REVISED 2/27/2025 4:39 PM

City of Capitola City Council Meeting Agenda Thursday, February 27, 2025 – 6:00 PM

City Council Chambers 420 Capitola Avenue, Capitola, CA 95010

Mayor:Joe ClarkeVice Mayor:Alexander PedersenCouncil Members:Gerry Jensen, Margaux Morgan, Melinda Orbach

Regular Meeting of the Capitola City Council – 6 PM

All correspondence received prior to 5:00 p.m. on the Wednesday preceding a Council Meeting will be distributed to Councilmembers to review prior to the meeting. Information submitted after 5 p.m. on that Wednesday may not have time to reach Councilmembers, nor be read by them prior to consideration of an item.

1. Roll Call and Pledge of Allegiance

Council Members Gerry Jensen, Margaux Morgan, Melinda Orbach, Alexander Pedersen, and Mayor Joe Clarke

2. Additions and Deletions to the Agenda

3. Additional Materials

Additional information submitted to the City after distribution of the agenda packet.

- A. Item 6B Correspondence Received
- B. Item 6C Correspondence Received
- C. Item 6D Staff Memorandum and Updated Attachment
- D. Item 7B Correspondence Received
- E. Item 7C Correspondence Received

4. Oral Communications by Members of the Public

Oral Communications allows time for members of the Public to address the City Council on any "Consent Item" on tonight's agenda, or on any topic within the jurisdiction of the City that is not on the "General Government/Public Hearings" section of the Agenda. Members of the public may speak for up to three minutes, unless otherwise specified by the Mayor. Individuals may not speak more than once during Oral Communications. All speakers must address the entire legislative body and will not be permitted to engage in dialogue. **A maximum of 30 minutes** is set aside for Oral Communications.

5. Staff / City Council Comments

Comments are limited to three minutes.

6. Consent Items

All items listed as "Consent Items" will be enacted by one motion in the form listed below. There will be no separate discussion on these items prior to the time the Council votes on the action unless

City Council Meeting Agenda – February 27, 2025

members of the City Council request specific items to be discussed for separate review. Items pulled for separate discussion will be considered following General Government. Note that all Ordinances which appear on the public agenda shall be determined to have been read by title and further reading waived.

- A. City Council Meeting Minutes <u>Recommended Action</u>: Approve minutes from the regular meeting on February 13, 2025, and the special meeting on February 19, 2025.
- B. FY 2024-25 Pavement Maintenance Project

<u>Recommended Action</u>: Approve the plans, specifications, and construction budget of \$589,000 for the FY 2024-25 Pavement Management Project; and authorize the Department of Public Works to advertise for construction bids.

C. Public Art Fund Allocation

<u>Recommended Action</u>: Adopt a resolution allocating \$25,000 from the Public Art Fund as a matching contribution for an application for the National Endowment for the Arts Grant FY 2026 to support the creation of public art project at the Park at Rispin Mansion and amending the Fiscal Year 2024-25 Budget, as recommended by the Capitola Art and Cultural Commission.

D. MOU with the Capitola Police Officers Association <u>Recommended Action</u>: Authorize the City Manager to sign a side letter agreement with the Capitola Police Officers Association from March 1, 2025, through June 30, 2027.

7. General Government / Public Hearings

All items listed in "General Government / Public Hearings" are intended to provide an opportunity for public discussion of each item listed. The following procedure pertains to each General Government item: 1) Staff explanation; 2) Council questions; 3) Public comment; 4) Council deliberation; 5) Decision.

- A. Appointment of Capitola Representative to Measure Q Oversight Advisory Board <u>Recommended Action</u>: Appoint a member of the public to serve as Capitola's representative on the Measure Q Citizens Oversight Advisory Board.
- Bay Avenue Corridor Study <u>Recommended Action</u>: Staff recommends the City Council 1) identify Alternative 2 as the preferred long-term improvement alternative for the Bay Avenue corridor; 2) authorize staff to proceed with public engagement and conceptual design refinement; and 3) direct staff to pursue grant funding opportunities for final design and construction.
- C. Bay Avenue and Hill Street Traffic Safety Update <u>Recommended Action</u>: Provide direction on short-term modifications to the Bay Avenue and Hill Street intersection.
- D. FY 2024-25 Mid-Year Budget Report <u>Recommended Action</u>: Receive the Fiscal Year 2024-25 Mid-Year Budget Report and adopt a resolution amending the Fiscal Year 2024-25 Budget.
- E. CDBG Program Income Funds <u>Recommended Action</u>: 1) Conduct a public hearing and receive public comment regarding Program Income and its eligible uses; 2) adopt a resolution rescinding Resolution No. 4414 and allocating \$170,000 of Program Income for the Community Center Rehabilitation Project; and 3) adopt a resolution amending the FY 2024-25 budget.
- **8.** Adjournment The next regularly scheduled City Council meeting is on March 13, 2025, at 6:00 PM.

How to View the Meeting

Meetings are open to the public for in-person attendance at the Capitola City Council Chambers located at 420 Capitola Avenue, Capitola, California, 95010.

Other ways to Watch:

Spectrum Cable Television channel 8

City of Capitola, California YouTube Channel

To Join Zoom Application or Call in to Zoom:

Meeting

link: https://us02web.zoom.us/j/83328173113?pwd=aVRwcWN3RU03Zzc2dkNpQzRWVXAydz09

Or dial one of these phone numbers: 1 (669) 900 6833, 1 (408) 638 0968, 1 (346) 248 7799

Meeting ID: 833 2817 3113

Meeting Passcode: 678550

How to Provide Comments to the City Council

Members of the public may provide public comments to the City Council in-person during the meeting. If you are unable to attend in-person, please email your comments to citycouncil@ci.capitola.ca.us and they will be included as a part of the record for the meeting. Please be aware that the City Council will not accept comments via Zoom.

Notice regarding City Council: The City Council meets on the 2nd and 4th Thursday of each month at 6:00 p.m. in the City Hall Council Chambers located at 420 Capitola Avenue, Capitola.

Agenda and Agenda Packet Materials: The City Council Agenda and the complete Agenda Packet are available for review on the City's website and at Capitola City Hall prior to the meeting. Need more information? Contact the City Clerk's office at 831-475-7300.

Agenda Materials Distributed after Distribution of the Agenda Packet: Pursuant to Government Code §54957.5, materials related to an agenda item submitted after distribution of the agenda packet are available for public inspection at the Reception Office at City Hall, 420 Capitola Avenue, Capitola, California, during normal business hours.

Americans with Disabilities Act: Disability-related aids or services are available to enable persons with a disability to participate in this meeting consistent with the Federal Americans with Disabilities Act of 1990. Assisted listening devices are available for individuals with hearing impairments at the meeting in the City Council Chambers. Should you require special accommodations to participate in the meeting due to a disability, please contact the City Clerk's office at least 24 hours in advance of the meeting at 831-475-7300. In an effort to accommodate individuals with environmental sensitivities, attendees are requested to refrain from wearing perfumes and other scented products.

Si desea asistir a esta reunión pública y necesita ayuda - como un intérprete de lenguaje de señas americano, español u otro equipo especial - favor de llamar al Departamento de la Secretaría de la Ciudad al 831-475-7300 al menos tres días antes para que podamos coordinar dicha asistencia especial o envié un correo electrónico a jgautho@ci.capitola.ca.us.

Televised Meetings: City Council meetings are cablecast "Live" on Charter Communications Cable TV Channel 8 and are recorded to be rebroadcasted at 8:00 a.m. on the Wednesday following the meetings and at 1:00 p.m. on Saturday following the first rebroadcast on Community City Council Meeting Agenda – February 27, 2025

Television of Santa Cruz County (Charter Channel 71 and Comcast Channel 25). Meetings are streamed "Live" on the City's website by clicking on the Home Page link "Meeting Agendas/Videos." Archived meetings can be viewed from the website at any time.

From:	John <jxmulry@gmail.com></jxmulry@gmail.com>
Sent:	Friday, February 21, 2025 3:30 PM
To:	City Council; Gautho, Julia
Subject:	Item 6B
Follow Up Flag:	Follow up
Flag Status:	Flagged

Hello Neighbors

We can improve the bike lanes here too with flex posts and some lane right sizing. These lanes need not be so big. Perceived and actual friction greatly enhance all users safety.

Warmly JM

From:	John <jxmulry@gmail.com></jxmulry@gmail.com>
Sent:	Friday, February 21, 2025 3:19 PM
To:	City Council; Gautho, Julia
Subject:	Item 6C
Follow Up Flag:	Follow up
Flag Status:	Flagged

Hello Neighbors

25K is a lot of money for our small city. Such a budget change should be a public agenda item Imo.

Warmly JM

City Manager Department

To:	City Council	

From: Chloé Woodmansee, Assistant to the City Manager

Date: February 26, 2025

Re: Item 6D: MOU with the Capitola Police Officers Association

The proposed side letter, signed by the Capitola Police Officer Association President and Vice PresidentÊis attached.

Attachment:

1. Side Letter

SIDE LETTER

BETWEEN CITY OF CAPITOLA AND

CAPITOLA POLICE OFFICERS ASSOCIATION

WHEREAS, the City of Capitola (City) and Capitola Police Officers Association (CPOA), have met and conferred in good faith regarding incentive pay; and

WHEREAS, the City and the Union have previously agreed on an MOU with a term beginning on June 9, 2024, and expiring on June 30, 2027; and

WHEREAS It was determined that the changes to the language will maintain three separate Specialty Pay Paths while also incentivizing education; and

WHEREAS All other provisions in the MOU remain unchanged and shall remain in effect.

IT IS HEREBY AGREED AS FOLLOWS: The following articles shall be amended to read:

14.01 EDUCATIONAL INCENTIVE PAY

After successful completion of the probationary period, sworn police personnel and the Records Manager shall be eligible to have base pay increased by an additional two and one-half (2.5%) for completion of thirty (30) college units, five (5%) percent for completion of sixty (60) college units, and ten (10%) percent for completion of a bachelor's degree from an accredited institution. College units may include graduate level work. Courses and degrees must be work related as approved by the Department Head and City Manager.

To receive Educational Incentive, Pay, the Employee shall write a memo to his/her supervisor and include a copy of transcripts as evidence of the number of units required for the appropriate incentive pay. The supervisor will review the memo and send it to the Police Chief, who, in turn, will review it and send it to the City Manager for approval.

14.04 P.O.S.T. CERTIFICATE PAY - POLICE SERGEANTS

Sergeants shall be eligible to receive 2.5% increase in base pay for completion of the intermediate P.O.S.T. Certificate; an additional 2.5% for completion of the Advanced P.O.S.T. Certificate; and an additional 2.5% for completion of the P.O.S.T. Supervisory Certificate provided the employee has an A.A., A.S. or equivalent Degree. This Certificate Pay may not be collected in addition to education incentive pay. This program became effective 7-1-85.

Officers receiving 2.5% P.O.S.T. certification pay for completion of the Advanced P.O.S.T. Certificate as of February 21, 2025, may continue to receive it; no other Officers are eligible.

To receive P.O.S.T. pay, the employee shall write a memo to his/her supervisor including a copy of the appropriate P.O.S.T. Certificate. The Supervisor shall review the memo and send it to the Police Chief, who, in turn, shall review it and send it to the City Manager for review, and, if approved, it will be effective the first of the month after approval.

19.05 RECORDS MANAGER SPECIALTY PAY

Those members serving in the position of Police Records Manager shall receive an additional half (.5) percent specialty pay per year added to base pay (totaling 1.5%) for routinely and consistently supervising the handling of police records/evidence. This provision expires July 1, 2027.

All other provisions in the MOU remain unchanged and shall remain in effect.

Signed:

Capitola Police Officers Association

Aron Outors Aron Outoras, CPOA President

Date: 2/26/2025

Noan 50578719685000 Vice President

Date: 2/26/2025

City of Capitola

Jamie Goldstein, City Manager Date:

From:	John <jxmulry@gmail.com></jxmulry@gmail.com>
Sent:	Friday, February 21, 2025 3:28 PM
To:	City Council; Gautho, Julia
Subject:	Item 7B
Follow Up Flag:	Follow up
Flag Status:	Flagged

Hello Neighbors

Please listen to staff. A roundabout is the only non flow interruptive type of controlled intersection. It is safer for all users and greatly reduces traffic. It's almost aesthetically pleasing.

Studies also show stops of more than 4 ways, that is a 6 way used as an 8 way sometimes plus the Gayle's entrance, are near impossible for older humans to process. Our city has one of the oldest average ages of any comparable city in CA. We should build with our senior population in mind.

I recommend a protected separate bike lane and bollards everywhere, like Gayle's has bollards all over its property.

Also that Gayle's entrance is just so dangerous. It's superfluous. MORE parking could be added to that lot and its flow could be significantly improved by closing it. Wider sidewalks ever please. Watching strollers being diverted into the street because the sidewalks can't accommodate two way foot traffic makes me sad.

Warmly JM

From: Sent: To: Subject:	Kevin Maguire <kmaguire831@gmail.com> Friday, February 21, 2025 4:17 PM City Council 2.27.2025 City Council Meeting Agenda Item 7b Based on the Bay Avenue Corridor Study, the roundabout option (Alternative 2) presents several negative impacts on side streets and other streets with stop signs: 1. Increased Traffic on Side Streets Traffi</kmaguire831@gmail.com>
Follow Up Flag:	Follow up
Flag Status:	Flagged

I live on Monterey Ave, and traffic is backed up from about 445 pm till 5:45-6 pm down to Monterey Park, and NBMS on days with accidents or detours on the freeway.

Park Avenue is also backed up, and a lot of cut through traffic on Columbus, Sir Francis.

Right now we have a natural system that stops and then lets traffic flow. Stops and lets traffic flow.

By opening the flood gates at Bay/Hill, Bay and Capitola, Bay and Monterey. You will be impacting us down stream.

We need that data, and studied in the report. I know you are trying to make it better, but you also are making it worse for others.

It takes me 5-10 mins at times to turn into my driveway because traffic is at a standstill.

I found some flawed data, there might be more

споста у ана ане тасше из схрененения тезз а анте сопрезают.

Existing Conditions

Vehicles traveling northbound on the Alternative 1 Stop layout would have an average peak hour time of 2 minutes 9 seconds, and the estimated annual VHT from Park Avenue to SR1 is 62,501 vehours. The Alternative 2 Roundabout layout would have an average peak hour travel time of 1 mir 54 seconds and would have an annual VHT of 55,492 vehicle-hours. The Alternative 3 Signal layour would have an average peak hour travel time of 2 minute 50 seconds and would have an annual V 82,726 vehicle-hours.

Similarly, vehicles traveling southbound on the Alternative 1 Stop layout would have an average p hour travel time of 3 minutes 59 seconds, and the estimated annual VHT from SR1 to Park Avenue 98,494 vehicle-hours. The Alternative 2 Roundabout layout would have an average peak hour travel time of 3 minutes 4 seconds and usual hour an average between the Alternative 2 Roundabout layout would have an average peak hour travel time of 3 minutes 4 seconds and usual hour an average between the Alternative 2 Roundabout layout would have an average peak hour travel.

My assistance ChatGPT 4.0 analyzed the 334 paged, Here are some of the major issues and some proposed resolutions. (i dont think Traffic lights are it, but there was a time at Monterey and Kennedy there was no stop sign, same at Kennedy and Sir Francis.

Remove those, and put a roundabout at Park and Kennedy. You need to address the full flow of traffic at the bottle neck points we already have. .

The Bay Avenue Traffic Study was conducted to analyze the impact of proposed roadway modifications, including the introduction of a roundabout. However, several key flaws were identified in the study's methodology and reported data, potentially affecting the accuracy and reliability of its conclusions. This report consolidates these issues and provides targeted recommendations for improvement.

Key Identified Flaws and Recommendations

1. Data Collection Limitations

- Flaw: Data was collected on a single day (May 16, 2024), failing to account for daily, weekly, or seasonal fluctuations.
- **Recommendation:** Conduct multi-day, multi-seasonal data collection, including school days, weekends, and holidays.

2. Inconsistent Peak Hour Selection

- Flaw: The PM peak (3:55 4:45 PM) does not align with standard peak congestion periods (typically 4:30 6:00 PM).
- Recommendation: Expand study periods to two-hour windows for AM and PM rush hours (7:00 9:00 AM, 4:00 6:00 PM), and include a late evening period (6:00 8:00 PM).

3. Drone-Based Data Collection Issues

- Flaw: Potential inaccuracies due to obstructions (tree cover, shadows), Al misinterpretation of vehicle stops, and lack of ground-truth validation.
- **Recommendation:** Cross-validate drone data with **manual counting or ground sensors** and integrate **multiple data collection methods** (loop detectors, radar, video analysis).

4. Lack of Side-Street Impact Analysis

- Flaw: The study primarily examines Bay Avenue and fails to assess congestion at side streets and key intersections (e.g., Monterey & Park, Monterey & Kennedy, Park & Kennedy).
- **Recommendation:** Conduct a **side-street traffic impact analysis** using **Synchro modeling** to estimate increased wait times at stop signs.

5. Gaps in Pedestrian and Bicycle Safety Assessment

- Flaw: No detailed evaluation of pedestrian wait times, bicycle conflict zones, or traffic rerouting risks.
- **Recommendation:** Implement a **pedestrian delay study** and **bike lane conflict analysis** to determine potential safety concerns and mitigate risks.

6. Inconsistent Level of Service (LOS) Reporting

- **Flaw:** The study **uses different software models** (Synchro for signals, Sidra for roundabouts, VISSIM for road diets), leading to inconsistency.
- **Recommendation:** Standardize LOS calculations using **one traffic modeling software** (Synchro or Sidra) for uniform comparisons.

Conclusion & Next Steps

While the Bay Avenue Traffic Study provides useful insights, these **methodological flaws** weaken its reliability. Addressing these issues through **expanded data collection, improved modeling consistency, and additional safety analyses** will lead to **better-informed transportation planning decisions**.

Next Steps:

1. Expand data collection across multiple days and seasons.

- 2. Standardize two-hour peak period analysis.
- 3. Validate AI-based traffic detection with manual/sensor-based cross-checking.
- 4. Conduct side-street congestion modeling to assess stop sign delays.
- 5. Enhance pedestrian and bicycle safety assessments.
- 6. Standardize LOS calculations across all traffic models.

