLESS OTHERWISE		KHA PROJECT 160007002	DATE	03/20/2024			DRAWN BY RAV
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING PROPOSED PARKING ADA STALLS REQ'D / PF SITE PLAN NOT SITE PLAN NOT CODES AND O.S.H./ AND CODES AND O.S.H./ CONTRACTOR SHALL RE LOCATIONS AND MATERI/ AND CODES AND O.S.H./ CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC/ ALL INNER CURBED RAD UNLESS OTHERWISE NO ALL DIMENSIONS AND R. NOTED.	PARKING PARKING ROVIDED ROVIDED TES ALS SHALL COMPLY WI A. STANDARDS. EFER TO THE ARCHITEC SIONS OF VESTIBULES, (S, PRECISE BUILDING I SIONS OF VESTIBULES	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/300 SF=11,277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS TH ALL CITY/COUNTY REGULATIONS CTURAL PLANS FOR EXACT SLOPE PAVING, SIDEWALKS, EXIT DIMENSIONS AND EXACT BUILDING DTER CURBED RADII ARE TO BE 10' RE TO BE 5'. OF CURB UNLESS OTHERWISE N LIMITS ARE TO BE ABANDONED, L COST SHALL BE INCLUDED IN BASE		KHA PROJECT 160007002	DATE	03/20/2024			DRAWN BY RAV
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING PROPOSED PARKING ADA STALLS REQ'D / PF SITE PLAN NOT SITE PLAN NOT CONTRACTOR SHALL RE LOCATIONS AND MATERI/ AND CODES AND O.S.H./ CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC/ ALL INNER CURBED RAD UNLESS OTHERWISE NC ALL DIMENSIONS AND R. NOTED. EXISTING STRUCTURES REMOVED OR RELOCATIONS BID.	PARKING PARKING ROVIDED ROVIDED TES ALS SHALL COMPLY WITA A. STANDARDS. EFER TO THE ARCHITEC SIONS OF VESTIBULES, (S, PRECISE BUILDING I SIONS OF VESTIBULES, (S, PRECISE BUILDING I ATIONS. DII ARE TO THE ARCHITEC SIONS OF VESTIBULES, (S, PRECISE BUILDING I ATIONS. DII ARE TO BE 5' AND OL DTED. STRIPED RADII AF ADII ARE TO THE FACE WITHIN CONSTRUCTIO ED AS NECESSARY. ALI	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/300 SF=11,277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS TH ALL CITY/COUNTY REGULATIONS CTURAL PLANS FOR EXACT SLOPE PAVING, SIDEWALKS, EXIT DIMENSIONS AND EXACT BUILDING DTER CURBED RADII ARE TO BE 10' RE TO BE 5'. OF CURB UNLESS OTHERWISE N LIMITS ARE TO BE ABANDONED, L COST SHALL BE INCLUDED IN BASE		KHA PROJECT 160007002	DATE	03/20/2024			DRAWN BY RAV
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING PROPOSED PARKING ADA STALLS REQ'D / PF SITE PLAN NOT SITE PLAN NOT CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC ALL INNER CURBED RAD UNLESS OTHERWISE NOT ALL DIMENSIONS AND R. NOTED. CONTRACTOR SHALL BE UNLESS OTHERWISE NOT S. EXISTING STRUCTURES REMOVED OR RELOCAT BID. CONTRACTOR SHALL BE OTHERWISE NOTED ON STORM DRAINAGE, SIGN WORK SHALL BE IN ACC AND PROJECT SITE WOF	PARKING PARKING ROVIDED ROVIDED TES ALS SHALL COMPLY WITA A. STANDARDS. EFER TO THE ARCHITEC SIONS OF VESTIBULES, (S, PRECISE BUILDING I SATIONS. DII ARE TO THE ARCHITEC SIONS OF VESTIBULES, (S, PRECISE BUILDING I SATIONS. DII ARE TO BE 5' AND OL DIED. STRIPED RADII AF ADII ARE TO BE 5' AND OL DIED. STRIPED RADII AF ADII ARE TO THE FACE WITHIN CONSTRUCTIO ED AS NECESSARY. ALI E RESPONSIBLE FOR AL PLANS) INCLUDING BUT NS, TRAFFIC SIGNALS & CORDANCE WITH GOVEF RK SPECIFICATIONS AN	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/300 SF=11,277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS TO SPACES 3 STALLS / 3 STALLS TH ALL CITY/COUNTY REGULATIONS CTURAL PLANS FOR EXACT SLOPE PAVING, SIDEWALKS, EXIT DIMENSIONS AND EXACT BUILDING ITER CURBED RADII ARE TO BE 10' RE TO BE 5'. OF CURB UNLESS OTHERWISE N LIMITS ARE TO BE ABANDONED, L COST SHALL BE INCLUDED IN BASE L RELOCATIONS, (UNLESS T NOT LIMITED TO, ALL UTILITIES, POLES, ETC. AS REQUIRED. ALL RNING AUTHORITIES REQUIREMENTS D SHALL BE APPROVED BY SUCH. ALL		KHA PROJECT 160007002	DATE		ULE PLAN Scale AS SHOWN		DRAWN BY RAV
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING PROPOSED PARKING ADA STALLS REQ'D / PF SITE PLAN NOT SITE PLAN NOT CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC ALL INNER CURBED RAD UNLESS OTHERWISE NO ALL DIMENSIONS AND R NOTED. EXISTING STRUCTURES REMOVED OR RELOCATI BID. CONTRACTOR SHALL BE OTHERWISE NOTED ON STORM DRAINAGE, SIGN WORK SHALL BE IN ACC AND PROJECT SITE WOR COST SHALL BE IN ACC AND PROJECT SITE WOR COST SHALL BE IN CLUD	PARKING PARKING ROVIDED TES ALS SHALL COMPLY WITA A. STANDARDS. EFER TO THE ARCHITEC SIONS OF VESTIBULES, (S, PRECISE BUILDING IN ACTIONS. DII ARE TO BE 5' AND OL DIED. STRIPED RADII AF ADII ARE TO THE FACE WITHIN CONSTRUCTIO TED AS NECESSARY. ALI E RESPONSIBLE FOR AL PLANS) INCLUDING BUT NS, TRAFFIC SIGNALS & CORDANCE WITH GOVER RK SPECIFICATIONS AN DED IN BASE BID. GRAPHY, UTILITY AND F	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/300 SF=11,277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS TO SPACES 3 STALLS / 3 STALLS TH ALL CITY/COUNTY REGULATIONS CTURAL PLANS FOR EXACT SLOPE PAVING, SIDEWALKS, EXIT DIMENSIONS AND EXACT BUILDING VIER CURBED RADII ARE TO BE 10' RE TO BE 5'. OF CURB UNLESS OTHERWISE N LIMITS ARE TO BE ABANDONED, L COST SHALL BE INCLUDED IN BASE L RELOCATIONS, (UNLESS F NOT LIMITED TO, ALL UTILITIES, POLES, ETC. AS REQUIRED. ALL RNING AUTHORITIES REQUIREMENTS D SHALL BE APPROVED BY SUCH. ALL ROAD INFORMATION TAKEN FROM A		KHA PROJECT 160007002	DATE	03/20/2024	ULE TLAN SCALE AS SHOWN		DRAWN BY RAV
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING PROPOSED PARKING ADA STALLS REQ'D / PF SITE PLAN NOT SITE PLAN NOT CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC ALL INNER CURBED RAD UNLESS OTHERWISE NO ALL DIMENSIONS AND R NOTED. EXISTING STRUCTURES REMOVED OR RELOCATI BID. CONTRACTOR SHALL BE OTHERWISE NOTED ON STORM DRAINAGE, SIGN WORK SHALL BE IN ACC AND PROJECT SITE WOF COST SHALL BE IN ACC AND PROJECT SITE WOF COST SHALL BE IN CLUD SITE BOUNDARY, TOPOC SURVEY BY BLEW & ASS MISSIONS CONTAINED	PARKING PARKIN	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/300 SF=11,277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS TH ALL CITY/COUNTY REGULATIONS CTURAL PLANS FOR EXACT SLOPE PAVING, SIDEWALKS, EXIT DIMENSIONS AND EXACT BUILDING DTER CURBED RADII ARE TO BE 10' RE TO BE 5'. OF CURB UNLESS OTHERWISE N LIMITS ARE TO BE ABANDONED, L COST SHALL BE INCLUDED IN BASE L RELOCATIONS, (UNLESS T NOT LIMITED TO, ALL UTILITIES, POLES, ETC. AS REQUIRED. ALL RNING AUTHORITIES REQUIREMENTS D SHALL BE APPROVED BY SUCH. ALL ROAD INFORMATION TAKEN FROM A 2/07/2022. C ERRORS, INACCURACIES, OR	NO	KHA PROJECT 160007002	DATE		ULE TLAN SCALE AS SHOWN		DRAWN BY RAV
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING PROPOSED PARKING ADA STALLS REQ'D / PF SITE PLAN NOT SITE PLAN NOT CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC ALL INNER CURBED RAD UNLESS OTHERWISE NO ALL INNER CURBED RAD UNLESS OTHERWISE NO CONTRACTOR SHALL BE NOTED. EXISTING STRUCTURES REMOVED OR RELOCAT BID. CONTRACTOR SHALL BE OTHERWISE NOTED ON STORM DRAINAGE, SIGN WORK SHALL BE IN ACC AND PROJECT SITE WOP COST SHALL BE INCLUD SITE BOUNDARY, TOPOC SURVEY BY BLEW & ASS MISSIONS CONTAINED 3. TOTAL LAND AREA IS 4.7	PARKING PARKING PARKING PARKING ROVIDED ROVIDED FES ALS SHALL COMPLY WITA. STANDARDS. EFER TO THE ARCHITEC SIONS OF VESTIBULES, (S, PRECISE BUILDING II ATIONS. DII ARE TO BE 5' AND OL DTED. STRIPED RADII AF ADII ARE TO THE FACE WITHIN CONSTRUCTIO TED AS NECESSARY. ALI E RESPONSIBLE FOR AL PLANS) INCLUDING BUT NS, TRAFFIC SIGNALS & CORDANCE WITH GOVEF RK SPECIFICATIONS AN FED IN BASE BID. GRAPHY, UTILITY AND F SOCIATES, PA, DATED 0 S NO LIABILITY FOR ANY THEREIN. 7 ACRES.	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/300 SF=11,277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS TH ALL CITY/COUNTY REGULATIONS CTURAL PLANS FOR EXACT SLOPE PAVING, SIDEWALKS, EXIT DIMENSIONS AND EXACT BUILDING JTER CURBED RADII ARE TO BE 10' RE TO BE 5'. OF CURB UNLESS OTHERWISE N LIMITS ARE TO BE ABANDONED, L COST SHALL BE INCLUDED IN BASE L RELOCATIONS, (UNLESS T NOT LIMITED TO, ALL UTILITIES, POLES, ETC. AS REQUIRED. ALL RNING AUTHORITIES REQUIREMENTS D SHALL BE APPROVED BY SUCH. ALL ROAD INFORMATION TAKEN FROM A 2/07/2022. ' ERRORS, INACCURACIES, OR	CTION	G & 160007002	DATE		ULL TLAN SCALE AS SHOWN		
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING PROPOSED PARKING ADA STALLS REQ'D / PF SITE PLAN NOT SITE PLAN NOT CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC ALL INNER CURBED RAD UNLESS OTHERWISE NO ALL DIMENSIONS AND R. NOTED. EXISTING STRUCTURES REMOVED OR RELOCATI BID. CONTRACTOR SHALL BE OTHERWISE NOTED ON STORM DRAINAGE, SIGN WORK SHALL BE IN ACC AND PROJECT SITE WOP COST SHALL BE IN CLUD SITE BOUNDARY, TOPOC SURVEY BY BLEW & ASS KIMLEY-HORN ASSUMES OMISSIONS CONTAINED TOTAL LAND AREA IS 4.7 PYLON / MONUMENT SIG SHOWN FOR GRAPHICAL VERIFY SIZE, LOCATION CONSTRUCTION OF THE	PARKING PARKING PARKING PARKING PARKING ROVIDED FES ALS SHALL COMPLY WITA. STANDARDS. EFER TO THE ARCHITEC SIONS OF VESTIBULES, (S, PRECISE BUILDING IN ATIONS. DI ARE TO BE 5' AND OL DTED. STRIPED RADII AF ADII ARE TO THE FACE WITHIN CONSTRUCTIO TED AS NECESSARY. ALI E RESPONSIBLE FOR AL PLANS) INCLUDING BUT NS, TRAFFIC SIGNALS & CORDANCE WITH GOVEF RK SPECIFICATIONS AN FED IN BASE BID. GRAPHY, UTILITY AND FE SOCIATES, PA, DATED 0 S NO LIABILITY FOR ANY OTHEREIN. 7 ACRES. SINS SHALL BE CONSTRICT I AND ANY REQUIRED PIE ENVICEMENTION OF MALTIONAL PLIE CONTACT AND ANY REQUIRED PIE ENVICEMENTION OF MALTIONAL PLIE CONTACT AND ANY REQUIRED PIE ENVICEMENTION OF MALTIONAL PLIE CONTACT AND ANY REQUIRED PIE CONTACT AND ANY REPONTACT AND ANY PIE CONTACT AN	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/300 SF=11,277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS TH ALL CITY/COUNTY REGULATIONS CTURAL PLANS FOR EXACT SLOPE PAVING, SIDEWALKS, EXIT DIMENSIONS AND EXACT BUILDING DTER CURBED RADII ARE TO BE 10' RE TO BE 5'. OF CURB UNLESS OTHERWISE N LIMITS ARE TO BE ABANDONED, L COST SHALL BE INCLUDED IN BASE L RELOCATIONS, (UNLESS T NOT LIMITED TO, ALL UTILITIES, POLES, ETC. AS REQUIRED. ALL RNING AUTHORITIES REQUIREMENTS D SHALL BE APPROVED BY SUCH. ALL ROAD INFORMATION TAKEN FROM A 2/07/2022. 2 ERRORS, INACCURACIES, OR UCTED BY OTHERS. SIGNS ARE IRPOSES ONLY. CONTRACTOR TO ERMITS NECESSARY FOR THE UCTED BY OTHERS. SIGNS ARE IRPOSES ONLY. CONTRACTOR TO ERMITS NECESSARY FOR THE	RUCTION	DVING & KHA PROJECT 160007002	DATE				CO.
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING PROPOSED PARKING ADA STALLS REQ'D / PF SITE PLAN NOT SITE PLAN NOT CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC ALL INNER CURBED RAD UNLESS OTHERWISE NO ALL INNER CURBED RAD UNLESS OTHERWISE NO CONTRACTOR SHALL BE NOTED. EXISTING STRUCTURES REMOVED OR RELOCAT BID. CONTRACTOR SHALL BE OTHERWISE NOTED ON STORM DRAINAGE, SIGN WORK SHALL BE IN ACC AND PROJECT SITE WOP COST SHALL BE IN ACC AND PROJECT SITE WOP COST SHALL BE INCLUD SITE BOUNDARY, TOPOC SURVEY BY BLEW & ASS KIMLEY-HORN ASSUMES OMISSIONS CONTAINED TOTAL LAND AREA IS 4.7 PYLON / MONUMENT SIG SHOWN FOR GRAPHICAI VERIFY SIZE, LOCATION CONTRACTOR SHALL RE	PARKING PARKIN	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/200 SF=11,277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS TO SPACES 3 STALLS / 3 STALLS TH ALL CITY/COUNTY REGULATIONS CTURAL PLANS FOR EXACT SLOPE PAVING, SIDEWALKS, EXIT DIMENSIONS AND EXACT BUILDING DITER CURBED RADII ARE TO BE 10' RE TO BE 5'. OF CURB UNLESS OTHERWISE N LIMITS ARE TO BE ABANDONED, L COST SHALL BE INCLUDED IN BASE L RELOCATIONS, (UNLESS T NOT LIMITED TO, ALL UTILITIES, POLES, ETC. AS REQUIRED. ALL RNING AUTHORITIES REQUIREMENTS D SHALL BE APPROVED BY SUCH. ALL ROAD INFORMATION TAKEN FROM A 2/07/2022. Y ERRORS, INACCURACIES, OR UCTED BY OTHERS. SIGNS ARE IRPOSES ONLY. CONTRACTOR TO EMITS NECESSARY FOR THE IGN. PLANS FOR SITE LIGHTING AND	NSTRUCTION	MOVING & RHA PROJECT 160007002	DRAGE		CODEAL AS SHOWN		ATE CO.
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING PROPOSED PARKING ADA STALLS REQ'D / PF SITE PLAN NOT SITE PLAN NOT CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC ALL INNER CURBED RAD UNLESS OTHERWISE NO ALL INNER CURBED RAD UNLESS OTHERWISE NO CONTRACTOR SHALL BE NOTED. EXISTING STRUCTURES REMOVED OR RELOCAT BID. CONTRACTOR SHALL BE OTHERWISE NOTED ON STORM DRAINAGE, SIGN WORK SHALL BE IN ACC AND PROJECT SITE WOP COST SHALL BE IN ACC AND PROJECT SITE WOP COST SHALL BE INCLUD SITE BOUNDARY, TOPOC SURVEY BY BLEW & ASS KIMLEY-HORN ASSUMES OMISSIONS CONTAINED TOTAL LAND AREA IS 4.7 PYLON / MONUMENT SIG SHOWN FOR GRAPHICAI VERIFY SIZE, LOCATION CONSTRUCTION OF THE CONTRACTOR SHALL RE ELECTRICAL PLAN.	PARKING PARKIN	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/300 SF=11.277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS TO SPACES 3 STALLS / 3 STALLS TH ALL CITY/COUNTY REGULATIONS CTURAL PLANS FOR EXACT SLOPE PAVING, SIDEWALKS, EXIT DIMENSIONS AND EXACT BUILDING ITER CURBED RADII ARE TO BE 10' RE TO BE 5'. OF CURB UNLESS OTHERWISE N LIMITS ARE TO BE ABANDONED, L COST SHALL BE INCLUDED IN BASE L RELOCATIONS, (UNLESS F NOT LIMITED TO, ALL UTILITIES, POLES, ETC. AS REQUIRED. ALL RNING AUTHORITIES REQUIREMENTS D SHALL BE APPROVED BY SUCH. ALL ROAD INFORMATION TAKEN FROM A 2/07/2022. ' ERRORS, INACCURACIES, OR UCTED BY OTHERS. SIGNS ARE IRPOSES ONLY. CONTRACTOR TO ERMITS NECESSARY FOR THE IGN. PLANS FOR SITE LIGHTING AND OR SHRUBS, ABOVE AND TRUCTIONS SHALL BE LOCATED MENTS AND RIGHTS OF WAY UNLESS	CONSTRUCTION	AUL MOVING & RHA PROJECT 160007002	STORAGE				ESTATE CO.
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING PROPOSED PARKING ADA STALLS REQ'D / PF SITE PLAN NOT SITE PLAN NOT CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC. ALL INNER CURBED RAD UNLESS OTHERWISE NOT UNLESS OTHERWISE NOT ALL DIMENSIONS AND R. NOTED. CONTRACTOR SHALL BE OTHERWISE NOTED ON STORM DRAINAGE, SIGN WORK SHALL BE IN ACC AND PROJECT SITE WOF COST SHALL BE IN ACC AND PROJECT SITE WOF COST SHALL BE IN ACC AND PROJECT SITE WOF COST SHALL BE IN CLUD SITE BOUNDARY, TOPOO SURVEY BY BLEW & ASS KIMLEY-HORN ASSUMES OMISSIONS CONTAINED CONTRACTOR SHALL BE INCLUD SITE BOUNDARY, TOPOO SURVEY BY BLEW & ASS KIMLEY-HORN ASSUMES OMISSIONS CONTAINED CONTRACTOR SHALL RE OTHER SIZE, LOCATION CONSTRUCTION OF THE CONTRACTOR SHALL RE OMISSIONS CONTAINED CONTRACTOR SHALL RE CONTRACTOR SHALL RE OMISSIONS CONTAINED CONTRACTOR SHALL RE CONTRACTOR SHALL RE ELECTRICAL PLAN.	PARKING PARKIN	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/200 SF=11,277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS TO SPACES 3 STALLS / 3 STALLS TH ALL CITY/COUNTY REGULATIONS CTURAL PLANS FOR EXACT SLOPE PAVING, SIDEWALKS, EXIT DIMENSIONS AND EXACT BUILDING JTER CURBED RADII ARE TO BE 10' RE TO BE 5'. OF CURB UNLESS OTHERWISE N LIMITS ARE TO BE ABANDONED, L COST SHALL BE INCLUDED IN BASE L RELOCATIONS, (UNLESS I NOT LIMITED TO, ALL UTILITIES, POLES, ETC. AS REQUIRED. ALL RNING AUTHORITIES REQUIREMENTS D SHALL BE APPROVED BY SUCH. ALL ROAD INFORMATION TAKEN FROM A 2/07/2022. Y ERRORS, INACCURACIES, OR UCTED BY OTHERS. SIGNS ARE IRPOSES ONLY. CONTRACTOR TO ERMINS NECESSARY FOR THE IGN. PLANS FOR SITE LIGHTING AND OR SHRUBS, ABOVE AND TRUCTIONS SHALL BE LOCATED MENTS AND RIGHTS OF WAY UNLESS INSTER ENCLOSURE DETATION	OR CONSTRUCTION	I-HAUL MOVING & 160007002	STORAGE				ESTATE CO.
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING ADA STALLS REQ'D / PR SITE PLAN NOT SITE PLAN NOT AND CODES AND O.S.H./ AND CODES AND O.S.H./ CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC. ALL INNER CURBED RAD UNLESS OTHERWISE NOT ALL DIMENSIONS AND R. NOTED. ALL DIMENSIONS AND R. NOTED. CONTRACTOR SHALL BE OTHERWISE NOTED ON STORM DRAINAGE, SIGN WORK SHALL BE IN ACC AND PROJECT SITE WOR COST SHALL BE INCLUD SITE BOUNDARY, TOPOC SURVEY BY BLEW & ASS KIMLEY-HORN ASSUMES OM STORM DRAINAGE, SIGN WORK SHALL BE IN CLUD SITE BOUNDARY, TOPOC SURVEY BY BLEW & ASS KIMLEY-HORN ASSUMES OM STORM DRAINAGE, SIGN WORK SHALL BE INCLUD SITE BOUNDARY, TOPOC SURVEY BY BLEW & ASS KIMLEY-HORN ASSUMES OM STORM DRAINAGE, SIGN WORK SHALL BE INCLUD COST SHALL BE INCLUD CONTRACTOR SHALL BE OTHERWISE NOTED ON STORM DRAINAGE, SIGN WORK SHALL BE INCLUD CONTRACTOR SHALL BE OTHERWISE NOTED ON STORM DRAINAGE, SIGN WORK SHALL BE INCLUD CONTRACTOR SHALL BE DO CONTRACTOR SHALL RE ELECTRICAL PLAN.	PARKING PARKIN	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/200 SF=11,277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS TO SPACES 3 STALLS / 3 STALLS TH ALL CITY/COUNTY REGULATIONS CTURAL PLANS FOR EXACT SLOPE PAVING, SIDEWALKS, EXIT DIMENSIONS AND EXACT BUILDING DTER CURBED RADII ARE TO BE 10' RE TO BE 5'. OF CURB UNLESS OTHERWISE N LIMITS ARE TO BE ABANDONED, L COST SHALL BE INCLUDED IN BASE L RELOCATIONS, (UNLESS T NOT LIMITED TO, ALL UTILITIES, POLES, ETC. AS REQUIRED. ALL RNING AUTHORITIES REQUIREMENTS D SHALL BE APPROVED BY SUCH. ALL ROAD INFORMATION TAKEN FROM A 2/07/2022. 2' ERRORS, INACCURACIES, OR UCTED BY OTHERS. SIGNS ARE IRPOSES ONLY. CONTRACTOR TO ERMITS NECESSARY FOR THE IGN. PLANS FOR SITE LIGHTING AND OR SHRUBS, ABOVE AND TRUCTIONS SHALL BE LOCATED MENTS AND RIGHTS OF WAY UNLESS PSTER ENCLOSURE DETAILS. YACT L OT AND PROPERTY'	FOR CONSTRUCTION	U-HAUL MOVING & 160007002	STORAGE				ESTATE CO.
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING ADA STALLS REQ'D / PF SITE PLAN NOT ADA STALLS REQ'D / PF SITE PLAN NOT CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC, ALL WORK AND MATERI/ AND CODES AND O.S.H./ CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC, ALL DIMENSIONS AND R NOTED. CONTRACTOR SHALL BE OTHERWISE NOTED ON STORM DRAINAGE, SIGN WORK SHALL BE IN ACC AND PROJECT SITE WOP COST SHALL BE IN ACC AND PROJECT SITE WOP COST SHALL BE IN ACC AND PROJECT SITE WOP COST SHALL BE IN CLUD SITE BOUNDARY, TOPOC SURVEY BY BLEW & ASS KIMLEY-HORN ASSUMES OMISSIONS CONTAINED CONTRACTOR SHALL BE OTHERWISE NOTED ON STORM DRAINAGE, SIGN WORK SHALL BE IN CLUD SITE BOUNDARY, TOPOC SURVEY BY BLEW & ASS KIMLEY-HORN ASSUMES OMISSIONS CONTAINED TOTAL LAND AREA IS 4.7 PYLON / MONUMENT SIG SHOWN FOR GRAPHICAI VERIFY SIZE, LOCATION CONSTRUCTION OF THE CONTRACTOR SHALL RE ELECTRICAL PLAN.	PARKING PARKIN	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2.970/200=16 SPACES (RETAIL) 1 SP/200 SF=1.277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS TH ALL CITY/COUNTY REGULATIONS SLOPE PAVING, SIDEWALKS, EXIT DIMENSIONS AND EXACT BUILDING TER CURBED RADII ARE TO BE 10' RE TO BE 5'. OF CURB UNLESS OTHERWISE N LIMITS ARE TO BE ABANDONED, L COST SHALL BE INCLUDED IN BASE L RELOCATIONS, (UNLESS T NOT LIMITED TO, ALL UTILITIES, POLES, ETC. AS REQUIRED. ALL RNING AUTHORITIES REQUIREMENTS D SHALL BE APPROVED BY SUCH. ALL ROAD INFORMATION TAKEN FROM A 2/07/2022. ' ERRORS, INACCURACIES, OR UCTED BY OTHERS. SIGNS ARE IRPOSES ONLY. CONTRACTOR TO ERMITS NECESSARY FOR THE IGN. PLANS FOR SITE LIGHTING AND OR SHRUBS, ABOVE AND TRUCTIONS SHALL BE LOCATED MENTS AND RIGHTS OF WAY UNLESS PSTER ENCLOSURE DETAILS. XACT LOT AND PROPERTY	D FOR CONSTRUCTION	U-HAUL MOVING & RHA PROJECT 160007002	STORAGE				ESTATE CO.
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING ADA STALLS REQ'D / PF SITE PLAN NOT SITE PLAN NOT CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC ALL INNER CURBED RAD UNLESS OTHERWISE NOT ALL DIMENSIONS AND R NOTED. ALL DIMENSIONS AND R NOTED. EXISTING STRUCTURES REMOVED OR RELOCAT BID. CONTRACTOR SHALL BE OTHERWISE NOTED ON STORM DRAINAGE, SIGN WORK SHALL BE IN ACC AND PROJECT SITE WOF COST SHALL BE INCLUD SITE BOUNDARY, TOPOC SURVEY BY BLEW & ASS KIMLEY-HORN ASSUMES OMISSIONS CONTAINED SITE BOUNDARY, TOPOC SURVEY BY BLEW & ASS KIMLEY-HORN ASSUMES OMISSIONS CONTAINED TOTAL LAND AREA IS 4.7 PYLON / MONUMENT SIG SHOWN FOR GRAPHICAI VERIFY SIZE, LOCATION CONTRACTOR SHALL RE ELECTRICAL PLAN.	PARKING PARKIN	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (RETAIL) 1 SP/200 SF=11,277/300=38 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS TO SPACES 3 STALLS / 3 STALLS TH ALL CITY/COUNTY REGULATIONS CTURAL PLANS FOR EXACT SLOPE PAVING, SIDEWALKS, EXIT DIMENSIONS AND EXACT BUILDING PTER CURBED RADII ARE TO BE 10' RE TO BE 5'. OF CURB UNLESS OTHERWISE N LIMITS ARE TO BE ABANDONED, L COST SHALL BE INCLUDED IN BASE L RELOCATIONS, (UNLESS T NOT LIMITED TO, ALL UTILITIES, POLES, ETC. AS REQUIRED. ALL RNING AUTHORITIES REQUIREMENTS D SHALL BE APPROVED BY SUCH. ALL ROAD INFORMATION TAKEN FROM A 2/07/2022. ' ERRORS, INACCURACIES, OR UCTED BY OTHERS. SIGNS ARE IRPOSES ONLY. CONTRACTOR TO ERMITS NECESSARY FOR THE IGN. PLANS FOR SITE LIGHTING AND OR SHRUBS, ABOVE AND TRUCTIONS SHALL BE LOCATED MENTS AND RIGHTS OF WAY UNLESS IPSTER ENCLOSURE DETAILS. XACT LOT AND PROPERTY QUARE FOOT.	JED FOR CONSTRUCTION	U-HAUL MOVING & RHA PROJECT 160007002	STORAGE				ESTATE CO.
PROPOSED PROPERTY BUILDING AREA REQUIRED PARKING ADA STALLS REQ'D / PF SITE PLAN NOT ADA STALLS REQ'D / PF SITE PLAN NOT CONTRACTOR SHALL RE LOCATIONS AND DIMENS PORCHES, TRUCK DOCK UTILITY ENTRANCE LOC ALL INNER CURBED RAD UNLESS OTHERWISE NOT ALL DIMENSIONS AND R. NOTED. CONTRACTOR SHALL BE OTHERWISE NOTED ON STORM DRAINAGE, SIGN WORK SHALL BE IN ACC AND PROJECT SITE WOF COST SHALL BE IN ACC AND PROJECT SITE WOF COST SHALL BE IN ACC AND PROJECT SITE WOF COST SHALL BE IN CLUD SITE BOUNDARY, TOPOC SURVEY BY BLEW & ASS KIMLEY-HORN ASSUMES OMISSIONS CONTAINED COST SHALL BE INCLUD SITE BOUNDARY, TOPOC SURVEY BY BLEW & ASS KIMLEY-HORN ASSUMES OMISSIONS CONTAINED TOTAL LAND AREA IS 4.7 PYLON / MONUMENT SIG SHOWN FOR GRAPHICAI VERIFY SIZE, LOCATION CONSTRUCTION OF THE CONTRACTOR SHALL RE ELECTRICAL PLAN.	PARKING PARKING PARKING PARKING ROVIDED FES ALS SHALL COMPLY WITAL STANDARDS. EFER TO THE ARCHITEC SIONS OF VESTIBULES, (S, PRECISE BUILDING IN ALS SHALL COMPLY WITAL STANDARDS. EFER TO THE ARCHITEC SIONS OF VESTIBULES, (S, PRECISE BUILDING IN ALTA SURVEY ADDI ARE TO BE 5' AND OLD DI ARE TO BE 5' AND OLD TED. STRIPED RADII AF ADDI ARE TO THE FACE WITHIN CONSTRUCTION TED AS NECESSARY. ALD E RESPONSIBLE FOR AL PLANS) INCLUDING BUTNS, TRAFFIC SIGNALS & CRDANCE WITH GOVEF RK SPECIFICATIONS AN DED IN BASE BID. GRAPHY, UTILITY AND F SOCIATES, PA, DATED O S NO LIABILITY FOR ANY D THEREIN. 7 ACRES. GNS SHALL BE CONSTRUCTION CONSTRUCTIONED TO THE NEAREST STURES, OR OTHER OBS STURES, OR OTHER	202,901 SF (4.7 AC) 41,685 SF (17.6% OF TOTAL PROPERTY AREA) 1 SP/200 SF=2,970/200=16 SPACES (WAREHOUSE) 70 SPACES 3 STALLS / 3 STALLS 3 STALLS / 3 STALLS TH ALL CITY/COUNTY REGULATIONS CTURAL PLANS FOR EXACT SLOPE PAVING, SIDEWALKS, EXIT DIMENSIONS AND EXACT BUILDING DTER CURBED RADII ARE TO BE 10' RE TO BE 5'. OF CURB UNLESS OTHERWISE N LIMITS ARE TO BE ABANDONED, COST SHALL BE INCLUDED IN BASE L RELOCATIONS, (UNLESS F NOT LIMITED TO, ALL UTILITIES, POLES, ETC. AS REQUIRED. ALL RNING AUTHORITIES REQUIRED. ALL RNING AUTHORITIES REQUIRED. ALL ROAD INFORMATION TAKEN FROM A 2/07/2022. F ERRORS, INACCURACIES, OR UCTED BY OTHERS. SIGNS ARE IRPOSES ONLY. CONTRACTOR TO ERMITS NECESSARY FOR THE IGN. PLANS FOR SITE LIGHTING AND OR SHRUBS, ABOVE AND TRUCTIONS SHALL BE LOCATED MENTS AND RIGHTS OF WAY UNLESS IPSTER ENCLOSURE DETAILS. XACT LOT AND PROPERTY QUARE FOOT. EST TENTH FOOT.	SUED FOR CONSTRUCTION	U-HAUL MOVING & RHA PROJECT 160007002	STORAGE				ESTATE CO. ESTATE CO.

K:\TWC_LDEV\UHAUL\Kaukauna, WI\3 Design\CAD\PlanSheets\C5-GRADING PLAN.dwg March 22, 2024 - 10:346

