

JUNEAU COMMISSION ON SUSTAINABILITY AGENDA

May 01, 2024 at 12:00 PM

Zoom Webinar

https://juneau.zoom.us/j/88069534778 or Phone 1-253-215-8782 Meeting ID: 880 6953 4778

A. CALL TO ORDER

B. LAND ACKNOWLEDGEMENT

We would like to acknowledge that the City and Borough of Juneau is on Tlingit land, and wish to honor the indigenous people of this land. For more than ten thousand years, Alaska Native people have been and continue to be integral to the well-being of our community. We are grateful to be in this place, a part of this community, and to honor the culture, traditions, and resilience of the Tlingit people. Gunalchéesh!

C. ROLL CALL

D. APPROVAL OF AGENDA

E. APPROVAL OF MINUTES

1. April 3, 2024 - JCOS Regular Meeting Minutes

F. PUBLIC PARTICIPATION

G. AGENDA TOPICS

- 2. Who can speak on behalf of JCOS and when? Nick Waldo
- 3. Energy Transitions Initiative Partnership Project (ETIPP) Steve Behnke & Dianna Robinson
- 4. Clean Ports Grant Program letter of support Dianna Robinson & Nick Waldo
- 5. Sustainability Session Debrief Marian Call & Nick Waldo

H. INFORMATION ITEMS

- 6. Staff Update Dianna Robinson (attached)
- 7. Centennial Hall Sustainability Success CBJ Architecture (attached from Jeanne Rynne, Chief Architect)
- 8. Grant update (attached from Ashley Heimbigner, Grant Manager)

I. COMMITTEE MEMBER / LIAISON COMMENTS AND QUESTIONS

J. NEXT MEETING DATE

- 9. Outreach Subcommittee Meeting May 7, 2024, at 12-1 PM on Zoom
- 10. Regular Meeting June 5, 2024, at 12-1 PM on Zoom

K. ADJOURNMENT

ADA accommodations available upon request: Please contact the Clerk's office 36 hours prior to any meeting so arrangements can be made for closed captioning or sign language interpreter services depending on the meeting format. The Clerk's office telephone number is 586-5278, TDD 586-5351, e-mail: city.clerk@juneau.gov.

Juneau Commission on Sustainability (JCOS) 2024 Regular Meeting Saturday, April 3, 2024, Noon Minutes

A. CALL TO ORDER

Chair Waldo called the meeting to order at 12:15 p.m.

B. LAND ACKNOWLEDGEMENT

C. ROLL CALL

- 1. Present: Nick Waldo, Gretchen Keiser, Duff Mitchell, Steve Behnke, Jim Powell, Marian Call
- 2. Absent: Jessica Barker, Laura Achee, David Teal
- 3. Staff & Others Present: Dianna Robinson, CBJ staff liaison; Matthew Sill, Docks & Harbors; Lori Sowa, AELP

D. APPROVAL OF AGENDA

Approved with added item to advance FY25 CIP recommendation.

E. APPROVAL OF MINUTES

- 1. March 6, 2024 JCOS Regular Meeting Minutes. Approved as amended to reflect that JCOS' March 1 CIP recommendation was not forwarded to the PWFC as intended and addressed.
- 2. March 12, 2024 JCOS Outreach Subcommittee Meeting Minutes. Approved.

F. PUBLIC PARTICIPATION

None

G. AGENDA TOPICS

- 1. Sustainability Sessions Nick provided an update on the April 18 (6:30 pm) sustainability session on dock electrification. JCOS will take summer off from sustainability session and come back in fall; are discussing having a post season session on cruise ships. Need to discuss goals for it.
- 2. Staff Update Calendar Discussion Dianna Robinson
- 3. Staff Update Dianna Robinson
 - a. Update from Nate Abbott (see attached)
 - b. CPRG grant for MWWTP boiler submitted. Copy sent to JCOS members.
 - c. Future staff reports: Jim asked for updates on comp. plan and area plans; EV planning and EV chargers.
 - d. Solid waste update-- waste characterization study on track -- May 20-25 Cascadia consulting -- She's been working on NEPA compliance for the CDS project.
 - e. At the upcoming 4/15 PWFC -- staff will be reintroducing the big question of funding for high level study of future waste disposal options. Zach Gordon Youth center has successfully converted from Fuel Oil Boiler to an Electric Boiler, this also included a controls upgrade. We will report back in a year on what sort of energy and cost savings we are actually seeing.

- 4. Subcommittee Assignments Nick Waldo -- let discussion.
 - a. Committee structure as project focused -- discussed at Jan. retreat.
 - i. Everyone responded to Nick's survey:
 - ii. Energy- Financing and CBJ decarbonization Gretchen, Steve, David
 - iii. Solid waste and public outreach -- Marian and Nick
 - iv. Sust. awards/indicators -- Jim and David
 - v. Climate preparedness and food Jessie and Marian
 - b. Discussed how committees can work. Agreed that small workgroups of 2 members can meet without public notice.
 - i. Scheduling of comm. meetings -- Chair can let Dianna know they want a meeting.
 - ii. comm. members Chair can let Dianna know they want a meeting.
 - iii. if only 2 involved they can meet or talk, but then bring info or proposals for action to the full JCOS.
 - iv. If a comm. is drafting a formal recommendation -- there should be public notice.
 - v. Dianna can do handle up to 3 meetings/month --
 - vi. Nick will have a standing agenda item for comm. updates --
 - vii. Small groups should do e-mail to keep people informed.
- 5. CBJ Fleet Electrification Steve Behnke -- Nothing to report.
- 6. JCOS recommendations for FY25 CIP
 - a. Duff moved; Gretchen seconded to forward March 1 JCOS recommendation to Finance Committee. Nick will talk to JCOS liaison and Finance Chair to identify how they would like to receive the recommendation.
 - b. For background on the development of the March 1 recommendation, see attached.

H. INFORMATION ITEMS

- 1. 1. Grant Update Attachment from Ashley Heimbigner
- 2. Docks & Harbors Infrastructure Event Attached Flyer from Carl Uchytil

I. COMMITTEE MEMBER / LIAISON COMMENTS AND QUESTIONS

- 1. Jim P. reported on JEDC Innovation Summit Mayor interested in a proposal to do scenario planning for Juneau.
- 2. Steve B. reported that the Planning Commission is holding a special hearing to receive public comments on the draft Blueprint Downtown area plan on Tuesday, April 23, at 5:30 p.m. in the Assembly Chambers.

J. NEXT MEETING DATE

- 1. Sustainability Session -- April 18
- 2. Regular JCOS meeting -- May 1

K. ADJOURNMENT

The meeting adjourned at 1:13 p.m.

Submitted by Steve Behnke, acting secretary.

4/3/2024 Project Update from Nate Abbott for JCOS:

- Zach Gordon Youth center has successfully converted from Fuel Oil Boiler to an Electric Boiler, this also included a controls upgrade. We will report back in a year on what sort of energy and cost savings we are actually seeing.
- Glacier Fire Station: Construction has begun on the fuel oil boilers replacement construction is planned to be completed in August, there is also a controls upgrade, electrical upgrade, and air handling upgrade that is happening as part of this project. Again we will report back on realized savings a year after the project is complete.
- Auke Bay Fire Station: Work has begun on the fuel oil boiler replacement with electric boiler. This project also includes a controls upgrade. This project is scheduled to be completed next year due to long lead items for the electrical system. So really in the very early stages of the construction.
- Here in facilities maintenance we have developed a contract with our controls contractor starting next year to performing rolling re-commissioning of our control systems.
- Next week I will be attending Daikin Training on installing and maintaining Daikin VRF Heat Pumps.

Dianna Robinson

From: Sent: To: Cc: Subject: Steve Behnke <steven.r.behnke@gmail.com> Tuesday, April 2, 2024 4:15 PM Dianna Robinson Nick Waldo Agenda addition: JCOS FY25 CIP recommendations

EXTERNAL E-MAIL: BE CAUTIOUS WHEN OPENING FILES OR FOLLOWING LINKS

Dianna, would you please forward this to JCOS members before tomorrow's meeting.

To: JCOS members, From: Steve Behnke

I hope that JCOS will take some specific actions Wednesday to advance its FY25 CIP recommendations.

Agenda addition:

I intend to ask to add an item to the Wed. 4/3/24 agenda concerning JCOS FY25 CIP recommendations.

Correction to the minutes.

I'd also like to offer a correction to the 3/6/24 minutes. I would have added to this discussion if I'd been able to get on the meeting.

The minutes currently state:

- "CIP Comments Discussion & Approval
- Nick notes that this was already submitted.
- Gretchen mentions that Steve is working with Dianna on making sure our
- comments are in the next public works & facilities committee meeting
- Ella responds that this will be taken up in either COW or finance committee

because this is part of public comment"

The minutes should be amended to reflect that JCOS' March 1 CIP recommendation was not forwarded to the PWFC as intended and addressed.

Possible Motions concerning JCOS CIP recommendation

I expect to move that JCOS immediately forward our March 1 recommendation on the FY25CIP to the Finance Committee <u>20240301 JCOS CIP Recommendations.pdf</u>. Since it is currently directed to the PWFC, it either needs an additional transmittal e-mail with explanation, or should be rewritten and directed to the Finance Committee.

Additionally, I intend to move that JCOS formally request CBJ staff assistance in getting meaningful consideration for the recommendation by the Finance Committee during its CIP review. The Finance Committee is meeting on Saturday, April 6 to begin the budget review, including the CIP. Our recommendation should be part of their packet.

Staff has suggested that our recommendation should be taken up as part of the Assembly's hearing on the CIP (April 29). In my view treating a JCOS recommendation as any other public comment doesn't meet the intent of JCOS's direction to make recommendations to the Assembly. If JCOS's recommendations are to be given the same weight as general public comments, why have JCOS? As Mr. Bohan points out below, now that the CIP is public, comments can be submitted to the Assembly at any time.

Background and timeline

Feb. 7: JCOS approved sending a memo with CIP recommendations to the city manager and the PWFC.

March 1: Nick signed and submitted CIP recommendation 20240301 JCOS CIP Recommendations.pdf

March 3: After learning that the JCOS' March 1 memo was not being forwarded to the PWFC, I took it upon myself to e-mail Assembly person Adkinson, JCOS liaison, asking her to bring it to the PWFC attention on behalf of JCOS.

March 6: JCOS regular meeting. I learned that Ms. Adkinson had consulted with staff and didn't feel it was appropriate to include our recommendation in the March 11 packet. Since I couldn't get on the meeting I didn't have a chance to make a case for why it should be submitted.

March 7: I forwarded the recommendation to PWFC members directly. I goofed in two ways. First, I didn't consult with Chair Waldo; secondly I identified myself as chair of the Energy Committee, although the Energy Comm. had not approved the action, and in fact I'm not sure of the status of either the Committee or my role. Mr. Waldo has appropriately chided me for these actions and I apologize for both of them.

Since then I've heard some concerns about the way the recommendation was developed and handled by JCOS and by me.

Specifically, Director of E &PW Koch, noted on March 6 that "In past years, Engineering & Public Works has not included the JCOS CIP comments in our March PWFC packet. The JCOS CIP comments will be included in the April 29 Assembly packet that includes the public comment on the CIP. That puts the JCOS comments on equal footing with other public comments on the CIP..."

However, what I said in my March 3 e-mail was "Unlike prior years, JCOS did not have a formal opportunity to comment on the draft CIP list,." I was pointing out that JCOS had not had been offered an opportunity to review or comment on Dept. recommendations, or to offer suggestions for additions as it had been in previous budget cycles.

The difference from past years is highlighted in an e-mail from Ms. Koch to Gretchen and me (Nov. 4,2022):

"CBJ Departments are just starting to think about next year's CIP projects. The CIP budget and listing of projects will likely be on the agenda of the PWFC committee at the end of January. You should aim for sending a memo to Katie somewhere in mid-January outlining JCOS priorities for the CIP. Katie would include the JCOS letter/memo in the packet to the PWFC with the CIP budget agenda item."

Mr. Bohan responded, through Dianna on March 4, to my March 3 e-mail, and pointed out th the Planning Commission did not provide review the CIP for conformance with the Comp. Plan, and that "Basically, the CIP Resolution for the upcoming Fiscal Year is in the public hands (via the PWFC packet) around the end of January. Comments can be provided to the Assembly at any time after the draft CIP resolution becomes public at the PWFC meeting."

Sequence of events leading up to the March 1 letter

Nov. 29, 2023 JCOS Energy Committee Meeting

Discussed and approved FY25 CIP recommendations covering 5 specific areas. (<u>2023-11-29_JCOS-</u> <u>Subcommittee-Energy-Minutes-DRAFT.pdf</u>)

Dec.6 2023 JCOS regular meeting

Discussed the 11/29 JCOS Energy Committee recommendations on an approach to CIP ,... Ms.Keiser suggested that the Energy Committee and Solid Waste Committee work w/ staff to incorporate JCOS suggestions into CIP, and draft outline or submittal for the January 3, 2024 JCOS regular meeting" 2023-12-06 JCOS-Regular-Minutes-DRAFT.pdf

Jan. 6, 2024 JCOS Retreat

Identified 2024 priorities includinng, clean Energy Financing, CBJ carbon reduction efforts and solid waste -- all areas addressed by the CIP recommendations

Jan- .Feb. 2024 -- Steve had series of e-mail exchanges and 2 meetings, including Dianna, D.Teal and others met w/ staff to discuss CIP related projects. These included a long Feb. 12 e-mail excannge with Nate Abbott -- which resulted in dropping and changing some of JCOS recommendations.

February 7, 2024 JCOS regular meeting

Discussed key points for several new CIP projects which focus on the sustainability goals, such as energy efficiency and decarbonization of buildings, electric vehicle charging, and solid waste. Approved a motion to give Nick approval for memo to be sent to staff and PWFC, in order to meet the deadline of March 11.

2024-02-07_JCOS-Regular-Minutes.pdf

Section H, Item 6.

Engineering and Public Work 155 Heritage

155 Heritage Way Juneau, Alaska 99801 Telephone: 586-0800

DATE:May 01, 2024TO:Nick Waldo, Chair, Juneau Commission on SustainabilityFROM:Dianna Robinson, Environmental Project Specialist, CBJSUBJECT:May Staff Update

Chair Waldo,

Please see updates from CBJ staff below.

Dianna Robinson, Environmental Project Specialist

- On April 23rd, we officially moved on to the next stage of the process to receive the \$2.5 million appropriation from Sen. Lisa Murkowski. We're hopeful that we'll receive the funds in the next 2-3 months.
- Staff will issue an RFP for the solid waste 'big question' study sometime in May, and hope to have a finished report around October 2024.
- The RecycleWorks baler had its computer destroyed during a power surge; the center was closed for a little over a week.
- The Waste Characterization Study will take place at the landfill May 20-25th. We hope to get a first draft of the study by the end of June.
- We are working on contract amendments to begin work on the 2022 and 2023 GHG emissions inventories.

Rich Ross, Transit Superintendent:

- The chargers for the 7 buses arriving this fall are still in the manufacturing process. Bids for the switchgear that will power the chargers are due this Thursday. Last I heard from Gillig the buses should be arriving in late September Early October 2024.
- Capital Transit is submitting a grant application to AKDOT who will submit to FTA today (LoNo) for 6 additional electric buses and related charging infrastructure. If awarded these vehicles will help to bolster our summer service capacity which has been strained in recent years due to record number of cruise passengers. The award announcements should be on or before July 9th. There is a 2 year lead time from when electric buses are ordered to delivery currently.

Nate Abbott, Building Maintenance Supervisor

- Completed the Daikin VRV install
- Next week we will install a Daikin Split and take a startup class

Minta Montalbo, Senior Planner

- The next plan we'll be trying to finalize is the South Douglas West Juneau (SDWJ) area plan, which has completed its public visioning phase and is ready for drafting, so I'm working on a contract for that work. I'll let you know when we have a final draft ready for agency review.
- The Comp Plan is slated for later this summer or early fall, once we finalize the SDWJ area plan. Since these area plans become part of the Comp Plan (if adopted by ordinance), we need to get them finished before we start on the Comp Plan rewrite. That will be a multi-year project, with a full year of public outreach, so plenty of opportunities for JCOS participation.

FINAL IAQ SAMPLING REPORT

CENTENNIAL HALL RENOVATION 2022 CBJ Contract BE22-204

as required by Section 018113 and for LEED IAQc4

Prepared for

Carver Construction, LLC 1012 Second Street Douglas, AK 99824

25 March 2024

Page 2

Table of Contents

INTRODUCTION	3
CONTAMINANTS OF CONCERN	3
HVAC SYSTEM PROTECTION DURING CONSTRUCTION	4
BALLROOM AIR FLUSHING	4
IAQ MEASUREMENTS	4
CONCLUSION	6
THIRD-PARTY SAMPLER COMFIRMATION	6

INTRODUCTION

The subject project is a renovation of the ballrooms at Centennial Hall in Juneau, AK undertaken as CBJ project BE22-204. Construction activities performed for this project include demolition and/or removal of concrete, wood, gypsum board, acoustical wall and ceiling panels, doors, operable walls, along with associated trims and finishes, followed by replacement with new materials and finishes. Work was generally restricted to Ballrooms 1-3 which received structural and acoustical upgrades at both floor and catwalk levels. In addition, upgrades to the HVAC system were provided for the ballrooms.

This Final Indoor Air Quality (IAQ) Sampling Report summarizes the activities performed to protect the health and safety of workers and building occupants during and after construction and to decrease emissions of indoor air contaminants. Additionally, it provides the results from indoor air quality assessments of standard indoor air contaminants of concern. The sampling is also intended to provide an IAQ Indoor Air Quality Assessment in accordance with LEED IEQ v4.

Note that the overall LEED credits for NC IEQ v4 can be achieved either by following a full building flush-out procedure (Option 1, Path 2) or by performing air testing that verifies that the building air quality meets the LEED standards (Option 2, Path 1 and/or Path 2). On this project, both flushing and air testing were performed. The building was partially occupied during construction, so assessments were selected to be suitable for occupied buildings.

CONTAMINANTS OF CONCERN

All construction projects that include demolition of existing materials and installation of new materials have the to potential to release contaminants into the building and to cause exposure to current or future occupants. Contaminants of concern on this project include dust and debris, welding fumes, and fumes or vapors from volatile products used in installation and cleaning as well as in paints and other finishes.

Construction activities with a potential to generate contaminants include:

- Grinding of concrete;
- Demolition and patching of walls, both operable and fixed;
- Welding for structural upgrades;
- Removal and replacement of interior finishes;
- Removal and replacement of exterior finishes;
- Removal and installation of acoustical wall and ceiling panels;
- Installation of spray-on fireproofing; and
- Miscellaneous other tasks required to complete the contract work.

Activities that are particularly prone to creating dust or fumes include grinding concrete and welding. Installation of new finishes is the most likely source of volatile organic compounds. All activities were planned to be performed in a manner that minimized the release of contaminants and exhausted air from the work areas outside the building.

HVAC SYSTEM PROTECTION DURING CONSTRUCTION

A common concern during construction projects is contamination of the building HVAC system by particulates or fumes generated as part of the work activities. To prevent this from occurring, the building HVAC system in the work areas was not used during construction. All supply and return grilles in the work area were sealed with 6-mil polyethylene sheeting which remained in place for the duration of the project. Note that the HVAC system was still in use in other areas of the building that were occupied throughout the construction period.

Heat was provided to the work areas using space heaters. Active work areas were ventilated using negative air machines to filter contaminants from the air (MERV17-20 level filtration), provide adequate air exchange for worker occupancy, and creating a slight negative pressure in the work area to assure that no dust or fumes could migrate from the active work area into the occupied areas of the building.

BALLROOM AIR FLUSHING

After installation of the new HVAC components was completed and all new finishes had been applied in the work areas, the building flush-out activities were performed and filtration media for the HVAC system were replaced with new media in accordance with the requirements of the mechanical system components.

The Centennial Hall ballrooms have a total volume of 12,300 square feet and the new HVAC system has a capacity of 17,400 cubic feet pr minute. The duration of time required to meet the contract requirement of 14,000 cubic feet per square foot of space is:

 $\frac{14,000 \text{ cf/sf x } 12,300 \text{ sf}}{17,400 \text{ sf}} = 9,869 \text{ minutes} = 6.8 \text{ days}$

Flushing was carried out starting on 21 August 2023 with the system on full supply air and full exhaust with no recirculation. A few interruptions took place to adjust equipment, with the cumulative flushing volume was completed by 31 August. Fortunately, weather conditions were favorable during the flushing event, allowing temperature and humidity requirements (temperature at or above 60F and relative humidity no higher than 60%) to be met. This flushing event satisfies the requirements set forth for the new HVAC system components as well as for the LEED NC IAQ v4 qualification.

IAQ MEASUREMENTS

Measurements were taken on 31 January 2024 with one sample collected in each ballroom. The new partition walls were put in position to divide the ballrooms into three separate sampling spaces. Samples were collected from the center of each ballroom.

Volatile organic chemicals were measured using the EPA TO-15 method, collecting air samples from each ballroom into a 6-liter vacuum cannister (Summa cannister) with regulated inflow over a period of 8 hours. Cannisters were returned to EMSL Laboratory's LA Testing location for analysis via gas chromatography/mass spectrometry (GC/MS).

Sample results are included in Appendix A. Table 1 includes values for all target compounds with a measurable detection (often referred to as a "hits-only" table).

Compounds that were detected include freon 12, butane, isopropyl alcohol, ethanol, acetone, cyclohexane, toluene (not detected in the Ballroom 2 sample), and styrene. All of these are common contaminants found in new materials, adhesives, and cleaning compounds. The sampling goal is for none of these compounds to exceed NIOSH Recommended Exposure Limit and for the total of all the measurable hits to be less than 500 micrograms per cubic meter (ug/m³).

TABLE 1. Centennial Hall TO-15 Cannister - Measurable Compounds										
Taract Compound	Results in ug/m ³									
laiger compound	Ballroom 1	Ballroom 2	Ballroom 3	NIOSH REL						
Freon 12	4.3	3.4	4.1	4,900,000						
n-Butane	11	7.8	10	1,900,000						
Ethanol	40	30	37	1,900,000						
lsopropyl alcohol	4.6	6.3	3.8	980,000						
Acetone	20	12	18	590,000						
Cyclohexane	5.1	4.7	5	1,000,000						
Toluene	2.4	ND	2.2	380,000						
Styrene	3.3	2.9	3.7	210,000						
totals	90.7	67.1	83.8	NA						

REQUIREMENT: total of all measured compounds no more than 500 ug/m³ and no compound above the NIOSH REL (recommended exposure limit) NOTE: All other target compounds were not detected in the samples (ND).

Totals for each sample were well below the allowable levels and many orders of magnitude below the NIOSH recommended exposure limit.

Particulates were measured with a Quest Technologies EVM-series meter, with each sample run for 15 minutes. Particulates were measured in the PM-10 and the PM-2.5 size ranges. Particulate levels were far below the LEED requirement of 50 ug/m3 and several orders of magnitude below the EPA recommended exposure limit. Measurements are presented in Table 2.

TABLE 2. Centennial Hall Particulate Measurements									
Results in ug/m ³									
Famiculate Size	Ballroom 1	EPA REL							
PM-10	0.003	0.004	0.002	150					
PM-2.5 0.001 0.001 0.001 65									

REQUIREMENT: PM-10 less than 50 micrograms per cubic meter (ug/m³) and less than the EPA REL (recommended exposure limit)

Carbon monoxide was also measured in all three ballrooms using the Quest Technologies meter. Carbon monoxide was not detected in any of the ballrooms at a concentration of 1 part per million or higher. The LEED requirement for carbon monoxide measurements matches the EPA recommended exposure limit, which is less than 9 parts per million and no more than 2 parts per million higher than outdoor levels. Measurements are presented in Table 3.

TABLE 3. Centennial Hall Particulate Measurements											
Particulate Size Results in ppm											
	Ballroom 1	Ballroom 2	Ballroom 3	EPA REL							
Carbon monoxide <1 <1 <1 9											
DECITIPEMENT. Loss than	0 nnm and r	na mara than	2 ppm over a	utdoorlovals							

REQUIREMENT: less than 9 ppm and no more than 2 ppm over outdoor levels.

NOTE: Outdoor level of carbon monoxide was <1 ppm.

<u>CONCLUSION</u>

Flushing activities meet project requirements for both mechanical system purposes and for LEED IAQc4 purposes.

Based on the results of IAQ measurements, indoor air quality levels in the Centennial Hall ballrooms meet the final clearance standards set forth in LEED IEQc4 and no further sampling is necessary.

THIRD-PARTY SAMPLER COMFIRMATION

I certify that all measurements and assessments on this project were performed by Dahlberg Design, LLC, a third-party firm, and subcontract laboratories, without any intervention from the Contractor or any other party with a vested interest in the outcome of this sampling.

Sigrid Dahlberg, P.E

Principal Engineer for Dahlberg Design, LLC

APPENDIX A ANALYTICAL LABORATOR RESULTS

Dahlberg Design

222 Seward Street Suite 205

Juneau, AK 99801-1239

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

		Collected:	01/31/2024 08:34
Phone:	907-723-8896	Received:	02/09/2024 10:25
Email:	sigrid@dahlberg.design	Analyzed:	See Results
	о о о	Reported:	2/15/2024

Laboratory Report- Sample Summary

EMSL Sample ID.	Client Sample ID.	Start Sampling Date	Start Sampling Time
332402243-0001	BALLROOM 1	1/31/2024	8:34 AM
332402243-0002	BALLROOM 3	1/31/2024	8:39 AM
332402243-0003	BALLROOM 2	1/31/2024	8:38 AM

If "Preliminary Report" is displayed in the signature box; this indicates that there are samples that have not yet been analyzed, that are in a preliminary state, or that analysis is in progress but not completed at the time of report issue.

Report Date Rep 2/15/2024

Report Revision

Revision Comments Initial Report

Michael Chapman

Michael Chapman, Laboratory Manager or other approved signatory

Test results meet all AIHA-LAP,LLC requirements unless otherwise specified. Laboratory ID 101650

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted.

EMSL ORDER ID: EMSL CUSTOMER ID: Section

Attention: Sigrid Dahlberg Dahlberg Design 222 Seward Street Suite 205 Juneau, AK 99801-1239

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

Phone:907-723-8896Email:sigrid@dahlberg.design

Collected:0Received:0Analyzed:SReported:2

01/31/2024 08:34 02/09/2024 10:25 See Results 2/15/2024

Case Narrative

Method Reference

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

<u>Column</u>

Restek RTX-502.2, 60m, 0.25mm ID, 1.4um

Concentrator Traps:

Entech Dual Cold Traps: (1) 1/8" No Packing, (2) 1/8" Tenax.