Implementing these improvements will enhance the study's accuracy and effectiveness in guiding future transportation policies.

- Kevin Maguire

Cliffwood Heights Capitola, CA

From:	Michael routh <qwakwak@icloud.com></qwakwak@icloud.com>
Sent:	Saturday, February 22, 2025 9:46 AM
To:	City Council
Subject:	Roundabouts: Mixed Results for Pedestrian and Cyclist Safety Smart Cities Dive
Follow Up Flag:	Follow up
Flag Status:	Flagged

Please read the attached article. If the goal is to improve pedestrian / cyclist safety at the Bay/Hill and Bay/Cap Ave intersections, a round-a-bout might not be the best configuration. Why not just eliminate the quick build and restore the Bay/Hill intersection to its previous configuration? The accident history at that intersection was nil and the fatality, to which the city over reacted, did not occur at that intersection. Once again, the city seems to be trying to solve a problem that doesn't exist.

Mick Routh

https://www.smartcitiesdive.com/ex/sustainablecitiescollective/roundabout-safety-mixed-results-pedestrians-cyclists/122461/

Sent from my iPad

From:	mpisanoful@gmail.com
Sent:	Tuesday, February 25, 2025 9:05 AM
To:	City Council
Subject:	Bay Ave - Overhead Solar LED Lighting
Follow Up Flag:	Follow up
Flag Status:	Flagged

Hi Capitola City Council,

In pavement lighting fixtures help keep pedestrians safe at crosswalks - links. https://xwalk.com/?gclid=CjwKCAjw7rWKBhAtEiwAJ3CWLHUbm7CJm0OIe7bdvDDQTu-6TfHE-QRviq5JTGCpd9AUsIo5Bka3uhoC1GoQAvD BwE

https://lanelight.com/products/pedestrian-crosswalk-lights/

Overhead crosswalk lighting - links; https://carmanah.com/overhead-lighting-crosswalks/

https://www.traffictechnologytoday.com/news/vulnerable-road-users/crosswalk-night-time-safety-system-launched-atatssa-expo.html

Thank you for your time Michael Pisano – Soquel, CA

From:	Matt Miller <matt.miller@ecoact.org></matt.miller@ecoact.org>
Sent:	Wednesday, February 26, 2025 4:43 PM
То:	City Council
Subject:	[PDF] City Council Meeting 2/27, Item 7.B.
Attachments:	City of Capitola - Letter of Support for Bay Avenue Corridor.pdf

Hello City of Capitola team,

Please find the attached letter of support for staff recommendations on Item 7.B.

Thank you for your time and consideration,

Matt Miller (he/him) Director, Mobility Transformation

Office **831.515.1324** | Mobile **916.849.6220** 877 Cedar St. Suite 240, Santa Cruz, CA 95060 letsmodo.org | vamosmodo.org

2/26/25

City of Capitola City Council 420 Capitola Avenue Capitola, CA 95010 RE: Item 7.B. Bay Avenue Corridor Study

Dear Mayor Clarke and Capitola City Council,

Ecology Action, a California environmental non-profit headquartered in Santa Cruz, works to advance equitable community climate solutions in high greenhouse gas emitting sectors, including transportation. Our Modo Active Transportation team offers youth pedestrian and bike safety education at schools across the county, including Capitola, transportation planning like Complete Streets to School and Active Transportation Plans, and hosts community events like Walk and Roll to School Day, and Bike to Work Day, Bike Month, and Biketober. While bicycle and pedestrian safety and encouragement programs are an important part of the local effort to increase walking and biking, we also appreciate that the physical infrastructure community members must navigate needs to be safe, easy, and accessible to use for all modes of transportation. Today that picture is incomplete in Capitola.

We support Capitola staff's recommendation to 1) identify Alternative 2 as the preferred long-term improvement alternative for the Bay Avenue corridor; 2) authorize staff to proceed with public engagement and conceptual design refinement; and 3) direct staff to pursue grant funding opportunities for final design and construction.

In the staff cited case study of La Jolla Boulevard in San Diego, it's notable that project saw a four-lane road reduced to a two-lane road and the traffic count remained approximately the same (23,000 vehicles per day before, 22,000 after), but walking, bicycling, transit use, on-street parking and retail sales all climbed to much higher levels, the accordingly to the City of San Diego. Retail sales rose 30 percent and noise levels dropped 77 percent. Because traffic moves slower, businesses report higher visibility. As a result of the roundabouts and traffic calming, speeds were reduced from 40–45 mph to 19 mph, according to city transportation engineers. Traffic crashes fell by 90 percent. Motorists understandably dreaded this change before it was made. But they found that instead of waiting 24 seconds for a pedestrian to cross 70 feet of road, they now only wait 3–4 seconds, or don't have to wait at all. Businesses that feared the loss of customers arriving in cars actually improved their trade. All those changes demonstrate that a traffic calmed street with roundabouts treatments can lead to improvements in safety, flow, emissions reduction, and more attractive spaces for to walk, bike, and roll which means higher quality of life for all.

When the Santa Cruz County Delegation traveled to the Netherlands for a study visit in June 2024, we studied roundabouts and learned they are a widely used Dutch strategy to reduce traffic casualties and serious injury, slow speed for all users, improve eye contact and interaction between road users, and once installed there is no operational cost. Compared to a four-way intersection with 32 conflict points, roundabouts have 8 conflict points. We encourage the exploration of Dutch style roundabouts in Capitola to ensure dedicated spaces for cars, bikes, and pedestrians.

This concept can improve inequities by closing a gap in existing multimodal infrastructure and expanding travel options for those who do not or cannot travel by vehicle. It encourages a mode shift from single-occupancy vehicles to bicycling and walking and reduces VMT and GHG emissions by providing a safer, comfortable, and accessible alternative to driving. For those who choose to or only have the option to drive, the experience for drivers will be improved with better flow and reduced likelihood of crashes. Residents and visitors will especially choose to bicycle and walk during periods of high automobile congestion to reduce travel times and provide reasonable alternatives.

Ecology Action strongly supports the implementation of the staff recommendation to proceed down this path of Alternative 2. If eventually implemented, it will greatly improve Capitola's active transportation network, increase safety, and improve the livability, equity, and quality of life for residents and visitors alike.

Sincerely,

2Mo Milla

Matt Miller Director, Mobility Transformation

From:	John <jxmulry@gmail.com></jxmulry@gmail.com>
Sent:	Thursday, February 27, 2025 9:27 AM
To:	City Council
Subject:	Roundabout at Bay Capitola
Follow Up Flag:	Follow up
Flag Status:	Flagged

I cannot stress enough how bad traffic will be in a couple of years if we don't put a roundabout there.

We have nearly bricked the city. Voting for anything but a roundabout there will be the nail in our coffin. Roundabouts are scary only to people who have never been outside Santa Cruz. If you have traveled roundabouts are ubiquitous because long term they save jurisdictions SO much money.

Our Calpers UAL is gonna be 15% of our total budget by 2025. We need to be smart with our money and think like elite educated worldly folks do. ROI ROI

Warmly JM

From:	John <jxmulry@gmail.com></jxmulry@gmail.com>
Sent:	Friday, February 21, 2025 3:44 PM
To:	City Council; Gautho, Julia
Subject:	Item 7C
Follow Up Flag:	Follow up
Flag Status:	Flagged

Hello Neighbors

Let's not spend 40K making everything more dangerous for all users for a perceived illusion of a problem that the data in the staff report shows isn't even a real problem. The highway ramp might eventually reopen. Capitola Ave in theory will someday reopen too. That will greatly relieve traffic there.

I understand how much folks hate driving. Being chained in a steel cage you can't leave or you'll die sucks. Let's be data driven. Build for wealth and the future. Raised crosswalks I am however into. Let's add that feature if we want to spend 40K.

Those crosswalks are SIGNIFICANTLY safer compared to the old design especially at night.

Mayor Brown was damn close to right just before the November election when she said 'We need to make it harder to own a car'. What we need to do is make it easier to walk and bike and exist without needing to drive everywhere. For all the reasons from the environment to health to budgets to wealth creation but most of all for our kids.

The sheer multitude of complainers about e-bikes. Build safe bike infrastructure is the solution to that also not real problem. Kids deserve some freedom. When I was a lad I was walking to my friends' houses and home and to school at 6 years old and that was commonplace. The cars are killing us folks.

Plus, and I'm going to say worse here because money motivates more than service as Yvette Brooks shows us, the cars are making us poor.

How are we still not paving Monterey into the village? Is the rail trail going to do it for us?

Warmly JM

From:	Mick <qwakwak@gmail.com></qwakwak@gmail.com>
Sent:	Saturday, February 22, 2025 11:57 AM
To:	City Council
Subject:	Item 7C
Follow Up Flag:	Follow up
Flag Status:	Flagged

Council members-

How much money has been spent on staff time, studies, and the poor decision to build the "quick build" at the Bay / Hill intersection?

Keep in mind this all started with an over reaction by the council to an unfortunate fatal hit and run accident that didn't even occur at this intersection.

The most cost effective and sensible solution is to return the intersection to the previous configuration prior to the quick build changes.

Mick Routh

Sent from my iPhone

I prepared this presentation for the meeting that was cancelled two weeks ago. I am unable to attend the meeting on February 27th, so I'm submitting this to you.

MΜ

I believe the accident that occurred at the intersection of Bay Ave and Crossroads Loop was tragic.

The former City council was bombarded with an outcry from the public, and analysts moved to present a plan that would solve the problem.

That did not happen. The plan that was submitted handcuffed the intersection without addressing the real problem: **LIGHTING**.

The death that outcried did not even happed in the Bay/Hill Intersection, Yet, because of the constant complaints of the senior housing at Bay and Center, this intersection was targeted for traffic calming and other unproductive features.

The proximity of this intersection to Highway One makes it a critical piece of infrastructure.

The idea was ill thought out, and the results have been horrific. Unnecessary traffic with no goal other than let's try something.

Rule #1 in medicine (and life), do no harm. This was a harmful experiment.

What is needed in the intersection is the installation of Lighting. A lone PG & E provide LED light does not provide adequate lighting for pedestrian safety.

The placement of multiple light poles at this intersection with power readily available at Peets and Nob Hill market would improve the lighting, and save lives, at a fraction of the cost.

The other improvement is to install the long overdue 3-way stop & cross walk at the intersection of Bay and Center. This would end the constant drag strip racing from Nob Hill to Gayles by an overwhelming number of drivers. It would also provide a safe place for seniors to cross to get to the Nob Hill Center without interacting with11 lanes at the Hill Street intersection. Lighting again is the key to the success of this intersection. I have also identified other intersections in the city where lighting is not only inadequate, but dangerous. Bank of America has adopted a new approach to patron safety. If you want to see what LED lights can do to an area, take a drive-by at night. In this type of forward envisioning pedestrians become visible and safe.

Please return the intersection and traffic to normal.

Please do not consider other non-effective options (traffic signal, roundabout, etc.) that would cost hundreds of thousands of dollars.

This remedy is an inexpensive simple solution.

Ed Bottorff

Bay Ave. 4 way stop improvement proposal

Problem: Resolve public concerns following pedestrian fatality.

Universal Rule #1: Do no harm

Flaws with current proposal:

- 1) Did not address original problem
- 2) Victim was killed in a different intersection
- 3) 4-way stop that is disliked by seniors was prioritized
- 4) Restricted vehicle flow crippled intersection & increased traffic
- 5) Solution caused cut through Nob Hill bypass of traffic
- 6) Did not resolve real reason for additional accidents/fatalities
- 7) Test plan involved frivolous spending of city funds
- 8) Does not address flaws with the main intersection

Factors to consider:

- 1) Desired outcome for intersection
- 2) Time frame for solution
- 3) Revenue for a solution
- 4) Key components for a solution
- 5) Long time desire to prevent Bay Ave speedway to/from Gayles
- 6) Senior Housing facility enhanced pedestrian access/safety.
- 7) PGE provided free lighting is inadequate for pedestrian safety.

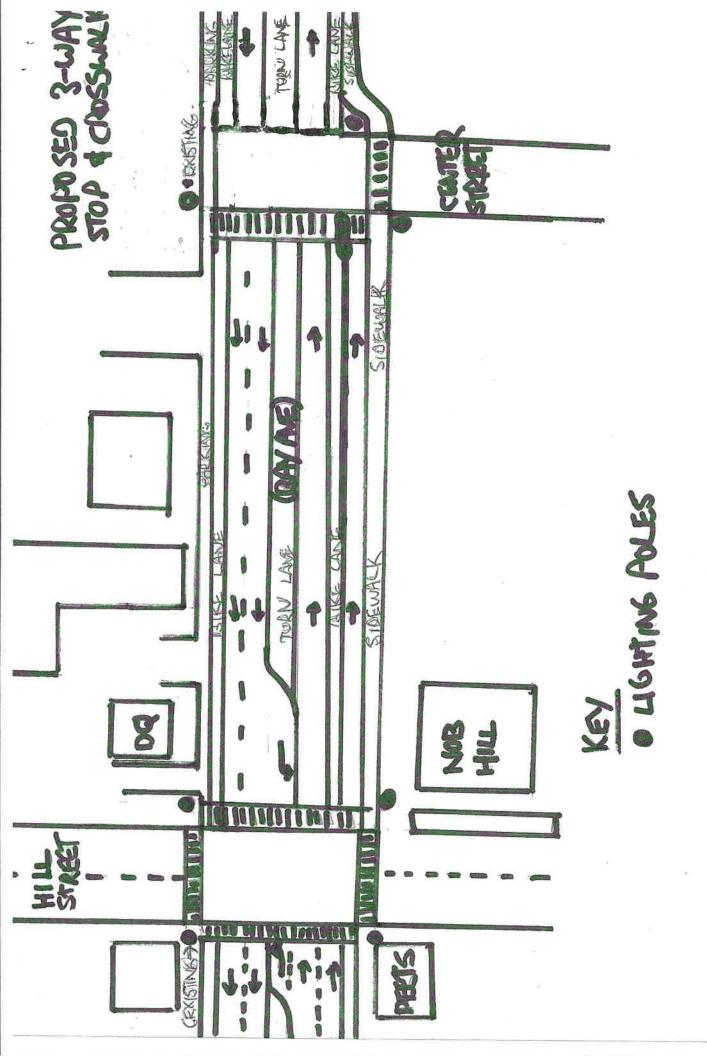
Proposed Solution

- 1) Remove ALL Bay/Hill St calming additions
- 2) Address inadequate lighting at Bay/Hill
- 3) Install New 3-way stop/crosswalk at Bay/Center
- 4) Install adequate lighting at Bay/Center

*Inadequate lighting at intersections is the main cause of past, current, and future pedestrian fatalities and accidents.

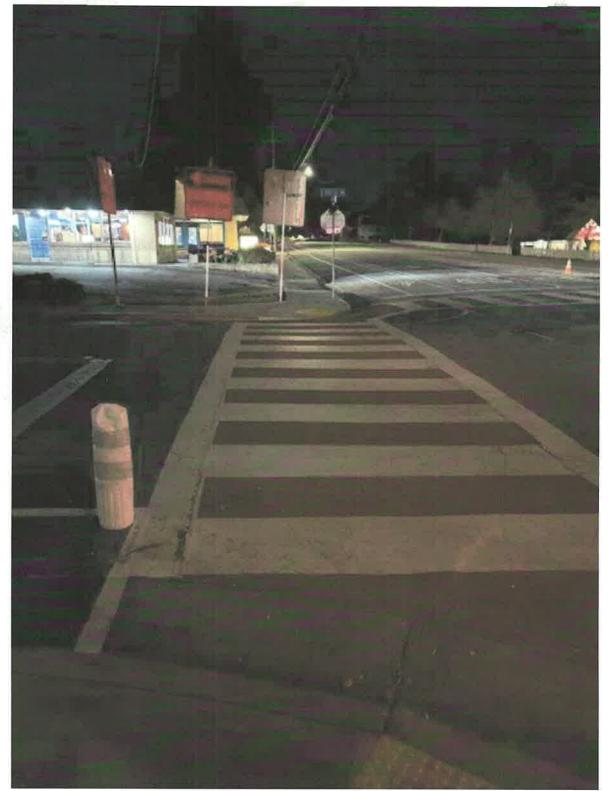
*Increased LED Headlights in intersections can cause blinding of other drivers

*Focus is being returned to nighttime visibility and safety over lighting subtlety

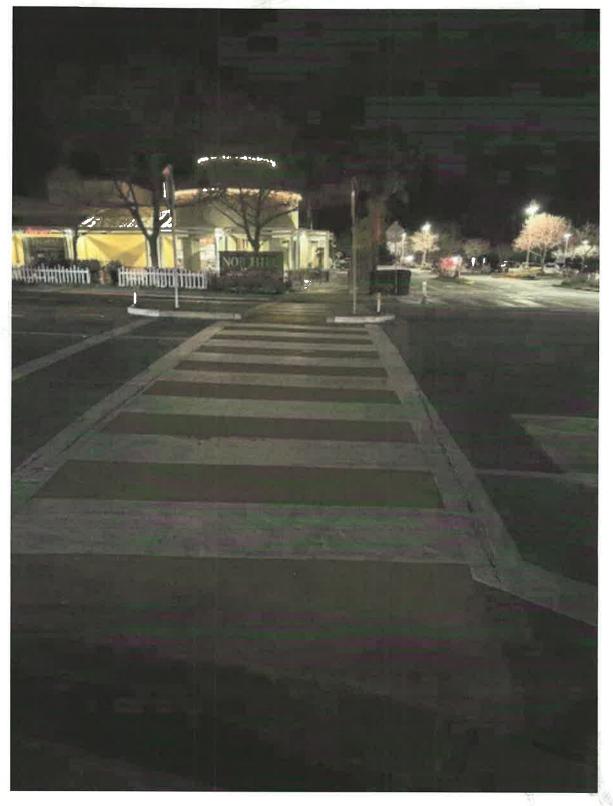

*Center St. Crosswalk/3 way stop allows senior access to Nob hill closer to their building main entrance and away from the congested Hill/Bay intersection, avoids all strip mall business and drive thru interactions, and ceases Gayles to Hill Street speedway.

*Adequate lighting outlets are available at all points.

*Prototype for 3 additional inadequate high pedestrian intersections


located throughout the city. (Bay/Capitola Ave, Bay/Monterey, Monterey/Park,

*4-way stop will allow for easier access to Bay Ave. from the Senior Housing parking lot.