LE			SLM	ĥΜ	ĥ	SCM	Я	
	EGEND		5/23	5/23	8/23	/2023	/2024	
_		PROPERTY LINE	05/1{	07/25	07/28	11/03/)3/20/	
	<i>928</i>	 EXISTING CONTOUR PROPOSED CONTOUR 				`		
	D	PROPOSED STORM MANHOLE (SOLID CASTING)						
	•	PROPOSED STORM MANHOLE (ROUND INLET CASTING)						
	Ø	PROPOSED STORM MANHOLE/ CATCH BASIN (CURB INLET CASTING) PROPOSED STORM SEWER CLENOUT						
		PROPOSED FLARED END SECTION			٨S			
	~	PROPOSED RIPRAP	SNO	S	SION		NOI	
_	>	 PROPOSED STORM SEWER PROPOSED STORM SEWER 	EVISI	SION	REVI		ISI	
		GATE VALVE	IT RE	RVI	ING I		R R	
	+	HYDRANT	ERM		RAD	FI 38	MNE	
	■	TEE	PI	Ū	G	R	Ó	
	S	SANITARY SEWER MANHOLE	$\overline{\mathbb{V}}$	∕2	\gg	<4	$\overline{2}$	
_	© 	SANITARY CLEANOUT WATERMAIN						
_		SANITARY SEWER						
	ELC							41.1.CC
	GAS	GAS MAIN		5			S, INC	, MIN
	(100.00)	PROPOSED SPOT ELEVATION					IATE:	LAUL
	(HP:0.0)					•	3SOC	4197
	LP:0.0	PROPOSED LOW POINT ELEVATION PROPOSED GUTTER ELEVATION	1 '			Ň	ND AS	= 100, 1-645-
	(<u>G:0.00</u>)	PROPOSED TOP OF CURB ELEVATION					RN AI	s∪i i t ⊑: 651
	(T/G:0.0)	PROPOSED FLUSH PAVEMENT ELEVATION			11		N-HOI	HON!
	(ME:0.0) ×	MATCH EXISTING ELEVATION					IMLE)	х Г
	(EOF:0.0)			C			022 K	
							© 2	/0/ E/
-	0.00%						r	
1		TO BE IN PLACE AND COMPACTED BEFORE INSTALLATION OF						
	PROPOSED UTILITIES.							
2.	8" PVC SDR35 PER A 8" PVC SDR35 PER A 8" PVC SDR26 PER A 6" PVC SCHEDULE 4 DUCTILE IRON PIPE	E SHALL BE AS FOLLOWS: ASTM D-3034, FOR PIPES LESS THAN 12' DEEP ASTM D-3034, FOR PIPES MORE THAN 12' DEEP 40 PER ASTM D-1785 PER AWWA C150						
		BE AS FOLLOWS:						
3.								
3.	6" AND LARGER, PV CLASS 200 UNDER (4" AND LARGER DU(C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IBON PIPE PER AWWA C150						
3.	6" AND LARGER, PV CLASS 200 UNDER (4" AND LARGER DU SMALLER THAN 3" P ANSI 816.22 OR PVC	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER C, 200 P.S.I., PER ASTM D1784 AND D2241.						
3. 1.	6" AND LARGER, PV CLASS 200 UNDER C 4" AND LARGER DUC SMALLER THAN 3" P ANSI 816.22 OR PVC	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER C, 200 P.S.I., PER ASTM D1784 AND D2241.						
3. 4. 5.	6" AND LARGER, PV CLASS 200 UNDER C 4" AND LARGER DUC SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER C, 200 P.S.I., PER ASTM D1784 AND D2241. PTH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST NLESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS.	7					
3. 4. 5.	6" AND LARGER, PV CLASS 200 UNDER C 4" AND LARGER DUC SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER C, 200 P.S.I., PER ASTM D1784 AND D2241. OTH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST NLESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS.	OJECT	77002	TE	/2024	S MOWN	
3. 4. 5.	6" AND LARGER, PV CLASS 200 UNDER C 4" AND LARGER DUC SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE).	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER C, 200 P.S.I., PER ASTM D1784 AND D2241. OTH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST NLESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. D BE KEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" E (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR	A PROJECT	160007002	DATE	03/20/2024	AS SHOWN	
3. 4. 5. 7.	6" AND LARGER, PV CLASS 200 UNDER C 4" AND LARGER DUC SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER 2, 200 P.S.I., PER ASTM D1784 AND D2241. OTH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST NLESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. D BE KEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" E (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR MAINTAIN A MINIMUM OF 7'-5" COVER ON ALL WATERLINES.	KHA PROJECT	160007002	DATE	03/20/2024	SCALE AS SHOWN	
 3. 4. 5. 5. 7. 3. 	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER 2, 200 P.S.I., PER ASTM D1784 AND D2241. OTH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST NLESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. D BE KEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" E (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR MAINTAIN A MINIMUM OF 7'-5" COVER ON ALL WATERLINES. IRTICAL CONFLICT BETWEEN WATER LINES, SANITARY LINES, S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE	KHA PROJECT	160007002	DATE	03/20/2024	SCALE AS SHOWN	
3. 4. 5. 6. 7.	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MEDIADION 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER C, 200 P.S.I., PER ASTM D1784 AND D2241. TH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST NLESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. D BE KEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" C (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR MAINTAIN A MINIMUM OF 7'-5" COVER ON ALL WATERLINES. S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET HE CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE	KHA PROJECT	160007002	DATE	03/20/2024	SCALE AS SHOWN	
3. 4. 5. 5.	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21 11 (AMMAG C 41) 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER C, 200 P.S.I., PER ASTM D1784 AND D2241. OTH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST NLESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. D BE KEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" E (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR MAINTAIN A MINIMUM OF 7'-5" COVER ON ALL WATERLINES. RTICAL CONFLICT BETWEEN WATER LINES, SANITARY LINES, S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET HE CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE WITH APPROPRIATE FASTENERS AS REQUIRED TO PROVIDE A ICAL SEPARATION. MEETING REQUIREMENTS OF ANSI A21.10 OR 511 (CL ASS 50)	KHA PROJECT	160007002	DATE	03/20/2024		
3. 4. 5. 6. 7.	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15) 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER 2, 200 P.S.I., PER ASTM D1784 AND D2241. OTH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST NLESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. D BE KEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" E (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR MAINTAIN A MINIMUM OF 7'-5" COVER ON ALL WATERLINES. STICAL CONFLICT BETWEEN WATER LINES, SANITARY LINES, S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET HE CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE WITH APPROPRIATE FASTENERS AS REQUIRED TO PROVIDE A ICAL SEPARATION. MEETING REQUIREMENTS OF ANSI A21.10 OR 51) (CLASS 50).	KHA PROJECT	160007002	DATE	03/20/2024		
3. 4. 5. 5. 7. 3.	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15) LINES UNDERGROUND BACKFILLING. 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER 2, 200 P.S.I., PER ASTM D1784 AND D2241. TH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST NLESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. D BE KEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" E (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR WAINTAIN A MINIMUM OF 7'-5" COVER ON ALL WATERLINES. S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET TE CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE WITH APPROPRIATE FASTENERS AS REQUIRED TO PROVIDE A ICAL SEPARATION. MEETING REQUIREMENTS OF ANSI A21.10 OR 51) (CLASS 50).	KHA PROJECT	160007002	DATE DATE	03/20/2024		
3. 4. 5. 5. 7. 3.	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15) LINES UNDERGROUND BACKFILLING. TOPS OF MANHOLES S PAVEMENT ELEVATION GREEN AREAS, WITH V 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER 2, 200 P.S.I., PER ASTM D1784 AND D2241. ATH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST NLESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. D BE KEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" E (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR MAINTAIN A MINIMUM OF 7'-5" COVER ON ALL WATERLINES. RTICAL CONFLICT BETWEEN WATER LINES, SANITARY LINES, S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET 16 CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE WITH APPROPRIATE FASTENERS AS REQUIRED TO PROVIDE A ICAL SEPARATION. MEETING REQUIREMENTS OF ANSI A21.10 OR 51) (CLASS 50). D SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE RAISED AS NECESSARY TO BE FLUSH WITH PROPOSED NA ND TO BE ONE FOOT ABOVE FINISHED GROUND ELEVATIONS, IN WATERTIGHT LIDS.	KHA PROJECT	160007002			GC, AND SCALE AS SHOWN	
3. 4. 5. 5. 7. 3.	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15) LINES UNDERGROUND BACKFILLING. TOPS OF MANHOLES S PAVEMENT ELEVATION GREEN AREAS, WITH V ALL CONCRETE FOR EI STRENGTH AT 3000 P.5 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER C, 200 P.S.I., PER ASTM D1784 AND D2241. PTH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST VLESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. D BE KEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" E (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR WAINTAIN A MINIMUM OF 7'-5" COVER ON ALL WATERLINES. RTICAL CONFLICT BETWEEN WATER LINES, SANITARY LINES, S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET 4E CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE WITH APPROPRIATE FASTENERS AS REQUIRED TO PROVIDE A ICCAL SEPARATION. MEETING REQUIREMENTS OF ANSI A21.10 OR 51) (CLASS 50). D SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE RAISED AS NECESSARY TO BE FLUSH WITH PROPOSED NS, AND TO BE ONE FOOT ABOVE FINISHED GROUND ELEVATIONS, IN WATERTIGHT LIDS. NCASEMENTS SHALL HAVE A MINIMUM 28 DAY COMPRESSION S.I.	KHA PROJECT	160007002			AGE, AND SCALE AS SHOWN DESIGNED BY MIS	
 3. 4. 5. 5. 7. 3. 9. 10. 11. 12. 	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DVG SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15) LINES UNDERGROUND BACKFILLING. TOPS OF MANHOLES S PAVEMENT ELEVATION GREEN AREAS, WITH V ALL CONCRETE FOR EL STRENGTH AT 3000 P.S EXISTING UTILITIES SH 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 'IPING SHALL BE COPPER TUBE TYPE "K" PER 2, 200 P.S.I., PER ASTM D1784 AND D2241. ITH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST NLESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. P BE KEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" E (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR WAINTAIN A MINIMUM OF 7'-5" COVER ON ALL WATERLINES. RETICAL CONFLICT BETWEEN WATER LINES, SANITARY LINES, S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET 4E CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE WITH APPROPRIATE FASTENERS AS REQUIRED TO PROVIDE A ICAL SEPARATION. MEETING REQUIREMENTS OF ANSI A21.10 OR 51) (CLASS 50). P SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE RAISED AS NECESSARY TO BE FLUSH WITH PROPOSED NATERTIGHT LIDS. NCASEMENTS SHALL HAVE A MINIMUM 28 DAY COMPRESSION S.I. WAIL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW	KHA PROJECT				NAGE, AND SCALE AS SHOWN DESIGNED BY MIS	
 3. 4. 5. 5. 7. 3. 9. 10. 11. 12. 3 	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15 LINES UNDERGROUND BACKFILLING. TOPS OF MANHOLES S PAVEMENT ELEVATION GREEN AREAS, WITH V ALL CONCRETE FOR EI STRENGTH AT 3000 P.S EXISTING UTILITIES SH LINES. 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 IPING SHALL BE COPPER TUBE TYPE "K" PER 2, 200 P.S.I., PER ASTM D1784 AND D2241. ITH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST VLESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. P BE KEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" E (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR WAINTAIN A MINIMUM OF 7'-5" COVER ON ALL WATERLINES. RTICAL CONFLICT BETWEEN WATER LINES, SANITARY LINES, S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET THE CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE WITH APPROPRIATE FASTENERS AS REQUIRED TO PROVIDE A ICAL SEPARATION. MEETING REQUIREMENTS OF ANSI A21.10 OR 61) (CLASS 50). P SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE RAISED AS NECESSARY TO BE FLUSH WITH PROPOSED NS, AND TO BE ONE FOOT ABOVE FINISHED GROUND ELEVATIONS, IN VATERTIGHT LIDS. NCASEMENTS SHALL HAVE A MINIMUM 28 DAY COMPRESSION S.I. HALL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW LUMBING DRAWINGS FOR THE IN OF ALL UTH THES	KHA PROJECT				AINAGE, AND SCALE AS SHOWN DESIGNED BY MIS	
 3. 4. 5. 5. 7. 3. 9. 10. 11. 12. 13. 14. 	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DVG SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15 LINES UNDERGROUND BACKFILLING. TOPS OF MANHOLES S PAVEMENT ELEVATION GREEN AREAS, WITH V ALL CONCRETE FOR EL STRENGTH AT 3000 P.S EXISTING UTILITIES SH LINES. REFER TO INTERIOR PL CONTRACTOR IS RESE 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER 2, 200 P.S.I., PER ASTM D1784 AND D2241. WITH SHALL BE 2 FEET. WE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST VLESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. P BE KEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" E (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR WAINTAIN A MINIMUM OF 7'-5" COVER ON ALL WATERLINES. IRTICAL CONFLICT BETWEEN WATER LINES, SANITARY LINES, S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET THE CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE WITH APPROPRIATE FASTENERS AS REQUIRED TO PROVIDE A ICAL SEPARATION. MEETING REQUIREMENTS OF ANSI A21.10 OR 51) (CLASS 50). P SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE RAISED AS NECESSARY TO BE FLUSH WITH PROPOSED NS, AND TO BE ONE FOOT ABOVE FINISHED GROUND ELEVATIONS, IN WATERTIGHT LIDS. NCASEMENTS SHALL HAVE A MINIMUM 28 DAY COMPRESSION 5.1. HALL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW LUMBING DRAWINGS FOR TIE-IN OF ALL UTILITIES. PONSIBLE FOR COMPLYING TO THE SPECIFICATIONS OF THE CITY	KHA PROJECT				KAINAGE, AND SCALE AS SHOWN DESIGNED BY MIS	
3. 4. 5. 5. 7. 3. 9. 11. 12. 13.	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15) LINES UNDERGROUND BACKFILLING. TOPS OF MANHOLES S PAVEMENT ELEVATION GREEN AREAS, WITH V ALL CONCRETE FOR EI STRENGTH AT 3000 P.S EXISTING UTILITIES SHI LINES. REFER TO INTERIOR PI CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER C, 200 P.S.I., PER ASTM D1784 AND D2241. TH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST VIESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. D BE KEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" C (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR WAINTAIN A MINIMUM OF 7-5" COVER ON ALL WATERLINES. RTICAL CONFLICT BETWEEN WATER LINES, SANITARY LINES, S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET HE CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE WITH APPROPRIATE FASTENERS AS REQUIRED TO PROVIDE A ICAL SEPARATION. MEETING REQUIREMENTS OF ANSI A21.10 OR 61) (CLASS 50). D SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE RAISED AS NECESSARY TO BE FLUSH WITH PROPOSED VARANT ON DE ONE FOOT ABOVE FINISHED GROUND ELEVATIONS, IN VATERTIGHT LIDS. NCASEMENTS SHALL HAVE A MINIMUM 28 DAY COMPRESSION S.I. HALL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW LUMBING DRAWINGS FOR TIE-IN OF ALL UTILITIES. PONSIBLE FOR COMPLYING TO THE SPECIFICATIONS OF THE CITY R STATE OF WI WITH REGARDS TO MATERIALS AND INSTALLATION EVER LINES.	KHA PROJECT				URAINAGE, ANU SCALE AS SHOWN DESIGNED BY MIS	
 3. 4. 5. 7. 3. 9. 10. 11. 12. 13. 14. 15. 	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15) LINES UNDERGROUND BACKFILLING. TOPS OF MANHOLES S PAVEMENT ELEVATION GREEN AREAS, WITH V ALL CONCRETE FOR EI STRENGTH AT 3000 P.S EXISTING UTILITIES SH LINES. REFER TO INTERIOR PI CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS SOF EXISTING UTILITIES 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER 2, 200 P.S.I., PER ASTM D1784 AND D2241. TH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST VLESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. P BE KEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" E (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR WAINTAIN A MINIMUM OF 7'-5" COVER ON ALL WATERLINES. RTICAL CONFLICT BETWEEN WATER LINES, SANITARY LINES, S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET HE CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE WITH APPROPRIATE FASTENERS AS REQUIRED TO PROVIDE A ICAL SEPARATION. MEETING REQUIREMENTS OF ANSI A21.10 OR 51) (CLASS 50). P SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE RAISED AS NECCESSARY TO BE FLUSH WITH PROPOSED IS, AND TO BE ONE FOOT ABOVE FINISHED GROUND ELEVATIONS, IN WATERTIGHT LIDS. NCASEMENTS SHALL HAVE A MINIMUM 28 DAY COMPRESSION 3.1. ALL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW LUMBING DRAWINGS FOR TIE-IN OF ALL UTILITIES. PONSIBLE FOR COMPLYING TO THE SPECIFICATIONS OF THE CITY R STATE OF WI WITH REGARDS TO MATERIALS AND INSTALLATION EWER LINES. SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATIONS SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION SA S AND ON THESE PLANS IS BASED ON RECORDS OF THE	KHA PROJECT				UKAINAGE, ANU SCALE AS SHOWN DESIGNED BY MIS	
 3. 4. 5. 7. 3. 9. 10. 11. 12. 13. 14. 15. 	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3"P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15) LINES UNDERGROUND BACKFILLING. TOPS OF MANHOLES S PAVEMENT ELEVATION GREEN AREAS, WITH V ALL CONCRETE FOR EI STRENGTH AT 3000 P.S EXISTING UTILITIES SH LINES. REFER TO INTERIOR PI CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SI THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR THE CONTRACTOR IS S OF EXISTING UTILITIES VARIOUS UTILITY COM FIELD. THE INFORMATI 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER 2, 200 P.S.I., PER ASTM D1784 AND D2241. TH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST NUESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. D BE KEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" E (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR WAINTAIN A MINIMUM OF 7'-5" COVER ON ALL WATERLINES. RTICAL CONFLICT BETWEEN WATER LINES, SANITARY LINES, S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET HE CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE WITH APPROPRIATE FASTENERS AS REQUIRED TO PROVIDE A ICAL SEPARATION. MEETING REQUIREMENTS OF ANSI A21.10 OR 51) (CLASS 50). D SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE RAISED AS NECESSARY TO BE FLUSH WITH PROPOSED NS, AND TO BE ONE FOOT ABOVE FINISHED GROUND ELEVATIONS, IN VATERTIGHT LIDS. NCASEMENTS SHALL HAVE A MINIMUM 28 DAY COMPRESSION SJ. HALL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW LUMBING DRAWINGS FOR TIE-IN OF ALL UTILITIES. PONSIBLE FOR COMPLYING TO THE SPECIFICATIONS OF THE CITY R STATE OF WI WITH REGARDS TO MATERIALS AND INSTALLATION EVER LINES. SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION S AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE PANIES, AND WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE ION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE	KHA PROJECT				UKAINAGE, ANU SCALE AS SHOWN DESIGNED BY MIS	
 3. 4. 5. 7. 3. 9. 10. 11. 12. 13. 14. 15. 	 and LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15 LINES UNDERGROUND BACKFILLING. TOPS OF MANHOLES S PAVEMENT ELEVATION GREEN AREAS, WITH V ALL CONCRETE FOR EI STRENGTH AT 3000 P.S EXISTING UTILITIES SH LINES. REFER TO INTERIOR PI CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SIS THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SIS VARIOUS UTILITY COM FIELD. THE INFORMATI CONTRACTOR MUST C BEFORE ANY EXCAVAT 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER 2, 200 P.S.I., PER ASTM D1784 AND D2241. INTH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST NESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. PER KEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" 2 (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR WAINTAIN A MINIMUM OF 7'-5" COVER ON ALL WATERLINES. RTICAL CONFLICT BETWEEN WATER LINES, SANITARY LINES, S S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET 4E CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE WITH APPROPRIATE FASTENERS AS REQUIRED TO PROVIDE A ICAL SEPARATION. MEETING REQUIREMENTS OF ANSI A21.10 OR 51) (CLASS 50). P SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE NASTALLED, INSPECTED AND APPROVED BEFORE SHALL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW LUMBING DRAWINGS FOR TIE-IN OF ALL UTILITIES. PONSIBLE FOR COMPLYING TO THE SPECIFICATIONS OF THE CITY R STATE OF WI WITH REGARDS TO MATERIALS AND INSTALLATION SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATIONS SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATIONS SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION S AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE IPANIES, AND WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE ION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE ALL THE APPROPRIATE THELD LOCATION OF UTILITIES. IT SHALL PAPENDER AND WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE ION TO REQUEST EXACT FIELD LOCATION OF UTILITIES. IT SHALL PAPENDER AND WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE ION TO TO BE RELIED ON AS BEING EXACT OF COMPLETE. THE ALL THE APPROPRIPATE UTILITY COMPANIES AT LEAST 72 HOURS TO NTO REQUEST EXACT FIELD LOCATION OF UTILITIES. IT SHALL	KHA PROJECT				UKAINAGE, ANU SCALE AS SHOWN DESIGNED BY MIS	
 3. 4. 5. 7. 3. 4. 5. 	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3"P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15 LINES UNDERGROUND BACKFILLING. TOPS OF MANHOLES S PAVEMENT ELEVATION GREEN AREAS, WITH V ALL CONCRETE FOR EI STRENGTH AT 3000 P.S EXISTING UTILITIES SH LINES. REFER TO INTERIOR PI CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SS THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SS THE CONTRACTOR IS C SOF EXISTING UTILITIES VARIOUS UTILITY COM FIELD. THE INFORMATI CONTRACTOR MUST C BEFORE ANY EXCAVAT BE THE RESPONSIBILIT WHICH CONFLICT WITH 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CITLE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER 2, 200 P.S.I., PER ASTM D1784 AND D2241. TH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST VLSSS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. PB KEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" E (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR WAINTAIN A MINIMUM OF 7'-5" COVER ON ALL WATERLINES. RTICAL CONFLICT BETWEEN WATER LINES, SANITARY LINES, S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET 4 CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE WITH APPROPRIATE FASTENERS AS REQUIRED TO PROVIDE A CAL SEPARATION. MEETING REQUIREMENTS OF ANSI A21.10 OR 51) (CLASS 50). • SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE RAISED AS NECESSARY TO BE FLUSH WITH PROPOSED NS, AND TO BE ONE FOOT ABOVE FINISHED GROUND ELEVATIONS, IN VATERTIGHT LIDS. NCASEMENTS SHALL HAVE A MINIMUM 28 DAY COMPRESSION S.I. HALL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW LUMBING DRAWINGS FOR TIE-IN OF ALL UTILITIES. SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR FLEVATION S AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE STATE OF WI WITH REGARDS TO MATERIALS AND INSTALLATION EVER LINES. SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION S AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE IPANIES, AND WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE IPANIES, AND WHERE POSSIBLE, MEASUREME	KHA PROJECT				UKAINAGE, ANU SCALE AS SHOWN DESIGNED BY MIS	
 3. 4. 5. 7. 3. 9. 10. 11. 12. 13. 14. 15. 16. 	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15 LINES UNDERGROUND BACKFILLING. TOPS OF MANHOLES S PAVEMENT ELEVATION GREEN AREAS, WITH V ALL CONCRETE FOR EI STRENGTH AT 3000 P.S EXISTING UTILITIES SH LINES. REFER TO INTERIOR PI CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SIS THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SIS THE CONTRACTOR MUST C BEFORE ANY EXCAVAT BE THE RESPONSIBILIT WHICH CONFLICT WITH 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER 2, 200 P.S.I., PER ASTM D1784 AND D2241. TH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST VLSS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. P EKEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" E (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR WAINTAIN A MINIMUM OF 7'-5" COVER ON ALL WATERLINES. RTICAL CONFLICT BETWEEN WATER LINES, SANITARY LINES, S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET 4 C CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE WITH APPROPRIATE FASTENERS AS REQUIRED TO PROVIDE A ICAL SEPARATION. MEETING REQUIREMENTS OF ANSI A21.10 OR 51) (CLASS 50). P SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE RAISED AS NECESSARY TO BE FLUSH WITH PROPOSED MAIN TO BE ONE FOOT ABOVE FINISHED GROUND ELEVATIONS, IN WATERTIGHT LIDS. NCASEMENTS SHALL HAVE A MINIMUM 28 DAY COMPRESSION 5.1. HALL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW LUMBING DRAWINGS FOR TIE-IN OF ALL UTILITIES. SPONSIBLE FOR COMPLYING TO THE SPECIFICATIONS OF THE CITY S ASTATE OF WI WITH REGARDS TO MATERIALS AND INSTALLATION EWER LINES. SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION S AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE ION TO REQUEST EXACT FIELD LOCATION ON THE PLANS. SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION S AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE ION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE ION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE ION TO REQUEST EXACT FIELD LOCATION ON THE PLANS. PONSIBLE FOR ALL NECESSARY INSPECTIONS AND/OR JIRED BY COR ALL NECESSARY INSPECTIONS AND/OR JIRED BY COR ALL NECESSARY INSPECTIONS AND/OR	C D KHA PROJECT				A SCAL AND SCALE AS SHOWN A DESIGNATION OF DESIGNATIONOF DESIGNATIONOF DESIGNATIONOF OF DESIGNAT	
3. 4. 5. 7.	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DVG SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15 LINES UNDERGROUND BACKFILLING. TOPS OF MANHOLES S PAVEMENT ELEVATION GREEN AREAS, WITH V ALL CONCRETE FOR EI STRENGTH AT 3000 P.S EXISTING UTILITIES SH LINES. REFER TO INTERIOR PI CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SIS THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SIS THE CONTRACTOR MUST C BEFORE ANY EXCAVAT BE THE RESPONSIBILITY WHICH CONFLICT WITH CONTRACTOR IS RESP OCRTACTOR IS RESP OR EANY EXCAVATION GREEN AREAS AND THE CONTRACTOR MUST C BEFORE ANY EXCAVATION FIELD. THE INFORMATI CONTRACTOR IS RESP CERTIFICATIONS REQUINANTIONS REQUING 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER 2, 200 P.S.I., PER ASTM D1784 AND D2241. TH SHALL BE 2 FEET. WE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST VLESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. PER EXPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" E (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR WAINTAIN A MINIMUM OF 7-5" COVER ON ALL WATERLINES. RTICAL CONFLICT BETWEEN WATER LINES, SANITARY LINES, S LINES, OR ANY OBSTRUCTION (RISSING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET HE CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE WITH APPROPRIATE FASTENERS AS REQUIRED TO PROVIDE A ICAL SEPARATION. MEETING REQUIREMENTS OF ANSI A21.10 OR 51) (CLASS 50). P SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE RAISED AS NECESSARY TO BE FLUSH WITH PROPOSED IS, AND TO BE ONE FOOT ABOVE FINISHED GROUND ELEVATIONS, IN VATERTIGHT LIDS. NCASEMENTS SHALL HAVE A MINIMUM 28 DAY COMPRESSION 3 HALL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW LUMBING DRAWINGS FOR TIE-IN OF ALL UTILITIES. PONSIBLE FOR COMPLYING TO THE SPECIFICATIONS OF THE CITY AS TATE OF WI WITH REGARDS TO MATERIALS AND INSTALLATION EVER LINES. SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION S AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE IPANIES, AND WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE ION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE ALL THE APPROPRIATE IS IS BASUR ON RECORDS OF THE CITY AS STATE OF WI WITH REGARDS TO MATERIALS AND INSTALLATION EVER LINES. SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION S AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE ION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE ION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE ION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE ION TO REQUEST EXACT FIELD LOCATION OF UTILITIES. T SHALL	KHA PROJECT				TEAL URAINAGE, ANU SCALE AS SHOWN	
3. 4. 5. 7. 6. 7.	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15) LINES UNDERGROUND BACKFILLING. TOPS OF MANHOLES S PAVEMENT ELEVATION GREEN AREAS, WITH V ALL CONCRETE FOR EI STRENGTH AT 3000 P.S EXISTING UTILITIES SH LINES. REFER TO INTERIOR PI CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE RESPONSIBILITIES VARIOUS UTILITY COM FIELD. THE INFORMATI CONTRACTOR IS RESP CERTIFICATIONS REQUINED CONTRACTOR SHALL CONFLICT WITH CONTRACTOR SHALL CONFLICT WITH CONTRACTOR SHALL CONFLICT WITH CONTRACTOR SHALL CONFLICT WITH 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER RAWA C 150 PIPING SHALL BE COPPER TUBE TYPE "K" PER 2, 200 P.S.I., PER ASTM D1784 AND D2241. TH SHALL BE 2 FET. WE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST VIESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. DE KEPT TEN (10) APART (PARALLEL) OR WHEN CROSSING 18" E (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR WAINTAIN A MINIMUM OF 7-5" COVER ON ALL WATERLINES. RTICAL CONFLICT BETWEEN WATER LINES, SANITARY LINES, S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED). THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET 4E CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE WITH APPROPRIATE FASTENERS AS REQUIRED TO PROVIDE A ICAL SEPARATION. MEETING REQUIREMENTS OF ANSI A21.10 OR 51) (CLASS 50). 9 SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE RAISED AS NECESSARY TO BE FLUSH WITH PROPOSED IS, AND TO BE ONE FOOT ABOVE FINISHED GROUND ELEVATIONS, IN VATERTIGHT LIDS. NCASEMENTS SHALL HAVE A MINIMUM 28 DAY COMPRESSION S.I. 44LL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW LUMBING DRAWINGS FOR TIE-IN OF ALL UTILITIES. PONSIBLE FOR COMPLYING TO THE SPECIFICATIONS OF THE CITY 8 STATE OF WI WITH REGARDS TO MATERIALS AND INSTALLATION EVER IINES. SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE IPAMES, AND WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE ION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE ALL THE APPROPRIATE UTILITY COMPANIES AT LEAST 72 HOURS TOON TO REQUEST EXACT FIELD LOCATION OF UTILITIES PONSIBLE FOR ALL NECESSARY INSPECTIONS AND/OR UIRED BY CODES AND/OR UTILITY SERVICE COMPANIES. PONSIBLE FOR ALL NECESSARY INSPECTIONS AND/OR UIRED BY CODES AND/OR UTILITY SERVICE COMPANIES. PONSIBLE FOR ALL NECESSARY INSPECTIONS AND/OR UIRED BY CODES AND/OR UTILITY SERVICE COMPANIES. PONSIBLE FOR ALL NECESSARY INSPE					DREAL URAINAGE, ANU SCALE AS SHOWN DREAL DESIGNED IN D	
3. 4. 5. 7. 3. 10. 11. 12. 13. 14. 15. 16. 17. 18.	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3"P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15) LINES UNDERGROUND BACKFILLING. TOPS OF MANHOLES S PAVEMENT ELEVATION GREEN AREAS, WITH V ALL CONCRETE FOR EI STRENGTH AT 3000 P.S EXISTING UTILITIES SH LINES. REFER TO INTERIOR PI CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE CONTRACTOR IS RESP OF CERTIFICATIONS REQUING CONTRACTOR SHALL CONTRACTOR SHALL FELECTRICAL PLAN. 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER 2, 200 P.S.I., PER ASTM D1784 AND D2241. TH SHALL BE 2 FEET. WE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST VESS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. PE KEPT TEN (10') APART (PARALLEL) OR WHEN CROSSING 18" COUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR WAINTAIN A MINIMUM OF 7'-5" COVER ON ALL WATERLINES. RTICAL CONFLICT BETWEEN WATER LINES, SANITARY LINES, S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED). THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET 4C CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE WITH APPROPRIATE FASTENCETS AS REQUIRED TO PROVIDE A ICAL SEPARATION. MEETING REQUIREMENTS OF ANSI A21.10 OR 51) (CLASS 50). A SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE RAISED AS NECESSARY TO BE FLUSH WITH PROPOSED IS, AND TO BE ONE FOOT ABOVE FINISHED GROUND ELEVATIONS, IN VATERTIGHT LIDS. NCASEMENTS SHALL HAVE A MINIMUM 28 DAY COMPRESSION S.I. MALL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW LUMBING DRAWINGS FOR TIE-IN OF ALL UTILITIES. SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION S AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE EYNALL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF THE CITY R STATE OF WI WITH REGARDS TO MATERIALS AND INSTALLATION SA S SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE INFOLMES. SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION S AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE INFOLMES. SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION S AS SHOWN ON THESE PLANS IS BASED ON TRECORDS OF THE INFOLMES. SPECIFICALLY CAUTIONED THAT THE LOCATION OF MILTITES. SPECIFICALLY CAUTIONED THAT THE LOCATION ON THE PLANS. PONSIBLE FOR ALL NECESSARY INSPECTIONS AND/OR JIRED BY CODES AND/OR UTILITY SERVICE COMPANIES. COORDINATE WITH ALL UTILITY COMPANIES FOR INSTALLATION SPECIFICATIONS. REFERENC					CORPAINAGE, AND SCALE AS SHOWN	
3. 1. 5. 7. 3. 4. 5. 6. 7. 8. 9.	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3"P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15 LINES UNDERGROUND BACKFILLING. TOPS OF MANHOLES S PAVEMENT ELEVATION GREEN AREAS, WITH V ALL CONCRETE FOR E STRENGTH AT 3000 P.S EXISTING UTILITIES SH LINES. REFER TO INTERIOR PI CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE CONTRACTOR IS RESP OF CRIJING UTILITIES VARIOUS UTILITY COM FIELD. THE INFORMATI CONTRACTOR MUST C BEFORE ANY EXCAVAT BE THE RESPONSIBILITY WHICH CONFLICT WITH CONTRACTOR SHALL OR REQUIREMENTS AND SE CONTRACTOR SHALL OR REQUIREMENTS AND SE CONTRACTOR SHALL OR REQUIREMENTS AND SE CONTRACTOR SHALL OR REAL ON DEVICES (INTERIOR OF THE BUILTY 	C C-900 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 IPING SHALL BE COPPER TUBE TYPE "K" PER 3, 200 P.S.I., PER ASTM D1784 AND D2241. ITH SHALL BE 2 FEET. RE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST VIESS STEELO R COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. DE KEPT TEN (10) APART (PARALLEL) OR WHEN CROSSING 18" E (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR WAINTAIN A MINIMUM OF 7-5" COVER ON ALL WATERLINES. RTICAL CONFLICT BETWEEN WATER LINES, SANITARY LINES, S LINES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED). THE BE SCH. 40 OR C000 WITH MECHANICAL JOINTS AT LEAST 10 FEET IE CENTER LINE OF THE CROSSING. THE WATER LINE SHALL HAVE WITH APPROPRIATE FASTENERS AS REQUIRED TO PROVIDE A CAL SEPARATION. MEETING REQUIREMENTS OF ANSI A21.10 OR 51) (CLASS 50). I SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE RAISED AS NECESSARY TO BE FLUSH WITH PROPOSED IS, AND TO BE ONE FOOT ABOVE FINISHED GROUND ELEVATIONS, IN VATERTIGHT LIDS. NCASEMENTS SHALL HAVE A MINIMUM 28 DAY COMPRESSION 31. HALL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW LUMBING DRAWINGS FOR TIE-IN OF ALL UTILITIES. PONSIBLE FOR COMPLYING TO THE SPECIFICATIONS OF THE CITY R STATE OF WI WITH REGARDS TO MATERIALS AND INSTALLATION EVER LINES. SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATIONS AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE IPANES, AND WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE IPANES, AND WHERE POSSIBLE, MEASUREMENTS AT LEAST 72 HOURS TION TO REQUEST EXACT FIELD LOCATION OF UTILITIES. IT SHALL TY OF THE CONTRACTOR TO RELOCATE ALL EXISTING UTILITIES. TO RECUENTACTOR TO RELOCATE ALL EXISTING UTILITIES. TO RECUENTRACTOR TO RELOCATE ALL EXISTING UTILITIES. TO RECUENTRACTOR TO RELOCATE ALL EXISTING UTILITIES. TO AND TO REQUEST EXACT FIELD LOCATION ON THE PLANS. PONSIBLE FOR ALL MECESSARY INSPECTIONS AND/OR JIRED BY CODES AND/OR UTILITY SERVICE COMPANIES. C			STORAGE GRAUING, DATE DATE		IFRCORFAI IFRCORFAI IFRCORFAI	
3. 4. 5. 7. 3. 1. 2. 3. 4. 5. 6. 7. 8. 9. 20.	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3"P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15) LINES UNDERGROUND BACKFILLING. TOPS OF MANHOLES S PAVEMENT ELEVATION GREEN AREAS, WITH V ALL CONCRETE FOR EI STRENGTH AT 3000 P.S EXISTING UTILITIES SH LINES. REFER TO INTERIOR PI CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE THE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SE CONTRACTOR IS RESP OF CERTIFICATIONS REQUINANT OF THE AND SE CONTRACTOR SHALL OR FIELD. THE INFORMATI CONTRACTOR SECONTRACTOR SECONTR	C C-900 PER ASTM D 2241 20UNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE "K" PER 3; 20 P.S.I., PER ASTM D1784 AND D2241. TH SHALL BE 2 FEET. TH SHALL SE 2 FEET. TH SHALL HAVE A MINIMUM 28 DAY COMPRESSION. TH SHALL SE 2 FEET. TH SHALL HAVE A MINIMUM 28 DAY COMPRESSION. TH SHALL SE 2 FEET. TH SHALL HAVE A MINIMUM 28 DAY COMPRESSION. TH SHALL SE 2 FEET. TH SHALL HAVE A MINIMUM 28 DAY COMPRESSION. TH SHALL SE 2 FEET. TH SHALL HAVE A MINIMUM 28 DAY COMPRESSION. TH SHALL SE 2 FEET. TH SHALL HAVE A MINIMUM 28 DAY COMPRESSION. TH SHALL TH SHALL HAVE A MINIMUM 28 DAY COMPRESSION. TH SHALL SE 2 FEET. TH SHALL TH SHA			STORAGE GRAUING, DATE DATE		AMFRED RFAI MFRED	
$\begin{array}{c} 3. \\ 5. \\ 5. \\ 6. \\ 7. \\ 8. \\ 9. \\ 20. \\ 21. \end{array}$	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3" P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15 LINES UNDERGROUND BACKFILLING. TOPS OF MANHOLES S PAVEMENT ELEVATION GREEN AREAS, WITH V ALL CONCRETE FOR EI STRENGTH AT 3000 P.S EXISTING UTILITIES SH LINES. REFER TO INTERIOR PI CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SI SOF EXISTING UTILITIES VARIOUS UTILITY COM FIELD. THE INFORMATI CONTRACTOR MUST C BEFORE ANY EXCAVAT BE THE RESPONSIBILIT WHICH CONFLICT WITH CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SI SOF EXISTING UTILITIES VARIOUS UTILITY COM FIELD. THE INFORMATI CONTRACTOR MUST C BEFORE ANY EXCAVAT BE THE RESPONSIBILIT WHICH CONFLICT WITH CONTRACTOR SHALL O REQUIREMENTS AND SI CONTRACTOR SHALL O REQUIREMENTS AND SI CONTRACTOR SHALL O REQUIREMENTS AND SI CONTRACTOR SHALL O REQUIREMENTS AND SI CONTRACTOR SHALL F ELECTRICAL PLAN. BACKFLOW DEVICES (D INTERIOR OF THE BUIL ALL ONSITE WATERMAN MAINTAINED. ALL WATERMAIN STUB BLOCKING 	C C-900 PER ASTM D 2241 20UNTY ROADS, OTHERWISE CLASS 150 CTILE IRON PIPE PER AWWA C150 IPING SHALL BE COPPER TUBE TYPE 'K' PER 3; 20 P.S.I., PER ASTM D1784 AND D2241. ITH SHALL BE 2 FEET. TH SHALL STATES AND AN INTER SHALL S			STORAGE GRAUING, DATE DATE		AMFRCORFAI MFRCORFAI MERCORFAI	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 AND LARGER, PVG CLASS 200 UNDER C 4" AND LARGER DUG SMALLER THAN 3"P ANSI 816.22 OR PVC MINIMUM TRENCH WID ALL WATER JOINTS AR BLOCKING, WITH STAIN CITY SPECIFICATIONS ALL UTILITIES SHOULD VERTICAL CLEARANCE STRUCTURE). CONTRACTOR SHALL M IN THE EVENT OF A VE STORM LINES AND GAS SANITARY LINE SHALL ON EITHER SIDE OF TH MECHANICAL JOINTS V MINIMUM OF 18" VERTI ANSI 21.11 (AWWA C-15 LINES UNDERGROUND BACKFILLING. TOPS OF MANHOLES S PAVEMENT ELEVATION GREEN AREAS, WITH V ALL CONCRETE FOR EI STRENGTH AT 3000 P.S EXISTING UTILITIES SH LINES. REFER TO INTERIOR PI CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SI SOF EXISTING UTILITIES VARIOUS UTILITY COM FIELD. THE INFORMATI CONTRACTOR MUST C BEFORE ANY EXCAVAT BE THE RESPONSIBILIT WHICH CONFLICT WITH CONTRACTOR IS RESP OF KAUKAUNA AND/OR OF THE WATER AND SI SOF EXISTING UTILITIES VARIOUS UTILITY COM FIELD. THE INFORMATI CONTRACTOR MUST C BEFORE ANY EXCAVAT BE THE RESPONSIBILIT WHICH CONFLICT WITH CONTRACTOR SHALL OR CONTRACTOR SHAL CONTRACTOR SHAL CONTRACTOR	C C-000 PER ASTM D 2241 COUNTY ROADS, OTHERWISE CLASS 150 CITLE IRON PIPE PER AWWA C150 PIPING SHALL BE COPPER TUBE TYPE 'K' PER ; 20 O F.S.I., PER ASTM D1784 AND D2241. TH SHALL BE 2 FEET. WE TO BE MECHANICAL JOINTS WITH RESTRAINTS SUCH AS THRUST (LSS STEEL OR COBALT BLUE BOLTS, OR AS INDICATED IN THE AND PROJECT DOCUMENTS. DE KEPT TEN (10) APART (PARALLEL) OR WHEN CROSSING 18° (OUTSIDE EDGE OF PIPE TO OUTSIDE EDGE OF PIPE OR MAINTAIN A MINIMUM OF 7-5' COVER ON ALL WATERLINES, SILNES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET 4 (CONTELICT BETWEEN WATER LINES, SANITARY LINES, SILNES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET 4 (CONTELICT BETWEEN WATER LINES), SANITARY LINES, SILNES, OR ANY OBSTRUCTION (EXISTING AND PROPOSED), THE BE SCH. 40 OR C900 WITH MECHANICAL JOINTS AT LEAST 10 FEET 4 (CLISTENTION MEETING REQUIREMENTS OF ANSI A21.10 OR 50) (CLASS 50). * SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE INSTALLED, INSPECTED AND APPROVED BEFORE SHALL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW LUMBING DRAWINGS FOR TIE-IN OF ALL UTILITIES. * STATE OF WI WITH REGARDS TO MATERIALS AND INSTALLATIONS, IN * STATE OF WI WITH REGARDS TO MATERIALS AND INSTALLATION SECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATIONS * SA SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE PANES, AND WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE FON IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE ALL THE APPOPRIATE UTILITY COMPANIES AT LEAST 72 HOURS TO NT TO REQUEST EXACT FIELD LOCATION ON THE PLANS. * ONSIBLE FOR ALL NECESSARY INSPECTIONS AND/OR EXALL THE APPORPRIATE UTILITY COMPANIES FOR INSTALLATION SECONTRACTOR NO THELEO PLANS FOR SITE LIGHTING AND * ON SIBLE FOR ALL UTILITY COMPANIES FOR INSTALLATION SECONTRACTOR TO RELOCATE ON SITE LIGHTING AND THE PROPOSES IMMPROVEMENTS SHALL BE PRIVATELY					AMFRCORFAI AMFRCORFAI AMFRCORFAI	

D	ESIGN CRITERIA		SHC	P DRAWINGS / DEFERRED STRU
1.	ALL STRUCTURAL WORK SHALL CONFORM TO THE STRU REQUIREMENTS OF THE 2021 INTERNATIONAL BUILDING	ICTURAL DRAWINGS AND SPECIFICATIONS AND MEET THE CODE AND THE APPLICABLE BUILDING CODE AMENDMENTS. THE	7.	OTHER SUBMITTALS MAY BE RE
	ARCHITECTURAL DRAWINGS SHALL GOVERN ALL DIMENS	SIONS.	8.	TEMPORARY OR PERMANENT S
2	OCCUPANCY CATEGORY:	I		DESIGNED AND DETAILED BY O SUBMITTALS FOR THESE SYSTI
3	ROOF LIVE LOADS:			PROFESSIONAL ENGINEER.
	a. BASIC ROOF LIVE LOAD	5 PSF		
			9.	ALL SIGNED AND SEALED SHOP
4	SNOW LOADS (CANOPY ROOF IS NOT DESIGNED FOR SN OCCURS.):	OW LOADS. THE FABRIC ROOF SHOULD BE REMOVED WHEN SNOW		SHALL BE DONE BY OR UNDER
	a. GROUND SNOW LOAD (Pg)	25 PSF	10.	A QUALIFIED PROFESSIONAL E
	b. FLAT ROOF SNOW LOAD (Pf)	11.9 PSF		PROVIDE ENGINEERING SERVIC
	c. SNOW EXPOSURE FACTOR, Ce	0.9		PROVIDING ENGINEERING SER
	d. SNOW LOAD IMPORTANCE FACTOR, Is	0.8		PERFORMING DESIGN AND DET
	e. THERMAL FACTOR, Ct	1.2		IN ACCORDANCE WITH THE CO AMENDMENTS.
5	WIND LOADS:			
	a. BASIC WIND SPEED (3-SECOND GUST)	105 MPH	FOU	NDATION DESIGN
	b. WIND IMPORTANCE FACTOR, Iw	1.0		
	c. WIND EXPOSURE	"C"	1.	ASSUMED GEOTECHNICAL INFO
	d. COMPONENTS AND CLADDING PRESSURE			a. ALLOWABLE SOIL PRESSU
	 DESIGN BY QUALIFIED DESIGN PROFESSIONAL IN 	ACCORDANCE WITH ASCE 7. SUBMIT LOADS FOR REVIEW	2	
6			Ζ.	
0		10		BY THE CONTRACTOR IN THE F
	b MAPPED SPECTRAL RESPONSE ACCELERATION Se	7.5 %a		BT THE CONTRACTOR IN THET
	c MAPPED SPECTRAL RESPONSE ACCELERATION, S	6 %g	3	ALL FOOTINGS SHALL BEAR ON
	d SITE CLASS (ASSUMED)	D - DEFAULT	0.	DESIGN BEARING PRESSURE N
	e. SPECTRAL RESPONSE COEFFICIENT. SDs	0.096		
	f. SPECTRAL RESPONSE COEFFICIENT, SD1	0.096	4.	ALL SOIL SURROUNDING AND E
	g. SEISMIC DESIGN CATEGORY	В		DURING CONSTRUCTION.
	h. BASIC SEISMIC-FORCE-RESISTING SYSTEM	G2		
	I. DESIGN BASE SHEAR	0.077*W KIPS	5.	CONTRACTOR ASSUMES FULL
	j. SEISMIC RESPONSE COEFFICIENT, Cs	0.077		PROVIDED TO THE ARCHITECT
	k. RESPONSE MODIFICATION FACTOR, R	1.25		
			6.	CONTRACTOR ASSUMES FULL
7	SEE PLANS FOR ADDITIONAL LOADING CRITERIA.			

GENERAL CONDITIONS

THE STRUCTURAL DRAWINGS SHALL BE USED IN CONJUNCTION WITH THE DRAWINGS OF ALL OTHER DISCIPLINES AND SPECIFICATIONS. THE CONTRACTOR SHALL VERIFY THE REQUIREMENTS OF OTHER TRADES AS TO SLEEVES, CHASES, HANGERS, INSERT ANCHORS, HOLES, AND OTHER ITEMS TO BE PLACED OR SET IN THE STRUCTURAL WORK.

- THE CONTRACTOR SHALL BE RESPONSIBLE FOR COMPLYING WITH ALL SAFETY PRECAUTIONS AND REGULATIONS DURING THE WORK. THE ENGINEER WILL NOT ADVISE ON, NOR ISSUE DIRECTION, AS TO SAFETY PRECAUTIONS AND PROGRAMS.
- METHODS, PROCEDURES AND SEQUENCES OF CONSTRUCTION ARE THE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR SHALL TAKE ALL NECESSARY PRECAUTIONS TO MAINTAIN AND INSURE THE INTEGRITY AND STABILITY OF THE STRUCTURE AT ALL STAGES OF CONSTRUCTION. THE STRUCTURE SHOWN ON THE DRAWINGS HAS BEEN DESIGNED FOR STABILITY UNDER THE FINAL CONFIGURATION ONLY.
- THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND CONDITIONS PRIOR TO FABRICATION OF ANY STRUCTURAL COMPONENTS. IMMEDIATELY NOTIFY THE ENGINEER AND/OR ARCHITECT OF ANY DISCREPANCIES FOUND DURING FIELD VERIFICATION. THE CONTRACTOR SHALL NOTIFY THE ENGINEER IN WRITING TO OBTAIN ENGINEER'S CLARIFICATION BEFORE COMMENCING THE WORK.
- CONTRACTOR INITIATED CHANGES SHALL BE SUBMITTED IN WRITING TO THE ENGINEER AND/OR ARCHITECT FOR APPROVAL PRIOR TO FABRICATION OF ANY STRUCTURAL COMPONENTS. ALL CHANGES REQUIRE THE WRITTEN APPROVAL OF THE ENGINEER AND/OR ARCHITECT. UNAUTHORIZED DEVIATIONS ARE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- THE CONTRACTOR SHALL SHORE OR CRIB THE STRUCTURE FOR ALL CONSTRUCTION LOADS WHICH EXCEED THE NOTED DESIGN LOADS. DO NOT APPLY ANY ERECTION OR CONSTRUCTION LOADS UNTIL STRUCTURAL FRAMING IS PROPERLY CONNECTED TOGETHER AND UNTIL ALL TEMPORARY BRACING IS IN PLACE.
- ALL STRUCTURAL WORK THAT IS COMPOSED OF COMPONENTS DESIGNED BY OTHERS SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS AND INSTRUCTIONS AND SUPERVISED BY THE MANUFACTURER'S REPRESENTATIVE(S) DURING THE MANUFACTURING, DELIVERY, HANDLING, STORAGE, AND ERECTION AS REQUIRED.
- 8. DRAWINGS INDICATE GENERAL AND TYPICAL DETAILS OF CONSTRUCTION. WHERE CONDITIONS ARE NOT SPECIFICALLY SHOWN, SIMILAR DETAILS OF CONSTRUCTION SHALL BE USED, SUBJECT TO APPROVAL BY THE ENGINEER.
- 9. ALL ASTM AND OTHER REFERENCES ARE PER THE LATEST EDITIONS OF THOSE STANDARDS, UNLESS OTHERWISE NOTED.
- 10. COORDINATE ALL CONSTRUCTION ACCESS AND OPERATIONS FOR ALL WORK THAT OCCURS ADJACENT TO AN EXISTING STRUCTURE AS NECESSARY TO AVOID DISRUPTION TO SAID STRUCTURE.
- 11. ALL STRUCTURAL CONSTRUCTION DOCUMENTS (DRAWINGS, DETAILS, CALCULATIONS, AND ALL OTHER STRUCTURAL INFORMATION) PROVIDED ARE THE PROPERTY OF U-HAUL INTERNATIONAL / AMERCO REAL ESTATE (U-HAUL) AND ARE FOR USE ON THIS PROJECT ONLY. ANY OTHER USE OF THE STRUCTURAL CONSTRUCTION DOCUMENTS IS STRICTLY PROHIBITED WITHOUT THE WRITTEN PREMISSION OF U-HAUL.
- 12. THE SCOPE OF SERVICES CARRIED OUT BY U-HAUL DOES NOT INCLUDE A FIELD REVIEW DURING CONSTRUCTION UNLESS OTHERWISE AGREED UPON IN WRITING. THE CONSTRUCTION DOCUMENTS ARE ISSUED WITH THE UNDERSTANDING THAT THE CONTRACTOR IS SOLELY RESPONSIBILITY FOR VERIFING ALL WORK IS CARRIED OUT IN ACCORDANCE WITH THE CONSTRUCTION DOCUMENTS AND THAT ANY DISCREPANCIES OR OMISSIONS WILL BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE ARCHITECT AND ENGINEER.
- 13. IF DRAWINGS AND CALCULATIONS ARE PROVIDED ELECTRONICALLY; COPIES OF THE ORIGINAL CONSTRUCTION DOCUMENTS AS DESIGNED BY U-HAUL HAVE BEEN RETAINED BY U-HAUL. U-HAUL IS NOT RESPONSIBILITY FOR ANY SUBSEQUENT CHANGES TO THE REPRODUCIBLE ORIGINAL CONSTRUCTION DOCUMENTS (I.E. DOCUMENTS PROVIDED ELECTRONICALLY) WHICH ARE NOT MADE OR OTHERWISE COMMUNICATED IN WRITING BY U-HAUL.

SHOP DRAWINGS / DEFERRED STRUCTURAL SUBMITTALS

- 1. THE CONTRACTOR SHALL SUBMIT A MINIMUM OF THREE COPIES OF THE FOLLOWING SHOP DRAWINGS (MAXIMUM SCALE 1/8: = 1'-0") TO THE ARCHITECT/ENGINEER PRIOR TO THE FABRICATION OF ANY STRUCTURAL COMPONENTS (ONE COPY TO BE RETAINED BY THE ARCHITECT AND ENGINEER). AS A MINIMUM, ALL SHOP DRAWING SUBMITTALS SHOULD INCLUDE PLANS, ELEVATIONS, SECTIONS, DETAILS OF INSTALLATION AND CONNECTIONS, AND MATERIAL SPECIFICATIONS, UNLESS OTHERWISE NOTED.
- 2. SHOP DRAWINGS AND OTHER ITEMS SHALL BE SUBMITTED TO THE ARCHITECT/ENGINEER FOR REVIEW PRIOR TO FABRICATION. BEFORE BEING SUBMITTED FOR REVIEW, ALL SHOP DRAWINGS SHALL BE CHECKED BY THE FABRICATOR AND BEAR THE CHECKER'S INITIALS AND SHALL BE REVIEWED BY THE CONTRACTOR FOR COMPLIANCE WITH THE CONTRACT DOCUMENTS AND HAVE AN APPROVAL STAMP PLACED ON EACH SHOP DRAWING INDICATING SUCH. ANY SHOP DRAWING NOT CHECKED OR REVIEWED BY THE FABRICATOR AND CONTRACTOR PRIOR TO BEING SUBMITTED TO THE ARCHITECT/ENGINEER FOR REVIEW MAY BE REJECTED AND RETURNED WITHOUT REVIEW.
- 3. IN NO CASE SHALL REPRODUCTION OF THE CONTRACT DRAWINGS BE USED AS SHOP DRAWINGS.
- 4. DESIGN AND DETAILING SHALL BE PERFORMED USING RATIONAL ENGINEERING DESIGN PRACTICES AND BE BASED ON STANDARD PRACTICES IN ACCORDANCE WITH CONSTRUCTION DOCUMENTS AND THE BUILDING CODE AND ALL APPLICABLE BUILDING CODE AMENDMENTS.
- THE ENGINEER'S REVIEW IS TO VERIFY CONFORMANCE WITH DESIGN CONCEPT AND GENERAL COMPLIANCE WITH THE PERTINENT CONTRACT DOCUMENTS. THE ENGINEER'S REVIEW DOES NOT RELIEVE THE CONTRACTOR OF THE RESPONSIBILITY TO REVIEW. CHECK, AND COORDINATE THE SHOP DRAWINGS PRIOR TO SUBMISSION, THE CONTRACTOR REMAINS SOLELY RESPONSIBLE FOR ERRORS AND OMISSIONS ASSOCIATED WITH THE SHOP DRAWINGS AS THEY PERTAIN TO MEMBER SIZES, DETAILS, DIMENSIONS, ETC.

6. AS A MINIMUM, SUBMIT THE FOLLOWING ITEMS FOR REVIEW:

- a. REINFORCING STEEL IN REINFORCED CONCRETE AND MASONRY CONSTRUCTION INCLUDE DETAILS OF ALL BENT BARS, VERTICAL REINFORCING AND HORIZONTAL BOND BEAM REINFORCING. INCLUDE PLANS AND ELEVATIONS AS REQUIRED TO CLEARLY SHOW ALL REINFORCING.
- . ALL CONCRETE CONSTRUCTION SUBMIT A CONCRETE MIX DESIGN FOR EACH CONCRETE STRENGTH. AS A MINIMUM, EACH DESIGN SHALL INCLUDE PROPORTIONS OF CEMENT, FINE AND COURSE AGGREGATES, AND WATER, GRADATION OF COMBINED AGGREGATES, AND CONCRETE COMPRESSIVE TEST RESULTS. CERTIFICATION SHALL BE FROM AN ACCEPTABLE TESTING LABORATORY.
- c. STRUCTURAL STEEL IF STEEL CANOPY IS NOT PROVIDED BY U-HAUL, SUBMIT SHOP DRAWINGS AND CALCULATIONS SIGNED AND SEALED (CALCULATIONS ONLY) BY A QUALIFIED PROFESSIONAL ENGINEER, CALCULATIONS SHALL INCLUDE AS A MINIMUM, ALL LOADS, STRESSES, AND DEFLECTIONS ASSOCIATED WITH EACH MEMBER AND/OR CONNECTION.

JCTURAL SUBMITTALS (con't)

- ORMATION
- NOTED HEREIN.
- AND/OR ENGINEER.
- RESPONSIBILITY FOR ONSITE SOIL CONDITIONS.
- 7. THE CONTRACTOR SHOULD EMPLOY A PROFESSIONAL GEOTECHNICAL ENGINEER TO INSPECT THE FOUNDATIONS AND BEARING LEVELS AND VERIFY THAT THE MATERIAL ON WHICH THE FOUNDATIONS WILL BEAR HAS AT LEAST THE ABOVE NOTED CAPACITY AND GIVE RECOMMENDATIONS FOR SUBGRADE PREPARATION. STRICTLY FOLLOW GEOTECHNICAL ENGINEER'S RECOMMENDATIONS FOR SUBBASE AND FOOTING BEARING MATERIAL AND PREPARATION AS REQUIRED.
- 8. IMMEDIATELY NOTIFY THE ENGINEER AND/OR ARCHITECT IF UNSUITABLE SOIL OR SOIL CONDITIONS AT VARIANCE WITH THE GEOTECHNICAL REPORT IS DISCOVERED AT THE FOOTING ELEVATIONS SPECIFIED.
- 9. THE EXISTENCE OF UNDERGROUND STRUCTURES AND/OR UTILITIES IS NOT KNOWN. IT IS THE CONTRACTOR'S RESPONSIBILITY TO COORDINATE WITH THE OWNER OR NECESSARY AUTHORITIES THE LOCATIONS OF ALL EXISTING UNDERGROUND STRUCTURES AND/OR UTILITIES.
- 10. WHERE FOOTINGS ARE IN CLOSE PROXIMITY OF SEWERS, DRAINS, CONDUITS, PIPES, ETC., THE BOTTOM OF FOOTING SHALL BE SET AT OR BELOW THE INVERT ELEVATION OF THE ADJACENT ELEMENT.