Gas Standards:

Certified Gas standards were used for all analyses.

Sample Volumes:

Sample volume aliquots for this procedure are 250cc for indoor/ ambient air and 25cc for soil gas. Other volumes for sample dilutions are reflected on each result page.

Holding Times:

Standard holding times of 30 days were met for all samples.

Sampling Pressures:

All samples were received at acceptable pressure/vacuum unless listed below.

Sample Dilutions:

Dilutions reported are designated by the sample # with a "DL" suffix resulting from initial analysis having compounds exceeding calibration as reported with an "E" qualifier. Ethanol and Isopropanol are not diluted for and may be reported with an "E" qualifier on the final result.

QA/QC criteria outside method specifications are listed below (if applicable).

Initial Calibration

All Initial Calibration criteria met method specification.

Initial Calibration Verification Standard (ICVS)- Second Source

ICVS met method specification with 70-130% recovery for 100% of compounds.

Laboratory Control Sample (LCS)

LCS met method specification with 70-130% recovery for 100% of compounds.(*If the LCS does not meet criteria but any compounds which have recoveries >130% are not found in the samples, samples may be reported*)

EMSL ORDER ID: EMSL CUSTOMER ID:

Attention: Sigrid Dahlberg Dahlberg Design 222 Seward Street Suite 205 Juneau, AK 99801-1239

Phone: 907-723-8896 Email: sigrid@dahlberg.design EMSL Project ID: Project Name: **CENTENNIAL HALL 2023**

Collected: 01/31/2024 08:34 Received: Analyzed: Reported:

Customer PO:

02/09/2024 10:25 See Results 2/15/2024

Case Narrative

Continuing Calibration Verification Standard (CCVS)

CCVS met method specification with all compounds within 30% deviation.

Ending Calibration Verification Standard (ECVS)

ECVS met method specification with all compounds within 30% deviation.

Method Blanks (MB)

Method Blank met method specification.

Reporting Limit Laboratory Control Samples (RLLCS)

RLLCS met method specification with 90% of compounds within the 60-140% recovery range. Individual compounds outside of the recovery range may be listed below.

Manual Integration : -Listed below if applicable. Before and after documentation provided in extended deliverable packages.

The following data qualifiers that may have been reported with the data,

ND- Non Detect. This notation would be used in the results column in lieu of a "U" qualifier.

U- Compound was analyzed for but not detected at a listed and appropriately adjusted reporting level.

J (Target)- Concentration estimated between Reporting Limit and MDL.

J- Estimated value reported below adjusted reporting limit for target compounds or estimating a concentration for TICs where a 1:1 response is assumed

B- Compound found in associated method blank as well as in the sample.

E- Estimated value exceeding upper calibration range of instrument. Ethanol and isopropyl alcohol are not specifically targeted to dilute within calibration range.

D- Compound reported from additional diluted analysis.

N- indicates presumptive evidence of a compound based on library search match.

EMSL Analytical, Inc. certifies that this data package is in compliance with the terms and conditions of this contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer -readable data submitted on diskette has been authorized by the laboratory manager or his/her designee, as verified by the following signature.

michael Chopman

Michael Chapman, Laboratory Manager or other approved signatory

Analysis Initial Suite 205

Dahlberg Design 222 Seward Street EMSL ORDER ID: 3 EMSL CUSTOMER ID: 1 Section H, Item 7. EMSL SAMPLE ID: 332402243-0001 CUSTOMER SAMPLE ID: BALLROOM 1

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

		Juneau, AK	99801-1239				
PI Ei	none: mail:	907-723-88 sigrid@dahl	96 Iberg.design	Collected: Received: Analyzed: Reported:	01/31/2024 02/09/2024 See Results 2/15/2024	08:34 10:25	
	Analy	<u>ysis Date</u> 13/2024	Analyst Init. HP	Lab File ID T2158 D	Canister ID F15530	Sample Vol.	Dil. Factor

Target Compound Results Summary

			Result	RL		Result	RL	
Target Compounds	CAS#	MW	ppbv	ppbv	Q	ug/m3	ug/m3	Comments
Propylene	115-07-1	42.08	ND	1.0		ND	1.7	
Freon 12(Dichlorodifluoromethane)	75-71-8	120.9	0.86	0.50		4.3	2.5	
Freon 114(1,2-Dichlorotetrafluoroethan	76-14-2	170.9	ND	0.50		ND	3.5	
Chloromethane	74-87-3	50.49	ND	0.50		ND	1.0	
n-Butane	106-97-8	58.12	4.8	0.50		11	1.2	
Vinyl chloride	75-01-4	62.50	ND	0.50		ND	1.3	
1,3-Butadiene	106-99-0	54.09	ND	0.50		ND	1.1	
Bromomethane	74-83-9	94.94	ND	0.50		ND	1.9	
Chloroethane	75-00-3	64.51	ND	0.50		ND	1.3	
Ethanol	64-17-5	46.07	21	0.50		40	0.94	
Bromoethene(Vinyl bromide)	593-60-2	106.9	ND	0.50		ND	2.2	
Freon 11(Trichlorofluoromethane)	75-69-4	137.4	ND	0.50		ND	2.8	
Isopropyl alcohol(2-Propanol)	67-63-0	60.09	1.9	0.50		4.6	1.2	
Freon 113(1,1,2-Trichlorotrifluoroethan	76-13-1	187.4	ND	0.50		ND	3.8	
Acetone	67-64-1	58.08	8.4	0.50		20	1.2	
1,1-Dichloroethene	75-35-4	96.94	ND	0.50		ND	2.0	
Acetonitrile	75-05-8	41.05	ND	0.50		ND	0.84	
Tertiary butyl alcohol(TBA)	75-65-0	74.12	ND	0.50		ND	1.5	
Bromoethane(Ethyl bromide)	74-96-4	109.0	ND	0.50		ND	2.2	
3-Chloropropene(Allyl chloride)	107-05-1	76.52	ND	0.50		ND	1.6	
Carbon disulfide	75-15-0	76.14	ND	0.50		ND	1.6	
Methylene chloride	75-09-2	84.93	ND	0.50		ND	1.7	
Acrylonitrile	107-13-1	53.08	ND	0.50		ND	1.1	
Methyl-tert-butyl ether(MTBE)	1634-04-4	88.15	ND	0.50		ND	1.8	
trans-1,2-Dichloroethene	156-60-5	96.94	ND	0.50		ND	2.0	
n-Hexane	110-54-3	86.18	ND	0.50		ND	1.8	
1,1-Dichloroethane	75-34-3	98.96	ND	0.50		ND	2.0	
Vinvl acetate	108-05-4	86.09	ND	0.50		ND	1.8	
2-Butanone(MEK)	78-93-3	72.11	ND	0.50		ND	1.5	
cis-1.2-Dichloroethene	156-59-2	96.94	ND	0.50		ND	2.0	
Ethyl acetate	141-78-6	88.11	ND	0.50		ND	1.8	
Chloroform	67-66-3	119.4	ND	0.50		ND	2.4	
Tetrahydrofuran	109-99-9	72.11	ND	0.50		ND	1.5	
1.1.1-Trichloroethane	71-55-6	133.4	ND	0.50		ND	2.7	
Cyclobexane	110-82-7	84 16	1.5	0.50		5.1	17	
2 2 4-Trimethylpentane(Isooctane)	540-84-1	114.2	ND	0.50		ND	2.3	
Carbon tetrachloride	56-23-5	153.8	ND	0.50		ND	3.1	
n-Hentane	142-82-5	100.0	ND	0.00		ND	2.0	
1 2-Dichloroethane	107-06-2	98.96	ND	0.50			2.0	
Renzene	71-42-2	78 11		0.50		ND	1.0	
Trichloroethene	70_01.6	131 /		0.50			27	
	79 97 F	112.0		0.50			2.1	
Nothyd Mothaerydate	10-01-0 90 60 6	100.1		0.50			2.3	
Promodiobloromothono	00-02-0 75.07.4	100.1		0.50			2.0	
	10-21-4	103.0		0.50			3.3 1 0	
1,4-DIOXane	123-91-1	88.11	ND	0.50		ND	1.8	10

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

Phone: Email:	907-723-88 sigrid@dah	396 Ilberg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	8:34 0:25	
Ana	lysis Date	Analyst Init.	Lab File ID	Canister ID	Sample Vol.	Dil. Factor
02	/13/2024	HP	T2158.D	E15530	250 cc	1

Target Compound Results Summary

Target Compounds	CAS#	MM	Result	RL	0	Result	RL	Comments
4-Methyl-2-pentanone(MIBK)	108-10-1	100.2		0.50	<u> </u>	ND	2.0	Comments
cis-1.3-Dichloropropene	10061-01-5	111.0	ND	0.50		ND	2.3	
Toluene	108-88-3	92.14	0.63	0.50		2.4	1.9	
trans-1,3-Dichloropropene	10061-02-6	111.0	ND	0.50		ND	2.3	
1,1,2-Trichloroethane	79-00-5	133.4	ND	0.50		ND	2.7	
2-Hexanone(MBK)	591-78-6	100.2	ND	0.50		ND	2.0	
Tetrachloroethene	127-18-4	165.8	ND	0.50		ND	3.4	
Dibromochloromethane	124-48-1	208.3	ND	0.50		ND	4.3	
1,2-Dibromoethane	106-93-4	187.9	ND	0.50		ND	3.8	
Chlorobenzene	108-90-7	112.6	ND	0.50		ND	2.3	
Ethylbenzene	100-41-4	106.2	ND	0.50		ND	2.2	
Xylene (p,m)	1330-20-7	106.2	ND	1.0		ND	4.3	
Xylene (Ortho)	95-47-6	106.2	ND	0.50		ND	2.2	
Styrene	100-42-5	104.1	0.78	0.50		3.3	2.1	
Isopropylbenzene (cumene)	98-82-8	120.2	ND	0.50		ND	2.5	
Bromoform	75-25-2	252.7	ND	0.50		ND	5.2	
1,1,2,2-Tetrachloroethane	79-34-5	167.9	ND	0.50		ND	3.4	
4-Ethyltoluene	622-96-8	120.2	ND	0.50		ND	2.5	
1,3,5-Trimethylbenzene	108-67-8	120.2	ND	0.50		ND	2.5	
2-Chlorotoluene	95-49-8	126.6	ND	0.50		ND	2.6	
1,2,4-Trimethylbenzene	95-63-6	120.2	ND	0.50		ND	2.5	
1,3-Dichlorobenzene	541-73-1	147.0	ND	0.50		ND	3.0	
1,4-Dichlorobenzene	106-46-7	147.0	ND	0.50		ND	3.0	
Benzyl chloride	100-44-7	126.6	ND	0.50		ND	2.6	
1,2-Dichlorobenzene	95-50-1	147.0	ND	0.50		ND	3.0	
1,2,4-Trichlorobenzene	120-82-1	181.4	ND	0.50		ND	3.7	
Hexachloro-1,3-butadiene	87-68-3	260.8	ND	0.50		ND	5.3	
Naphthalene	91-20-3	128.2	ND	0.50		ND	2.6	
Total Target Compound Concentrations:			40	ppbv		91	ug/m3	

Surrogate

4-Bromofluorobenzene

Analysis Initial

Qualifier Definitions

ND = Non Detect

B = Compound also found in method blank.

E= Estimated concentration exceeding upper calibration range.

D= Result reported from diluted analysis.

J= Concentration estimated between Reporting Limit and MDL.

Method Reference

Result

9.3

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

<u>Spike</u>

10

Recovery

93%

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 33 EMSL CUSTOMER ID: D Section H, Item 7. EMSL SAMPLE ID: 332402243-0001 CUSTOMER SAMPLE ID: BALLROOM 1

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

	Phone: Email:	907-723-889 sigrid@dahll	96 berg.design	Collected: Received: Analyzed: Reported:	01/31/2024 (02/09/2024 See Results 2/15/2024	08:34 10:25	
<u>Analysis</u>	<u>Ana</u>	al <u>ysis Date</u>	<u>Analyst Init.</u>	Lab File ID	Canister ID	Sample Vol.	Dil. Factor
Initial	02	2/13/2024	HP	T2158.D	E15530	250 cc	1

NIOSH and OSHA Exposure Limit Comparisons

	Tox.			Result		Result	NIOSH REL		OSHA PEL
Target Compounds	Basis	CAS#	MW	ppbv	Q	ug/m3	ug/m3	>	ug/m3 >
Propylene	NC	115-07-1	42.08	ND		ND	N.E.		N.E.
Freon 12(Dichlorodifluoromethane)	NC	75-71-8	120.9	0.86		4.3	4900000		4900000
Freon 114(1,2-Dichlorotetrafluoroethan		76-14-2	170.9	ND		ND	7000000		7000000
Chloromethane	NC	74-87-3	50.49	ND		ND	LFC		210000
n-Butane		106-97-8	58.12	4.8		11	1900000		N.E.
Vinyl chloride	С	75-01-4	62.50	ND		ND	LFC		2600
1,3-Butadiene	С	106-99-0	54.09	ND		ND	LFC		2200
Bromomethane	NC	74-83-9	94.94	ND		ND	LFC		78000
Chloroethane	NC	75-00-3	64.51	ND		ND	LFC		2600000
Ethanol		64-17-5	46.07	21		40	1900000		1900000
Bromoethene(Vinyl bromide)	С	593-60-2	106.9	ND		ND	LFC		N.E.
Freon 11(Trichlorofluoromethane)		75-69-4	137.4	ND		ND	5600000		5600000
Isopropyl alcohol(2-Propanol)	NC	67-63-0	60.09	1.9		4.6	980000		980000
Freon 113(1,1,2-Trichlorotrifluoroethan	NC	76-13-1	187.4	ND		ND	7700000		7700000
Acetone	NC	67-64-1	58.08	8.4		20	590000		2400000
1,1-Dichloroethene	NC	75-35-4	96.94	ND		ND	790000		N.E.
Acetonitrile	NC	75-05-8	41.05	ND		ND	34000		67000
Tertiary butyl alcohol(TBA)		75-65-0	74.12	ND		ND	300000		300000
Bromoethane(Ethyl bromide)		74-96-4	109.0	ND		ND	880000		880000
3-Chloropropene(Allyl chloride)	C	107-05-1	76.52	ND		ND	3100		3100
Carbon disulfide	NC	75-15-0	76.14	ND		ND	3100		62000
Methylene chloride	С	75-09-2	84.93	ND		ND	LFC		87000
Acrylonitrile	С	107-13-1	53.08	ND		ND	2200		4300
Methyl-tert-butyl ether(MTBE)	С	1634-04-4	88.15	ND		ND	N.E.		N.E.
trans-1,2-Dichloroethene		156-60-5	96.94	ND		ND	790000		790000
n-Hexane	NC	110-54-3	86.18	ND		ND	180000		1800000
1,1-Dichloroethane	С	75-34-3	98.96	ND		ND	400000		400000
Vinyl acetate	NC	108-05-4	86.09	ND		ND	14000		N.E.
2-Butanone(MEK)	NC	78-93-3	72.11	ND		ND	590000		590000
cis-1,2-Dichloroethene		156-59-2	96.94	ND		ND	790000		790000
Ethyl acetate	NC	141-78-6	88.11	ND		ND	1400000		1400000
Chloroform	С	67-66-3	119.4	ND		ND	9800	_	240000
Tetrahydrofuran	NC	109-99-9	72.11	ND		ND	590000	_	590000
1,1,1-Trichloroethane	NC	71-55-6	133.4	ND		ND	1900000		1900000
Cyclohexane	NC	110-82-7	84.16	1.5		5.1	1000000	_	1000000
2,2,4-Trimethylpentane(Isooctane)		540-84-1	114.2	ND		ND	N.E.		N.E.
Carbon tetrachloride	C	56-23-5	153.8	ND		ND	13000		63000
n-Heptane	NC	142-82-5	100.2	ND		ND	350000	_	2000000
1,2-Dichloroethane	C	107-06-2	98.96	ND		ND	4000	_	200000
Benzene	C	71-43-2	78.11	ND		ND	320	4	3200
Irichloroethene	C	79-01-6	131.4	ND	L	ND	130000	_	540000
1,2-Dichloropropane	C	78-87-5	113.0	ND		ND	LFC	4	350000
Methyl Methacrylate	NC	80-62-6	100.1	ND	L	ND	410000	_	410000
Bromodichloromethane	C	75-27-4	163.8	ND		ND	N.E.	4	N.E.
1,4-Dioxane	C	123-91-1	88.11	ND		ND	3600	_	360000
4-Methyl-2-pentanone(MIBK)	NC	108-10-1	100.2	ND	L	ND	200000		410000
cis-1,3-Dichloropropene**	C	10061-01-5	111.0	ND		ND	4500		N.E. 01

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 3 EMSL CUSTOMER ID: D Section H, Item 7. EMSL SAMPLE ID: 332402243-000 CUSTOMER SAMPLE ID: BALLROOM 1

Customer PO: EMSL Project ID: Project Name: **CENTENNIAL HALL 2023**

	Phone: Email:	907-723-8896 sigrid@dahlberg.design		Collected: Received: Analyzed: Reported:	01/31/2024 (02/09/2024 See Results 2/15/2024	08:34 10:25	
<u>Analysis</u>	<u>Ana</u>	alysis Date	<u>Analyst Init.</u>	<u>Lab File ID</u>	Canister ID	Sample Vol.	Dil. Factor
Initial	02	2/13/2024	HP	T2158.D	E15530	250 cc	1

NIOSH and OSHA Exposure Limit Comparisons

	Tox.			Result		Result	NIOSH REL		OSHA PEL
Target Compounds	Basis	CAS#	MW	ppbv	Q	ug/m3	ug/m3	>	ug/m3 >
Toluene	NC	108-88-3	92.14	0.63		2.4	380000		750000
trans-1,3-Dichloropropene**	С	10061-02-6	111.0	ND		ND	4500		N.E.
1,1,2-Trichloroethane	С	79-00-5	133.4	ND		ND	55000		55000
2-Hexanone(MBK)	NC	591-78-6	100.2	ND		ND	4100		410000
Tetrachloroethene	С	127-18-4	165.8	ND		ND	LFC		680000
Dibromochloromethane		124-48-1	208.3	ND		ND	N.E.		N.E.
1,2-Dibromoethane	С	106-93-4	187.9	ND		ND	350		150000
Chlorobenzene	NC	108-90-7	112.6	ND		ND	N.E.		350000
Ethylbenzene	С	100-41-4	106.2	ND		ND	430000		430000
Xylene (p,m)	NC	1330-20-7	106.2	ND		ND	430000		430000
Xylene (Ortho)	NC	95-47-6	106.2	ND		ND	430000		430000
Styrene	NC	100-42-5	104.1	0.78		3.3	210000		430000
Isopropylbenzene (cumene)	NC	98-82-8	120.2	ND		ND	250000		250000
Bromoform	С	75-25-2	252.7	ND		ND	5200		5200
1,1,2,2-Tetrachloroethane	С	79-34-5	167.9	ND		ND	6900		34000
4-Ethyltoluene		622-96-8	120.2	ND		ND	N.E.		N.E.
1,3,5-Trimethylbenzene	NC	108-67-8	120.2	ND		ND	120000		N.E.
2-Chlorotoluene		95-49-8	126.6	ND		ND	260000		N.E.
1,2,4-Trimethylbenzene	NC	95-63-6	120.2	ND		ND	120000		N.E.
1,3-Dichlorobenzene		541-73-1	147.0	ND		ND	N.E.		N.E.
1,4-Dichlorobenzene	C	106-46-7	147.0	ND		ND	LFC		450000
Benzyl chloride	C	100-44-7	126.6	ND		ND	5200		5200
1,2-Dichlorobenzene	NC	95-50-1	147.0	ND		ND	300000		300000
1,2,4-Trichlorobenzene	NC	120-82-1	181.4	ND		ND	37000		N.E.
Hexachloro-1,3-butadiene	С	87-68-3	260.8	ND		ND	210		N.E.
Naphthalene	С	91-20-3	128.2	ND		ND	52000		52000
**The concentrations of each isomer should be added if	multiple	isomers are		The > colun	nn is us	ed to flag e	ceedances as marked		

**The concentrations of each isomer should be added if multiple isomers are present and compared to the total screening level.

Exposure Limit Definitions

REL= Recommended Exposure Limit, PEL= Permissable Exposure Limit

Agency Definitions

NIOSH= The National Institute for Occupational Safety and Health OSHA= Occupational Safety and Health Administration

Reference

Occupational Safety and Health Administration (OSHA) (2017) Air Contaminants. 29 CFR 1910.1000 [82 FR 2735, January 9, 2017].

Carcinogenic (C) Exceedance

Value exceeds the theoretical risk that 1 additional case of cancer will occur in a population of 1 million than statistically expected.

Thus is a theoretical risk and not an actual epidemiological one.

Compound Exposure Definitions

NE= No Limit Established NS= No Screening Value LFC= Lowest Feasible Concentration

Qualifier Definitions

- **B** = Compound also found in method blank. ND = Non Detect
- E= Estimated concentration exceeding upper calibration range.
- D= Result reported from diluted analysis.
- J= Concentration estimated between Reporting Limit and MDL.

NonCarcinogenic (NC) Exceedance

Value exceeds the theoretical risk that 1 in a population of 100,000 will experience deleterious health effects.

Thus is a theoretical risk and not an actual epidemiological one.

Analysis Initial Dahlberg Design 222 Seward Street

Suite 205

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

		Juneau, AK	(99801-1239				
Pł Ei	hone: mail:	907-723-88 sigrid@dah	96 Iberg.design	Collected: Received: Analyzed: Reported:	01/31/2024 02/09/2024 See Results 2/15/2024	08:39 10:25	
	Anal	ysis Date 13/2024	Analyst Init. HP	Lab File ID T2159 D	Canister ID F0666	Sample Vol. 250 cc	Dil. Factor

Target Compound Results Summary

Target Compounds	CAS#	MM	Result	RL	0	Result	RL	Comments
Propylene	115-07-1	42.08	ND	1.0	y a	ND	17	Comments
Freen 12(Dichlorodifluoromethane)	75-71-8	120.9	0.82	0.50		4.1	2.5	
Freen 114(1 2-Dichlorotetrafluoroethan	76-14-2	170.9		0.50		ND	3.5	
Chloromethane	74-87-3	50.49	ND	0.50		ND	1.0	
n-Butane	106-97-8	58.12	4.1	0.50		10	1.0	
Vinvl chloride	75-01-4	62.50	ND	0.50		ND	1.3	
1.3-Butadiene	106-99-0	54.09	ND	0.50		ND	1.1	
Bromomethane	74-83-9	94.94	ND	0.50		ND	1.9	
Chloroethane	75-00-3	64.51	ND	0.50		ND	1.3	
Ethanol	64-17-5	46.07	20	0.50		37	0.94	
Bromoethene(Vinyl bromide)	593-60-2	106.9	ND	0.50		ND	2.2	
Freon 11(Trichlorofluoromethane)	75-69-4	137.4	ND	0.50		ND	2.8	
Isopropyl alcohol(2-Propanol)	67-63-0	60.09	1.5	0.50		3.8	1.2	
Freon 113(1,1,2-Trichlorotrifluoroethan	76-13-1	187.4	ND	0.50		ND	3.8	
Acetone	67-64-1	58.08	7.6	0.50		18	1.2	
1,1-Dichloroethene	75-35-4	96.94	ND	0.50		ND	2.0	
Acetonitrile	75-05-8	41.05	ND	0.50		ND	0.84	
Tertiary butyl alcohol(TBA)	75-65-0	74.12	ND	0.50		ND	1.5	
Bromoethane(Ethyl bromide)	74-96-4	109.0	ND	0.50		ND	2.2	
3-Chloropropene(Allyl chloride)	107-05-1	76.52	ND	0.50		ND	1.6	
Carbon disulfide	75-15-0	76.14	ND	0.50		ND	1.6	
Methylene chloride	75-09-2	84.93	ND	0.50		ND	1.7	
Acrylonitrile	107-13-1	53.08	ND	0.50		ND	1.1	
Methyl-tert-butyl ether(MTBE)	1634-04-4	88.15	ND	0.50		ND	1.8	
trans-1,2-Dichloroethene	156-60-5	96.94	ND	0.50		ND	2.0	
n-Hexane	110-54-3	86.18	ND	0.50		ND	1.8	
1,1-Dichloroethane	75-34-3	98.96	ND	0.50		ND	2.0	
Vinyl acetate	108-05-4	86.09	ND	0.50		ND	1.8	
2-Butanone(MEK)	78-93-3	72.11	ND	0.50		ND	1.5	
cis-1,2-Dichloroethene	156-59-2	96.94	ND	0.50		ND	2.0	
Ethyl acetate	141-78-6	88.11	ND	0.50		ND	1.8	
Chloroform	67-66-3	119.4	ND	0.50		ND	2.4	
Tetrahydrofuran	109-99-9	72.11	ND	0.50		ND	1.5	
1,1,1-Trichloroethane	71-55-6	133.4	ND	0.50		ND	2.7	
Cyclohexane	110-82-7	84.16	1.5	0.50		5.0	1.7	
2,2,4-Trimethylpentane(Isooctane)	540-84-1	114.2	ND	0.50		ND	2.3	
Carbon tetrachloride	56-23-5	153.8	ND	0.50		ND	3.1	
n-Heptane	142-82-5	100.2	ND	0.50		ND	2.0	
1,2-Dichloroethane	107-06-2	98.96	ND	0.50		ND	2.0	
Benzene	71-43-2	78.11	ND	0.50		ND	1.6	
Trichloroethene	79-01-6	131.4	ND	0.50		ND	2.7	
1,2-Dichloropropane	78-87-5	113.0	ND	0.50		ND	2.3	
Methyl Methacrylate	80-62-6	100.1	ND	0.50		ND	2.0	
Bromodichloromethane	75-27-4	163.8	ND	0.50		ND	3.3	
1,4-Dioxane	123-91-1	88.11	ND	0.50		ND	1.8	23

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 3 EMSL CUSTOMER ID: 5 EMSL SAMPLE ID: 3 CUSTOMER SAMPLE ID: BALLROOM 3

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

Phone: Email:	: 907-723-8896 sigrid@dahlberg.design		Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	8:39 0:25	
Ana	lysis Date	Analyst Init.	Lab File ID	Canister ID	Sample Vol.	Dil. Factor
02	/13/2024	HP	T2159.D	E0666	250 cc	1

Target Compound Results Summary

	0.10%		Result	RL		Result	RL	
Target Compounds	CAS#	MW	ppbv	ppbv	Q	ug/m3	ug/m3	Comments
4-Methyl-2-pentanone(MIBK)	108-10-1	100.2	ND	0.50		ND	2.0	
cis-1,3-Dichloropropene	10061-01-5	111.0	ND	0.50		ND	2.3	
Toluene	108-88-3	92.14	0.58	0.50		2.2	1.9	
trans-1,3-Dichloropropene	10061-02-6	111.0	ND	0.50		ND	2.3	
1,1,2-Trichloroethane	79-00-5	133.4	ND	0.50		ND	2.7	
2-Hexanone(MBK)	591-78-6	100.2	ND	0.50		ND	2.0	
Tetrachloroethene	127-18-4	165.8	ND	0.50		ND	3.4	
Dibromochloromethane	124-48-1	208.3	ND	0.50		ND	4.3	
1,2-Dibromoethane	106-93-4	187.9	ND	0.50		ND	3.8	
Chlorobenzene	108-90-7	112.6	ND	0.50		ND	2.3	
Ethylbenzene	100-41-4	106.2	ND	0.50		ND	2.2	
Xylene (p,m)	1330-20-7	106.2	ND	1.0		ND	4.3	
Xylene (Ortho)	95-47-6	106.2	ND	0.50		ND	2.2	
Styrene	100-42-5	104.1	0.87	0.50		3.7	2.1	
Isopropylbenzene (cumene)	98-82-8	120.2	ND	0.50		ND	2.5	
Bromoform	75-25-2	252.7	ND	0.50		ND	5.2	
1,1,2,2-Tetrachloroethane	79-34-5	167.9	ND	0.50		ND	3.4	
4-Ethyltoluene	622-96-8	120.2	ND	0.50		ND	2.5	
1,3,5-Trimethylbenzene	108-67-8	120.2	ND	0.50		ND	2.5	
2-Chlorotoluene	95-49-8	126.6	ND	0.50		ND	2.6	
1,2,4-Trimethylbenzene	95-63-6	120.2	ND	0.50		ND	2.5	
1,3-Dichlorobenzene	541-73-1	147.0	ND	0.50		ND	3.0	
1,4-Dichlorobenzene	106-46-7	147.0	ND	0.50		ND	3.0	
Benzyl chloride	100-44-7	126.6	ND	0.50		ND	2.6	
1,2-Dichlorobenzene	95-50-1	147.0	ND	0.50		ND	3.0	
1,2,4-Trichlorobenzene	120-82-1	181.4	ND	0.50		ND	3.7	
Hexachloro-1,3-butadiene	87-68-3	260.8	ND	0.50		ND	5.3	
Naphthalene	91-20-3	128.2	ND	0.50		ND	2.6	
Total Target Compound Concentrations:	-		37	ppbv		84	uq/m3	

Surrogate

4-Bromofluorobenzene

Analysis Initial

Qualifier Definitions

ND = Non Detect

B = Compound also found in method blank.