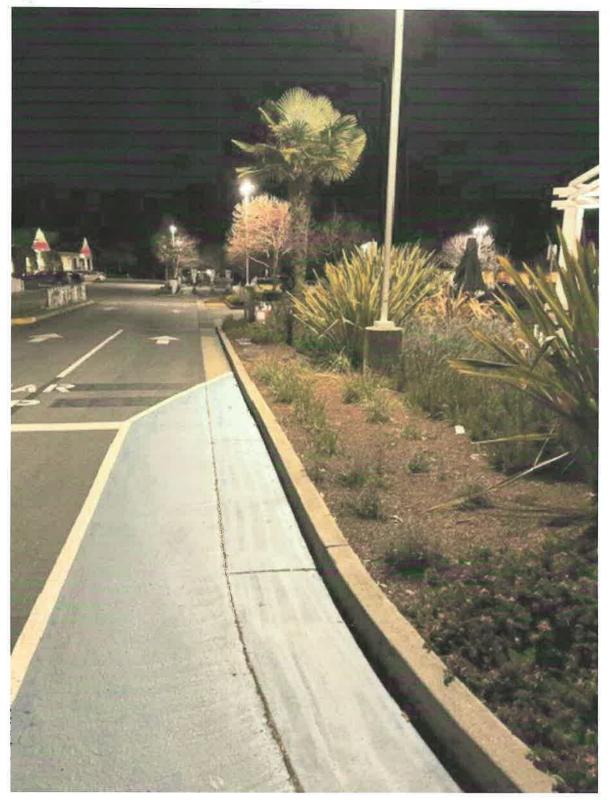


27

BAY HILL CROSSWALK AT NIGHT

BAY HILL CROSSWALK AT NIGHT

BAY HILL CROSSWALK AT NIGHT



Item 3 E.

OVERHEAD LIGHTING AT NOB HILL

OVERHEAD LIGHTING AT NOB HILL AT NIGHT 🛹

BANK OF AMERICA WITH NEWLY INSTALLED LED LIGHTS


Item 3 E.

READILY AVAILABLE POWER SOURCE FOR LIGHTS AT NOB HILL

Item 3 E.

READILY AVAILABLE POWER SOURCE FOR LIGHTS AT NOB HILL

BAY AND MONTEREY CROSSWALK AT NIGHT

BAY AND MONTEREY CROSSWALK AT NIGHT

Gautho, Julia

From: Sent: To: Subject: Teresa Maguire <tlcmaguire@gmail.com> Tuesday, February 25, 2025 5:08 PM City Council Agenda item 7C - Please do more in-depth traffic analysis for us that are down stream that already have bad traffic issues!

Dear Capitola City Council,

I am writing to formally request a more in-depth traffic analysis regarding the negative downstream impacts of the Bay Avenue modifications, specifically the introduction of a roundabout and the resulting increased congestion on surrounding streets. As the owner and operator of a child care facility located in Capitola, I have observed significant traffic issues that have worsened during peak hours, particularly from **4:30 PM to 6:00 PM**, coinciding with our busiest pickup time.

The increased congestion in front of my house has **created hazardous conditions for families picking up their children**, with vehicles frequently stopping in unsafe locations, longer queue times, and heightened risks for pedestrians. Additionally, emergency vehicle access is often obstructed, which poses a serious concern for the safety of the children and families in our care. Many families have expressed frustration over the growing delays, making it harder for them to navigate pickup logistics safely and efficiently.

I kindly urge the city to conduct a **deeper traffic study** on the impact these changes have on nearby streets, including Monterey Avenue, Park Avenue, Kennedy Drive, and other surrounding residential streets.

Maybe the answer is to put a roundabout at Kennedy and Park Avenue first so traffic can flow to the freeway, and work your way back to Bay/Porter.

It's ok to ask for more time, and to do this the proper way. Please dont create more issues while trying to solve a problem someone else in town.

Comparing Bay/Porter right off of HW1 to Bird Rock which is over 4 miles away from the freeway is not a very good comparison. La Jolla Boulevard is longer and straight, and doesn't have the freeway traffic being dumped there.

Thank you for your attention to this urgent matter. I look forward to your response and hope to see proactive steps taken to ensure the safety and well-being of Capitola residents, particularly young children and families.

Sincerely, Teresa Maguire Capitola, CA

Gautho, Julia

From:	Team Wanderweggers <jxmulry@gmail.com></jxmulry@gmail.com>
Sent:	Wednesday, February 26, 2025 6:22 PM
To:	City Council; Gautho, Julia
Subject:	Bay Hill Intersection Mayor Ed Letter
Follow Up Flag:	Follow up
Flag Status:	Flagged

Hello Neighbors

Mayor Ed is entirely correct about needing more features like lighting at Bay/Hill. He's wrong about the other stuff imo but we do share an interest...

As many of you know a crosswalk at center there across Bay Ave is a longtime dream of mine. I see so many (often older) folks run that intersection there and at Oak Drive.

Center is a natural place for a crosswalk as Center connects to Peery Park, the Nob Hill Center, Rispin Park, the Library and is the obvious walking route to 41st and the Clares area.

A crosswalk there is a no brainer. Please add my voice to Mayor Ed's.

Warmly JM

Capitola City Council Agenda Report

Meeting: February 27, 2025

From: City Manager Department

Subject: City Council Meeting Minutes

<u>Recommended Action</u>: Approve minutes from the regular meeting on February 13, 2025, and the special meeting on February 19, 2025.

<u>Background</u>: Attached for City Council review and approval are the draft minutes from the regular meeting on February 13th and the special meeting on February 19th.

Attachments:

- 1. Regular Meeting Minutes 2/13/2025
- 2. Special Meeting Minutes 2/19/2025

<u>Report Prepared By</u>: Julia Gautho, City Clerk <u>Approved By</u>: Jamie Goldstein, City Manager

City of Capitola City Council Meeting Minutes Thursday, February 13, 2025 – 6:00 PM

City Council Chambers 420 Capitola Avenue, Capitola, CA 95010 201 'Ōhua Avenue, Honolulu, Hawaii 96815

Mayor:Joe ClarkeVice Mayor:Alexander PedersenCouncil Members:Gerry Jensen, Margaux Morgan, Melinda Orbach

Closed Session – 5 PM

- i. CONERENCE WITH LABOR NEGOTIATORS (Gov. Code § 54957.6) Negotiator: Jamie Goldstein, City Manager Employee Organizations: Police Officers Association
- ii. CONFERENCE WITH REAL PROPERTY NEGOTIATORS (Gov't Code § 54956.8) Property: Esplanade Park (APN 035-26-209) City Negotiator: Jamie Goldstein, City Manager Under Negotiation: Lease of Real Property

Regular Meeting of the Capitola City Council – 6 PM

- 1. Roll Call and Pledge of Allegiance The meeting was called to order at 6:00 PM. In attendance: Council Members Jensen, Morgan, Orbach, Persen, and Mayor Clarke. Council Member Orbach attended the meeting remotely.
- 2. Additions and Deletions to the Agenda Staff continued Items 9A and 9B to the February 27, 2025, meeting.

3. Presentations

- A. Public Works Project Manager Mozumder provided a presentation on the project completion of the Monte Foundation Pump Track.
- 4. Report on Closed Session The City Council met and discussed two items on the Closed Session agenda. No reportable action was taken.

5. Additional Materials

- A. Item 6 One email received after publication of the agenda packet.
- B. Item 9A Staff Memo continuing the item to February 27th meeting & one email received after publication of the agenda packet.
- C. Item 9B Staff Memo continuing the item to February 27th meeting & one email received after publication of the agenda packet.
- D. Item 9C 220 emails received after publication of the agenda packet.
- E. Item 9D One email received after publication of the agenda packet.

6. Oral Communications by Members of the Public

- Goran Klepic
- Clark Cochran
- Christine McBroom

7. Staff / City Council Comments

- Community Service and Recreation Department Director invited the City Council and members of the public to attend the dedication of the Begonia Public Art installation.
- Council Member Jensen thanked Public Works Department staff for their storm preparation work; he also shared that he had attended the Capitola Village and Wharf BIA meeting and discussed the fire incident in the Capitola Village.
- Mayor Clarke thanked the public for their attendance at an event held in the Sear's shopping center at the Capitola Mall.

8. Consent Items

- A. City Council Meeting Minutes <u>Recommended Action</u>: Approve minutes from the regular meeting on January 30, 2025, and the special meeting on February 4, 2025.
- B. 2025 City Council Meeting Schedule <u>Recommended Action</u>: Adopt a resolution amending the regular meeting schedule for 2025. (Resolution No. 4417)

Motion to approve the Consent Calendar: Council Member Morgan Second: Council Member Jensen

Voting Yea: Council Members Jensen, Morgan, Orbach, Vice Mayor Pedersen, Mayor Clarke

9. General Government / Public Hearings

A. Bay Avenue Corridor Study

<u>Recommended Action</u>: Staff recommends the City Council 1) identify Alternative 2 as the preferred long-term improvement alternative for the Bay Avenue corridor; 2) authorize staff to proceed with public engagement and conceptual design refinement; and 3) direct staff to pursue grant funding opportunities for final design and construction. *(Continued to February 27, 2025)*

- Bay Avenue and Hill Street Traffic Safety Update <u>Recommended Action</u>: Provide direction on short-term modifications to the Bay Avenue and Hill Street intersection. (Continued to February 27, 2025)
- C. Park Avenue Traffic Calming Improvements with Coastal Rail Trail Options <u>Recommended Action</u>: Review options for Coastal Rail Trail improvements in the Park Avenue right-of-way and identify Option A (as described in the staff report) as the preferred alternative for further analysis.

Vice Mayor Pedersen recused himself from this item due to the proximity of the project to his leased residence.

Public Works Department Director Kahn and Public Works Project Manager Mozumder presented the staff report. Rob Tidmore and Grace Blakeslee presented on behalf of Santa Cruz County staff.

The City Council took a three-minute recess at 7:27 PM. The meeting resumed at 7:32 PM.

Public Comments:

- Tory Del Favero
- Jim Weller
- Carin Hanna
- Roxanne
- Debbie Hale
- Deb Molina
- Elizabeth
 Bertrand
- James Duzak
- Leslie
 Nielsen

- Lani Faulkner
- Michael
- Morrissey
- Terre Thomas
- Brian
 Peoples
- Keith Cahalen
- Susan
 Westman
- Sal Ideoseo

- Nels
 Westman
- Connie Welch
- TJ Welch
- Ted Downing
- Kevin
 Maguire
- Barry Scott
- Gia Colosi
- Samson
- Jacques Bertrand

The City Council thanked the public for their comments. The Council weighed the benefits of postponing providing direction on this item to receive information from the County on the project budget and requested that staff conduct additional public outreach and host a town hall meeting to better inform the public. The Council requested further analysis from the City Attorney on potential litigation from violations of Measure L.

Motion to postpone a decision on this item and host a Town Hall Meeting where staff from the City and County will provide updates on the use of the Trestle, review long-term impacts of the project, review impacts of potential litigation from Measure L, and an overview of Rail Trail Project impacts in Capitola: Council Member Morgan Second: Council Member Jensen Voting Yea: Council Members Jensen, Morgan, Mayor Clarke Voting Nay: Council Member Orbach Abstain: Vice Mayor Pedersen

The Council took a brief recess. The meeting resumed at 9:01 PM.

D. Appointments to City and Regional Advisory Bodies <u>Recommended Action</u>: Review City Council appointments to regional and multi-jurisdictional advisory bodies; review City Council appointments to City advisory bodies; and review appointments of members of the public to City advisory bodies.

City Clerk Gautho presented the staff report.

Public Comments:

• Keith Cahalen

Council Discussion:

Motion to make the appointments below to various regional and City advisory bodies: Council Member Jensen

Second: Council Member Morgan

Voting Yea: Council Members Jensen, Morgan, Orbach, Vice Mayor Pedersen, Mayor Clarke

- AMBAG: Council Member Orbach, Council Member Morgan (Alternate)
- COE: Mayor Clarke

- FAC: Vice Mayor Pedersen, Council Member Morgan
- Arts Council Santa Cruz: Art and Cultural Commissioner Roy Holmberg
- **10. Adjournment** The meeting adjourned at 9:06 PM. The next regularly scheduled City Council meeting is on February 27, 2025, at 6:00 PM.

Joe Clarke, Mayor ATTEST: Julia Gautho, City Clerk

City of Capitola Special City Council Meeting Minutes Wednesday, February 19, 2025 – 6:00 PM

City Council Chambers 420 Capitola Avenue, Capitola, CA 95010

Mayor:Joe ClarkeVice Mayor:Alexander PedersenCouncil Members:Gerry Jensen, Margaux Morgan, Melinda Orbach

Closed Session – 6 PM

1. Roll Call – The meeting was called to order at 6:00 PM. In attendance: Council Members Jensen, Morgan, Orbach, and Mayor Clarke. Absent: Vice Mayor Pedersen.

2. Oral Communications by Members of the Public

- A. Additional Materials Item 3A Three emails received after publication of the agenda packet.
 - TJ Welch
 - Speaker
 - Leslie Nielsen
 - John Mulry
 - Dean Cutter
 - Speaker
 - Kevin Maguire
 - Gayle Ortiz
 - Keith Cahalen
 - Christine McBroom
 - Susan Westman
 - Tory Del Favero
 - Elizabeth Bertrand
 - Grace Gretzly

3. Closed Session Items

A. CONFERENCE WITH LEGAL COUNSEL - ANTICIPATED LITIGATION Significant Exposure to Litigation Pursuant to Govt. Code § 54956.9(d)(2) One Case

The City Council adjourned to Closed Session at 6:24 PM. The City Council reconvened at 8:07 PM.

- 4. Report on Closed Session The City Council discussed one item on the Closed Session agenda. No reportable action was taken.
- **5.** Adjournment The meeting adjourned at 8:07 PM. The City Council will hold a special meeting on February 26, 2025, at 5:30 PM.

ATTEST:

Joe Clarke, Mayor

Julia Gautho, City Clerk

Capitola City Council Agenda Report

Meeting: February 27, 2025

From: Public Works Department

Subject: FY 2024-25 Pavement Maintenance Project

<u>Recommended Action</u>: Approve the plans, specifications, and construction budget of \$589,000 for the FY 2024-25 Pavement Management Project; and authorize the Department of Public Works to advertise for construction bids.

<u>Background</u>: On June 9, 2022, the City Council approved the 2022 Pavement Management Project Update (PMP), which outlines specific streets scheduled for rehabilitation based on pavement conditions and long-term maintenance planning. The project list was amended in 2022, replacing Terrace Way and San Jose Avenue (originally scheduled for FY 2025-26) with Reposa Avenue and the southernmost portion of 41st Avenue in FY 2024-25, as directed by the Council.

The FY 2024-25 Pavement Management Project is funded exclusively by Measure D and SB1 revenues, estimated at \$621,000 for this fiscal year. The planned streets for rehabilitation in FY 2024-25, per the 2022 PMP, include:

Road Name	Begin Location	End Location	
42ND AV	CAPITOLA RD	CLARES ST	
47TH AV	PORTOLA DR	TOPAZ ST	
ALMA LN	ROSEDALE AV	East End	
BEVERLY AV	RIVERVIEW DR	CAPITOLA AVE	
CARL LN	ROSEDALE AV	East End	
CHERRY AV	FANMAR WY	PARK PL	
CLIFF DR	WHARF RD	OPAL CLIFF DR	
FRANCESCO CR	FRANCESCO CR (S)	FRANCESCO CR (N)	
FRANCESCO CR	FRANCESCO CR (N)	CLARES ST	
HILL ST	BAY AV	East End	
OAK DR	RIVERVIEW DR	BAY AV	
OPAL CLIFF DR	CLIFF DR	City Limit	
PLUM ST	ROSEDALE AV	East End	
PORTOLA DR	OPAL CLIFF DR	City Limit	
RIVERVIEW AV	TRESTLES	BAY AV	
ROSEDALE AV	HILL ST	PINE ST	
ROSEDALE CT	West End	ROSEDALE AVE	
SAN JOSE AV	CAPITOLA AV	TERRACE WY	
STOCKTON AV	CAPITOLA AV	CLIFF DR	
SUNSET DR	RIVERVIEW DR	CENTER ST	
TERRACE WY	SAN JOSE AV	FANMAR WY	

Adopted 2022 PMP FY 2024-25 Street List

Most of these streets are scheduled for light maintenance treatments, such as slurry seal and isolated dig-outs as needed. The goal is to preserve streets in good condition following the PMP's approach of maintaining roads before major deterioration occurs.

<u>Discussion</u>: Since the 2022 PMP's approval, several additional roadway projects have required scope adjustments:

• Cliff Drive, Opal Cliffs, and Portola Drive will not be repaved this year due to their inclusion in the upcoming Cliff Drive Resiliency Project, a long-term infrastructure improvement effort.

- Stockton Avenue has been removed from the FY 2024-25 scope due to upcoming utility projects, which will require significant roadway work.
- San Jose Avenue was repaved ahead of winter 2025 due to its designation of "extremely poor" condition.

Reposa Avenue is proposed as an add alternate in the project scope for FY 2024-25, currently deferred to FY 2025-26 and can be added to the project if bids are received under budget.

Looking ahead, 41st Avenue rehabilitation between Clares Street and the northern city limits is being advanced to FY 2025-26 from its original FY 2027-28 schedule, due to additional funding awarded in the 2023 Consolidated Grant Program from the Regional Transportation Commission (RTC). On September 12, 2024, the Council approved a budget amendment to obtain a Caltrans permit for this project. Staff is currently working on securing the permit, with construction planned for FY 2025-26. Additionally, the FY 2025-26 street list may be adjusted, pushing certain Village area streets to FY 2027-28 due to expected utility work.