CAST-IN-PLACE CONCRETE

- 1. ALL REINFORCED CONCRETE WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE BUILDING CODE AND APPLICABLE AMENDMENTS AND THE "BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE" (ACI 318) OF THE AMERICAN CONCRETE INSTITUTE.
- 2. ALL REINFORCED CONCRETE MIX DESIGNS SHALL BE PERFORMED IN ACCORDANCE WITH THE BUILDING CODE AND APPLICABLE AMENDMENTS AND THE "SPECIFICATIONS FOR STRUCTURAL CONCRETE" (ACI 301) OF THE AMERICAN CONCRETE INSTITUTE.
- ALL REINFORCING STEEL FABRICATION AND PLACEMENT SHALL BE PERFORMED IN ACCORDANCE WITH THE BUILDING CODE AND APPLICABLE AMENDMENTS AND THE "MANUAL OF STANDARD PRACTICE" (CRSI MSP-1) OF THE CONCRETE REINFORCING STEEL INSTITUTE AND THE "SPECIFICATIONS FOR STRUCTURAL CONCRETE FOR BUILDINGS" (ACI 301) AND "DETAILS AND DETAILING OF CONCRETE REINFORCEMENT" (ACI 315) OF THE AMERICAN CONCRETE INSTITUTE.
- 4. ALL CONCRETE SHALL BE NORMAL WEIGHT CONCRETE (144 PCF+) CONFORMING TO ASTM C94 WITH ALL CEMENT CONFORMING TO ASTM C150, TYPE I OR II. MAXIMUM AGGREGATE SIZE SHALL BE 1-1/2" FOR FOOTINGS AND 3/4" FOR WALLS AND SLABS, CONFORMING TO ASTM C33.
- ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (fc) AT 28 DAYS, SLUMP AND MAXIMUM WATER/CEMENT RATIO REQUIREMENTS: b. ALL CONCRETE 4500 PS
- 6. OBTAIN EACH TYPE OF CEMENT OF THE SAME BRAND FROM THE SAME MANUFACTURER'S PLANT, EACH AGGREGATE FROM ONE SOURCE, AND EACH ADMIXTURE FROM THE SAME MANUFACTURER.
- 7. ALL CONCRETE EXPOSED TO WEATHER SHALL HAVE ENTRAINED AIR IN ACCORDANCE WITH SECTION 1904 OF THE IBC.
- 8. FOR AIR ENTRAINED CONCRETE MAXIMUM W/C RATIO = .44
- 9. ALL GROUT SHALL BE NONMETALLIC SHRINKAGE-RESISTANT GROUT PROVIDED BY A MANUFACTURER APPROVED IN WRITING BY THE STRUCTURAL ENGINEER AND INSTALLED AND MIXED PER THE MANUFACTURER'S RECOMMENDATIONS AND INSTRUCTIONS. ALL GROUT SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (fc) AT 28 DAYS EQUAL TO 5000 PSI.
- 10. REINFORCEMENT: a. DEFORMED BARS
- b. GALVANIZED REINFORCEMENT 11. REINFORCING STEEL SHALL HAVE THE FOLLOWING MINIMUM CLEAR CONCRETE COVER UNLESS OTHERWISE NOTED:
- a. CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3" b. CONCRETE SURFACES IN CONTACT WITH SOIL OR EXPOSED TO EARTH OR WEATHER (#6 BARS OR LARGER) (#5 BARS OR SMALLER)
- c. COLUMN TIES OR SPIRALS AND BEAM STIRRUPS d. CONCRETE SURFACES NOT IN CONTACT WITH SOIL OR EXPOSED TO WEATHER INCLUDING WALLS AND TOP AND BOTTOM OF SLABS
- 12. WELDING OF REINFORCING BARS IS PROHIBITED WITHOUT PRIOR WRITTEN APPROVAL FROM THE ENGINEER. IF WELDING OF REINFORCING IS NECESSARY, IT SHALL BE PERFORMED IN ACCORDANCE WITH AWS D1.4. REINFORCING STEEL FOR WELDED ASSEMBLIES SHALL CONFORM TO ASTM A706 SPECIFICATIONS.
- 13. SPLICED BARS SHALL HAVE A MINIMUM LAP OF CLASS B TENSION LAP SPLICE PER TYPICAL DETAILS.
- 14. GALVANIZED REINFORCING SHALL BE TREATED TO PREVENT REDUCTION OF BOND. OTHERWISE PROVIDE SPLICE LENGTHES EQUIVILANT TO EPOXY COATED REINFORCING.
- 15. ALL REINFORCING STEEL INDICATED AS BEING CONTINUOUS (CONT.) ON THE PLANS AND DETAILS SHALL BE LAPPED WITH A CLASS B SPLICE OR 36 x BAR DIAMETER (WHICHEVER IS GREATER) UNLESS OTHERWISE NOTED.
- 16. REINFORCING BARS TO EXTEND 12 BAR DIAMETERS BUT NOT LESS THAN 12" BEYOND BAR BENDS, UNLESS OTHERWISE NOTED.
- 17. PROVIDE ADDITIONAL BARS AS SHOWN IN TYPICAL DETAILS.
- 18. ALL REINFORCING STEEL SHALL BE SET AND TIED IN PLACE PRIOR TO POURING OF CONCRETE. NO BARS PARTIALLY EMBEDDED IN HARDENED CONCRETE SHALL BE FIELD BENT UNLESS SPECIFICALLY SO DETAILED OR APPROVED BY THE ENGINEER IN WRITING.
- 19. PROVIDE CORROSION RESISTANT ACCESSORIES SUCH AS PLASTIC COATED (NOT PLASTIC TIPPED) OR STAINLESS STEEL CHAIRS IN ALL EXPOSED CONCRETE CONSTRUCTION. PRECAST CONCRETE CHAIRS OR SAND PLATE CHAIRS SHALL BE USED FOR THE SUPPORT OF REINFORCING ON GRADE. CONCRETE BLOCK OR CLAY MASONRY BRICK ARE NOT PERMITTED.
- 20. ALL EXPOSED CORNERS OF CONCRETE TO HAVE 3/4" MINIMUM CHAMFER UNLESS OTHERWISE NOTED.
- 21. CONCRETE SHALL BE DISCHARGED AT THE SITE WITHIN 1-1/2 HOURS AFTER WATER HAS BEEN ADDED TO THE CEMENT AND AGGREGATE. ADDITION OF WATER TO THE MIX AT THE PROJECT SITE IS STRICTLY PROHIBITED. ALL WATER MUST BE ADDED AT THE BATCH PLANT ONLY.
- 22. THE CONTRACTOR SHALL COORDINATE THE LOCATION OF ALL CONCRETE OPENINGS AND/OR PENETRATIONS REQUIRED FOR OTHER TRADES PRIOR TO PLACING CONCRETE.
- 23. SEE ARCHITECTURAL, MECHANICAL, ELECTRICAL, AND PLUMBING DRAWINGS FOR REGLETS, PIPE SLEEVES, CONDUITS OR OTHER ITEMS TO BE EMBEDDED OR PASSED THROUGH CONCRETE.

EQUIRED PER THE SPECIFICATIONS OR THE SEPARATE NOTES CONTAINED HEREIN.

SYSTEMS OR FRAMING MEMBERS THAT ARE NOT SPECIFICALLY DESIGNED, DETAILED, OR DOCUMENTS BUT ARE REQUIRED TO COMPLETE THE FINISHED STRUCTURE, SHALL BE OR UNDER THE DIRECTION OF A QUALIFIED PROFESSIONAL ENGINEER. ALL REQUESTED EMS OR FRAMING MEMBERS SHALL BE SIGNED AND SEALED BY SAID QUALIFIED

P DRAWINGS AND/OR CALCULATIONS THAT ARE REQUIRED TO BE SUBMITTED FOR REVIEW THE DIRECTION OF A QUALIFIED PROFESSIONAL ENGINEER.

ENGINEER IS A PROFESSIONAL ENGINEER WHO IS LEGALLY REGISTERED AND LICENSED TO ICES IN THE JURISDICTION IN WHICH THE PROJECT IS LOCATED AND WHO IS EXPERIENCED IN VICES RELATED TO THE WORK SUBMITTED. SAID ENGINEER SHALL BE CAPABLE OF TAILING USING RATIONAL ENGINEERING DESIGN PRACTICES BASED ON STANDARD PRACTICES INTRACT DOCUMENTS, THE BUILDING CODE, AND ALL APPLICABLE BUILDING CODE

1.500 PSF

AST 42" BELOW LOWEST ADJACENT FINISHED GRADE. FOOTING DEPTHS/ELEVATIONS SHOWN IUM AND FOR GUIDANCE ONLY; THE ACTUAL ELEVATIONS OF FOOTINGS MUST BE ESTABLISHED

I UNDISTURBED, FIRM NATURAL SOIL OR COMPACTED FILL CAPABLE OF SUPPORTING THE

BENEATH ALL FOOTINGS, SLABS, ETC. SHALL BE PROTECTED AGAINST FROST OR FREEZING

RESPONSIBILITY FOR FOUNDATION DESIGN WHEN A GEOTECHNICAL REPORT IS NOT

2" - 4" SLUMP* W/C RATIO = .58

ASTM A615, GRADE 60 ASTM A767, CLASS II

1-1/2" 1-1/2"

CONCRETE/MASONRY ANCHORS

- 1. EXPANSION BOLTS INTO CONCRETE AND CONCRETE MASONRY UNITS SHALL BE KWIK BOLT TZ (ICC ESR-1917) AS MANUFACTURED BY THE HILTI CORP. OR AN APPROVED EQUIVALENT IN STRENGTH AND EMBEDMENT.
- 2. ADHESIVE ANCHORS SHALL BE HIT-RE 500-SD (ICC ESR-2322) INTO CONCRETE AND HIT HY 150 MAX (ESR-1967) INTO MASONRY AS MANUFACTURED BY THE HILTI CORP. OR AN APPROVED EQUIVALENT IN STRENGTH AND EMBEDMENT
- 3. ALL ANCHORS SHALL BE INSTALLED WITH STEEL WASHERS.
- 4. WHEN USING ADHESIVE ANCHORING SYSTEMS THE MANUFACTURER SHALL SUPPLY THE ANCHOR AND ADHESIVE, UNLESS OTHERWISE NOTED.
- 5. ALL ALTERNATE PRODUCTS SHALL HAVE A CURRENT ICC EVALUATION REPORT.
- 6. ANCHORS INSTALLED INTO MASONRY UNITS SHALL BE INTO FULLY GROUTED CELLS UNLESS OTHERWISE NOTED. IF GROUTED CELLS ARE NOT ENCOUNTERED, BREAK INTO CELL AND GROUT SOLID 8".
- 7. ALL ANCHORS SHALL BE APPROVED FOR USE WITH CRACKED CONCRETE AND CONFORM TO CURRENT ICC ES REPORT (ICC-ES AC193 FOR MECHANICAL ANCHORS AND ICC-ES AC308 FOR ADHESIVE ANCHORS).
- 8. INSTALL ALL ANCHORS IN STRICT ACCORDANCE WITH ALL APPLICABLE ICC-ES AND BUILDING CODE REQUIREMENTS. ALL ANCHOR SPACING, EMBEDMENT, EDGE DISTANCE, AND INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER RECOMMENDATIONS. REFER TO SECTIONS AND DETAILS ON THE DRAWINGS FOR ADDITIONAL INFORMATION.
- 9. ALL PERSONNEL INSTALLING MECHANICAL/ADHESIVE ANCHORS SHALL BE TRAINED BY THE PRODUCT MANUFACTURER ON PROPER INSTALLATION TECHNIQUES. TRAINING DOCUMENTATION FROM THE MANUFACTURER SHALL BE AVAILABLE UPON REQUEST.

STRUCTURAL STEEL

- 1. ALL STRUCTURAL STEEL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE BUILDING CODE AND APPLICABLE AMENDMENTS AND WITH THE "SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS" (1989 EDITION) OF THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION.
- 2. ALL STRUCTURAL STEEL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE BUILDING CODE AND APPLICABLE AMENDMENTS AND WITH THE 13TH EDITION OF THE "STEEL CONSTRUCTION MANUAL" OF THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION.

ASTM A36

ASTM A123

GRADE OF STEEL

e. ANCHOR RODS

f. THREADED ROD

- a. OTHER SHAPES, PLATE, AND BARS b. HOLLOW STRUCTURAL SHAPES (HSS)
- c. STEEL PIPE d. GALVANIZED STRUCTURAL STEEL
- STRUCTURAL SHAPES AND RODS BOLTS, FASTENERS AND HARDWARE

ASTM A153 ASTM F1554, GR. 36 ASTM A36

ASTM A500, GRADE B

ASTM A53 TYPE E, GR. B

- 4. ALL FIELD CONNECTIONS SHALL USE BOLTS, UNLESS OTHERWISE NOTED. ALL SHOP AND FIELD INSTALLED BOLTS SHALL BE 3/4" DIA ASTM A325 TYPE N BOLTS IN STANDARD HOLES, AND SNUG TIGHT, UNLESS OTHERWISE NOTED. ALL BOLTED CONNECTIONS SHALL HAVE 2 BOLTS MINIMUM, UNLESS OTHERWISE NOTED.
- 5. HARDENED WASHERS CONFORMING TO ASTM F436 SHALL BE USED AT A325 BOLTS AND A490 BOLTS USED IN FRICTION CONNECTION AND OVERSIZED AND SHORT SLOTTED HOLES. 5/16" THICK PLATE WASHERS OF STRUCTURAL GRADE MATERIAL SHALL BE USED AT LONG SLOTTED HOLES. WASHERS SHALL HAVE A SIZE SUFFICIENT TO COMPLETELY COVER THE SLOT AFTER INSTALLATION.
- 6. ALL MODIFICATIONS REQUIRED FOR OTHER TRADES SHALL BE SHOWN ON THE SHOP DRAWINGS, AND MADE DURING SHOP FABRICATION. FIELD BURNING OF STRUCTURAL STEEL IS PROHIBITED.
- 7. ALL WELDING SHALL BE IN ACCORDANCE WITH AWS D1.1 "STRUCTURAL WELDING CODE-STEEL". WELDING FILLER METAL SHALL BE AWS A5.1 OR A5.5 E70XX LOW HYDROGEN ELECTRODES. WELDERS SHALL BE AWS CERTIFIED. SUBMIT COPY OF ALL CERTIFICATIONS TO THE ENGINEER. SURFACES TO BE WELDED SHALL BE WIRE BRUSHED CLEAN BEFORE WELDING.
- 8. ALL EXTERIOR METAL FABRICATIONS EXPOSED TO WEATHER SHALL BE GALVANIZED, UNLESS OTHERWISE NOTED.

SPECIAL STRUCTURAL INSPECTIONS

- 1. THE OWNER WILL HIRE AN INSPECTION AGENCY OR RETAIN THE ENGINEER OF RECORD TO PERFORM ALL REQUIRED SPECIAL INSPECTIONS AND TEST.
- 2. SPECIAL STRUCTURAL INSPECTIONS SHALL BE CONDUCTED AND DOCUMENTED AS PER CHAPTER 17 OF THE IBC AND ALL APPLICABLE AMENDMENTS FOR THE FOLLOWING ITEMS OR AS REQUIRED BY THE BUILDING OFFICIAL:
- a. STEEL CONSTRUCTION
- STEEL CONSTRUCTION MINIMUM SPECIAL INSPECTION: GENERAL CONFORMANCE AND BOLTS ONLY; ALL WELDING TO BE PRE-QUALIFIED SHOP WELDS WHERE POSSIBLE. PERFORMED IN A SHOP AND BY A WELDER THAT IS AWS CERTIFIED. ALL STEEL FABRICATORS THAT ARE NOT PRE-APPROVED BY THE BUILDING OFFICIAL SHALL BE INSPECTED IN ACCORDANCE WITH SECTION 1704.2 OF THE IBC.
- b. CONCRETE CONSTRUCTION ANCHOR BOLTS IN PRE-DRILLED HOLES IN CONCRETE OR IN MASONRY
- d. SITE SOIL CONDITIONS (AS REQUIRED; SEE FOUNDATION DESIGN NOTES)
- 3. ALL SPECIAL INSPECTIONS SHALL BE CONDUCTED BY A QUALIFIED SPECIAL INSPECTOR AS DETERMINED BY THE BUILDING OFFICIAL AND/OR PERFORMED UNDER THE SUPERVISION OF THE ENGINEER OF RECORD.
- 4. A STATEMENT OF SPECIAL STRUCTURAL INSPECTION IN ACCORDANCE WITH SECTION 1705 OF THE IBC SHALL BE SUBMITTED TO THE BUILDING OFFICIAL PRIOR TO BEGINNING OF ANY SPECIAL STRUCTURAL INSPECTIONS BY THE SPECIAL INSPECTOR.
- 5. SPECIAL STRUCTURAL INSPECTION REPORTS SHALL BE FURNISHED TO THE BUILDING OFFICIAL AND THE ENGINEER OF RECORD IN ACCORDANCE WITH SECTION 1704 OF THE IBC.

ltom 3 a
nem s.a.

I hereby certify that this engineering document was

My license renewal date is December 31, 2024.

my direct personal supervision and that I am a duly licensed

11/21/2023

prepared by me or under

Professional Engineer

License number #P25413

ma

John Brittan Elder

ignature)

SFAL

JOHN

BRITTAN

ELDER

P25413

under the laws of the State of Iowa.

Pages or sheets covered by this seal:

I hereby certify that this engineering document was prepared by me or under my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the State of Iowa. <u>11/21/2023</u> (signature) (date) SEAL John Brittan Elder License number #P25413 My license renewal date is December 31, 2024. Pages or sheets covered by this seal:

					SHE	ET NO	OTES	S:	
REIN STAN BAR SIZE #3 #4 #5 #6 #77 #8 #9 #10 #11 #14 #18 TABLE 1. DE CA (12 2.1 2. DE INC CC	FORCING DEVELOPMENT LENGTH OF IDARD HOOKS TABLE-TYPICAL U.N.O. CONCRETE MASONRY ALL ALL 9 5 11 6 14 8 17 9 20 10 22 12 25 - 28 - 31 - - - - - NOTES: VELOPMENT LENGTHS ARE LCULATED PER ACI 318-05, 12.2.3, EQ. -1) FOR CONCRETE AND ACI 530-05, .10.5.1 FOR MASONRY. VELOPMENT LENGTH SHALL BE CREASED BY 30% FOR LIGHTWEIGHT NOCRETE.								
4 REINF. DVLF	PMNT STANDAR	D HOOKS TAB	LE SCALE:						
RECOMMEND D=FINISHED I BAR D(in #3 21/4 #4 3 #5 33/4 #6 41/2 #7 51/4 #8 6 #9 9 #10 101/ #11 11 11 #14 17 #18 223/ SEISMIC STIF (BMARGRADES SIZES D(in #3 11/2 #4 2 #5 21/2 #6 41/2 #5 21/2 #6 41/2 #7 51/4 #8 6	PED END HOOKS (ALL GRADES) BEND DIAMETER 180° HOOKS 90° HOOKS 5 3 6 6 4 8 7 5 10 8 6 1-0 10 7 1-2 11 8 1-4 1-3 11 3/4 1-7 4 1-5 1-0 3/4 1-10 4 1-7 1-2 3/4 2-0 2-3 1-8 1/2 2-7 4 3-0 2-3 3/4 3-5 8 0 2-3 3/4 3-5 9 135° HOOKS 90° HOOKS 0) 135° HOOKS 90° HOOKS 11/2 3 3/4 6 8 4 1/2 8 9 5 1/2 3 3/4 6 8 4 1/2 8 4 1/2 8 9 5 1/4 9 10 1/2 6 10 2 SIZES RECOMMENDED BY CRSI 10 10 1/2 10 11 <t< th=""><th>DETAILING DIMENSION HA 4d, 2 1/2 MIN. <u>180°</u> <u>180°</u> <u>180°</u> <u>180°</u> <u>135°</u> <u>4d, 2 1/2 MIN.</u> <u>180°</u> <u>135°</u> <u>4d, 2 1/2 MIN.</u> <u>180°</u></th><th></th><th>TE INTIALS NOTES</th><th></th><th></th><th></th><th></th><th></th></t<>	DETAILING DIMENSION HA 4d, 2 1/2 MIN. <u>180°</u> <u>180°</u> <u>180°</u> <u>180°</u> <u>135°</u> <u>4d, 2 1/2 MIN.</u> <u>180°</u> <u>135°</u> <u>4d, 2 1/2 MIN.</u> <u>180°</u>		TE INTIALS NOTES					
3 REINEORCIN	IG STANDARD I		SCALE:	DA1					
					ARCH	TECT	LOC		
						ΞF	7(D.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	 Detail Notes: 1. TABULATED VALUES ARE BAUCONC. 2. TENSION LAP-SPLICE LENGT VALUES FOR BEAMS OR COL CONCRETE COVER MEETING 3. CASES 1 AND 2, WHICH DEPE COVER, AND CENTER-TO-CE BEAM OR COLUMNS: CASE 1 - COVER AT LE CASE 2 - COVER LESS db. ALL OTHERS: CASE 1 - COVER AT LE CASE 2 - COVER LESS db. 4. ACI 318 DOES NOT ALLOW LA THOSE BAR SIZES ARE THE T 5. TOP BARS ARE HORIZ. BARS 6. FOR GRADE 40 REINFORCING FOR LIGHT WEIGHT CONC., M 	SED ON GRADE 60 REINFORCING BARS HS ARE CALCULATED PER ACI 318, SEC UMNS ARE BASED ON TRANSVERSE RE MIN. CODE REQUIREMENTS. END ON THE TYPE OF STRUCTURAL ELE NTER SPACING OF THE BARS ARE DEFIN EAST 1.0 db AND CENTER-TO-CENTER S THAN 1.0 db OR CENTER-TO-CENTER S	AND NORMAL WEIGHT TIONS 12.15. TABULATED INFORCEMENT AND MENT, CONCRETE NED AS: PACING AT LEAST 2.0 db PACING LESS THAN 2.0 PACING AT LEAST 3.0db. SPACING LESS THAN 3.0 TABULATED VALUES FOR E CAST BELOW THE BARS. BY 0.67 (12" LAP MIN.).	MERCO REAL ESTATE COMPANY	NSTRUC 7 NORTH- HOENIX, PH: (60 SITE Haul Ma Of 1600 Iowa Ci SHEET Struct Fa Shac O Shac	ADDI ADDI DVing Iowa I Hwy DVing Iowa I Hwy I Y IA CON Ural I or Ste de Ca GM	DEPA TRAL NA 33-6 RESS & St City 1 W 52 ITEN Deta sel anop	xTME RTME 8502 S: coraç 240 TS: ails Dy 7	
REINFORCING	BARS		SCALE: NO SCALE	CHE 2023 A	CKED: E: 11/13 93	DG /2023 2073) 	J .	10

Item 3.a.

PROPANE

Safety Specifications & Equipment

U-Haul[®] Moving and Storage of Moline 5000 Avenue of the Cities • Moline IL, 61265

Item 3.a.

Item 3.a.

Propane Tank Composite Rendering

> 15 ©2024 ALL RIGHTS RESERVED 2023

Propane Tank Composite Rendering

EMERGENCY RELIEF

IN THE WAKE OF A HURRICANE

Item 3.a.

Storm Prep Reminder: Check Propane before Nate Arrives

PHOENIX, Ariz. (Oct. 6, 2017) — U-Haul International and its many propane suppliers are reminding people to fill their propane generators and additional propane cylinders prior to the onset of major storms during the ongoing hurricane season.

Tropical Storm Nate has already been blamed for multiple fatalities in Central America, and the storm is expected to gain strength and become a hurricane as it heads north through the Gulf of Mexico toward the U.S. Officials in Louisiana have declared a state of emergency and ordered some evacuations in coastal areas.

U-Haul, the largest retailer of propane in U.S., has kept a constantly stocked supply of propane at its full-service facilities before and after Hurricanes Harvey and Irma brought massive flooding to Texas, Florida and other regions in and around the Gulf Coast. Propane is again well stocked in anticipation of Nate's arrival.

Find U-Haul propane locations at https://www.uhaul.com/Propane/.

"It's important for people to consider their propane supply in preparing for Nate and other major storms that approach the U.S.," said John Barnett, U-Haul propane program manager. "You don't want to run out of a primary power source. If the flooding and damage from a storm is severe, getting to a propane location after a storm may be difficult."

Propane is important to have in the aftermath of storms in order to power generators, heaters, stoves and grills for cooking, propane-fueled refrigerators, and machinery used for recovery efforts. As a clean-burning fuel, propane is among the most dependable energy sources during weather-related crises. Power outages nullify electric generators, while generators requiring gas and oil can create gunk and stall. Propane is also optimal for performing under temperature swings that high winds can cause.

U-Haul is offering 30 days of free self-storage at 36 facilities across Louisiana, Mississippi and Alabama to anyone who stands to be impacted by Nate. Find a list of participating facilities here.

In addition to its 30 days free self-storage disaster relief program, U-Haul is proud to be at the forefront of aiding communities in times of need as an official American Red Cross Disaster Responder.

About U-Haul

Since 1945, U-Haul has been the No. 1 choice of do-it-yourself movers, with a network of more than 21,000 locations across all 50 states and 10 Canadian provinces. U-Haul Truck Share 24/7 now offers customers access to U-Haul trucks every hour of every day through the self-service options on their internet-connected mobile devices. U-Haul customers' patronage has enabled the U-Haul fleet to grow to more than 150,000 trucks, 112,000 trailers and 40,000 towing devices. U-Haul offers more than 581,000 rooms and more than 51 million square feet of self-storage space at owned and managed facilities throughout North America. U-Haul is the largest

installer of permanent trailer hitches in the automotive aftermarket industry and is the largest retailer of propane in the U.S.

Contact:

Jeff Lockridge Sebastien Reyes E-mail: <u>publicrelations@uhaul.com</u> Phone: 602-263-6981 Website: <u>uhaul.com</u>

NFPA-(NATIONAL FIRE PROTECTION ASSOCIATION) 58-(LIQUID PETROLEUM-GAS)

1. The vertical propane storage container foundation to be designed to resist wind and seismic forces at the location. [NFPA 58:6.6.4.1] Foundation design is covered in other documents to be provided by Uhaul. 2. The vertical propane container must be at least 6 ft. from the vertical plane beneath overhead electric power lines that

3. Bobtails filling the ASME vertical container must be at least 10 ft. from the vertical ASME container. [NFPA 58:7.2.3.3] 4. When the vertical ASME container is being filled, all internal combustion engines on vehicles (other than the engine powering the filling) must be turned off within 15 ft. of the vertical container. [NFPA 58:7.2.3.2 (A)]

5. All parts of the propane storage and dispensing system must be at least 25 ft. from pits. [NFPA 58: 6.25.2.2]

6. Install galvanized metal lath and 3/8" Pyrocrete to vertical tank legs per tank installation instructions to provide a 2 hour

- B. Dispensing Notes:
- 1. Filling propane cylinders and propane vehicle fuel containers to be conducted only by trained employees. [NFPA 58: 7.2.1.1]
- 2. Trained employees to remain in attendance during all propane transfer operations [NFPA 58: 7.2.1.2]
- 3. Cylinders, other than engine fuel cylinders, older than 12 years from the date of manufacture or 5 or 12 years from recertification (marked on the cylinder) via the visual or hydrostatic recertification method cannot be filled until recertified. (Not applicable to ASME containers installed on vehicles.) [NFPA 58: 5.2.2.2]
- 4. Only cylinders fabricated to U. S. Department of Transportation and the ASME Boiler and Pressure Vessel Code Section VIII can be filled with propane. [NFPA 58: 5.2.1.1]
- 5. Minimum 15 ft. from the point of transfer to areas where cell phones, electrical equipment, and other sources of ignition are used during propane transfer. [NFPA 58: 6.23.2.2]
- 6. Minimum 35 ft. from the points of transfer to metal cutting, grinding, oxygen-fuel cutting, brazing, soldering, or welding during propane transfer operations. [NFPA 58: 7.2.3.2 (C)]
- 7. Dispensing systems must be secured when dispensing service is not offered. [NFPA 58: 6.25.3.7]
- 8. A station to stop the LP-Gas pump must be located at the pump. [NFPA 58: 6.25.3.4]
- 9. Locate the actuator for the emergency shutoff valve within 3 ft. of each point of transfer. [NFPA 58: 6.25.3.9]
- 10. An emergency stop switch must be located between 20 ft. and 100 ft. from the points of transfer and dispensing cabinet and identified with signs visible from the points of transfer. [NFPA 58: 6.25.3.17]
- C. Drawing Notes:
- 1. Minimum 10 ft. from the points of transfer to:
- a. Buildings with a 1 hour or greater fire rated walls (i.e. wood buildings and building walls with windows). [NFPA 58: Table 6.5.2.1 (A)]
- b. Public ways, including public streets, highways, thoroughfares and sidewalks. [NFPA 58: Table 6.5.2.1 (F) (1)]
- c. LP-Gas containers other than those being filled or waiting to be filled. [NFPA 58: Table 6.5.2.1 (I)]. (Does not apply to the vertical propane storage container at the Uhaul site.)
- 2. Minimum of 15 ft. from the points of transfer to:
- a. Internal combustion engines during transfer of propane, other than the engine on a cargo tank vehicle powering filling of the vertical storage tank. [NFPA 58: 7.2.3.2]
- b. Electrical equipment and lights unless designed and installed for electrically classified areas. [NFPA 58: 6.23.2.2]
- 3. Minimum 25 ft. from the point of transfer to:
- a. Building with wall of less than 1 hour fire resistant rating (i.e. wood buildings) [NFPA 58: Table 6.5.2.1 (B)]
- b. Buildings with openings below the level of the point of transfer. [NFPA 58: Table 6.5.2.1 (C)]
- c. Line of adjoining property that can be built upon. [NFPA 58: Table 6.5.2.1(D)] d. Mainline railroad track centerlines. [NFPA 58: Table 6.5.2.1 (H)] buildings and
- the line of adjoining property that can be built upon. [NFPA 58: 6.3.1.1] e. Buildings and the line of adjoining property that can be built upon.
- [NFPA 58: 6.3.1.1]
- f. Smoking, open flame, portable electrical tools, and extension cords during propane transfer operations. [NFPA 58: 7.2.3.2 (B)]

A. Minimum 50 ft. from all points of transfer to outdoor places of public assembly i.e. schoolyards, athletic fields, playgrounds). [NFPA 58: Table 6.5.2.1 (E)]

THE INFORMATION CONTAINED IN THIS DRAVING IS THE SOLE PROPERTY OF TLENDFF BIGINEERING, MAY REPROLICTION IS PART OR AS A VHOLE VITHOUT THE VRITTEN PERMISSION OF TLENDFF	ALL VORK T ACCORDANCE EDITION	d be per Vith NF	Fornei Pa 58	D IN 2014	TLemoff Enginee Naples, Florida Tlenoffengineering@gnai 617 308-0159	erin 	9
ENGINEERING IS PROIBITED. REVISIONS	DO NOT	SCALE	DRAV	ING	STANDARD LAYDUT FOR UHAUL	/ERTIC	AL
1 STEP FOR REVIEW	_	1/24/1	1 BŤ	- The	PRUPANE SITE INSTALLATION	_	_
2 CHANGED NUTES 3 ISSUED FUR CLIENT APT	RUVAL	14/19/15	B	E	DWG #: TLE 151		
		-	1	Ħ	SHEET 1 DF 1	RE	23

1. The vertical propane storage container foundation to be designed to resist wind and seismic forces at the location. [NFPA 58:6.6.4.1] Foundation design is covered in other documents to be provided by Uhaul. 2. The vertical propane container must be at least 6 ft. from the vertical plane beneath overhead electric power lines that

3. Bobtails filling the ASME vertical container must be at least 10 ft. from the vertical ASME container. [NFPA 58:7.2.3.3] 4. When the vertical ASME container is being filled, all internal combustion engines on vehicles (other than the engine powering the filling) must be turned off within 15 ft. of the vertical container. [NFPA 58:7.2.3.2 (A)]

5. All parts of the propane storage and dispensing system must be at least 25 ft. from pits. [NFPA 58: 6.25.2.2]

6. Install galvanized metal lath and 3/8" Pyrocrete to vertical tank legs per tank installation instructions to provide a 2 hour

- B. Dispensing Notes:
- 1. Filling propane cylinders and propane vehicle fuel containers to be conducted only by trained employees. [NFPA 58: 7.2.1.1]
- 2. Trained employees to remain in attendance during all propane transfer operations [NFPA 58: 7.2.1.2]
- 3. Cylinders, other than engine fuel cylinders, older than 12 years from the date of manufacture or 5 or 12 years from recertification (marked on the cylinder) via the visual or hydrostatic recertification method cannot be filled until recertified. (Not applicable to ASME containers installed on vehicles.) [NFPA 58: 5.2.2.2]
- 4. Only cylinders fabricated to U. S. Department of Transportation and the ASME Boiler and Pressure Vessel Code Section VIII can be filled with propane. [NFPA 58: 5.2.1.1]
- 5. Minimum 15 ft. from the point of transfer to areas where cell phones, electrical equipment, and other sources of ignition are used during propane transfer. [NFPA 58: 6.23.2.2]
- 6. Minimum 35 ft. from the points of transfer to metal cutting, grinding, oxygen-fuel cutting, brazing, soldering, or welding during propane transfer operations. [NFPA 58: 7.2.3.2 (C)]
- 7. Dispensing systems must be secured when dispensing service is not offered. [NFPA 58: 6.25.3.7]
- 8. A station to stop the LP-Gas pump must be located at the pump [NFPA 58: 6.25.3.4]
- 9. Locate the actuator for the emergency shutoff valve within 3 ft. of each point of transfer. [NFPA 58: 6.25.3.9]
- 10. An emergency stop switch must be located between 20 ft. and 100 ft. from the points of transfer and dispensing cabinet and identified with signs visible from the points of transfer. [NFPA 58: 6.25.3.17]
- C. Drawing Notes:
- 1. Minimum 10 ft. from the points of transfer to:
- a. Buildings with a 1 hour or greater fire rated walls (i.e. wood buildings and building walls with windows). [NFPA 58: Table 6.5.2.1 (A)]
- b. Public ways, including public streets, highways, thoroughfares and sidewalks. [NFPA 58: Table 6.5.2.1 (F) (1)]
- c. LP-Gas containers other than those being filled or waiting to be filled. [NFPA 58: Table 6.5.2.1 (I)]. (Does not apply to the vertical propane storage container at the Uhaul site.)
- 2. Minimum of 15 ft. from the points of transfer to:
- a. Internal combustion engines during transfer of propane, other than the engine on a cargo tank vehicle powering filling of the vertical storage tank. [NFPA 58: 7.2.3.2]
- b. Electrical equipment and lights unless designed and installed for electrically classified areas. [NFPA 58: 6.23.2.2]
- 3. Minimum 25 ft. from the point of transfer to:
- a. Building with wall of less than 1 hour fire resistant rating (i.e. wood buildings) [NFPA 58: Table 6.5.2.1 (B)]
- b. Buildings with openings below the level of the point of transfer. [NFPA 58: Table 6.5.2.1 (C)]
- c. Line of adjoining property that can be built upon. [NFPA 58: Table 6.5.2.1(D)] d. Mainline railroad track centerlines. [NFPA 58: Table 6.5.2.1 (H)] buildings and
- the line of adjoining property that can be built upon. [NFPA 58: 6.3.1.1] e. Buildings and the line of adjoining property that can be built upon.
- [NFPA 58: 6.3.1.1]
- f. Smoking, open flame, portable electrical tools, and extension cords during propane transfer operations. [NFPA 58: 7.2.3.2 (B)]
- Minimum 50 ft. from all points of transfer to outdoor places of public assembly (i.e. schoolyards, athletic fields, playgrounds). [NFPA 58: Table 6.5.2.1 (E)]

6	THE DEFORMATION CONTAINED IN THIS DRAVING IS THE SOLE PROPERTY OF TLEDOFF ENGINEERING, MY REPRODUCTION IS PART OR AS A VHOLE VITHOUT THE VEITTEN PESINISTICN OF TLEDOFF	ALL VORK TO ACCORDANCE EDITION	o be perv Vith NFP	ORMEI A 58) IN 2014	TLemoff Engines Naples, Florida Tlenoffengineering@pna 617 308-0159	ering 11.com
5	ENGINEERING IS PROTATED. REVIIIZEVEN REV. DESCRIPTION 0 ISSUED FOR REVIEW	DO NOT	SCALE	DRAV	ING ENG	Standard Laydut for UHAUL Propane site Installation	VERTICAL
	2 CHANGED FOR REVIEW 2 CHANGED NOTES 3 ISSUED FOR CLIENT APP	RIVAL	07/29/15	Ê	ŧ	DWG #: TLE 151	
				-		SHEET 1 DF 1	RE 24

DOT Cylinder Refilling

DOT Cylinders can be refilled

Do not fill:

- Canadian cylinders (marked TC Transport Canada). (They can be used.)
- Cylinders that are out of date:
 - New cylinders can be filled for 12 years from the date of manufacture (usually stamped into the collar)

Cylinders that have been re-qualified can be filled for the following periods:

Requalification Method	Identification Date (month - year)	Refill allowed for:	DT. 100
Visual	12-20	5 years	470007 10.06 E
Proof Pressure	12-20 S	7 years	
Volumetric	12-20 E	12 years	
Expansion		_	

This applies only to refilling, not use from cylinders.

Cylinders with any of the following should not be filled.

Fire Damaged, bulged Cylinder

Offer to sell the customer a new cylinder or refer them to a location that requalifies cylinders. (Note that it may cost more to requalify a 20 lb. cylinder than to purchase a new one.

Excessive Corrosion

Also, do not fill cylinders that lean, cylinders with welded attachments, and gouged cylinders

Item 3.a.

1. The vertical propane storage container foundation to be designed to resist wind and seismic forces at the location. [NFPA 58:6.6.4.1] Foundation design is covered in other documents to be provided by Uhaul. 2. The vertical propane container must be at least 6 ft, from the vertical plane beneath overhead electric power lines that

3. Bobtails filling the ASME vertical container must be at least 10 ft. from the vertical ASME container. [NFPA 58:7.2.3.3] 4. When the vertical ASME container is being filled, all internal combustion engines on vehicles (other than the engine powering the filling) must be turned off within 15 ft. of the vertical container. [NFPA 58:7.2.3.2 (A)]

5. All parts of the propane storage and dispensing system must be at least 25 ft. from pits. [NFPA 58: 6.25.2.2]

Install galvanized metal lath and 3/8" Pyrocrete to vertical tank legs per tank installation instructions to provide a 2 hour fire resistance rating to the tank supports. [NFPA 58: 5.2.7.1 (B)]

B. Dispensing Notes:

- 1. Filling propane cylinders and propane vehicle fuel containers to be conducted only by trained employees. [NFPA 58: 7.2.1.1]
- 2. Trained employees to remain in attendance during all propane transfer operations. [NFPA 58: 7.2.1.2]
- 3. Cylinders, other than engine fuel cylinders, older than 12 years from the date of manufacture or 5 or 12 years from recertification (marked on the cylinder) via the visual or hydrostatic recertification method cannot be filled until recertified. (Not applicable to ASME containers installed on vehicles.) [NFPA 58: 5.2.2.2]
- 4. Only cylinders fabricated to U.S. Department of Transportation and the ASME Boiler and Pressure Vessel Code Section VIII can be filled with propane. [NFPA 58: 5.2.1.1]
- 5. Minimum 15 ft. from the point of transfer to areas where cell phones, electrical equipment, and other sources of ignition are used during propane transfer. [NFPA 58: 6.23.2.2]
- 6. Minimum 35 ft. from the points of transfer to metal cutting, grinding, oxygen-fuel cutting, brazing, soldering, or welding during propane transfer operations. [NFPA 58: 7.2.3.2 (C)]
- 7. Dispensing systems must be secured when dispensing service is not offered. [NFPA 58: 6.25.3.7]
- 8. A station to stop the LP-Gas pump must be located at the pump.
- [NFPA 58: 6.25.3.4]
- 9. Locate the actuator for the emergency shutoff valve within 3 ft. of each point of transfer. [NFPA 58: 6.25.3.9]
- 10. An emergency stop switch must be located between 20 ft. and 100 ft. from the points of transfer and dispensing cabinet and identified with signs visible from the points of transfer. [NFPA 58: 6.25.3.17]
- C. Drawing Notes:

1. Minimum 10 ft. from the points of transfer to:

- a. Buildings with a 1 hour or greater fire rated walls (i.e. wood buildings and building walls with windows). [NFPA 58: Table 6.5.2.1 (A)]
- b. Public ways, including public streets, highways, thoroughfares and sidewalks. [NFPA 58: Table 6.5.2.1 (F) (1)]
- c. LP-Gas containers other than those being filled or waiting to be filled. [NFPA 58: Table 6.5.2.1 (I)]. (Does not apply to the vertical propane storage container at the Uhaul site.)
- 2. Minimum of 15 ft. from the points of transfer to:
- a. Internal combustion engines during transfer of propane, other than the engine on a cargo tank vehicle powering filling of the vertical storage tank. [NFPA 58: 7.2.3.2]
- Electrical equipment and lights unless designed and installed for electrically classified areas. [NFPA 58: 6.23.2.2]
- 3. Minimum 25 ft, from the point of transfer to:
- a. Building with wall of less than 1 hour fire resistant rating (i.e. wood buildings) [NFPA 58: Table 6.5.2.1 (B)]
- b. Buildings with openings below the level of the point of transfer. [NFPA 58: Table 6.5.2.1 (C)]
- c. Line of adjoining property that can be built upon. [NFPA 58: Table 6.5.2.1(D)] d. Mainline railroad track centerlines. [NFPA 58: Table 6.5.2.1 (H)] buildings and
- the line of adjoining property that can be built upon. [NFPA 58: 6.3.1.1] e. Buildings and the line of adjoining property that can be built upon.
- [NFPA 58: 6.3.1.1]
- f. Smoking, open flame, portable electrical tools, and extension cords during propane transfer operations. [NFPA 58: 7.2.3.2 (B)]

4. Minimum 50 ft. from all points of transfer to outdoor places of public assembly (i.e. schoolyards, athletic fields, playgrounds). [NFPA 58: Table 6.5.2.1 (E)]

THE INFORMATION CONTAINED IN THIS DRAVING IS THE SOLE PROPERTY OF TLENOFF ENGINEERING ANY REPRODUCTION IS PART OR AS A VHOLE VITHOUT THE VRITTEN PERMISSION OF TLENOFF	ALL VORK TO BE PERFORMED IN ACCORDANCE VITH NEPA 58 2014 EDITION	TLemoff Engineering Naples, Florida Tlenoffengineering@gmail.con 617 308-0159
ENGINEERING IS PROIBURG	DO NOT SCALE DRAVING	UHAUL VERTICAL PROPANE TANK
0 ISSIED FOR REVIEW	07/24/15 CH TL 07/25/15 CH TL 07/25/15 CH TL	
	14/15 00/12/12 GG 14.	SHEET 1 DE 1 REV

Item 3.a.

I hereby certify that this engineering document was prepared by me or under my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the State of Iowa.

Item 3.a.

1 of 26

01/03/2024 (date)

SEAL John Brittan Elder License number #P25413 My license renewal date is December 31, 2024. Pages or sheets covered by this seal:

(signature)

Uhaul Propane IA Structural Calculations

PROJECT ADDRESS 1100 EAST HICKMAN WAUKEE, IA 50263

ISSUE DATE 1/2024

ENGINEER SS

PROJECT NUMBER 23668

Phoenix, AZ 480-454-6408 www.unitedstr.com 2058 S. Dobson Rd. Ste 10 Mesa, AZ 480-454-6408 JOB TITLE Uhaul Propane

2 of 26 Item 3.a.