E= Estimated concentration exceeding upper calibration range.

D= Result reported from diluted analysis.

J= Concentration estimated between Reporting Limit and MDL.

Method Reference

Result

9.3

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

<u>Spike</u>

10

Recovery

93%

Dahlberg Design 222 Seward Street

Juneau, AK 99801-1239

Suite 205

EMSL ORDER ID: 33 EMSL CUSTOMER ID: D Section H, Item 7. EMSL SAMPLE ID: 332402243-0002 CUSTOMER SAMPLE ID: BALLROOM 3

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

	Phone: 907-723-889 Email: sigrid@dahl		96 berg.design	Collected: Received: Analyzed: Reported:	01/31/2024 (02/09/2024 See Results 2/15/2024	08:39 10:25	
<u>Analysis</u>	<u>Ana</u>	alysis Date	<u>Analyst Init.</u>	Lab File ID	Canister ID	Sample Vol.	Dil. Factor
Initial	02	2/13/2024	HP	T2159.D	E0666	250 cc	1

NIOSH and OSHA Exposure Limit Comparisons

	Tox.			Result		Result	NIOSH REL	OS	HA PEL
Target Compounds	Basis	CAS#	MW	ppbv	Q	ug/m3	ug/m3	. uç	g/m3 >
Propylene	NC	115-07-1	42.08	ND		ND	N.E.	N	I.E.
Freon 12(Dichlorodifluoromethane)	NC	75-71-8	120.9	0.82		4.1	4900000	490	00000
Freon 114(1,2-Dichlorotetrafluoroethan		76-14-2	170.9	ND		ND	700000	700	00000
Chloromethane	NC	74-87-3	50.49	ND		ND	LFC	21	0000
n-Butane		106-97-8	58.12	4.1		10	1900000	N	N.E.
Vinyl chloride	С	75-01-4	62.50	ND		ND	LFC	2	600
1,3-Butadiene	С	106-99-0	54.09	ND		ND	LFC	2	200
Bromomethane	NC	74-83-9	94.94	ND		ND	LFC	78	3000
Chloroethane	NC	75-00-3	64.51	ND		ND	LFC	260	00000
Ethanol		64-17-5	46.07	20		37	1900000	190	00000
Bromoethene(Vinyl bromide)	С	593-60-2	106.9	ND		ND	LFC	N	N.E.
Freon 11(Trichlorofluoromethane)		75-69-4	137.4	ND		ND	5600000	560	00000
Isopropyl alcohol(2-Propanol)	NC	67-63-0	60.09	1.5		3.8	980000	98	0000
Freon 113(1,1,2-Trichlorotrifluoroethan	NC	76-13-1	187.4	ND		ND	7700000	770	00000
Acetone	NC	67-64-1	58.08	7.6		18	590000	240	00000
1,1-Dichloroethene	NC	75-35-4	96.94	ND		ND	790000	N	I.E.
Acetonitrile	NC	75-05-8	41.05	ND		ND	34000	67	7000
Tertiary butyl alcohol(TBA)		75-65-0	74.12	ND		ND	300000	30	0000
Bromoethane(Ethyl bromide)		74-96-4	109.0	ND		ND	880000	88	0000
3-Chloropropene(Allyl chloride)	С	107-05-1	76.52	ND		ND	3100	3	100
Carbon disulfide	NC	75-15-0	76.14	ND		ND	3100	62	2000
Methylene chloride	С	75-09-2	84.93	ND		ND	LFC	87	7000
Acrylonitrile	С	107-13-1	53.08	ND		ND	2200	4	300
Methyl-tert-butyl ether(MTBE)	С	1634-04-4	88.15	ND		ND	N.E.	N	1.E.
trans-1,2-Dichloroethene		156-60-5	96.94	ND		ND	790000	79	0000
n-Hexane	NC	110-54-3	86.18	ND		ND	180000	180	00000
1,1-Dichloroethane	С	75-34-3	98.96	ND		ND	400000	40	0000
Vinyl acetate	NC	108-05-4	86.09	ND		ND	14000	Ν	I.E.
2-Butanone(MEK)	NC	78-93-3	72.11	ND		ND	590000	59	0000
cis-1,2-Dichloroethene		156-59-2	96.94	ND		ND	790000	79	0000
Ethyl acetate	NC	141-78-6	88.11	ND		ND	1400000	140	00000
Chloroform	С	67-66-3	119.4	ND		ND	9800	24	0000
Tetrahydrofuran	NC	109-99-9	72.11	ND		ND	590000	59	0000
1,1,1-Trichloroethane	NC	71-55-6	133.4	ND		ND	1900000	190	00000
Cyclohexane	NC	110-82-7	84.16	1.5		5.0	1000000	100	00000
2,2,4-Trimethylpentane(Isooctane)		540-84-1	114.2	ND		ND	N.E.	N	I.E.
Carbon tetrachloride	С	56-23-5	153.8	ND		ND	13000	63	3000
n-Heptane	NC	142-82-5	100.2	ND		ND	350000	200	00000
1,2-Dichloroethane	С	107-06-2	98.96	ND		ND	4000	20	0000
Benzene	C	71-43-2	78.11	ND		ND	320	3	200
Trichloroethene	С	79-01-6	131.4	ND		ND	130000	54	0000
1,2-Dichloropropane	С	78-87-5	113.0	ND		ND	LFC	35	0000
Methyl Methacrylate	NC	80-62-6	100.1	ND		ND	410000	41	0000
Bromodichloromethane	C	75-27-4	163.8	ND		ND	N.E.	N	N.E.
1,4-Dioxane	С	123-91-1	88.11	ND		ND	3600	36	0000
4-Methyl-2-pentanone(MIBK)	NC	108-10-1	100.2	ND		ND	200000	41	0000
cis-1,3-Dichloropropene**	С	10061-01-5	111.0	ND		ND	4500	I N	N.E.

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 3 EMSL CUSTOMER ID: D Section H, Item 7. EMSL SAMPLE ID: 332402243-0002 CUSTOMER SAMPLE ID: BALLROOM 3

Customer PO: EMSL Project ID: Project Name: **CENTENNIAL HALL 2023**

F	Phone: Email:	907-723-889 sigrid@dahlk	6 berg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	8:39 0:25	
<u>s</u>	<u>Ana</u>	lysis Date	<u>Analyst Init.</u>	<u>Lab File ID</u>	Canister ID	<u>Sample Vol.</u>	Dil. Factor
	02	/13/2024	HP	T2159.D	E0666	250 cc	1

NIOSH and OSHA Exposure Limit Comparisons

	Tox.			Result		Result	NIOSH REL		OSHA PEL
Target Compounds	Basis	CAS#	MW	ppbv	Q	ug/m3	ug/m3	>	ug/m3 >
Toluene	NC	108-88-3	92.14	0.58		2.2	380000		750000
trans-1,3-Dichloropropene**	С	10061-02-6	111.0	ND		ND	4500		N.E.
1,1,2-Trichloroethane	С	79-00-5	133.4	ND		ND	55000		55000
2-Hexanone(MBK)	NC	591-78-6	100.2	ND		ND	4100		410000
Tetrachloroethene	С	127-18-4	165.8	ND		ND	LFC		680000
Dibromochloromethane	<u> </u>	124-48-1	208.3	ND		ND	N.E.		N.E.
1,2-Dibromoethane	С	106-93-4	187.9	ND		ND	350		150000
Chlorobenzene	NC	108-90-7	112.6	ND		ND	N.E.		350000
Ethylbenzene	С	100-41-4	106.2	ND		ND	430000		430000
Xylene (p,m)	NC	1330-20-7	106.2	ND		ND	430000		430000
Xylene (Ortho)	NC	95-47-6	106.2	ND		ND	430000		430000
Styrene	NC	100-42-5	104.1	0.87		3.7	210000		430000
Isopropylbenzene (cumene)	NC	98-82-8	120.2	ND		ND	250000		250000
Bromoform	С	75-25-2	252.7	ND		ND	5200		5200
1,1,2,2-Tetrachloroethane	С	79-34-5	167.9	ND		ND	6900		34000
4-Ethyltoluene	T '	622-96-8	120.2	ND		ND	N.E.		N.E.
1,3,5-Trimethylbenzene	NC	108-67-8	120.2	ND		ND	120000		N.E.
2-Chlorotoluene	T '	95-49-8	126.6	ND		ND	260000		N.E.
1,2,4-Trimethylbenzene	NC	95-63-6	120.2	ND		ND	120000		N.E.
1,3-Dichlorobenzene	<u> </u>	541-73-1	147.0	ND		ND	N.E.		N.E.
1,4-Dichlorobenzene	С	106-46-7	147.0	ND		ND	LFC		450000
Benzyl chloride	С	100-44-7	126.6	ND		ND	5200		5200
1,2-Dichlorobenzene	NC	95-50-1	147.0	ND		ND	300000		300000
1,2,4-Trichlorobenzene	NC	120-82-1	181.4	ND		ND	37000		N.E.
Hexachloro-1,3-butadiene	С	87-68-3	260.8	ND		ND	210		N.E.
Naphthalene	С	91-20-3	128.2	ND		ND	52000		52000
**The concentrations of each isomer should be added	If multiple	isomers are	-	The > colur	nn is us	ed to flag e	xceedances as marked		

**The concentrations of each isomer should be added if multiple isomers are present and compared to the total screening level.

Exposure Limit Definitions

Analysi Initial

REL= Recommended Exposure Limit, PEL= Permissable Exposure Limit

Agency Definitions

NIOSH= The National Institute for Occupational Safety and Health OSHA= Occupational Safety and Health Administration

Reference

Occupational Safety and Health Administration (OSHA) (2017) Air Contaminants. 29 CFR 1910.1000 [82 FR 2735, January 9, 2017].

Carcinogenic (C) Exceedance

Value exceeds the theoretical risk that 1 additional case of cancer will occur in a population of 1 million than statistically expected.

Thus is a theoretical risk and not an actual epidemiological one.

Compound Exposure Definitions

NE= No Limit Established NS= No Screening Value LFC= Lowest Feasible Concentration

Qualifier Definitions

B = Compound also found in method blank. ND = Non Detect

- E= Estimated concentration exceeding upper calibration range.
- D= Result reported from diluted analysis.
- J= Concentration estimated between Reporting Limit and MDL.

NonCarcinogenic (NC) Exceedance

Value exceeds the theoretical risk that 1 in a population of 100,000 will experience deleterious health effects.

Thus is a theoretical risk and not an actual epidemiological one.

Analysis Initial Suite 205

Dahlberg Design 222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 3 EMSL CUSTOMER ID: 1 Section H, Item 7. EMSL SAMPLE ID: 332402243-0003 CUSTOMER SAMPLE ID: BALLROOM 2

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

Ph Er	none: nail:	907-723-88 sigrid@dah	96 Iberg.design	Collected: Received: Analyzed: Reported:	01/31/2024 02/09/2024 See Results 2/15/2024	08:38 10:25	
	Analy	sis Date	Analyst Init.	Lab File ID	Canister ID	Sample Vol.	Dil. Factor
	02/1	3/2024	HP	T2160.D	E15526	250 сс	1

Target Compound Results Summary

Target Compounds Propylene Freon 12(Dichlorodifluoromethane) Freon 114(1,2-Dichlorotetrafluoroethan Chloromethane n-Butane Vinyl chloride 1,3-Butadiene Bromomethane Chloroethane Chlorotetrafluoroethan	CAS# 115-07-1 75-71-8 76-14-2 74-87-3 106-97-8 75-01-4 106-99-0 74-83-9	MW 42.08 120.9 170.9 50.49 58.12 62.50 54.00	ppbv ND 0.69 ND ND 3.3	ppbv 1.0 0.50 0.50	Q	ug/m3 ND <u>3.4</u>	ug/m3 1.7 2.5	Comments
Propylene Freon 12(Dichlorodifluoromethane) Freon 114(1,2-Dichlorotetrafluoroethan Chloromethane n-Butane Vinyl chloride 1,3-Butadiene Bromomethane Chloroethane	115-07-1 75-71-8 76-14-2 74-87-3 106-97-8 75-01-4 106-99-0 74-83-9	42.08 120.9 170.9 50.49 58.12 62.50	ND 0.69 ND ND 3.3	1.0 0.50 0.50		ND 3.4	1.7 2.5	
Freon 12(Dichlorodifluoromethane) Freon 114(1,2-Dichlorotetrafluoroethan Chloromethane n-Butane Vinyl chloride 1,3-Butadiene Bromomethane Chloroethane	75-71-8 76-14-2 74-87-3 106-97-8 75-01-4 106-99-0 74-83-9	120.9 170.9 50.49 58.12 62.50	0.69 ND ND 3.3	0.50 0.50 0.50		3.4	2.5	
Freon 114(1,2-Dichlorotetrafluoroethan Chloromethane n-Butane Vinyl chloride 1,3-Butadiene Bromomethane Chloroethane	76-14-2 74-87-3 106-97-8 75-01-4 106-99-0 74-83-9	170.9 50.49 58.12 62.50	ND ND 3.3	0.50				
Chloromethane n-Butane Vinyl chloride 1,3-Butadiene Bromomethane Chloroethane	74-87-3 106-97-8 75-01-4 106-99-0 74-83-9	50.49 58.12 62.50	ND 3.3	0.50		ND	3.5	
n-Butane Vinyl chloride 1,3-Butadiene Bromomethane Chloroethane	106-97-8 75-01-4 106-99-0 74-83-9	58.12 62.50	3.3	0.00		ND	1.0	
Vinyl chloride 1,3-Butadiene Bromomethane Chloroethane	75-01-4 106-99-0 74-83-9	62.50		0.50		7.8	1.2	
1,3-Butadiene Bromomethane Chloroethane	106-99-0 74-83-9	F1 00	ND	0.50		ND	1.3	
Bromomethane Chloroethane	74-83-9	54.09	ND	0.50		ND	1.1	
Chloroethane		94.94	ND	0.50		ND	1.9	
	75-00-3	64.51	ND	0.50		ND	1.3	
Ethanol	64-17-5	46.07	16	0.50		30	0.94	
Bromoethene(Vinyl bromide)	593-60-2	106.9	ND	0.50		ND	2.2	
Freon 11(Trichlorofluoromethane)	75-69-4	137.4	ND	0.50		ND	2.8	
Isopropyl alcohol(2-Propanol)	67-63-0	60.09	2.6	0.50		6.3	1.2	
Freon 113(1,1,2-Trichlorotrifluoroethan	76-13-1	187.4	ND	0.50		ND	3.8	
Acetone	67-64-1	58.08	5.0	0.50		12	1.2	
1,1-Dichloroethene	75-35-4	96.94	ND	0.50		ND	2.0	
Acetonitrile	75-05-8	41.05	ND	0.50		ND	0.84	
Tertiary butyl alcohol(TBA)	75-65-0	74.12	ND	0.50		ND	1.5	
Bromoethane(Ethyl bromide)	74-96-4	109.0	ND	0.50		ND	2.2	
3-Chloropropene(Allyl chloride)	107-05-1	76.52	ND	0.50		ND	1.6	
Carbon disulfide	75-15-0	76.14	ND	0.50		ND	1.6	
Methylene chloride	75-09-2	84.93	ND	0.50		ND	1.7	
Acrylonitrile	107-13-1	53.08	ND	0.50		ND	1.1	
Methyl-tert-butyl ether(MTBE)	1634-04-4	88.15	ND	0.50		ND	1.8	
trans-1,2-Dichloroethene	156-60-5	96.94	ND	0.50		ND	2.0	
n-Hexane	110-54-3	86.18	ND	0.50		ND	1.8	
1,1-Dichloroethane	75-34-3	98.96	ND	0.50		ND	2.0	
Vinyl acetate	108-05-4	86.09	ND	0.50		ND	1.8	
2-Butanone(MEK)	78-93-3	72.11	ND	0.50		ND	1.5	
cis-1,2-Dichloroethene	156-59-2	96.94	ND	0.50		ND	2.0	
Ethyl acetate	141-78-6	88.11	ND	0.50		ND	1.8	
Chloroform	67-66-3	119.4	ND	0.50		ND	2.4	
Tetrahydrofuran	109-99-9	72.11	ND	0.50		ND	1.5	
1,1,1-Trichloroethane	71-55-6	133.4	ND	0.50		ND	2.7	
Cyclohexane	110-82-7	84.16	1.4	0.50		4.7	1.7	
2,2,4-Trimethylpentane(Isooctane)	540-84-1	114.2	ND	0.50		ND	2.3	
Carbon tetrachloride	56-23-5	153.8	ND	0.50		ND	3.1	
n-Heptane	142-82-5	100.2	ND	0.50		ND	2.0	
1,2-Dichloroethane	107-06-2	98.96	ND	0.50		ND	2.0	
Benzene	71-43-2	78.11	ND	0.50		ND	1.6	
Trichloroethene	79-01-6	131.4	ND	0.50		ND	2.7	
1,2-Dichloropropane	78-87-5	113.0	ND	0.50		ND	2.3	
Methyl Methacrylate	80-62-6	100.1	ND	0.50		ND	2.0	
Bromodichloromethane	75-27-4	163.8	ND	0.50		ND	3.3	
1,4-Dioxane	123-91-1	88.11	ND	0.50		ND	1.8	

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

Phone: Email:	907-723-88 sigrid@dah	396 Ilberg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	8:38 0:25	
Ana	alysis Date	Analyst Init.	Lab File ID	Canister ID	Sample Vol.	Dil. Factor
02	2/13/2024	HP	T2160.D	E15526	250 cc	1

Target Compound Results Summary

Target Compounds	CAS#	MM	Result	RL	0	Result	RL	Comments
4-Methyl-2-pentanone(MIBK)	108-10-1	100.2		0.50	<u>v</u>	ND	2.0	Comments
cis-1.3-Dichloropropene	10061-01-5	111.0	ND	0.50		ND	2.3	
Toluene	108-88-3	92.14	ND	0.50		ND	1.9	
trans-1.3-Dichloropropene	10061-02-6	111.0	ND	0.50		ND	2.3	
1,1,2-Trichloroethane	79-00-5	133.4	ND	0.50		ND	2.7	
2-Hexanone(MBK)	591-78-6	100.2	ND	0.50		ND	2.0	
Tetrachloroethene	127-18-4	165.8	ND	0.50		ND	3.4	
Dibromochloromethane	124-48-1	208.3	ND	0.50		ND	4.3	
1,2-Dibromoethane	106-93-4	187.9	ND	0.50		ND	3.8	
Chlorobenzene	108-90-7	112.6	ND	0.50		ND	2.3	
Ethylbenzene	100-41-4	106.2	ND	0.50		ND	2.2	
Xylene (p,m)	1330-20-7	106.2	ND	1.0		ND	4.3	
Xylene (Ortho)	95-47-6	106.2	ND	0.50		ND	2.2	
Styrene	100-42-5	104.1	0.68	0.50		2.9	2.1	
Isopropylbenzene (cumene)	98-82-8	120.2	ND	0.50		ND	2.5	
Bromoform	75-25-2	252.7	ND	0.50		ND	5.2	
1,1,2,2-Tetrachloroethane	79-34-5	167.9	ND	0.50		ND	3.4	
4-Ethyltoluene	622-96-8	120.2	ND	0.50		ND	2.5	
1,3,5-Trimethylbenzene	108-67-8	120.2	ND	0.50		ND	2.5	
2-Chlorotoluene	95-49-8	126.6	ND	0.50		ND	2.6	
1,2,4-Trimethylbenzene	95-63-6	120.2	ND	0.50		ND	2.5	
1,3-Dichlorobenzene	541-73-1	147.0	ND	0.50		ND	3.0	
1,4-Dichlorobenzene	106-46-7	147.0	ND	0.50		ND	3.0	
Benzyl chloride	100-44-7	126.6	ND	0.50		ND	2.6	
1,2-Dichlorobenzene	95-50-1	147.0	ND	0.50		ND	3.0	
1,2,4-Trichlorobenzene	120-82-1	181.4	ND	0.50		ND	3.7	
Hexachloro-1,3-butadiene	87-68-3	260.8	ND	0.50		ND	5.3	
Naphthalene	91-20-3	128.2	ND	0.50		ND	2.6	
Total Target Compound Concentrations:			30	ppbv		67	ug/m3	

Surrogate

4-Bromofluorobenzene

Analysis Initial

Qualifier Definitions

ND = Non Detect

B = Compound also found in method blank.

E= Estimated concentration exceeding upper calibration range.

D= Result reported from diluted analysis.

J= Concentration estimated between Reporting Limit and MDL.

Method Reference

Result

9.4

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

Recovery

94%

<u>Spike</u>

10

Dahlberg Design 222 Seward Street

Juneau, AK 99801-1239

Suite 205

EMSL ORDER ID: 33 EMSL CUSTOMER ID: D EMSL SAMPLE ID: 33 CUSTOMER SAMPLE ID: BALLROOM 2

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

	Phone: Email:	907-723-889 sigrid@dahl	96 berg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024)8:38 0:25	
<u>Analysis</u>	<u>Ana</u>	alysis Date	<u>Analyst Init.</u>	Lab File ID	Canister ID	Sample Vol.	Dil. Factor
Initial	02	2/13/2024	HP	T2160.D	E15526	250 cc	1

NIOSH and OSHA Exposure Limit Comparisons

	Tox.			Result		Result	NIOSH REL	OSHA PEL
Target Compounds	Basis	CAS#	MW	ppbv	Q	ug/m3	ug/m3	ug/m3 >
Propylene	NC	115-07-1	42.08	ND		ND	N.E.	N.E.
Freon 12(Dichlorodifluoromethane)	NC	75-71-8	120.9	0.69		3.4	4900000	4900000
Freon 114(1,2-Dichlorotetrafluoroethan		76-14-2	170.9	ND		ND	7000000	7000000
Chloromethane	NC	74-87-3	50.49	ND		ND	LFC	210000
n-Butane		106-97-8	58.12	3.3		7.8	1900000	N.E.
Vinyl chloride	С	75-01-4	62.50	ND		ND	LFC	2600
1,3-Butadiene	С	106-99-0	54.09	ND		ND	LFC	2200
Bromomethane	NC	74-83-9	94.94	ND		ND	LFC	78000
Chloroethane	NC	75-00-3	64.51	ND		ND	LFC	2600000
Ethanol		64-17-5	46.07	16		30	1900000	1900000
Bromoethene(Vinyl bromide)	С	593-60-2	106.9	ND		ND	LFC	N.E.
Freon 11(Trichlorofluoromethane)		75-69-4	137.4	ND		ND	5600000	5600000
Isopropyl alcohol(2-Propanol)	NC	67-63-0	60.09	2.6		6.3	980000	980000
Freon 113(1,1,2-Trichlorotrifluoroethan	NC	76-13-1	187.4	ND		ND	7700000	7700000
Acetone	NC	67-64-1	58.08	5.0		12	590000	2400000
1,1-Dichloroethene	NC	75-35-4	96.94	ND		ND	790000	N.E.
Acetonitrile	NC	75-05-8	41.05	ND		ND	34000	67000
Tertiary butyl alcohol(TBA)		75-65-0	74.12	ND		ND	300000	300000
Bromoethane(Ethyl bromide)		74-96-4	109.0	ND		ND	880000	880000
3-Chloropropene(Allyl chloride)	С	107-05-1	76.52	ND		ND	3100	3100
Carbon disulfide	NC	75-15-0	76.14	ND		ND	3100	62000
Methylene chloride	С	75-09-2	84.93	ND		ND	LFC	87000
Acrylonitrile	С	107-13-1	53.08	ND		ND	2200	4300
Methyl-tert-butyl ether(MTBE)	С	1634-04-4	88.15	ND		ND	N.E.	N.E.
trans-1,2-Dichloroethene		156-60-5	96.94	ND		ND	790000	790000
n-Hexane	NC	110-54-3	86.18	ND		ND	180000	1800000
1,1-Dichloroethane	С	75-34-3	98.96	ND		ND	400000	400000
Vinyl acetate	NC	108-05-4	86.09	ND		ND	14000	N.E.
2-Butanone(MEK)	NC	78-93-3	72.11	ND		ND	590000	590000
cis-1,2-Dichloroethene		156-59-2	96.94	ND		ND	790000	790000
Ethyl acetate	NC	141-78-6	88.11	ND		ND	1400000	1400000
Chloroform	С	67-66-3	119.4	ND		ND	9800	240000
Tetrahydrofuran	NC	109-99-9	72.11	ND		ND	590000	590000
1,1,1-Trichloroethane	NC	71-55-6	133.4	ND		ND	1900000	1900000
Cyclohexane	NC	110-82-7	84.16	1.4		4.7	1000000	1000000
2,2,4-Trimethylpentane(Isooctane)		540-84-1	114.2	ND		ND	N.E.	N.E.
Carbon tetrachloride	С	56-23-5	153.8	ND		ND	13000	63000
n-Heptane	NC	142-82-5	100.2	ND		ND	350000	2000000
1,2-Dichloroethane	С	107-06-2	98.96	ND		ND	4000	200000
Benzene	C	71-43-2	78.11	ND		ND	320	3200
Irichloroethene	C	79-01-6	131.4	ND		ND	130000	540000
1,2-Dichloropropane	C	78-87-5	113.0	ND	L	ND	LFC	350000
Methyl Methacrylate	NC	80-62-6	100.1	ND		ND	410000	410000
Bromodichloromethane	C	75-27-4	163.8	ND		ND	N.E.	N.E.
1,4-Dioxane	С	123-91-1	88.11	ND		ND	3600	360000
4-Methyl-2-pentanone(MIBK)	NC	108-10-1	100.2	ND		ND	200000	410000
cis-1,3-Dichloropropene**	С	10061-01-5	111.0	ND		ND	4500	N.E.