Road Name	Begin Location	End Location
42ND AV	CAPITOLA RD	CLARES ST
47TH AV	PORTOLA DR	TOPAZ ST
ALMA LN	ROSEDALE AV	East End
BEVERLY AV	RIVERVIEW DR	CAPITOLA AVE
CARL LN	ROSEDALE AV	East End
CHERRY AV	FANMAR WY	PARK PL
FRANCESCO CR	FRANCESCO CR (S)	FRANCESCO CR (N)
FRANCESCO CR	FRANCESCO CR (N)	CLARES ST
HILL ST	BAY AV	East End
OAK DR	RIVERVIEW DR	BAY AV
PLUM ST	ROSEDALE AV	East End
RIVERVIEW AV	TRESTLES	BAY AV
REPOSA AV (ADD ALT)	38TH AV	41ST AV
ROSEDALE AV	HILL ST	PINE ST
ROSEDALE CT	West End	ROSEDALE AVE
SUNSET DR	RIVERVIEW DR	CENTER ST
TERRACE WY	SAN JOSE AV	FANMAR WY

Recommended PMP FY 2024-25 Street List

<u>Fiscal Impact</u>: The FY 2024-25 budget includes \$621,161 for general pavement maintenance. Of this amount, \$32,380 was spent earlier in the fiscal year on San Jose Avenue, leaving approximately \$589,000 available for the PMP. The engineer's estimate for this project is \$589,546 (Attachment 2).

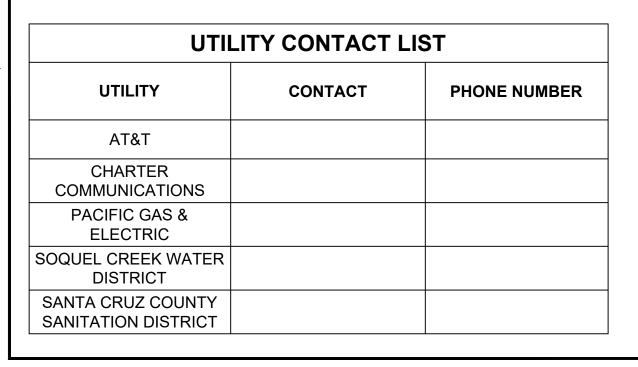
<u>California Environmental Quality Act (CEQA)</u>: This project is categorically exempt under CEQA Guidelines Section 15301(c) for the maintenance, repair, or minor alteration of existing facilities, as it consists of repair and maintenance of existing public infrastructure with negligible or no expansion of use.

Attachments:

- 1. Project Plans
- 2. Engineer's Estimate

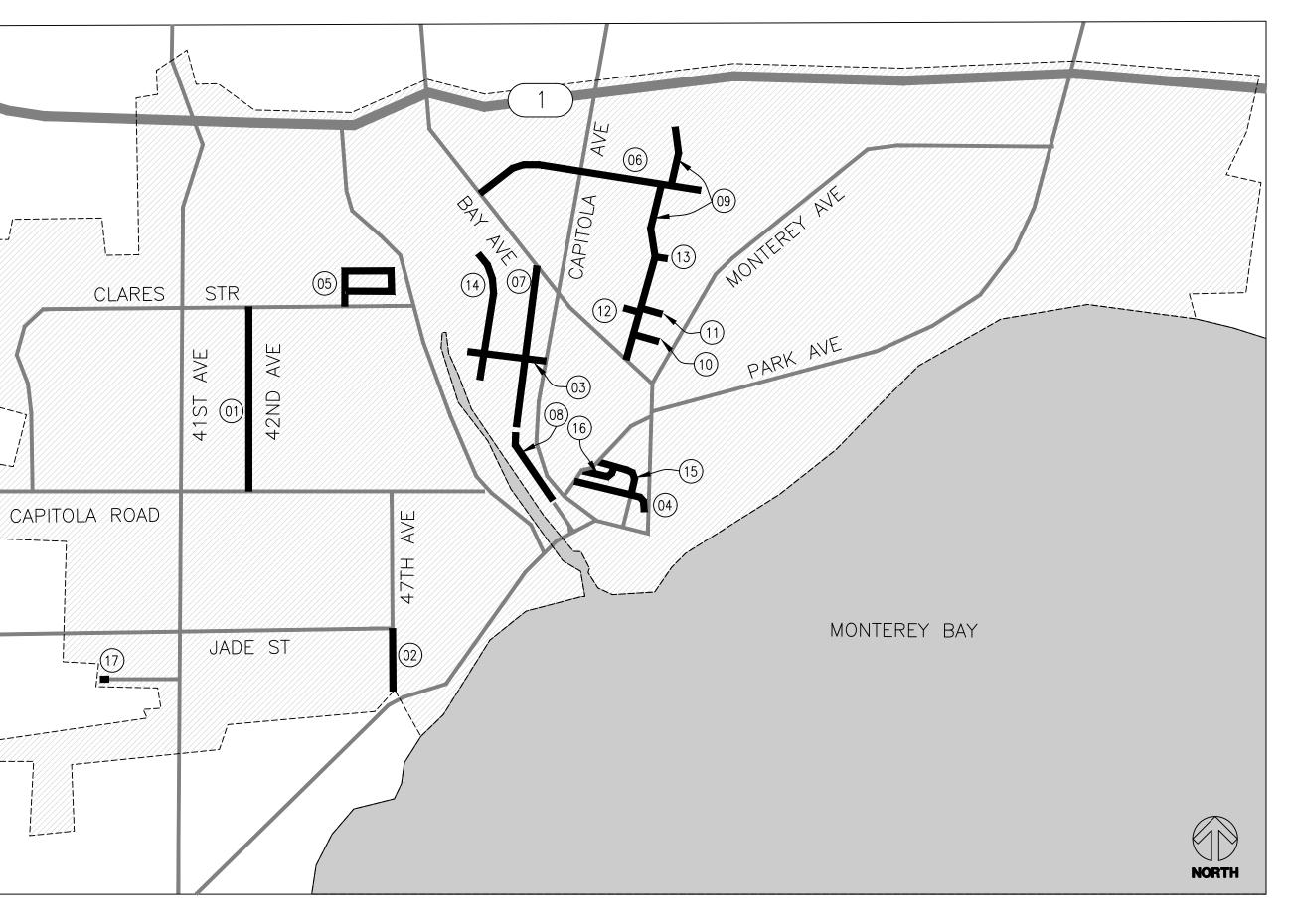
Report Prepared By: Jessica Kahn, Public Works Director;

Reviewed By: Julia Gautho, City Clerk; Samantha Zutler, City Attorney


Approved By: Jamie Goldstein, City Manager

57774

--,(17)

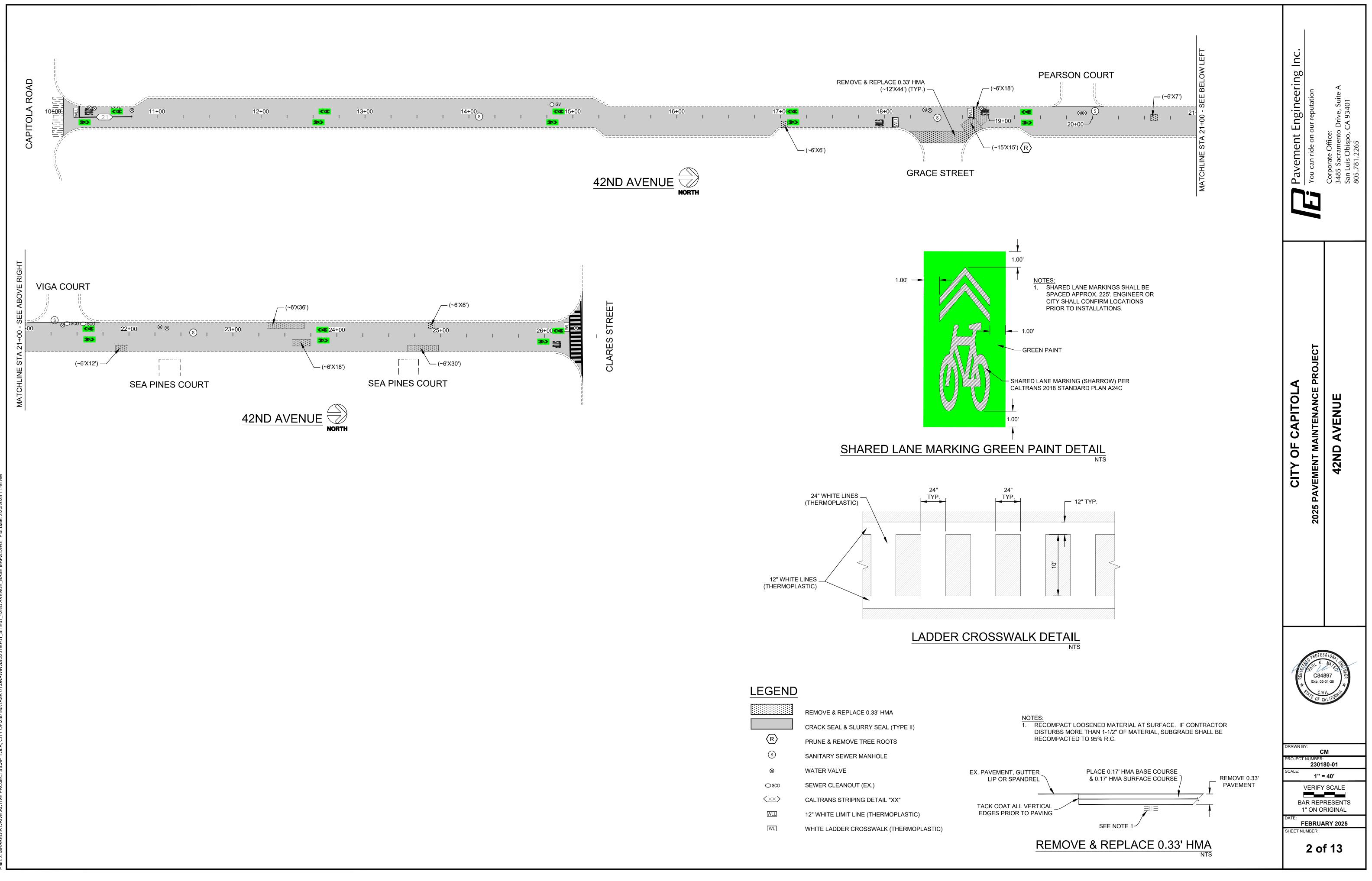


- CONTRACTOR IS RESPONSIBLE FOR OBTAINING ALL NECESSARY PERMITS TO 1 COMPLETE WORK.
- FOR AREAS TO BE REMOVED & REPLACED, CONTRACTOR SHALL ONLY 2. REMOVE MATERIAL QUANTITIES THAT CAN BE REPLACED DURING THE SAME WORK DAY.
- CONTRACTOR SHALL BE RESPONSIBLE FOR REPAIRING DAMAGE TO ANY 3. PUBLIC OR PRIVATE UTILITIES AND/OR STRUCTURES SHOWN OR NOT SHOWN ON THESE PLANS. CONTRACTOR IS REQUIRED TO TAKE DUE PRECAUTIONARY MEASURES TO PROTECT UTILITIES OR STRUCTURES FOUND AT THE SITE. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO NOTIFY THE OWNERS OF THE UTILITIES OR STRUCTURES BEFORE STARTING WORK (2 BUSINESS DAYS ADVANCE NOTICE REQUIRED).
- CONTRACTOR SHALL CONTACT UNDERGROUND SERVICE ALERT AT 811 AT 4. LEAST TWO (2) WORKING DAYS PRIOR TO THE COMMENCEMENT OF CONSTRUCTION TO ALLOW UTILITY OWNERS TO MARK THE LOCATION OF THEIR RESPECTIVE UNDERGROUND FACILITIES/UTILITIES, PUBLIC OR PRIVATE, SHOWN OR NOT SHOWN ON THESE PLANS.
- CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE DIVISION OF INDUSTRIAL 5. RELATIONS (CAL-OSHA) SAFETY STANDARDS, IN ACCORDANCE WITH SECTION 7-10.4 OF THE SSPWC. IF REQUESTED BY THE INSPECTOR, THE CONTRACTOR SHALL PROVIDE PROOF OF A PERMIT FROM CAL-OSHA.
- PRIOR TO COMMENCEMENT OF WORK, EXISTING GRASS AND WEEDS IN THE 6. PROJECT ROADWAYS SHALL BE DESTROYED BY APPLICATION OF WEED KILLER. (SEE ROADWAY PREPARATION IN TECHNICAL SPECIFICATIONS.)
- 7. CONTRACTOR IS RESPONSIBLE FOR TRIMMING ALL VEGETATION WITHIN WORK ZONE THAT WILL INTERFERE WITH WORK. CONTRACTOR SHALL REMOVE AND DISPOSE OF ALL DEBRIS.
- 8. CONTRACTOR SHALL DISPOSE OF ALL CONSTRUCTION WASTE IN A LEGAL MANNER.
- 9. STATIONING SHOWN ON PLANS IS FOR REFERENCE ONLY.

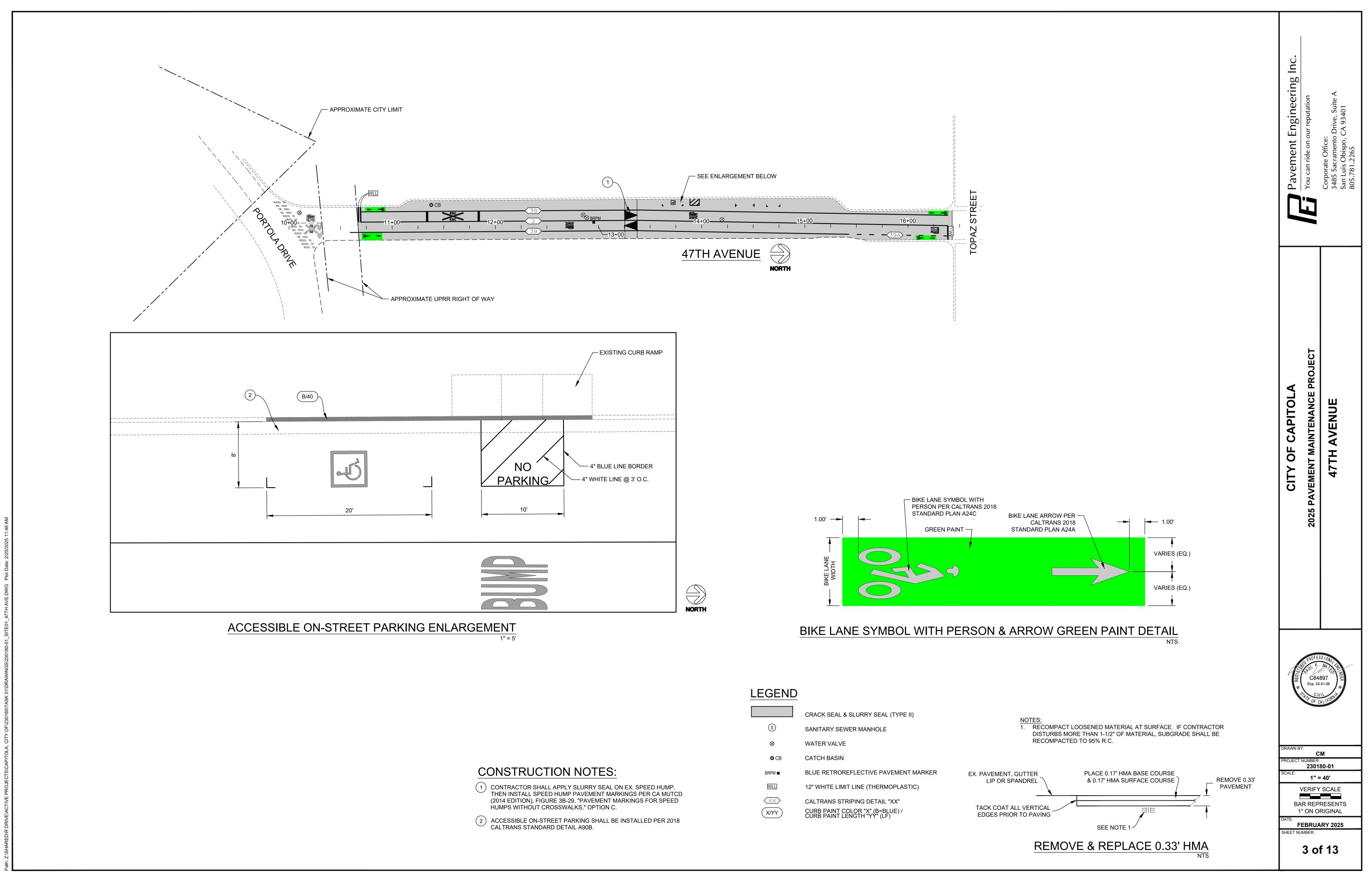
CITY OF CAPITOLA 2025 PAVEMENT MAINTENANCE PROJECT DPW PROJECT NO. CS0095

LOCATION MAP

SHEET INDEX			
STREET NAME	LIMITS	SHEET	
TITLE SHEET	-	1	
01) 42ND AVENUE	CLARES STREET TO CAPITOLA ROAD	2	
02) 47TH AVENUE	PORTOLA DRIVE TO TOPAZ STREET	3	
03 BEVERLY AVENUE	CAPITOLA AVENUE TO RIVERVIEW DRIVE	4	
04 CHERRY AVENUE	FANMAR WAY TO PARK PLACE	5	
05 FRANCESCO CIRCLE	FRANCESCO CIRCLE TO CLARES STREET	6	
06 HILL STREET	BAY AVENUE TO END	7	
07 OAK DRIVE	BAY AVENUE TO RIVERVIEW DRIVE	8	
08 RIVERVIEW AVENUE	TRESTLES TO RIVERVIEW DRIVE	9	
09 ROSEDALE AVENUE	BAY AVENUE TO NORTH END	10	
10 CARL LANE	ROSEDALE AVENUE TO END	10	
11) ALMA LANE	ROSEDALE AVENUE TO END	10	
12 ROSEDALE COURT	ROSEDALE AVENUE TO END	10	
13 PLUM STREET	ROSEDALE AVENUE TO END	10	
14 SUNSET DRIVE	RIVERVIEW DRIVE TO CENTER STREET	11	
15 TERRACE WAY/ SAN JOSE AVENUE	FANMAR WAY TO CHERRY AVENUE	12	
16 ALLEY	TERRACE WAY TO FANMAR WAY	12	
17 REPOSA AVENUE	38TH AVENUE TO 3825 REPOSA AVENUE	13	


RECEIVED BY:

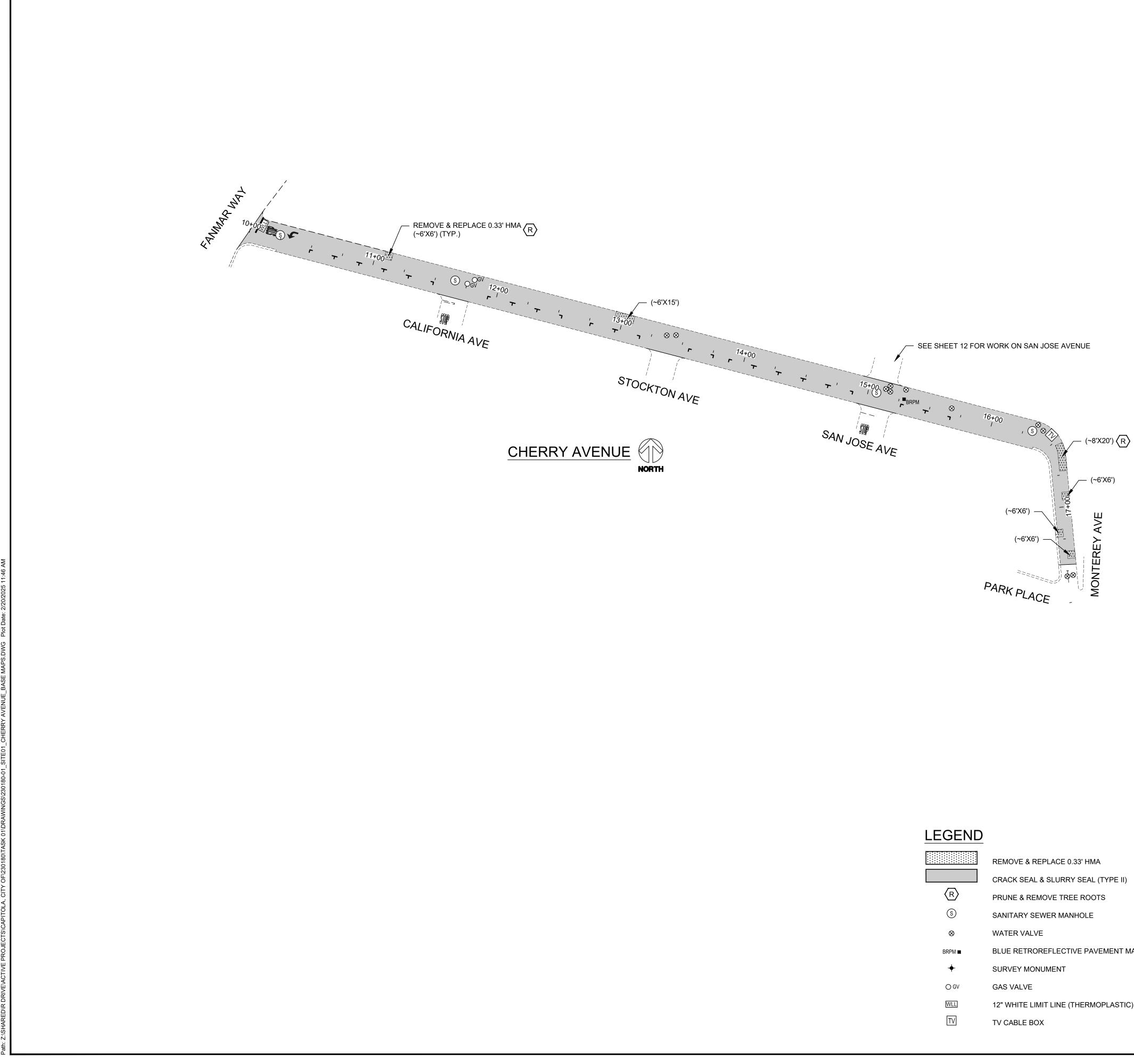
CITY ENGINEER


ORIGINAL SIGNED DATE

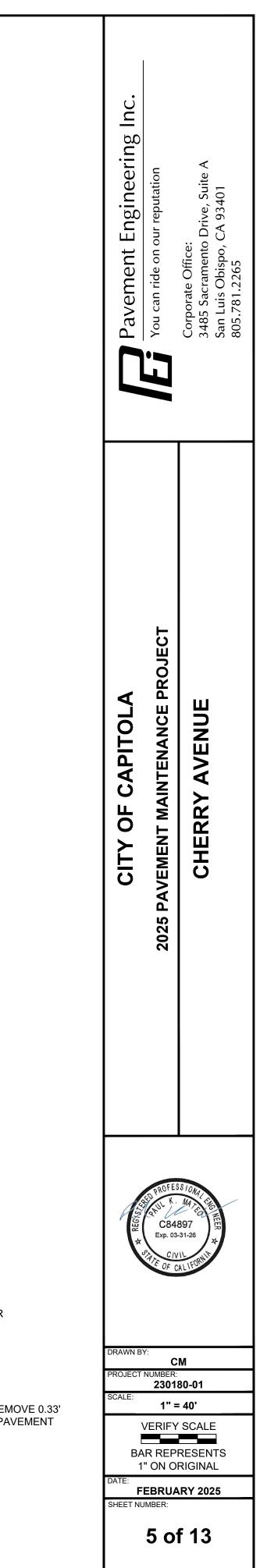
DATE

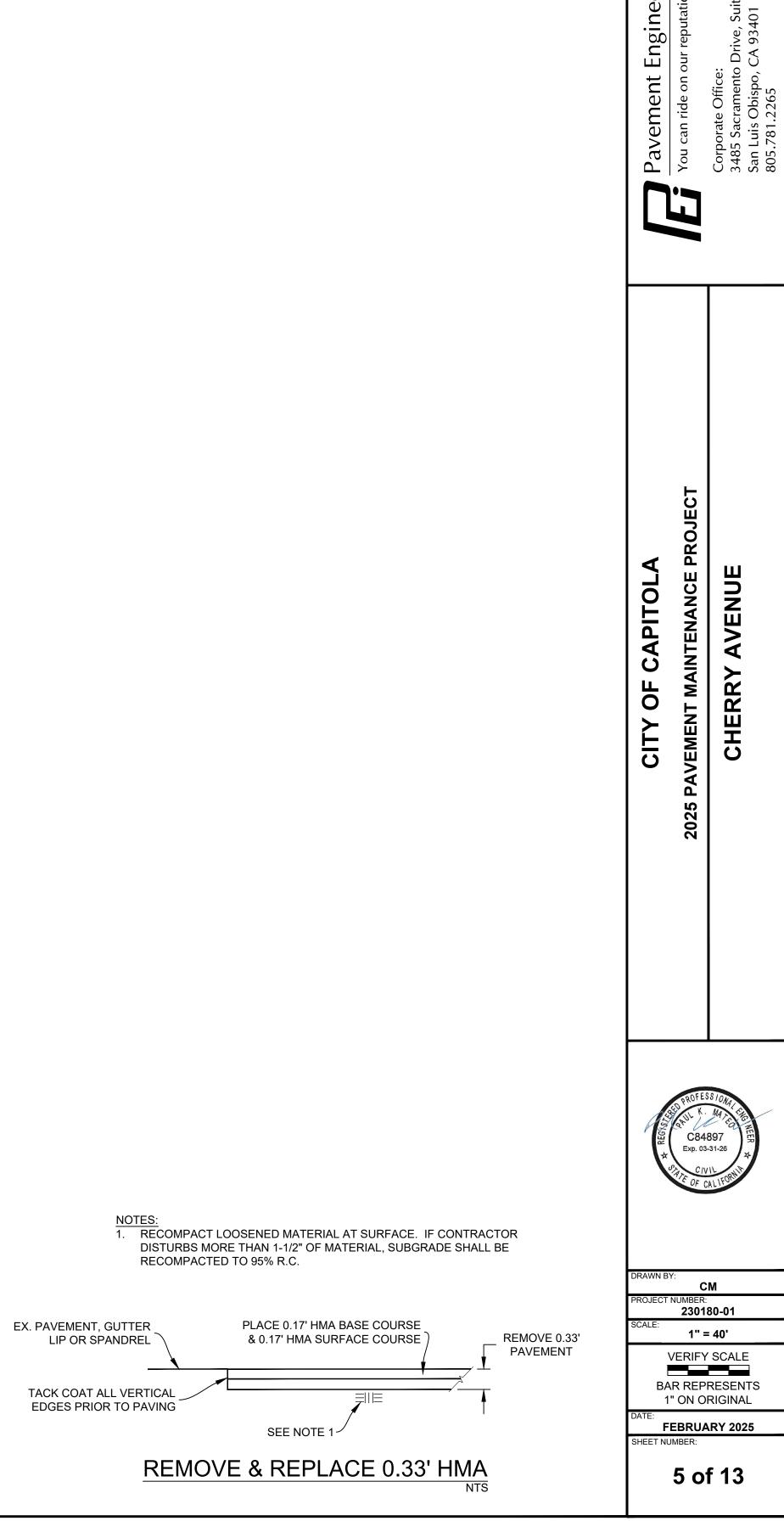
Pavement Engineering Inc.	You can ride on our reputation	Corporate Office: 3485 Sacramento Drive, Suite A San Luis Obispo, CA 93401 805.781.2265
CITY OF CAPITOLA	2025 PAVEMENT MAINTENANCE PROJECT	TITLE SHEET
DRAWN BY PROJECT	PARTE OF C	AL FORMIT
230180-01 SCALE: N/A VERIFY SCALE BAR REPRESENTS 1" ON ORIGINAL DATE: FEBRUARY 2025 SHEET NUMBER:		

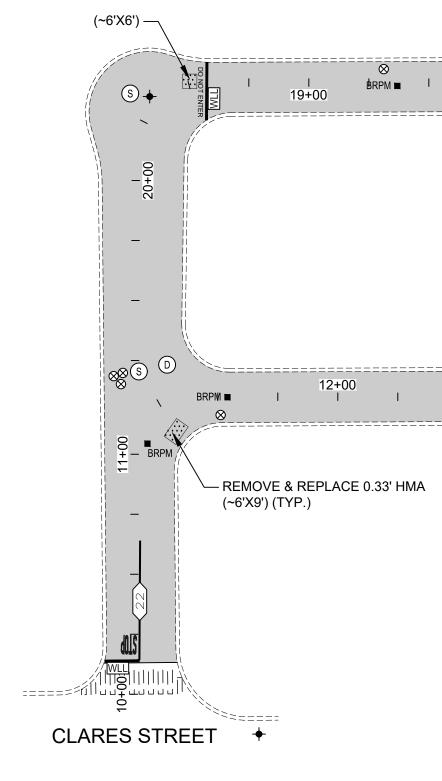
REMOVE & REPLACE 0.33' HMA
CRACK SEAL & SLURRY SEAL (TYPE II)
PRUNE & REMOVE TREE ROOTS
SANITARY SEWER MANHOLE
WATER VALVE
SEWER CLEANOUT (EX.)
CALTRANS STRIPING DETAIL "XX"
12" WHITE LIMIT LINE (THERMOPLASTIC)

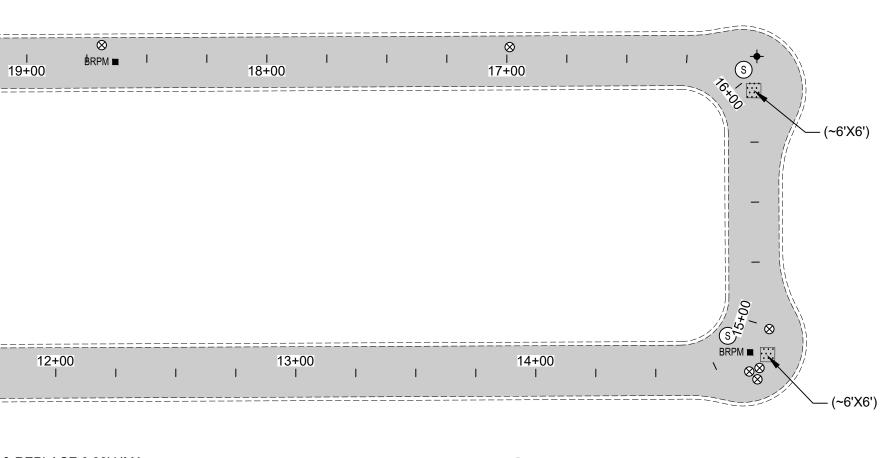


	CRACK SEAL & SLURRY SEAL (TYPE II)	
(s)	SANITARY SEWER MANHOLE	
\otimes	WATER VALVE	
⊖ CB	CATCH BASIN	
BRPM	BLUE RETROREFLECTIVE PAVEMENT MARKER	E
WLL	12" WHITE LIMIT LINE (THERMOPLASTIC)	
<	CALTRANS STRIPING DETAIL "XX" CURB PAINT COLOR "X" (B=BLUE) / CURB PAINT LENGTH "YY" (LF)	