JOB NO. 23688 SHEET NO. CALCULATED BY SS DATE DATE DATE

CS2021 Ver 2023-01-21

www.struware.com

STRUCTURAL CALCULATIONS

FOR

Uhaul Propane

ASCE 7-16 Seismic Base Shear						Proje	ct File: 23668.ec6
LIC# : KW-06012847, Build:20.23.10.02		United S	tructur	al Design		(c) ENEF	RCALC INC 1983-2023
DESCRIPTION: Seismic Base Shear An	alysis						
Specific Description: Seismic Forces							
Risk Category						Calculat	ions per ASCE 7-16
Diel: Category of Duilding on Other Churchurg					and a substa	SCE 7-16.	Page 4. Table 1.5-1
Risk Category of Building or Other Structure : "III" to hi	: Buildings uman life i	and othe	er stru nt of a	ctures that re i failure.	present a substa	Intial hazard	
Seismic Importance Factor =	1.25					ASCE 7-16	, Page 5, Table 1.5-2
Gridded Ss & S1values from ASCE 7-16							ASCE 7-16 11.4.2
Max. Ground Motions, 5% Damping				Location		1263	
S _S = 0.06092 g, 0.2 sec response				Latitudo		41.602 dog N	orth
$S_1 = 0.05083 \text{ g}, 1.0 \text{ sec response}$					-	41.002 deg N 93.862 deg M	loct
For the closest datapoint grid location				Longitud		33.002 deg M	
Latitude = 41.600 deg North							
Longitude = 93.860 deg West							
Site Class, Site Coeff. and Design Catego	ory						
Classification: "D" : Shear Wave Velocity 600 to 1,2	00 ft/sec		=	D (Based	I on Testing)	ASC	CE 7-16 Table 20.3-1
Site Coefficients Fa & Fv		Fa	=	1.60		ASCE 7-16 T	able 11.4-1 & 11.4-2
(using straight-line interpolation from table val		Fv	=	2.40			
Maximum Considered Earthquake Accelerat	S _{MC} = F	a * Ss	=	0.097		AS	SCE 7-16 Eq. 11.4-1
	S _{M1} = F	v * S1	=	0.122		AS	SCE 7-16 Eq. 11.4-2
Design Spectral Acceleration	$S_{DS} = S_{N}$	/S ^{*2/3}	=	0.065		A	SCE 7-16 Eq. 11.4-3
	$S_{D1} = S_N$	/1 * 2/3	=	0.081		A	SCE 7-16 Eq. 11.4-4
Seismic Design Category			=	В		SCE 7-	16 Table 11.6-1 & -2
Resisting System						ASC	E 7-16 Table 12.2-1
Basic Seismic Force Resisting System Cant	ilevered c	olumn sy	ystem	s detailed to	o conform to spe	ecific classification	
2.Ste	el ordinal	ry cantile Building	ver co beigh	olumn syste	ms		
System Overstrength Factor "Wo" = 12	ว 5	Cateo	orv "A	& B" Limit:	Limit = 35		
Deflection Amplification Factor "Cd' = 1.2	5	Catego	orý "C	" Limit:	Limit = 35		
NOTEL See ASCE 7-16 for all applicable footn		Catego	ory "D orv "E	" Limit: " Limit:	Not Permitted , Not Permitted .	,I .İ	
		Catego	ory "F'	' Limit:	Not Permitted,	,i	
Lateral Force Procedure						ASCE	7-16 Section 12.8.2
Equivalent Lateral Force Procedure							
The "Equivalent Lateral Force	e Procedu	<u>ire" is bei</u>	ng use	ed according	to the provisions	of ASCE 7-16 12.8	
Determine Building Period							Use ASCE 12.8-7
Structure Type for Building Period Calcula All Other	Structural	Systems	6				
"Ct " value = 0.020 " hn	n " : Height	from bas	e to h	ighest leve	20.0 ft		
"x" value = 0.75							
" Ta " Approximate fundemental period using Eq.	. 12.8-7 : 16 Mana 2	Ta = C	Ct * (hr ⊃	1^x) =	0.189 sec		
TE : Long-period transition period per ASCE 7-	10 10/04/5 2	2-14 -~ 2.	2-17				0.400
		Build	aing P	eriod "Ta" C	alculated from A	pproximate Method se	916= 0.189
"Cs " Response Coefficient					1000	ASCE 7	-16 Section 12.8.1.1
S _{DS} : Short Period Design Spectral Response	=	0.065		From Eq	. 12.8-2, Prelimir	nary Cs	= 0.065
Kesponse Modification Factor Seismic Importance Factor	=	1.20 1.25		From Eq	12.0-3 & 12.8-4	Cs not be less than	= 0.430 - 0.010
	-	1.20	•		. 12.0 0 0 12.0-0,		- 0.010
		Cs	: Sei	ismic Resp	onse Coefficie	ent =	= 0.0650

ASCE 7-10	6 Seismic	Base S	hear					I	Project File:	23668.ec6
LIC# : KW-060128	LIC# : KW-06012847, Build:20.23.10.02 DESCRIPTION: Seismic Base Shear Analysi					esign		(C)	ENERCALC	INC 1983-2023
Seismic Base	e Shear							A	SCE 7-16 S	Section 12.8.1
Cs =	0.0650 fro	m 12.8.1.1			W (s	see Sum Wi	below) =	7.60 k		
				Se	ismic Base	Shear V =	: Cs * W =	0.49 k		
Vertical Distr	ibution of S	Seismic F	orces					A	SCE 7-16 S	Section 12.8.3
" k " : hx expor Table of building	nent based on g Weights by F	Ta = Floor Level	1.00							
Level #	Wi : W	/eight	Hi : Hei	ght (V	Ni * Hi^k)	Cvx	Fx=Cvx * V	Sum Story S	Shear Sum	Story Moment
1		7.60	10.0	00	76.00	1.0000	0.49	9 0	.49	0.00
Sum Wi = 7.60 k Sum Wi *			/i*Hi =	76.00 k-f	t 7	Fotal Base She	ar = 0.49 Base Mom	k ent =	4.9 k-ft	
Diaphragm F	orces : Seis	smic Desi	gn Catego	ry "B" to	"F"				ASCE 7	-16 12.10.1.1
Level #	Wi	Fi	Sum Fi	Sum Wi	Fpx : Ca	alcd Fr	ox : Min	Fpx : Max	Fpx	Dsgn. Force
1	7.60	0.49	0.49	7.60	0.4	49	0.12	0.25	0.25	0.49
Wpx Fi Sum Fi MIN Req'd MAX Req' Fpx : Desi	I Force @ Le d Force @ Le gn Force @ I	₩0 De Su vel 0.2 evel 0.4 _evel W	eight at leve sign Lateral m of "Lat. Fo 20 * S _{DS} * I 40 * S _{DS} * I 50x * SUM(x-3	l of diaphra Force app orce" of cur * Wpx * Wpx >n) Fi / St	gm and oth lied at the I rrent level p JM(x->n) w	ner structur evel. blus all leve i, x = Curr	re elements a els above ent level, n =	ttached to it. Top Level		

United Structural Design LLC

480-454-6408

2058 S. Dobson Rd. Ste 10 Mesa, AZ

JOB NO.	23688	SHEET NO.	
CALCULATED BY	SS	DATE	
CHECKED BY		DATE	

Wind Loads - MWFRS all h (Except for Open Buildings)

Kh (case 2) =	0.90			GCpi =	+/-0.18
Base pressure $(q_h) =$	27.3 psf	Bldg dim parallel to ridge =	150.0 ft	G =	0.85
Roof Angle (θ) =	1.2 deg	Bldg dim normal to ridge =	100.0 ft	qi = qh	
Roof tributary area:		h =	20.0 ft		
Wind normal to ridge =(h/2)*L:	1500 sf	ridge ht =	21.0 ft		
Wind parallel to ridge =(h/2)*L:	1000 sf				

Ultimate Wind Surface Pressures (psf)

		Wind Norn	nal to Ridge		Wind Parallel to Ridge				
	L/B =	• 0.67	h/L =	0.20		L/B =	1.50	h/L =	0.13
Surface	Ср	q _h GC _p	w/+q _i GC _{pi}	w/-q _h GCpi	Dist.*	Ср	$q_h GC_p$	w/ +q _i GC _{pi}	w/ -q _h GC _{pi}
Windward Wall (WW)	0.80	18.6	see tab	le below		0.80	18.6	see	table below
Leeward Wall (LW)	-0.50	-11.6	-16.5	-6.7		-0.40	-9.3	-14.2	-4.4
Side Wall (SW)	-0.70	-16.3	-21.2	-11.3		-0.70	-16.3	-21.2	-11.3
Leeward Roof (LR)		**				In	cluded in w	indward roof	
Neg Windward Roof: 0 to h/2*	-0.90	-20.9	-25.8	-16.0	0 to h/2*	-0.90	-20.9	-25.8	-16.0
h/2 to h*	-0.90	-20.9	-25.8	-16.0	h/2 to h*	-0.90	-20.9	-25.8	-16.0
h to 2h*	-0.50	-11.6	-16.5	-6.7	h to 2h*	-0.50	-11.6	-16.5	-6.7
> 2h*	-0.30	-7.0	-11.9	-2.0	> 2h*	-0.30	-7.0	-11.9	-2.0
Pos/min windward roof press.	-0.18	-4.2	-9.1	0.7	Min press.	-0.18	-4.2	-9.1	0.7

18.6 psf (upward - add to windward roof pressure)

1

.

**Roof angle < 10 degrees. Therefore, leeward roof

is included in windward roof pressure zones.

Kzt

1.00

0.0 psf

0.0 psf

Kz

0.85

Windward roof overhangs :

Windward parapet:

Leeward parapet:

Parapet

z

0.0 ft

*Horizontal distance from windward edge

For monoslope roofs, entire roof surface is either windward or leeward surface.

	<u>Windwar</u>	Combined WW + LW						
				V	Vindward Wa	Wind Normal	Wind Parallel	
	z	Kz	Kzt	$q_z GC_p$	w/+q _i GC _{pi}	w/-q _h GC _{pi}	to Ridge	to Ridge
•	0 to 15'	0.85	1.00	17.5	12.6	22.4	29.1	26.8
h=	20.0 ft	0.90	1.00	18.6	13.7	23.5	30.2	27.9
ridge =	21.0 ft	0.91	1.00	18.8	13.9	23.7	30.4	28.1

qp (psf)

0.0

(GCpn = +1.5)

(GCpn = -1.0)

NOTE: ASCE 7 requires the application of full and partial loading of the wind pressures per the 4 cases below.

22.50 ft

15.00 ft

e =

e =

Wind Forces at Floors

		Building dimension (parallel with ridge) =	150.0 ft
Total Floors =	1	Building dimension (normal to ridge) =	100.0 ft
T/Fdn (dist below grade) =	2.0 ft	L is the building dimension parallel to the wind direct	on

	Elevation	Height of			Wind	l Normal to R	idge			Wind	Parallel to I	Ridge
	Above	Centroid				Applied	Story	Overturning	-	Applied	Story	Overturning
Level	Grade (ft)	to Fdn (ft)	L	В	Area (sf)	Force (k)	Shear (k)	Moment ('k)	Area	Force (k)	Shear (k)	Moment ('k)
Equip,etc		0.00	wind o	n equip, scree	enwalls, etc =			0.0				
Parapet	0.00	0.00				0.0		0.0		0.0		
T/Ridge	0.00	0.00			0.0	0.0		0.0	0.0	0.0		0.0
Roof	15.00	17.00	100.0	150.0	1,125.0	32.7	32.7	0.0	750.0	20.1	20.1	0.0
1	0.00	2.00	100.0	150.0	1,125.0	32.7	65.5	491.1	750.0	20.1	40.2	301.3
FDN		0.00						622.1				381.6

1

Project Name_Uhaul Propane IA

Subject _

Sheet No.

Project No. 23668

Date _ 10/18/2023

Computed By SS

Uhaul Propane Tank Calcs	
Loads	
Empty tank weight = 2330#	
Capacity = 1000 gallons	
Weight = 4 25#*1000 = 4250#	
Weight of tank legs + misc. = 170#	
Total weight = 7600#	
Seismic Loads	
R = 2.5	
Lateral seismic force = 0.196*weight = 1490#	
Wind Loads	
wind Pressure = 31 pst (see attached printout)	
Tank area = $3.5 \ 20 = 70 \ \text{sq} \ \Pi$	
101a1 wind 10a0 = 31 70 = 2170 #	
Therefore wind load governs	
Therefore wind load governs.	
Worst case loads	
Empty tank + Wind	
Overturning moment = $2170*10' = 21700 \# ft$	
Spacing between anchor locations = 15"	
Besisting moment = 2300*15/12 = 2875 #ft	
Net moment = 18825 #ft	
Net uplift = 18825/(30/12) = 7530 #	
Net uplift per bolt = 3765 #	

7 of 26

Project Name____Uhaul Propane IA

Crash Post Design

Loads = 3k at 3' height

Designed for vehicle crash loads

Height = 4'

Subject ___

Project No. 23668

Date 10/18/2023

Computed By SS

Sheet No.

68

8 of 26

Item 3.a.

crash post design	

Combined Footing							Proj	ect File: 2	3668.ec6	
LIC# : KW-06012847, Build:20.23.10.02		United	Structural	Design			(c) ENE	(c) ENERCALC INC 1983-2023		
DESCRIPTION: Tank Footing										
Code References										
Calculations per ACI 318-14, IBC 20	018, CBC 2	019, ASCE 7-16	6							
Load Combinations Used : IBC 201	8									
General Information										
ftc : Concrete 28 day strength		3.0 ksi	Ar	nalysis/Des Calculate fo	s ign Settings poting weight as dear	1 load ?		Yes		
fy : Rebar Yield		60.0 ksi	(Calculate P	edestal weight as de	ad load	?	No		
Ec : Concrete Elastic Modulus	3	,122.0 ksi		Min Steel %	Bending Reinf (bas	ed on 'd')	0.00	100	
μ : Phi Values Flexure :		0.90		Min. Overtu	rning Safety Factor		.)	0.00	1.0: 1	
Ψ Shear :		0.750	I	Min. Sliding	Safety Factor				1.0: 1	
Soil Information										
Allowable Soil Bearing		2.0 ksf	Soil B Footi	earing Incr ing base de	ease opth below soil surfac	e		f	t	
Soil Passive Sliding Resistance		N0 250.0 pcf	Incre	ases based	on footing Depth	 foot		L.	of	
(Uses entry for "Footing base d	epth below s	oil surface" for for	rce) N	when base	of footing is below	1001		к f	t	
Coefficient of Soil/Concrete Friction		0.30	Incre	ases based	d on footing Width	faat			of	
			1	when maxin	num length or width i	s greate	r tha	fi	t	
			Maxi	mum Allow	ed Bearing Pressure			10.0 k	sf	
			Adju	sted Allowa	ble Soil Bearing			2.0 k	sf	
			(Allowable S	Soil Bearing adjusted Ith increases as spec	l for footi cified by	ng weigh user.)	t and		
Dimensions & Reinforcing							,			
Distance Left of Column #1 =	1.250 ft	Pedestal dimen	sions		Dava laft of Cal #4	Count	Sizo #	As	As Dogʻd	
Between Columns = Distance Right of Column #2 =	2.50 ft 1 250 ft		Col #1	Col #2	Bottom Bars	7.0	5	2.170	2.268 in^2	
Total Footing Length =	5.0 ft	Sq. Dim. =	6.0	6.0 in	Top Bars	7.0	5	2.170	2.268 in^2	
Footing Width =	2.50 ft	Height =		in	Bottom Bars	7.0	5	2.170	2.268 in^2	
Footing Thickness =	42.0 in				Top Bars	7.0	5	2.170	2.268 in^2	
Rebar Center to Concrete Edge @ To	р	= 3.0 in			Bottom Bars	7.0	5	2.170	2.268 in^2	
Rebar Center to Concrete Edge @ Bo	ottom	= 3.0 in			Top Bars	7.0	5	2.170	0.0 in^2	
Applied Loads										
Applied @ Left Column	-3 760	Lr	L	S	W	E		H k		
Moment (+CW) =	0.1.00							k-	ft	
Shear (+X) =								K		
Axial Load Downward =	3.80							k		
Moment (+CW) = $(+X)$								k-i	ft	
Overburden =								ĸ		
1'-3" x 2'-	-6"1'-3"									
			t					_		
	#6 7-#5	-						_		
			2'-6"	ā					,	
ie a								_	13	
								—	•	
7-#5 7	#5 7-#5				1'-3"	2'-6"	1'-3'	•		
						5'-0"				
5'.	-0"									

Capacity

20.609 k-ft

Project File: 23668.ec6

(c) ENERCALC INC 1983-2023

Design OK

Governing Load Combination

D Only

Combined Footing

LIC# : KW-06012847, Build:20.23.10.02 DESCRIPTION: Tank Footing

DESIGN SUMMARY						
Factor of Safety	Item					
PASS 1.462	Overturning					
PASS No Sliding	Sliding					

PASS No Sliding	Sliding	0.0 k	1.915 k	No Sliding
PASS 2.698	Uplift	3.760 k	10.144 k	D Only
	Here .	A secolities of	Ormerity	
Utilization Ratio	ltem	Applied	Capacity	Governing Load Combination
PASS 0.8330	Soil Bearing	1.666 ksf	2.0 ksf	D Only
PASS 0.01167	1-way Shear - Col #1	0.9588 psi	82.158 psi	+1.40D
PASS 0.01167	1-way Shear - Col #2	0.9589 psi	82.158 psi	+1.40D
PASS 0.002938	2-way Punching - Col #1	0.4827 psi	164.317 psi	+1.40D
PASS 0.003650	2-way Punching - Col #2	0.5997 psi	164.317 psi	+1.40D
PASS 0.002325	Flexure - Left of Col #1 - Top	-0.8661 k-ft	372.525 k-ft	+1.40D
PASS No Bending	Flexure - Left of Col #1 - Bottom	0.0 k-ft	0.0 k-ft	N/A
PASS 0.001832	Flexure - Between Cols - Top	-0.6823 k-ft	372.525 k-ft	+1.40D
PASS 0.005827	Flexure - Between Cols - Bottom	2.171 k-ft	372.525 k-ft	+1.40D
PASS No Bending	Flexure - Right of Col #2 - Top	0.0 k-ft	0.0 k-ft	N/A
PASS 0.00450	Flexure - Right of Col #2 - Bottom	1.676 k-ft	372.525 k-ft	+1.40D

United Structural Design

Applied

14.10 k-ft

Soil Bearing

		Eccentricity	Actual Soil Be	aring Stress	Α	ctual / Allow
Load Combination	Total Bearing	from Ftg CL	@ Left Edge	@ Right Edge	Allowable	Ratio
D Only	6.38 k	1.480 ft	0.00 ksf	1.67 ksf	2.00 ksf	0.833
+0.60D	3.83 k	1.480 ft	0.00 ksf	1.00 ksf	2.00 ksf	0.500
Overturning Stability						

	Nom	ents about Left Ec	lg € k-ft	loments	s about Right Edg	k-ft
Load Combination	Overturning	Resisting	Ratio	Overturning	Resisting	Ratio
D Only	4.70	30.11	6.406	14.10	20.61	1.462
+0.60D	2.82	18.07	6.406	8.46	12.37	1.462
Sliding Stability						

Load Combination	Sliding Force	Resisting Force	Sliding SafetyRatio	
D Only	0.00 k	1.92 k	999	
+0.60D	0.00 k	1.15 k	999	
Z-Axis Footing Flexure - Maximum Values for Lo	oad Combination			

		Distance	Tension		Governed			
Load Combination	Mu	from left	Side	As Req'd	by	Actual As	Phi*Mn	Mu / PhiMn
	(ft-k)	(ft)		(in^2)		(in^2)	(ft-k)	
+0.60D	0.000	0.000	0	0.000	0	0.000	0.000	0.000
+0.60D	0.000	0.013	0	0.000	0	0.000	0.000	0.000
+0.60D	0.000	0.025	0	0.000	0	0.000	0.000	0.000
+0.60D	0.000	0.038	0	0.000	0	0.000	0.000	0.000
+0.60D	0.000	0.050	0	0.000	0	0.000	0.000	0.000
+0.60D	0.000	0.063	0	0.000	0	0.000	0.000	0.000
+0.60D	0.000	0.075	0	0.000	0	0.000	0.000	0.000
+0.60D	0.000	0.088	0	0.000	0	0.000	0.000	0.000
+0.60D	0.000	0.100	0	0.000	0	0.000	0.000	0.000
+1.40D	-0.011	0.113	Тор	2.268	Min Temp %	2.170	372.525	0.000
+1.40D	-0.014	0.125	Тор	2.268	Min Temp %	2.170	372.525	0.000
+1.40D	-0.017	0.138	Тор	2.268	Min Temp %	2.170	372.525	0.000
+1.40D	-0.020	0.150	Тор	2.268	Min Temp %	2.170	372.525	0.000
+1.40D	-0.023	0.163	Тор	2.268	Min Temp %	2.170	372.525	0.000
+1.40D	-0.027	0.175	Тор	2.268	Min Temp %	2.170	372.525	0.000
+1.40D	-0.031	0.188	Тор	2.268	Min Temp %	2.170	372.525	0.000
+1.40D	-0.036	0.200	Тор	2.268	Min Temp %	2.170	372.525	0.000
+1.40D	-0.040	0.213	Тор	2.268	Min Temp %	2.170	372.525	0.000
+1.40D	-0.045	0.225	Тор	2.268	Min Temp %	2.170	372.525	0.000
+1.40D	-0.050	0.238	Тор	2.268	Min Temp %	2.170	372.525	0.000
+1.40D	-0.056	0.250	Тор	2.268	Min Temp %	2.170	372.525	0.000

Project File: 23668.ec6

(c) ENERCALC INC 1983-2023

Item 3.a.

United Structural Design

Combined Footing

LIC# : KW-06012847, Build:20.23.10.02

DESCRIPTION: Tank Footing

Load Combination Mu from Iot Side As Re(1) by Actual & PhVfm Mul PhVfm 11400 0.061 0.283 Top 2.268 Mn Temp % 2.170 372.525 0.000 11400 0.007 0.275 Top 2.288 Mn Temp % 2.170 372.525 0.000 11400 0.007 0.284 Top 2.288 Mn Temp % 2.170 372.525 0.000 11400 0.0101 0.333 Top 2.288 Mn Temp % 2.170 372.525 0.000 11400 0.1101 0.338 Top 2.288 Mn Temp % 2.170 372.525 0.000 11400 0.112 0.338 Top 2.288 Mn Temp % 2.170 372.525 0.000 11400 0.113 0.413 Top 2.288 Mn Temp % 2.170 372.525 0.000 11400 0.160 0.425 Top 2.288 Mn Temp % 2.170 372.525			Distance	Tension		Governed			
(ftk) (ftr2) (ftr2) (ftr2) (ftr4) +140D -0.067 0.275 Top 2.288 Mn Temp % 2.170 372.525 0.000 +140D -0.073 0.288 Top 2.288 Mn Temp % 2.170 372.525 0.000 +140D -0.087 0.383 Top 2.288 Mn Temp % 2.170 372.525 0.000 +140D -0.094 0.338 Top 2.288 Mn Temp % 2.170 372.525 0.000 +140D -0.101 0.338 Top 2.288 Mn Temp % 2.170 372.525 0.000 +140D -0.117 0.338 Top 2.288 Mn Temp % 2.170 372.525 0.000 +140D -0.161 0.433 Top 2.288 Mn Temp % 2.170 372.525 0.000 +140D -0.161 0.433 Top 2.288 Mn Temp % 2.170 372.525 0.000 +140D -0.161	Load Combination	Mu	from left	Side	As Req'd	by	Actual As	Phi*Mn	Mu / PhiMn
++400 -0.061 0.283 Top 2.288 Mn Temp % 2.170 372.252 0.000 ++400 -0.073 0.288 Top 2.288 Mn Temp % 2.170 372.252 0.000 +1400 -0.080 0.300 Top 2.288 Mn Temp % 2.170 372.252 0.000 +1400 -0.087 Top 2.288 Mn Temp % 2.170 372.252 0.000 +1400 -0.017 0.330 Top 2.288 Mn Temp % 2.170 372.252 0.000 +1400 -0.117 0.330 Top 2.288 Mn Temp % 2.170 372.525 0.000 +1400 -0.125 0.375 Top 2.288 Mn Temp % 2.170 372.525 0.000 +1400 -0.151 0.413 Top 2.288 Mn Temp % 2.170 372.525 0.000 +1400 -0.160 0.425 Top 2.288 Mn Temp % 2.170 372.525 0.001 <th></th> <th>(ft-k)</th> <th>(ft)</th> <th></th> <th>(in^2)</th> <th></th> <th>(in^2)</th> <th>(ft-k)</th> <th></th>		(ft-k)	(ft)		(in^2)		(in^2)	(ft-k)	
+1400 +0.67 0.275 Top 2.288 Mn Term % 2.170 372.525 0.000 +1400 +0.089 0.300 Top 2.268 Mn Term % 2.170 372.525 0.000 +1400 +0.089 0.330 Top 2.288 Mn Term % 2.170 372.525 0.000 +1400 +0.084 0.325 Top 2.288 Mn Term % 2.170 372.525 0.000 +1400 +0.017 0.333 Top 2.288 Mn Term % 2.170 372.525 0.000 +1400 +0.117 0.333 Top 2.288 Mn Term % 2.170 372.525 0.000 +1400 +0.127 0.333 Top 2.288 Mn Term % 2.170 372.525 0.000 +1400 +0.127 0.338 Top 2.288 Mn Term % 2.170 372.525 0.000 +1400 +0.128 0.375 Top 2.288 Mn Term % 2.170 372.525 0.000 +1400 +0.128 0.375 Top 2.288 Mn Term % 2.170 372.525 0.000 +1400 +0.142 0.400 Top 2.288 Mn Term % 2.170 372.525 0.000 +1400 +0.142 0.400 Top 2.288 Mn Term % 2.170 372.525 0.000 +1400 +0.142 0.400 Top 2.288 Mn Term % 2.170 372.525 0.000 +1400 +0.151 0.413 Top 2.288 Mn Term % 2.170 372.525 0.000 +1400 +0.415 0.443 Top 2.288 Mn Term % 2.170 372.525 0.000 +1400 +0.410 0.460 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.210 0.475 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.210 0.475 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.210 0.475 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.210 0.475 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.210 0.475 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.210 0.475 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.210 0.475 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.210 0.475 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.210 0.475 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.421 0.563 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.421 0.563 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.421 0.575 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.421 0.563 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.433 0.776 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.433 0.778 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.433 0.778 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.433 0.778 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.443 0.778 Top 2.288 Mn Term % 2.170 372.525 0.001 +1400 +0.443 0.778 Top 2.288 Mn Term % 2.	+1.40D	-0.061	0.263	Top	2.268	Min Temp %	2.170	372.525	0.000
+1400 -0.073 0.288 Top 2.288 Min Termp % 2.170 372.525 0.000 +1400 -0.067 0.313 Top 2.288 Min Termp % 2.170 372.525 0.000 +1400 -0.067 0.313 Top 2.288 Min Termp % 2.170 372.525 0.000 +1400 -0.011 0.338 Top 2.288 Min Termp % 2.170 372.525 0.000 +1400 -0.125 0.375 Top 2.288 Min Termp % 2.170 372.525 0.000 +1400 -0.132 0.388 Top 2.288 Min Termp % 2.170 372.525 0.000 +1400 -0.161 0.413 Top 2.288 Min Termp % 2.170 372.525 0.000 +1400 -0.160 0.425 Top 2.288 Min Termp % 2.170 372.525 0.000 +1400 -0.160 0.425 Top 2.288 Min Termp % 2.170 372.525 0.001 +1400 -0.2160 0.463 Top	+1.40D	-0.067	0.275	Тор	2.268	Min Temp %	2.170	372.525	0.000
+140D -0.080 0.300 Top 2.288 Min Termp % 2.170 372.525 0.000 +140D -0.094 0.325 Top 2.268 Min Termp % 2.170 372.525 0.000 +140D -0.014 0.338 Top 2.268 Min Termp % 2.170 372.525 0.000 +140D -0.117 0.338 Top 2.268 Min Termp % 2.170 372.525 0.000 +140D -0.125 0.375 Top 2.268 Min Termp % 2.170 372.525 0.000 +140D -0.133 0.388 Top 2.268 Min Termp % 2.170 372.525 0.000 +140D -0.161 0.413 Top 2.268 Min Termp % 2.170 372.525 0.000 +140D -0.161 0.443 Top 2.268 Min Termp % 2.170 372.525 0.001 +140D -0.2170 0.475 Top 2.268 Min Termp % 2.170 372.525 0.001 +140D -0.2231 0.513 Top	+1.40D	-0.073	0.288	Top	2.268	Min Temp %	2.170	372.525	0.000
+1400 +0.067 0.313 Top 2.268 Mn Temp % 2.170 372.525 0.000 +1400 +0.101 0.338 Top 2.268 Mn Temp % 2.170 372.525 0.000 +1400 +0.101 0.338 Top 2.268 Mn Temp % 2.170 372.525 0.000 +1400 +0.117 0.358 Top 2.268 Mn Temp % 2.170 372.525 0.000 +1400 +0.135 0.368 Top 2.268 Mn Temp % 2.170 372.525 0.000 +1400 +0.151 0.413 0.368 Top 2.268 Mn Temp % 2.170 372.525 0.000 +1400 +0.151 0.413 Top 2.268 Mn Temp % 2.170 372.525 0.000 +1400 +0.151 0.413 Top 2.268 Mn Temp % 2.170 372.525 0.000 +1400 +0.160 0.425 Top 2.268 Mn Temp % 2.170 372.525 0.000 +1400 +0.160 0.425 Top 2.268 Mn Temp % 2.170 372.525 0.000 +1400 +0.160 0.425 Top 2.268 Mn Temp % 2.170 372.525 0.000 +1400 +0.160 0.468 Top 2.268 Mn Temp % 2.170 372.525 0.000 +1400 +0.160 0.468 Top 2.268 Mn Temp % 2.170 372.525 0.000 +1400 +0.211 0.468 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.223 0.501 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.223 0.503 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.223 0.503 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.267 0.538 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.267 0.538 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.267 0.538 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.267 0.538 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.267 0.538 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.267 0.538 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.267 0.538 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.461 0.713 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.461 0.565 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.461 0.568 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.461 0.568 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.461 0.568 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.461 0.578 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.461 0.578 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.463 0.778 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.461 0.578 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.461 0.638 Top 2.268 Mn Temp % 2.170 372.525 0.001 +1400 +0.461 0.638 Top 2.268 Mn Te	+1.40D	-0.080	0.300	Тор	2.268	Min Temp %	2.170	372.525	0.000
+1400 -0.094 0.325 Top 2.268 Min Temp % 2.170 372.525 0.000 +1400 -0.109 0.360 Top 2.268 Min Temp % 2.170 372.525 0.000 +1400 -0.119 0.360 Top 2.268 Min Temp % 2.170 372.525 0.000 +1400 -0.125 0.375 Top 2.268 Min Temp % 2.170 372.525 0.000 +1400 -0.151 0.413 Top 2.268 Min Temp % 2.170 372.525 0.000 +1400 -0.151 0.438 Top 2.268 Min Temp % 2.170 372.525 0.000 +1400 -0.160 0.438 Top 2.268 Min Temp % 2.170 372.525 0.000 +1400 -0.160 0.463 Top 2.268 Min Temp % 2.170 372.525 0.001 +1400 -0.2210 0.607 Top 2.268 Min Temp % 2.170 372.525 0.001 +1400 -0.2211 0.483 Top 2.26	+1.40D	-0.087	0.313	Тор	2.268	Min Temp %	2.170	372.525	0.000
+140D -0.101 0.338 Top 2.268 Min Temp % 2.170 372.525 0.000 +140D -0.117 0.363 Top 2.268 Min Temp % 2.170 372.525 0.000 +140D -0.133 0.363 Top 2.268 Min Temp % 2.170 372.525 0.000 +140D -0.133 0.388 Top 2.268 Min Temp % 2.170 372.525 0.000 +140D -0.151 0.413 Top 2.268 Min Temp % 2.170 372.525 0.000 +140D -0.180 0.435 Top 2.268 Min Temp % 2.170 372.525 0.000 +140D -0.180 0.463 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.210 0.475 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.2231 0.501 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.2245 Top 2.268 Min	+1.40D	-0.094	0.325	Top	2.268	Min Temp %	2.170	372.525	0.000
+140D -0.109 0.350 Top 2.288 Min Temp % 2.170 372.525 0.000 +140D -0.125 0.375 Top 2.268 Min Temp % 2.170 372.525 0.000 +140D -0.133 0.388 Top 2.268 Min Temp % 2.170 372.525 0.000 +140D -0.142 0.400 Top 2.268 Min Temp % 2.170 372.525 0.000 +140D -0.160 0.425 Top 2.268 Min Temp % 2.170 372.525 0.000 +140D -0.160 0.445 Top 2.268 Min Temp % 2.170 372.525 0.000 +140D -0.180 0.456 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.221 0.500 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.233 0.513 Top 2.268 Min Temp % 2.170 37	+1.40D	-0.101	0.338	Top	2.268	Min Temp %	2.170	372.525	0.000
+140D -0.117 0.363 Top 2.286 Min Temp % 2.170 372.525 0.000 +140D -0.133 0.388 Top 2.268 Min Temp % 2.170 372.525 0.000 +140D -0.133 0.388 Top 2.268 Min Temp % 2.170 372.525 0.000 +140D -0.161 0.413 Top 2.268 Min Temp % 2.170 372.525 0.000 +140D -0.160 0.438 Top 2.268 Min Temp % 2.170 372.525 0.000 +140D -0.170 0.438 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.2211 0.488 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.2211 0.488 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.2211 0.488 Top 2.268 Min Temp % 2.170 <td< td=""><td>+1.40D</td><td>-0.109</td><td>0.350</td><td>Тор</td><td>2.268</td><td>Min Temp %</td><td>2.170</td><td>372.525</td><td>0.000</td></td<>	+1.40D	-0.109	0.350	Тор	2.268	Min Temp %	2.170	372.525	0.000
+140D -0.125 0.375 Top 2.888 Min Temp % 2.170 372.525 0.000 +140D -0.142 0.400 Top 2.288 Min Temp % 2.170 372.525 0.000 +140D -0.161 0.413 Top 2.288 Min Temp % 2.170 372.525 0.000 +140D -0.160 0.425 Top 2.268 Min Temp % 2.170 372.525 0.000 +140D -0.160 0.425 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.180 0.463 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.201 0.475 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.224 0.575 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.233 0.513 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.232 0.600 Top 2.288<	+1.40D	-0.117	0.363	Тор	2.268	Min Temp %	2.170	372.525	0.000
+140D -0133 0.388 Top 2.288 Min Temp % 2.170 372.525 0.000 +140D -0.151 0.413 Top 2.288 Min Temp % 2.170 372.525 0.000 +140D -0.161 0.438 Top 2.288 Min Temp % 2.170 372.525 0.000 +140D -0.160 0.425 Top 2.288 Min Temp % 2.170 372.525 0.000 +140D -0.190 0.463 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.200 0.477 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.221 0.468 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.224 0.500 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.233 0.513 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.269 0.650 Top 2.288 </td <td>+1.40D</td> <td>-0.125</td> <td>0.375</td> <td>Тор</td> <td>2.268</td> <td>Min Temp %</td> <td>2.170</td> <td>372.525</td> <td>0.000</td>	+1.40D	-0.125	0.375	Тор	2.268	Min Temp %	2.170	372.525	0.000
+140D -0.142 0.400 Top 2.888 Win Temp % 2.170 372.525 0.000 +140D -0.160 0.425 Top 2.888 Win Temp % 2.170 372.525 0.000 +140D -0.160 0.425 Top 2.868 Win Temp % 2.170 372.525 0.000 +140D -0.180 0.460 Top 2.268 Win Temp % 2.170 372.525 0.001 +140D -0.210 0.475 Top 2.268 Win Temp % 2.170 372.525 0.001 +140D -0.220 0.475 Top 2.268 Win Temp % 2.170 372.525 0.001 +140D -0.223 0.513 Top 2.268 Win Temp % 2.170 372.525 0.001 +140D -0.245 0.552 Top 2.268 Win Temp % 2.170 372.525 0.001 +140D -0.254 0.553 Top 2.268 Win Temp % 2.170 372.525 0.001 +140D -0.330 0.563 Top 2.268<	+1.40D	-0.133	0.388	Тор	2.268	Min Temp %	2.170	372.525	0.000
+140D -0161 0413 Top 2.888 Min Temp % 2.170 372.525 0.000 +140D -0.170 0438 Top 2.888 Min Temp % 2.170 372.525 0.000 +140D -0.180 0.450 Top 2.288 Min Temp % 2.170 372.525 0.000 +140D -0.190 0.463 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.200 0.475 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.233 0.513 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.233 0.513 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.256 0.536 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.333 0.613 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.330 0.680 Top 2.268 <td>+1.40D</td> <td>-0.142</td> <td>0.400</td> <td>Тор</td> <td>2.268</td> <td>Min Temp %</td> <td>2.170</td> <td>372.525</td> <td>0.000</td>	+1.40D	-0.142	0.400	Тор	2.268	Min Temp %	2.170	372.525	0.000
+140D -0.160 0.428 Top 2.288 Min Temp % 2.170 372.525 0.000 +140D -0.180 0.450 Top 2.288 Min Temp % 2.170 372.525 0.000 +140D -0.180 0.453 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.200 0.475 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.222 0.500 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.2245 0.525 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.2457 0.538 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.269 0.550 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.320 0.600 Top 2.288 Min Temp % 2.170	+1.40D	-0.151	0.413	Тор	2.268	Min Temp %	2.170	372.525	0.000
+140D -0.170 0.438 Top 2.288 Min Temp % 2.170 372.525 0.000 +140D -0.190 0.463 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.200 0.475 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.211 0.488 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.233 0.513 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.233 0.513 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.267 0.538 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.2494 0.563 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.347 0.563 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.333 0.613 Top 2.286	+1.40D	-0.160	0.425	Тор	2.268	Min Temp %	2.170	372.525	0.000
+140D -0.180 0.450 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.200 0.475 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.221 0.500 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.223 0.500 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.245 0.525 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.245 0.550 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.281 0.550 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.320 0.600 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.333 0.613 Top 2.288 Min Temp % 2.170 37	+1 40D	-0.170	0 438	Top	2 268	Min Temp %	2 170	372 525	0,000
+140D -0.190 0.463 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.211 0.488 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.233 0.513 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.233 0.513 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.2457 0.538 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.257 0.538 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.284 0.563 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.341 0.663 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.347 0.638 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.347 0.653 Top 2.288	+1 40D	-0.180	0 450	Top	2 268	Min Temp %	2 170	372 525	0,000
+140D -0200 0475 Top 2288 Min Temp % 2170 372 525 0.001 +140D -0222 0.500 Top 2288 Min Temp % 2170 372 525 0.001 +140D -0223 0.513 Top 2288 Min Temp % 2170 372 525 0.001 +140D -0245 0.525 Top 2288 Min Temp % 2170 372 525 0.001 +140D -0249 0.563 Top 2288 Min Temp % 2170 372 525 0.001 +140D -0284 0.575 Top 2288 Min Temp % 2170 372 525 0.001 +140D -0330 0.600 Top 2288 Min Temp % 2170 372 525 0.001 +140D -0333 0.613 Top 2288 Min Temp % 2170 372 525 0.001 +140D -0347 0.625 Top 2288 Min Temp % 2170 372 525 0.001	+1 40D	-0 190	0 463	Top	2 268	Min Temp %	2 170	372 525	0.001
+140D -0211 0.488 Top 2288 Min Temp % 2.170 372 528 0.001 +140D -0233 0.513 Top 2.288 Min Temp % 2.170 372 526 0.001 +140D -0243 0.525 Top 2.288 Min Temp % 2.170 372 526 0.001 +140D -0.267 0.538 Top 2.288 Min Temp % 2.170 372 526 0.001 +140D -0.269 0.550 Top 2.288 Min Temp % 2.170 372 526 0.001 +140D -0.281 0.575 Top 2.288 Min Temp % 2.170 372 526 0.001 +140D -0.320 0.600 Top 2.288 Min Temp % 2.170 372 526 0.001 +140D -0.347 0.628 Top 2.288 Min Temp % 2.170 372 528 0.001 +140D -0.347 0.628 Top 2.288 Min Temp % 2.170 372 52	+1 40D	-0.200	0 475	Top	2 268	Min Temp %	2 170	372 525	0.001
140D -0.222 0.500 Top 2.288 Min Temp % 2.170 372.525 0.001 144D -0.233 0.513 Top 2.288 Min Temp % 2.170 372.525 0.001 144D -0.245 0.525 Top 2.288 Min Temp % 2.170 372.525 0.001 144D -0.259 0.538 Top 2.288 Min Temp % 2.170 372.525 0.001 144D -0.281 0.563 Top 2.288 Min Temp % 2.170 372.525 0.001 144D -0.281 0.575 Top 2.288 Min Temp % 2.170 372.525 0.001 144D -0.3320 0.600 Top 2.288 Min Temp % 2.170 372.525 0.001 144D -0.333 0.613 Top 2.288 Min Temp % 2.170 372.525 0.001 144D -0.347 0.625 Top 2.288 Min Temp % 2.170 372.525 <td>+1 40D</td> <td>-0 211</td> <td>0.478</td> <td>Top</td> <td>2 268</td> <td>Min Temp %</td> <td>2 170</td> <td>372 525</td> <td>0.001</td>	+1 40D	-0 211	0.478	Top	2 268	Min Temp %	2 170	372 525	0.001
+140D -0.23 0.613 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.245 0.525 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.257 0.538 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.289 0.550 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.281 0.553 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.320 0.600 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.330 0.613 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.347 0.625 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.347 0.625 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.445 0.675 Top 2.268 </td <td>+1 40D</td> <td>_0 222</td> <td>0.400</td> <td>Top</td> <td>2 268</td> <td>Min Temp %</td> <td>2.170</td> <td>372 525</td> <td>0.001</td>	+1 40D	_0 222	0.400	Top	2 268	Min Temp %	2.170	372 525	0.001
1 Abb - D 245 D 255 T Dp 2 Loo Min Temp % 2 170 372 525 D 0001 +1 40D -0 257 0 538 T op 2 288 Min Temp % 2 170 372 525 D 001 +1 40D -0 269 0 550 T op 2 288 Min Temp % 2 170 372 525 D 001 +1 40D -0 281 0 553 T op 2 288 Min Temp % 2 170 372 525 D 001 +1 40D -0 284 0 575 T op 2 288 Min Temp % 2 170 372 525 D 001 +1 40D -0 330 0 613 T op 2 288 Min Temp % 2 170 372 525 D 001 +1 40D -0 347 0 625 T op 2 288 Min Temp % 2 170 372 525 D 001 +1 40D -0 347 0 633 T op 2 288 Min Temp % 2 170 372 525 D 001 +1 40D -0 4050 0 675 T op 2 288 Min Temp % 2 170	+1.40D	-0.222	0.500	Top	2.200	Min Temp %	2.170	372.525	0.001
1400 -0.257 0.238 Top 2.268 Min Temp % 2.170 372.252 0.001 +1400 -0.269 0.550 Top 2.288 Min Temp % 2.170 372.252 0.001 +1400 -0.281 0.553 Top 2.288 Min Temp % 2.170 372.525 0.001 +1400 -0.284 0.575 Top 2.288 Min Temp % 2.170 372.525 0.001 +1400 -0.330 0.600 Top 2.288 Min Temp % 2.170 372.525 0.001 +1400 -0.337 0.638 Top 2.288 Min Temp % 2.170 372.525 0.001 +1400 -0.347 0.625 Top 2.288 Min Temp % 2.170 372.525 0.001 +1400 -0.345 0.653 Top 2.288 Min Temp % 2.170 372.525 0.001 +1400 -0.445 0.675 Top 2.288 Min Temp % 2.170 372	+1.40D	-0.200	0.515	Top	2.200	Min Temp %	2.170	372.525	0.001
1400 0.269 0.550 Top 2.268 Min Temp % 2.170 37.252 0.001 +140D -0.281 0.663 Top 2.288 Min Temp % 2.170 372.525 0.001 +140D -0.284 0.675 Top 2.286 Min Temp % 2.170 372.525 0.001 +140D -0.307 0.588 Top 2.286 Min Temp % 2.170 372.525 0.001 +140D -0.333 0.613 Top 2.286 Min Temp % 2.170 372.525 0.001 +140D -0.347 0.625 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.337 0.663 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.445 0.675 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.4451 0.700 Top 2.268 Min Temp % 2.170 372.	+1.40D	-0.245	0.525	Top	2.200	Min Temp %	2.170	372.525	0.001
1+30D -0.281 0.563 Top 2.286 Min Temp % 2.170 372.525 0.001 +140D -0.284 0.575 Top 2.286 Min Temp % 2.170 372.525 0.001 +140D -0.307 0.588 Top 2.286 Min Temp % 2.170 372.525 0.001 +140D -0.333 0.613 Top 2.286 Min Temp % 2.170 372.525 0.001 +140D -0.347 0.625 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.347 0.625 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.3405 0.663 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.4420 0.688 Top 2.268 Min Temp % 2.170 372.525 0.001 +140D -0.4431 0.713 Top 2.268 Min Temp % 2.170 <td< td=""><td>+1.40D</td><td>-0.257</td><td>0.550</td><td>Top</td><td>2.200</td><td>Min Temp %</td><td>2.170</td><td>372.525</td><td>0.001</td></td<>	+1.40D	-0.257	0.550	Top	2.200	Min Temp %	2.170	372.525	0.001
1:400 -0.291 0.005 Top 2.288 Min Temp % 2.170 372.525 0.001 1:400 -0.307 0.588 Top 2.268 Min Temp % 2.170 372.525 0.001 1:400 -0.333 0.613 Top 2.268 Min Temp % 2.170 372.525 0.001 1:400 -0.333 0.613 Top 2.268 Min Temp % 2.170 372.525 0.001 1:400 -0.347 0.625 Top 2.268 Min Temp % 2.170 372.525 0.001 1:400 -0.375 0.650 Top 2.268 Min Temp % 2.170 372.525 0.001 1:400 -0.490 0.663 Top 2.268 Min Temp % 2.170 372.525 0.001 1:400 -0.4451 0.713 Top 2.268 Min Temp % 2.170 372.525 0.001 1:400 -0.451 0.713 Top 2.268 Min Temp % 2.170 372.525 0.001 1:400 -0.451 0.713 Top 2.268	+1.40D	-0.209	0.550	Тор	2.200	Min Tomp %	2.170	372.525	0.001
1:400 -0.307 109 2.268 Min Temp % 2.170 372.525 0.001 1:400 -0.320 0.600 Top 2.268 Min Temp % 2.170 372.525 0.001 1:400 -0.330 0.613 Top 2.268 Min Temp % 2.170 372.525 0.001 1:400 -0.347 0.625 Top 2.268 Min Temp % 2.170 372.525 0.001 1:400 -0.361 0.683 Top 2.268 Min Temp % 2.170 372.525 0.001 1:400 -0.375 0.650 Top 2.268 Min Temp % 2.170 372.525 0.001 1:400 -0.405 0.675 Top 2.268 Min Temp % 2.170 372.525 0.001 1:400 -0.445 0.713 Top 2.268 Min Temp % 2.170 372.525 0.001 1:400 -0.461 0.713 Top 2.268 Min Temp % 2.170 372.525 0.001 1:400 -0.516 0.763 Top 2.268 Min Te	+1.40D	-0.201	0.505	Тор	2.200	Min Tomp %	2.170	372.525	0.001
1:40D -0.307 0.385 10p 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.333 0.613 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.347 0.625 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.361 0.638 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.390 0.663 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.405 0.675 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.4455 0.700 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.467 0.725 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.566 0.750 Top 2.268 Min Temp % 2.170 3	+1.40D	-0.294	0.575	Тор	2.200	Min Temp %	2.170	372.323	0.001
140D 10.20 0.000 10p 2.208 Min Temp % 2.170 372.525 0.001 14.40D -0.347 0.625 Top 2.268 Min Temp % 2.170 372.525 0.001 14.40D -0.361 0.638 Top 2.268 Min Temp % 2.170 372.525 0.001 14.40D -0.375 0.660 Top 2.268 Min Temp % 2.170 372.525 0.001 14.40D -0.405 0.675 Top 2.268 Min Temp % 2.170 372.525 0.001 14.40D -0.4435 0.700 Top 2.268 Min Temp % 2.170 372.525 0.001 14.40D -0.4451 0.713 Top 2.268 Min Temp % 2.170 372.525 0.001 14.40D -0.461 0.725 Top 2.268 Min Temp % 2.170 372.525 0.001 14.40D -0.561 0.763 Top 2.268 Min Temp % 2.170	+1.40D	-0.307	0.000	Тор	2.200	Min Temp %	2.170	372.323	0.001
1:40D -0.333 0.013 10p 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.361 0.638 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.375 0.663 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.390 0.663 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.420 0.688 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.435 0.700 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.467 0.725 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.463 0.738 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.561 0.763 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.566 0.813 Top 2.268<	+1.40D	-0.320	0.600	Тор	2.200	Min Temp %	2.170	372.323	0.001
+1.40D -0.347 0.023 TOP 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.375 0.650 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.390 0.663 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.405 0.675 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.420 0.688 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.4451 0.713 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.451 0.713 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.463 0.750 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.516 0.763 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.568 0.803 Top	+1.40D	-0.333	0.013	Тор	2.200	Min Temp %	2.170	372.323	0.001
1:40D -0.361 0.0586 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.390 0.663 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.405 0.675 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.435 0.700 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.435 0.700 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.435 0.713 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.467 0.725 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.516 0.760 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.516 0.763 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.568 0.803 Top 2.268	+1.40D	-0.347	0.625	Тор	2.200	Min Temp %	2.170	372.323	0.001
1:40D -0.373 0.650 10p 2.266 Min Temp % 2.170 372.525 0.001 1:40D -0.405 0.675 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.405 0.675 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.435 0.700 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.451 0.713 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.467 0.725 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.516 0.763 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.516 0.763 Top 2.268 Min Temp % 2.170 372.525 0.001 1:40D -0.568 0.800 Top 2.268 Min Temp % 2.170 372.525 0.002 1:40D -0.664 0.825 Top 2.268<	+1.40D	-0.301	0.030	Тор	2.200	Min Temp %	2.170	372.323	0.001
1.40D -0.390 0.063 10p 2.266 Min Temp % 2.170 372.525 0.001 1.40D -0.420 0.688 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D -0.451 0.713 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D -0.451 0.713 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D -0.467 0.725 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D -0.467 0.725 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D -0.516 0.763 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D -0.516 0.763 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D -0.551 0.788 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D -0.664 0.825 Top 2.268<	+1.40D	-0.375	0.650	Тор	2.208	Min Temp %	2.170	372.525	0.001
1.40D -0.405 0.675 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D -0.435 0.700 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D -0.451 0.713 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D -0.467 0.725 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D -0.467 0.725 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D -0.467 0.725 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D -0.516 0.763 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D -0.551 0.778 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D -0.568 0.800 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D -0.661 0.833 Top 2.268<	+1.40D	-0.390	0.663	Тор	2.208	Min Temp %	2.170	372.525	0.001
+1.40D -0.420 0.688 lop 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.435 0.700 rop 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.467 0.725 rop 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.467 0.725 rop 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.483 0.738 rop 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.516 0.763 rop 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.551 0.783 rop 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.568 0.800 rop 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.664 0.825 rop 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 rop	+1.40D	-0.405	0.675	Тор	2.268	Min Temp %	2.170	372.525	0.001
+1.40D -0.435 0.700 lop 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.467 0.725 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.483 0.738 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.6437 0.750 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.516 0.750 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.516 0.753 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.551 0.788 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.568 0.800 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.604 0.825 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top	+1.40D	-0.420	0.688	Тор	2.268	Min Temp %	2.170	372.525	0.001
+1.40D -0.451 0.713 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.463 0.738 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.500 0.750 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.516 0.763 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.516 0.763 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.551 0.788 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.568 0.800 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.664 0.825 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top	+1.40D	-0.435	0.700	Тор	2.268	Min Temp %	2.170	372.525	0.001
+1.40D -0.467 0.725 1 op 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.483 0.738 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.516 0.763 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.516 0.763 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.551 0.788 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.558 0.800 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.568 0.800 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.664 0.825 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top	+1.40D	-0.451	0.713	Тор	2.268	Min Temp %	2.170	372.525	0.001
+1.40D -0.483 0.738 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.500 0.750 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.516 0.763 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.551 0.788 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.556 0.788 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.566 0.813 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.664 0.825 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.642 0.850 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.719 0.901 Top	+1.40D	-0.467	0.725	Top	2.268	Min Temp %	2.170	372.525	0.001
+1.40D -0.500 0.750 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.516 0.763 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.533 0.775 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.551 0.788 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.568 0.813 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.604 0.825 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.623 0.838 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.719 0.900 Top	+1.40D	-0.483	0.738	Top	2.268	Min Temp %	2.170	372.525	0.001
+1.40D -0.516 0.763 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.533 0.775 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.551 0.788 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.566 0.800 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.664 0.825 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.664 0.825 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.642 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.660 0.875 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.719 0.900 Top	+1.40D	-0.500	0.750	Top	2.268	Min Temp %	2.170	372.525	0.001
+1.40D -0.533 0.775 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.551 0.788 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.568 0.800 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.664 0.825 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.664 0.825 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.700 0.888 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.740 0.913 Top	+1.40D	-0.516	0.763	Тор	2.268	Min Temp %	2.170	372.525	0.001
+1.40D -0.551 0.788 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.568 0.813 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.586 0.813 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.604 0.825 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.623 0.838 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.680 0.875 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.719 0.900 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.760 0.925 Top	+1.40D	-0.533	0.775	Top	2.268	Min Temp %	2.170	372.525	0.001
+1.40D -0.568 0.800 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.586 0.813 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.604 0.825 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.623 0.838 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.623 0.838 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.700 0.888 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.719 0.900 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.740 0.913 Top	+1.40D	-0.551	0.788	Тор	2.268	Min Temp %	2.170	372.525	0.001
+1.40D -0.586 0.813 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.604 0.825 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.623 0.838 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.642 0.850 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.680 0.875 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.700 0.888 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.740 0.913 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.781 0.933 Top	+1.40D	-0.568	0.800	Тор	2.268	Min Temp %	2.170	372.525	0.002
+1.40D -0.604 0.825 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.623 0.838 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.642 0.850 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.875 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.700 0.888 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.740 0.913 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.760 0.925 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.802 0.950 Top	+1.40D	-0.586	0.813	Тор	2.268	Min Temp %	2.170	372.525	0.002
+1.40D -0.623 0.838 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.642 0.850 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.661 0.863 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.680 0.875 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.700 0.888 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.740 0.913 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.761 0.938 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.802 0.950 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.802 0.950 Top	+1.40D	-0.604	0.825	Тор	2.268	Min Temp %	2.170	372.525	0.002
+1.40D-0.6420.850Top2.268Min Temp %2.170372.5250.002+1.40D-0.6610.863Top2.268Min Temp %2.170372.5250.002+1.40D-0.6800.875Top2.268Min Temp %2.170372.5250.002+1.40D-0.7000.888Top2.268Min Temp %2.170372.5250.002+1.40D-0.7190.900Top2.268Min Temp %2.170372.5250.002+1.40D-0.7400.913Top2.268Min Temp %2.170372.5250.002+1.40D-0.7600.925Top2.268Min Temp %2.170372.5250.002+1.40D-0.7610.938Top2.268Min Temp %2.170372.5250.002+1.40D-0.7810.938Top2.268Min Temp %2.170372.5250.002+1.40D-0.8020.950Top2.268Min Temp %2.170372.5250.002+1.40D-0.8230.963Top2.268Min Temp %2.170372.5250.002+1.40D-0.8660.988Top2.268Min Temp %2.170372.5250.002+1.40D-0.8881.000Top2.268Min Temp %2.170372.5250.002+1.40D-0.8101.013Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025 <t< td=""><td>+1.40D</td><td>-0.623</td><td>0.838</td><td>Тор</td><td>2.268</td><td>Min Temp %</td><td>2.170</td><td>372.525</td><td>0.002</td></t<>	+1.40D	-0.623	0.838	Тор	2.268	Min Temp %	2.170	372.525	0.002
+1.40D-0.6610.863Top2.268Min Temp %2.170372.5250.002+1.40D-0.6800.875Top2.268Min Temp %2.170372.5250.002+1.40D-0.7000.888Top2.268Min Temp %2.170372.5250.002+1.40D-0.7190.900Top2.268Min Temp %2.170372.5250.002+1.40D-0.7400.913Top2.268Min Temp %2.170372.5250.002+1.40D-0.7600.925Top2.268Min Temp %2.170372.5250.002+1.40D-0.7810.938Top2.268Min Temp %2.170372.5250.002+1.40D-0.8020.950Top2.268Min Temp %2.170372.5250.002+1.40D-0.8020.950Top2.268Min Temp %2.170372.5250.002+1.40D-0.8230.963Top2.268Min Temp %2.170372.5250.002+1.40D-0.8440.975Top2.268Min Temp %2.170372.5250.002+1.40D-0.8881.000Top2.268Min Temp %2.170372.5250.002+1.40D-0.9101.013Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025 <t< td=""><td>+1.40D</td><td>-0.642</td><td>0.850</td><td>Тор</td><td>2.268</td><td>Min Temp %</td><td>2.170</td><td>372.525</td><td>0.002</td></t<>	+1.40D	-0.642	0.850	Тор	2.268	Min Temp %	2.170	372.525	0.002
+1.40D-0.6800.875Top2.268Min Temp %2.170372.5250.002+1.40D-0.7000.888Top2.268Min Temp %2.170372.5250.002+1.40D-0.7190.900Top2.268Min Temp %2.170372.5250.002+1.40D-0.7400.913Top2.268Min Temp %2.170372.5250.002+1.40D-0.7600.925Top2.268Min Temp %2.170372.5250.002+1.40D-0.7810.938Top2.268Min Temp %2.170372.5250.002+1.40D-0.8020.950Top2.268Min Temp %2.170372.5250.002+1.40D-0.8020.950Top2.268Min Temp %2.170372.5250.002+1.40D-0.8230.963Top2.268Min Temp %2.170372.5250.002+1.40D-0.8440.975Top2.268Min Temp %2.170372.5250.002+1.40D-0.8660.988Top2.268Min Temp %2.170372.5250.002+1.40D-0.8881.000Top2.268Min Temp %2.170372.5250.002+1.40D-0.9101.013Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025 <t< td=""><td>+1.40D</td><td>-0.661</td><td>0.863</td><td>Тор</td><td>2.268</td><td>Min Temp %</td><td>2.170</td><td>372.525</td><td>0.002</td></t<>	+1.40D	-0.661	0.863	Тор	2.268	Min Temp %	2.170	372.525	0.002
+1.40D-0.7000.888Top2.268Min Temp %2.170372.5250.002+1.40D-0.7190.900Top2.268Min Temp %2.170372.5250.002+1.40D-0.7400.913Top2.268Min Temp %2.170372.5250.002+1.40D-0.7600.925Top2.268Min Temp %2.170372.5250.002+1.40D-0.7810.938Top2.268Min Temp %2.170372.5250.002+1.40D-0.7810.938Top2.268Min Temp %2.170372.5250.002+1.40D-0.8020.950Top2.268Min Temp %2.170372.5250.002+1.40D-0.8230.963Top2.268Min Temp %2.170372.5250.002+1.40D-0.8440.975Top2.268Min Temp %2.170372.5250.002+1.40D-0.8861.000Top2.268Min Temp %2.170372.5250.002+1.40D-0.8881.000Top2.268Min Temp %2.170372.5250.002+1.40D-0.9101.013Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9491.038 <t< td=""><td>+1.40D</td><td>-0.680</td><td>0.875</td><td>Тор</td><td>2.268</td><td>Min Temp %</td><td>2.170</td><td>372.525</td><td>0.002</td></t<>	+1.40D	-0.680	0.875	Тор	2.268	Min Temp %	2.170	372.525	0.002
+1.40D-0.7190.900Top2.268Min Temp %2.170372.5250.002+1.40D-0.7400.913Top2.268Min Temp %2.170372.5250.002+1.40D-0.7600.925Top2.268Min Temp %2.170372.5250.002+1.40D-0.7810.938Top2.268Min Temp %2.170372.5250.002+1.40D-0.7810.938Top2.268Min Temp %2.170372.5250.002+1.40D-0.8020.950Top2.268Min Temp %2.170372.5250.002+1.40D-0.8230.963Top2.268Min Temp %2.170372.5250.002+1.40D-0.8440.975Top2.268Min Temp %2.170372.5250.002+1.40D-0.8660.988Top2.268Min Temp %2.170372.5250.002+1.40D-0.8681.000Top2.268Min Temp %2.170372.5250.002+1.40D-0.9101.013Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9491.038Top2.268Min Temp %2.170372.5250.002+1.40D-0.9491.038 <t< td=""><td>+1.40D</td><td>-0.700</td><td>0.888</td><td>Тор</td><td>2.268</td><td>Min Temp %</td><td>2.170</td><td>372.525</td><td>0.002</td></t<>	+1.40D	-0.700	0.888	Тор	2.268	Min Temp %	2.170	372.525	0.002
+1.40D-0.7400.913Top2.268Min Temp %2.170372.5250.002+1.40D-0.7600.925Top2.268Min Temp %2.170372.5250.002+1.40D-0.7810.938Top2.268Min Temp %2.170372.5250.002+1.40D-0.8020.950Top2.268Min Temp %2.170372.5250.002+1.40D-0.8230.963Top2.268Min Temp %2.170372.5250.002+1.40D-0.8440.975Top2.268Min Temp %2.170372.5250.002+1.40D-0.8660.988Top2.268Min Temp %2.170372.5250.002+1.40D-0.8660.988Top2.268Min Temp %2.170372.5250.002+1.40D-0.8681.000Top2.268Min Temp %2.170372.5250.002+1.40D-0.9101.013Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9491.038Top2.268Min Temp %2.170372.5250.002+1.40D-0.9491.038Top2.268Min Temp %2.170372.5250.002	+1.40D	-0.719	0.900	Тор	2.268	Min Temp %	2.170	372.525	0.002
+1.40D-0.7600.925Top2.268Min Temp %2.170372.5250.002+1.40D-0.7810.938Top2.268Min Temp %2.170372.5250.002+1.40D-0.8020.950Top2.268Min Temp %2.170372.5250.002+1.40D-0.8230.963Top2.268Min Temp %2.170372.5250.002+1.40D-0.8440.975Top2.268Min Temp %2.170372.5250.002+1.40D-0.8660.988Top2.268Min Temp %2.170372.5250.002+1.40D-0.8660.988Top2.268Min Temp %2.170372.5250.002+1.40D-0.8681.000Top2.268Min Temp %2.170372.5250.002+1.40D-0.9101.013Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9491.038Top2.268Min Temp %2.170372.5250.002+1.40D-0.9491.038Top2.268Min Temp %2.170372.5250.002	+1.40D	-0.740	0.913	Тор	2.268	Min Temp %	2.170	372.525	0.002
+1.40D-0.7810.938Top2.268Min Temp %2.170372.5250.002+1.40D-0.8020.950Top2.268Min Temp %2.170372.5250.002+1.40D-0.8230.963Top2.268Min Temp %2.170372.5250.002+1.40D-0.8440.975Top2.268Min Temp %2.170372.5250.002+1.40D-0.8660.988Top2.268Min Temp %2.170372.5250.002+1.40D-0.8660.988Top2.268Min Temp %2.170372.5250.002+1.40D-0.8881.000Top2.268Min Temp %2.170372.5250.002+1.40D-0.9101.013Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9491.038Top2.268Min Temp %2.170372.5250.002	+1.40D	-0.760	0.925	Тор	2.268	Min Temp %	2.170	372.525	0.002
+1.40D-0.8020.950Top2.268Min Temp %2.170372.5250.002+1.40D-0.8230.963Top2.268Min Temp %2.170372.5250.002+1.40D-0.8440.975Top2.268Min Temp %2.170372.5250.002+1.40D-0.8660.988Top2.268Min Temp %2.170372.5250.002+1.40D-0.8660.988Top2.268Min Temp %2.170372.5250.002+1.40D-0.8881.000Top2.268Min Temp %2.170372.5250.002+1.40D-0.9101.013Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9491.038Top2.268Min Temp %2.170372.5250.002+1.40D-0.9491.038Top2.268Min Temp %2.170372.5250.002	+1.40D	-0.781	0.938	Тор	2.268	Min Temp %	2.170	372.525	0.002
+1.40D-0.8230.963Top2.268Min Temp %2.170372.5250.002+1.40D-0.8440.975Top2.268Min Temp %2.170372.5250.002+1.40D-0.8660.988Top2.268Min Temp %2.170372.5250.002+1.40D-0.8660.988Top2.268Min Temp %2.170372.5250.002+1.40D-0.8881.000Top2.268Min Temp %2.170372.5250.002+1.40D-0.9101.013Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9491.038Top2.268Min Temp %2.170372.5250.002	+1.40D	-0.802	0.950	Тор	2.268	Min Temp %	2.170	372.525	0.002
+1.40D-0.8440.975Top2.268Min Temp %2.170372.5250.002+1.40D-0.8660.988Top2.268Min Temp %2.170372.5250.002+1.40D-0.8881.000Top2.268Min Temp %2.170372.5250.002+1.40D-0.9101.013Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9491.038Top2.268Min Temp %2.170372.5250.003	+1.40D	-0.823	0.963	Тор	2.268	Min Temp %	2.170	372.525	0.002
+1.40D-0.8660.988Top2.268Min Temp %2.170372.5250.002+1.40D-0.8881.000Top2.268Min Temp %2.170372.5250.002+1.40D-0.9101.013Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9491.038Top2.268Min Temp %2.170372.5250.003	+1.40D	-0.844	0.975	Тор	2.268	Min Temp %	2.170	372.525	0.002
+1.40D-0.8881.000Top2.268Min Temp %2.170372.5250.002+1.40D-0.9101.013Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9491.038Top2.268Min Temp %2.170372.5250.003	+1.40D	-0.866	0.988	Top	2.268	Min Temp %	2.170	372.525	0.002
+1.40D-0.9101.013Top2.268Min Temp %2.170372.5250.002+1.40D-0.9301.025Top2.268Min Temp %2.170372.5250.002+1.40D-0.9491.038Top2.268Min Temp %2.170372.5250.002+1.40D-0.9491.038Top2.268Min Temp %2.170372.5250.003	+1.40D	-0.888	1.000	Top	2.268	Min Temp %	2.170	372.525	0.002
+1.40D -0.930 1.025 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.949 1.038 Top 2.268 Min Temp % 2.170 372.525 0.003	+1.40D	-0.910	1.013	Top	2.268	Min Temp %	2.170	372.525	0.002
+1.40D -0.949 1.038 Top 2.268 Min Temp % 2.170 372.525 0.003	+1.40D	-0.930	1.025	Top	2.268	Min Temp %	2.170	372.525	0.002
	+1.40D	-0.949	1.038	Тор	2.268	Min Temp %	2.170	372.525	0.003