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 3 EMSL CUSTOMER ID: D Section H, Item 7. EMSL SAMPLE ID: 332402243-0003 CUSTOMER SAMPLE ID: BALLROOM 2

Customer PO: EMSL Project ID: Project Name: **CENTENNIAL HALL 2023**

	Phone: Email:	907-723-889 sigrid@dahll	6 berg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	8:38 0:25	
<u>Analysis</u>	Ana	alysis Date	<u>Analyst Init.</u>	<u>Lab File ID</u>	Canister ID	<u>Sample Vol.</u>	Dil. Factor
Initial	02	2/13/2024	HP	T2160.D	E15526	250 cc	1

NIOSH and OSHA Exposure Limit Comparisons

	Tox.			Result		Result	NIOSH REL		OSHA PEL
Target Compounds	Basis	CAS#	MW	ppbv	Q	ug/m3	ug/m3	>	ug/m3 >
Toluene	NC	108-88-3	92.14	ND		ND	380000		750000
trans-1,3-Dichloropropene**	С	10061-02-6	111.0	ND		ND	4500		N.E.
1,1,2-Trichloroethane	С	79-00-5	133.4	ND		ND	55000		55000
2-Hexanone(MBK)	NC	591-78-6	100.2	ND		ND	4100		410000
Tetrachloroethene	С	127-18-4	165.8	ND		ND	LFC		680000
Dibromochloromethane		124-48-1	208.3	ND		ND	N.E.		N.E.
1,2-Dibromoethane	С	106-93-4	187.9	ND		ND	350		150000
Chlorobenzene	NC	108-90-7	112.6	ND		ND	N.E.		350000
Ethylbenzene	С	100-41-4	106.2	ND		ND	430000		430000
Xylene (p,m)	NC	1330-20-7	106.2	ND		ND	430000		430000
Xylene (Ortho)	NC	95-47-6	106.2	ND		ND	430000		430000
Styrene	NC	100-42-5	104.1	0.68		2.9	210000		430000
Isopropylbenzene (cumene)	NC	98-82-8	120.2	ND		ND	250000		250000
Bromoform	С	75-25-2	252.7	ND		ND	5200		5200
1,1,2,2-Tetrachloroethane	С	79-34-5	167.9	ND		ND	6900		34000
4-Ethyltoluene		622-96-8	120.2	ND		ND	N.E.		N.E.
1,3,5-Trimethylbenzene	NC	108-67-8	120.2	ND		ND	120000		N.E.
2-Chlorotoluene		95-49-8	126.6	ND		ND	260000		N.E.
1,2,4-Trimethylbenzene	NC	95-63-6	120.2	ND		ND	120000		N.E.
1,3-Dichlorobenzene		541-73-1	147.0	ND		ND	N.E.		N.E.
1,4-Dichlorobenzene	С	106-46-7	147.0	ND		ND	LFC		450000
Benzyl chloride	С	100-44-7	126.6	ND		ND	5200		5200
1,2-Dichlorobenzene	NC	95-50-1	147.0	ND		ND	300000		300000
1,2,4-Trichlorobenzene	NC	120-82-1	181.4	ND		ND	37000		N.E.
Hexachloro-1,3-butadiene	С	87-68-3	260.8	ND		ND	210		N.E.
Naphthalene	С	91-20-3	128.2	ND		ND	52000		52000
**The concentrations of each isomer should be added if	multiple	isomers are		The > colun	nn is us	ed to flag e	ceedances as marked		

**The concentrations of each isomer should be added if multiple isomers are present and compared to the total screening level.

Exposure Limit Definitions

REL= Recommended Exposure Limit, PEL= Permissable Exposure Limit

Agency Definitions

NIOSH= The National Institute for Occupational Safety and Health OSHA= Occupational Safety and Health Administration

Reference

Occupational Safety and Health Administration (OSHA) (2017) Air Contaminants. 29 CFR 1910.1000 [82 FR 2735, January 9, 2017].

Carcinogenic (C) Exceedance

Value exceeds the theoretical risk that 1 additional case of cancer will occur in a population of 1 million than statistically expected.

Thus is a theoretical risk and not an actual epidemiological one.

Compound Exposure Definitions

NE= No Limit Established NS= No Screening Value LFC= Lowest Feasible Concentration

Qualifier Definitions

- **B** = Compound also found in method blank. ND = Non Detect
- E= Estimated concentration exceeding upper calibration range.
- D= Result reported from diluted analysis.
- J= Concentration estimated between Reporting Limit and MDL.

NonCarcinogenic (NC) Exceedance

Value exceeds the theoretical risk that 1 in a population of 100,000 will experience deleterious health effects.

Thus is a theoretical risk and not an actual epidemiological one.

	LA Tes	iting Or	Exte	ernal mber (L	Chain	U of C	SEP/ Susto	4 TO dy/ F 3 3	-15 Field Tes 2 4 0 2	st [2	Data : 4 3	Shee	t		LA Te: 5431 I Huntir Ph. (80 Fax (7	stin ndu ngto 00) 14)	ig, Ind Istria on Be 755- 828-	c. al Dr each 1794 494	ive 1, CA 4 4	926	Sectic 49	on H,
Company/Cust. ID:	DAHLE	ERG		SIGN		Compa	ny/Billin	a ID:	DAHLBE	20	, Des	SIGN	<u>es par present</u> -1	Sampled E	3v (Siar	<u>ו</u> : ב	5	<u> </u>	10	>	نف	
Contact Name:	Silen	5 D0	HLB	ERG		Billing	Contac	:t:		ne				Sampled E	3v (Nam	<u></u> ne):	<u> </u>	\sum_{a}	<u></u> בוג	DA		see
Street Address:	222 9	لاديناد	eo S	π'#	205	Street	Addres	s:						Total # of	Sample	s:	3					(
City, State, Zip:	JUNER	A ت	×4	3580	51	City, S	itate, Zip):	2 - Derand Californi Statistics Statistics					Date Ship	oed:	7 1	Feb	2	024	۱		
Phone: 907-	123.58	96	Fax: -			Phone);				Fax:			Sample Co	ollectio	n Zi	ip Co	de:	9	780	>[
Email Results To:	Slavid	e da	zh1b	eret -	esian	Proi	ect N	ame:	/ ENITE	а 97 - И-		. ممل	2012	Purchase	Order							
Furnaround Time ☐ 5 Day ☐ 2 Day	(in Busine	ss Day Day Day	rs): 🎾	≰10 Day	Standard 3 Day			Repor	ting Format	: arge n	Result:	s Only (Stan	dərd Lab Re	l port)			A	naly 풍	/sis Oth	er	Air	latrix
	Field U	se - All	Inform	ation I	Required!	y er son					La	ib Use (Dnly			5 L	-12	Å,	(Spec	;ify)	ent /	
	Samplir	ng Starl	t Informa	ation	Samplir	ng Stop	Inform	ation				Gau	ige #			12	입	Ш			iqu	ent
Client Field	Barometric	Pres. ("Hg):		Barometric	Pres. ("Hg): 29	.34	Canister Ir	nforr	nation	366320	219424	Flow Cor	ntoller	Ā		2			A S	8 ≧
Sample Identification	Start Date	Time (24 hr clock)	Canister Pressure ("Hg)	Interior Temp. (F)	Stop Date	Time (24 fr clock)	Canister Pressure ("Hg)	Interior Temp. (F)	Canister ID	Size (L)	Can Cert Batch ID	Outgoing Pressure ("Hg)	Incorning Pressure ("Hg)	Reg. ID	Cal Flow (mi/min)	USEP.	NJDEI	LIBRA			Indoor Soil O	Landfi
BAUROOM 1	31Jan 2024	0834	-292	70	31 Jan 2024	1638	-32	71	E15530	6	89 A	- 30	-3.2	07978	11.0	Γ					~	
BALLROOM 3	ĸ	D839	-29 ²	70	μ	1640	-22	ור	E0666	Ģ	89 A	- 30	-2.4	15114	11.0						~	
BALLROOM \$2	14	0838	-29 ¹	70	p	1639	-2-	7:	E15596	6	87 A	- 30	-30	15116	11.0	Γ						1
· · · · ·																Γ						
											HP	02/13	124									
												17										
				-																		
															1							
	-														·	Γ				·		
Comments:					an a							Check Seal	Box if Intact	Lab Caniste Analyst Sigr	r Certific nature (T	atio O-1	n 5):					
Relinquished	by:	D	ate/ Tin	ne	·特殊学者 F	leceive	ed by:		Date/	Tìn) ë	Seal #	/ Intact	Reaso	n for E	xcł	hang	je (d	ircle	app	горі	riate
Rob Hansen		19	. 99.9	3	Siga	KJ	Lun	~	5 JAN 20	2A	4pm		r./	Shipping	Courier	Rece	eiving	Sam	pling	Oth	er:	• •
SLARD	emand	65	-1-20	24	Emitin	undor	WM	MA (FX)	2 9 241	0:2	SAM		Г	Shipping	Courier	Rece	aiving	Sam	pling	Oth	er:	
\bigcirc	-7				[0	020					.	Shipping	Courier	Rece	siving	Sam	npling	Oth	er:	
	$- \cup$				1								Γ.	Shipping	Courier	Rece	eiving	Sam	apling	Oth	er:	
					 				<u> </u>							_	-				· · ·	

and the second second second second

#332402243

TO-FM-12 Sample Information Revision 13 Effective Date: December 20, 2022

TO-15 Sample Information

Please fill out this worksheet in addition to the Chain of Custody form. This information helps us to best analyze your samples, achieve requested TAT, and provide you with helpful interpretation information.

Name: SIGRID DALLEERG E-mail: Sigrid E daniberg design additional E-mails: Sdaniberg DDE gmail.com Telephone #: DOT. 723.88956 Ubray Search (argument of the standard TO-15 list of 74 compounds. If you are performing an indoor Air Quality or odor investigation, the library search (argument of the standard TO-15 list of 74 compounds. If you are performing an indoor Air Quality or odor investigation, the library search (argument of the standard TO-15 list of 74 sample Type: [] Soll Gas/Sub Slab [] Indoor Air Quality (Mome/Office) [] Soll Gas/Sub Slab [] Yother: Public building /non-office Sample Type: [] Mod Industriali [] Yother: Public building /non-office Sample Description: Reconsupering Sampling after renevation at convention ce PLEASE NOTE: The result forms we provide will not indicate whether your results have exceeded any Exposure Limit criteria established by any regulatory agency. If you would like that information, please check off below which regulatory comparison forms you would like to receive. [M] OSA PLES/NIOSH RELs combined form [] PA NELS - 27022 [M/SG [] ND DER - 5/2021 - Circle one: Residential [] ND DER - 2/2028 [M/SG [] ND DER - 2/2028 [M/SG [] ND DER - 2/2028		Contact Person:		
Email: Sigridedanlberg.design Additional E-mails: Sdanlberg DOTE gmail.com Telephone #: 907.723.8896 Library Search requested: []YES []NO Alibrary search (arguested: []YES []Soli Gas/Sub Stab []Indoor Air Quality (Home/Office) []Soli Gas/Sub Stab []Indoor Air Quality (Home/Office) []Soli Gas/Sub Stab []Idq (industrial) []Gas/Sub Stab []YOther: Public building / non-office Sample Description: Recoccupancy gampling affect removation at convention arguestary agency. If you would like that information, please check of below which regulatory comparison forms you would like that information, please check of below which regulatory comparison forms you would like that information, please check of below which regulatory comparison forms you would like that information, please check of below which regulatory compar		Name: SIGRID DAHL	BERG	
E-mail: Signification Additional E-mails: Sdanlberg DOTE gmail.com Telephone #: DOT. 723.8896 Ubrary Search requested: []YES []NO Alibrary search (kar Tentatively Identified Compounds) will identify up to 20 of the largest, non-target peaks that are not part of the standard TO-15 list of 74 compounds. If you are performing an Indoor AIr Quality or odor investigation, the library search is recommended to provide you with all available information for your sample. Sample Type: [] Indoor Air Quality (Home/Office) [] Soll Gas/Sub Slab [] Indoor Air Quality (Home/Office) [] Soll Gas/Sub Slab [] YOther: Public building / non-office Sample Description: Ecocumpanney Image After removation at convention comparison forms you would like to receive. PLEASE NOTE: The result forms we provide will not indicate whether your results have exceeded any Exposure Limit criteria established by any regulatory agency. If you would like to arisoftame dorm [] Potential Sources of Compounds found in your IAQ sample [] EPA NISLE JU/2022 defunits Trial and form [] Potential Sources of Compounds found in your IAQ sample [] I PA VISLE JU/2023 Indoor AQ VI-Soll Gas [] Ohio - 5/2016 - Circle one: Residential Non-residential [] Indoor Air Soil Gas [] ND DEN * J/2023 Indoor Air [] Vermont DEC IRCO * J/2027 (soil gas only) [] PA DEP - J1/2015:		Sic id a da h	line de	Sign
Additional E-mails: Stach Iberg 907@gmail.com Telephone B: 907.723.8896 Library Search requested: []YES []NO A library search (ska Tentotively identified Compounds) will identify up to 20 of the largest, non-target peaks that are not part of the standard TO-15 list of 74 compounds. If you are performing an Indoor Air Quality or odor investigation, the library search is recommended to provide you with all available information for your sample. Sample Type: [] Indoor Air Quality (Home/Office) [] Soil Gas/Sub Slab [] Yother: P wb lic building /non-office Sample Description: Bcoccupancy Sampling after venovation at convention ce PLEASE NOTE: The result forms we provide will not indicate whether your results have exceeded any Exposure Limit criteria established by any regulatory agency. If you would like that information, please check off below which regulatory comparison forms you would like to receive. [M] OSHA PELs/NIOSH RELs combined form [] Potential Sources of Compounds found in your IAQ sample [] EPA SIS - 11/2022; deputs TROL 1 Residentiai Industriai [] TVOC (Library Search Required		E-mail: Sigria eaar	ing , ac.	3.51
Telephone #: SOT. 723.88956 Library Search requested: []YES NO Alibrary Search (oka Tentatively Identified Compounds) will identify up to 20 of the largest, non-target peaks that are not part of the standard TO-15 list of 74 compounds. If you are performing an Indoor Air Quality or odor investigation, the library search is recommended to provide you with all available information for your sample. Sample Type: [] Indoor Air Quality (Home/Office) [] Soil Gas/Sub Slab [] Indoor Air Quality (Home/Office) [] Soil Gas/Sub Slab [] Soil Gas/Sub Slab [] Modername PLEASE NOTE: The result forms we provide will not indicate whether your results have exceeded any Exposure Limit criteria established by any regulatory agency. If you would like that information, please check off below which regulatory comparison forms you would like to receive. [V] OSHA PELs/NIOSH RELs combined form [] Potential Sources of Compounds found in your IAQ sample [] EPA RSIS - 1/2022 dewints TMQ0.1 Residentiai Industrial [] TVOC (Library Search Required for this format) [] ND DEP - 5/2021 - Circle one: W -Indoor AQ VI-Soil Gas [] Ohio - 5/2016 - Circle one: Residentiai AWR [] ND DEP - 3/2028 Indoor Air [] No DER - 3/2028 [] Ohior - A/2016 - Circle one: Residentiai AWR [] ND DEP - 3/2021 Indoor Air [] Ohior - 5/2016 -		Additional E-mails: Sdahlber	<u>9907@gm</u>	nail, com
Library Search requested: []YES []NO A library search (aka Tentatively Identified Compounds) will identify up to 20 of the largest, non-target peaks that are not part of the standard TO-15 list of 74 compounds. If you are performing an Indoor Air Quality or odor investigation, the library search is recommended to provide you with all available information for your sample. Sample Type: [] Indoor Air Quality (Home/Office) [] Soil Gas/Sub Slab [] Indo Air Quality (Home/Office) [] Soil Gas/Sub Slab [] MaQ (Industrial) [] You only fice [] Soil Gas/Sub Slab [] You ther: Public building /non-office Sample Description: PLEASE NOTE: The result forms we provide will not indicate whether your results have exceeded any Exposure Limit criteria established by any regulatory agency. If you would like that information, please check off below which regulatory comparison forms you would like to receive. [] OSHA PELS/NIOSH RELs combined form [] Potential Sources of Compounds found in your IAQ sample [] EPA RSIS - 11/2022; defaults TM2.1 Residentiai Industriai [] TVOC (Library Search Required for this format) [] I PA VISLS - 3/2012 IA/SG [] INDES_WMD - 3/2013 Indoor Air Soil Gas [] M DEP - 5/2011 - Circle one: VI-Indoor AQ VI-Soil Gas [] Johio - 5/2016 - Circle one: Residentiai Commerciai [] ND		Telephone #: 907.723.88	36	
Sample Type: [] Indoor Air Quality (Home/Office) [] Soll Gas/Sub Slab [] IAQ (Industrial) [] JAQ (Industrial) [] Soll Gas/Sub Slab [] Mother: Public building (non-office Sample Description: Recoccupancy Sampling after removation at convention convention PLEASE NOTE: The result forms we provide will not indicate whether your results have exceeded any Exposure Limit criteria established by any regulatory agency. If you would like that information, please check off below which regulatory comparison forms you would like to receive. [M] OSHA PELS/NIOSH RELs combined form [] Potential Sources of Compounds found in your IAQ sample [] EPA RSLs - 11/2022; dejouit is THQ 0.1 Residentiai Industrial [] TVOC (Library Search Required for this format) [] BPA VISLs - 3/2012 IA/SG [] NH DES_WMD - 2/2013 Indoor Air Soil Gas [] N C DENR - 2/2018 - Circle one: VI-Indoor AQ VI-Soil Gas [] Ohio - 5/2016 - Circle one: Residential Commercial [] N C DENR - 2/2018 - Circle one: Residential Non-residential [] Indiana Dept Env Mgmt Screeening Levels - 3/2018 [] JA DEP - 11/2016: Sub Slab Soil Gas OR Near Source Soil Gas [] California OEHHA - 2/2012 [] CA HHSL - 9/2010 - Circle one: Indoor Air [] Deter: these are the compounds is want reported: <td></td> <td>Library Search requested: A library search (aka Tentatively Identified Compound compounds. If you are performing an Indoor Air Qua your sample.</td> <td>[] YES ['s) will identify up to 20 of lity or ador investigation, tl</td> <td>] NO the largest, non-target peaks that are not part of the standard TO-15 list of 74 he library search is recommended to provide you with all available information for</td>		Library Search requested: A library search (aka Tentatively Identified Compound compounds. If you are performing an Indoor Air Qua your sample.	[] YES ['s) will identify up to 20 of lity or ador investigation, tl] NO the largest, non-target peaks that are not part of the standard TO-15 list of 74 he library search is recommended to provide you with all available information for
[]]Indoor Air Quality (Home/Office) []]Soil Gas/Sub Slab []]IAQ (Industrial) []]Soil Gas/Sub Slab []]JAQ (Industrial) []]JOTOTHER: Public Building / non-office Sample Description: Recoccupancy sampling after renevation at convention a PLEASE NOTE: The result forms we provide will not indicate whether your results have exceeded any Exposure Limit criteria established by any regulatory agency. If you would like that information, please check off below which regulatory comparison forms you would like to receive. []Y OSHA PELS/NIOSH RELs combined form []] Potential Sources of Compounds found in your IAQ sample []] EPA RSLs - 11/2022; defoult is THQ 0.3 Residentiai []] EPA VISLS - 3/2012 IA/SG []] NV DES_WMD - 2/2013 Indoor Air []] NV DEN - 5/2021 - Circle one: VI-Indoor AQ []] NC DENR - 2/2018 - Circle one: Residential []] NC DENR - 2/2018 - Circle one: Residential []] PA DEP - 11/2016 Indoor Air []] CA HHSL - 9/2010 - Circle one: Indoor Air []] CA HHSL - 9/2010 - Circle one: Indoor Air []] Other: these are the compopundi		Source Trues		
PLEASE NOTE: The result forms we provide will not indicate whether your results have exceeded any Exposure Limit criteria established by any regulatory agency. If you would like that information, please check off below which regulatory comparison forms you would like to receive. [✓] OSHA PELs/NIOSH RELs combined form [] Potential Sources of Compounds found in your IAQ sample [] EPA RSLs - 11/2022; default is THQ 0.1 Residentiai Industriai [] TVOC (Library Search Required for this format) [] EPA VISLs - 3/2012 IA/5G [] NH DES_WMD - 2/2013 Indoor Air Soil Gas [] NJ DEP - 5/2021 - Circle one: VI-Indoor AQ VI-Soil Gas [] Ohio - 5/2016 - Circle one: Residentiai [] NC DENR - 2/2018 - Circle one: Residentiai Non-residentiai [] Indiana Dept Env Mgmt Screeening Levels - 3/2018 [] PA DEP - 11/2016 Indoor Air [] Vermont DEC IROCP - 7/2017 (soil gas only) [] PA DEP - 11/2016: Sub Slab Soil Gas OR Near Source Soil Gas [] California OEHHA - 2/2012 [] CA HHSL - 9/2010 - Circle one: Indoor Air Soil Gas		Sample Type:		
[V] OSHA PELs/NIOSH RELs combined form []] Potential Sources of Compounds found in your IAQ sample []] EPA RSLS - 11/2022; default is THQ 0.1 Residential Industrial []] TVOC (Library Search Required for this format) []] EPA RSLS - 11/2022; default is THQ 0.1 Residential Industrial []] TVOC (Library Search Required for this format) []] EPA VISLS - 3/2012 IA/SG []] NH DES_WMD - 2/2013 Induor Air Soil Gas []] INJ DEP - 5/2021 - Circle one: VI-Indoor AQ VI-Soil Gas []] Ohio - 5/2016 - Circle one: Residential Commercial []] NC DENR - 2/2018 - Circle one: Residential Non-residential []] Indiana Dept Env Mgmt Screeening Levels - 3/2018 []] PA DEP - 11/2016 Indoor Air []] Vermont DEC IROCP - 7/2017 (soil gas only) []] PA DEP - 11/2016: Sub Slab Soil Gas OR Near Source Soil Gas []] [] California OEHHA - 2/2012 []] CA HHSL - 9/2010 - Circle one: Indoor Air Soil Gas []]		[] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [VTOther: Public buildir Sample Description: <u>Reoccupance</u>	g/non-of	[] soil Gas/sub slab fice g after renovation at convention c
[] EPA RSL5 - 11/2022; default is THQ 0.1 Residential Industrial []] TVOC (Library Search Required for this format) [] J EPA VISLs - 3/2012 IA/5G []] NH DES_WMD - 2/2013 Indoor Air Soil Gas [] J NJ DEP - 5/2021 - Circle one: VI-Indoor AQ VI-Soil Gas []] Ohio - 5/2016 - Circle one: Residential Commercial [] J NC DENR - 2/2018 - Circle one: Residential Non-residential [] Indiana Dept Env Mgmt Screeening Levels - 3/2018 [] J NG DENR - 2/2018 - Circle one: Residential Non-residential [] J Vermont DEC IROCP - 7/2017 (soil gas only) [] J PA DEP - 11/2016 Indoor Air [] J Vermont DEC IROCP - 7/2017 (soil gas only) [] J PA DEP - 11/2016: Sub Slab Soil Gas OR Near Source Soil Gas [] [] California OEHHA - 2/2012 [] J CA HHSL - 9/2010 - Circle one: Indoor Air Soil Gas [] Other: these are the compoounds i want reported:		[] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [] MOQther: PUB NIC Sample Description: PLEASE NOTE: The result forms we provide will not agency. If you would like that information, please c	Indicate whether your results	[] Soll Gas/Sub Slab Greenservation at convention c sults have exceeded any Exposure Limit criteria established by any regulatory relatory comparison forms you would like to receive.
[] PA VISLs - 3/2012 IA/SG [] NH DES_WMD - 2/2013 Indoor Air Soil Gas Image: Apply the system of the		[] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [] JAQ (Industrial) [] JOther: PLEASE NOTE: PLEASE NOTE: The result forms we provide will not agency. If you would like that information, please c [] OSHA PELs/NIOSH RELs	9 / Non - of J Samplin indicate whether your res heck off below which regu	 [] Soll Gas/Sub Slab -fice <u>g after veneration</u> at convention c sults have exceeded any Exposure Limit criteria established by any regulatory katory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample
Image: Provide the state of the state o		[] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [] TOther: Public buildir Sample Description: Reconstruction PLEASE NOTE: The result forms we provide will not agency. If you would like that information, please c [] OSHA PELs/NIOSH RELs combina [] EPA RSLS - 11/2022; default is THQ0.1 Residu	IS (NON- of Samplin Indicate whether your res heck off below which regu ed form Intiai Industrial	 [] Soil Gas/Sub Slab Green Antion at convention convention convertions Sults have exceeded any Exposure Limit criteria established by any regulatory regulatory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample [] TVOC (Library Search Required for this format)
[]] NC DENR - 2/2018 - Circle one: Residential Non-residential [] Indiana Dept Env Mgmt Screeening Levels - 3/2018 []] VI 3 []] PA DEP - 11/2016 Indoor Air []] Vermont DEC IROCP - 7/2017 (soil gas only) []] PA DEP - 11/2016: Sub Slab Soil Gas OR Near Source Soil Gas []] California OEHHA - 2/2012 []] CA HHSL - 9/2010 - Circle one: Indoor Air Soil Gas []] Other: these are the compounds i want reported:		[] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [] JAQ (Industrial) [] JOther: PUES INC BUILDIN Sample Description: PLEASE NOTE: The result forms we provide will not agency. If you would like that information, please c [] OSHA PELs/NIOSH RELs combin [] EPA RSLS - 11/2022; default is THQ 0.1 Residu [] EPA VISLS - 3/2012 IA/SG	IS (NON-OF Samplin indicate whether your res heck off below which regu ed form ential industrial	 [] Soll Gas/Sub Slab Green State St
Image: State Stat	HP	[] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [] YOther: PUEASE NOTE: PLEASE NOTE: The result forms we provide will not agency. If you would like that information, please c [] OSHA PELs/NIOSH RELs [] EPA RSLS - 11/2022; default is THQ 0.1 Reside [] NJ DEP - 5/2021 - Circle one:	G (Non - of Samplin indicate whether your res heck off below which regu ed form antial Industrial oor AQ VI-Soil Gas	 [] Soll Gas/Sub Slab Green Green Station at convention of sults have exceeded any Exposure Limit criteria established by any regulatory ulatory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample [] TVOC (Library Search Required for this format) [] NH DES_WMD - 2/2013 Indoor Air Soil Gas [] Ohio - 5/2016 - Circle one: Residential Commercial
<pre>{</pre>	48	[] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [] YOther: PUEASE NOTE: PLEASE NOTE: The result forms we provide will not agency. If you would like that information, please c [] OSHA PELs/NIOSH RELs [] EPA RSLS - 11/2022; default is THQ 0.1 Reside [] PA VISLS - 3/2012 [] NJ DEP - 5/2021 - Circle one: [] NC DENR - 2/2018 - Circle one:	S (Non-of Samplin indicate whether your res heck off below which regu ed form antial Industrial oor AQ VI-Soil Gas antial Non-residential	 [] Soll Gas/Sub Slab Green Green Station at convention of sults have exceeded any Exposure Limit criteria established by any regulatory thatory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample [] TVOC (Library Search Required for this format) [] NH DES_WMD - 2/2013 Indoor Air Soil Gas [] Ohio - 5/2016 - Circle one: Residential Commercial [] Indiana Dept Env Mgmt Screeening Levels - 3/2018
[] CA HHSL - 9/2010 - Circle one: Indoor Air Soll Gas [] Other: these are the compounds I want reported	H8 2/13	[] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [] YOther: Public buildir Sample Description: Peocempane PLEASE NOTE: The result forms we provide will not agency. If you would like that information, please c [] OSHA PELs/NIOSH RELs combin [] EPA RSLS - 11/2022; default is THQ 0.1 Reside [] EPA VISLS - 3/2012 IA/SG [] NJ DEP - 5/2021 - Circle one: VI-Ind [] NG DENR - 2/2018 - Circle one: Reside [] PA DEP - 11/2016 Indoo	G (Non-of Samplin indicate whether your re- heck off below which regu ed form ential Industrial oor AQ VI-Soil Gas ential Non-residential r Air	 [] Soll Gas/Sub Slab Green Green State St
· · · · · · · · · · · · · · · · · · ·	48 2/13	[] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [] YOther: Public buildir Sample Description: Peocempane PLEASE NOTE: The result forms we provide will not agency. If you would like that information, please c [] OSHA PELs/NIOSH RELs combin [] EPA RSLS - 11/2022; defout is THQ 0.1 Residu [] EPA VISLS - 3/2012 IA/SG [] NC DENR - 2/2018 - Circle one: Residu [] PA DEP - 11/2016 Indoo [] PA DEP - 11/2016: Sub Slab Soil Gas OR Near Sou	G (Non-of Samplin indicate whether your re- heck off below which regu ed form ential industrial oor AQ VI-Soil Gas ential Non-residential r Air rce Soil Gas	 [] Soil Gas/Sub Slab Gree Gree Gree Gree Gree Gree Sults have exceeded any Exposure Limit criteria established by any regulatory ilatory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample [] TVOC (Library Search Required for this format) [] NH DES_WMD - 2/2013 Indoor Air Soil Gas [] Ohio - 5/2016 - Circle one: Residential Commercial [] Indiana Dept Env Mgmt Screeening Levels - 3/2018 [] Vermont DEC IROCP - 7/2017 (soil gas only) [] California OEHHA - 2/2012