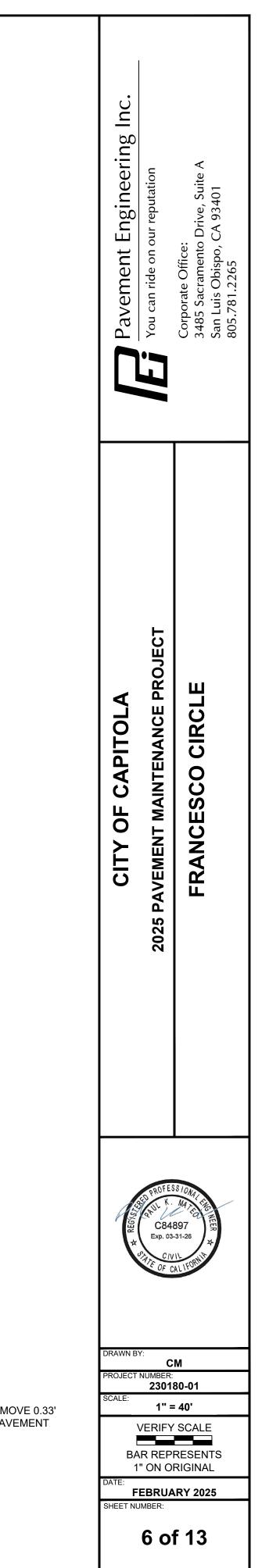


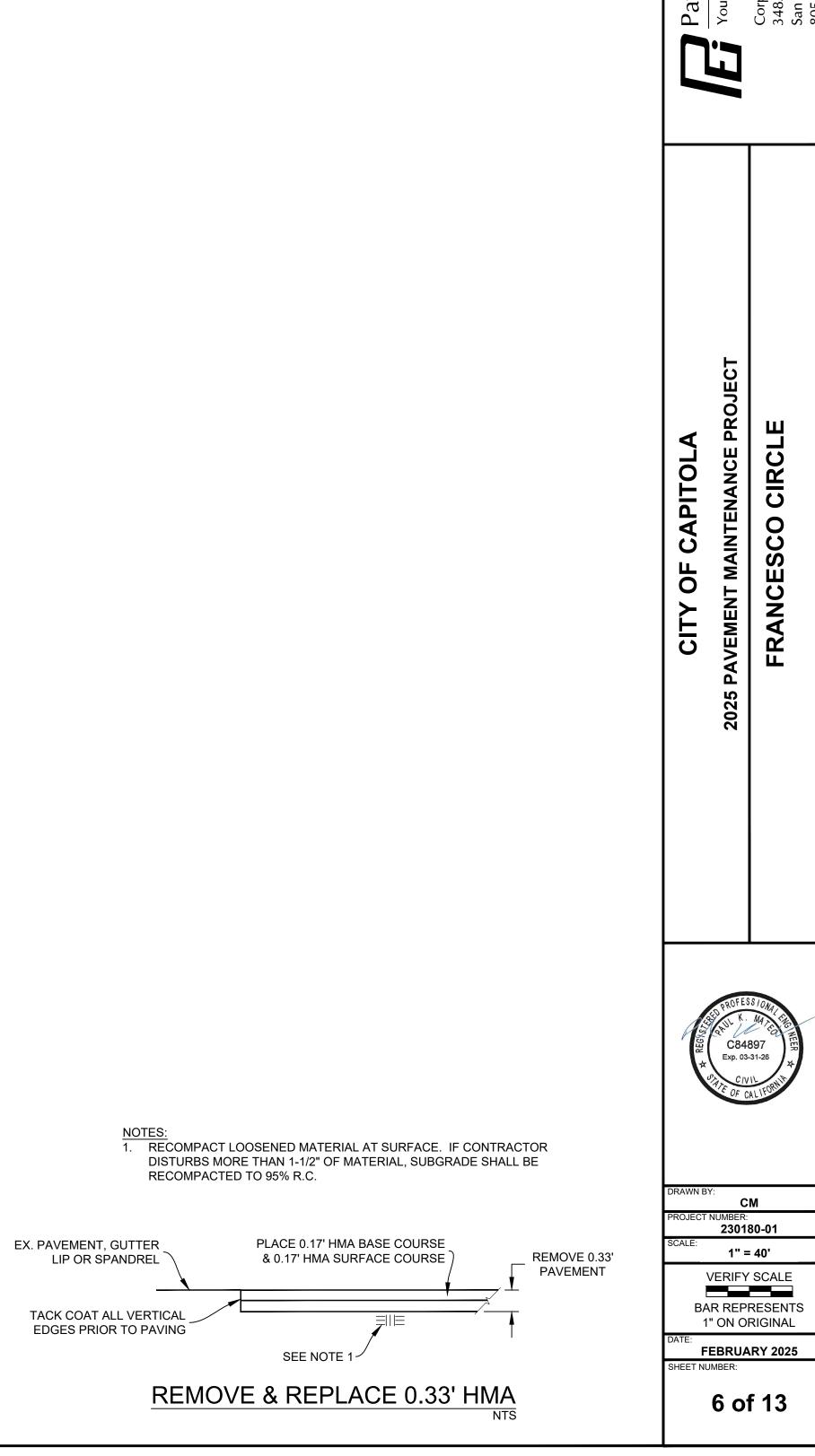


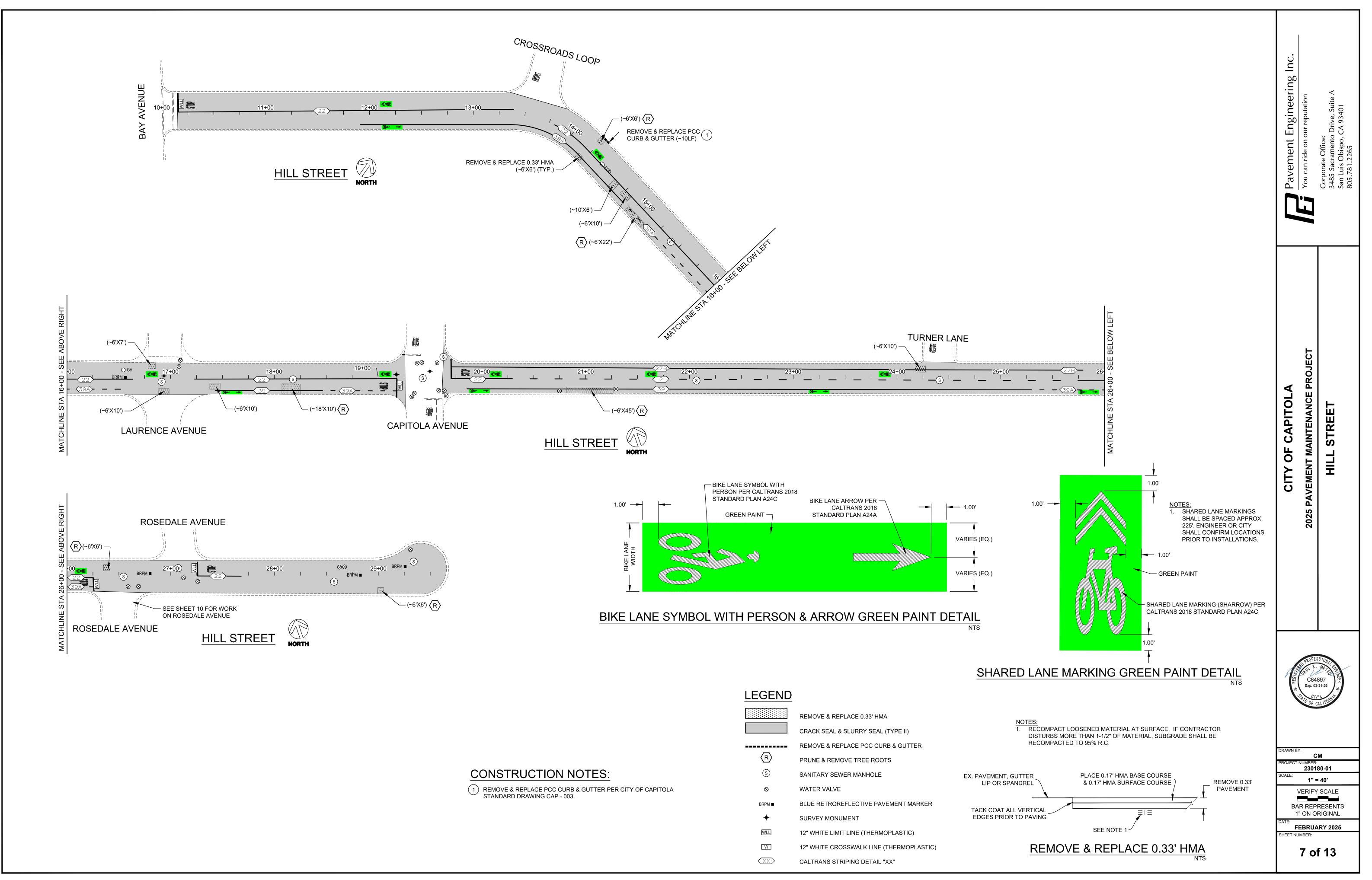

	REMOVE & REPLACE 0.33' HMA
	CRACK SEAL & SLURRY SEAL (TYPE II)
$\langle R \rangle$	PRUNE & REMOVE TREE ROOTS
S	SANITARY SEWER MANHOLE
\otimes	WATER VALVE
BRPM	BLUE RETROREFLECTIVE PAVEMENT MARKER
⊖ gv	GAS VALVE
WLL	12" WHITE LIMIT LINE (THERMOPLASTIC)
WL	WHITE LADDER CROSSWALK (THERMOPLASTIC)
$\langle \times \times \rangle$	CALTRANS STRIPING DETAIL "XX"



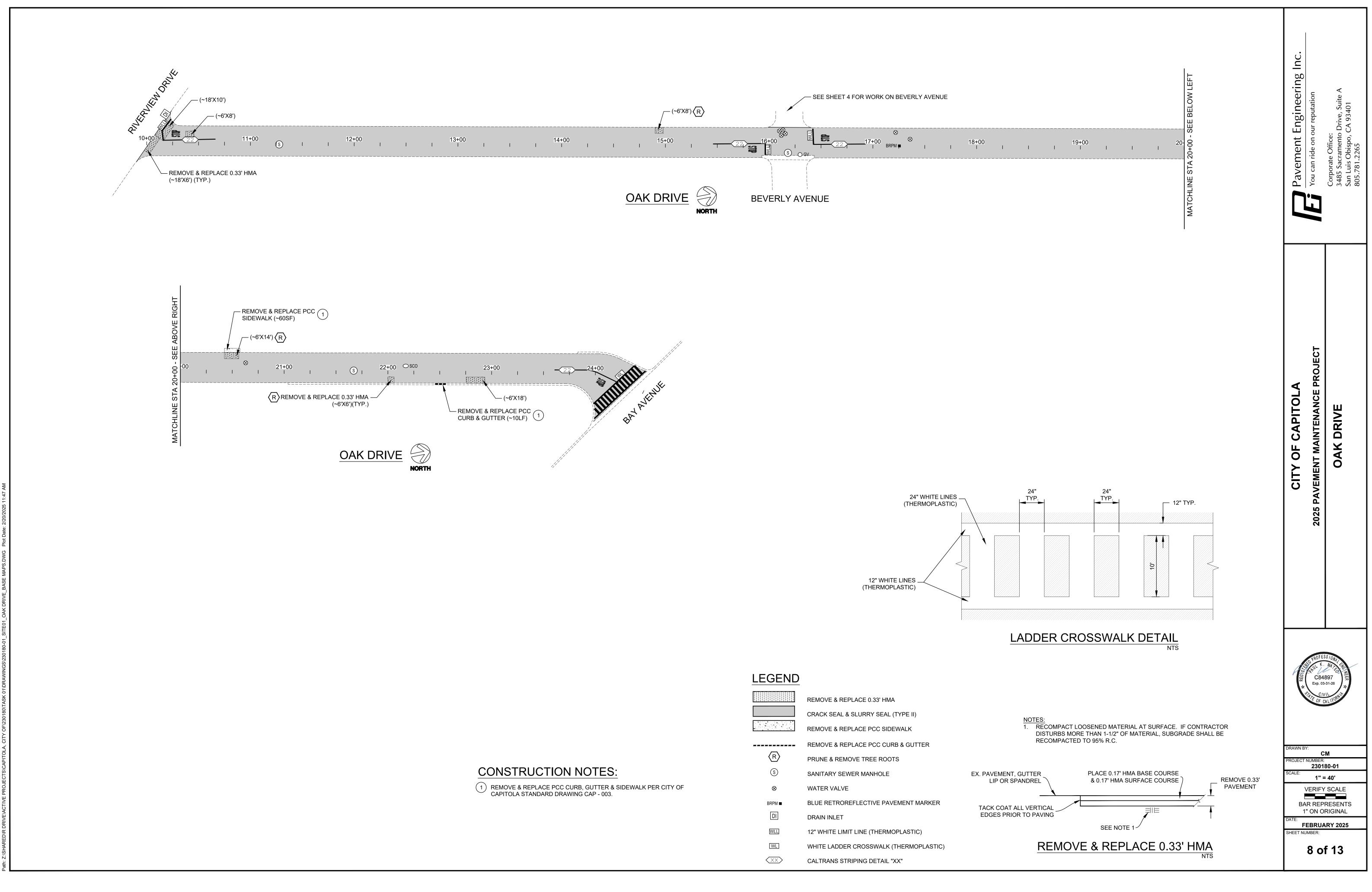
LEGEND	
	REMOVE & REPLACE 0.33' HMA
	CRACK SEAL & SLURRY SEAL (TYPE II)
$\langle R \rangle$	PRUNE & REMOVE TREE ROOTS
S	SANITARY SEWER MANHOLE
\otimes	WATER VALVE
BRPM	BLUE RETROREFLECTIVE PAVEMENT MARKER
+	SURVEY MONUMENT
⊖ gv	GAS VALVE
WLL	12" WHITE LIMIT LINE (THERMOPLASTIC)
TV	