Project File: 23668.ec6

(c) ENERCALC INC 1983-2023

Item 3.a.

United Structural Design

Combined Footing

LIC# : KW-06012847, Build:20.23.10.02

DESCRIPTION: Tank Footing

Load Combination Mu from I® Side As Re(1) P) Actual & PhiMn Mu / PhiMn +140D -0.986 1.050 Top 2.268 Mm Temp % 2.170 372.525 0.033 +140D -0.997 1.075 Top 2.268 Mm Temp % 2.170 372.525 0.033 +140D -1.012 1.088 Top 2.268 Mm Temp % 2.170 372.525 0.033 +140D -1.013 1.188 Top 2.268 Mm Temp % 2.170 372.525 0.033 +140D -1.046 1.183 Top 2.268 Mm Temp % 2.170 372.525 0.033 +140D -1.066 1.180 Top 2.268 Mm Temp % 2.170 372.525 0.033 +140D -1.066 1.225 Top 2.268 Mm Temp % 2.170 372.525 0.033 +140D -1.066 1.225 Top 2.268 Mm Temp % 2.170 372.525			Distance	Tension		Governed			
(Hk) (Hk) (Hk) (Hk) #140D 0.982 1.68 Top 2.288 MIT Temp % 2.170 372.525 0.003 #140D 0.982 1.68 Top 2.288 MIT Temp % 2.170 372.525 0.003 #140D -1.012 1.086 Top 2.288 MIT Temp % 2.170 372.525 0.003 #140D -1.012 1.188 Top 2.288 MIT Temp % 2.170 372.525 0.003 #140D -1.042 1.125 Top 2.288 MIT Temp % 2.170 372.525 0.003 #140D -1.066 1.190 Top 2.288 MIT Temp % 2.170 372.525 0.003 #140D -1.068 1.200 Top 2.288 MIT Temp % 2.170 372.525 0.003 #140D -1.068 1.201 Top 2.288 MIT Temp % 2.170 372.525 0.003 #140D -1.068 1.275	Load Combination	Mu	from left	Side	As Req'd	by	Actual As	Phi*Mn	Mu / PhiMn
+1400 -0.966 1.060 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 -0.997 1.075 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 -1.010 1.088 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 -1.022 1.101 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 -1.022 1.103 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 -1.065 1.150 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 -1.066 1.175 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 -1.066 1.225 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 -1.066 1.225 Top 2.288 Mn Termp % 2.170 37		(ft-k)	(ft)		(in^2)		(in^2)	(ft-k)	
+1400 + 0.962 1.063 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 1.010 1.088 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 1.023 1.113 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 1.033 1.113 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 1.056 1.150 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 1.056 1.150 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 1.056 1.150 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 1.056 1.175 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 1.066 1.175 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 1.066 1.175 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 1.065 1.175 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 1.066 1.210 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 1.065 1.210 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 1.068 1.220 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 1.053 1.228 Top 2.288 Mn Termp % 2.170 372.525 0.033 +1400 - 1.053 1.263 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 1.053 1.263 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 1.063 1.226 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 1.063 1.275 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 1.063 1.328 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 0.033 1.327 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 0.033 1.337 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 0.033 1.337 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 0.033 1.337 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 0.043 1.338 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 0.053 1.350 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 0.438 1.448 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 0.438 1.448 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 0.428 1.448 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 0.428 1.448 Top 2.268 Mn Termp % 2.170 372.525 0.033 +1400 - 0.428 1.448 Top 2.268 Mn Termp % 2.170 372.525 0.030 +1400 - 0.428 1.548 Top 2.268 Mn Termp % 2.170 372.525 0.000 +1400 - 0.428 1.568 Top 2.268 Mn Termp % 2.170 372.525 0.000 +1400 - 0.428 1.568 Top 2.268 Mn	+1.40D	-0.966	1.050	Тор	2.268	Min Temp %	2.170	372.525	0.003
+1400 - 0.997 1.075 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.022 1.100 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.022 1.100 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.042 1.125 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.042 1.125 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.061 1.183 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.061 1.183 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.065 1.175 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.066 1.213 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.066 1.213 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.066 1.225 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.066 1.225 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.068 1.223 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.068 1.223 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.063 1.230 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.063 1.235 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.063 1.235 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.031 1.225 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.031 1.225 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 1.031 1.225 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 0.031 1.225 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 0.031 1.325 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 0.031 1.325 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 0.0451 1.313 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 0.051 1.338 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 0.051 1.338 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 0.052 1.338 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 0.437 1.338 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 0.437 1.438 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 0.456 1.540 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 0.456 1.540 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 0.456 1.540 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 0.456 1.540 Top 2.288 Mn Termp % 2.170 372.525 0.003 +1400 - 0.456 1.540 Top 2.288 Mn	+1.40D	-0.982	1.063	Top	2.268	Min Temp %	2.170	372.525	0.003
+1400 - 1.010 1.088 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 1.033 1.113 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 1.042 1.125 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 1.045 1.113 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 1.056 1.175 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 1.065 1.175 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 1.065 1.175 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 1.066 1.213 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 1.066 1.228 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 1.066 1.228 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 1.068 1.220 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 1.068 1.221 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 1.068 1.223 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 1.068 1.223 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 1.068 1.273 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 1.053 1.253 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 1.053 1.253 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 1.053 1.253 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 1.053 1.253 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 0.137 1.288 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 0.137 1.288 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 0.439 1.373 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 0.439 1.375 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 0.439 1.375 Top 2.288 Mn Temp % 2.170 372.525 0.033 +1400 - 0.439 1.375 Top 2.288 Mn Temp % 2.170 372.525 0.032 +1400 - 0.438 1.448 Top 2.288 Mn Temp % 2.170 372.525 0.032 +1400 - 0.438 1.448 Top 2.288 Mn Temp % 2.170 372.525 0.032 +1400 - 0.438 1.448 Top 2.288 Mn Temp % 2.170 372.525 0.032 +1400 - 0.438 1.448 Top 2.288 Mn Temp % 2.170 372.525 0.032 +1400 - 0.438 1.448 Top 2.288 Mn Temp % 2.170 372.525 0.032 +1400 - 0.438 1.448 Top 2.288 Mn Temp % 2.170 372.525 0.032 +1400 - 0.438 1.448 Top 2.288 Mn Temp % 2.170 372.525 0.032 +1400 - 0.438 1.458 Top 2.288 Mn Temp % 2.170 372.525 0.030 +1400 - 0.428 1.518 Top 2.288 Mn Temp % 2.170 372.525 0.030 +1400	+1.40D	-0.997	1.075	Top	2.268	Min Temp %	2.170	372.525	0.003
+1400 -1.022 1.100 Top 2.288 Min Termp % 2.170 372.525 0.003 +1400 -1.042 1.125 Top 2.288 Min Termp % 2.170 372.525 0.003 +1400 -1.056 1.118 Top 2.288 Min Termp % 2.170 372.525 0.003 +1400 -1.056 1.118 Top 2.288 Min Termp % 2.170 372.525 0.003 +1400 -1.066 1.118 Top 2.288 Min Termp % 2.170 372.525 0.003 +1400 -1.066 1.213 Top 2.288 Min Termp % 2.170 372.525 0.003 +1400 -1.068 1.213 Top 2.288 Min Termp % 2.170 372.525 0.003 +1400 -1.063 1.238 Top 2.288 Min Termp % 2.170 372.525 0.003 +1400 -1.063 1.238 Top 2.288 Min Termp % 2.170 372.525 0.003 +1400 -1.031 1.325 Top <	+1.40D	-1.010	1.088	Top	2.268	Min Temp %	2.170	372.525	0.003
+1400 -1.033 1.113 Top 2.268 Min Temp % 2.170 372.525 0.003 +1400 -1.050 1.138 Top 2.268 Min Temp % 2.170 372.525 0.003 +1400 -1.056 1.150 Top 2.268 Min Temp % 2.170 372.525 0.003 +1400 -1.066 1.176 Top 2.268 Min Temp % 2.170 372.525 0.003 +1400 -1.068 1.170 Top 2.288 Min Temp % 2.170 372.526 0.003 +1400 -1.068 1.225 Top 2.288 Min Temp % 2.170 372.526 0.003 +1400 -1.068 1.225 Top 2.288 Min Temp % 2.170 372.526 0.003 +1400 -1.063 1.280 Top 2.288 Min Temp % 2.170 372.526 0.003 +1400 -1.031 1.280 Top 2.288 Min Temp % 2.170 372.526 0.003 +1400 -1.037 1.888 Top 2.288<	+1.40D	-1.022	1.100	Top	2.268	Min Temp %	2.170	372.525	0.003
+140D -1.042 1.126 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -1.056 1.150 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -1.066 1.163 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -1.065 1.175 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -1.068 1.201 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -1.068 1.201 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -1.063 1.283 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -1.063 1.283 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -1.061 1.313 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -0.0948 1.338 Top 2.288	+1.40D	-1.033	1.113	Top	2.268	Min Temp %	2.170	372.525	0.003
+1400 -1050 1.138 Top 2.268 Min Temp % 2.170 372.525 0.003 +1400 -1061 1.163 Top 2.268 Min Temp % 2.170 372.525 0.003 +1400 -1065 1.175 Top 2.268 Min Temp % 2.170 372.525 0.003 +1400 -1066 1.175 Top 2.268 Min Temp % 2.170 372.525 0.003 +1400 -1068 1.213 Top 2.268 Min Temp % 2.170 372.525 0.003 +1400 -1068 1.238 Top 2.268 Min Temp % 2.170 372.525 0.003 +1400 -1063 1.238 Top 2.268 Min Temp % 2.170 372.525 0.003 +1400 -1063 1.275 Top 2.288 Min Temp % 2.170 372.525 0.003 +1400 -1037 1.288 Top 2.288 Min Temp % 2.170 372.525 0.003 +1400 -0.977 1.380 Top 2.288	+1.40D	-1.042	1.125	Top	2.268	Min Temp %	2.170	372.525	0.003
+140D -1066 1.160 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -1.065 1.175 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -1.066 1.175 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -1.068 1.200 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -1.066 1.223 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -1.066 1.223 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -1.064 1.275 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -1.063 1.283 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -1.061 1.313 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -0.9891 1.338 Top 2.268<	+1.40D	-1.050	1.138	Top	2.268	Min Temp %	2.170	372.525	0.003
+1400 -1.061 1.163 Top 2.288 Min Temp % 2.170 372.525 0.003 +1400 -1.067 1.188 Top 2.288 Min Temp % 2.170 372.525 0.003 +1400 -1.068 1.200 Top 2.288 Min Temp % 2.170 372.525 0.003 +1400 -1.068 1.203 Top 2.288 Min Temp % 2.170 372.525 0.003 +1400 -1.068 1.203 Top 2.288 Min Temp % 2.170 372.525 0.003 +1400 -1.053 1.235 Top 2.288 Min Temp % 2.170 372.525 0.003 +1400 -1.054 1.263 Top 2.288 Min Temp % 2.170 372.525 0.003 +1400 -1.077 1.300 Top 2.288 Min Temp % 2.170 372.525 0.003 +1400 -0.037 1.325 Top 2.288 Min Temp % 2.170 372.525 0.003 +1400 -0.037 1.325 Top 2.288<	+1.40D	-1.056	1.150	Top	2.268	Min Temp %	2.170	372.525	0.003
+1400 -1.065 1.175 Top 2.288 Min Temp % 2.170 372.525 0.003 +1400 -1.068 1.200 Top 2.288 Min Temp % 2.170 372.525 0.003 +1400 -1.068 1.213 Top 2.288 Min Temp % 2.170 372.525 0.003 +1400 -1.066 1.225 Top 2.268 Min Temp % 2.170 372.525 0.003 +1400 -1.059 1.250 Top 2.268 Min Temp % 2.170 372.525 0.003 +1400 -1.045 1.257 Top 2.268 Min Temp % 2.170 372.525 0.003 +1400 -1.046 1.275 Top 2.288 Min Temp % 2.170 372.525 0.003 +1400 -1.011 1.313 Top 2.288 Min Temp % 2.170 372.525 0.003 +1400 -0.947 1.363 Top 2.288 Min Temp % 2.170 372.525 0.002 +1400 -0.957 1.863 Top 2.288<	+1.40D	-1.061	1.163	Top	2.268	Min Temp %	2.170	372.525	0.003
+140D -1.067 1.188 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -1.068 1.213 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -1.066 1.225 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -1.053 1.238 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -1.053 1.263 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -1.053 1.263 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -1.016 1.313 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -0.016 1.333 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -0.919 1.335 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -0.918 1.388 Top 2.268<	+1.40D	-1.065	1.175	Top	2.268	Min Temp %	2.170	372.525	0.003
+140D -1088 1200 Top 2288 Min Temp % 2.170 372.225 0.003 +140D -1066 1.225 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -1066 1.238 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -1059 1.250 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -1046 1.275 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -1027 1.300 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -1027 1.300 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -03941 1.353 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -0687 1.493 Top 2.288 Min Temp % 2.170 372.525	+1.40D	-1.067	1,188	Top	2.268	Min Temp %	2,170	372.525	0.003
+140D -1668 1213 Top 2288 Min Temp % 2170 372.525 0.003 +140D -1.063 1.238 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -1.063 1.230 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -1.053 1.263 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -1.046 1.275 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -1.037 1.288 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -1.016 1.313 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -0.989 1.335 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -0.989 1.335 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.9457 1.365 Top 2.268 <td>+1.40D</td> <td>-1.068</td> <td>1.200</td> <td>Тор</td> <td>2.268</td> <td>Min Temp %</td> <td>2.170</td> <td>372.525</td> <td>0.003</td>	+1.40D	-1.068	1.200	Тор	2.268	Min Temp %	2.170	372.525	0.003
+140D -1066 1225 Top 2288 Min Temp % 2170 372.525 0.003 +140D -1053 1250 Top 2288 Min Temp % 2170 372.525 0.003 +140D -1053 1263 Top 2288 Min Temp % 2170 372.525 0.003 +140D -1046 1276 Top 2288 Min Temp % 2170 372.525 0.003 +140D -1047 1300 Top 2268 Min Temp % 2170 372.525 0.003 +140D -1016 133 Top 2268 Min Temp % 2170 372.525 0.003 +140D -0.974 1.350 Top 2268 Min Temp % 2170 372.525 0.003 +140D -0.974 1.350 Top 2288 Min Temp % 2170 372.525 0.003 +140D -0.876 1.413 Top 2288 Min Temp % 2170 372.525 0.002 +140D -0.888 1.426 Top 2288 Min Temp %	+1.40D	-1.068	1.213	Тор	2.268	Min Temp %	2.170	372.525	0.003
+1400 -1683 128 Top 2288 MinTemp % 2170 372.525 0.03 +1400 -1653 1263 Top 2288 MinTemp % 2170 372.525 0.03 +1400 -1645 1263 Top 2288 MinTemp % 2170 372.525 0.03 +1400 -1037 1280 Top 2288 MinTemp % 2170 372.525 0.03 +1400 -1016 1312 Top 2288 MinTemp % 2170 372.525 0.03 +1400 -0103 1325 Top 2288 MinTemp % 2170 372.525 0.03 +1400 -0.894 1380 Top 2288 MinTemp % 2170 372.525 0.003 +1400 -0.8957 1363 Top 2288 MinTemp % 2170 372.525 0.002 +1400 -0.898 1408 Top 2288 MinTemp % 2170 372.525 0.002	+1 40D	-1 066	1 225	Top	2 268	Min Temp %	2 170	372 525	0.003
+140D -1059 1260 Top 2268 Min Temp % 2170 372.525 0.003 +140D -1046 1275 Top 2268 Min Temp % 2170 372.525 0.003 +140D -1047 1288 Top 2268 Min Temp % 2170 372.525 0.003 +140D -1017 1288 Top 2268 Min Temp % 2170 372.525 0.003 +140D -1016 1313 Top 2268 Min Temp % 2170 372.525 0.003 +140D -0.999 1.325 Top 2268 Min Temp % 2170 372.525 0.003 +140D -0.9974 1.363 Top 2268 Min Temp % 2170 372.525 0.003 +140D -0.9974 1.363 Top 2268 Min Temp % 2170 372.525 0.002 +140D -0.888 1.400 Top 2268 Min Temp % 2170 372.525 0.002 +140D -0.888 1.425 Top 2268 Min Temp % </td <td>+1 40D</td> <td>-1 063</td> <td>1 238</td> <td>Top</td> <td>2 268</td> <td>Min Temp %</td> <td>2 170</td> <td>372 525</td> <td>0.003</td>	+1 40D	-1 063	1 238	Top	2 268	Min Temp %	2 170	372 525	0.003
+140D -1083 1283 Top 2288 Min Temp % 2170 372.528 0.003 +140D -1037 1288 Top 2288 Min Temp % 2170 372.525 0.003 +140D -1037 1288 Top 2288 Min Temp % 2170 372.525 0.003 +140D -1016 1.313 Top 2288 Min Temp % 2170 372.525 0.003 +140D -0035 1.325 Top 2288 Min Temp % 2170 372.525 0.003 +140D -0.977 1.363 Top 2288 Min Temp % 2170 372.525 0.003 +140D -0.977 1.363 Top 2288 Min Temp % 2170 372.525 0.003 +140D -0.919 1.388 Top 2.288 Min Temp % 2170 372.525 0.002 +140D -0.876 1.413 Top 2.288 Min Temp % 2170 372.525 0.002 +140D -0.876 1.413 Top 2.288 Min Temp	+1 40D	-1 059	1 250	Top	2 268	Min Temp %	2 170	372 525	0.003
+140D -1046 1275 Top 2288 Min Temp % 2170 372.525 0.003 +140D -1037 1.300 Top 2288 Min Temp % 2170 372.526 0.003 +140D -1016 1.313 Top 2288 Min Temp % 2170 372.526 0.003 +140D -0038 1.325 Top 2288 Min Temp % 2170 372.526 0.003 +140D -0.989 1.380 Top 2.288 Min Temp % 2170 372.526 0.003 +140D -0.917 1.363 Top 2.288 Min Temp % 2.170 372.526 0.003 +140D -0.919 1.388 Top 2.288 Min Temp % 2.170 372.526 0.002 +140D -0.828 1.430 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.828 1.433 Top 2.288 Min Temp % 2.170 372.525	+1 40D	-1 053	1 263	Top	2 268	Min Temp %	2 170	372 525	0.003
+140D -1.037 1.288 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -1.016 1.313 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -1.003 1.325 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -0.899 1.388 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -0.897 1.383 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -0.999 1.375 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -0.999 1.375 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.876 1.413 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.873 1.425 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.828 1.438 Top 2.268<	+1 40D	-1 046	1 275	Top	2 268	Min Temp %	2 170	372 525	0.003
+140D -1027 1.300 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -1003 1.325 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -0.989 1.325 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -0.974 1.380 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -0.997 1.383 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -0.997 1.383 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.876 1.413 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.876 1.413 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.828 1.425 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.6281 1.433 Top 2.288 </td <td>+1 40D</td> <td>-1 037</td> <td>1 288</td> <td>Top</td> <td>2 268</td> <td>Min Temp %</td> <td>2 170</td> <td>372 525</td> <td>0.003</td>	+1 40D	-1 037	1 288	Top	2 268	Min Temp %	2 170	372 525	0.003
+140D -1016 1313 Top 2288 Min Temp % 2170 372.525 0.003 +140D -1033 1325 Top 2288 Min Temp % 2170 372.525 0.003 +140D -0.974 1.350 Top 2288 Min Temp % 2170 372.525 0.003 +140D -0.974 1.363 Top 2288 Min Temp % 2170 372.525 0.003 +140D -0.939 1.375 Top 2288 Min Temp % 2170 372.525 0.003 +140D -0.988 1.400 Top 2288 Min Temp % 2170 372.525 0.002 +140D -0.876 1.413 Top 2288 Min Temp % 2170 372.525 0.002 +140D -0.883 1.425 Top 2.268 Min Temp % 2170 372.525 0.002 +140D -0.828 1.438 Top 2.268 Min Temp % 2170 372.525 0.002 +140D -0.744 1.455 Top 2.268 Min T	+1 40D	-1 027	1.300	Top	2 268	Min Temp %	2 170	372 525	0.003
+140D -1003 1325 Top 2288 Min Temp % 2.170 372.525 0.003 +140D -0.989 1338 Top 2268 Min Temp % 2.170 372.525 0.003 +140D -0.967 1.863 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -0.967 1.863 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -0.919 1.388 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.876 1.413 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.863 1.425 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.828 1.438 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.774 1.463 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.6650 1.513 Top 2.268	+1 40D	-1 016	1 313	Top	2 268	Min Temp %	2 170	372 525	0.003
+140D -0.889 1338 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -0.974 1350 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -0.933 1.375 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -0.939 1.375 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.898 1.400 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.8876 1.413 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.883 1.425 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.744 1.483 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.744 1.483 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.682 1.500 Top 2.288 </td <td>+1 40D</td> <td>-1 003</td> <td>1.325</td> <td>Top</td> <td>2 268</td> <td>Min Temp %</td> <td>2 170</td> <td>372 525</td> <td>0.003</td>	+1 40D	-1 003	1.325	Top	2 268	Min Temp %	2 170	372 525	0.003
+140D -0.974 1350 Top 2288 Min Temp % 2.170 372.525 0.003 +140D -0.957 1.363 Top 2268 Min Temp % 2.170 372.525 0.003 +140D -0.919 1.388 Top 2.288 Min Temp % 2.170 372.525 0.003 +140D -0.819 1.388 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.876 1.413 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.863 1.425 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.861 1.450 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.774 1.463 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.662 1.513 Top 2.288 Min Temp % 2.170 372.525 0.002 +140D -0.651 1.503 Top 2.88	+1 40D	-0.989	1.338	Top	2 268	Min Temp %	2 170	372 525	0.003
+1400 -0.957 1.363 Top 2.268 Min Temp % 2.170 372.525 0.003 +1400 -0.939 1.375 Top 2.268 Min Temp % 2.170 372.525 0.003 +140D -0.939 1.375 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.888 1.400 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.876 1.413 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.883 1.425 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.824 1.430 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.774 1.475 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.714 1.488 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.650 1.513 Top 2.268<	+1 40D	-0 974	1.350	Top	2 268	Min Temp %	2 170	372 525	0.000
+1400 -0.930 1.375 Top 2.288 Min Temp % 2.170 372.525 0.003 +1.40D -0.919 1.388 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.888 1.400 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.876 1.413 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.828 1.438 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.828 1.438 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.774 1.463 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.618 1.525 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.618 1.525 Top 2.268 Min Temp % 2.170	+1 40D	-0.957	1.363	Top	2 268	Min Temp %	2 170	372 525	0.000
+140D -0.310 Top 2.268 Min Temp % 2.170 372.525 0.000 +140D -0.898 1.400 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.876 1.413 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.853 1.425 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.861 1.450 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.774 1.463 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.774 1.463 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.660 1.513 Top 2.268 Min Temp % 2.170 372.525 0.002 +140D -0.655 1.530 Top 2.268 Min Temp % 2.170 372.525	+1 40D	-0.939	1.375	Top	2 268	Min Temp %	2 170	372 525	0.000
+1400 -0.890 1.400 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.876 1.413 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.828 1.438 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.828 1.438 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.828 1.443 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.774 1.463 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.774 1.463 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.682 1.500 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.682 1.500 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.618 1.525 Top <	+1 40D	-0.919	1.388	Top	2 268	Min Temp %	2 170	372 525	0.000
1.40D -0.876 1.413 Top 2.288 Min Temp % 2.170 372.525 0.002 1.40D -0.853 1.425 Top 2.288 Min Temp % 2.170 372.525 0.002 1.40D -0.861 1.450 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D -0.801 1.450 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D -0.774 1.463 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D -0.774 1.463 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D -0.682 1.500 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D -0.650 1.513 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D -0.555 1.550 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D -0.553 1.563 Top 2.268<	+1.40D	-0.010	1 400	Top	2.200	Min Temp %	2.170	372 525	0.002
1.40D 0.853 1.425 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D 0.828 1.438 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D 0.828 1.438 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D 0.774 1.463 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D 0.774 1.463 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D 0.774 1.463 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D 0.682 1.500 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D 0.651 1.538 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D 0.523 1.563 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.431 1.600 Top 2.268	+1.40D	-0.000	1 4 1 3	Top	2.200	Min Temp %	2.170	372 525	0.002
+140D -0.828 1.438 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.801 1.450 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.774 1.463 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.745 1.475 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.745 1.475 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.682 1.500 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.650 1.513 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.555 1.550 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.452 1.575 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.462 1.588 Top <	+1 40D	-0.853	1 4 2 5	Top	2 268	Min Temp %	2 170	372 525	0.002
+1.40D -0.801 1.450 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.774 1.463 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.744 1.475 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.714 1.488 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.682 1.500 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.682 1.500 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.618 1.525 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.555 1.560 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.462 1.575 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.442 1.638 Top	+1 40D	-0.828	1 4 3 8	Top	2 268	Min Temp %	2 170	372 525	0.002
1.400 -0.774 1.463 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.745 1.475 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.745 1.475 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.682 1.500 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.682 1.513 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.650 1.513 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.555 1.550 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.523 1.563 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.442 1.575 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.431 1.600 Top <	+1 40D	-0.801	1.400	Top	2 268	Min Temp %	2 170	372 525	0.002
1.40D -0.745 1.475 Top 2.288 Min Temp % 2.170 372.525 0.002 +1.40D -0.714 1.488 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.650 1.513 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.650 1.513 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.650 1.513 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.656 1.538 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.555 1.550 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.422 1.583 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.431 1.600 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.431 1.603 Top <	+1 40D	-0 774	1 463	Top	2 268	Min Temp %	2 170	372 525	0.002
1.40D -0.714 1.488 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.682 1.500 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.618 1.525 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.618 1.525 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.586 1.538 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.553 1.550 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.492 1.575 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.412 1.588 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.311 1.600 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.312 1.650 Top <	+1 40D	-0 745	1 475	Top	2 268	Min Temp %	2 170	372 525	0.002
1.40D 0.682 1.500 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D 0.680 1.513 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D 0.618 1.525 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D 0.586 1.538 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D 0.555 1.550 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.523 1.563 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.492 1.575 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.431 1.600 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.431 1.600 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.312 1.650 Top 2.268	+1 40D	-0 714	1 488	Top	2 268	Min Temp %	2 170	372 525	0.002
1.40D 1.650 1.600 1.610 2.100 1.710 372.525 0.002 +1.40D -0.618 1.525 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.586 1.533 Top 2.268 Min Temp % 2.170 372.525 0.002 +1.40D -0.586 1.533 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.553 1.563 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.492 1.575 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.462 1.588 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.431 1.600 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.431 1.600 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.312 1.650 Top 2.268 M	+1.40D	-0.714	1.400	Top	2.200	Min Temp %	2.170	372 525	0.002
1.40D 0.618 1.525 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D 0.586 1.538 Top 2.268 Min Temp % 2.170 372.525 0.002 1.40D 0.555 1.550 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.523 1.563 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.422 1.575 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.462 1.588 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.431 1.600 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.331 1.605 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.342 1.650 Top 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.232 1.663 Top 2.268	+1 40D	-0.650	1 513	Top	2 268	Min Temp %	2 170	372 525	0.002
11.40D -0.586 1.525 1.60 2.268 Min Temp % 2.170 372.525 0.002 11.40D -0.555 1.550 Top 2.268 Min Temp % 2.170 372.525 0.001 11.40D -0.553 1.563 Top 2.268 Min Temp % 2.170 372.525 0.001 11.40D -0.492 1.575 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.492 1.575 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.462 1.588 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.401 1.613 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.371 1.625 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.312 1.650 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.283 1.663 Top	+1 40D	-0.618	1.575	Top	2 268	Min Temp %	2 170	372 525	0.002
1.400 -0.555 1.500 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.523 1.563 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.492 1.575 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.492 1.575 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.462 1.588 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.431 1.600 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.371 1.625 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.312 1.650 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.283 1.663 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.255 1.675 Top <	+1 40D	-0.586	1.528	Top	2 268	Min Temp %	2 170	372 525	0.002
1.400 -0.523 1.563 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.492 1.575 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.462 1.586 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.461 1.600 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.401 1.613 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.371 1.625 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.371 1.625 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.312 1.660 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.255 1.675 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.266 1.688 Top <	+1 40D	-0.555	1.550	Top	2 268	Min Temp %	2 170	372 525	0.002
11.40D -0.492 1.575 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.462 1.588 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.431 1.600 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.431 1.600 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.401 1.613 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.371 1.625 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.312 1.663 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.255 1.675 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.266 1.688 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.198 1.700 Top	+1 40D	-0 523	1.563	Top	2 268	Min Temp %	2 170	372 525	0.001
1.40D -0.462 1.588 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.431 1.600 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.401 1.613 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.371 1.625 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.371 1.625 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.312 1.650 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.283 1.663 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.285 1.675 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.266 1.688 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.170 1.713 Top <	+1 40D	-0.492	1.000	Top	2 268	Min Temp %	2 170	372 525	0.001
1.40D -0.431 1.600 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.401 1.613 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.371 1.625 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.371 1.625 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.342 1.638 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.312 1.660 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.283 1.663 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.226 1.688 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.226 1.688 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.170 1.713 Top <	+1 40D	-0.462	1 588	Top	2 268	Min Temp %	2 170	372 525	0.001
11.40D -0.401 1.613 Top 2.268 Min Temp % 2.170 372.525 0.001 11.40D -0.371 1.625 Top 2.268 Min Temp % 2.170 372.525 0.001 11.40D -0.342 1.638 Top 2.268 Min Temp % 2.170 372.525 0.001 11.40D -0.312 1.650 Top 2.268 Min Temp % 2.170 372.525 0.001 11.40D -0.312 1.650 Top 2.268 Min Temp % 2.170 372.525 0.001 11.40D -0.283 1.663 Top 2.268 Min Temp % 2.170 372.525 0.001 11.40D -0.283 1.663 Top 2.268 Min Temp % 2.170 372.525 0.001 11.40D -0.226 1.688 Top 2.268 Min Temp % 2.170 372.525 0.001 11.40D -0.170 1.713 Top 2.268 Min Temp % 2.170 372.525 0.000 11.40D -0.142 1.725 Top	+1 40D	-0.431	1.600	Top	2 268	Min Temp %	2 170	372 525	0.001
1:1400 -0.371 1.625 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.400 -0.342 1.638 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.400 -0.312 1.650 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.400 -0.312 1.650 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.400 -0.283 1.663 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.400 -0.285 1.675 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.226 1.688 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.198 1.700 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.142 1.725 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.041 1.763 Top	+1 40D	-0.401	1.600	Top	2 268	Min Temp %	2 170	372 525	0.001
11.40D -0.342 1.638 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.312 1.650 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.283 1.663 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.283 1.663 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.255 1.675 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.226 1.688 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.198 1.700 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.170 1.713 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.115 1.738 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.061 1.763 Top	+1 40D	-0.371	1.675	Top	2 268	Min Temp %	2 170	372 525	0.001
11.40D -0.312 1.650 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.283 1.663 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.283 1.663 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.255 1.675 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.226 1.688 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.198 1.700 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.198 1.700 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.115 1.738 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.088 1.750 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.061 1.763 Top	+1 40D	-0.342	1.638	Top	2 268	Min Temp %	2 170	372 525	0.001
11.40D -0.283 1.663 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.255 1.675 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.226 1.688 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.226 1.688 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.198 1.700 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.198 1.700 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.170 1.713 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.115 1.738 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.061 1.763 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.061 1.763 Top	+1 40D	-0.312	1.650	Top	2 268	Min Temp %	2 170	372 525	0.001
11.40D -0.255 1.675 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.226 1.688 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.198 1.700 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.198 1.700 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.198 1.700 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.170 1.713 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.142 1.725 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.088 1.750 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.061 1.763 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.035 1.775 Top	+1 40D	-0.283	1.663	Top	2 268	Min Temp %	2 170	372 525	0.001
11.40D -0.205 1.675 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.198 1.700 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.198 1.700 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.170 1.713 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.170 1.713 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.142 1.725 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.015 1.738 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.061 1.763 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.035 1.775 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.000 1.788 0 <td< td=""><td>+1 40D</td><td>-0.255</td><td>1.000</td><td>Top</td><td>2 268</td><td>Min Temp %</td><td>2 170</td><td>372 525</td><td>0.001</td></td<>	+1 40D	-0.255	1.000	Top	2 268	Min Temp %	2 170	372 525	0.001
11.40D -0.198 1.700 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.170 1.713 Top 2.268 Min Temp % 2.170 372.525 0.001 +1.40D -0.170 1.713 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.142 1.725 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.115 1.738 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.088 1.750 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.061 1.763 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.035 1.775 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.000 1.788 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 1.7140 372.52	+1 40D	-0.226	1.678	Top	2 268	Min Temp %	2 170	372 525	0.001
+1.40D -0.170 1.713 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.142 1.725 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.142 1.725 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.115 1.738 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.088 1.750 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.061 1.763 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.035 1.775 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.035 1.775 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.000 1.788 0 0.000 0 0.000 0.000 0.000 +1.40D 0.018 1.800 Bottom 2.268 <td>+1 40D</td> <td>-0 198</td> <td>1 700</td> <td>Top</td> <td>2 268</td> <td>Min Temp %</td> <td>2 170</td> <td>372 525</td> <td>0.001</td>	+1 40D	-0 198	1 700	Top	2 268	Min Temp %	2 170	372 525	0.001
+1.40D -0.142 1.725 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.115 1.738 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.115 1.738 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.088 1.750 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.061 1.763 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.061 1.763 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.035 1.775 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.000 1.788 0 0.000 0 0.000 0.000 0.000 +1.40D 0.018 1.800 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.043 1.813 Bottom 2.268<	+1 40D	_0 170	1 713	Top	2 268	Min Temp %	2 170	372 525	0.000
+1.40D -0.115 1.738 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.088 1.750 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.088 1.750 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.061 1.763 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.035 1.775 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.000 1.788 0 0.000 0 0.000 0.000 0.000 +1.40D 0.018 1.800 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.043 1.813 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.043 1.813 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.069 1.825 Bottom 2.	+1 40D	_0.170	1 725	Top	2 268	Min Temp %	2 170	372 525	0.000
+1.40D -0.088 1.750 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.061 1.763 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.061 1.763 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.035 1.775 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.000 1.788 0 0.000 0 0.000 0.000 0.000 +1.40D 0.018 1.800 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.043 1.813 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.043 1.813 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.069 1.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000	+1 40D	_0.142	1 738	Top	2 268	Min Temp %	2 170	372 525	0.000
+1.40D -0.061 1.763 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.061 1.763 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D -0.035 1.775 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.000 1.788 0 0.000 0 0.000 0.000 +1.40D 0.018 1.800 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.018 1.800 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.043 1.813 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.069 1.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000	+1 40D	-0.115 -0.088	1 750	Top	2 268	Min Temp %	2 170	372 525	0.000
+1.40D -0.035 1.775 Top 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.000 1.788 0 0.000 0 0.000 0.000 0.000 +1.40D 0.018 1.800 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.018 1.800 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.043 1.813 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.043 1.813 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.069 1.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000	+1 40D	_0.000	1 763	Top	2 268	Min Temp %	2 170	372 525	0.000
+1.40D 0.000 1.788 0 0.000 0 0.000 0.000 0.000 +1.40D 0.018 1.800 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.043 1.813 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.043 1.813 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.069 1.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000	+1 40D	-0.035	1 775	Top	2 268	Min Temp %	2 170	372 525	0.000
+1.40D 0.018 1.800 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.043 1.813 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.043 1.813 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.069 1.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000	+1 40D	0.000	1 788	0	0 000		0.000	0,2.020	0.000
+1.40D 0.043 1.813 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.069 1.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000	+1 40D	0.000	1 800	Bottom	2 268	Min Temn %	2 170	372 525	0.000
+1.40D 0.069 1.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000	+1 40D	0.010	1 813	Bottom	2 268	Min Temp %	2 170	372 525	0.000
	+1.40D	0.069	1 825	Bottom	2 268	Min Temp %	2 170	372 525	0.000