*Very Important Information for Clients! Hold time for sulfur gases is 1 day from collection. Please schedule your sample collection so samples are received in the lab prior to noon on Friday. Analysis performed out of hold time will have a notation in the report.

US EPA TO-3 via GC/FID:	ASTM-D5504 via GC/SCD: *
[] C ₁ -C ₆ hydrocarbons	[] Sulfur Scan (H ₂ S, COS, MeSH, EtSH, DMS)
[] Methane only	[] H ₂ S only

We can provide the following CMS tests from your canisters at the **Cinnaminson and Huntington Beach** laboratories. Please note these tests are to be used for IAQ/Screening purposes ONLY. EMSL recommends alternate field sampling techniques for these parameters (with the exception of water vapor); please contact your sales rep for the proper media. Please note: There is an additional charge for any of the tests below.

Draeger A	nalyzer:				
[]00	[]CO ₂	[] NH ₃	[]02	[] Water Va	apor

Sample Retention Policy: All canisters are guaranteed to be retained for one day after results are reported. Please review your results promptly to ensure your project scope is fully addressed. Cans may be retained for a longer period of time, but arrangements to hold your cans must be made through your customer account representative guickly. Thank you.

Controlled Document Confidential Business Information/Property of EMSL Analytical, Inc.

32

Heads up! We need your Approval of the following Submittals, Due on 02/29/2024.

General Information:

1050033 - 132 Construction Waste Management Final Report (Revision)

Centennial Hall Ballroom Reno
Centennial Hall - Ballroom
155 South Seward Street, Juneau, AK 99801
James Malapanis, Project Manager
Carver Construction, LLC
1800 Greenwood Crest, Comox, BC V9M 4C8
James Malapanis, Project Manager

Approved as Noted 2/16/24 Lisa Eagandagerqu

Request For Approval:

Subm Date:	itted	02/15/2024						
Respo	onders:	- City & Boroug - Jensen Yorba	gh of Juneau a Wall Inc [i - Gen Term - Dan Fabrello (Lisa Eagan-Lagerquist (Project Construction Administrator)	t Manager)		
Comn	nenters	: - Carver Const	truction LLC	- James Mala	panis (Project Manager)			
Instru	ictions:							
ltem	Rev	Reference	Phase	Cost Code	Subject	Туре	Critical Date	
107	1			017400	Construction Waste Management Final Report	General Documentation	02/29/2024	Details

(Revision)

Centennial Hall Ballroom Renovation BE22-204 Final Report

WASTE MANAGEMENT RECEIPT LOGpdated: 2-15-2024

NOTE: UOM - TONS

GOAL: DIVERT 50% BY WEIGHT OF TOTAL CONSTRUCTION & DEMOLISION WASTE GENERATED ON-SITE.

TARGET MATERIALS: CONCRETE 40 T, METALS 4 T, WOOD 5 T, CARDBOARD 1 T, ALUMINUM/PLASTICS 0.1 T, NON-RECYCLABLES 50 T

							SOUND		NON	
DATE	FACILITY	FACILITY ID	METALS	CONCRETE	GRAVEL	WOOD	PANELS	CARDBOARD	RECYCLABLES	NOTES
12/12/22	D&S Recycling	Recycle	0.62							
12/21/22	Capitol Disposal	Landfill							1.45	
12/21/22	Capitol Disposal	Landfill							1.02	
12/21/22	Capitol Disposal	Landfill							0.48	
12/22/22	Scookum	Recycle	1.65							
12/22/22	Scookum	Recycle	0.93							
12/22/22	Capitol Disposal	Landfill							0.69	
12/26/22	D&S Recycling	Recycle	0.63							
12/28/22	Capitol Disposal	Landfill							1.2	
1/2/23	Capitol Disposal	Landfill							1.15	
1/6/23	Bobcat	Repurpose	4.39							
1/6/23	Bobcat	Repurpose	3.91							
1/6/23	Bobcat	Repurpose	3.8							
1/6/23	Bobcat	Repurpose	4.93							
1/6/23	Capitol Disposal	Landfill							1.03	
1/17/23	Capitol Disposal	Landfill							0.64	
1/18/23	Capitol Disposal	Landfill							0.35	
1/19/23	Bobcat	Repurpose	1.59							
1/25/23	Capitol Disposal	Landfill							1.48	
1/25/23	Capitol Disposal	Landfill							1.84	
2/11/23	Carver's Lot	Recycle		3.46						
2/11/23	Carver's Lot	Recycle		2						
2/11/23	Carver's Lot	Recycle		3.03						
2/11/23	Carver's Lot	Recycle		2.16						
2/11/23	Carver's Lot	Recycle		2.08						

2/18/23	Bobcat	Repurpose	3.37			
2/18/23	Carver's Lot	Recycle		2.83		
2/18/23	Carver's Lot	Recycle		2.41		
2/18/23	Carver's Lot	Recycle		2.84		
2/18/23	Carver's Lot	Recycle		2.5		
2/18/23	Carver's Lot	Recycle			2.45	
2/18/23	Carver's Lot	Recycle			3.57	
2/18/23	Carver's Lot	Recycle			4.04	
2/18/23	Carver's Lot	Recycle			2.99	
2/18/23	Carver's Lot	Recycle			3.36	
2/18/23	Carver's Lot	Recycle			3.5	
2/18/23	Carver's Lot	Recycle			2.95	
2/18/23	Carver's Lot	Recycle			3.63	
2/25/23	Carver's Lot	Recycle			3.51	
2/25/23	Carver's Lot	Recycle			3.025	
2/25/23	Carver's Lot	Recycle			3.025	
2/25/23	Carver's Lot	Recycle			3.04	
2/25/23	Carver's Lot	Recycle			3.51	
2/25/23	JAC & Others	Repurpose				0.36
2/25/23	Carver's Lot	Recycle			3.31	
2/25/23	Carver's Lot	Recycle			1.48	
2/25/23	Carver's Lot	Recycle	1.19			
2/25/23	Capitol Disposal	Landfill				
2/28/23	Carver's Lot	Recycle			3.95	
3/9/23	Capitol Disposal	Landfill				
3/9/23	Capitol Disposal	Recycle	0.67			
3/17/23	Individuals	Repurpose				0.36
3/17/23	CBJ	Repurpose				0.82
4/28/23	Capitol Disposal	Landfill				
4/21/23	Capitol Disposal	Landfill				
4/28/23	Capitol Disposal	Recycle	0.8			

36

0.87 0.97 0.98 1.41

5/11/23	Capitol Disposal	Recycle	0.24							
5/11/23	Capitol Disposal	Landfill							0.84	
5/16/23	Capitol Disposal	Landfill							0.44	
6/2/23	Bobcat	Repurpose	0.57							
6/5/23	Capitol Disposal	Landfill							0.69	
6/15/23	Capitol Disposal	Landfill							0.38	
6/15/23	Capitol Disposal	Landfill							0.73	
7/10/23	Capitol Disposal	Landfill							0.33	
7/10/23	Capitol Disposal	Recycle						0.05		
7/20/23	Capitol Disposal	Recycle							0.36	
7/21/23	Capitol Disposal	Landfill							0.83	
7/21/23	Capitol Disposal	Recycle						0.05		
7/24/23	Capitol Disposal	Landfill							0.23	
7/25/23	Capitol Disposal	Landfill							0.31	
7/25/23	Capitol Disposal	Recycle							0.31	
7/27/23	Skookum	Recycle	1.9							
7/27/23	Skookum	Recycle	1.55							
8/1/23	Individuals	Repurpose				1				
8/1/23	Individuals	Repurpose				1.75				
8/1/23	Individuals	Repurpose	1.5							
8/8/23	Capitol Disposal	Landfill							0.19	
8/16/23	Capitol Disposal	Landfill							0.51	
8/23/23	Capitol Disposal	Landfill							0.59	
										Alcan
										estimate at
2/14/24	Capitol Disposal	Landfill							0.025	completion
			34.24	23.31	51.34	2.75	1.54	0.1	22.325	
	Total Waste:	135.605	TONS							
Vaste Diver	ted from Landfill:	113.28	TONS							
Percenta	age (%) Diverted:	83.54%								

Section H, Item 7.

Engineering and Public Works De 155 South Seward Street Juneau, Alaska 99801 Telephone: 586-0800 Facsimile: 463-2606

- DATE: May 1, 2024
- TO: Nick Waldo, Chair Juneau Commission on Sustainability
- FROM: Jeanne Rynne, Chief Architect
- SUBJECT: Sustainability Successes of the Centennial Hall Ballroom Renovation

Executive Summary

In June of 2022, the City Assembly followed JCOS' recommendation to approve a LEED exemption for the Centennial Hall Ballroom Renovation. The request was made because the facility type and scope of the renovations did not meet LEED eligibility criteria. Despite this fact, CBJ Engineering strove to incorporate sustainable features in the project to the extent possible. The purpose of this memo is to inform the Commission of the successful sustainability efforts on the Centennial Hall Ballroom Renovation project.

Background

Demolition work for the Centennial Hall Ballroom Renovation Project started in December of 2021. The hall reopened for its first event in September 2023 and achieved final completion in March 2024. The project was successful in achieving its sustainability goals.

Sustainable Element Project Successes

Despite the eligibility challenges for LEED certification, we incorporated green building practices to the extent possible. These are the outcomes:

- HVAC
 - The new system is zoned by individual ballrooms. This promotes energy efficiency as the ballrooms can be scheduled independently with the heating/cooling only provided to the individual zone.
 - Air source heat pump units were installed to provide the heating/cooling of the (3) separate ballroom spaces via variable refrigerant flow type duct coils installed in the existing ductwork.
 - The original air handling unit was replaced with a new, more efficient unit, utilizing variable frequency drives.
 - The new air handling system uses demand control ventilation strategies to provide only minimal outdoor air when the space is not occupied. Outdoor ventilation air is increased as the occupant load increases.
 - The new system reused the existing ducts to reduce construction waste.
 - We anticipate that this work will reduce the Ballroom EUI (Energy Use Intensity [1]) by 61% from 131 to 51. Based on current data we are trending this way, but it's too early to provide specific information. Moreover, with the use of Centennial Hall being altered during the COVID Pandemic, we will need to be careful about what years we compare to. This analysis is a work in progress.
- Products with low to no VOC (volatile organic compounds) were provided to improve indoor air quality. (Interior paint, resilient flooring, grout, and sound absorbing wall panels.)
- The Contractor followed a strict Indoor Air Quality (IAQ) Management plan during construction. This plan lead to a high level of indoor air quality during construction. This enabled the Centennial Hall staff outside the construction area to safely occupy the building during the entire construction period.

- A post construction Indoor Air Quality (IAQ) assessment (See attached report) shd the indoor air quality levels in the Centennial Hall Ballrooms met the final clearance standards set forth in LEED IEQc4.
 - The total of each targeted compound for each sample was well below the allowable levels and many orders of magnitude below the NIOSH recommended exposure limit. Moreover, particulate levels were far below the LEED requirement of 50 μ g/M³ and several orders of magnitude below the EPA recommended exposure limit.
- 83% of construction waste was diverted from the land fill.
 - Per the Waste Management specification, the Contractor set what they believed to be an achievable goal of diverting 50% of the construction waste from the land fill. Not only did they meet this goal but ended up exceeding it by 33% by diverting 83% of construction waste (by weight) from the land fill. (See attached Waste Management Final Log)

The sustainability improvements implemented with the Centennial Ballroom Renovation will support the potential for LEED Certification of a future full building renovation.

FINAL IAQ SAMPLING REPORT

CENTENNIAL HALL RENOVATION 2022 CBJ Contract BE22-204

as required by Section 018113 and for LEED IAQc4

Prepared for

Carver Construction, LLC 1012 Second Street Douglas, AK 99824

25 March 2024

Page 2

Table of Contents

INTRODUCTION	3
CONTAMINANTS OF CONCERN	3
HVAC SYSTEM PROTECTION DURING CONSTRUCTION	4
BALLROOM AIR FLUSHING	4
IAQ MEASUREMENTS	4
CONCLUSION	6
THIRD-PARTY SAMPLER COMFIRMATION	6

INTRODUCTION

The subject project is a renovation of the ballrooms at Centennial Hall in Juneau, AK undertaken as CBJ project BE22-204. Construction activities performed for this project include demolition and/or removal of concrete, wood, gypsum board, acoustical wall and ceiling panels, doors, operable walls, along with associated trims and finishes, followed by replacement with new materials and finishes. Work was generally restricted to Ballrooms 1-3 which received structural and acoustical upgrades at both floor and catwalk levels. In addition, upgrades to the HVAC system were provided for the ballrooms.

This Final Indoor Air Quality (IAQ) Sampling Report summarizes the activities performed to protect the health and safety of workers and building occupants during and after construction and to decrease emissions of indoor air contaminants. Additionally, it provides the results from indoor air quality assessments of standard indoor air contaminants of concern. The sampling is also intended to provide an IAQ Indoor Air Quality Assessment in accordance with LEED IEQ v4.

Note that the overall LEED credits for NC IEQ v4 can be achieved either by following a full building flush-out procedure (Option 1, Path 2) or by performing air testing that verifies that the building air quality meets the LEED standards (Option 2, Path 1 and/or Path 2). On this project, both flushing and air testing were performed. The building was partially occupied during construction, so assessments were selected to be suitable for occupied buildings.

CONTAMINANTS OF CONCERN

All construction projects that include demolition of existing materials and installation of new materials have the to potential to release contaminants into the building and to cause exposure to current or future occupants. Contaminants of concern on this project include dust and debris, welding fumes, and fumes or vapors from volatile products used in installation and cleaning as well as in paints and other finishes.

Construction activities with a potential to generate contaminants include:

- Grinding of concrete;
- Demolition and patching of walls, both operable and fixed;
- Welding for structural upgrades;
- Removal and replacement of interior finishes;
- Removal and replacement of exterior finishes;
- Removal and installation of acoustical wall and ceiling panels;
- Installation of spray-on fireproofing; and
- Miscellaneous other tasks required to complete the contract work.

Activities that are particularly prone to creating dust or fumes include grinding concrete and welding. Installation of new finishes is the most likely source of volatile organic compounds. All activities were planned to be performed in a manner that minimized the release of contaminants and exhausted air from the work areas outside the building.

HVAC SYSTEM PROTECTION DURING CONSTRUCTION

A common concern during construction projects is contamination of the building HVAC system by particulates or fumes generated as part of the work activities. To prevent this from occurring, the building HVAC system in the work areas was not used during construction. All supply and return grilles in the work area were sealed with 6-mil polyethylene sheeting which remained in place for the duration of the project. Note that the HVAC system was still in use in other areas of the building that were occupied throughout the construction period.

Heat was provided to the work areas using space heaters. Active work areas were ventilated using negative air machines to filter contaminants from the air (MERV17-20 level filtration), provide adequate air exchange for worker occupancy, and creating a slight negative pressure in the work area to assure that no dust or fumes could migrate from the active work area into the occupied areas of the building.

BALLROOM AIR FLUSHING

After installation of the new HVAC components was completed and all new finishes had been applied in the work areas, the building flush-out activities were performed and filtration media for the HVAC system were replaced with new media in accordance with the requirements of the mechanical system components.

The Centennial Hall ballrooms have a total volume of 12,300 square feet and the new HVAC system has a capacity of 17,400 cubic feet pr minute. The duration of time required to meet the contract requirement of 14,000 cubic feet per square foot of space is:

<u>14,000 cf/sf x 12,300 sf</u> = 9,869 minutes = 6.8 days 17,400 sf

Flushing was carried out starting on 21 August 2023 with the system on full supply air and full exhaust with no recirculation. A few interruptions took place to adjust equipment, with the cumulative flushing volume was completed by 31 August. Fortunately, weather conditions were favorable during the flushing event, allowing temperature and humidity requirements (temperature at or above 60F and relative humidity no higher than 60%) to be met. This flushing event satisfies the requirements set forth for the new HVAC system components as well as for the LEED NC IAQ v4 qualification.

IAQ MEASUREMENTS

Measurements were taken on 31 January 2024 with one sample collected in each ballroom. The new partition walls were put in position to divide the ballrooms into three separate sampling spaces. Samples were collected from the center of each ballroom.

Volatile organic chemicals were measured using the EPA TO-15 method, collecting air samples from each ballroom into a 6-liter vacuum cannister (Summa cannister) with regulated inflow over a period of 8 hours. Cannisters were returned to EMSL Laboratory's LA Testing location for analysis via gas chromatography/mass spectrometry (GC/MS).

Sample results are included in Appendix A. Table 1 includes values for all target compounds with a measurable detection (often referred to as a "hits-only" table).

Compounds that were detected include freon 12, butane, isopropyl alcohol, ethanol, acetone, cyclohexane, toluene (not detected in the Ballroom 2 sample), and styrene. All of these are common contaminants found in new materials, adhesives, and cleaning compounds. The sampling goal is for none of these compounds to exceed NIOSH Recommended Exposure Limit and for the total of all the measurable hits to be less than 500 micrograms per cubic meter (ug/m³).

TABLE 1. Centennial Hall TO-15 Cannister - Measurable Compounds										
Taract Compound	Results in ug/m ³									
laiger compound	Ballroom 1	Ballroom 2	Ballroom 3	NIOSH REL						
Freon 12	4.3	3.4	4.1	4,900,000						
n-Butane	11	7.8	10	1,900,000						
Ethanol	40	30	37	1,900,000						
lsopropyl alcohol	4.6	6.3	3.8	980,000						
Acetone	20	12	18	590,000						
Cyclohexane	5.1	4.7	5	1,000,000						
Toluene	2.4	ND	2.2	380,000						
Styrene	3.3	2.9	3.7	210,000						
totals	90.7	67.1	83.8	NA						

REQUIREMENT: total of all measured compounds no more than 500 ug/m³ and no compound above the NIOSH REL (recommended exposure limit) NOTE: All other target compounds were not detected in the samples (ND).

Totals for each sample were well below the allowable levels and many orders of magnitude below the NIOSH recommended exposure limit.

Particulates were measured with a Quest Technologies EVM-series meter, with each sample run for 15 minutes. Particulates were measured in the PM-10 and the PM-2.5 size ranges. Particulate levels were far below the LEED requirement of 50 ug/m3 and several orders of magnitude below the EPA recommended exposure limit. Measurements are presented in Table 2.

TABLE 2. Centennial Hall Particulate Measurements									
Particulate Size	Results in ug/m ³								
Famiculate Size	Ballroom 1	Ballroom 2	Ballroom 3	EPA REL					
PM-10	0.003	0.004	0.002	150					
PM-2.5	0.001	0.001	0.001	65					

REQUIREMENT: PM-10 less than 50 micrograms per cubic meter (ug/m³) and less than the EPA REL (recommended exposure limit)

Carbon monoxide was also measured in all three ballrooms using the Quest Technologies meter. Carbon monoxide was not detected in any of the ballrooms at a concentration of 1 part per million or higher. The LEED requirement for carbon monoxide measurements matches the EPA recommended exposure limit, which is less than 9 parts per million and no more than 2 parts per million higher than outdoor levels. Measurements are presented in Table 3.

TABLE 3. Centennial Hall Particulate Measurements										
Particulate Size Results in ppm										
	Ballroom 1 Ballroom 2 Ballroom 3 EPA REL									
Carbon monoxide <1 <1 <1 9										
DECITIPEMENT. Loss than	0 nnm and r	na mara than	2 ppm over a	utdoorlovals						

REQUIREMENT: less than 9 ppm and no more than 2 ppm over outdoor levels.

NOTE: Outdoor level of carbon monoxide was <1 ppm.

<u>CONCLUSION</u>

Flushing activities meet project requirements for both mechanical system purposes and for LEED IAQc4 purposes.

Based on the results of IAQ measurements, indoor air quality levels in the Centennial Hall ballrooms meet the final clearance standards set forth in LEED IEQc4 and no further sampling is necessary.

THIRD-PARTY SAMPLER COMFIRMATION

I certify that all measurements and assessments on this project were performed by Dahlberg Design, LLC, a third-party firm, and subcontract laboratories, without any intervention from the Contractor or any other party with a vested interest in the outcome of this sampling.

Sigrid Dahlberg, P.E

Principal Engineer for Dahlberg Design, LLC

APPENDIX A ANALYTICAL LABORATOR RESULTS

Dahlberg Design

222 Seward Street Suite 205

Juneau, AK 99801-1239

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

		Collected:	01/31/2024 08:34
Phone:	907-723-8896	Received:	02/09/2024 10:25
Email:	sigrid@dahlberg.design	Analyzed:	See Results
	о о о	Reported:	2/15/2024

Laboratory Report- Sample Summary

EMSL Sample ID.	Client Sample ID.	Start Sampling Date	Start Sampling Time
332402243-0001	BALLROOM 1	1/31/2024	8:34 AM
332402243-0002	BALLROOM 3	1/31/2024	8:39 AM
332402243-0003	BALLROOM 2	1/31/2024	8:38 AM

If "Preliminary Report" is displayed in the signature box; this indicates that there are samples that have not yet been analyzed, that are in a preliminary state, or that analysis is in progress but not completed at the time of report issue.

Report Date Rep 2/15/2024

Report Revision R0 Revision Comments

Initial Report

Michael Chapman

Michael Chapman, Laboratory Manager or other approved signatory

Test results meet all AIHA-LAP,LLC requirements unless otherwise specified. Laboratory ID 101650

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted.