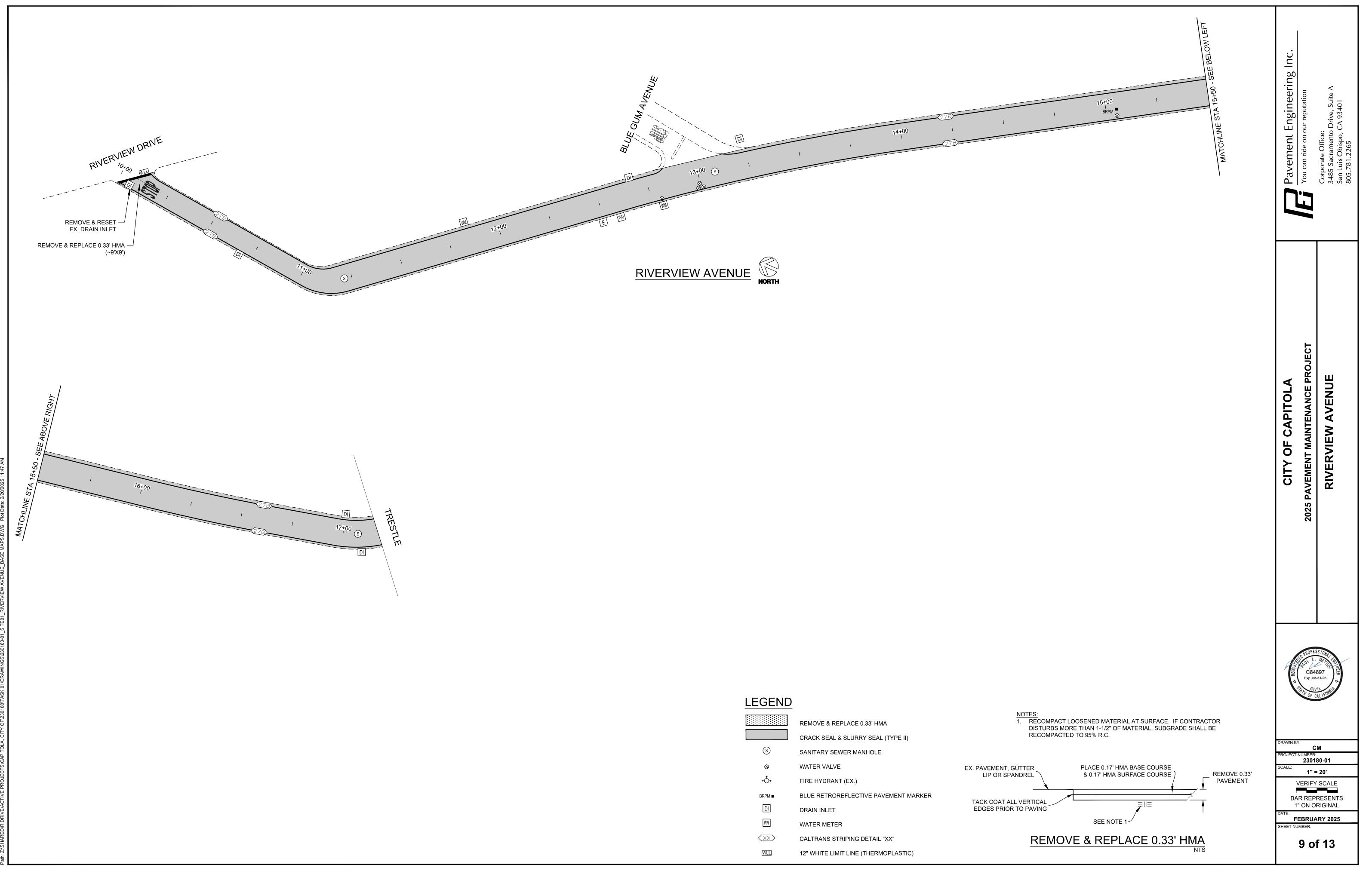


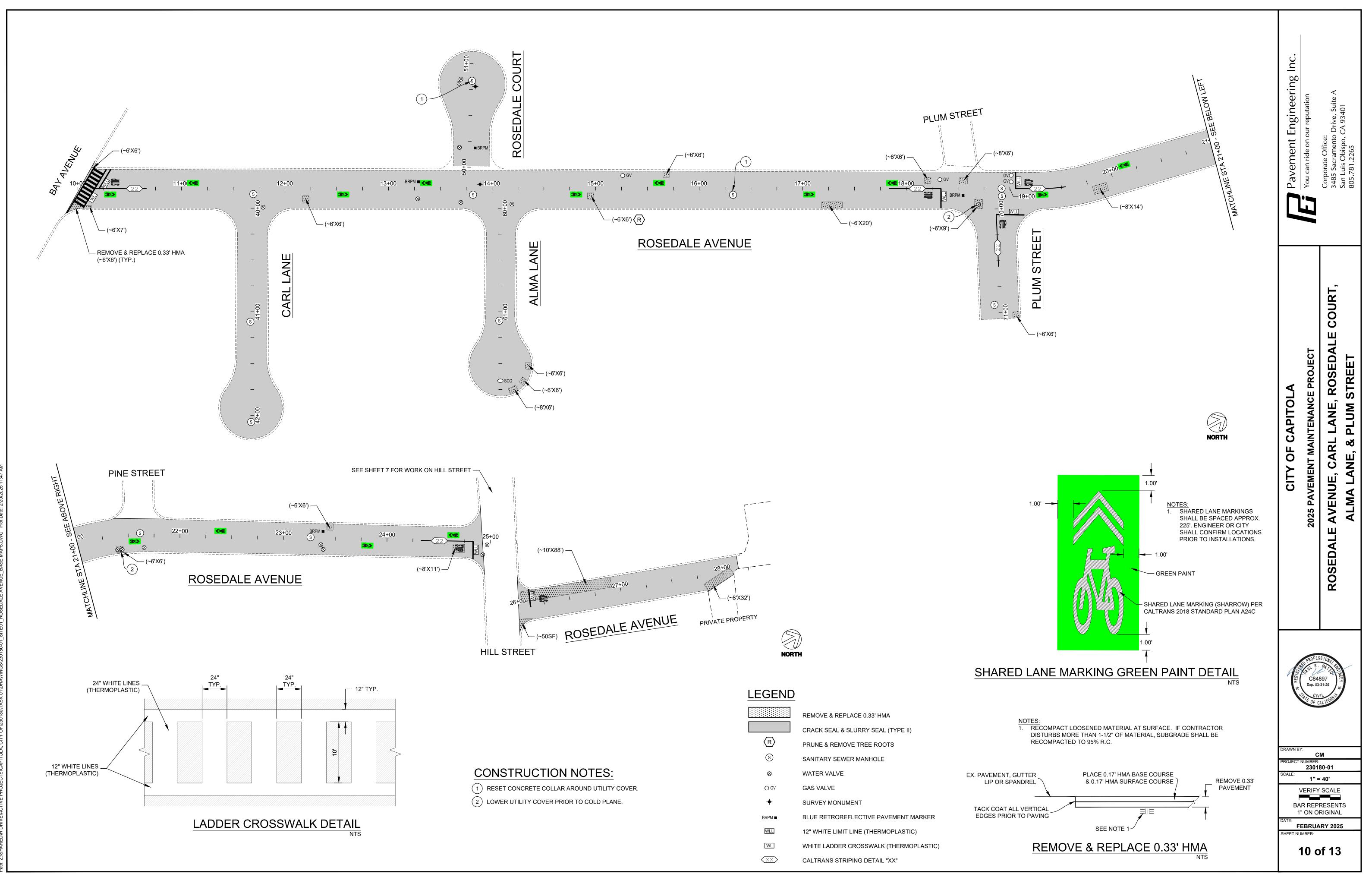


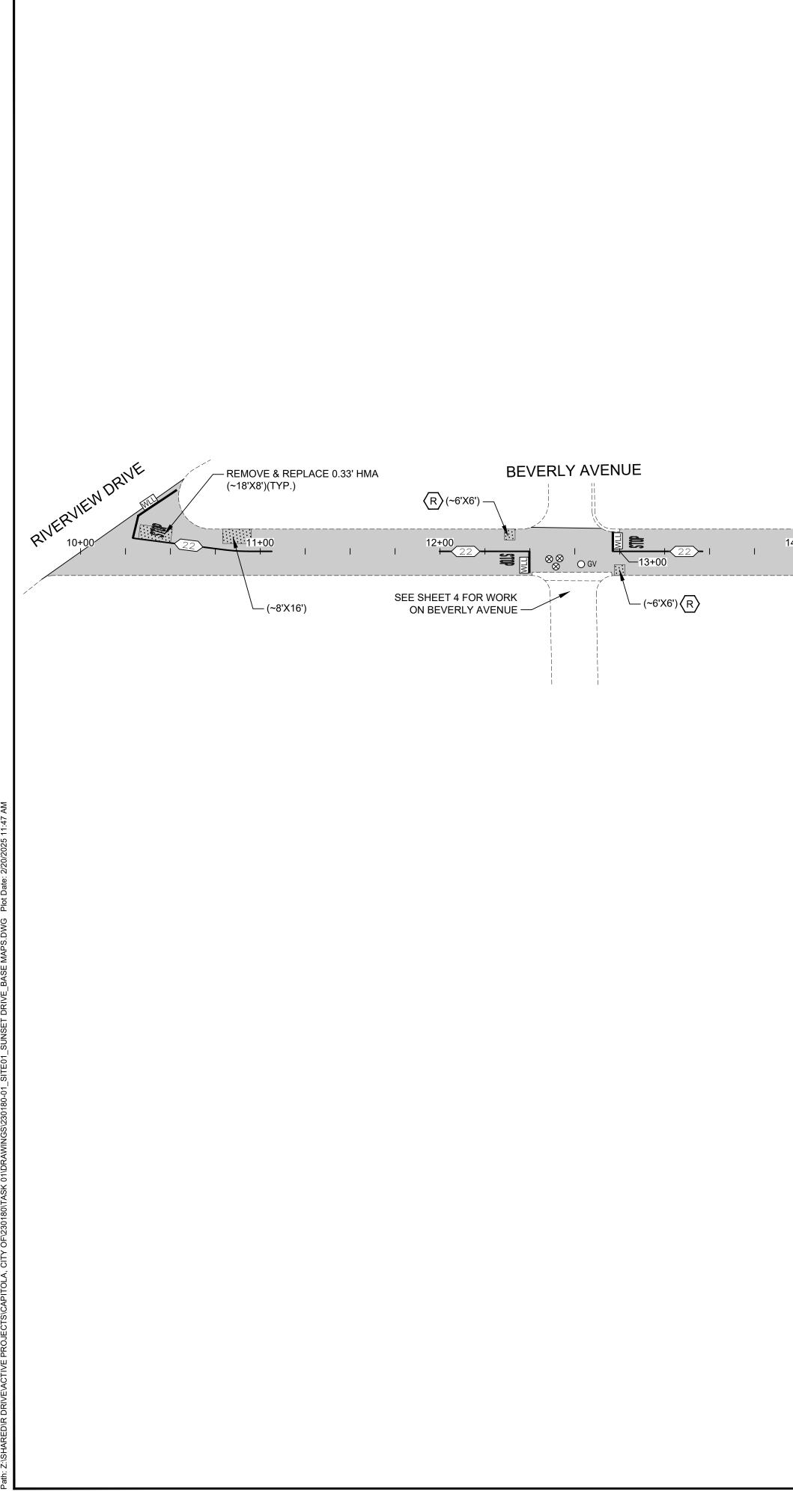

FRANCESCO CIRCLE

LEGEND

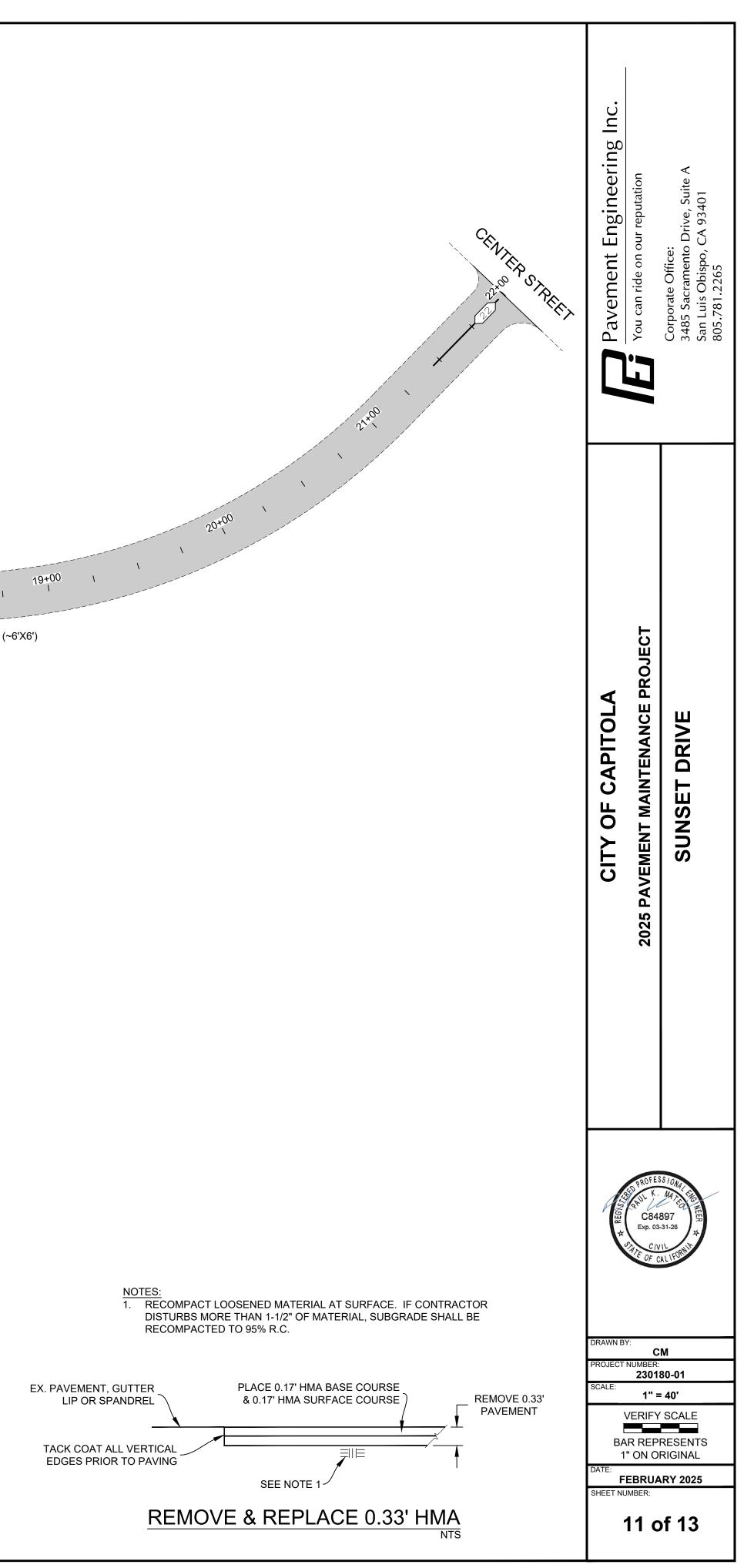

	REMOVE & REPLACE 0.33' HMA
	CRACK SEAL & SLURRY SEAL (TYPE II)
S	SANITARY SEWER MANHOLE
\otimes	WATER VALVE
BRPM	BLUE RETROREFLECTIVE PAVEMENT MARKER
+	SURVEY MONUMENT
WLL	12" WHITE LIMIT LINE (THERMOPLASTIC)
$\langle \times \times \rangle$	CALTRANS STRIPING DETAIL "XX"

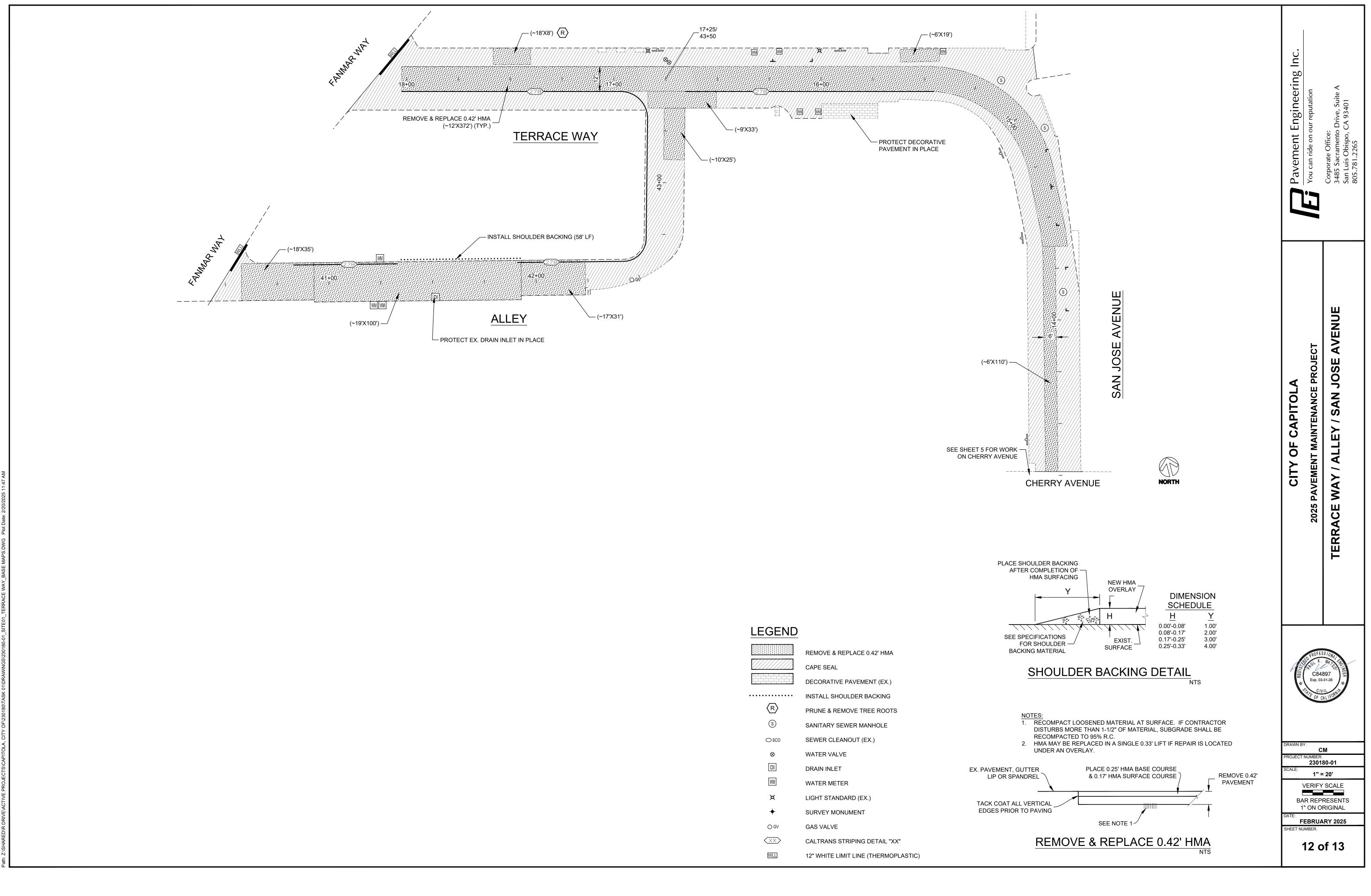



	LEGEND	_	
		REMOVE & REPLACE 0.33' HMA	
		CRACK SEAL & SLURRY SEAL (TYPE II)	
		REMOVE & REPLACE PCC CURB & GUTTER	
	R	PRUNE & REMOVE TREE ROOTS	
CONSTRUCTION NOTES:	S	SANITARY SEWER MANHOLE	EX.
1 REMOVE & REPLACE PCC CURB & GUTTER PER CITY OF CAPITOLA STANDARD DRAWING CAP - 003.	\otimes	WATER VALVE	
STANDARD DRAWING CAF - 003.	BRPM	BLUE RETROREFLECTIVE PAVEMENT MARKER	т
	+	SURVEY MONUMENT	E
	WLL	12" WHITE LIMIT LINE (THERMOPLASTIC)	
	W	12" WHITE CROSSWALK LINE (THERMOPLASTIC)	
	$\langle \times \times \rangle$	CALTRANS STRIPING DETAIL "XX"	

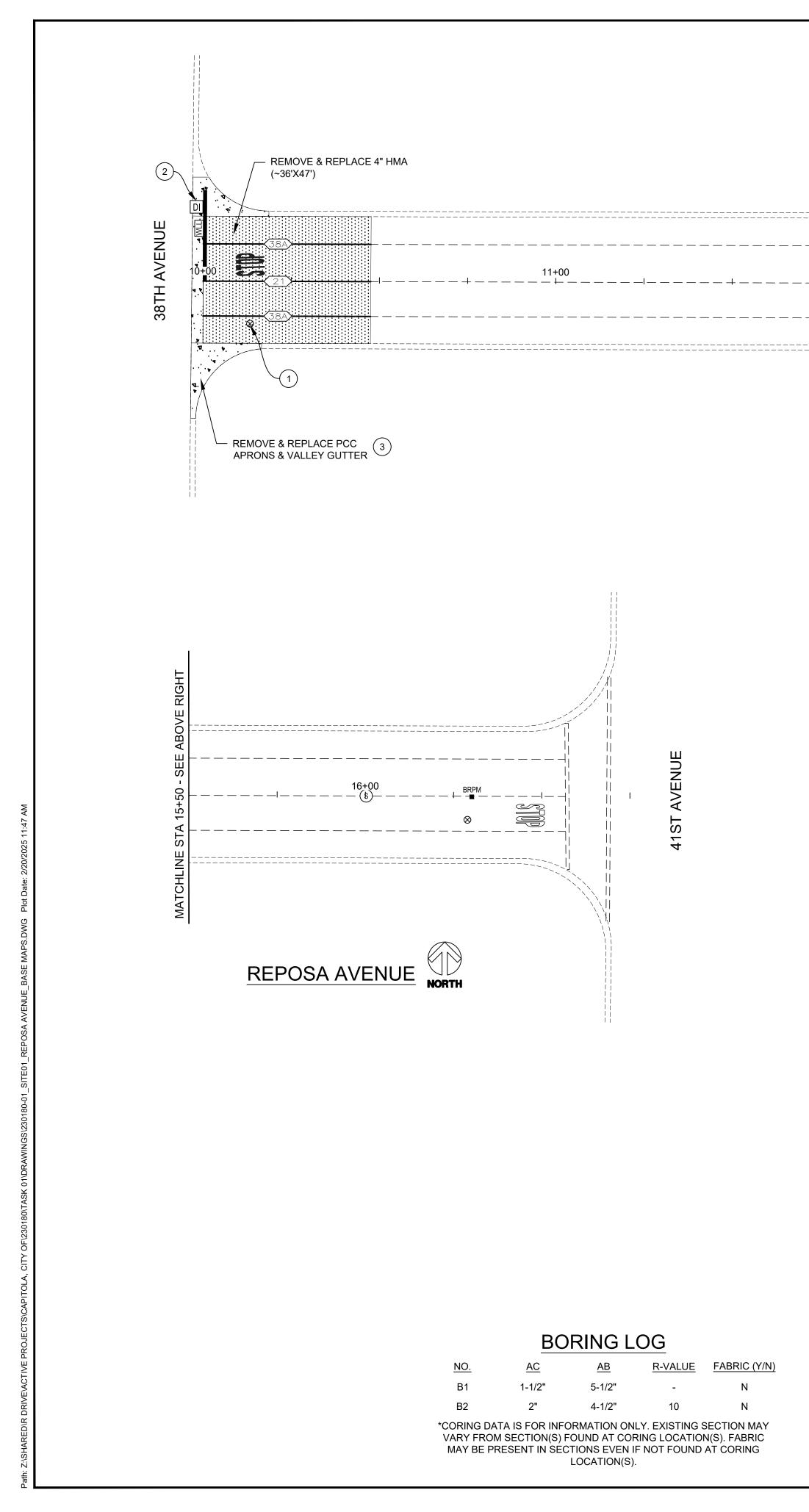

	REMOVE & REPLACE 0.33' HMA	
	CRACK SEAL & SLURRY SEAL (TYPE II)	
	REMOVE & REPLACE PCC SIDEWALK	
	REMOVE & REPLACE PCC CURB & GUTTER	
$\langle R \rangle$	PRUNE & REMOVE TREE ROOTS	
$\textcircled{\textbf{S}}$	SANITARY SEWER MANHOLE	E
\otimes	WATER VALVE	
BRPM	BLUE RETROREFLECTIVE PAVEMENT MARKER	
DI	DRAIN INLET	
WLL	12" WHITE LIMIT LINE (THERMOPLASTIC)	
WL	WHITE LADDER CROSSWALK (THERMOPLASTIC)	
$\langle \times \times \rangle$	CALTRANS STRIPING DETAIL "XX"	

	REMOVE & REPLACE 0.33' HMA	
	CRACK SEAL & SLURRY SEAL (TYPE II)	
(5)	SANITARY SEWER MANHOLE	
\otimes	WATER VALVE	EX
+\$++	FIRE HYDRANT (EX.)	
BRPM	BLUE RETROREFLECTIVE PAVEMENT MARKER	
DI	DRAIN INLET	
WM	WATER METER	
$\langle \times \times \rangle$	CALTRANS STRIPING DETAIL "XX"	
WLL	12" WHITE LIMIT LINE (THERMOPLASTIC)	


	REMOVE & REPLACE 0.33' HMA
	CRACK SEAL & SLURRY SEAL (TYPE II)
R	PRUNE & REMOVE TREE ROOTS
S	SANITARY SEWER MANHOLE
\otimes	WATER VALVE
) gv	GAS VALVE
+	SURVEY MONUMENT
RPM	BLUE RETROREFLECTIVE PAVEMENT MARKER
WLL	12" WHITE LIMIT LINE (THERMOPLASTIC)
WL	WHITE LADDER CROSSWALK (THERMOPLASTIC)
$\overline{\times \times}$	CALTRANS STRIPING DETAIL "XX"



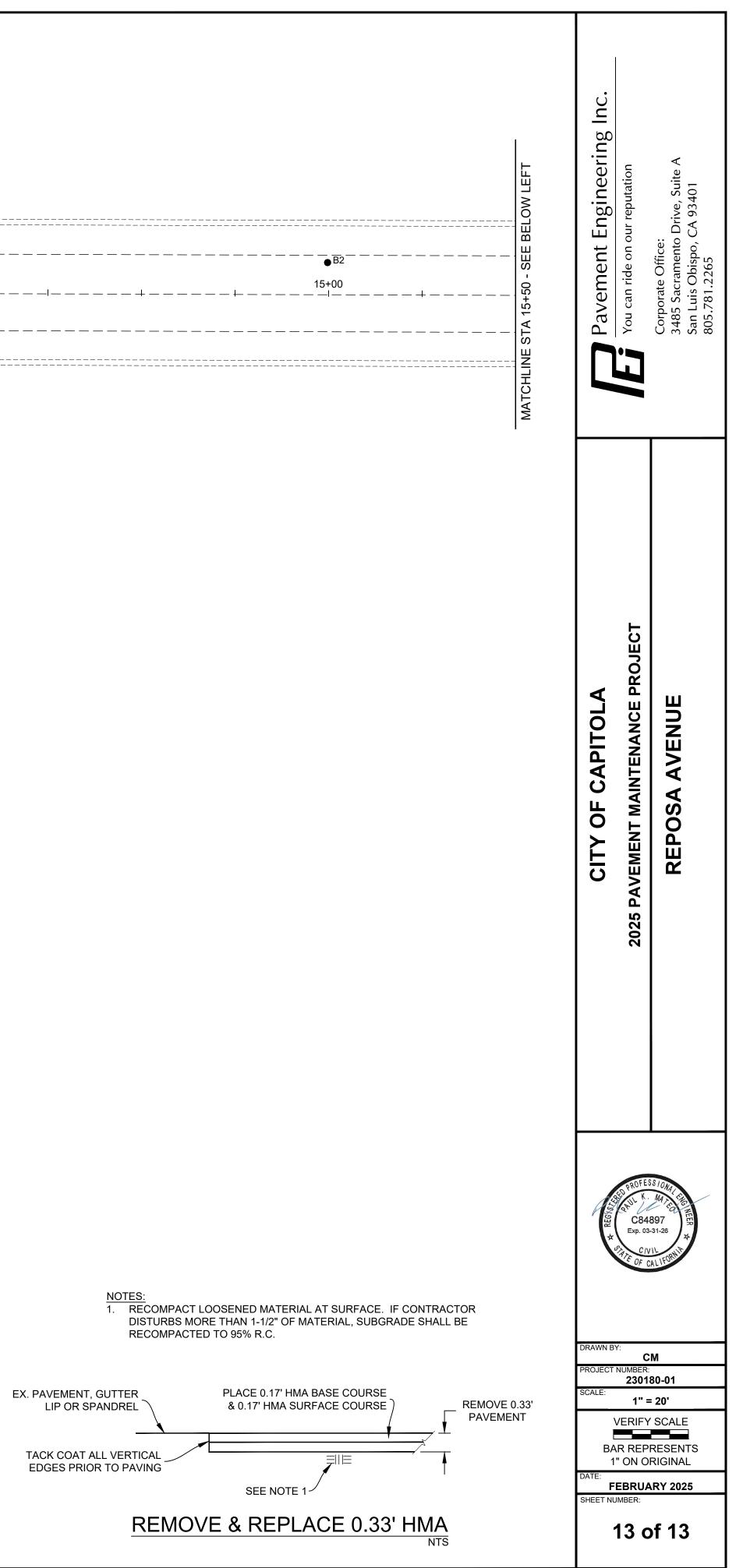
14+00 I	I	I	I	15+00 I	I	I	I	16+00 I	1	I	I	17+00 I	 ⊗	I	BRPM ■	18+00 I	I	19+
																		└ <u> </u>
							011	NOFT										