Project File: 23668.ec6

(c) ENERCALC INC 1983-2023

United Structural Design

Combined Footing

LIC# : KW-06012847, Build:20.23.10.02

DESCRIPTION: Tank Footing

		Distance	Tension		Governed			
Load Combination	Mu	from left	Side	As Req'd	by	Actual As	Phi*Mn	Mu / PhiMn
	(ft-k)	(ft)		(in^2)		(in^2)	(ft-k)	
+1.40D	0.094	1.838	Bottom	2.268	Min Temp %	2.170	372.525	0.000
+1.40D	0.119	1.850	Bottom	2.268	Min Temp %	2.170	372.525	0.000
+1.40D	0.143	1.863	Bottom	2.268	Min Temp %	2.170	372.525	0.000
+1.40D	0.168	1.875	Bottom	2.268	Min Temp %	2.170	372.525	0.000
+1.40D	0.192	1.888	Bottom	2.268	Min Temp %	2.170	372.525	0.001
+1.40D	0.215	1.900	Bottom	2.268	Min Temp %	2.170	372.525	0.001
+1.40D	0.239	1.913	Bottom	2.268	Min Temp %	2.170	372.525	0.001
+1.40D	0.262	1.925	Bottom	2.268	Min Temp %	2.170	372.525	0.001
+1.40D	0.285	1.938	Bottom	2.268	Min Temp %	2.170	372.525	0.001
+1.40D	0.308	1.950	Bottom	2.268	Min Temp %	2.170	372.525	0.001
+1.40D	0.330	1.963	Bottom	2.268	Min Temp %	2.170	372.525	0.001
+1.40D	0.352	1.975	Bottom	2.208	Min Temp %	2.170	372.525	0.001
+1.40D	0.374	1.988	Bottom	2.208	Min Temp %	2.170	372.525	0.001
+1.40D	0.390	2.000	Bottom	2.200	Min Temp %	2.170	372.323	0.001
+1.40D	0.417	2.013	Bottom	2.200	Min Temp %	2.170	372.525	0.001
+1.40D	0.450	2.025	Bottom	2.200	Min Temp %	2.170	372.525	0.001
+1.40D	0.439	2.050	Bottom	2.200	Min Temp %	2.170	372 525	0.001
+1.40D	0.475	2.000	Bottom	2 268	Min Temp %	2.170	372 525	0.001
+1 40D	0.500	2.005	Bottom	2 268	Min Temp %	2.170	372 525	0.001
+1 40D	0.520	2.073	Bottom	2 268	Min Temp %	2.170	372 525	0.001
+1 40D	0.559	2 100	Bottom	2 268	Min Temp %	2 170	372 525	0.002
+1 40D	0.578	2 112	Bottom	2 268	Min Temp %	2 170	372 525	0.002
+1 40D	0.598	2 125	Bottom	2 268	Min Temp %	2 170	372 525	0.002
+1.40D	0.616	2.137	Bottom	2.268	Min Temp %	2.170	372.525	0.002
+1.40D	0.635	2.150	Bottom	2.268	Min Temp %	2.170	372.525	0.002
+1.40D	0.654	2.162	Bottom	2.268	Min Temp %	2.170	372.525	0.002
+1.40D	0.672	2.175	Bottom	2.268	Min Temp %	2.170	372.525	0.002
+1.40D	0.690	2.187	Bottom	2.268	Min Temp %	2.170	372.525	0.002
+1.40D	0.708	2.200	Bottom	2.268	Min Temp %	2.170	372.525	0.002
+1.40D	0.725	2.212	Bottom	2.268	Min Temp %	2.170	372.525	0.002
+1.40D	0.743	2.225	Bottom	2.268	Min Temp %	2.170	372.525	0.002
+1.40D	0.760	2.237	Bottom	2.268	Min Temp %	2.170	372.525	0.002
+1.40D	0.777	2.250	Bottom	2.268	Min Temp %	2.170	372.525	0.002
+1.40D	0.794	2.262	Bottom	2.268	Min Temp %	2.170	372.525	0.002
+1.40D	0.811	2.275	Bottom	2.268	Min Temp %	2.170	372.525	0.002
+1.40D	0.827	2.287	Bottom	2.268	Min Temp %	2.170	372.525	0.002
+1.40D	0.844	2.300	Bottom	2.268	Min Temp %	2.170	372.525	0.002
+1.40D	0.860	2.312	Bottom	2.268	Min Temp %	2.170	372.525	0.002
+1.40D	0.876	2.325	Bottom	2.268	Min Temp %	2.170	372.525	0.002
+1.40D	0.892	2.337	Bottom	2.268	Min Temp %	2.170	372.525	0.002
+1.40D	0.900	2.300	Bottom	2.200	Min Temp %	2.170	372.323	0.002
+1.40D	0.923	2.302	Bottom	2.200	Min Temp %	2.170	372.525	0.002
+1.40D	0.950	2.375	Bottom	2.200	Min Temp %	2.170	372.525	0.003
+1.40D	0.904	2.307	Bottom	2.200	Min Temp %	2.170	372 525	0.003
+1.40D	0.909	2.400	Bottom	2.200	Min Temp %	2.170	372 525	0.003
+1 40D	0.004	2.412	Bottom	2 268	Min Temp %	2.170	372 525	0.003
+1 40D	1 013	2 437	Bottom	2 268	Min Temp %	2 170	372 525	0.003
+1 40D	1 028	2 450	Bottom	2 268	Min Temp %	2 170	372 525	0.003
+1.40D	1.042	2.462	Bottom	2.268	Min Temp %	2.170	372.525	0.003
+1.40D	1.057	2.475	Bottom	2.268	Min Temp %	2.170	372.525	0.003
+1.40D	1.071	2.487	Bottom	2.268	Min Temp %	2.170	372.525	0.003
+1.40D	1.085	2.500	Bottom	2.268	Min Temp %	2.170	372.525	0.003
+1.40D	1.099	2.512	Bottom	2.268	Min Temp %	2.170	372.525	0.003
+1.40D	1.113	2.525	Bottom	2.268	Min Temp %	2.170	372.525	0.003
+1.40D	1.126	2.537	Bottom	2.268	Min Temp %	2.170	372.525	0.003
+1.40D	1.140	2.550	Bottom	2.268	Min Temp %	2.170	372.525	0.003
+1.40D	1.154	2.562	Bottom	2.268	Min Temp %	2.170	372.525	0.003
+1.40D	1.167	2.575	Bottom	2.268	Min Temp %	2.170	372.525	0.003
+1.40D	1.180	2.587	Bottom	2.268	Min Temp %	2.170	372.525	0.003
+1.40D	1.194	2.600	Bottom	2.268	Min Temp %	2.170	372.525	0.003
+1.40D	1.207	2.612	Bottom	2.268	Min Temp %	2.170	372.525	0.003

Combined Footing

LIC# : KW-06012847, Build:20.23.10.02

United Structural Design

Project File: 23668.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Tank Footing

		Distance	Tension		Governed			
Load Combination	Mu	from left	Side	As Req'd	by	Actual As	Phi*Mn	Mu / PhiMn
	(ft-k)	(ft)		(in^2)		(in^2)	(ft-k)	
+1.40D	1 220	2 625	Bottom	2 268	Min Temn %	2 170	372 525	0.003
+1 40D	1 233	2 637	Bottom	2 268	Min Temp %	2 170	372 525	0.003
+1 40D	1 246	2 650	Bottom	2 268	Min Temp %	2 170	372 525	0.003
+1 40D	1 259	2 662	Bottom	2 268	Min Temp %	2 170	372 525	0.003
+1 40D	1 272	2.002	Bottom	2 268	Min Temp %	2 170	372 525	0.003
+1.40D	1 285	2.673	Bottom	2 268	Min Temp %	2.170	372 525	0.003
+1.40D	1.205	2.007	Bottom	2.200	Min Temp %	2.170	372.525	0.003
+1.40D	1.230	2.700	Bottom	2.200	Min Temp %	2.170	372.525	0.003
+1.40D	1 2 2 2	2.712	Bottom	2.200	Min Tomp %	2.170	372.525	0.004
+1.40D	1.020	2.723	Bottom	2.200	Min Temp %	2.170	272.525	0.004
+1.40D	1.000	2.131	Bottom	2.200	Min Temp %	2.170	372.323	0.004
+1.40D	1.040	2.730	Bottom	2.200	Min Temp %	2.170	372.323	0.004
+1.40D	1.301	2.702	Bottom	2.200	Min Temp %	2.170	372.323	0.004
+1.40D	1.3/3	2.775	Dottom	2.200	Min Temp %	2.170	372.323	0.004
+1.40D	1.386	2.787	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.398	2.800	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.411	2.812	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.423	2.825	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.435	2.837	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.448	2.850	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.460	2.862	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.473	2.875	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.485	2.887	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.497	2.900	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.510	2.912	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.522	2.925	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.535	2.937	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.547	2.950	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.559	2.962	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.572	2.975	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.584	2.987	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.597	3.000	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.610	3.012	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.622	3.025	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.635	3.037	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.648	3.050	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.660	3.062	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1 40D	1 673	3 075	Bottom	2 268	Min Temp %	2 170	372 525	0.004
+1 40D	1 686	3 087	Bottom	2 268	Min Temp %	2 170	372 525	0.005
+1 40D	1 699	3 100	Bottom	2 268	Min Temp %	2 170	372 525	0.005
+1 40D	1 712	3 1 1 2	Bottom	2 268	Min Temp %	2 170	372 525	0.005
+1 40D	1 725	3 125	Bottom	2 268	Min Temp %	2 170	372 525	0.005
+1.40D	1 730	3 137	Bottom	2 268	Min Temp %	2.170	372 525	0.000
+1.40D	1.750	3 150	Bottom	2.200	Min Temp %	2.170	372 525	0.005
+1.40D	1.752	3 162	Bottom	2.200	Min Temp %	2.170	372.525	0.005
+1.40D	1.705	3 175	Bottom	2.200	Min Tomp %	2.170	372.525	0.005
+1.40D	1.779	3 1 9 7	Bottom	2.200	Min Tomp %	2.170	372.525	0.005
+1.40D	1.792	3.107	Bottom	2.200	Min Temp %	2.170	372.323	0.005
+1.40D	1.000	3.200	Bottom	2.200	Min Temp %	2.170	372.323	0.005
+1.40D	1.019	3.212	Bottom	2.200	Min Temp %	2.170	372.323	0.005
+1.40D	1.833	3.225	Bottom	2.208	Min Temp %	2.170	372.525	0.005
+1.40D	1.847	3.237	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.861	3.250	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.8/5	3.262	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.890	3.275	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.904	3.287	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.919	3.300	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.933	3.312	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.948	3.325	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.963	3.337	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.978	3.350	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.993	3.362	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	2.009	3.375	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	2.024	3.387	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	2.040	3.400	Bottom	2.268	Min Temp %	2.170	372.525	0.005

Combined Footing

LIC# : KW-06012847, Build:20.23.10.02

United Structural Design

Project File: 23668.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Tank Footing

		Distance	Tension		Governed			
Load Combination	Mu	from left	Side	As Req'd	by	Actual As	Phi*Mn	Mu / PhiMn
	(ft-k)	(ft)		(in^2)		(in^2)	(ft-k)	
+1.40D	2.055	3.412	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.071	3.425	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.088	3.437	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.104	3.450	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.120	3.462	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.137	3.475	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.154	3.487	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.171	3.500	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.187	3.512	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.202	3.525	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.216	3.537	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.228	3.550	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.238	3.562	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.247	3.575	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.255	3.587	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.261	3.600	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.266	3.612	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.269	3.625	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.271	3.637	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.271	3.650	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.270	3.662	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.268	3.675	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.264	3.687	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.258	3.700	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.252	3.712	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.243	3.725	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.234	3.737	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.223	3.750	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.211	3.762	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.197	3.775	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.182	3.787	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.165	3.800	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.147	3.812	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.128	3.825	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.107	3.837	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.085	3.850	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.062	3.862	Bottom	2.268	Min Temp %	2.170	372.525	0.006
+1.40D	2.037	3.875	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	2.011	3.887	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.984	3.900	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.955	3.912	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.924	3.925	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.893	3.937	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.860	3.950	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.826	3.962	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.790	3.975	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.753	3.987	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.715	4.000	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.676	4.012	Bottom	2.268	Min Temp %	2.170	372.525	0.005
+1.40D	1.638	4.025	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.600	4.037	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.562	4.050	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.525	4.062	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.488	4.075	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.451	4.087	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.415	4.100	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.379	4.112	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.344	4.125	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.308	4.137	Bottom	2.268	Min Temp %	2.170	372.525	0.004
+1.40D	1.274	4.150	Bottom	2.268	Min Temp %	2.170	372.525	0.003
+1.40D	1.239	4.162	Bottom	2.268	Min Temp %	2.170	372.525	0.003
+1.40D	1.205	4.175	Bottom	2.268	Min Temp %	2.170	372.525	0.003
+1.40D	1.172	4.187	Bottom	2.268	Min Temp %	2.170	372.525	0.003

Combined Footing

LIC# : KW-06012847, Build:20.23.10.02

United Structural Design

Project File: 23668.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Tank Footing

Lad Combination Mu from left Side As Rep'd by Actual & Pin'Lm Mu/ Phil/n +140D 1.138 4.200 Battom 2.288 Min Temp % 2.170 372.625 0.003 +140D 1.037 4.225 Battom 2.288 Min Temp % 2.170 372.625 0.003 +140D 1.041 4.205 Battom 2.288 Min Temp % 2.170 372.625 0.003 +140D 0.978 4.225 Battom 2.288 Min Temp % 2.170 372.625 0.003 +140D 0.917 4.275 Battom 2.288 Min Temp % 2.170 372.625 0.002 +140D 0.858 4.312 Battom 2.288 Min Temp % 2.170 372.625 0.002 +140D 0.663 4.300 Battom 2.288 Min Temp % 2.170 372.625 0.002 +140D 0.774 4.350 Battom 2.288 Min Temp % 2.170			Distance	Tension		Governed			
(ftk) (ftr2) (ftr2) (ftr2) (ftr4) +140D 1.136 4.200 Bottom 2.288 Min Temp % 2.170 372.525 0.003 +140D 1.073 4.255 Bottom 2.288 Min Temp % 2.170 372.525 0.003 +140D 1.041 4.257 Bottom 2.288 Min Temp % 2.170 372.525 0.003 +140D 0.976 4.282 Bottom 2.288 Min Temp % 2.170 372.525 0.003 +140D 0.948 4.275 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.887 4.300 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.870 4.337 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.774 4.350 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D	Load Combination	Mu	from left	Side	As Req'd	by	Actual As	Phi*Mn	Mu / PhiMn
+140D 1-138 4.200 Bottom 2.286 Min Temp % 2.170 372.525 0.003 +140D 1.073 4.225 Bottom 2.286 Min Temp % 2.170 372.525 0.003 +140D 1.011 4.225 Bottom 2.286 Min Temp % 2.170 372.525 0.003 +140D 1.010 4.226 Bottom 2.288 Min Temp % 2.170 372.525 0.003 +140D 0.044 4.275 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.865 4.312 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.859 4.312 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.869 4.325 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.663 4.400 Bottom 2.288 Min Temp % 2.170 </th <th></th> <th>(ft-k)</th> <th>(ft)</th> <th></th> <th>(in^2)</th> <th></th> <th>(in^2)</th> <th>(ft-k)</th> <th></th>		(ft-k)	(ft)		(in^2)		(in^2)	(ft-k)	
++40D 1+06 4_212 bottom 2_288 Min Temp % 2_170 372_525 0.003 ++40D 1.041 4_237 Bottom 2_288 Min Temp % 2_170 372_525 0.003 ++40D 0.014 4_237 Bottom 2_288 Min Temp % 2_170 372_525 0.003 ++40D 0.946 4_275 Bottom 2_288 Min Temp % 2_170 372_525 0.003 +140D 0.946 4_275 Bottom 2_288 Min Temp % 2_170 372_525 0.002 +140D 0.859 4_325 Bottom 2_288 Min Temp % 2_170 372_525 0.002 +140D 0.727 4_350 Bottom 2_288 Min Temp % 2_170 372_525 0.002 +140D 0.772 4_350 Bottom 2_288 Min Temp % 2_170 372_525 0.002 +140D 0.637 4_412 Bottom 2_288 Min Temp % 2_170 <td>+1 40D</td> <td>1 138</td> <td>4 200</td> <td>Bottom</td> <td>2 268</td> <td>Min Temn %</td> <td>2 170</td> <td>372 525</td> <td>0.003</td>	+1 40D	1 138	4 200	Bottom	2 268	Min Temn %	2 170	372 525	0.003
+ 140D 1073 4.225 Bottom 2.288 Min Temp % 2.170 372.525 0.003 + 140D 1.010 4.230 Bottom 2.288 Min Temp % 2.170 372.525 0.003 + 140D 0.976 4.262 Bottom 2.288 Min Temp % 2.170 372.525 0.003 + 140D 0.946 4.275 Bottom 2.288 Min Temp % 2.170 372.525 0.002 + 140D 0.967 4.302 Bottom 2.288 Min Temp % 2.170 372.525 0.002 + 140D 0.967 4.337 Bottom 2.288 Min Temp % 2.170 372.525 0.002 + 140D 0.774 4.332 Bottom 2.288 Min Temp % 2.170 372.525 0.002 + 140D 0.744 4.332 Bottom 2.288 Min Temp % 2.170 372.525 0.002 + 140D 0.663 4.397 Bottom 2.288 Min Temp % <td< td=""><td>+1 40D</td><td>1 106</td><td>4 212</td><td>Bottom</td><td>2 268</td><td>Min Temp %</td><td>2 170</td><td>372 525</td><td>0.003</td></td<>	+1 40D	1 106	4 212	Bottom	2 268	Min Temp %	2 170	372 525	0.003
++40D 1.041 4.237 Bottom 2.288 Min Temp % 2.170 372.525 0.003 +140D 0.976 4.262 Bottom 2.288 Min Temp % 2.170 372.525 0.003 +140D 0.947 4.287 Bottom 2.288 Min Temp % 2.170 372.525 0.003 +140D 0.917 4.287 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.829 4.325 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.829 4.325 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.772 4.330 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.717 4.337 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.637 4.412 Bottom 2.288 Min Temp % 2.170 </td <td>+1 40D</td> <td>1 073</td> <td>4 225</td> <td>Bottom</td> <td>2 268</td> <td>Min Temp %</td> <td>2 170</td> <td>372 525</td> <td>0.003</td>	+1 40D	1 073	4 225	Bottom	2 268	Min Temp %	2 170	372 525	0.003
+140D 1010 4.250 Bottom 2.268 Min Temp % 2.170 372.525 0.003 +140D 0.948 4.275 Bottom 2.268 Min Temp % 2.170 372.525 0.003 +140D 0.947 4.287 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.857 4.300 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.857 4.300 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.0100 4.337 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.714 4.350 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.669 4.367 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.667 4.4475 Bottom 2.268 Min Temp % 2.170<	+1 40D	1.010	4 237	Bottom	2 268	Min Temp %	2 170	372 525	0.003
+140D 0.978 4.282 Bottom 2.288 Min Temp % 2.170 372.282 0.003 +140D 0.917 4.287 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.887 4.302 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.889 4.312 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.889 4.337 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.717 4.375 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.663 4.400 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.663 4.400 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.612 4.437 Bottom 2.268 Min Temp % 2.170 </td <td>+1 40D</td> <td>1 010</td> <td>4 250</td> <td>Bottom</td> <td>2 268</td> <td>Min Temp %</td> <td>2 170</td> <td>372 525</td> <td>0.003</td>	+1 40D	1 010	4 250	Bottom	2 268	Min Temp %	2 170	372 525	0.003
+140D 0.948 4.275 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.887 4.300 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.886 4.312 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.829 4.325 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.772 4.350 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.772 4.357 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.637 4.412 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.657 4.437 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.587 4.437 Bottom 2.268 Min Temp % 2.170 </td <td>+1 40D</td> <td>0.978</td> <td>4 262</td> <td>Bottom</td> <td>2 268</td> <td>Min Temp %</td> <td>2 170</td> <td>372 525</td> <td>0.003</td>	+1 40D	0.978	4 262	Bottom	2 268	Min Temp %	2 170	372 525	0.003
+140D 0.917 4.287 Bottom 2.288 Min Temp % 2.170 372.282 0.002 +140D 0.858 4.302 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.859 4.325 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.800 4.337 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.744 4.362 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.680 4.387 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.687 4.412 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.687 4.412 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.582 4.425 Bottom 2.288 Min Temp % 2.170 </td <td>+1 40D</td> <td>0.078</td> <td>4 275</td> <td>Bottom</td> <td>2 268</td> <td>Min Temp %</td> <td>2 170</td> <td>372 525</td> <td>0.003</td>	+1 40D	0.078	4 275	Bottom	2 268	Min Temp %	2 170	372 525	0.003
+140D 0.867 4.300 Bottom 2.288 Min Temp % 2.170 372.285 0.002 +140D 0.829 4.325 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.829 4.325 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.772 4.360 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.774 4.375 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.660 4.402 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.667 4.402 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.587 4.437 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.451 4.467 Bottom 2.288 Min Temp % 2.170 </td <td>+1 40D</td> <td>0.040</td> <td>4 287</td> <td>Bottom</td> <td>2 268</td> <td>Min Temp %</td> <td>2 170</td> <td>372 525</td> <td>0.000</td>	+1 40D	0.040	4 287	Bottom	2 268	Min Temp %	2 170	372 525	0.000
+140D 0.658 4.312 Bottom 2.868 Win Temp % 2.170 372.525 0.002 +140D 0.800 4.337 Bottom 2.868 Win Temp % 2.170 372.525 0.002 +140D 0.774 4.350 Bottom 2.868 Win Temp % 2.170 372.525 0.002 +140D 0.774 4.357 Bottom 2.868 Win Temp % 2.170 372.525 0.002 +140D 0.669 4.400 Bottom 2.268 Win Temp % 2.170 372.525 0.002 +140D 0.637 4.412 Bottom 2.268 Win Temp % 2.170 372.525 0.002 +140D 0.637 4.412 Bottom 2.268 Win Temp % 2.170 372.525 0.002 +140D 0.642 4.467 Bottom 2.268 Win Temp % 2.170 372.525 0.001 +140D 0.648 4.612 Bottom 2.268 Win Temp % 2.170 </td <td>+1 40D</td> <td>0.887</td> <td>4 300</td> <td>Bottom</td> <td>2 268</td> <td>Min Temp %</td> <td>2 170</td> <td>372 525</td> <td>0.002</td>	+1 40D	0.887	4 300	Bottom	2 268	Min Temp %	2 170	372 525	0.002
+140D 0829 4325 Bottom 2.868 Min Temp % 2.170 372.525 0.002 +140D 0.772 4350 Bottom 2.868 Min Temp % 2.170 372.525 0.002 +140D 0.774 4350 Bottom 2.868 Min Temp % 2.170 372.525 0.002 +140D 0.663 4.400 Bottom 2.868 Min Temp % 2.170 372.525 0.002 +140D 0.663 4.400 Bottom 2.868 Min Temp % 2.170 372.525 0.002 +140D 0.663 4.407 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.652 4.427 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.514 4.475 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.446 4.912 Bottom 2.88 Min Temp % 2.170	+1 40D	0.858	4.312	Bottom	2 268	Min Temp %	2 170	372 525	0.002
+140D 0800 4.337 Bottom 2.88 Min Temp % 2.170 372.525 0.002 +140D 0.774 4.362 Bottom 2.88 Min Temp % 2.170 372.525 0.002 +140D 0.774 4.375 Bottom 2.88 Min Temp % 2.170 372.525 0.002 +140D 0.663 4.400 Bottom 2.88 Min Temp % 2.170 372.525 0.002 +140D 0.637 4.412 Bottom 2.88 Min Temp % 2.170 372.525 0.002 +140D 0.637 4.437 Bottom 2.868 Min Temp % 2.170 372.525 0.002 +140D 0.587 4.437 Bottom 2.868 Min Temp % 2.170 372.525 0.002 +140D 0.458 4.462 Bottom 2.868 Min Temp % 2.170 372.525 0.001 +140D 0.464 5.000 Bottom 2.868 Min Temp % 2.170	+1 40D	0.000	4.325	Bottom	2 268	Min Temp %	2 170	372 525	0.002
+140D 0772 4350 Bottom 2.868 Min Temp % 2.170 372.525 0.002 +140D 0.717 4375 Bottom 2.868 Min Temp % 2.170 372.525 0.002 +140D 0.663 4.400 Bottom 2.868 Min Temp % 2.170 372.525 0.002 +140D 0.637 4.412 Bottom 2.868 Min Temp % 2.170 372.525 0.002 +140D 0.612 4.425 Bottom 2.868 Min Temp % 2.170 372.525 0.002 +140D 0.562 4.450 Bottom 2.268 Min Temp % 2.170 372.525 0.002 +140D 0.514 4.475 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.466 4.500 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.463 4.500 Bottom 2.288 Min Temp % 2.170	+1 40D	0.800	4.337	Bottom	2 268	Min Temp %	2 170	372 525	0.002
+140D 0.744 4382 Bottom 2.288 Min Term % 2.170 372.828 0.002 +140D 0.690 4.387 Bottom 2.288 Min Term % 2.170 372.825 0.002 +140D 0.663 4.400 Bottom 2.268 Min Term % 2.170 372.825 0.002 +140D 0.612 4.428 Bottom 2.268 Min Term % 2.170 372.825 0.002 +140D 0.587 4.437 Bottom 2.268 Min Term % 2.170 372.825 0.002 +140D 0.587 4.462 Bottom 2.268 Min Term % 2.170 372.825 0.001 +140D 0.491 4.487 Bottom 2.268 Min Term % 2.170 372.825 0.001 +140D 0.446 4.512 Bottom 2.268 Min Term % 2.170 372.825 0.001 +140D 0.433 4.557 Bottom 2.268 Min Term % 2.170 <td>+1 40D</td> <td>0.000</td> <td>4.350</td> <td>Bottom</td> <td>2 268</td> <td>Min Temp %</td> <td>2 170</td> <td>372 525</td> <td>0.002</td>	+1 40D	0.000	4.350	Bottom	2 268	Min Temp %	2 170	372 525	0.002
+ 140D 0 717 + 375 Bottom 2.288 Min Terny % 2.170 372.525 0.002 + 140D 0.683 4.400 Bottom 2.288 Min Terny % 2.170 372.525 0.002 + 140D 0.683 4.412 Bottom 2.288 Min Terny % 2.170 372.525 0.002 + 140D 0.612 4.425 Bottom 2.288 Min Terny % 2.170 372.525 0.002 + 140D 0.582 4.462 Bottom 2.268 Min Terny % 2.170 372.525 0.001 + 140D 0.514 4.475 Bottom 2.268 Min Terny % 2.170 372.525 0.001 + 140D 0.446 4.510 Bottom 2.268 Min Terny % 2.170 372.525 0.001 + 140D 0.445 4.525 Bottom 2.268 Min Terny % 2.170 372.525 0.001 + 140D 0.425 4.526 Bottom 2.268 Min Terny %	+1 40D	0.772	4 362	Bottom	2.200	Min Temp %	2.170	372 525	0.002
+ 140D 0.680 + 337 bottom 2.288 Min Temp % 2.170 372.525 0.002 + 140D 0.683 + 440 Bottom 2.288 Min Temp % 2.170 372.525 0.002 + 140D 0.637 + 442 Bottom 2.288 Min Temp % 2.170 372.525 0.002 + 140D 0.647 + 4437 Bottom 2.288 Min Temp % 2.170 372.525 0.002 + 140D 0.6482 + 450 Bottom 2.288 Min Temp % 2.170 372.525 0.001 + 140D 0.641 + 477 Bottom 2.288 Min Temp % 2.170 372.525 0.001 + 140D 0.449 4.50 Bottom 2.288 Min Temp % 2.170 372.525 0.001 + 140D 0.445 4.512 Bottom 2.288 Min Temp % 2.170 372.525 0.001 + 140D 0.433 4.575 Bottom 2.288 Min Temp % <	+1 40D	0.744	4 375	Bottom	2.200	Min Temp %	2.170	372 525	0.002
+140D 0.683 4.400 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.612 4.425 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.587 4.437 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.582 4.460 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.544 4.475 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.446 4.500 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.446 4.512 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.433 4.552 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.383 4.552 Bottom 2.288 Min Temp % 2.170 </td <td>+1 40D</td> <td>0.690</td> <td>4.387</td> <td>Bottom</td> <td>2 268</td> <td>Min Temp %</td> <td>2 170</td> <td>372 525</td> <td>0.002</td>	+1 40D	0.690	4.387	Bottom	2 268	Min Temp %	2 170	372 525	0.002
+140D 0.637 +442 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.612 +4425 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.587 +4457 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.584 +469 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.514 +475 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.469 +500 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.446 +512 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.438 +537 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.383 +562 Bottom 2.288 Min Temp % 2.170	+1 40D	0.000	4 400	Bottom	2.200	Min Temp %	2.170	372 525	0.002
14.0D 0.612 4.425 Bottom 2.228 Min Temp % 1.170 372.525 0.002 +1.40D 0.567 4.437 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +1.40D 0.558 4.452 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1.40D 0.451 4.475 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1.40D 0.449 4.500 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1.40D 0.446 4.512 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1.40D 0.433 4.537 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1.40D 0.333 4.562 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.334 4.562 Bottom 2.268 Min Temp % <td< td=""><td>+1 40D</td><td>0.000</td><td>4 4 1 2</td><td>Bottom</td><td>2.200</td><td>Min Temp %</td><td>2.170</td><td>372 525</td><td>0.002</td></td<>	+1 40D	0.000	4 4 1 2	Bottom	2.200	Min Temp %	2.170	372 525	0.002
+1.40D 0.567 4.437 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +1.40D 0.562 4.450 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +1.40D 0.514 4.475 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1.40D 0.441 4.475 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1.40D 0.446 4.512 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1.40D 0.446 4.512 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1.40D 0.363 4.560 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1.40D 0.363 4.562 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1.40D 0.363 4.562 Bottom 2.288 Min Temp % <t< td=""><td>+1 40D</td><td>0.007</td><td>4 4 2 5</td><td>Bottom</td><td>2.200</td><td>Min Temp %</td><td>2.170</td><td>372 525</td><td>0.002</td></t<>	+1 40D	0.007	4 4 2 5	Bottom	2.200	Min Temp %	2.170	372 525	0.002
140D 0.662 4460 Bottom 2.288 Min Temp % 2.170 372.525 0.002 +140D 0.538 4.447 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.441 4.447 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.446 4.512 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.443 4.525 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.463 4.557 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.363 4.562 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.364 4.567 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.269 4.625 Bottom 2.288 Min Temp % 2.170 <td>+1 40D</td> <td>0.587</td> <td>4 4 3 7</td> <td>Bottom</td> <td>2.200</td> <td>Min Temp %</td> <td>2.170</td> <td>372 525</td> <td>0.002</td>	+1 40D	0.587	4 4 3 7	Bottom	2.200	Min Temp %	2.170	372 525	0.002
1400 0.638 7426 Dottom 2.268 Min Temp % 2.170 372.525 0.004 +1.400 0.514 4.475 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1.400 0.481 4.4475 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1.400 0.446 4.512 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1.400 0.425 4.525 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1.400 0.363 4.550 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1.400 0.363 4.550 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1.400 0.334 4.557 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1.400 0.287 4.612 Bottom 2.288 Min Temp %	+1.40D	0.507	4.450	Bottom	2.200	Min Temp %	2.170	372.525	0.002
1400 0.514 4475 Bottom 2.288 Min Temp % 2.170 372.522 0.001 +1400 0.491 4.487 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +1400 0.449 4.500 Bottom 2.286 Min Temp % 2.170 372.525 0.001 +1400 0.442 4.525 Bottom 2.286 Min Temp % 2.170 372.525 0.001 +1400 0.423 4.537 Bottom 2.286 Min Temp % 2.170 372.525 0.001 +1400 0.383 4.550 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1400 0.343 4.557 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1400 0.324 4.557 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1400 0.252 4.637 Bottom 2.268 Min Temp % 2.170 <td>+1.40D</td> <td>0.502</td> <td>4.462</td> <td>Bottom</td> <td>2.200</td> <td>Min Temp %</td> <td>2.170</td> <td>372.525</td> <td>0.002</td>	+1.40D	0.502	4.462	Bottom	2.200	Min Temp %	2.170	372.525	0.002
1400 0.491 4.487 Bottom 2.208 Min Temp % 2.170 37.252 0.001 +140D 0.469 4.800 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.446 4.512 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.423 4.537 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.363 4.550 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.343 4.575 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.324 4.575 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.269 4.625 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.264 4.625 Bottom 2.268 Min Temp % 2.170 <td>+1.40D</td> <td>0.550</td> <td>4.402</td> <td>Bottom</td> <td>2.200</td> <td>Min Temp %</td> <td>2.170</td> <td>372.525</td> <td>0.001</td>	+1.40D	0.550	4.402	Bottom	2.200	Min Temp %	2.170	372.525	0.001
1.400 0.469 4.500 Bottom 2.288 Min Temp % 2.170 372.522 0.001 +140D 0.446 4.512 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.4425 Bottom 2.288 Min Temp % 2.170 372.525 0.001 +140D 0.4425 4.525 Bottom 2.286 Min Temp % 2.170 372.525 0.001 +140D 0.383 4.550 Bottom 2.286 Min Temp % 2.170 372.525 0.001 +140D 0.343 4.575 Bottom 2.286 Min Temp % 2.170 372.525 0.001 +140D 0.305 4.600 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.287 4.612 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.246 4.657 Bottom 2.268 Min Temp % 2.170 372.5	+1.40D	0.014	4.475	Bottom	2.200	Min Temp %	2.170	372.525	0.001
1.400 0.463 4.503 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1400 0.425 4.525 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.433 4.550 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.383 4.550 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.334 4.575 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.364 4.600 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.269 4.625 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.252 4.637 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.254 4.637 Bottom 2.268 Min Temp % 2.170 </td <td>+1.40D</td> <td>0.460</td> <td>4.500</td> <td>Bottom</td> <td>2.200</td> <td>Min Temp %</td> <td>2.170</td> <td>372.525</td> <td>0.001</td>	+1.40D	0.460	4.500	Bottom	2.200	Min Temp %	2.170	372.525	0.001
1-100 0.425 4.522 Dottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.433 4.537 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.383 4.562 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.383 4.562 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.334 4.587 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.306 4.602 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.287 4.612 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.252 4.650 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +140D 0.219 4.662 Bottom 2.268 Min Temp % 2.170 </td <td>+1.40D</td> <td>0.405</td> <td>4.500</td> <td>Bottom</td> <td>2.200</td> <td>Min Temp %</td> <td>2.170</td> <td>372.525</td> <td>0.001</td>	+1.40D	0.405	4.500	Bottom	2.200	Min Temp %	2.170	372.525	0.001
1:40D 0.425 4.537 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.383 4.550 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.383 4.550 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.334 4.575 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.335 4.600 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.267 4.622 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.267 4.625 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.252 4.637 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.264 4.675 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.161 4.712 Bottom </td <td>+1.40D</td> <td>0.440</td> <td>4.512</td> <td>Bottom</td> <td>2.200</td> <td>Min Temp %</td> <td>2.170</td> <td>372.525</td> <td>0.001</td>	+1.40D	0.440	4.512	Bottom	2.200	Min Temp %	2.170	372.525	0.001
1:40D 0.805 4.557 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.363 4.562 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.334 4.575 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.3324 4.587 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.287 4.612 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.252 4.637 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.235 4.650 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.219 4.662 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.174 4.700 Bottom 2.268 Min Temp % <t< td=""><td>+1.40D</td><td>0.425</td><td>4.525</td><td>Bottom</td><td>2.200</td><td>Min Temp %</td><td>2.170</td><td>372.525</td><td>0.001</td></t<>	+1.40D	0.425	4.525	Bottom	2.200	Min Temp %	2.170	372.525	0.001
1:40D 0.363 4.562 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.343 4.575 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.305 4.600 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.305 4.600 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.269 4.625 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.262 4.637 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.219 4.662 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.161 4.712 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.161 4.712 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.164 4.737 <td< td=""><td>+1.40D</td><td>0.400</td><td>4.550</td><td>Bottom</td><td>2.200</td><td>Min Temp %</td><td>2.170</td><td>372.525</td><td>0.001</td></td<>	+1.40D	0.400	4.550	Bottom	2.200	Min Temp %	2.170	372.525	0.001
1:40D 0.343 4.575 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.324 4.587 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.305 4.600 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.269 4.625 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.269 4.625 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.2619 4.667 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.219 4.662 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.189 4.687 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1:40D 0.161 4.712 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1:40D 0.134 4.737 Bottom<	+1 40D	0.000	4 562	Bottom	2.200	Min Temp %	2.170	372 525	0.001
1:40D 0.324 4.587 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.305 4.600 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.287 4.612 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.289 4.625 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.235 4.650 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.219 4.662 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.219 4.662 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.161 4.712 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1:40D 0.161 4.725 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1:40D 0.147 4.725 Bottom </td <td>+1 40D</td> <td>0.303</td> <td>4 575</td> <td>Bottom</td> <td>2.200</td> <td>Min Temp %</td> <td>2.170</td> <td>372 525</td> <td>0.001</td>	+1 40D	0.303	4 575	Bottom	2.200	Min Temp %	2.170	372 525	0.001
1:40D 0.364 4.600 Bottom 2.260 Min Temp % 2.170 372.525 0.001 +1.40D 0.287 4.612 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.289 4.625 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.252 4.637 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.219 4.662 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.219 4.662 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.184 4.675 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.161 4.712 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.161 4.712 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.161 4.737 <td< td=""><td>+1 40D</td><td>0.343</td><td>4 587</td><td>Bottom</td><td>2.200</td><td>Min Temp %</td><td>2.170</td><td>372 525</td><td>0.001</td></td<>	+1 40D	0.343	4 587	Bottom	2.200	Min Temp %	2.170	372 525	0.001
1:40D 0.287 4.612 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:140D 0.269 4.625 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:140D 0.252 4.637 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:140D 0.235 4.650 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:140D 0.219 4.662 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:140D 0.189 4.667 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:140D 0.161 4.712 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1:140D 0.147 4.725 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1:40D 0.147 4.725 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1:40D 0.110 4.762 B	+1 40D	0.024	4 600	Bottom	2.200	Min Temp %	2.170	372 525	0.001
1.40D 0.269 4.625 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.252 4.637 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.235 4.662 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.219 4.662 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.219 4.662 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.174 4.700 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.161 4.712 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1.40D 0.161 4.725 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1.40D 0.114 4.737 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1.40D 0.122 4.750 Bottom </td <td>+1 40D</td> <td>0.000</td> <td>4 612</td> <td>Bottom</td> <td>2.200</td> <td>Min Temp %</td> <td>2.170</td> <td>372 525</td> <td>0.001</td>	+1 40D	0.000	4 612	Bottom	2.200	Min Temp %	2.170	372 525	0.001
1.40D 0.252 4.637 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.235 4.650 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.219 4.662 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.204 4.675 Bottom 2.268 Min Temp % 2.170 372.525 0.001 +1.40D 0.189 4.687 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.161 4.712 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.161 4.712 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.147 4.725 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.122 4.750 Bottom 2.268 Min Temp % <td< td=""><td>+1.40D</td><td>0.269</td><td>4 625</td><td>Bottom</td><td>2 268</td><td>Min Temp %</td><td>2 170</td><td>372 525</td><td>0.001</td></td<>	+1.40D	0.269	4 625	Bottom	2 268	Min Temp %	2 170	372 525	0.001
1:40D 0.235 4.650 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.219 4.662 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.204 4.675 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.189 4.687 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1:40D 0.161 4.712 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1:40D 0.161 4.712 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1:40D 0.147 4.725 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1:40D 0.134 4.737 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1:40D 0.104 4.762 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1:40D 0.069 4.812 Bottom </td <td>+1 40D</td> <td>0.200</td> <td>4 637</td> <td>Bottom</td> <td>2 268</td> <td>Min Temp %</td> <td>2 170</td> <td>372 525</td> <td>0.001</td>	+1 40D	0.200	4 637	Bottom	2 268	Min Temp %	2 170	372 525	0.001
1.40D 0.219 4.662 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.204 4.675 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.189 4.687 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.174 4.700 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1.40D 0.161 4.712 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1.40D 0.161 4.712 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1.40D 0.134 4.737 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1.40D 0.122 4.750 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1.40D 0.010 4.765 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1.40D 0.069 4.812 Bottom </td <td>+1 40D</td> <td>0.202</td> <td>4 650</td> <td>Bottom</td> <td>2 268</td> <td>Min Temp %</td> <td>2 170</td> <td>372 525</td> <td>0.001</td>	+1 40D	0.202	4 650	Bottom	2 268	Min Temp %	2 170	372 525	0.001
1.40D 0.204 4.675 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.189 4.687 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.174 4.700 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1.40D 0.161 4.712 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1.40D 0.147 4.725 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1.40D 0.147 4.725 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1.40D 0.122 4.750 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1.40D 0.019 4.762 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1.40D 0.069 4.812 Bottom 2.268 Min Temp % 2.170 372.525 0.000 1.40D 0.061 4.825 Bottom </td <td>+1 40D</td> <td>0.200</td> <td>4.662</td> <td>Bottom</td> <td>2 268</td> <td>Min Temp %</td> <td>2 170</td> <td>372 525</td> <td>0.001</td>	+1 40D	0.200	4.662	Bottom	2 268	Min Temp %	2 170	372 525	0.001
1.40D 0.189 4.687 Bottom 2.268 Min Temp % 2.170 372.525 0.001 1.40D 0.174 4.700 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.161 4.712 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.147 4.725 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.134 4.737 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.122 4.750 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.110 4.762 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.099 4.775 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.069 4.812 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.061 4.825	+1 40D	0.210	4.675	Bottom	2 268	Min Temp %	2 170	372 525	0.001
1.40D 0.174 4.700 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.161 4.712 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.147 4.725 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.134 4.737 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.122 4.750 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.110 4.762 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.099 4.775 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.089 4.878 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.069 4.812 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.061 4.825 <td< td=""><td>+1 40D</td><td>0.204</td><td>4.670</td><td>Bottom</td><td>2 268</td><td>Min Temp %</td><td>2 170</td><td>372 525</td><td>0.001</td></td<>	+1 40D	0.204	4.670	Bottom	2 268	Min Temp %	2 170	372 525	0.001
+1.40D 0.161 4.712 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.147 4.725 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.134 4.737 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.122 4.750 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.110 4.762 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.099 4.775 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.089 4.787 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.069 4.812 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.061 4.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.052 4.837 <t< td=""><td>+1 40D</td><td>0.100</td><td>4 700</td><td>Bottom</td><td>2 268</td><td>Min Temp %</td><td>2 170</td><td>372 525</td><td>0.000</td></t<>	+1 40D	0.100	4 700	Bottom	2 268	Min Temp %	2 170	372 525	0.000
11.40D 0.147 4.725 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.134 4.737 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.122 4.750 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.110 4.762 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.099 4.775 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.099 4.775 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.089 4.787 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.061 4.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.061 4.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.052 4.837 <t< td=""><td>+1 40D</td><td>0.161</td><td>4 712</td><td>Bottom</td><td>2 268</td><td>Min Temp %</td><td>2 170</td><td>372 525</td><td>0.000</td></t<>	+1 40D	0.161	4 712	Bottom	2 268	Min Temp %	2 170	372 525	0.000
11.40D 0.134 4.737 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.112 4.750 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.110 4.762 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.099 4.775 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.099 4.775 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.089 4.787 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.069 4.812 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.061 4.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.045 4.850 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.031 4.875 <t< td=""><td>+1 40D</td><td>0.101</td><td>4 725</td><td>Bottom</td><td>2 268</td><td>Min Temp %</td><td>2 170</td><td>372 525</td><td>0.000</td></t<>	+1 40D	0.101	4 725	Bottom	2 268	Min Temp %	2 170	372 525	0.000
11.40D 0.122 4.750 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.099 4.775 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.099 4.775 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.089 4.787 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.079 4.800 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.069 4.812 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.061 4.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.052 4.837 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.034 4.850 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.031 4.875 <t< td=""><td>+1 40D</td><td>0 134</td><td>4 737</td><td>Bottom</td><td>2 268</td><td>Min Temp %</td><td>2 170</td><td>372 525</td><td>0.000</td></t<>	+1 40D	0 134	4 737	Bottom	2 268	Min Temp %	2 170	372 525	0.000
11.40D 0.110 4.762 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.099 4.775 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.089 4.787 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.079 4.800 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.069 4.812 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.061 4.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.052 4.837 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.052 4.837 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.038 4.862 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.031 4.875 <t< td=""><td>+1 40D</td><td>0.122</td><td>4 750</td><td>Bottom</td><td>2 268</td><td>Min Temp %</td><td>2 170</td><td>372 525</td><td>0.000</td></t<>	+1 40D	0.122	4 750	Bottom	2 268	Min Temp %	2 170	372 525	0.000
11.40D 0.099 4.775 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.089 4.787 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.079 4.800 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.069 4.812 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.061 4.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.061 4.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.052 4.837 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.038 4.862 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.031 4.875 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.025 4.887 <t< td=""><td>+1 40D</td><td>0.110</td><td>4 762</td><td>Bottom</td><td>2 268</td><td>Min Temp %</td><td>2 170</td><td>372 525</td><td>0.000</td></t<>	+1 40D	0.110	4 762	Bottom	2 268	Min Temp %	2 170	372 525	0.000
+1.40D 0.089 4.787 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.079 4.800 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.069 4.812 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.061 4.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.061 4.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.052 4.837 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.045 4.862 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.031 4.875 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.025 4.887 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.020 4.900 <t< td=""><td>+1 40D</td><td>0 099</td><td>4 775</td><td>Bottom</td><td>2 268</td><td>Min Temp %</td><td>2 170</td><td>372 525</td><td>0,000</td></t<>	+1 40D	0 099	4 775	Bottom	2 268	Min Temp %	2 170	372 525	0,000
+1.40D 0.079 4.800 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.069 4.812 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.061 4.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.061 4.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.052 4.837 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.045 4.850 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.038 4.862 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.031 4.875 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.020 4.900 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.015 4.912 <t< td=""><td>+1 40D</td><td>0.089</td><td>4 787</td><td>Bottom</td><td>2 268</td><td>Min Temp %</td><td>2 170</td><td>372 525</td><td>0,000</td></t<>	+1 40D	0.089	4 787	Bottom	2 268	Min Temp %	2 170	372 525	0,000
+1.40D 0.069 4.812 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.061 4.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.052 4.837 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.052 4.837 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.045 4.850 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.038 4.862 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.031 4.875 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.020 4.900 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.020 4.900 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.015 4.912 <t< td=""><td>+1 40D</td><td>0 079</td><td>4 800</td><td>Bottom</td><td>2 268</td><td>Min Temp %</td><td>2 170</td><td>372 525</td><td>0.000</td></t<>	+1 40D	0 079	4 800	Bottom	2 268	Min Temp %	2 170	372 525	0.000
+1.40D 0.061 4.825 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.052 4.837 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.045 4.850 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.045 4.850 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.038 4.862 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.031 4.875 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.025 4.887 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.020 4.900 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.015 4.912 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.011 4.925 <t< td=""><td>+1 40D</td><td>0.069</td><td>4 812</td><td>Bottom</td><td>2 268</td><td>Min Temp %</td><td>2 170</td><td>372 525</td><td>0.000</td></t<>	+1 40D	0.069	4 812	Bottom	2 268	Min Temp %	2 170	372 525	0.000
11.40D 0.051 1.620 0.051 1.620 0.011 <t< td=""><td>+1 40D</td><td>0.061</td><td>4 825</td><td>Bottom</td><td>2 268</td><td>Min Temp %</td><td>2 170</td><td>372 525</td><td>0.000</td></t<>	+1 40D	0.061	4 825	Bottom	2 268	Min Temp %	2 170	372 525	0.000
+1.40D 0.045 4.850 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.038 4.862 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.031 4.875 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.025 4.887 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.020 4.900 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.020 4.900 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.015 4.912 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.011 4.925 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.000 4.937 0 0.000 0 0.000 0.000 0.000 +1.40D 0.000 4.950 0 <	+1 40D	0.052	4 837	Bottom	2 268	Min Temp %	2 170	372 525	0.000
+1.40D 0.038 4.862 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.031 4.875 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.025 4.887 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.020 4.900 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.020 4.900 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.015 4.912 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.011 4.925 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.001 4.937 0 0.000 0 0.000 0.000 0.000 +1.40D 0.000 4.950 0 0.000 0 0.000 0.000 0.000 +1.40D 0.000 4.962 0 0.000	+1 40D	0.045	4 850	Bottom	2 268	Min Temp %	2 170	372 525	0.000
+1.40D 0.031 4.875 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.025 4.887 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.020 4.900 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.015 4.912 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.015 4.912 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.011 4.925 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.000 4.937 0 0.000 0 0.000 0.000 0.000 +1.40D 0.000 4.950 0 0.000 0 0.000 0.000 0.000 0.000 +1.40D 0.000 4.962 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.40D 0.000 <td< td=""><td>+1 40D</td><td>0.038</td><td>4 862</td><td>Bottom</td><td>2 268</td><td>Min Temp %</td><td>2 170</td><td>372 525</td><td>0.000</td></td<>	+1 40D	0.038	4 862	Bottom	2 268	Min Temp %	2 170	372 525	0.000
+1.40D 0.025 4.887 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.020 4.900 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.015 4.912 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.011 4.925 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.011 4.925 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.000 4.937 0 0.000 0 0.000 0.000 +1.40D 0.000 4.950 0 0.000 0 0.000 0.000 +1.40D 0.000 4.962 0 0.000 0 0.000 0.000 0.000 +1.40D 0.000 4.975 0 0.000 0 0.000 0.000 0.000	+1 40D	0.031	4 875	Bottom	2 268	Min Temp %	2 170	372 525	0.000
+1.40D 0.020 4.900 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.015 4.912 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.015 4.912 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.011 4.925 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.000 4.937 0 0.000 0 0.000 0.000 0.000 +1.40D 0.000 4.950 0 0.000 0 0.000 0.000 0.000 +1.40D 0.000 4.950 0 0.000 0 0.000 0.000 0.000 +1.40D 0.000 4.962 0 0.000 0.000 0.000 0.000 +1.40D 0.000 4.975 0 0.000 0.000 0.000 0.000 0.000	+1.40D	0.025	4 887	Bottom	2 268	Min Temp %	2 170	372 525	0 000
+1.40D 0.015 4.912 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.011 4.925 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.011 4.925 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.000 4.937 0 0.000 0 0.000 0.000 0.000 +1.40D 0.000 4.950 0 0.000 0 0.000 0.000 0.000 +1.40D 0.000 4.962 0 0.000 0 0.000 0.000 +1.40D 0.000 4.975 0 0.000 0 0.000 0.000	+1 40D	0.020	4 900	Bottom	2 268	Min Temp %	2 170	372 525	0.000
+1.40D 0.011 4.925 Bottom 2.268 Min Temp % 2.170 372.525 0.000 +1.40D 0.000 4.937 0 0.000 0 0.000 0.000 0.000 +1.40D 0.000 4.937 0 0.000 0 0.000 0.000 0.000 +1.40D 0.000 4.950 0 0.000 0 0.000 0.000 0.000 +1.40D 0.000 4.962 0 0.000 0 0.000 0.000 +1.40D 0.000 4.975 0 0.000 0 0.000 0.000	+1.40D	0.015	4 912	Bottom	2 268	Min Temp %	2 170	372 525	0 000
+1.40D 0.000 4.937 0 0.000 0 0.000 0.000 0.000 +1.40D 0.000 4.937 0 0.000 0 0.000 0.000 0.000 +1.40D 0.000 4.950 0 0.000 0 0.000 0.000 0.000 +1.40D 0.000 4.962 0 0.000 0 0.000 0.000 +1.40D 0.000 4.975 0 0.000 0 0.000 0.000	+1.40D	0.011	4 925	Bottom	2 268	Min Temp %	2 170	372 525	0 000
+1.40D 0.000 4.950 0 0.000 0.	+1 40D	0.000	4 937	0	0.000	0	0 000	0.000	0.000
+1.40D 0.000 4.962 0 0.000 0 0.000 0.000 0.000 +1.40D 0.000 4.962 0 0.000 0 0.000 0.000 0.000 +1.40D 0.000 4.975 0 0.000 0 0.000 0.000 0.000	+1 40D	0.000	4 950	õ	0.000	ñ	0.000	0.000	0.000
+1.40D 0.000 4.975 0 0.000 0 0.000 0.000 0.000	+1.40D	0.000	4 962	õ	0.000	õ	0,000	0 000	0 000
	+1.40D	0.000	4.975	Ō	0.000	õ	0.000	0.000	0.000