EMSL ORDER ID: EMSL CUSTOMER ID: Section

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

Phone:907-723-8896Email:sigrid@dahlberg.design

Dahlberg Design

222 Seward Street Suite 205

Juneau, AK 99801-1239

Collected: 01/31/ Received: 02/09/

Analyzed:

Reported:

01/31/2024 08:34 02/09/2024 10:25 See Results 2/15/2024

Case Narrative

Method Reference

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

<u>Column</u>

Restek RTX-502.2, 60m, 0.25mm ID, 1.4um

Concentrator Traps:

Entech Dual Cold Traps: (1) 1/8" No Packing, (2) 1/8" Tenax.

Gas Standards:

Certified Gas standards were used for all analyses.

Sample Volumes:

Sample volume aliquots for this procedure are 250cc for indoor/ ambient air and 25cc for soil gas. Other volumes for sample dilutions are reflected on each result page.

Holding Times:

Standard holding times of 30 days were met for all samples.

Sampling Pressures:

All samples were received at acceptable pressure/vacuum unless listed below.

Sample Dilutions:

Dilutions reported are designated by the sample # with a "DL" suffix resulting from initial analysis having compounds exceeding calibration as reported with an "E" qualifier. Ethanol and Isopropanol are not diluted for and may be reported with an "E" qualifier on the final result.

QA/QC criteria outside method specifications are listed below (if applicable).

Initial Calibration

All Initial Calibration criteria met method specification.

Initial Calibration Verification Standard (ICVS)- Second Source

ICVS met method specification with 70-130% recovery for 100% of compounds.

Laboratory Control Sample (LCS)

LCS met method specification with 70-130% recovery for 100% of compounds.(*If the LCS does not meet criteria but any compounds which have recoveries >130% are not found in the samples, samples may be reported*)

EMSL ORDER ID: Sect

Attention: Sigrid Dahlberg Dahlberg Design 222 Seward Street Suite 205 Juneau, AK 99801-1239

Phone:907-723-8896Email:sigrid@dahlberg.design

EMSL Project ID: Project Name: CENTENNIAL HALL 2023

Customer PO:

-8896 Collected: 01/31/2024 08:34 Received: 02/09/2024 10:25 Analyzed: See Results Reported: 2/15/2024

Case Narrative

Continuing Calibration Verification Standard (CCVS)

CCVS met method specification with all compounds within 30% deviation.

Ending Calibration Verification Standard (ECVS)

ECVS met method specification with all compounds within 30% deviation.

Method Blanks (MB)

Method Blank met method specification.

Reporting Limit Laboratory Control Samples (RLLCS)

RLLCS met method specification with 90% of compounds within the 60-140% recovery range. Individual compounds outside of the recovery range may be listed below.

Manual Integration : - Listed below if applicable. Before and after documentation provided in extended deliverable packages.

The following data qualifiers that may have been reported with the data,

ND- Non Detect. This notation would be used in the results column in lieu of a "U" qualifier.

U- Compound was analyzed for but not detected at a listed and appropriately adjusted reporting level.

J (Target)- Concentration estimated between Reporting Limit and MDL.

J- Estimated value reported below adjusted reporting limit for target compounds or estimating a concentration for TICs where a 1:1 response is assumed

B- Compound found in associated method blank as well as in the sample.

E- Estimated value exceeding upper calibration range of instrument. Ethanol and isopropyl alcohol are not specifically targeted to dilute within calibration range.

D- Compound reported from additional diluted analysis.

N- indicates presumptive evidence of a compound based on library search match.

EMSL Analytical, Inc. certifies that this data package is in compliance with the terms and conditions of this contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer –readable data submitted on diskette has been authorized by the laboratory manager or his/her designee, as verified by the following signature.

michael Chopman

Michael Chapman, Laboratory Manager or other approved signatory

Analysis Initial Suite 205

Dahlberg Design 222 Seward Street EMSL ORDER ID: 3 EMSL CUSTOMER ID: 1 Section H, Item 7. EMSL SAMPLE ID: 332402243-0001 CUSTOMER SAMPLE ID: BALLROOM 1

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

		Juneau, AK	99801-1239				
Pho Em	one: ail:	907-723-88 sigrid@dah	96 Iberg.design	Collected: Received: Analyzed: Reported:	01/31/2024 02/09/2024 See Results 2/15/2024	08:34 10:25	
	Analy 02/1	<u>/sis Date</u> 13/2024	Analyst Init. HP	<u>Lab File ID</u> T2158.D	Canister ID E15530	Sample Vol. 250 cc	Dil. Factor 1

Target Compound Results Summary

			Result	RL		Result	RL	
Target Compounds	CAS#	MW	ppbv	ppbv	Q	ug/m3	ug/m3	Comments
Propylene	115-07-1	42.08	ND	1.0		ND	1.7	
Freon 12(Dichlorodifluoromethane)	75-71-8	120.9	0.86	0.50		4.3	2.5	
Freon 114(1,2-Dichlorotetrafluoroethan	76-14-2	170.9	ND	0.50		ND	3.5	
Chloromethane	74-87-3	50.49	ND	0.50		ND	1.0	
n-Butane	106-97-8	58.12	4.8	0.50		11	1.2	
Vinyl chloride	75-01-4	62.50	ND	0.50		ND	1.3	
1,3-Butadiene	106-99-0	54.09	ND	0.50		ND	1.1	
Bromomethane	74-83-9	94.94	ND	0.50		ND	1.9	
Chloroethane	75-00-3	64.51	ND	0.50		ND	1.3	
Ethanol	64-17-5	46.07	21	0.50		40	0.94	
Bromoethene(Vinyl bromide)	593-60-2	106.9	ND	0.50		ND	2.2	
Freon 11(Trichlorofluoromethane)	75-69-4	137.4	ND	0.50		ND	2.8	
Isopropyl alcohol(2-Propanol)	67-63-0	60.09	1.9	0.50		4.6	1.2	
Freon 113(1,1,2-Trichlorotrifluoroethan	76-13-1	187.4	ND	0.50		ND	3.8	
Acetone	67-64-1	58.08	8.4	0.50		20	1.2	
1,1-Dichloroethene	75-35-4	96.94	ND	0.50		ND	2.0	
Acetonitrile	75-05-8	41.05	ND	0.50		ND	0.84	
Tertiary butyl alcohol(TBA)	75-65-0	74.12	ND	0.50		ND	1.5	
Bromoethane(Ethyl bromide)	74-96-4	109.0	ND	0.50		ND	2.2	
3-Chloropropene(Allyl chloride)	107-05-1	76.52	ND	0.50		ND	1.6	
Carbon disulfide	75-15-0	76.14	ND	0.50		ND	1.6	
Methylene chloride	75-09-2	84.93	ND	0.50		ND	1.7	
Acrylonitrile	107-13-1	53.08	ND	0.50		ND	1.1	
Methyl-tert-butyl ether(MTBE)	1634-04-4	88.15	ND	0.50		ND	1.8	
trans-1.2-Dichloroethene	156-60-5	96.94	ND	0.50		ND	2.0	
n-Hexane	110-54-3	86.18	ND	0.50		ND	1.8	
1.1-Dichloroethane	75-34-3	98.96	ND	0.50		ND	2.0	
Vinvl acetate	108-05-4	86.09	ND	0.50		ND	1.8	
2-Butanone(MEK)	78-93-3	72.11	ND	0.50		ND	1.5	
cis-1,2-Dichloroethene	156-59-2	96.94	ND	0.50		ND	2.0	
Ethyl acetate	141-78-6	88.11	ND	0.50		ND	1.8	
Chloroform	67-66-3	119.4	ND	0.50		ND	2.4	
Tetrahydrofuran	109-99-9	72 11	ND	0.50		ND	1.5	
1 1 1-Trichloroethane	71-55-6	133.4	ND	0.50		ND	27	
Cyclobexane	110-82-7	84 16	15	0.50		51	1.7	
2.2.4-Trimethylpentane(Isooctane)	540-84-1	114.2		0.00			23	
Carbon tetrachloride	56-23-5	153.8	ND	0.50		ND	2.5	
n-Hentane	1/2-82-5	100.2	ND	0.50		ND	2.0	
1 2-Dichloroethane	107-06-2	08.06	ND	0.50			2.0	
Renzene	71-43-2	78 11		0.50			2.0	
Trichleroothono	70.01.6	121 /		0.50			1.0	
	79-01-6	131.4		0.50			2.1	
	C-18-01	113.0		0.50			2.3	
	80-62-6	100.1		0.50			2.0	
	/5-2/-4	163.8		0.50			3.3	
1,4-DIOXane	123-91-1	88.11	ND	0.50		ND	1.8	

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

Phone: Email:	907-723-88 sigrid@dah	396 Ilberg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	8:34 0:25	
Ana	lysis Date	Analyst Init.	Lab File ID	Canister ID	Sample Vol.	Dil. Factor
02	2/13/2024	HP	T2158.D	E15530	250 cc	1

Target Compound Results Summary

Target Compounds	CAS#	MM	Result	RL	0	Result	RL	Comments
4-Methyl-2-pentanone(MIBK)	108-10-1	100.2		0.50	<u> </u>	ND	2.0	Comments
cis-1.3-Dichloropropene	10061-01-5	111.0	ND	0.50		ND	2.3	
Toluene	108-88-3	92.14	0.63	0.50		2.4	1.9	
trans-1,3-Dichloropropene	10061-02-6	111.0	ND	0.50		ND	2.3	
1,1,2-Trichloroethane	79-00-5	133.4	ND	0.50		ND	2.7	
2-Hexanone(MBK)	591-78-6	100.2	ND	0.50		ND	2.0	
Tetrachloroethene	127-18-4	165.8	ND	0.50		ND	3.4	
Dibromochloromethane	124-48-1	208.3	ND	0.50		ND	4.3	
1,2-Dibromoethane	106-93-4	187.9	ND	0.50		ND	3.8	
Chlorobenzene	108-90-7	112.6	ND	0.50		ND	2.3	
Ethylbenzene	100-41-4	106.2	ND	0.50		ND	2.2	
Xylene (p,m)	1330-20-7	106.2	ND	1.0		ND	4.3	
Xylene (Ortho)	95-47-6	106.2	ND	0.50		ND	2.2	
Styrene	100-42-5	104.1	0.78	0.50		3.3	2.1	
Isopropylbenzene (cumene)	98-82-8	120.2	ND	0.50		ND	2.5	
Bromoform	75-25-2	252.7	ND	0.50		ND	5.2	
1,1,2,2-Tetrachloroethane	79-34-5	167.9	ND	0.50		ND	3.4	
4-Ethyltoluene	622-96-8	120.2	ND	0.50		ND	2.5	
1,3,5-Trimethylbenzene	108-67-8	120.2	ND	0.50		ND	2.5	
2-Chlorotoluene	95-49-8	126.6	ND	0.50		ND	2.6	
1,2,4-Trimethylbenzene	95-63-6	120.2	ND	0.50		ND	2.5	
1,3-Dichlorobenzene	541-73-1	147.0	ND	0.50		ND	3.0	
1,4-Dichlorobenzene	106-46-7	147.0	ND	0.50		ND	3.0	
Benzyl chloride	100-44-7	126.6	ND	0.50		ND	2.6	
1,2-Dichlorobenzene	95-50-1	147.0	ND	0.50		ND	3.0	
1,2,4-Trichlorobenzene	120-82-1	181.4	ND	0.50		ND	3.7	
Hexachloro-1,3-butadiene	87-68-3	260.8	ND	0.50		ND	5.3	
Naphthalene	91-20-3	128.2	ND	0.50		ND	2.6	
Total Target Compound Concentrations:			40	ppbv		91	ug/m3	

Surrogate

4-Bromofluorobenzene

Analysis Initial

Qualifier Definitions

ND = Non Detect

B = Compound also found in method blank.

E= Estimated concentration exceeding upper calibration range.

D= Result reported from diluted analysis.

J= Concentration estimated between Reporting Limit and MDL.

Method Reference

Result

9.3

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

<u>Spike</u>

10

Recovery

93%

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 33 EMSL CUSTOMER ID: D Section H, Item 7. EMSL SAMPLE ID: 332402243-0001 CUSTOMER SAMPLE ID: BALLROOM 1

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

	Phone: Email:	907-723-889 sigrid@dahll	96 berg.design	Collected: Received: Analyzed: Reported:	01/31/2024 (02/09/2024 See Results 2/15/2024	08:34 10:25	
<u>Analysis</u>	<u>Ana</u>	al <u>ysis Date</u>	<u>Analyst Init.</u>	Lab File ID	Canister ID	Sample Vol.	Dil. Factor
Initial	02	2/13/2024	HP	T2158.D	E15530	250 cc	1

NIOSH and OSHA Exposure Limit Comparisons

	Tox.			Result		Result	NIOSH REL		OSHA PEL
Target Compounds	Basis	CAS#	MW	ppbv	Q	ug/m3	ug/m3	>	ug/m3 >
Propylene	NC	115-07-1	42.08	ND		ND	N.E.		N.E.
Freon 12(Dichlorodifluoromethane)	NC	75-71-8	120.9	0.86		4.3	4900000		4900000
Freon 114(1,2-Dichlorotetrafluoroethan		76-14-2	170.9	ND		ND	7000000		7000000
Chloromethane	NC	74-87-3	50.49	ND		ND	LFC		210000
n-Butane		106-97-8	58.12	4.8		11	1900000		N.E.
Vinyl chloride	С	75-01-4	62.50	ND		ND	LFC		2600
1,3-Butadiene	С	106-99-0	54.09	ND		ND	LFC		2200
Bromomethane	NC	74-83-9	94.94	ND		ND	LFC		78000
Chloroethane	NC	75-00-3	64.51	ND		ND	LFC		2600000
Ethanol		64-17-5	46.07	21		40	1900000		1900000
Bromoethene(Vinyl bromide)	C	593-60-2	106.9	ND		ND	LFC		N.E.
Freon 11(Trichlorofluoromethane)		75-69-4	137.4	ND		ND	5600000		5600000
Isopropyl alcohol(2-Propanol)	NC	67-63-0	60.09	1.9		4.6	980000		980000
Freon 113(1,1,2-Trichlorotrifluoroethan	NC	76-13-1	187.4	ND		ND	7700000		7700000
Acetone	NC	67-64-1	58.08	8.4		20	590000		2400000
1,1-Dichloroethene	NC	75-35-4	96.94	ND		ND	790000		N.E.
Acetonitrile	NC	75-05-8	41.05	ND		ND	34000		67000
Tertiary butyl alcohol(TBA)		75-65-0	74.12	ND		ND	300000		300000
Bromoethane(Ethyl bromide)		74-96-4	109.0	ND		ND	880000		880000
3-Chloropropene(Allyl chloride)	С	107-05-1	76.52	ND		ND	3100		3100
Carbon disulfide	NC	75-15-0	76.14	ND		ND	3100		62000
Methylene chloride	С	75-09-2	84.93	ND		ND	LFC		87000
Acrylonitrile	С	107-13-1	53.08	ND		ND	2200		4300
Methyl-tert-butyl ether(MTBE)	С	1634-04-4	88.15	ND		ND	N.E.	_	N.E.
trans-1,2-Dichloroethene		156-60-5	96.94	ND		ND	790000	_	790000
n-Hexane	NC	110-54-3	86.18	ND		ND	180000	_	1800000
1,1-Dichloroethane	С	75-34-3	98.96	ND		ND	400000	_	400000
Vinyl acetate	NC	108-05-4	86.09	ND		ND	14000	_	N.E.
2-Butanone(MEK)	NC	78-93-3	72.11	ND		ND	590000		590000
cis-1,2-Dichloroethene		156-59-2	96.94	ND		ND	790000	4	790000
Ethyl acetate	NC	141-78-6	88.11	ND		ND	1400000	4	1400000
Chloroform	C	67-66-3	119.4	ND		ND	9800	4	240000
l etrahydrofuran	NC	109-99-9	72.11	ND		ND	590000	4	590000
1,1,1-1 richloroethane	NC	71-55-6	133.4	ND		ND	1900000	4	1900000
Cyclohexane	NC	110-82-7	84.16	1.5		5.1	1000000	_	1000000
2,2,4- I rimethylpentane(Isooctane)		540-84-1	114.2	ND		ND	N.E.	4	N.E.
Carbon tetrachloride	C	56-23-5	153.8	ND		ND	13000	4	63000
n-Heptane	NC	142-82-5	100.2	ND		ND	350000	4	2000000
1,2-Dichloroethane		107-06-2	98.96	ND		ND	4000	4	200000
Benzene		71-43-2	/8.11				320	4	3200
		79-01-6	131.4				130000	_	540000
		/8-8/-5	113.0					4	350000
Methyl Methacrylate	NC	80-62-6	100.1				410000	_	410000
		15-21-4	163.8		 		N.E.	-	N.E.
		123-91-1	88.11		<u> </u>		3600	4	360000
4-ivietryi-2-pentanone(iviiBK)		108-10-1	100.2		<u> </u>		200000	4	410000
cis-i, 3-Dichloropropene""	U	10061-01-5	111.0	ND		ND	4500		IN.E.

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 3 EMSL CUSTOMER ID: D Section H, Item 7. EMSL SAMPLE ID: 332402243-000 CUSTOMER SAMPLE ID: BALLROOM 1

Customer PO: EMSL Project ID: Project Name: **CENTENNIAL HALL 2023**

	Phone: Email:	907-723-889 sigrid@dahlk	6 berg.design	Collected: Received: Analyzed: Reported:	01/31/2024 (02/09/2024 See Results 2/15/2024	08:34 10:25	
<u>Analysis</u>	<u>Ana</u>	alysis Date	<u>Analyst Init.</u>	<u>Lab File ID</u>	Canister ID	Sample Vol.	Dil. Factor
Initial	02	2/13/2024	HP	T2158.D	E15530	250 cc	1

NIOSH and OSHA Exposure Limit Comparisons

	Tox.			Result		Result	NIOSH REL		OSHA PEL
Target Compounds	Basis	CAS#	MW	ppbv	Q	ug/m3	ug/m3	>	ug/m3 >
Toluene	NC	108-88-3	92.14	0.63		2.4	380000		750000
trans-1,3-Dichloropropene**	С	10061-02-6	111.0	ND		ND	4500		N.E.
1,1,2-Trichloroethane	С	79-00-5	133.4	ND		ND	55000		55000
2-Hexanone(MBK)	NC	591-78-6	100.2	ND		ND	4100		410000
Tetrachloroethene	С	127-18-4	165.8	ND		ND	LFC		680000
Dibromochloromethane	<u> </u>	124-48-1	208.3	ND		ND	N.E.		N.E.
1,2-Dibromoethane	С	106-93-4	187.9	ND		ND	350		150000
Chlorobenzene	NC	108-90-7	112.6	ND		ND	N.E.		350000
Ethylbenzene	С	100-41-4	106.2	ND		ND	430000		430000
Xylene (p,m)	NC	1330-20-7	106.2	ND		ND	430000		430000
Xylene (Ortho)	NC	95-47-6	106.2	ND		ND	430000		430000
Styrene	NC	100-42-5	104.1	0.78		3.3	210000		430000
Isopropylbenzene (cumene)	NC	98-82-8	120.2	ND		ND	250000		250000
Bromoform	С	75-25-2	252.7	ND		ND	5200		5200
1,1,2,2-Tetrachloroethane	С	79-34-5	167.9	ND		ND	6900		34000
4-Ethyltoluene	T '	622-96-8	120.2	ND		ND	N.E.		N.E.
1,3,5-Trimethylbenzene	NC	108-67-8	120.2	ND		ND	120000		N.E.
2-Chlorotoluene	T '	95-49-8	126.6	ND		ND	260000		N.E.
1,2,4-Trimethylbenzene	NC	95-63-6	120.2	ND		ND	120000		N.E.
1,3-Dichlorobenzene	<u> </u>	541-73-1	147.0	ND		ND	N.E.		N.E.
1,4-Dichlorobenzene	С	106-46-7	147.0	ND		ND	LFC		450000
Benzyl chloride	С	100-44-7	126.6	ND		ND	5200		5200
1,2-Dichlorobenzene	NC	95-50-1	147.0	ND		ND	300000		300000
1,2,4-Trichlorobenzene	NC	120-82-1	181.4	ND		ND	37000		N.E.
Hexachloro-1,3-butadiene	С	87-68-3	260.8	ND		ND	210		N.E.
Naphthalene	С	91-20-3	128.2	ND		ND	52000		52000
**The concentrations of each isomer should be added	If multiple	isomers are	-	The > colur	nn is us	ed to flag e	xceedances as marked		

**The concentrations of each isomer should be added if multiple isomers are present and compared to the total screening level.

Exposure Limit Definitions

REL= Recommended Exposure Limit, PEL= Permissable Exposure Limit

Agency Definitions

NIOSH= The National Institute for Occupational Safety and Health OSHA= Occupational Safety and Health Administration

Reference

Occupational Safety and Health Administration (OSHA) (2017) Air Contaminants. 29 CFR 1910.1000 [82 FR 2735, January 9, 2017].

Carcinogenic (C) Exceedance

Value exceeds the theoretical risk that 1 additional case of cancer will occur in a population of 1 million than statistically expected.

Thus is a theoretical risk and not an actual epidemiological one.

Compound Exposure Definitions

NE= No Limit Established NS= No Screening Value LFC= Lowest Feasible Concentration

Qualifier Definitions

B = Compound also found in method blank. ND = Non Detect

- E= Estimated concentration exceeding upper calibration range.
- D= Result reported from diluted analysis.
- J= Concentration estimated between Reporting Limit and MDL.

NonCarcinogenic (NC) Exceedance

Value exceeds the theoretical risk that 1 in a population of 100,000 will experience deleterious health effects.

Thus is a theoretical risk and not an actual epidemiological one.

Analysis Initial Dahlberg Design 222 Seward Street

Suite 205

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

		Juneau, AK	(99801-1239				
Pł Ei	hone: mail:	907-723-88 sigrid@dah	96 Iberg.design	Collected: Received: Analyzed: Reported:	01/31/2024 02/09/2024 See Results 2/15/2024	08:39 10:25	
	Anal	ysis Date 13/2024	Analyst Init. HP	Lab File ID T2159 D	Canister ID F0666	Sample Vol. 250 cc	Dil. Factor

Target Compound Results Summary

Target Compounds	CAS#	MW	Result	RL ppby	0	Result	RL ug/m3	Comments
Propylene	115-07-1	42.08		1.0		ND	1.7	Commonito
Freon 12(Dichlorodifluoromethane)	75-71-8	120.9	0.82	0.50		4.1	2.5	
Freon 114(1.2-Dichlorotetrafluoroethan	76-14-2	170.9	ND	0.50		ND	3.5	
Chloromethane	74-87-3	50.49	ND	0.50		ND	1.0	
n-Butane	106-97-8	58.12	4.1	0.50		10	1.2	
Vinyl chloride	75-01-4	62.50	ND	0.50		ND	1.3	
1,3-Butadiene	106-99-0	54.09	ND	0.50		ND	1.1	
Bromomethane	74-83-9	94.94	ND	0.50		ND	1.9	
Chloroethane	75-00-3	64.51	ND	0.50		ND	1.3	
Ethanol	64-17-5	46.07	20	0.50		37	0.94	
Bromoethene(Vinyl bromide)	593-60-2	106.9	ND	0.50		ND	2.2	
Freon 11(Trichlorofluoromethane)	75-69-4	137.4	ND	0.50		ND	2.8	
Isopropyl alcohol(2-Propanol)	67-63-0	60.09	1.5	0.50		3.8	1.2	
Freon 113(1,1,2-Trichlorotrifluoroethan	76-13-1	187.4	ND	0.50		ND	3.8	
Acetone	67-64-1	58.08	7.6	0.50		18	1.2	
1,1-Dichloroethene	75-35-4	96.94	ND	0.50		ND	2.0	
Acetonitrile	75-05-8	41.05	ND	0.50		ND	0.84	
Tertiary butyl alcohol(TBA)	75-65-0	74.12	ND	0.50		ND	1.5	
Bromoethane(Ethyl bromide)	74-96-4	109.0	ND	0.50		ND	2.2	
3-Chloropropene(Allyl chloride)	107-05-1	76.52	ND	0.50		ND	1.6	
Carbon disulfide	75-15-0	76.14	ND	0.50		ND	1.6	
Methylene chloride	75-09-2	84.93	ND	0.50		ND	1.7	
Acrylonitrile	107-13-1	53.08	ND	0.50		ND	1.1	
Methyl-tert-butyl ether(MTBE)	1634-04-4	88.15	ND	0.50		ND	1.8	
trans-1,2-Dichloroethene	156-60-5	96.94	ND	0.50		ND	2.0	
n-Hexane	110-54-3	86.18	ND	0.50		ND	1.8	
1,1-Dichloroethane	75-34-3	98.96	ND	0.50		ND	2.0	
Vinyl acetate	108-05-4	86.09	ND	0.50		ND	1.8	
2-Butanone(MEK)	78-93-3	72.11	ND	0.50		ND	1.5	
cis-1,2-Dichloroethene	156-59-2	96.94	ND	0.50		ND	2.0	
Ethyl acetate	141-78-6	88.11	ND	0.50		ND	1.8	
Chloroform	67-66-3	119.4	ND	0.50		ND	2.4	
Tetrahydrofuran	109-99-9	72.11	ND	0.50		ND	1.5	
1,1,1-Trichloroethane	71-55-6	133.4	ND	0.50		ND	2.7	
Cyclohexane	110-82-7	84.16	1.5	0.50		5.0	1.7	
2,2,4-Trimethylpentane(Isooctane)	540-84-1	114.2	ND	0.50		ND	2.3	
Carbon tetrachloride	56-23-5	153.8	ND	0.50		ND	3.1	
n-Heptane	142-82-5	100.2	ND	0.50		ND	2.0	
1,2-Dichloroethane	107-06-2	98.96	ND	0.50		ND	2.0	
Benzene	71-43-2	78.11	ND	0.50		ND	1.6	
Trichloroethene	79-01-6	131.4	ND	0.50		ND	2.7	
1,2-Dichloropropane	78-87-5	113.0	ND	0.50		ND	2.3	
Methyl Methacrylate	80-62-6	100.1	ND	0.50		ND	2.0	
Bromodichloromethane	75-27-4	163.8	ND	0.50		ND	3.3	
1,4-Dioxane	123-91-1	88.11	ND	0.50		ND	1.8	

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 3 EMSL CUSTOMER ID: 5 EMSL SAMPLE ID: 3 CUSTOMER SAMPLE ID: BALLROOM 3

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

Phone: Email:	907-723-88 sigrid@dah	396 Ilberg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	8:39 0:25	
Ana	lysis Date	Analyst Init.	Lab File ID	Canister ID	Sample Vol.	Dil. Factor
02	/13/2024	HP	T2159.D	E0666	250 cc	1

Target Compound Results Summary

Target Compounds	CAS#	MIN	Result	RL	0	Result	RL	Commonts
4-Methyl-2-pentanone(MIBK)	108-10-1	100.2	ND	0.50	L V	ND	2.0	Comments
cis-1.3-Dichloropropene	10061-01-5	111.0	ND	0.50		ND	2.3	
Toluene	108-88-3	92.14	0.58	0.50		2.2	1.9	
trans-1.3-Dichloropropene	10061-02-6	111.0	ND	0.50		ND	2.3	
1,1,2-Trichloroethane	79-00-5	133.4	ND	0.50		ND	2.7	
2-Hexanone(MBK)	591-78-6	100.2	ND	0.50		ND	2.0	
Tetrachloroethene	127-18-4	165.8	ND	0.50		ND	3.4	
Dibromochloromethane	124-48-1	208.3	ND	0.50		ND	4.3	
1,2-Dibromoethane	106-93-4	187.9	ND	0.50		ND	3.8	
Chlorobenzene	108-90-7	112.6	ND	0.50		ND	2.3	
Ethylbenzene	100-41-4	106.2	ND	0.50		ND	2.2	
Xylene (p,m)	1330-20-7	106.2	ND	1.0		ND	4.3	
Xylene (Ortho)	95-47-6	106.2	ND	0.50		ND	2.2	
Styrene	100-42-5	104.1	0.87	0.50		3.7	2.1	
Isopropylbenzene (cumene)	98-82-8	120.2	ND	0.50		ND	2.5	
Bromoform	75-25-2	252.7	ND	0.50		ND	5.2	
1,1,2,2-Tetrachloroethane	79-34-5	167.9	ND	0.50		ND	3.4	
4-Ethyltoluene	622-96-8	120.2	ND	0.50		ND	2.5	
1,3,5-Trimethylbenzene	108-67-8	120.2	ND	0.50		ND	2.5	
2-Chlorotoluene	95-49-8	126.6	ND	0.50		ND	2.6	
1,2,4-Trimethylbenzene	95-63-6	120.2	ND	0.50		ND	2.5	
1,3-Dichlorobenzene	541-73-1	147.0	ND	0.50		ND	3.0	
1,4-Dichlorobenzene	106-46-7	147.0	ND	0.50		ND	3.0	
Benzyl chloride	100-44-7	126.6	ND	0.50		ND	2.6	
1,2-Dichlorobenzene	95-50-1	147.0	ND	0.50		ND	3.0	
1,2,4-Trichlorobenzene	120-82-1	181.4	ND	0.50		ND	3.7	
Hexachloro-1,3-butadiene	87-68-3	260.8	ND	0.50		ND	5.3	
Naphthalene	91-20-3	128.2	ND	0.50		ND	2.6	
Total Target Compound Concentrations:			37	ppbv		84	ug/m3	

Surrogate

4-Bromofluorobenzene

Analysis Initial

Qualifier Definitions

ND = Non Detect

B = Compound also found in method blank.

E= Estimated concentration exceeding upper calibration range.

D= Result reported from diluted analysis.

J= Concentration estimated between Reporting Limit and MDL.

Method Reference

Result

9.3

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

Recovery

93%

<u>Spike</u>

10

Dahlberg Design 222 Seward Street

Juneau, AK 99801-1239

Suite 205

EMSL ORDER ID: 33 EMSL CUSTOMER ID: D Section H, Item 7. EMSL SAMPLE ID: 332402243-0002 CUSTOMER SAMPLE ID: BALLROOM 3

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

	Phone: Email:	907-723-889 sigrid@dahl	96 berg.design	Collected: Received: Analyzed: Reported:	01/31/2024 (02/09/2024 See Results 2/15/2024	08:39 10:25	
<u>Analysis</u>	<u>Ana</u>	alysis Date	<u>Analyst Init.</u>	Lab File ID	Canister ID	Sample Vol.	Dil. Factor
Initial	02	2/13/2024	HP	T2159.D	E0666	250 cc	1

NIOSH and OSHA Exposure Limit Comparisons

	Tox.			Result		Result	NIOSH REL		OSHA PEL
Target Compounds	Basis	CAS#	MW	ppbv	Q	ug/m3	ug/m3	>	ug/m3 >
Propylene	NC	115-07-1	42.08	ND		ND	N.E.		N.E.
Freon 12(Dichlorodifluoromethane)	NC	75-71-8	120.9	0.82		4.1	4900000		4900000
Freon 114(1,2-Dichlorotetrafluoroethan		76-14-2	170.9	ND		ND	700000		7000000
Chloromethane	NC	74-87-3	50.49	ND		ND	LFC		210000
n-Butane		106-97-8	58.12	4.1		10	1900000		N.E.
Vinyl chloride	С	75-01-4	62.50	ND		ND	LFC		2600
1,3-Butadiene	С	106-99-0	54.09	ND		ND	LFC		2200
Bromomethane	NC	74-83-9	94.94	ND		ND	LFC		78000
Chloroethane	NC	75-00-3	64.51	ND		ND	LFC		2600000
Ethanol		64-17-5	46.07	20		37	1900000		1900000
Bromoethene(Vinyl bromide)	С	593-60-2	106.9	ND		ND	LFC		N.E.
Freon 11(Trichlorofluoromethane)		75-69-4	137.4	ND		ND	5600000		5600000
Isopropyl alcohol(2-Propanol)	NC	67-63-0	60.09	1.5		3.8	980000		980000
Freon 113(1,1,2-Trichlorotrifluoroethan	NC	76-13-1	187.4	ND		ND	7700000		7700000
Acetone	NC	67-64-1	58.08	7.6		18	590000		2400000
1,1-Dichloroethene	NC	75-35-4	96.94	ND		ND	790000		N.E.
Acetonitrile	NC	75-05-8	41.05	ND		ND	34000		67000
Tertiary butyl alcohol(TBA)		75-65-0	74.12	ND		ND	300000		300000
Bromoethane(Ethyl bromide)		74-96-4	109.0	ND		ND	880000		880000
3-Chloropropene(Allyl chloride)	С	107-05-1	76.52	ND		ND	3100		3100
Carbon disulfide	NC	75-15-0	76.14	ND		ND	3100		62000
Methylene chloride	С	75-09-2	84.93	ND		ND	LFC		87000
Acrylonitrile	С	107-13-1	53.08	ND		ND	2200		4300
Methyl-tert-butyl ether(MTBE)	С	1634-04-4	88.15	ND		ND	N.E.		N.E.
trans-1,2-Dichloroethene		156-60-5	96.94	ND		ND	790000		790000
n-Hexane	NC	110-54-3	86.18	ND		ND	180000		1800000
1,1-Dichloroethane	С	75-34-3	98.96	ND		ND	400000		400000
Vinyl acetate	NC	108-05-4	86.09	ND		ND	14000		N.E.
2-Butanone(MEK)	NC	78-93-3	72.11	ND		ND	590000		590000
cis-1,2-Dichloroethene		156-59-2	96.94	ND		ND	790000	_	790000
Ethyl acetate	NC	141-78-6	88.11	ND		ND	1400000	_	1400000
Chloroform	C	67-66-3	119.4	ND		ND	9800	-	240000
l etrahydrofuran	NC	109-99-9	72.11	ND		ND	590000	-	590000
1,1,1-I richloroethane	NC	71-55-6	133.4	ND		ND	1900000	-	1900000
	NC	110-82-7	84.16	1.5		5.0	1000000	_	1000000
2,2,4-1 rimethylpentane(Isooctane)		540-84-1	114.2	ND		ND	N.E.	_	N.E.
Carbon tetrachloride	0	56-23-5	153.8	ND		ND	13000	-	63000
n-Heptane	NC	142-82-5	100.2	ND		ND	350000	-	2000000
1,2-Dichloroethane	0	107-06-2	98.96	ND		ND	4000	-	200000
Benzene		71-43-2	/8.11			ND	320	+	3200
	0	79-01-6	131.4	ND		ND	130000	+	540000
1,2-Dicnioropropane		/8-8/-5	113.0				LFC 440000	╋	350000
IVIETNYI IVIETNACTYIATE	NC	80-62-6	100.1	ND		ND	410000	╉	410000
		15-21-4	163.8		 	ND	N.E.	╉	N.E.
		123-91-1	88.11		<u> </u>		3600	╉	360000
4-ivietnyi-2-pentanone(iviiBK)	NC	108-10-1	100.2	ND			200000	╉	410000
cis-1,3-Dichloropropene""		10061-01-5	111.0	ND		- טא	4500		N.E.

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 3 EMSL CUSTOMER ID: D Section H, Item 7. EMSL SAMPLE ID: 332402243-0002 CUSTOMER SAMPLE ID: BALLROOM 3

Customer PO: EMSL Project ID: Project Name: **CENTENNIAL HALL 2023**

F	Phone: Email:	907-723-889 sigrid@dahlk	6 berg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	8:39 0:25	
<u>s</u>	<u>Ana</u>	lysis Date	<u>Analyst Init.</u>	<u>Lab File ID</u>	Canister ID	<u>Sample Vol.</u>	Dil. Factor
	02	/13/2024	HP	T2159.D	E0666	250 cc	1

NIOSH and OSHA Exposure Limit Comparisons

	Tox.			Result		Result	NIOSH REL		OSHA PEL
Target Compounds	Basis	CAS#	MW	ppbv	Q	ug/m3	ug/m3	>	ug/m3 >
Toluene	NC	108-88-3	92.14	0.58		2.2	380000		750000
trans-1,3-Dichloropropene**	С	10061-02-6	111.0	ND		ND	4500		N.E.
1,1,2-Trichloroethane	С	79-00-5	133.4	ND		ND	55000		55000
2-Hexanone(MBK)	NC	591-78-6	100.2	ND		ND	4100		410000
Tetrachloroethene	С	127-18-4	165.8	ND		ND	LFC		680000
Dibromochloromethane	<u> </u>	124-48-1	208.3	ND		ND	N.E.		N.E.
1,2-Dibromoethane	С	106-93-4	187.9	ND		ND	350		150000
Chlorobenzene	NC	108-90-7	112.6	ND		ND	N.E.		350000
Ethylbenzene	С	100-41-4	106.2	ND		ND	430000		430000
Xylene (p,m)	NC	1330-20-7	106.2	ND		ND	430000		430000
Xylene (Ortho)	NC	95-47-6	106.2	ND		ND	430000		430000
Styrene	NC	100-42-5	104.1	0.87		3.7	210000		430000
Isopropylbenzene (cumene)	NC	98-82-8	120.2	ND		ND	250000		250000
Bromoform	С	75-25-2	252.7	ND		ND	5200		5200
1,1,2,2-Tetrachloroethane	С	79-34-5	167.9	ND		ND	6900		34000
4-Ethyltoluene	T '	622-96-8	120.2	ND		ND	N.E.		N.E.
1,3,5-Trimethylbenzene	NC	108-67-8	120.2	ND		ND	120000		N.E.
2-Chlorotoluene	T '	95-49-8	126.6	ND		ND	260000		N.E.
1,2,4-Trimethylbenzene	NC	95-63-6	120.2	ND		ND	120000		N.E.
1,3-Dichlorobenzene	<u> </u>	541-73-1	147.0	ND		ND	N.E.		N.E.
1,4-Dichlorobenzene	С	106-46-7	147.0	ND		ND	LFC		450000
Benzyl chloride	С	100-44-7	126.6	ND		ND	5200		5200
1,2-Dichlorobenzene	NC	95-50-1	147.0	ND		ND	300000		300000
1,2,4-Trichlorobenzene	NC	120-82-1	181.4	ND		ND	37000		N.E.
Hexachloro-1,3-butadiene	С	87-68-3	260.8	ND		ND	210		N.E.
Naphthalene	С	91-20-3	128.2	ND		ND	52000		52000
**The concentrations of each isomer should be added	If multiple	isomers are	-	The > colur	nn is us	ed to flag e	xceedances as marked		

**The concentrations of each isomer should be added if multiple isomers are present and compared to the total screening level.

Exposure Limit Definitions

Analysi Initial

REL= Recommended Exposure Limit, PEL= Permissable Exposure Limit

Agency Definitions

NIOSH= The National Institute for Occupational Safety and Health OSHA= Occupational Safety and Health Administration

Reference

Occupational Safety and Health Administration (OSHA) (2017) Air Contaminants. 29 CFR 1910.1000 [82 FR 2735, January 9, 2017].

Carcinogenic (C) Exceedance

Value exceeds the theoretical risk that 1 additional case of cancer will occur in a population of 1 million than statistically expected.

Thus is a theoretical risk and not an actual epidemiological one.

Compound Exposure Definitions

NE= No Limit Established NS= No Screening Value LFC= Lowest Feasible Concentration

Qualifier Definitions

B = Compound also found in method blank. ND = Non Detect

- E= Estimated concentration exceeding upper calibration range.
- D= Result reported from diluted analysis.
- J= Concentration estimated between Reporting Limit and MDL.

NonCarcinogenic (NC) Exceedance

Value exceeds the theoretical risk that 1 in a population of 100,000 will experience deleterious health effects.

Thus is a theoretical risk and not an actual epidemiological one.

Analysis Initial Suite 205

Dahlberg Design 222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 3 EMSL CUSTOMER ID: 1 Section H, Item 7. EMSL SAMPLE ID: 332402243-0003 CUSTOMER SAMPLE ID: BALLROOM 2

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

Ph Em	one: nail:	907-723-88 sigrid@dah	96 Iberg.design	Collected: Received: Analyzed: Reported:	01/31/2024 02/09/2024 See Results 2/15/2024	08:38 10:25	
	Analy	sis Date	Analyst Init.	Lab File ID	Canister ID	Sample Vol.	Dil. Factor
	02/1	3/2024	HP	T2160.D	E15526	250 cc	1

Target Compound Results Summary

			Result	RL		Result	RL	
Target Compounds	CAS#	MW	ppbv	ppbv	Q	ug/m3	ug/m3	Comments
Propylene	115-07-1	42.08	ND	1.0		ND	1.7	
Freon 12(Dichlorodifluoromethane)	75-71-8	120.9	0.69	0.50		3.4	2.5	
Freon 114(1,2-Dichlorotetrafluoroethan	76-14-2	170.9	ND	0.50		ND	3.5	
Chloromethane	74-87-3	50.49	ND	0.50		ND	1.0	
n-Butane	106-97-8	58.12	3.3	0.50		7.8	1.2	
Vinyl chloride	75-01-4	62.50	ND	0.50		ND	1.3	
1,3-Butadiene	106-99-0	54.09	ND	0.50		ND	1.1	
Bromomethane	74-83-9	94.94	ND	0.50		ND	1.9	
Chloroethane	75-00-3	64.51	ND	0.50		ND	1.3	
Ethanol	64-17-5	46.07	16	0.50		30	0.94	
Bromoethene(Vinyl bromide)	593-60-2	106.9	ND	0.50		ND	2.2	
Freon 11(Trichlorofluoromethane)	75-69-4	137.4	ND	0.50		ND	2.8	
Isopropyl alcohol(2-Propanol)	67-63-0	60.09	2.6	0.50		6.3	1.2	
Freon 113(1,1,2-Trichlorotrifluoroethan	76-13-1	187.4	ND	0.50		ND	3.8	
Acetone	67-64-1	58.08	5.0	0.50		12	1.2	
1,1-Dichloroethene	75-35-4	96.94	ND	0.50		ND	2.0	
Acetonitrile	75-05-8	41.05	ND	0.50		ND	0.84	
Tertiary butyl alcohol(TBA)	75-65-0	74.12	ND	0.50		ND	1.5	
Bromoethane(Ethyl bromide)	74-96-4	109.0	ND	0.50		ND	2.2	
3-Chloropropene(Allyl chloride)	107-05-1	76.52	ND	0.50		ND	1.6	
Carbon disulfide	75-15-0	76.14	ND	0.50		ND	1.6	
Methylene chloride	75-09-2	84.93	ND	0.50		ND	1.7	
Acrylonitrile	107-13-1	53.08	ND	0.50		ND	1.1	
Methyl-tert-butyl ether(MTBE)	1634-04-4	88.15	ND	0.50		ND	1.8	
trans-1,2-Dichloroethene	156-60-5	96.94	ND	0.50		ND	2.0	
n-Hexane	110-54-3	86.18	ND	0.50		ND	1.8	
1,1-Dichloroethane	75-34-3	98.96	ND	0.50	1	ND	2.0	
Vinyl acetate	108-05-4	86.09	ND	0.50		ND	1.8	
2-Butanone(MEK)	78-93-3	72.11	ND	0.50		ND	1.5	
cis-1.2-Dichloroethene	156-59-2	96.94	ND	0.50		ND	2.0	
Ethyl acetate	141-78-6	88.11	ND	0.50		ND	1.8	
Chloroform	67-66-3	119.4	ND	0.50		ND	2.4	
Tetrahydrofuran	109-99-9	72.11	ND	0.50		ND	1.5	
1.1.1-Trichloroethane	71-55-6	133.4	ND	0.50		ND	2.7	
Cvclohexane	110-82-7	84.16	1.4	0.50		4.7	1.7	
2.2.4-Trimethylpentane(Isooctane)	540-84-1	114.2	ND	0.50		ND	2.3	
Carbon tetrachloride	56-23-5	153.8	ND	0.50		ND	3.1	
n-Hentane	142-82-5	100.0	ND	0.50		ND	2.0	
1 2-Dichloroethane	107-06-2	98.96	ND	0.50		ND	2.0	
Benzene	71-43-2	78 11	ND	0.50	 	ND	1.6	
Trichloroethene	79-01-6	131 /	ND	0.50	 	ND	27	
1 2-Dichloropropane	78-87-5	112.0		0.50			2.1	
Methyl Methacrylate	80-62-6	100.1		0.50			2.0	
Bromodichloromethane	75-27-4	163.8		0.50	<u> </u>		2.0	
	103.0 88.11		0.50			1.0		
	123-91-1	00.11	טא	0.50		טא	1.0	5

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

Phone: Email:	907-723-88 sigrid@dah	996 Ilberg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	8:38 0:25	
Ana	lysis Date	Analyst Init.	Lab File ID	Canister ID	Sample Vol.	Dil. Factor
02	/13/2024	HP	T2160.D	E15526	250 cc	1

Target Compound Results Summary

Target Compounds	CAS#	MM	Result	RL	0	Result	RL	Comments
4-Methyl-2-pentanone(MIBK)	108-10-1	100.2		0.50	<u>v</u>	ND	2.0	Comments
cis-1.3-Dichloropropene	10061-01-5	111.0	ND	0.50		ND	2.3	
Toluene	108-88-3	92.14	ND	0.50		ND	1.9	
trans-1.3-Dichloropropene	10061-02-6	111.0	ND	0.50		ND	2.3	
1,1,2-Trichloroethane	79-00-5	133.4	ND	0.50		ND	2.7	
2-Hexanone(MBK)	591-78-6	100.2	ND	0.50		ND	2.0	
Tetrachloroethene	127-18-4	165.8	ND	0.50		ND	3.4	
Dibromochloromethane	124-48-1	208.3	ND	0.50		ND	4.3	
1,2-Dibromoethane	106-93-4	187.9	ND	0.50		ND	3.8	
Chlorobenzene	108-90-7	112.6	ND	0.50		ND	2.3	
Ethylbenzene	100-41-4	106.2	ND	0.50		ND	2.2	
Xylene (p,m)	1330-20-7	106.2	ND	1.0		ND	4.3	
Xylene (Ortho)	95-47-6	106.2	ND	0.50		ND	2.2	
Styrene	100-42-5	104.1	0.68	0.50		2.9	2.1	
Isopropylbenzene (cumene)	98-82-8	120.2	ND	0.50		ND	2.5	
Bromoform	75-25-2	252.7	ND	0.50		ND	5.2	
1,1,2,2-Tetrachloroethane	79-34-5	167.9	ND	0.50		ND	3.4	
4-Ethyltoluene	622-96-8	120.2	ND	0.50		ND	2.5	
1,3,5-Trimethylbenzene	108-67-8	120.2	ND	0.50		ND	2.5	
2-Chlorotoluene	95-49-8	126.6	ND	0.50		ND	2.6	
1,2,4-Trimethylbenzene	95-63-6	120.2	ND	0.50		ND	2.5	
1,3-Dichlorobenzene	541-73-1	147.0	ND	0.50		ND	3.0	
1,4-Dichlorobenzene	106-46-7	147.0	ND	0.50		ND	3.0	
Benzyl chloride	100-44-7	126.6	ND	0.50		ND	2.6	
1,2-Dichlorobenzene	95-50-1	147.0	ND	0.50		ND	3.0	
1,2,4-Trichlorobenzene	120-82-1	181.4	ND	0.50		ND	3.7	
Hexachloro-1,3-butadiene	87-68-3	260.8	ND	0.50		ND	5.3	
Naphthalene	91-20-3	128.2	ND	0.50		ND	2.6	
Total Target Compound Concentrations:			30	ppbv		67	ug/m3	

Surrogate

4-Bromofluorobenzene

Analysis Initial

Qualifier Definitions

ND = Non Detect

B = Compound also found in method blank.

E= Estimated concentration exceeding upper calibration range.

D= Result reported from diluted analysis.

J= Concentration estimated between Reporting Limit and MDL.

Method Reference

Result

9.4

USEPA: Compendium Method TO-15, "Determination of Volatile Organic Compounds (VOCs) in Air..." Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), January 1999, (EPA/625/R-96/010b).

Recovery

94%

<u>Spike</u>

10

Dahlberg Design 222 Seward Street

Juneau, AK 99801-1239

Suite 205

EMSL ORDER ID: 33 EMSL CUSTOMER ID: D EMSL SAMPLE ID: 33 CUSTOMER SAMPLE ID: BALLROOM 2

Customer PO: EMSL Project ID: Project Name: CENTENNIAL HALL 2023

	Phone: Email:	907-723-889 sigrid@dahl	96 berg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024)8:38 0:25	
<u>Analysis</u>	<u>Ana</u>	alysis Date	<u>Analyst Init.</u>	Lab File ID	Canister ID	Sample Vol.	Dil. Factor
Initial	02	2/13/2024	HP	T2160.D	E15526	250 cc	1

NIOSH and OSHA Exposure Limit Comparisons

	Tox.			Result		Result	NIOSH REL	OSHA PEL	
Target Compounds	Basis	CAS#	MW	ppbv	Q	ug/m3	ug/m3	> ug/m3	>
Propylene	NC	115-07-1	42.08	ND		ND	N.E.	N.E.	
Freon 12(Dichlorodifluoromethane)	NC	75-71-8	120.9	0.69		3.4	4900000	4900000	
Freon 114(1,2-Dichlorotetrafluoroethan		76-14-2	170.9	ND		ND	700000	7000000	
Chloromethane	NC	74-87-3	50.49	ND		ND	LFC	210000	
n-Butane		106-97-8	58.12	3.3		7.8	1900000	N.E.	
Vinyl chloride	С	75-01-4	62.50	ND		ND	LFC	2600	
1,3-Butadiene	С	106-99-0	54.09	ND		ND	LFC	2200	
Bromomethane	NC	74-83-9	94.94	ND		ND	LFC	78000	
Chloroethane	NC	75-00-3	64.51	ND		ND	LFC	2600000	
Ethanol		64-17-5	46.07	16		30	1900000	1900000	
Bromoethene(Vinyl bromide)	С	593-60-2	106.9	ND		ND	LFC	N.E.	
Freon 11(Trichlorofluoromethane)		75-69-4	137.4	ND		ND	5600000	5600000	
Isopropyl alcohol(2-Propanol)	NC	67-63-0	60.09	2.6		6.3	980000	980000	
Freon 113(1,1,2-Trichlorotrifluoroethan	NC	76-13-1	187.4	ND		ND	7700000	7700000	
Acetone	NC	67-64-1	58.08	5.0		12	590000	2400000	
1,1-Dichloroethene	NC	75-35-4	96.94	ND		ND	790000	N.E.	
Acetonitrile	NC	75-05-8	41.05	ND		ND	34000	67000	
Tertiary butyl alcohol(TBA)		75-65-0	74.12	ND		ND	300000	300000	
Bromoethane(Ethyl bromide)		74-96-4	109.0	ND		ND	880000	880000	
3-Chloropropene(Allyl chloride)	С	107-05-1	76.52	ND		ND	3100	3100	
Carbon disulfide	NC	75-15-0	76.14	ND		ND	3100	62000	
Methylene chloride	С	75-09-2	84.93	ND		ND	LFC	87000	
Acrylonitrile	С	107-13-1	53.08	ND		ND	2200	4300	
Methyl-tert-butyl ether(MTBE)	С	1634-04-4	88.15	ND		ND	N.E.	N.E.	\square
trans-1,2-Dichloroethene		156-60-5	96.94	ND		ND	790000	790000	┶
n-Hexane	NC	110-54-3	86.18	ND		ND	180000	1800000	
1,1-Dichloroethane	С	75-34-3	98.96	ND		ND	400000	400000	┶
Vinyl acetate	NC	108-05-4	86.09	ND		ND	14000	N.E.	
2-Butanone(MEK)	NC	78-93-3	72.11	ND		ND	590000	590000	╇
cis-1,2-Dichloroethene		156-59-2	96.94	ND		ND	790000	790000	+
Ethyl acetate	NC	141-78-6	88.11	ND		ND	1400000	1400000	╇
Chloroform	C	67-66-3	119.4	ND		ND	9800	240000	+
l etrahydrofuran	NC	109-99-9	72.11	ND		ND	590000	590000	+
1,1,1-I richloroethane	NC	71-55-6	133.4	ND		ND	1900000	1900000	+
	NC	110-82-7	84.16	1.4		4.7	1000000	1000000	╶╋┥
2,2,4-1 rimethylpentane(Isooctane)		540-84-1	114.2	ND		ND	N.E.	N.E.	╉
Carbon tetrachloride	0	56-23-5	153.8	ND		ND	13000	63000	╉┥
n-Heptane	NC	142-82-5	100.2	ND		ND	350000	2000000	
1,2-Dichloroethane	0	107-06-2	98.96	ND		ND	4000	200000	
Benzene		71-43-2	/8.11				320	3200	+
		79-01-6	131.4				130000	540000	┿
1,2-Dicnioropropane		/8-8/-5	113.0				LFC 440000	350000	┿
IVIETNYI IVIETNACTYIATE	NC	80-62-6	100.1	ND			410000	410000	╇
		15-21-4	163.8		 		N.E.	N.E.	╋
		123-91-1	88.11		<u> </u>		3600	360000	┿
4-ivietnyi-2-pentanone(IVIIBK)	NC	108-10-1	100.2	ND			200000	410000	
cis-i, 3-Dichloropropene	U C	10001-01-5	111.0	ND		UND	4500	N.E.	