Combined Footing

LIC# : KW-06012847, Build:20.23.10.02

United Structural Design

Project File: 23668.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Tank Footing

Load Combination N (ft	lu -k)	Distance from left (ft)	Tension Side	As Req'd (in^2)	Governed by	Actual As (in^2)	Phi*Mn (ft-k)	Mu / PhiMn
+1.40D (0.000	4.987	0	0.000	0	0.000	0.000	0.000
+1.40D (000.0	5.000	0	0.000	0	0.000	0.000	0.000
One Way Shear					Punching	Shear		
Load Combination F	Phi Vn	vu @	Col #1	vu @ Col #2	Phi Vn	vu @ C	ol#1 v	u @ Col #2
+1.40D	82.16 ps	si 0.	96 psi	0.96 psi	164.32 p	osi 0.48	psi	0.60 psi
+1.20D	82.16 ps	si 0.	82 psi	0.82 psi	164.32 p	osi 0.41	psi	0.51 psi
+0.90D	82.16 ps	si 0.	62 psi	0.62 psi	164.32 p	osi 0.31	psi	0.39 psi

LIC# : KW-06012847, Build:20.23.10.02 United Structural Design (c) ENERCAL DESCRIPTION: Crash Post footing Code References Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2018 General Information Pole Footing Shape Circular Pole Footing Diameter 16.0 in	C INC 1983-2023
DESCRIPTION: Crash Post footing Code References Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2018 General Information Circular Pole Footing Shape Circular Pole Footing Diameter 16.0 in	
Code References Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2018 General Information Pole Footing Shape Circular Pole Footing Diameter 16.0 in	
Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2018 General Information Pole Footing Shape Circular Pole Footing Diameter	
Load Combinations Used : IBC 2018 General Information Pole Footing Shape Circular Pole Footing Diameter	
General Information Pole Footing Shape Circular Pole Footing Diameter 16.0 in	
Pole Footing Shape Circular Pole Footing Diameter 16.0 in	
Pole Footing Diameter	
Calculate Min. Depth for Allowable Pressures	
No Lateral Restraint at Ground Surface	
Allow Passive	
Max Passive	
Controlling Values	°-0"
Governing Load Combination Only Soil Surface No la	teral restraint
Lateral Load 30 k	
Moment 9.0 k-ft	12178 12118 12118
NO Ground Surface Restraint	
Pressures at 1/3 Depth	8-18
Actual 930.31 psf	
Allowable 930.86 psf	
Minimum Required Depth 8.0 ft	
Footing Base Area 1.396 ft ²	
Maximum Soil Pressure 0.0 ksf	

Applied Loads

_ _ _

. .

. .

.

Lateral Concentrated Loa	id (k)	Lateral Distributed Loads (k	Vertical Load (k)
D : Dead Load	3.0 k	k/ft	k
Lr : Roof Live	k	k/ft	k
L : Live	k	k/ft	k
S : Snow	k	k/ft	k
W : Wind	k	k/ft	k
E : Earthquake	k	k/ft	k
H : Lateral Earth	k	k/ft	k
Load distance above		TOP of Load above ground surface	
ground surface	3.0 ft	ft	
		BOTTOM of Load above ground surface	
		ft	

Load Combination Results

	Forces @	Ground Surface	Required	Pressure at	1/3 Depth	Soil Increase
Load Combination	Loads - (k)	Moments - (ft-k)	Depth - (ft)	Actual - (psf)	Allow - (psf)	Factor
D Only	3.000	9.000	8.00	930.3	930.9	1.000
+0.60D	1.800	5.400	6.50	745.7	746.8	1.000

19 of 26 Item 3.a.

SIMPSON

Strong-I

Anchor Designer™ Software Version 3.0.7947.0

Company:	D	ate:	10/18/2023
Engineer:	P	age:	1/5
Project:			
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place Material: AB Diameter (inch): 0.875 Effective Embedment depth, h_{ef} (inch): 5.000 Anchor category: -Anchor ductility: Yes h_{min} (inch): 7.38 C_{min} (inch): 5.25 S_{min} (inch): 5.25

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB7 (7/8"Ø)

Project description: Location: Fastening description:

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 12.00 State: Uncracked Compressive strength, f'_c (psi): 3000 $\Psi_{c,V}$: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: No Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: No Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 6.00 x 6.00 x 0.25

Item 3.a. 20 of 26

SIMPSON Strong-Tie

Anchor Designer™ Software Version 3.0.7947.0

Company:	Date:	10/18/2023
Engineer:	Page:	2/5
Project:		
Address:		
Phone:		
E-mail:		

Load and Geometry Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Strength level loads:

N_{ua} [lb]: 3765 Vuax [Ib]: 0 Vuax [Ib]: 0 Vuay [Ib]: 0 Mux [ft-Ib]: 0 Muy [ft-Ib]: 0

<Figure 1>

21 of 26

Item 3.a.

Anchor Designer™ Software Version 3.0.7947.0

Company:	Date:	10/18/2023
Engineer:	Page:	3/5
Project:		-
Address:		
Phone:		
E-mail:		

<Figure 2>

22 of 26 Item 3.a.

SIMPSO Strong-Tr	Anchor Designer Software Version 3.0.7947.0	гм	Company: Engineer: Project: Address: Phone: E-mail:		Date: Page:	10/18/2023 4/5
<u>3. Resulting A</u> Anchor	nchor Forces Tension load, Nua (lb)	Shear loa Vuar (lb)	d x,	Shear load y,	Shear load co √(Vuov)²+(Vuov)²	mbined,
1	3765.0	0.0		0.0	0.0	(10)

0.0

<Figure 3>

0.0

Maximum concrete compression strain (‰): 0.00	
Maximum concrete compression stress (psi): 0	
Resultant tension force (lb): 3765	
Resultant compression force (lb): 0	
Eccentricity of resultant tension forces in x-axis, e' _{Nx} (inch): 0.	.00
Eccentricity of resultant tension forces in y-axis, e' _{Ny} (inch): 0.	.00

3765.0

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

<i>Nsa</i> (lb)	ϕ	ϕN_{sa} (lb)
26795	0.75	20096

Sum

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

$N_b = k_c \lambda_a \sqrt{f'_c h}$	ef ^{1.5} (Eq. 17.4.2	2.2a)						
Kc	λa	f'c (psi)	hef (in)	<i>N</i> ₅ (lb)				
24.0	1.00	3000	5.000	14697				
$\phi N_{cb} = \phi \left(A_{Nc} \right)$	/ A _{Nco}) Ψ _{ed,N} Ψ _{c,I}	$_{N}\Psi_{cp,N}N_{b}$ (Sec. 1	7.3.1 & Eq. 17.	4.2.1a)				
A_{Nc} (in ²)	A _{Nco} (in ²)	c _{a,min} (in)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	ϕ	ϕN_{cb} (lb)
216.64	225.00	6.00	0.940	1.25	1.000	14697	0.70	11639

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$\phi N_{pn} = \phi$	$\Psi_{c,P}N_{p} = \phi \Psi_{c,P} 8A_{brg}f'_{c}$	e (Sec. 17.3.1	, Eq. 17.4.3.1 &	. 17.4.3.4)
$\Psi_{c,P}$	A_{brg} (in ²)	<i>f'c</i> (psi)	ϕ	ϕN_{pn} (lb)
1.4	4.07	3000	0.70	95609

23 of 26 Item 3.a.

Anchor Designer™ Software Version 3.0.7947.0

Company:	Date:	10/18/2023
Engineer:	Page:	5/5
Project:		-
Address:		
Phone:		
E-mail:		

<u>11. Results</u>

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	3765	20096	0.19	Pass
Concrete breakout	3765	11639	0.32	Pass (Governs)
Pullout	3765	95609	0.04	Pass

PAB7 (7/8"Ø) with hef = 5.000 inch meets the selected design criteria.

12. Warnings

- Designer must exercise own judgement to determine if this design is suitable.

USD Project No.:-Project No.:-

63

- FILL WITH GROUT AND 1. CROWN TOP.
- 4" STD STEEL POST. 2. SCHEDULE 40; GALVANIZED.
- FINISHED GRADE, CONCRETE 3. SLAB, OR ASPHALT AS OCCURS.
- 4. 16" DIA. CONCRETE FOOTING (CLASS B) F'c = 2,500.

NOTES:

- SAFETY POST SHALL COMPLY WITH THE MINIMUM **REQUIREMENTS OF NFP 58,** CITY, AND AHJ.
- BOLLARD SPACING SHALL NOT EXCEED 4 FEET BETWEEN POSTS ON CENTER.
- BOLLARDS SHALL BE LOCATED MINIMUM 3 FEET **CLEAR FROM PROPANE** TANK.

Spec Sheet 551-001Section:551Effective:April 2015Replaces:October 2014

Ebsray RC Series – Models RC20 & RC25 Regenerative Turbine Pump for LPG Applications

Design

The Ebsray RC Series Regenerative Turbine Pumps are designed and precision-built for high-pressure transfer of LPG, autogas, propane, and butane.

Applications

- LPG Autogas dispensers, single or two hoses (RC25)
- Industrial dispensing
- Autogas refueling
- Marine dispensing
- Portable tanks
- Cylinder filling
- Forklift refueling
- Direct burner or vaporizer feed

Features & Benefits

- Quiet, vibration-free operation
- Low maintenance, single-stage impeller
- Close coupled to standard NEMA C-face motors. IEC C-face adapters available.
- Simple installation with C-face close coupled mounting
- Versatile 3-port arrangement, self-venting design
- Bypass valve connection port direct
 on pump
- Balanced mechanical seal, unique cartridge design for simplicity of assembly/maintenance
- Throttle bushing for secondary sealing

Assured Quality & Performance

ISO 9001 Quality System assures compliance with the high safety and quality standards demanded by the LPG industry

Pumps are listed by Underwriters Laboratories for LP-gas service.

Ebsray RC Series – Models RC20 & RC25 Regenerative Turbine Pump for LPG Applications

Maximum Operating Limits

Flow Rate Pump Model (at 3,500 rpm)		Differential Press (at 3,500 rpm)		ureHydrostatic Test Pressure		Power		Pump Speed	We	Weight	
	gpm	L/min	psi	bar	psi	bar	HP	kW	rpm	lbs	kg
RC20	15	58	175	12	1,015	70	2.9	2.2	3,500	43	19.5
RC25	25	94	175	12	1,015	70	4.8	3.6	3,500	43	19.5

Porting:

Inlet: NPT 1" 90° and/or 180° Discharge: NPT 1" 90° and/or 180°

Performance

Typical Installations

GAS EOUIPMENT CO., INC.

Atlanta GA (800) 241-4155

Kansas City MO

(800) 821-5062

Dallas TX

(800) 821-1829

Little Rock AR

(800) 643-8222

www.gasequipment.com

SINCE 1937

Fayetteville NC

(800) 447-1625

Orlando FL

(800) 821-0631

Houston TX

(800) 334-7816

Indianapolis IN (800) 241-1971 St. Louis MO (800) 423-4685

Spec Sheet 551-007 Section: 551 Effective: April 2015 Replaces: October 2014

Ebsray RV Series – Model RV18 Bypass Valve for LPG Applications

Design

In-line design Bypass/Pressure Relief Valves are used for a wide variety of LPG services. Adjustable differential pressure is attained for accurate and repeatable performance in return-to-tank or bypass systems. This enables full pump flow while maintaining controlled preset maximum pressure.

Features & Benefits

- CBS Constant Bleed System
- Chatter-free quiet operation
- 90° porting arrangement
- 1" NPT tapped ports. 1" ANSI 300 flanged option.
- Adjustable pressure setting
- Low pressure rise
- VRS Vapor Removal System

Assured Quality & Performance

ISO9001 Quality System assures compliance with the high safety and quality standards demanded by the LPG industry

Pumps are listed by Underwriters Laboratories for LP-gas service.

Ebsray RV Series – Model RV18 Bypass Valve for LPG Applications

Maximum Operating Limits

Pump Mod	el Flow	ı Ra t e	Different	tial Pres s ure	e Hydrostatic Test Pressure		
	gpm	L/min	psi	bar	psi	bar	
RV18	52	200	203	14	1,015	70	

Porting:

1" NPT tapped

- Downstream system resistance will affect differential pressure.
- 2 Spring selection to suit required pressure range.
- 3 Pressure rise is dependent upon flow through Bypass Valve

in

С

В

NOTE: All specifications and illustrations are typical only and subject to revision without notice. Certified data available upon request.

В

С

А

Ports

1" NPT

Tapped

Weight 13.9 lbs

6.3 kg

Optional

Integral "excess flow" type VRS. (Vapor Removal System)

- Rapid Vapor Clearing
- Efficiency after vapor clearing is completed "excess flow" valve closes fully. This ensures full pump outlet is available at discharge point.
- Interchangeable with standard Spool Valve. (CBS)

Atlanta GA

(800) 241-4155

Kansas City MO

(800) 821-5062

Little Rock AR

(800) 643-8222

www.gasequipment.com

GAS EQUIPM ENT COMPANY, SINCE 1937 **Dallas TX** (800) 821-1829 **Favetteville NC**

(800) 447-1625 Orlando FL (800) 821-0631

Houston TX (800) 334-7816 **Richmond VA** (800) 368-4013 email: info@gasequipment.com

zlack

Indianapolis IN (800) 241-1971 St. Louis MO (800) 423-4685

Inc.

🖪 company

551-007

MOTOR / ELECTRIC

Item 3.a.

This document is to serve as a guideline to assist in the installation, startup, and troubleshooting of the following pump and motor units – LGL1.25, LGL1.5 and LGL150 Series pumps. Only qualified personnel trained in the safe installation and operation of the equipment should install the unit. When connecting a unit to power please follow NEC (National Electric Code) and any other (country specific) local electrical codes that may apply during installation. Please verify all electrical information prior to startup of unit. This document is not intended to be used as a reference or authority for design, construction, or application of electrical systems.

Motor Wire Sizing:

Figure 1 contains a table of motor sizes and the respective recommended wire size depending upon the distance between the source and the load. As the distance increases from the source to the load, the voltage drops, caused by the resistance and reactance of a particular size of the wire. The wire must be sized properly to allow for this voltage drop to remain within an acceptable range. This is especially important for single phase motor applications. The following guidelines are minimums.

Recommended Motor Wiring								
Motor				Recommended Wire Size, AWG				
HP	Motor Phase	Voltage	Full Load	Length of Run in Feet				
			Amperes	0-100	To 200	To 300		
<mark>3</mark>	1	120	42.5	4	2	1/0		
		240	21.25	10	8	6		
	<mark>3</mark>	<mark>240</mark>	<mark>12</mark>	<mark>12</mark>	<mark>12</mark>	<mark>10</mark>		
		480	6	12	12	12		
5	1	120	70	3	1/0	2/0		
		240	35	8	6	4		
	3	240	19	12	10	8		
		480	9.5	12	12	12		
7.5	3	240	27.5	10	8	6		
		480	13.75	12	12	12		

Figure 1: Recommended Motor Wiring*

* Information collected from standard voltage drop calculator, with a 3% allowable decrease in voltage drop or less using standard conditions. For conditions other than listed, consult NEC handbook, local standards, or engineering handbook. Wire sizes are expressed in AWG (American Wire Gauge). For other distances consult the Blackmer factory.

Phased Power:

It is recommended to use three phase power where applicable. The three phase motor is a simpler design, more efficient by design, and also less costly than the single phase motor. The three phase motor allows for a higher starting torque, smoother operation, and allows the use of a smaller wire size over greater distances. Single phase power can be converted to three phase power by using a phase converter, which is readily available and inexpensive.

System Design:

Systems shall be designed according to NFPA standards and local codes. It is recommended that a Blackmer manufactured bypass valve be used in the system as they are designed to allow the optimum system performance and stability. Below is a list of informational bulletins that also guide installation of a Blackmer pump and bypass valve.

Application Bulletin 500-001: Liquefied Gas Handbook

Installation, Operation, and Maintenance 501-K00: LGL150 Series Pumps

Installation, Operation, and Maintenance 501-B00: LGL1.25 & LGL1.5 Series Pumps

Installation, Operation, and Maintenance 505-A01, A02, A03: Bypass Valves

SIEMENS

NEMA Motor Data

Ordering data :

1MB2221-1CB11-4AA3

Client order (Order no. : Offer no. : Remarks :	no. :					Item Cons Proje	no. : ignment no. : ct :					
		Nan	neplate	Data				Mounti	ng and mo	otor pi	otection	
Type HP Voltage Amps	XP100 3.0 (14) 20 8.0 / 4.1	ID1 - Class 8-230/460V 0 A	I, Group I STD R STD S.), Division 1 ating s. Class F.	Cont. Insulation cl	ass F	Type of c Motor pro Terminal I	onstruction tection box design	(A) Foot ((A) No win (3) Mounti	mountee ding pro	d - End shield	Ĩ.
FL RPM	1760		A	mb. Temp.	55 deg C				Bearing	Data		
FL Efficiency FRAME DE AFBMA ODE AFBMA 60 Hertz	89.5 % 182T 30BC03 30BC03 3 Ph	2JPP30 2JPP30 TEF	Tr K\ N M =C IP	emp. Rise /A Code EMA Des tr WT	Class B K B 120 65		Bearing Siz Bearing Tyj AFBMA	D pe B 3	DE 206 ZZ C3 S Ball Bearing 0BC02JPP30	0	ODE 6206 ZZ C3 Ball Bearing 30BC02JPF	1 S0] 230
	Typi	al Perfo	rmance	Data		1			Mechanic	al Dat	a	
Load Efficiency Power Factor Current (A) Inverter Duty	No Los 2.1 A VT	ad 1/2 87.8 % 59.5 2.7 A 20:1	3/4 89.4 % 71.7 3.3 A	Full Loa 89.5 % 78.5 8.0 / 4.0	d LRC A 33.0 A		SAFE STAI Rtr wt (lbs) FLT (ft-lbs) Ext Load In	23.7 9.0 ertia (WK2	HOT (s) Rtr WK2 LRT) Capability	17 0.300 21.0 17.0	COLD (s) 0 BDT	29 32.0
					Typical	Noise D	ata					
A-weighted S Pressure Lev at 3 feet	ound	63 1 ;	Octav 25 2 33	e Band Cen 50 50	ter Frequencie 10 1000 4 60	es Hertz (H 2000 58	łz) 4000 48	8000 39	SPL	۳L	63 72	
	Wiring	Connecti	on Info	mation				Sp	pecial desig	gn :		
Description Voltage	L1	3 PH	ASE - 9 LE	EAD - WYE Connected together	1							
HIGH	T1	T2	T3 T3 T	14 T5 T 4 T7-T5 T8	6 ҮҮ -т6 т9 ^ү							
	Lub	rication I	nformat	tion								

Manufacturer	Mobil Polyrex EM or equal
Туре	Polyurea (standard)
DE Capacity (oz.)	0.20
ODEnd Capacity (oz.)	0.20

Relubricate bearings every six months (more frequent if conditions require). See Instruction Manual.

This document reproduction, as well as the communication of this content are likely, except for written consent from SIEMENS. All rights are reserved for the case of patent concession of invention or industrial model register.

F260/1-0310

La reproduccion de este documento, así como la comunicacion de su contenido son llicitos, salvo consentimiento expreso. Se reservan lodos los derechos para el caso de la concesion de patente de invencion o registro de modelo industrial

File E120739 Project 09NK16907

January 24, 2011

REPORT

on

Motors for Use in Hazardous Locations

Siemens S A De C V Guadalajara, Mexico

Copyright © 2011 Underwriters Laboratories Inc.

Underwriters Laboratories Inc. authorizes the above named company to reproduce this Report provided it is in its entirety.

Issued: 2011-01-24

File	E120739	Vol. 2	Sec. 1	Page 1
			and Report	

DESCRIPTION

PRODUCT COVERED:

- USL, CNL XP100 Series Electric motors for use in Hazardous Locations, Class I, Groups C and D; Class II, Groups E, F, and G, Frame sizes 143, 145, 182, 184, 213, 215.
- USL, CNL XP100 ID1 Series Electric motors for use in Hazardous Locations, Class I, Group D, Frame sizes 143, 145, 182, 184, 213, 215.

GENERAL:

These motors are squirrel cage TEFC electric motors for use in hazardous locations. The XP100 ID1 Series motors are identical to the XP100 Series motors except that they are provided without temperature limiting devices. Ratings and Markings differences are detailed in the description below.

RATINGS:

Maximum Horsepower	See Table 1 below			
Maximum rpm	3600			
Number of poles	2, 4, 6, 8			
Service Factor	1.0 and 1.15 on sinusoidal power			
	1.0 on inverter power			
Duty Rating	Continuous			
Insulation Class	When marked Class F on nameplate, lead wires are Class F and the remaining components are Class H When marked Class H on nameplate, all components are Class H			
Temperature Rise By Resistance	80°C by resistance			
Ambient Temperature Rating	XP100 Series - 40°C XP100 ID1 Series - 60°C Maximum			
Operating Temperature or Operating Temperature Code (External Surfaces)	T3C when motor has temperature limiting devices installed T2A when motor has no temperature limiting devices			
Maximum Voltage Rating	600			

Motors are followed by suffixes T, TC, or TZ which denote length of shaft or length of shaft and flange design, respectively.

EFS Non–Sealed Tumbler Switches

Explosionproof, Dust-Ignitionproof

Malleable Iron Body and Cover. Furnished with Internal Ground Screw.

Class I, Division 1 and 2, Groups C, D Class II, Division 1 and 2, Groups E, F, G Class III NEMA 7CD, 9EFG

Applications

- Designed to prevent arcing of enclosed switches in ignitable atmospheres during connect and disconnect operation of lighting and light power loads.
- For use in classified areas where ignitable vapors, gases or highly combustible dusts are present.
- For installation in:
 - Chemical plants
 - Petrochemical plants
- Refineries
- Other process industries

Features

- Enclosures have external mounting lugs for ease of mounting.
- Smooth, rounded integral bushing in each hub protects
- conductor insulation.
- Enclosures furnished with internal ground screw.
- 20 Amp and 30 Amp units available for use with 120-277 Vac. Smooth ground mating surfaces assure flame-tight joint
- between cover and mounting enclosure.
 Stainless steel hex head cap screws for attaching cover to
- mounting enclosure. • Choice of front-operating or side rocker arm handle—each may
- be locked in ON or OFF position.
- Each handle has close-tolerance threaded stainless steel shaft to meet explosionproof requirements.
- Enclosures furnished with internal ground screw.

Options

- 1- or 2-gang copperfree (4/10 of 1% max.) aluminum bodies and covers available. Add suffix – A.
- NPBRKT nameplate mounting bracket to make circuit description/identification easy.
 - Pre-drilled holes in bottom of bracket allow direct mounting to control stations with existing cover bolts.
 - Pre-drilled holes in middle of bracket allow mounting of customer's circuit identification nameplate; epoxy glue may also be used for mounting (phenolic nameplate not included).
 - Bracket eliminates costly field installation of drilling and tapping to accommodate circuit identification nameplate.
 - Brackets fit side-by-side on 2-, 3- and 4-gang boxes and 3-devices.

Standard Materials

- · Body and cover: malleable iron
- Handle: nylon 6/6
- Optional nameplate mounting bracket: corrosion resistant stainless steel

Standard Finishes

 Tumbler switch body: triple-coat—(1) zinc electroplate, (2) chromate, and (3) epoxy powder coat

Certifications and Compliances

- UL Standards: UL 894, UL 1203
- UL Listed: E10523, E81751

Ordering Information for "Custom" Units

- Devices, covers and bodies may be ordered separately so that a different EFS switch may be used in each gang.
- Order components separately as follows:
 (1) select body catalog number,

Front Operated

Illustrated Features

Rocker Arm Operated

Handles may be locked in ON or OFF position

- (2) select cover catalog number, and
- (3) select switch or switch assembly catalog number (1-pole, 2-pole, 3-way or 4-way available in listings).

How to Order Hub Arrangements

 Simply send sketch indicating sizes and locations for brazed hubs on body or bodies selected from catalog listings. Orient sketch so that cover opening faces front and mounting lugs face upward and downward (box wall opposite cover should be referred to as the *back* of box).

Bodies and Hubs Available

- Tumbler switches may be ordered in single thru five gang deep malleable iron blank bodies with brazed hubs as specified at any location.
- Tumbler switches may be ordered with tandem malleable iron boxes with additional brazed hubs as specified.
- Standard malleable iron single and 2-gang tumbler switches may be ordered with additional brazed hubs as specified.
- Single and 2-gang tumbler switches may be ordered with aluminum boxes with additional brazed hubs as specified.

Related Products

 For classified-location push button, pilot light and selector switch control stations, see Explosionproof Control Stations Section.

Contre

ELECTRONIC DIGITAL PULSE TRANSMITTERS FOR MECHANICAL FLOWMETERS

DIGITAL TRANSMITTERS

Digital transmitters produce signals that exist only in one of two states: ON or OFF. These states may also be referred to as HIGH or LOW, or 1 or 0 (zero).

MODEL VR7697 (Models 35 & 45)

This economical and versatile bidirectional digital pulse

transmitter provides 10 pulses per revolution with excitation power of 115-250 VAC or 12-36 VDC, making it compatible with most remote read-out equipment.

MODEL VR7671 (HR) (Models 35 HR & 45 HR)

This solid state Hall Effect digital pulse transmitter provides 100 pulses per revolution. Note that input (excitation) power is limited to 10-15 VDC.

NEPTUNE DIGITAL PULSE ELECTRONIC TRANSMITTER DATA

Model No.	Type Of Device	Contact	Pulses per Revolution	Max Speed: Hz (RPM) (2)	Contact Rating (2)	Enclosure Rating	Input Voltage	Remarks
VR7697	Dry Reed Bi- directional	SP/ST	10	50 (300)	50 VA resistive (not to exceed 250v or 3 amp)	U.L., CSA X-proof Class I, Div 1 Groups C&D	110 & 250 VAC 12-36 VDC	Models 35 and 45
VR7671 (HR)	Hall Effect Uni- directional	Solid State	100	1000 (600)	.75 VA max. non- inductive (not to exceed 15VDC or .05A)	U.L., CSA X-proof Class 1, Div. 1 Groups C&D	10-15 VDC	Models 35 HR and 45 HR

Notes:

(1) All above units are compatible with Batchmate 1500 Solid State Controller (see TS 500)

(2) a. Max speed in pulses per revolution, Hz, and RPM limits from Manufacturers' data

WIRING DIAGRAMS

NEPTUNE ELECTRONIC TRANSMITTER Operating and Storage Temperature Data

Model Environment	No.	VR7697 (35 & 45)	VR 7671 (HR) (35 HR & 45 HR)
Operating °C		-40 to +71	-40 to +82
	°F	-40 to +160	-40 to +180
Storage	°C		-55 to +125
°F			-67 to +257

DIMENSIONS

in (mm)

CURRENT SOURCING -vs- CURRENT SINKING

Current Sourcing: <u>sensor supplies the voltage</u> to the count input. Sourcing sensors are PNP transistor outputs or a contact closure to V+.

Current Sinking: <u>sensor provides a path to DC com-</u> <u>mon</u> for the count input. Sinking sensors are NPN transistor outputs or a contact closure to DC common. **Compatibility:** Both sourcing and sinking digital pulse transmitters offered by Neptune are fully compatible with the Neptune BATCHMATE 1500^{TM} electronic batch controllers, which can be set by DIP switches in the device at the factory or in the field to match the transmitter.

1à

U.S.A./International 1310 Emerald Road Greenwood, SC 29646-9558 Tel.: Toll-Free (800) 833-3357 (864) 223-1212 Fax: (864) 223-0341

© 2005 Actaris U.S. Liquid Measurement, Inc. 400 5/05

Specifications subject to change without prior notification.

M-285 Rev. H P.D. Oscillating Piston Flowmeter 1" 4D-MD LP Gas

Item 3.a.

1.6.

Operating and Maintenance Manual LPG

4D-MD LP-GAS COMPACT FLOWMETERS

GENERAL INFORMATION

This manual covers the installation and maintenance of the Type 4D-MD LP-Gas Compact Flowmeter (Figure 1) which includes a Strainer, Vapor Release, Differential Valve and Automatic Temperature Compensator.

The housing and pressure components of the 4D-MD are constructed of A356 aluminum with T6 heat treatment. Nominal line connections of 3/4" and 1" (ductile iron connections) are available. The meter is fully rated to 350 psi and has been approved by UL.

The strainer, housed in the Vapor Release at the intake of the flowmeter, is of a fine (either an 80-84 mesh or special 30 micron) mesh double sleeve construction with O-rings for positive sealing. It is accessible by removing the strainer cover.

The Vapor Release, which prevents entrapped vapor from passing through the flowmeter, has a float-operated valve. When vapor collects in the Vapor Release, the valve opens venting vapor to the supply tank establishing pump pressure to close the Differential Valve. The vapor release employs a sleeve-type valve that permits a constant "leak" flow of approximately 0.2 gpm from the vapor vent back to the supply tank.

The Differential Valve is piston, plug type construction and opens when at least 15-psi pump pressure is established. This valve serves three functions to assure system measurement accuracy by requiring: (1) pump operation for delivery, (2) adequate back pressure to prevent product vaporization during measurement, and (3) blockage of flow when the Vapor Release valve opens.

The type 4D-MD is available with outlet/inlet flanges of 3/4" and 1" diameters to permit connection to varying pipe dimensions. Please refer to the current price list or your RSM distributor for additional information.

The optional temperature compensator, by sensing product temperature, controls the readout drive ratio to provide a registration compensated by 15°C (60°F).

The Type 4D-MD is available with a choice of 600 or 800 Series mechanical resettable totalizing registers. Pulse output is also optionally available.

The recommended temperature range for operation of the 4D-MD is -23° to 60°C (-10° to 140°F) or -23°C to 52°C (-10° to 125°F) for automatic temperature compensator equipped meter.

INSTALLATION

- Plan the installation for maximum rate of delivery, sizing the supply tank outlet, piping and valve for free gravity flow to the pump suction. To accomplish this, locate the pump as close as possible to the supply tank and use short inlet connections with few restrictions. Keep the number of elbows to a minimum, and use large radius elbows, wherever possible. To further reduce the likelihood of causing vapor in the pump suction line, install a pump bypass valve in a return line to the supply tank as shown in the installation drawing. (See Figure 2).
- 2. Locate the flowmeter at any convenient place in the pump discharge line. If the flowmeter is to be operated under extremes of environment (dirt, water, physical damage, etc.), an enclosure or other protection should be provided. Allow sufficient clearances for removal of the register, strainer and vapor release as shown in Figure 14. Do not install any bypass around the flowmeter; the valve in such a line might eventually leak, work open, or be left open causing improper measurement.

To conform with Weights and Measures requirements, install flowmeter so that the flowmeter nameplate is visible.

NOTE

All piping on the inlet side of the flowmeter should be very thoroughly cleaned out. Flush out all lines thoroughly before installing the flowmeter.

While the installation is still new, the strainer should be cleaned once per month minimally for the first three (3) months. After the system has been thoroughly flushed of foreign material, only periodic (minimum annually) cleaning is recommended.

The majority of service calls on new installations would be eliminated if these directions were followed.

GENERAL INFORMATION

INSTALLATION Before Installing the Flowmeter

TS-285(G)

TYPE 4D-MD L.P. GAS FLOWMETER 1" ALUMINUM BODY DISPENSER METER

DESCRIPTION

The Red Seal 1" Type 4D-MD meter, with double case design has been specifically designed for the custody transfer of liquefied propane and butane gas (LPG). This meter utilizes the oscillating piston positive displacement measuring chamber technology. The 1" Type 4D-MD is particularly suited for filling portable gas bottled and fuel containers for portable burners, pavement heaters, weed burners, fork lift trucks and motor fuel tanks.

The standard unit includes the base meter with the choice of either a 600 Series totalizing register with a resettable counter or an 800 Series printer register. A differential control valve, combination vapor eliminator/strainer, continuous bleed pressure relief valve and tubing kit are also included. An optional automatic temperature compensator (ATC) is available. The ATC senses product temperature and adjusts the readout to result in registration that is compensated to 15°C (60°F).

DESIGN FEATURES

SUPERIOR ACCURACY

The Neptune designed oscillating piston measuring chamber is both accurate and reliable. The piston is treated with a special coating which protects it from damage by impurities and adds lubricity for smooth performance at low flow and high operating pressures.

FLEXIBILITY

Rugged outer body components in a compact design make the 1" Type 4D-MD useable in a wide variety of installation configurations. The meter is also available with several different register options, and in temperature compensated and uncompensated versions.

UNITS OF MEASURE

Neptune 600 and 800 Series registers offer a full range of options for calibration in U.S. gallons, Litres and Imperial gallons, with 5 digit reset and an 8 digit non-resettable totalizer.

1" 4D-MD with 600 Series Register

OPERATING SPECIFICATIONS

Flow Rate Maximum Minimum	LPM 68 11	US Gal./Min. 18 3
Operating Pressure Maximum Minimum	Bars 24	PSI 350 See Note
Operating Temperature (without ATC) Maximum Minimum	°C 60 -23	°F 140 -10
Temperature Compensation Compensates to a basepoint Range: -23°C to	of 15°C (60° 52°C (-10°F	F) to 125°F)
Connections Ductile iron companion flange Optional ductile iron compani	a tapped for 3 on flange tap	3/4" std. pipe oped for 1" std. pipe

Note: A minimum of 1.034 bars (15 psi) is needed to open the differential control valve, plus pressure loss in the system.

www.redsealmeasurement.com

Accuracy of all Neptune Type 4D Custody Transfer Meters for use with L.P. Gas and Butane meets or exceeds N.I.S.T. Handbook 44 Parameters.

1310 Emerald Road Greenwood, SC 29646 USA Phone: 1.800.833.3357 Fax: 1.864.223.0341

CERTIFICATE

This is to certify that

Engineered Controls International, LLC

100 Rego Drive Elon, NC 27244 United States of America

with the organizational units/sites as listed in the annex

has implemented and maintains a Quality Management System.

Scope:

The design and manufacture of valves, regulators and fittings for the L.P. Gas, Anhydrous Ammonia, LNG, and Compressed Gas Industries.

Through an audit, documented in a report, it was verified that the management system fulfills the requirements of the following standard:

ISO 9001 : 2008

Certificate registration no.	10001523 QM08
Date of original certification	1994-10-04
Date of revision	2013-12-08
Date of certification	2012-12-22
Valid until	2015-12-21

UL DQS Inc.

h Kas

Ganesh Rao Managing Director

Accredited Body: UL DQS Inc., 1130 West Lake Cook Road, Suite 340, Buffalo Grove, IL 60089 USA

Annex to Certificate Registration No. 10001523 QM08

Engineered Controls International, LLC

100 Rego Drive Elon, NC 27244 United States of America

Location

10003889 Engineered Controls International, LLC 3181 Lear Drive Burlington, NC 27215 United States of America

10003890 Engineered Controls International, LLC 911 Industrial Drive S.W. Conover, NC 28613 United States of America

This annex (edition: 2013-12-08) is only valid in connection with the above-mentioned certificate.