Dahlberg Design

Suite 205

222 Seward Street

Juneau, AK 99801-1239

EMSL ORDER ID: 3 EMSL CUSTOMER ID: D Section H, Item 7. EMSL SAMPLE ID: 332402243-0003 CUSTOMER SAMPLE ID: BALLROOM 2

Customer PO: EMSL Project ID: Project Name: **CENTENNIAL HALL 2023**

	Phone: Email:	907-723-889 sigrid@dahlk	6 berg.design	Collected: Received: Analyzed: Reported:	01/31/2024 0 02/09/2024 1 See Results 2/15/2024	8:38 0:25	
<u>Analysis</u>	<u>Ana</u>	alysis Date	<u>Analyst Init.</u>	<u>Lab File ID</u>	Canister ID	Sample Vol.	Dil. Factor
Initial	02	2/13/2024	HP	T2160.D	E15526	250 cc	1

NIOSH and OSHA Exposure Limit Comparisons

	Tox.			Result		Result	NIOSH REL		OSHA PEL
Target Compounds	Basis	CAS#	MW	ppbv	Q	ug/m3	ug/m3	>	ug/m3 >
Toluene	NC	108-88-3	92.14	ND		ND	380000		750000
trans-1,3-Dichloropropene**	С	10061-02-6	111.0	ND		ND	4500		N.E.
1,1,2-Trichloroethane	С	79-00-5	133.4	ND		ND	55000		55000
2-Hexanone(MBK)	NC	591-78-6	100.2	ND		ND	4100		410000
Tetrachloroethene	С	127-18-4	165.8	ND		ND	LFC		680000
Dibromochloromethane	—	124-48-1	208.3	ND		ND	N.E.		N.E.
1,2-Dibromoethane	С	106-93-4	187.9	ND		ND	350		150000
Chlorobenzene	NC	108-90-7	112.6	ND		ND	N.E.		350000
Ethylbenzene	С	100-41-4	106.2	ND		ND	430000		430000
Xylene (p,m)	NC	1330-20-7	106.2	ND		ND	430000		430000
Xylene (Ortho)	NC	95-47-6	106.2	ND		ND	430000		430000
Styrene	NC	100-42-5	104.1	0.68		2.9	210000		430000
Isopropylbenzene (cumene)	NC	98-82-8	120.2	ND		ND	250000		250000
Bromoform	С	75-25-2	252.7	ND		ND	5200		5200
1,1,2,2-Tetrachloroethane	С	79-34-5	167.9	ND		ND	6900		34000
4-Ethyltoluene		622-96-8	120.2	ND		ND	N.E.		N.E.
1,3,5-Trimethylbenzene	NC	108-67-8	120.2	ND		ND	120000		N.E.
2-Chlorotoluene		95-49-8	126.6	ND		ND	260000		N.E.
1,2,4-Trimethylbenzene	NC	95-63-6	120.2	ND		ND	120000		N.E.
1,3-Dichlorobenzene	<u> </u>	541-73-1	147.0	ND		ND	N.E.		N.E.
1,4-Dichlorobenzene	С	106-46-7	147.0	ND		ND	LFC		450000
Benzyl chloride	С	100-44-7	126.6	ND		ND	5200		5200
1,2-Dichlorobenzene	NC	95-50-1	147.0	ND		ND	300000		300000
1,2,4-Trichlorobenzene	NC	120-82-1	181.4	ND		ND	37000		N.E.
Hexachloro-1,3-butadiene	С	87-68-3	260.8	ND		ND	210		N.E.
Naphthalene	С	91-20-3	128.2	ND		ND	52000		52000
**The concentrations of each isomer should be added	f multiple	isomers are	-	The > colur	nn is us	ed to flag e	xceedances as marked		

**The concentrations of each isomer should be added if multiple isomers are present and compared to the total screening level.

Exposure Limit Definitions

REL= Recommended Exposure Limit, PEL= Permissable Exposure Limit

Agency Definitions

332402243-3

NIOSH= The National Institute for Occupational Safety and Health OSHA= Occupational Safety and Health Administration

Reference

Occupational Safety and Health Administration (OSHA) (2017) Air Contaminants. 29 CFR 1910.1000 [82 FR 2735, January 9, 2017].

Carcinogenic (C) Exceedance

Value exceeds the theoretical risk that 1 additional case of cancer will occur in a population of 1 million than statistically expected.

Thus is a theoretical risk and not an actual epidemiological one.

Compound Exposure Definitions

NE= No Limit Established NS= No Screening Value LFC= Lowest Feasible Concentration

Qualifier Definitions

B = Compound also found in method blank. ND = Non Detect

- E= Estimated concentration exceeding upper calibration range.
- D= Result reported from diluted analysis.
- J= Concentration estimated between Reporting Limit and MDL.

NonCarcinogenic (NC) Exceedance

Value exceeds the theoretical risk that 1 in a population of 100,000 will experience deleterious health effects.

Thus is a theoretical risk and not an actual epidemiological one.

	LA Tes	ting O	Exte	ernal mber (L	Chain	U of C	SEP/ Susto	A TO dy/ F 3 3	-15 Field Tes 2 4 0 2	st [2	Data : 4 3	Shee	t		LA Te: 5431 I Huntir Ph. (89 Fax (7	stin ndu ngto 00) '14)	ig, In Istria on B 755- 828	ic. al Dr eacl 1794 -494	rive h, CA 4 4	926	Sectio 49	on H,	lte
Company/Cust. ID:	DAHLE	ERC		SIGN		Compa	Company/Billing ID: DAHLBERG DESIGN						Sampled By (Sign):										
Contact Name:	Silen	5 De	HLB	ERG		Billing	Billing Contact:							Sampled By (Name):							ج بح		
Street Address:	222 9	لاسعد	eo S	π'#	205	Street Address:					Total # of Samples: 3												
City, State, Zip:	JUNEAU ANA 99801				51	City, S	itate, Zip):	in an an star an brinn Star an an star an brinn Star an an star					Date Ship	ped:	7 1	Fele	, 2	02	4	:		
Phone: 907	1723.5896 Fax: -			Phone);				Fax:			Sample Co	ollectio	n Zi	ip Co	ode:	9	980	>[<u></u>		
Email Results To:	Slavid	ea	مطاطعه	evel e	esian	Proi	ect N	ame:	CENTE	57 U.		Hone	7012	Purchase	Order								
furnaround Time ☐ 5 Day ☐ 2 Day	(in Busine	ss Day Day Day	rs): D	¥10 Day	Standard 3 Day			Repor	ting Format eliverables (Surch	: arge n	Result	s Only (Stan	dərd Lab Re	l eport)			A	naly 풍	ysis Oth	ier	Air	latri	×
	Field U	se - All	Inform	ation I	Required!			臺灣國家		en se	La	ib Use (Only			ы	-15	AR	(Spe	cify)	ent		
	Samplin	ng Star	t Informa	ation	Samplir	ng Stop	Inform	ation				Gau	ige #			6	E	S S			iqu	/ent	;
Client Field	Barometric	Pres. ("Hg):		Barometric	Pres. ("Hg): 29	,34	Canister Ir	forr	nation	366320	219424	Flow Co	ntoller	 ⊢		₹.			I AI		
Sample Identification	Start Date	Time (24 hr clock)	Canister Pressure ("Hg)	Interior Temp. (F)	Stop Date	Time (24 hr clock)	Canister Pressure ("Hg)	Interior Temp. (F)	Canister ID	Size (L)	Can Cert Batch ID	Outgoing Pressure ("Hg)	Incoming Pressure ("Hg)	Reg. ID	Cal Flow (ml/min)	USEP	NJDE	LIBRA			loopul	Landf	
BALLROOM 1	31.Jan 2024	0834	- 29-	70	31 Jan 2024	1638	-32	71	E15530	6	89 A	- 30	+3.2	07978	11.0						\checkmark		T
BALLROOM 3	Ŋ	0839	-29 ²	70	μ	1640	-2^{2}	וך	E0666	Ģ	89 A	- 30	-2.4	15114	11.0						~		
BALLROOM \$2	14	0838	-29'	70	0	1639	-2-	71	E 155 76	6	87 A	- 30	-30	15116	11.0						\checkmark		
··· ·																							
		ļ									HP	02/13	124										
																				÷			Ι
Comments:												Check Seal	Box if	Lab Caniste Analyst Sigr	er Certific nature (T	catio FO-1	on (5):						
Relinquished	by:	D	ate/ Tin	ne	·特殊学者 F	leceive	ed by:		Date/	Tìn)ê	Seal #	/ Intact	Reaso	n for E	xcl	hang	je (d	circle	e apj	огор	riate	<u>*)</u>
Rob Hansen		19	. 99.9	3	Ega	KJ	Lun		5 JAN 20	2A	4pm		√_	Shipping	Courier	Rece	eiving	San	npling	Oth	ner:		
SUARD	emand	65	-1-20	24	Emitin	undor	WW	MA (FX)	2 9 24 1	0:2	SAM		Г	Shipping	Courier	Rece	eiving	San	npling	Otł	ner:		
\bigcirc				0-2-4					.	Shipping	Courier	Rece	eiving	San	npling	Oth	ier:						
	-	<u> </u>			 			<u> </u>					Γ.	Shipping	Courier	Rece	eiving	San	npling	Oth	ier:		
		<u> </u>			 			· · ·]						<u>.</u>				B	01			_

and the second second second second

#332402243

TO-FM-12 Sample Information Revision 13 Effective Date: December 20, 2022

TO-15 Sample Information

Please fill out this worksheet in addition to the Chain of Custody form. This information helps us to best analyze your samples, achieve requested TAT, and provide you with helpful interpretation information.

L	Contact Person:	
ſ	SILP ID DAL 25-25	
ŀ	Name: Marci SAHLBERG	
	E-mail: Sigrid@dahlberg.de	esign
	Additional E-mails: Sdahlberg 907@gr	nail.com
	Telephone #: 307.723.8896	·
	Library Search requested: [] YES A library search (<i>aka Tentatively Identified Compounds</i>) will identify up to 20 compounds. If you are performing an Indoor Air Quality or odor investigation your sample.	[] NO of the largest, non-target peaks that are not part of the standard TO-15 list of 74 , the library search is recommended to provide you with all available information for
1	Sample Type:	
:	Sample Type: [] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [JOther: Public building / Non-o Sample Description: <u>Reoccupancy</u> Sampli	[] Soll Gas/Sub Slab ffice ng after renovation at convention a
; 	Sample Type: [] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [JOther: Public building (Non-o Sample Description: <u>Reoccupancy</u> <u>Sampli</u> PLEASE NOTE: The result forms we provide will not indicate whether your agency. If you would like that information, please check off below which re	[] Soll Gas/Sub Slab ffice <u>ng after veneration</u> at convention o results have exceeded any Exposure Limit criteria established by any regulatory gulatory comparison forms you would like to receive.
:	Sample Type: [] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [] JOCher: Public building /non-o Sample Description: <u>Reoccupancy</u> <u>Sampli</u> PLEASE NOTE: The result forms we provide will not indicate whether your agency. If you would like that information, please check off below which re [] OSHA PELS/NIOSH RELs combined form	 [] Soll Gas/Sub Slab ffice ng after renovation at convention c results have exceeded any Exposure Limit criteria established by any regulatory gulatory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample
: :	Sample Type: [] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [JOther: Public building /non-o Sample Description: <u>Reoccupancy Sampli</u> PLEASE NOTE: The result forms we provide will not indicate whether your agency. If you would like that information, please check off below which re [M OSHA PELs/NIOSH RELs combined form [] EPA RSLS - 11/2022; default is THQ 0.1 Residentiai Industrial	 [] Soll Gas/Sub Slab ffice ng after reneration at convention c results have exceeded any Exposure Limit criteria established by any regulatory gulatory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample [] TVOC (Library Search Required for this format)
: :	Sample Type: [] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [] TOther: Public building (non-o Sample Description: Reconception Sample Description: PLEASE NOTE: The result forms we provide will not indicate whether your agency. If you would like that information, please check off below which re [] OSHA PELs/NIOSH RELs combined form [] EPA RSLS - 11/2022; default is THQ 0.1 Residential Industrial [] EPA VISLS - 3/2012 IA/5G	 [] Soll Gas/Sub Slab ffice <u>ng after renertation</u> at convention a results have exceeded any Exposure Limit criteria established by any regulatory gulatory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample [] TVOC (Library Search Required for this format) [] NH DES_WMD - 2/2013 Indoor Air Soil Gas
	Sample Type: [] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [] TOther: Public building (Non-o Sample Description: Reaccupancy sampli PLEASE NOTE: The result forms we provide will not indicate whether your agency. If you would like that information, please check off below which re [] OSHA PELs/NIOSH RELs [] EPA RSLS - 11/2022; default is THQ 0.1 Residential [] EPA VISLS - 3/2012 IA/SG [] NJ DEP - 5/2021 - Circle one: VI-Indoor AQ VI-Soil Gas	 [] Soll Gas/Sub Slab ffice ng after reneration at convention of results have exceeded any Exposure Limit criteria established by any regulatory gulatory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample [] TVOC (Library Search Required for this format) [] NH DES_WMD - 2/2013 Indoor Air Soil Gas [] Ohio - 5/2016 - Circle one: Residential Commercial
tP	Sample Type: [] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [] JOther: Public building (Non-o Sample Description: Rececupancy Sampli PLEASE NOTE: The result forms we provide will not indicate whether your agency. If you would like that information, please check off below which re [] OSHA PELs/NIOSH RELs [] EPA RSLs - 11/2022; default is THQ 0.1 Residentiai Industrial [] EPA RSLs - 11/2022; default is THQ 0.1 Residentiai Industrial [] EPA VISLs - 3/2012 IA/SG [] NJ DEP - 5/2021 - Circle one: VI-Indoor AQ VI-Soil Gas [] NC DENR - 2/2018 - Circle one: Residential Non-residentia	 [] Soll Gas/Sub Slab ffice ng after renovation at convention of results have exceeded any Exposure Limit criteria established by any regulatory gulatory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample [] TVOC (Library Search Required for this format) [] NH DES_WMD - 2/2013 Indoor Air Soil Gas [] Ohio - 5/2016 - Circle one: Residential Commercial al [] Indiana Dept Env Mgmt Screeening Levels - 3/2018
48 13/	Sample Type: [] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [] JAQ (Industrial) [] JOCher: Public building / non-o Sample Description: Peocempancy Sampli PLEASE NOTE: The result forms we provide will not indicate whether your agency. If you would like that information, please check off below which re [] OSHA PELS/NIOSH RELs combined form [] EPA RSLS - 11/2022; default is THQ 0.1 Residential Industrial [] EPA VISLS - 3/2012 IA/SG [] NJ DEP - 5/2011 - Circle one: VI-Indoor AQ VI-Soil Gas [] NC DENR - 2/2018 - Circle one: Residential Non-residential [] PA DEP - 11/2016 Indoor Air	 [] Soll Gas/Sub Slab ffice ng after renovation at convention of results have exceeded any Exposure Limit criteria established by any regulatory gulatory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample [] TVOC (Library Search Required for this format) [] NH DES_WMD - 2/2013 Indoor Air Soil Gas [] Johio - 5/2016 - Circle one: Residential Commercial al [] Indiana Dept Env Mgmt Screeening Levels - 3/2018 [] Vermont DEC IROCP - 7/2017 (soil gas only)
+8 13/	Sample Type: [] Indoor Air Quality (Home/Office) [] IAQ (Industrial) [] JOther: Public building / non-o Sample Description: Recemptory Sampli PLEASE NOTE: The result forms we provide will not indicate whether your agency. If you would like that information, please check off below which re [] OSHA PELS/NIOSH RELs combined form [] EPA RSLS - 11/2022; default is THQ 0.1 Residential Industrial [] EPA VISLS - 3/2012 IA/SG [] NJ DEP - 5/2021 - Circle one: VI-Indoor AQ VI-Soil Gas [] NC DENR - 2/2018 - Circle one: Residential Non-residential [] PA DEP - 11/2016 Indoor Air [] PA DEP - 11/2015: Sub Slab Soil Gas OR Near Source Soil Gas	 [] Soll Gas/Sub Slab ffice ng after renexation at convention of results have exceeded any Exposure Limit criteria established by any regulatory gulatory comparison forms you would like to receive. [] Potential Sources of Compounds found in your IAQ sample [] TVOC (Library Search Required for this format) [] NH DES_WMD - 2/2013 Indoor Air Soil Gas [] Ohio - 5/2016 - Circle one: Residential Commercial al [] Indiana Dept Env Mgmt Screeening Levels - 3/2018 [] Vermont DEC IROCP - 7/2017 (soil gas only) [] California OEHHA - 2/2012

*Very Important Information for Clients! Hold time for sulfur gases is 1 day from collection. Please schedule your sample collection so samples are received in the lab prior to noon on Friday. Analysis performed out of hold time will have a notation in the report.

US EPA TO-3 via GC/FID:	ASTM-D5504 via GC/SCD: *
[] C ₁ -C ₆ hydrocarbons	[] Sulfur Scan (H ₂ S, COS, MeSH, EtSH, DMS)
[] Methane only	[] H ₂ S only

We can provide the following CMS tests from your canisters at the **Cinnaminson and Huntington Beach** laboratories. Please note these tests are to be used for IAQ/Screening purposes ONLY. EMSL recommends alternate field sampling techniques for these parameters (with the exception of water vapor); please contact your sales rep for the proper media. Please note: There is an additional charge for any of the tests below.

Draeger Analyzer:									
[]00	[]CO ₂	[] NH ₃	[] 02	[] Water Vapor					

Sample Retention Policy: All canisters are guaranteed to be retained for one day after results are reported. Please review your results promptly to ensure your project scope is fully addressed. Cans may be retained for a longer period of time, but arrangements to hold your cans must be made through your customer account representative guickly. Thank you.

Controlled Document Confidential Business Information/Property of EMSL Analytical, Inc.

Company

62

Heads up! We need your Approval of the following Submittals, Due on 02/29/2024.

General Information:

1050033 - 132 Construction Waste Management Final Report (Revision)

Project:	Centennial Hall Ballroom Reno
	Centennial Hall - Ballroom
	155 South Seward Street, Juneau, AK 99801
Manager:	James Malapanis, Project Manager
	Carver Construction, LLC
	1800 Greenwood Crest, Comox, BC V9M 4C8
Requested by:	James Malapanis, Project Manager

Approved as Noted 2/16/24 Lisa Eaganstagenqu

Request For Approval:

Submi Date:	itted	d 02/15/2024											
Respo	onders:	ers: - City & Borough of Juneau - Gen Term - Lisa Eagan-Lagerquist (Project Manager) - Jensen Yorba Wall Inc Dan Fabrello (Construction Administrator)											
Comm	Commenters: - Carver Construction LLC - James Malapanis (Project Manager)												
Instru	Instructions:												
ltem	Rev	Reference	Phase	Cost Code	Subject	Туре	Critical Date						
107	1			017400	Construction Waste Management Final Report (Revision)	General Documentation	02/29/2024	Details					

Centennial Hall Ballroom Renovation BE22-204 Final Report

WASTE MANAGEMENT RECEIPT LOGpdated: 2-15-2024

NOTE: UOM - TONS

GOAL: DIVERT 50% BY WEIGHT OF TOTAL CONSTRUCTION & DEMOLISION WASTE GENERATED ON-SITE.

TARGET MATERIALS: CONCRETE 40 T, METALS 4 T, WOOD 5 T, CARDBOARD 1 T, ALUMINUM/PLASTICS 0.1 T, NON-RECYCLABLES 50 T

							SOUND		NON	
DATE	FACILITY	FACILITY ID	METALS	CONCRETE	GRAVEL	WOOD	PANELS	CARDBOARD	RECYCLABLES	NOTES
12/12/22	D&S Recycling	Recycle	0.62							
12/21/22	Capitol Disposal	Landfill							1.45	
12/21/22	Capitol Disposal	Landfill							1.02	
12/21/22	Capitol Disposal	Landfill							0.48	
12/22/22	Scookum	Recycle	1.65							
12/22/22	Scookum	Recycle	0.93							
12/22/22	Capitol Disposal	Landfill							0.69	
12/26/22	D&S Recycling	Recycle	0.63							
12/28/22	Capitol Disposal	Landfill							1.2	
1/2/23	Capitol Disposal	Landfill							1.15	
1/6/23	Bobcat	Repurpose	4.39							
1/6/23	Bobcat	Repurpose	3.91							
1/6/23	Bobcat	Repurpose	3.8							
1/6/23	Bobcat	Repurpose	4.93							
1/6/23	Capitol Disposal	Landfill							1.03	
1/17/23	Capitol Disposal	Landfill							0.64	
1/18/23	Capitol Disposal	Landfill							0.35	
1/19/23	Bobcat	Repurpose	1.59							
1/25/23	Capitol Disposal	Landfill							1.48	
1/25/23	Capitol Disposal	Landfill							1.84	
2/11/23	Carver's Lot	Recycle		3.46						
2/11/23	Carver's Lot	Recycle		2						
2/11/23	Carver's Lot	Recycle		3.03						
2/11/23	Carver's Lot	Recycle		2.16						
2/11/23	Carver's Lot	Recycle		2.08						

2/18/23	Bobcat	Repurpose	3.37			
2/18/23	Carver's Lot	Recycle		2.83		
2/18/23	Carver's Lot	Recycle		2.41		
2/18/23	Carver's Lot	Recycle		2.84		
2/18/23	Carver's Lot	Recycle		2.5		
2/18/23	Carver's Lot	Recycle			2.45	
2/18/23	Carver's Lot	Recycle			3.57	
2/18/23	Carver's Lot	Recycle			4.04	
2/18/23	Carver's Lot	Recycle			2.99	
2/18/23	Carver's Lot	Recycle			3.36	
2/18/23	Carver's Lot	Recycle			3.5	
2/18/23	Carver's Lot	Recycle			2.95	
2/18/23	Carver's Lot	Recycle			3.63	
2/25/23	Carver's Lot	Recycle			3.51	
2/25/23	Carver's Lot	Recycle			3.025	
2/25/23	Carver's Lot	Recycle			3.025	
2/25/23	Carver's Lot	Recycle			3.04	
2/25/23	Carver's Lot	Recycle			3.51	
2/25/23	JAC & Others	Repurpose				0.36
2/25/23	Carver's Lot	Recycle			3.31	
2/25/23	Carver's Lot	Recycle			1.48	
2/25/23	Carver's Lot	Recycle	1.19			
2/25/23	Capitol Disposal	Landfill				
2/28/23	Carver's Lot	Recycle			3.95	
3/9/23	Capitol Disposal	Landfill				
3/9/23	Capitol Disposal	Recycle	0.67			
3/17/23	Individuals	Repurpose				0.36
3/17/23	CBJ	Repurpose				0.82
4/28/23	Capitol Disposal	Landfill				
4/21/23	Capitol Disposal	Landfill				
4/28/23	Capitol Disposal	Recycle	0.8			

36

0.87 0.97 0.98 1.41

5/11/23	Capitol Disposal	Recycle	0.24							
5/11/23	Capitol Disposal	Landfill							0.84	
5/16/23	Capitol Disposal	Landfill							0.44	
6/2/23	Bobcat	Repurpose	0.57							
6/5/23	Capitol Disposal	Landfill							0.69	
6/15/23	Capitol Disposal	Landfill							0.38	
6/15/23	Capitol Disposal	Landfill							0.73	
7/10/23	Capitol Disposal	Landfill							0.33	
7/10/23	Capitol Disposal	Recycle						0.05		
7/20/23	Capitol Disposal	Recycle							0.36	
7/21/23	Capitol Disposal	Landfill							0.83	
7/21/23	Capitol Disposal	Recycle						0.05		
7/24/23	Capitol Disposal	Landfill							0.23	
7/25/23	Capitol Disposal	Landfill							0.31	
7/25/23	Capitol Disposal	Recycle							0.31	
7/27/23	Skookum	Recycle	1.9							
7/27/23	Skookum	Recycle	1.55							
8/1/23	Individuals	Repurpose				1				
8/1/23	Individuals	Repurpose				1.75				
8/1/23	Individuals	Repurpose	1.5							
8/8/23	Capitol Disposal	Landfill							0.19	
8/16/23	Capitol Disposal	Landfill							0.51	
8/23/23	Capitol Disposal	Landfill							0.59	
										Alcan
										estimate at
2/14/24	Capitol Disposal	Landfill							0.025	completion
			34.24	23.31	51.34	2.75	1.54	0.1	22.325	
	Total Waste:	135.605	TONS							
Vaste Diver	ted from Landfill:	113.28	TONS							
Percenta	age (%) Diverted:	83.54%								

April 24, 2024 EPW Grant Application Update

Planned and pending (recently submitted) applications as of April 24, 2024. This list includes programs with active/recently closed NOFOs and does not include programs which were evaluated but not a competitive fit for CBJ at this time.

		Lead			
Grant Name	Source	Department	Project Name/Scope	Amount	Status
2024 Clean Heavy-Duty Vehicles Grant	EPA	EPW	TBD	TBD	Reviewing
Program					(Due July 25)
Energy Transitions Initiative Partnership	NREL	EPW	TBD	TBD	Reviewing
Project (ETIPP)					(Due July 10)
Active Transportation Infra Investment	FHWA	EPW	Lemon Creek Multimodal Path (Tentative)	TBD	In Progress
Program (ATIIP)					(Due June 17)
Renew America's Schools Prize	DOE SCEP	EPW/JSD	JSD-Wide HVAC Controls Upgrades	TBD	In Progress
					(Due June 13)
Clean Ports Program	EPA	D&H, EPW	Shore Power at Dock 16B	\$35-45M	In Progress
					(Due May 28)
Low or No Emission and Grants for Buses	FTA	Capital Transit	Acquisition of six electric busses (including	\$11.9M	Submitted
and Bus Facilities Programs			replacement of Proterra Bus) + charging infra		
Waste to Energy Technical Assistance	NREL	EPW	Technical Assistance	40hrs TA	Submitted
Denali Commission Program Grants	Denali	EPW	Mendenhall River Culvert Check Valves	TBD	*Did not submit
	Commission				due to
					incompatible
					award timeline