LP-Gas Excess Flow Valves

Safety Warnings

Purpose

In its continuing quest for safety, REGO® publishes a series of bulletins explaining the hazards associated with the use, misuse, and aging of LP-Gas valves and regulators. It is hoped that these factual bulletins will make clear to LP-Gas dealer managers and service personnel, that the utmost care and attention must be used in the installation, inspection, and maintenance of these products, or problems could occur which would result in injuries and property damage.

The National Fire Protection Association NFPA 58 Liquified Petroleum Gas Code - 2014 Edition states in Section 4 Qualification of Personnel; "Persons whose duties fall within the scope of this code shall be provided with training that is consistent with the scope of their job activities and that includes proper handling and emergency response procedures... Refresher training shall be provided at least every 3 years, initial and subsequent training shall be documented". These "RegO® Safety Warnings" may be useful in training new employees and reminding older employees of hazards that can occur. It is recommended that all employees complete the Propane Education Research Council's Certified Employee Training Program.

Nature of Warnings

It is recognized that warnings should be as brief as possible, but the factors involved in excess flow valve failures to perform are not simple. They need to be fully understood. If there is a simple warning, it would be:

Make sure that the excess flow valve really closes when the flow exceeds normal transfer flow.

This bulletin is not intended to be an exhaustive treatment of excess flow valves, and certainly does not cover all safety practices that should be followed in installation, operation and maintenance of LP-Gas systems which include excess flow valves.

Selection and Installation

The selection of a given closing rating of an excess flow valve involves an analysis of the complete piping system and is beyond the scope of this bulletin.

It is sufficient to say that an excess flow valve must be installed in the correct direction and will close only if the flow of liquid or vapor exceeds its designed closing rating. Many valves have been installed with closing ratings considerably higher than any flow that could be obtained by a downstream rupture in piping or hoses and thus give none of the protection for which they are intended. REGO® provides excess flow valves with a number of closing ratings. REGO® obviously can take no responsibility for the proper selection or correct installation of any valve.

Excess flow valves do not provide complete shut-off because there is a bleed at the check to permit pressure equalization.

Causes of Failure to Close

Installers, LP-Gas plant managers and service personnel should be aware that the excess flow valves may not close if these conditions are present.

1. The piping system restrictions (due to pipe length, branches, reduction in pipe size or number of other valves) decrease the flow rate to less than the valve's closing flow.

LP-Gas Excess Flow Valves

2. The break or damage to the downstream line is not large enough to allow enough flow to close the valve.

3. A shut-off valve in the line is only partially open and will not allow enough flow to close the excess flow valve.

4. LP-Gas pressure upstream of the excess flow valve, particularly due to low temperature, is not high enough to produce a closing flow rate.

5. Foreign matter (such as welding slag, scale or sludge) is lodged in the valve and prevents closing.

Because of these limitations, it is good industry practice to NOT rely entirely on excess flow valves for protection. Installation of emergency shut-off valves with remote controls is recommended in addition to excess flow valves.

Testina

The National Propane Gas Association Safety Bulletin #113-78 states:

"In order to test an excess flow valve in a piping system, the flow through the valve must be made to exceed the valve's closing rating. This testing should only be attempted by trained personnel familiar with the process. If no one at the facility has experience in proper testing, outside expert help should be obtained. The exact procedure used may vary with the installation, advisability of gas discharge and availability of equipment.

In general, most testing makes use of the fact that excess flow valves are "surge sensitive" and will close quicker under a sudden flow surge than under steady flow. A sufficient surge can often be created by using a quick open/close valve to control sudden, momentary flow into a tank or piping section containing very low pressure. An audible click from the excess flow valve (and corresponding stoppage of flow) indicates its closure.

A test involving venting gas to the atmosphere is hazardous and may be impractical, or illegal.

Any test of any excess flow valve will not prove that the valve will close in an emergency situation, due to reasons cited before. This test will only check the valve's condition, and the flow rate sizing for those test conditions."

General Warning

All REGO® products are mechanical devices that will eventually become inoperative due to wear, contaminants, corrosion and aging of components made of materials such as metal and rubber.

The environment and conditions of use will determine the safe service life of these products. Periodic testing at least once a year when tank pressures are low and maintenance, as required, are essential.

Because REGO® products have a long and proven record of quality and service, LP-Gas dealers may forget the hazards that can occur because an excess flow valve is used beyond its safe service life. Life of an excess flow valve is determined by the environment in which it "lives". The LPGas dealer knows better than anyone what this environment is.

NOTE: There is a developing trend in state legislation and in proposed national legislation to make the owners of products responsible for replacing products before they reach the end of their safe useful life. LPGas dealers should be aware of legislation which could effect them

General Information

RegO® Excess Flow Valves have been designed, developed, and manufactured for a wide variety of industry needs for more than three decades.

Throughout the years, those concerned with installing and operating bulk plant facilities have looked to RegO® products with confidence for reliable, long-lasting valves as required by the National Fire Protection Association (NFPA) Standards 58 and 59, as well as any state, provincial, and local regulations.

It is a responsibility we have not taken lightly. RegO® products continue to not only assess the most effective designs, but anticipate and meet the industry's changing requirements. Toward that goal, RegO® products include over fifty different types and sizes of excess flow valves (most of which are listed by Underwriters Laboratories) to meet the needs of the LP-Gas and anhydrous ammonia industries.

An Explanation and Warning

An excess flow valve is a spring-loaded check valve which will close only when the flow of fluid through the valve generates sufficient force to overcome the power of the spring holding it open. Each valve has a closing rating in gallons per minute and CFH/air.

The selection of a proper closing rating is critical. It requires a technical understanding of the flow characteristics of the piping system, including restrictions of the piping and other valves and fittings downstream of the excess flow valve.

System designers and operating people must understand why an excess flow valve, which remains open in normal operations, may fail to close when an accident occurs.

Warning: A downstream break in piping or hoses may not result in sufficient flow to close the valve.

How They Work

Excess flow valves permit the flow of liquid or vapor in either direction. This flow is controlled in only one direction (the direction of the arrow stamped on the valve). If the flow in that direction exceeds a predetermined rate (shown in this catalog for each valve), the valve automatically closes.

The valve disc is held in the open position by a spring. When the flow creates a pressure drop across the valve disc that overcomes the preset load on the spring, the valve disc moves to the closed position. It remains closed until the force on both sides of the valve disc are approximately equal (a small bleed hole in the disc of each valve permits equalization), then the spring automatically reopens the valve. When a line is completely broken, the pressure cannot equalize and the excess flow valve remains closed until the line is repaired. Because the bleed hole in each valve disc permits equalization of pressure, excess flow valves do not provide a 100 percent type shut-off.

Proper Installation

Since excess flow valves depend on flow in order to close, the line downstream of the excess flow valve should be large enough not to excessively restrict the flow. If the piping is too small, unusually long or restricted by too many elbows, tees and other fittings, consideration should be given to the use of larger size pipe fittings.

An excess flow valve in a pump suction line cannot be expected to close in the case of a clean break in the line beyond the pump, as the pump constitutes too great a restriction, even if running.

Good piping practices dictate the selection of an excess flow valve with a rated closing flow of approximately 50 percent greater than the anticipated normal flow. This is important because valves which have a rated closing flow very close to the normal flow may chatter or slug closed when surges in the line occur during normal operation, or due to the rapid opening of a control valve.

All installations must be in accordance with NFPA Standards 58 and 59, as well as state, provincial and local regulations.

The Limitations of Excess Check Valves for LP-Gas

Excess flow check valves have been of help in limiting gas loss in many incidents involving breakage of hoses and transfer piping. Thus, they do provide a useful safety function in LP-Gas systems. However, there have also been transfer system accidents where excess flow valves have been ineffective in controlling gas loss due to a variety of conditions and to the inherent limitations of these valves. This bulletin explains what protection excess flow valves can offer, points out conditions which can interfere with that protection, and offers suggestions for effective excess flow valve installation.

An excess flow valve is a protective device to help control the discharge of product in the event of complete breakage of pipe lines or hose rupture. However, an excess flow valve can only offer limited protection from gas discharge, because it will only close under those conditions which cause the flow through the valve to exceed its rated closing flow, and even when closed it necessarily allows some "bleed" past the valve.

An excess flow valve is not designed to close and thus may not provide protection, if any of the following conditions are present:

- The piping system restrictions (due to pipe length, branches, reduction in pipe size, or number of other valves) decrease the flow rate to less than the valve's closing flow. (Valve should be selected by closing flow rating — not just by pipe size).
- The break or damage to the downstream line is not large enough to allow enough flow to close the valve.
- A shut-off valve in the line is only partially open and will not allow enough flow to close the excess flow valve.
- LP-Gas pressure upstream of the excess flow valve, particularly due to low temperature, is not high enough to produce a closing flow rate.
- Foreign matter (such as welding slag) is lodged in the valve and prevents its closing.
- A buildup of process material (sludge), which may be found in LPGas, may occur over a period of time and cause the valve to stick open.
- The piping break or damage occurs upstream of an in-line excess flow valve, so the escaping product is not passing through the valve.
- The flow through the valve is in the wrong direction. (Excess flow valves only respond to flow in one direction.)
- The excess flow valve has been damaged, or is otherwise not in operating condition.

Because of these limitations of excess flow valves, they should not be relied upon as the only means of controlling the escape of product in the event of piping damage. When possible, shut-off protection by quick closing valves, with shut-off controls accessible in spite of likely line damage, should be provided in addition to, or instead of excess flow valves. Where excess flow valves are installed, they should be checked to see that:

- They are installed in the correct direction the arrow on the valve indicates the shut-off direction.
- 2. The flow rating on the valve is proper for the installation. The rating must be above the normal system flow, but not higher than necessary to prevent "nuisance" closing in normal conditions. If the manufacturer's catalog information is not sufficient, the valve suppliers can provide sizing assistance.
- In-line excess flow valves are installed so likely piping damage will occur downstream of the valve and will not separate the valve from the upstream piping.

When the excess flow valves can be examined separate from the line (before the installation or if removed for system maintenance), they should be checked to see that the parts are in good condition and that the poppet can be pushed fully closed.

Testing of Excess Flow Valves

In order to test an excess flow valve in a piping system, the flow through the valve must be made to exceed the valve's closing rating.

This testing should only be attempted by trained personnel familiar with the process. If no one at the facility has experience in proper testing, outside expert help should be obtained. The exact procedure used may vary with the installation, advisability of gas discharge, and availability of equipment.

In general, most testing makes use of the fact that excess flow valves are "surge sensitive" and will close quicker under a sudden flow surge than under steady flow. A sufficient surge can often be created by using a quick-closing valve to control sudden, momentary flow into a tank or piping section containing very low pressure. An audible click from the excess flow valve (and corresponding stoppage of flow) indicates its closure.

A test involving venting gas to the atmosphere is hazardous and may be impractical, or illegal.

Any test of any excess flow valve will not prove that the valve will close in an emergency situation, due to reasons cited before. This test will only check the valve's condition, and the flow rate sizing for those test conditions.

For additional information on excess flow valves and other means of

shut-off protection, contact REGO® and refer to NFPA 58.

Prepared by

NATIONAL PROPANE GAS ASSOCIATION

The purpose of this bulletin is to set forth general safety practices for the installation, operation, and maintenance of LP-Gas equipment. It is not intended to be an exhaustive treatment of the subject, and should not be interpreted as precluding other procedures which would enhance safe LP-Gas operations. The National Propane Gas Association assumes no liability for reliance on the contents of this bulletin.

Technical Advisory

Parker Hannifin Corporation Industrial Hose Division 30242 Lakeland Boulevard Wickliffe, OH 44092-1747

Telephone: (440) 833-2120 Fax: (440) 833-2230 www.safehose.com

PRODUCT UPDATE LP Gas Hose/Assemblies — Permeation

Permeation of high-pressure gas (such as LP Gas/propane, anhydrous ammonia and steam) through a rubber hose is a common but often misunderstood phenomenon. During the manufacturing process, small perforations – sometimes called pinpricks – are applied to the cover of the hose. The perforations allow a path for the gas to safely permeate through the hose wall and into the atmosphere. Without this path, undesirable amounts of gas could accumulate in the hose body.

The permeation process is invisible in most circumstances. However, when the hose is moist or sits in water, bubbles may be observed emerging from the pinprick holes in the cover. Or bubbles may be observed slowly escaping from the area where the ferrule attaches to the coupling stem. These emissions may be perceived as leakage.

The most common perceived leakage is the "normal" escape of permeating gas:

- Through the hose wall. The pinprick holes concentrate the permeation to specific areas of the cover. Due to the
 presence of moisture, this concentration of permeation may be observed as bubbling.
- Through the interface of the ferrule and coupling. In some instances the permeating gas may travel down the reinforcement of the hose and escape from the end of the hose encased by the coupling.

Another common perceived leakage is the escape of air from the hose reinforcement through the hose wall, most commonly noticed during the pressure testing of a hose assembly. During the manufacturing process, air may become trapped in the reinforcement of the hose. During the hose assembly testing process, the trapped air may be squeezed through the pinprick holes in the cover, or from the end of the hose encased by the coupling. In the presence of moisture, the venting air may be apparent as bubbling. The escape of trapped air through the pinprick holes and/or at the coupling should diminish over time, and should disappear after one to four hours of pressurization. Generally, air escaping from the pinprick holes will dissipate much more rapidly than air escaping at the coupling.

The question that remains: How can one differentiate between a hose that is leaking or excessively permeating LP Gas, a hose that is appropriately permeating LP Gas, and a hose that is venting trapped air?

When testing a new LP Gas hose assembly, only escaping air can be mistaken for leakage (because propane has not yet entered the hose). Two methods for assuring that the escaping air is not from a leak are:

- 1) Use water as the test media. A "true" leak will be a water leak and not an air leak.
- 2) Increase the test time. A test of sufficient duration will allow the escaping air to be purged. Note:
 - a. The use of a rubber cement or epoxy to seal the hose end may eliminate air escaping from the stem/ferrule lock-on area of the coupling.
 - b. The Parker 7661-LAR coupling in the 1-inch size is designed to prevent gas from escaping from the stem/ferrule lock-on area of the coupling.

When testing a hose in service, it is much more difficult to differentiate between a "true" leak and normal permeation. Generally, leaking propane will create a frosting or icing on the surface of the hose or coupling. On the other hand, permeation is generally at such a low rate that it can be detected only by the slow escape of bubbles. It is important to note that the rate of permeation is dependent on temperature. As the environmental temperature increases so does the rate at which the gas permeates through the hose. Therefore, on hot, rainy days, the likelihood of observing permeation is much higher. If the rate of escaping gas is enough to cause concern, the best way to determine whether a hose is leaking or not is to remove it from service and perform a hydrostatic pressure test.

In the transfer of LP Gas, the allowable permeation rate is controlled by the Underwriters Laboratories Standard UL 21 for LP Gas Hose. Per UL 21, the "Maximum Allowable Permeation Rate" for LP Gas hose is 171 cm³/ft/hr. Testing of standard Parker LP Gas hose has produced permeation rates which are five times better than the allowed maximum.

 If there are any questions please contact Parker Customer Service toll-free at:

 866.810.HOSE (4673)

 Wickliffe, OH • Eastern USA

 800.242.HOSE (4673)

South Gate, CA • Western USA

PA 2010.06.023-1P LP Gas Hose/Assemblies - | Permeation • Supersedes PIB TB4802 dated 03/30/04

Nozzles in the GasGuard "GG20" series are designed to reach into, and connect to, deep-seated filler valves, as associated with forklift truck cylinders and RV filler valves in similarly difficult locations. This is possible due to the extended connector on the outlet of the nozzle which allows customers to connect to fill points with a more difficult access point. There are three different nozzles in the UL listed GG20 range, the **GG20H** and the **GG20DN**, which cater for differing customer needs. With a 35mm longer connector the nozzles are engineered with the same function as their shorter GG1E, GG1EH and GG1DN counterparts. With a lightweight & well balanced construction, the GG20 series design has seen significant improvements in operational performance and reduced maintenance requirements, and like all GasGuard nozzles, they are fully repairable.

Standard Specifications for GG1 series nozzles:

Connector thread coupling:	13/4" ACME x 6 TPI form
Swivel Inlet thread:	15mm (1/2") or 20mm (3/4") N.P.T. female
Nett mass:	2.0kgs (4.4lbs)
Max. operating pressure:	2450 KPa (350 psi)
Operating temperature:	-40 to +110 deg. C

Standard features on all GasGuard Autogas Nozzles:

- Safety: Cannot discharge LPGas to the atmosphere when not coupled and lever is actuated.

- Safe connection: Nozzle will safely seal with filler valve, even if its sealing gasket is missing.
- Swivel: Option of either 15mm (1/2"), 20mm (3/4") N.P.T. internal thread to the inlet swivel to the Nozzle.
- Latching: An optional lever hold-open latch is available (not UL listed).

- <u>Robust:</u> High strength aluminium alloy connector casting with a stainless steel ACME thread Insert provides long service without distortion.

GG20 Nozzle Characteristics

Nozzle is used for industrial refueling of forklift truck cylinders and RV filler valves in similarly difficult locations. It uses a single nose piece to achieve high flow rates.

- Flow rate of 63L/min at 12bar system pressure
- Release Volume on valve closure of 1.9cm³
- Customer experiences a low lever pressure
- Magnet option for dispensers with reed switch technology
- New guided extended thread assists with alignment and connection to fill point
- A fine filter comes standard in all nozzles
- Long Connector Nut to access "hard to reach" fill points
- UL Listed

GG20 Nozzle

94

Item 3.a.

GG20H Nozzle Characteristics

Nozzle is used for industrial refueling of forklift truck cylinders and RV filler valves in similarly difficult locations. It incorporates a new "hybrid" nose piece to reduce the lever pressure experienced by the customer.

- Flow rate of 60L/min at 12bar system pressure
- Release Volume on valve closure of 1.7cm³
- Customer experiences a lower lever pressure than GG20
- Magnet option for dispensers with reed switch technology
- New guided extended thread assists with alignment and connection to fill point
- A fine filter comes standard in all nozzles
- Long Connector Nut to access "hard
- to reach" fill points
- UL Listed

GG20H Nozzle

GG20DN Nozzle Characteristics

The GG20DN nozzle is suited for refueling of passenger vehicles by untrained personnel. It incorporates a patented Dual Nose piece which significantly reduces the amount of user error when operating the nozzle. It creates a positive seal to the customer's vehicles even if they have not tightly screwed the nozzle to the fill point. If the nozzle is not screwed on completely and the lever is pulled, there is no effect of flow rate as the Dual Nose piece compensates for the changed operating situation.

2

- Flow rate of 60L/min at 12bar system pressure
- Release Volume on valve closure of 1.7cm³
- A Dual Nose piece for added customer safety
- Customer experiences a lower lever pressure than GG20
- Magnet option for dispensers with reed switch technology
- New guided extended thread assists with
- alignment and connection to fill point
- A fine filter comes standard in all nozzles
- Long Connector Nut to access "hard to reach" fill points
- UL Listed

POMECO 102 Spring Balance Single Hose Retractors

POMECO 102 Spring Balance Single Hose Retractors keep excess hose off the ground and out of the way, prolonging hose life and reducing potential hazards. The POMECO 102 is a California Air Resources Board (CARB) certified Stage II component for use with single and dual hose dispensers as per Executive Order G-70-52-AM.

Post Mounted

Materials

Housing: Cast aluminum Cable: Black polyester Post: Aluminum

> Nozzle Hook and Hood Kit Not Sold by OPW.

Features

- Easy to Use the spring-loaded reel and stretch-resistant cable provide smooth and steady tension throughout hose extension and return.
- Easy to maintain the removable sideplate provides full access to the mechanism for easy tension adjustment and unit maintenance. A convenient safety thumb screw is provided to lock the reel in place during tension adjustment.
- Field Adjustable for Various Hose, Nozzle, Swivel, Breakaway
 Combinations – no need for upgrading components if a breakaway or swivel is added to the hose assembly. Simply change the tension setting on the spring-loaded hose reel.
- Multiple Mounting Options the POMECO 102 retractor housing is tapped on the top for bolting to overhead crossbars, and on the side for mounting to vertical posts. The 102 is available as a retractor kit (including post, retractor and mounting hardware) or as separate components. Models are also available for aboveground storage tank (AST) applications. AST models include a 44" (112 cm) post with a freestanding base.

102 Spring Balance Hose Retractor Instruction Sheet Order Number: H15853PA

NOTE: See OPW's Website at www.opwglobal.com for product instruction sheets, trouble-shooting guides, how-to-use guide and to view the Do's & Don'ts at the Gas Pump video.

OPW

Ordering Specifications

Vertical Retractor Kits (Box, Post, Bracket, Foot & Hardware)

Model Number	Mounting Method	Clamp Fits	Weight		
model Number	mounting method	Clamp Fits	lbs.	kg	
6102-1039P	39" Retractor/Post Kit	(Hose Clamp Not Included)	12	5.4	
6102-1078P	78" Retractor/Post Kit	(Hose Clamp Not Included)	14	6.4	
6102-1100	78" Retractor/Post Kit	(Hose Clamp Not Included)	14	6.4	
6102-AST	AST	(Hose Clamp Not Included)	9	4.1	

Ordering Specifications Separate Retractor Components (Box Only)

Model Number			Cla	Weight			
	Mounting Method	Hose O.D.				Hose I.D.	
		in.	mm	in.	mm	lbs.	kg
6102-1000	Overhead Crossbar/Verticle Post		(Hose Clam	p Not Included)		7	3.2
6102-4000	Overhead Crossbar/Verticle Post	1%"	35	1*	25	7	3.2
6102-6000	Overhead Crossbar	1 1/22 "	26	%" or ¾"	16 or 19	7	3.2
6102-8000	Overhead Crossbar	1 "	25	3/s "	16	7	3.2
6102-CNG	Hose Retractor Kit, CNG						
6102-CNG2	Hose Retractor Kit, CNG2						

*POMECO recommends using C05238M, C05261M or P100-3F/P100-44/P100-2AST for use with 102 Series retractors. Other size tubes and clamps available upon request.

Hose Clamp

Ordering Specifications Hose Clamps

Model Number	Hose Clamp Size †					
PB-1396	Standard 1%" O.D. Hose (1" I.D.)					
PB-1394	Standard 11/4" O.D. Hose (1/4" I.D.)					
PB-1375	Standard 11/12" O.D.Hose (%" or 1/4" I.D.)					
PB-1373	Standard 1" O.D. Hose (%" I.D.)					
PB-1344	Balanced Coaxial, Goodyear Premier					

† Other sizes available upon request

Options Replacement Parts

Model Number	Hose Clamp Size
C05238M	Post Kit, 39"(99 cm), 11/4" x 2"
C05261M	Post Kit, 78"(198 cm), 11/4" x 2"
H15212M	10 ft. Replacement Cable
P338SPOOL	Spool of Retractor Cable, 338 ft.
H15210M (P102-02)	Replacement Cable Guide
H15211M	Replacement Reel
P100-3F	AST Replacement Base
P100-2AST	Sliding Bracket (AST)

RESUME

Resume

THEODORE C. LEMOFF

Current Position: Engineering Consultant

EducationB.E. (Chemical Engineering), City College of New York,
New York, NY, 1967
M.B.A. (Business Administration), Xavier University,
Cincinnati, OH, 1979

<u>Certifications</u> Registered Professional Engineer, Florida and Massachusetts

Experience

2010 – Present <u>Principal, TLemoff Engineering.</u>

Code consultation: Provide opinions on the applicability of gas code provisions in specific cases. Work includes review of history of code text to identify the intent of code provisions, providing verbal and written explanations, and follow-up with officials and other parties as required.

Code expert in legal cases: Provide written explanation of the intent of code requirements, when cited by other parties. Incident site visits to determine code compliance or non-compliance and opinion as the relevance thereof. Review depositions for accuracy of code related statements. Provide testimony at depositions or trials as needed.

Product support: Provide assistance to manufacturers on product specific code requirements, and propane industry practices. Assist with liaison with approval laboratories. Work with local officials on product acceptance.

Seminars: Presented talks and seminars on NFPA 54 and NFPA 58 in the United States, Santa Cruz, Bolivia, and Doha, Qatar.

1985 - 2010 <u>National Fire Protection Association</u>, Quincy, MA

Principal Gases Engineer

Staff liaison to all gases committees administering LP-Gas, Fuel Gas, and Liquid Natural Gas, and Ovens and Furnaces committee. Duties in addition to the administration of the standards making process include information interpretations as requested, speaking engagements and technical advice to NFPA books, films and other products.

NFPA representative to technical committees of the American Gas Association, National Propane Gas Association, and Compressed Gas Association, and the U. S. Department of Transportation Pipeline Advisory Committee. Voting member of the Uniform Plumbing Code and Uniform Mechanical Code committees.

Developed and maintained formal training programs on NFPA 58, Liquefied Petroleum Gas Code and NFPA 54, National Fuel Gas Code. Seminars presented throughout the United States.

1980 - 1985 Badger Engineers, Inc., Cambridge, MA and The Hague, Holland

Senior Project Engineer

Various assignments in the Cambridge, MA and the Hague, Holland offices covering the full range of project engineering activities including coordination, design, flow diagrams, equipment bid evaluation and selection.

1978 - 1980 <u>Table Talk Pies, Division of Squibb Corporation</u>, Worcester, Ma

Plant Engineer

Responsible for all engineering and maintenance for the bakery, freezer warehouse, distribution centers, and truck fleet.

1973 - 1978 <u>Sun Chemical Corporation</u>, Staten Island, NY and Cincinnati, OH

Engineering Manager

Responsible for all fire protection engineering and maintenance for the manufacturing facilities and associated offices and laboratories.

1967 - 1973 <u>The Proctor and Gamble Company</u>. Cincinnati, OH

Process Engineer

Broad range of assignments in detergents R&D.

Memberships and Affiliations

NFPA Technical Committee on National Fuel Gas Code (NFPA 54) NFPA Technical Committee on Liquefied Petroleum Gases (NFPA 58) American Institute of Chemical Engineers, Member Society of Fire Protection Engineers, Member National Fire Protection Association, Member National Propane Gas Association, Member

Publications

Editor, Liquefied Petroleum Gases Handbook, 8 editions Editor, National Fuel Gas Code Handbook, 6 editions Co Author, NFPA Pocket Guide to Fuel Gas Storage and Use

<u>Patent</u>

Spray-Dried Detergent Composition, US # 3,801,511 (Assigned to the Proctor and Gamble Company)

January, 2015

MEMO

Kaukauna Utilities

To:	Mayor Tony Penterman
From:	Michael Avanzi
Date:	May 7, 2024
Re:	City Property for Water Treatment Facilities

As discussed with the Common Council on December 19, 2023, Kaukauna Utilities (KU) has been working on a comprehensive water study for about 2 years. In the study, there are 4 alternatives for the main water filter plant (no change – react when failure occurs, replace the pressure filter tank at the current location, rebuild the water treatment building and reservoirs at current location, and a new water treatment plant at a new location). The existing main water filter plant site, originally developed in 1899, is located at 304 Elm Street. Water from 3 of Kaukauna's 5 wells is treated and stored at the main water filter plant site making it a critical component of Kaukauna's water supply. The pressure filter tank (for iron, manganese, and radionuclide removal) at the main water filter plant is over 60 years old and is at the end of its service life. The tank was temporarily patched 7 years ago and will need to be replaced within the next 3 to 5 years. The 2 ground storage reservoirs and building that houses the booster pumps are also in poor condition. In addition, the main water filter plant site is located in a floodplain. Alternative 4 minimizes the most risk factors that were considered. Alternative 4 consists of building a new water treatment plant with reservoirs and a booster pump station at a new location outside the floodplain. The new main water treatment plant location would allow for

the necessary building size for new treatment. This alternative would replace the equipment and structures identified in the water system study report as being past their useful life. Alternative 4 also allows the existing main water filter plant to continue producing water while the new water treatment plant is built. This eliminates a huge risk since rebuilding at the same site would require about a 2-year outage of 3 out of 5 wells supplying water to the city. At its meeting on April 24, 2024, this is the alternative that the water ad hoc committee decided to recommend to the Utility Commission.

In terms of the location where to relocate the main water filter plant, there were 4 sites considered. See Figure #1 below depicting the 4 sites. Proposed Site #1 is on Boyd Avenue, just south of the city pool at the current archery range site. This site is desirable due to its proximity to the existing raw water transmission main, and the property is currently owned by the City of Kaukauna. This site is also uphill from the river, fairly level, and out of the floodplain. Proposed Site #2 is to the west of the Konkapot Creek Trail. This site is also near the existing raw water transmission main. This site is undesirable due to the steep topography in this area. Proposed sites #3 and #4 are in Horseshoe Park. These sites are beneficial because they are already located on City-owned property and are near the raw water transmission main. These sites are also outside the floodplain. Site #3 is north of the baseball field. This site is not desirable due to the steep slope. Site #4 is not desirable because it is a former fill site unsuitable for building foundations. The water ad hoc committee chose Site #1 as the preferred site for the main filter plant and wishes for KU to work in good faith with the City of Kaukauna on obtaining rights to this property. See Figure #2 below for a footprint of the proposed site. The facade of any structures on the property will have a masonry appearance to match the area (tied

into the theme of the new Kaukauna pool site) and landscaping will be provided as needed.

As part of the water study, KU has also been working with its consultant on evaluating various water treatment options. Many options were considered, but 5 options made it to the top of the list for consideration. Water treatment option 1 is to keep the existing treatment process and not remove hardness from the water. All the other top 5 options involve treating for the hardness of the water so that KU customers no longer have to do so. Water treatment option 2 is ion exchange water treatment. Ion exchange functions as a large-scale water softener similar to what most people have in their homes. Water treatment option 3 is reverse osmosis or nanofiltration treatment. This treatment process consists of pushing water through a semipermeable membrane using high pressure. Water treatment option 4 is pellet softening treatment. With pellet softening, water is pushed through a fluidized bed of sand. The chemistry concept of pellet softening is the same as lime softening. Water treatment option 5 is for Kaukauna Utilities to switch to surface water as a source of water. This option has the benefit of eliminating the issue of radium and high water hardness associated with Kaukauna's groundwater. There are 2 communities nearby that are wholesale suppliers for surface water. At the April 24, 2024 meeting, the water ad hoc committee decided to recommend Option 3 (Reverse Osmosis or Nanofiltration) to the Utility Commission.

In order to limit the cost impacts of this new water treatment option, it is recommended to consolidate two of KU's current well sites. Raw water from Wells 8 and 9 would be treated at an upsized Well 9 water treatment plant located north of the Fox River. A raw water transmission main between Well 8 and 9 would be installed, and the Well 8 water treatment plant would remain for pretreatment to remove iron. This would require an expansion of the Well 9 site. See Figure #3 below for the potential expansion area needed. The expansion area consists of land currently owned by the City of Kaukauna. The façade of any structures on the property will have a masonry appearance to match the area and landscaping will be provided as needed.

Due to the limited remaining lifespan of critical components at the main filter plant, the goal is to complete this project in 3-4 years. This is a fairly aggressive timeline given the scope of work involved. With that, the design and permitting phase needs to commence this summer. The plan is to present a recommendation to the Utility Commission at the May meeting, which would be rescheduled until after the May 21st Common Council meeting. At the June Utility Commission meeting, a final decision would be made and KU staff would formally begin the design and permitting phase of the project. This concept is being introduced at today's Common Council meeting and will be presented to the Plan Commission and Board of Public Works prior to the May 21st Common Council meeting.

Figure #1: Main Filter Plant Proposed Site Options

EST 1885

106

Figure #2: Proposed Main Filter Plant Site

107

Figure #3: Expansion of Well 9 Site

Sincerely,

Michael Avanzi General Manager Kaukauna Utilities

Cc: Sally Kenney Tim Greenwood

MEMO

PLANNING & COMMUNITY DEVELOPMENT

To:	Plan Commission
From:	Lily Paul, Associate Planner
Date:	May 3, 2024
Re:	Park Donation Application Review - Bench

A Park Bench Donation application has been submitted by Erica Schoenfelt to be installed at Horseshoe Valley Park on the trail leading to Konkapot Creek Trail. The bench is being donated in honor of her late Mother, Diann Schoenfelt who was born and raised in the community near Horseshoe Valley Park. This is a great way to establish a memorial.

The plaque inscription will say:

"In Loving Memory of Diann M. (Zobel) Schoenfelt 12/7/61 - 5/18/23"

Staff Recommendation

Staff recommends to approve the park bench donation for Erica Schoenfelt in honor of her mother Diann Schoenfelt and direct staff to work with the donor to pick a precise location.

UPDATED 11.07.2022

APPLICATION FOR PARK DONATION

Donor Name: Erica Schoenfelt Phone Number: 920-903-2461 Address: 6581 N Bethmaur In Milwauker WI 53209 Email Address: Schoenf4 @ gnail. can Proposed Location: Horseshar park near pond / trail area (44°16'16'17" N Type of Donation: 88°16'11" W)

Other Item (Please Describe)

Inscription Text (If Applicable)

Please attach any necessary photos or documents with this form

Park Donations to the City of Kaukauna are considered outright and unrestricted donations. The City of Kaukauna does not guarantee the permanency of the accepted donation. If a memorial must be relocated, Department staff will attempt to notify the donor in writing at the address shown on this form. Donations may be tax deductible (please consult an accountant). The donor declares to have read the Parks Donation Policy and Guidelines. The donor understands and agrees with the conditions set forth in this policy and agrees to any conditions required by City staff or elected officials.

By signing below, I acknowledge that I have read and understand the Parks Donation Policy and Guidelines

CITY OF KAUKAUNA

144 W 2nd Street Kaukauna, WI 54130 920.766.6300 www.cityofkaukauna.com

MEMO

PLANNING AND COMMUNITY DEVELOPMENT

To:	Plan Commission
From:	Dave Kittel, Director of Planning and Community Development
Date:	5/3/2024
Re:	122 Island St Remnant parcel

On November 17, 2022 an item was brought forth to the plan commission on a remnant parcel. This remnant is due to the dedication of right-of-way and the realignment of the Island/Elm intersection in 2022. See the attached memo with maps from the November 17, 2022 meeting for greater detail. During the meeting on November 17, 2022 the plan commission made a motion to recommend to the Common Council to transfer the remnant to the adjacent property owner, minutes from this meeting are also included in packet. For unknown reasons, this item appears to have not gone forth to the Common Council. The property owner is still interested in the remnant parcel and considering the maintenance of mowing, shoveling, repair/replacement of walks and streets, it would be advantageous for the City to transfer the remnant parcel to the abutting property owner. Due to the amount of time between now and the last time this was in front on the Plan Commission this item is coming back for review and action.

Recommendation:

Motion to direct staff to prepare documents including a survey and deed to transfer the remnant of parcel 325008400 also known as Lot 1 Block 2 Kaukauna Island Plat to the adjacent property owner and to recommend the transfer of the same to City Council.

City of Kaukauna Plan Commission October 20, 2022 jn/engr dept

Agenda Item Disposition of City Land – Remnant Parcel – 122 Island Street

Background

Due to the dedication of right-of-way and re-alignment of the Island/Elm intersection from a 2022 City project, there is a remnant parcel owned by the City shown on the attached sketches. Director of Public Works does not believe that any use of this parcel is needed by the City. Considering the maintenance of mowing, shoveling, repair/replacement of walks and streets, it would be advantageous for the City to transfer the remnant parcel to the abutting property owner.

Staff Recommended Action

Motion to direct staff to prepare documents including a survey and deed to transfer the remnant of parcel 325008400 also known as Lot 1 Block 2 Kaukauna Island Plat to the adjacent property owner and to recommend the transfer of the same to City Council.

PLAN COMMISSION

City of Kaukauna **Council Chambers** Municipal Services Building 144 W. Second Street, Kaukauna

Thursday, November 17, 2022 at 4:00 PM

MINUTES

The meeting was called to order at 4:00 PM.

1. Roll Call

Members Present: Avanzi, Feller, Moore, DPW Neumeier, Mayor Penterman, Schoenike, Thiele and PCDD Stephenson

Others Present: AP Paul, Brandon Wegner from Mach IV

- 2. Approval of Minutes
 - a. Approval of Minutes from October 20, 2022 Meeting

There was a request to revise section 3. b. of the October 20, 2022 Meeting Minutes. Avanzi motioned to approve the minutes with the revisions. Schoenike seconded the motion. The motion passed.

- 3. Old Business.
 - a. Disposition of City Land Remnant Parcel 122 Island Street

Avanzi mentioned that the water study area was reviewed and the property in question will not be effected. A motion was made by Moore to approve the disposition of the City's remnant parcel at 122 Island Street to the adjacent property owner. Schoenike seconded the motioned. The motion passed.

- 4. New Business.
 - a. Certified Survey Map Review Bernatello's Pizza

AP Paul presented a CSM submitted by Mach IV showing a lot combination for Bernatello's Pizza. Bernatello's is now in ownership of the stormwater pond, driveway and parking area and the CSM is combining this land with their current property. DPW Neumeier brought up two points:

- The document number for the No Build easement along the west line is incorrect
- There needs to be an addition of a power easement

A motion was made by DPW Neumeier to accept the CSM with the changes mentioned above. The CSM must be submitted back to City Planning Department for in house approval before being passed on to Common Council. Seconded by Thiele. Motion passed.

b. Site Plan Review – Bassett Mechanical Corporate Office Addition

CITY OF KAUKAUNA

920.766.6300 www.cityofkaukauna.com

AP Paul presented the site plan review for Bassett Mechanical's corporate office addition off the south end of their existing facility. This an 8600 square foot addition to accommodate more office space, common areas, bathrooms, and conference rooms. There will be associated parking lot accommodation as well to account for this expansion. This is located in the Industrial Park District (IPD). All setback, height, parking, façade, landscaping, stormwater and erosion control requirements are being met.

5. Other Business.

There was no other business.

6. Adjourn.

A motion was made by Thiele to adjourn the meeting. Moore seconded the meeting. The meeting was adjourned at 4:16 PM.

MEMO

PLANNING & COMMUNITY DEVELOPMENT

To:	Plan Commission
From:	Lily Paul, Associate Planner
Date:	May 3, 2024
Re:	Additional Easement Review – Blue Stem Meadows 3 (CSM 8540 & 8541)

Blue Stem Meadows 3 is a subdivision development south of CTH CE and east of Haas Road. Lots 117 through 122 of Blue Steam Meadows 3 were split in July, 2023 to reduce the lot width to 74 or 75 feet and create one more lot. These lots are smaller in size for cottage style homes. These lots are now Lot 1 through 3 of CSM 8540 and Lot 1 through 4 of CSM 8541. Please see exhibit attached.

During the creation of the drainage plan, both the plat and the lot split CSMs did not show necessary drainage easements, and a storm sewer easement between Lot 2 of CSM 8541 and Lot 3 of CSM 8541.

Davel Engineering, agent for owner, Dercks Dewitt LLC, has submitted a Permanent Easement document to show the easements explained above. Please see exhibit attached.

Staff Recommendation

Staff recommends to approve the easements for Blue Stem Meadows Lot 123, Lots 1 through 3 of CSM 8540, and Lots 1 through 4 of CSM 8541

	PERMANENT EASEMENTS		Item 3.e.
Document Number		+	
These EASEMENTS, ma	ade between		
Dercks Dewitt, LLC GRANTOR			
and			
City of Kaukauna GRANTEE			
GRANTOR conveys to G good and valuable consid following described Ease Wisconsin.	RANTEE, their heirs, successors and assigns, for deration, receipt of which is acknowledged, the ments in, City of Kaukauna, Outagamie County,	This space reserved for recording data	
Said GRANTOR conveys	s to said GRANTEE the following easements:	Return to: Davel Engineering & Environmen 1164 Province Terrace Menasha, Wisconsin 54952	ntal, Inc.
		See Parcel List on Sheet 2	
20' Storm Sewer Easen	nent	Parcel Identification Number(s)	
Part of Lot 2 and 3, Cer 19 East, City of Kaukau	tified Survey Map 8541; located in Southwest 1/4 of the Nor na, Outagamie County, Wisconsin, containing 2,700 SF (0.	theast 1/4, Section 31, Township 21 North, Ra 0620 Ac) for land, described as follows:	ange
The Fast 10 feet of I ot	2 and the West 10 feet of Lot 3 as mapped on Certified Sur	vev Map 8541.	
20' Drainage Easement			
Part of Lot 123, Blue St Survey Map 8541; all bo Kaukauna, Outagamie (em Meadows 3; Part of Lot 1, 2, and 3, Certified Survey Ma eing located in Southwest 1/4 of the Northeast 1/4, Section County, Wisconsin, containing 12,537 SF (0.2878 Ac) for la	p 8540; and part of Lot 1, 2, 3 and 4, Certified 31, Township 21 North, Range 19 East, City o nd, described as follows:	ſ
The South 20 feet of Lo Survey Map 8541.	ot 123, Blue Stem Meadows 3; Lot 1, 2, and 3, Certified Surv	vey Map 8540; and Lot 1, 2, 3 and 4, Certified	
Tom Dercks, Managing Dercks DeWitt, LLC	Member Date		
State of Wisconsin)		
County of)ss)		
Personally came before the above named to me	e me thisday of, 20, known to be the same person(s) who executed the foregoi	ng instrument and acknowledged the same.	
	Mv commission expires		
Notary Public, Wisconsi	in		
		File: 4198E Date: 05/03	.ase5.dwg 3/2024
This instrument drafted by: Dave May $03 - 2024 = 01117$ DM	el Engineering & Environmental, Inc. Prepared by: James R. Sehloff	Drafted By: Sheet [,] 1 of	Jim Jim 3
Way 00, 2024 - 01:17 PM	o, (Frojecis (Hrooder (uwy (Civil OD (Hroodaseo, awg - Printeal by: Jim		118

City of Kaukauna Drainage Easement Restrictions:

The following uses and structures are prohibited within all "Drainage Easements" granted in this document; filling, grading, and excavating except for construction of drainage ways and drainage facilities; the cultivation of crops, fruits, or vegetables; the dumping or depositing of ashes, waste, compost or material of any kind; the storage of vehicles, equipment, materials or personal property of ay kind and constructing, erecting or moving any building or structure, including fences, within the drainage easement.

City of Kaukauna Drainage Easement Maintenance:

Maintenance of all drainage ways and associated drainage structures within the subdivision of Blue Stem Meadows 3 are the sole responsibility of the property owners in the subdivision, unless otherwise noted on the drainage plan which has been prepared for this subdivision and which has been approved by and is on file with the City of Kaukauna.

Upon failure of any property owner to perform maintenance, abide by restrictions, or follow grading requirements of the drainage ways and associated drainage structures, the City of Kaukauna retains the right to have maintenance or corrective measures performed. The cost of said maintenance or corrective measures on any given lot shall be a special charge to the non-complying lot.

Maintenance by the City to include, but not limited to, the removal of silt and decomposed vegetation that gradually accumulates in the bottom of a pond, a detention area, and/or accompanying ditch. Payment for city maintenance may be placed on the annual real estate tax bill from all contributing sources as a special assessment if not paid.

Grading and Grades

All grading and final grades for the construction of any public or private improvements, including landscaping, shall conform to the surface water drainage plan as approved and on file with the City of Kaukauna.

Parcel No	Lot No.
325118156	CSM 8540 Lot 3
325118157	CSM 8540 Lot 2
325118164	CSM 8540 Lot 1
325118158	CSM 8541 Lot 4
325118159	CSM 8541 Lot 3
325118160	CSM 8541 Lot 2
325118161	CSM 8541 Lot 1
325118162	BSM 3 Lot 123

<u></u> ₩		, M —	ب ٦٨;	<u> </u>	<u>м</u> —	
	√ ∽W	↓ 1 <u> </u>	 ⊬ WI	√ ⊬ Wł	- ₩ 	

CURVE TABLE							
Curve	Radius	Chord Direction	Chord Length	Arc Length	Central Angle	Tangent Bearing-in	Tangent Bearing-out
C1	280.00'	N 11°37'42" E	104.20'	104.81'	21°26'50"	N 00°54'17" E	N 22°21'07" E
C2	280.00'	S 03°08'51" W	21.92'	21.92'	4°29'08"	S 00°54'17" W	S 05°23'25" W
C3	280.00'	S 13°52'16" W	82.59'	82.89'	16°57'42"	S 05°23'25" W	S 22°21'07" W
C4	120.00'	N 11°40'11" E	44.49'	44.75'	21°21'52"	N 22°21'07" E	N 00°59'15" E
C5	120.00'	N 18°42'33" E	15.25'	15.26'	7°17'08"	N 22°21'07" E	N 15°03'59" E
C6	120.00'	N 08°01'37" E	29.41'	29.49'	14°04'44"	N 15°03'59" E	N 00°59'15" E
C7	180.00'	N 11°40'11" E	66.73'	67.12'	21°21'52"	N 22°21'07" E	N 00°59'15" E
C8	180.00'	N 06°06'59" E	32.18'	32.23'	10°15'27"	N 11°14'42" E	N 00°59'15" E
C9	180.00'	N 16°47'55" E	34.84'	34.89'	11°06'25"	N 22°21'07" E	N 11°14'42" E
C10	220.00'	N 11°37'42" E	81.87'	82.35'	21°26'50"	N 00°54'17" E	N 22°21'07" E
C11	220.00'	N 14°45'17" E	58.17'	58.34'	15°11'40"	N 07°09'27" E	N 22°21'07" E
C12	220.00'	N 04°01'52" E	24.00'	24.01'	6°15'10"	N 00°54'17" E	N 07°09'27" E
C13	180.00'	N 11°36'56" E	66.91'	67.30'	21°25'19"	N 00°54'17" E	N 22°19'36" E
C14	220.00'	N 11°39'25" E	81.46'	81.94'	21°20'21"	N 22°19'36" E	N 00°59'15" E
C15	220.00'	S 21°56'36" W	2.94'	2.94'	0°46'01"	S 22°19'36" W	S 21°33'35" W
C16	220.00'	N 11°16'25" E	78.57'	78.99'	20°34'20"	N 21°33'35" E	N 00°59'15" E
C17	280.00'	N 11°39'25" E	103.68'	104.28'	21°20'21"	N 22°19'36" E	N 00°59'15" E
C18	280.00'	N 05°47'14" E	46.86'	46.91'	9°35'58"	N 10°35'13" E	N 00°59'15" E
C19	280.00'	N 16°27'24" E	57.27'	57.37'	11°44'23"	N 22°19'36" E	N 10°35'13" E
C20	120.00'	N 11°36'56" E	44.61'	44.87'	21°25'19"	N 00°54'17" E	N 22°19'36" E
C21	120.00'	N 12°29'30" E	40.99'	41.20'	19°40'11"	N 02°39'25" E	N 22°19'36" E
C22	120.00'	N 01°46'51" E	3.67'	3.67'	1°45'08"	N 00°54'17" E	N 02°39'25" E

File: 4198Final3.dwg	
Date: 01/09/2023	
Drafted By: Jim	
Sheet: 1 of 2	
Revision Date: Jan 09, 2023	

80	160	240

ENVIRONMENTAL, INC. Civil Engineers and Land Surveyors

www.davel.pro