LEGEND	
	REMOVE & REPLACE 0.33' HMA
	CRACK SEAL & SLURRY SEAL (TYPE II)
$\langle R \rangle$	PRUNE & REMOVE TREE ROOTS
S	SANITARY SEWER MANHOLE
\otimes	WATER VALVE
⊖ gv	GAS VALVE
BRPM ■	BLUE RETROREFLECTIVE PAVEMENT MARKER
WLL	12" WHITE LIMIT LINE (THERMOPLASTIC)
$\langle \times \times \rangle$	CALTRANS STRIPING DETAIL "XX"

GE	ND
<u> </u>	
	GE

	REMOVE & REPLACE 0.42' HMA
	REMOVE & REPLACE 0.42 HMA
	CAPE SEAL
	DECORATIVE PAVEMENT (EX.)
· • • • • • • • • • • • • • • • • • • •	INSTALL SHOULDER BACKING
$\langle R \rangle$	PRUNE & REMOVE TREE ROOTS
S	SANITARY SEWER MANHOLE
⊖ sco	SEWER CLEANOUT (EX.)
\otimes	WATER VALVE
DI	DRAIN INLET
WM	WATER METER
¤	LIGHT STANDARD (EX.)
+	SURVEY MONUMENT
⊖ gv	GAS VALVE
$\underbrace{\times\times}$	CALTRANS STRIPING DETAIL "XX"
WLL	12" WHITE LIMIT LINE (THERMOPLASTIC)

 12+00 l	 	 13+00 +	 	+	14+00 - — — — — — —


1 LOWER UTILITY PRIOR TO COLD PLANE.

(2) ADJUST DRAIN INLET TO FINISH GRADE.

3 REMOVE & REPLACE PCC APRONS & VALLEY GUTTER PER CITY OF CAPITOLA STANDARD DRAWINGS CAP - 004 & CAP - 005.

LEGEND

	REMOVE & REPLACE 4" HMA
V	REMOVE & REPLACE PCC APRONS & VALLEY GUTTER
\otimes	WATER VALVE
S	SANITARY SEWER MANHOLE
BRPM	BLUE RETROREFLECTIVE PAVEMENT MARKER
● ^{XX}	BORING LOCATION
DI	DRAIN INLET
WLL	12" WHITE LIMIT LINE (THERMO)
$\langle \times \times \rangle$	CALTRANS STRIPING DETAIL "XX"

CITY OF CAPITOLA 2025 PAVEMENT MAINTENANCE PROJECT ENGINEER'S ESTIMATE

BID ITEM NO.	BID ITEM	UNIT	TOTAL ESTIMATED QUANTITY		PROXIMATE INIT COST	E	XTENSION
1	Mobilization, Bonds & Insurance	LS	1	\$	50,000.00	\$	50,000.00
2	Notification of Residents, Businesses & Agencies	LS	1	\$	3,997.75	\$	3,997.75
3	Bicycle, Pedestrian & Traffic Control	LS	1	\$	45,000.00	\$	45,000.00
4	Storm Water Pollution Control Program	LS	1	\$	9,518.44	\$	9,518.44
5	Remove & Replace 0.33' HMA	SF	7,824	\$	10.00	\$	78,240.00
6	Remove & Replace 0.42' HMA	SF	9,368	\$	12.50	\$	117,100.00
7	0.50' Deep Lift Stabilization (Allowance)	SF	948	\$	17.50	\$	16,590.00
8	Crack Seal & Slurry Seal	TN	347	\$	400.00	\$	138,600.00
9	Cape Seal	SF	18,445	\$	1.25	\$	23,056.25
10	Prune & Remove Tree Roots under HMA Repair	SF	1,683	\$	15.00	\$	25,245.00
11	Install Shoulder Backing	LF	58	\$	40.00	\$	2,320.00
12	Remove & Replace PCC Curb & Gutter	LF	20	\$	100.00	\$	2,000.00
13	Remove & Replace PCC Sidewalk	SF	60	\$	30.00	\$	1,800.00
14	Remove & Replace PCC Apron	SF	0	\$	20.00	\$	-
15	Remove & Replace PCC Valley Gutter	SF	0	\$	20.00	\$	-
16	Lower & Adjust Manhole Cover to Finish Grade	EA	3	\$	1,500.00	\$	4,500.00
17	Lower & Adjust Water Valve Cover to Finish Grade	EA	1	\$	1,000.00		1,000.00
18	Reset Concrete Collar Around Utility	EA	2	\$	1,000.00		2,000.00
19	Remove & Reset Drain Inlet	EA	1	\$	1,500.00	-	1,500.00
20	Install Blue RPM @ Hydrant	EA	18	\$	20.00	\$	360.00
21	Red Curb Paint	LF	2,550	\$	5.00		12,750.00
22	Gray Curb Paint	LF	18	\$	5.00	\$	90.00
23	Blue Curb Paint	LF	40	\$	5.00	\$	200.00
24	4" White Line (Thermoplastic)	LF	40	\$	3.00	\$	120.00
25	4" Blue Line (Thermoplastic)	LF	27	\$	3.00	\$	81.00
26	12" White Crosswalk/Limit Line (Thermoplastic)	LF	984	\$	5.00		4.920.00
27	24" White Crosswalk Line (Thermoplastic)	LF	514	\$	10.00	\$	5.140.00
28	6" Chevron Line (Thermoplastic)	LF	90	\$	4.00	\$	360.00
29	Striping Detail #2 (Thermoplastic)	LF	1,176	\$	3.50		4,116.00
30	Striping Detail #21 (Thermoplastic)	LF	0	\$	3.50	\$	4,110.00
31	Striping Detail #22 (Thermoplastic)	LF	1,804	\$	3.50	\$	6,314.00
32	Striping Detail #27B (Thermoplastic)	LF	1,873	\$	3.50	\$	
33	Striping Detail #38A (Thermoplastic)	LF	0	\$	3.50	\$	0,000.00
34	Striping Detail #39 (Thermoplastic)	LF	2,067	\$	3.50		7,234.50
35	Striping Detail #39A (Thermoplastic)	LF	448	\$	3.50	\$	
36	Install "STOP" Legend (Thermoplastic)	EA	25	\$	150.00	\$	
37	Install "BUMP" Legend (Thermoplastic)	EA	23	\$	150.00	\$	300.00
38	Install "DO NOT ENTER" Legend (Thermoplastic)	EA	1	\$	150.00	ې \$	150.00
39	Install "NO PARKING" Legend (Thermoplastic)	EA	1	\$	150.00	ې \$	150.00
40	Install Speed Hump Pavement Markings (Thermoplastic)	EA	1	\$	300.00	ې \$	300.00
40	Install Parking Stall Pavement Markings (Thermoplastic)	EA	38	\$	15.00	ې \$	570.00
41	Install Internation Symbol of Accessibility Marking (Thermoplastic)	EA	1	\$	150.00	ې \$	150.00
42	Install Railroad Crossing Symbol (Thermoplastic)	EA	1	۵ ۵	200.00	ې \$	200.00
43	Install Shared Roadway Bicycle Marking (Thermoplastic) with Green Paint Backing	EA	38	\$	200.00	ې \$	
44	Install Shared Roadway Bicycle Marking (Thermoplastic) with Green Paint Backing Install Bike Lane Symbol w/ Person (Thermoplastic) with Green Paint Backing	EA	<u>38</u> 9	\$ \$	225.00	\$ \$	- /
45		EA	9	\$ \$	150.00		
40	Install Bike Lane Arrow (Thermoplastic) with Green Paint Backing	EA	9		AND TOTAL		1,350.00 589,546.44

Reposa Avenue								
38th Avenue to 3825 Reposa Avenue								
STREET QUANTITY	STREET COST							
1	\$	382.85						
1	\$	25.39						
1	\$	342.55						
1	\$	60.45						
1,777	\$	17,766.00						
.,	Ŷ	11,100.00						
89	\$	1,554.53						
00	Ŷ	1,004.00						
	•	10 000 (-						
644	\$	12,880.00						
144	\$	2,880.00						
1	\$	1,000.00						
1	\$	1,500.00						
25	\$	125.00						
20	Ψ	120.00						
50	\$	175.00						
50	¢	175.00						
100								
100	\$	350.00						
1	\$	150.00						
AD ALT		\$39,191.75						
		<i>400,131.13</i>						

Item 6 C.

Capitola City Council Agenda Report

Meeting: February 27, 2025

From: Community Services and Recreation Department

Subject: Public Art Fund Allocation

<u>Recommended Action</u>: Adopt a resolution allocating \$25,000 from the Public Art Fund as a matching contribution for an application for the National Endowment for the Arts Grant FY 2026 to support the creation of public art project at the Park at Rispin Mansion and amending the Fiscal Year 2024-25 Budget, as recommended by the Capitola Art and Cultural Commission.

<u>Background</u>: Chapter 2.58 of the Capitola Municipal Code (Funding the Public Art Program) establishes a Public Art Fund to enrich the City's cultural and aesthetic environment through public art initiatives. This fund is supported by commercial construction projects exceeding \$250,000, where developers contribute either 2% of the project cost for on-site public art or 1% directly to the Public Art Fund.

The Art and Cultural Commission, established by Capitola Municipal Code Chapter 2.56, advises the City Council on public art fund allocations and presents annual recommendations for cultural and artistic goals. The Commission has identified the Park at Rispin Mansion as a site for a public art project, prioritizing the Fountain Project as one of their goals for this year.

The Public Works Department seeks to apply for a National Endowment for the Arts (NEA) FY 2026 Grants for Arts Projects (GAP) to fund the enhancement of the historic fountain at the Park at Rispin Mansion. This project will transform the 800-square-foot historic fountain into a vibrant artist-designed mosaic, celebrating Capitola's cultural heritage, natural beauty, and community identity through historical themes, regional landscapes, and environmental motifs inspired by Soquel Creek.

<u>Discussion</u>: The NEA grant requires a 1:1 funding match, with \$50,000 provided through City in-kind staff time and resources. The Art and Cultural Commission recommends that the City Council allocate \$25,000 from the Public Art Fund to support this match. The total project budget is \$150,000, with \$75,000 coming from the NEA grant and \$75,000 in matched City funds (\$50,000 in-kind and \$25,000 from the Public Art Fund).

Proposed Grant In-Kind Costs:

- Mosaic Design & Installation: \$100,000 (Grant and Public Art Fund)
- Community Workshops & Outreach: \$11,000
- Project Management: \$10,000
- Grant Administration: \$9,000
- Interpretive Signage & Accessibility Features: \$5,000
- Public Works Staff & Materials: \$15,000

While the NEA GAP grant allows up to \$100,000 in funding requests, any additional match beyond \$50,000 would require other funding sources. Approval of this recommendation ensures \$75,000 in matching funds for the grant application. The \$25,000 from the Public Art Fund and the \$75,000 NEA award would cover all art-related expenses, excluding staff time provided by the City.

This 18-month project will involve artist selection, community workshops, design approval, fabrication, installation, and a public dedication event. It aligns with Capitola's cultural objectives by fostering community engagement. Should the grant application be unsuccessful, the \$25,000 Public Art Fund allocation will remain available for future projects.

<u>Fiscal Impact</u>: The current balance of the Public Art Fund is \$95,850, with \$50,000 committed to existing projects. Allocating \$25,000 for this grant match leaves \$20,850 for other public art initiatives. There are sufficient funds to support the recommended action.

Attachments:

1. Resolution Amending the FY 2024-25 Budget

Report Prepared By: Nikki Bryant; Community Services and Recreation Director

<u>Reviewed By</u>: Julia Gautho, City Clerk; Jim Malberg, Finance Director, Jessica Kahn, Public Works Director; Samantha Zutler, City Attorney

Approved By: Jamie Goldstein, City Manager

RESOLUTION NO.

RESOLUTION OF THE CITY COUNCIL OF THE CITY OF CAPITOLA AMENDING THE 2024-25 FISCAL YEAR CITY BUDGET AND CAPITAL IMPROVEMENT PROGRAM BUDGET

WHEREAS, it is necessary to adopt the 2024-25 Fiscal Year Budget for all City funds and Capital Improvement Program; and

WHEREAS, the City Council conducted budget study sessions, heard and considered public comments, had modified and proposed a budget accordingly, and on June 27, 2024, adopted such budget for the Fiscal Year July 1, 2024, through June 30, 2025; and

WHAREAS, the City Council previously amended the FY 2024-25 Fiscal Year Budget on September 24, 2024, and January 30, 2025; and

WHEREAS, since the adoption of the budget Art & Cultural Commission is recommending allocating \$25,000 from the Public Art Fund as matching funds for the National Endowment for the Arts FY2026 grant application; and

WHEREAS, it is necessary to amend the Fiscal Year 2024-25 Adopted Budget to allocate \$25,000 as matching funds for the National Endowment for the Arts FY2026 grant application; and

NOW, THEREFORE, BE IT HEREBY RESOLVED by the City Council of the City of Capitola that the 2024-25 Fiscal Year Budget is hereby amended, including Exhibit A (Budget Amendment) to this Resolution; and

BE IT FURTHER RESOLVED that the Finance Director is directed to enter the budget into the City's accounting records in accordance with appropriate accounting practices, and the City Manager, with the Finance Director's assistance, shall assure compliance therewith.

I HEREBY CERTIFY that the foregoing Resolution was passed and adopted by the City Council of the City of Capitola on the 27th day of February 2025, by the following vote:

AYES: NOES: ABSENT: ABSTAIN:

Joe Clarke, Mayor

ATTEST:

Julia Gautho, City Clerk

		Ite
Budget Adjustn	nent Request	
Date		
02/18/2025		
Requesting Department *		
Community Services & Recreation		•
Type of Adjustment		
Administrative		
Council		
tem #		
2/27/25		
2/27/25		Search
		Search
2/27/25 Council Approval	Account Description	Search Q
2/27/25 Council Approval Revenues	Account Description	
2/27/25 Council Approval Revenues	Account Description	Increase/Decrease
2/27/25 Council Approval Revenues Account Number + Add	Account Description	Increase/Decrease
2/27/25 Council Approval Revenues Account Number	Account Description	Increase/Decrease
2/27/25 Council Approval Revenues Account Number + Add Fotal Revenues 0.00	Account Description	Increase/Decrease
2/27/25 Council Approval Revenues Account Number + Add Total Revenues	Account Description	s
2/27/25 Council Approval Revenues Account Number + Add fotal Revenues 0.00 Expenditures		s Increase/Decrease
2/27/25 Council Approval Revenues Account Number + Add Fotal Revenues \$ 0.00	Account Description Account Description Account Description Account Description Account Description	s

Total Expenditures

\$ 25,000.00	
Net Impact	
\$ -25,000.00	
Purpose	
To provide matching funds for the National Endowment for the Arts (NEA) FY26 grant application.	
	//

Department Head Approval

Mikki Bryant

Finance Director Approval

Tim Matherg

City Manager Approval

Comments:

Submit

Laserfiche | Process Form

Item 6 D.

Capitola City Council Agenda Report

Meeting: February 27, 2025

From: City Manager Department

Subject: MOU with the Capitola Police Officers Association

<u>Recommended Action</u>: Authorize the City Manager to sign a side letter agreement with the Capitola Police Officers Association from March 1, 2025, through June 30, 2027.

<u>Background/Discussion</u>: On May 30, 2024, the City Council authorized the City Manager to execute a Memorandum of Understanding (MOU) with the Capitola Police Officers Association (POA). Changes outlined within the MOU went into effect the next pay period and included a 3% percent Cost of Living Adjustment (COLA) for most positions represented by the bargaining unit. Consistent with other MOUs, the agreement with the POA included several other economic benefits contingent on the passage of Measure Y in November 2024, effective the first full pay period after the Council certified election results. These economic benefits were referred to as contingencies throughout negotiations, and all five labor units and associated agreements included contingencies.

With the passage of Measure Y in November, and certification of election results on December 12, 2024, most economic benefits became effective in the pay period that began December 29 and were reflected in January 10, 2025, employee paychecks.

The current POA MOU includes the following three independent incentive pays in Article 14: Educational Programs:

- Education Incentive Pay (Officers and Sergeants)
 - o 30 units: 2.5%
 - o 60 units: 5%
 - BA/BS: 7.5%
- P.O.S.T. Certification Pay (traditionally, only Sergeants)
 - o Intermediate: 2.5%
 - Advanced: 5%
 - Supervisory: 7.5%
- Career Officer Pay (Officers only)
 - Senior Officer: 2.5%
 - Senior Officer II: 5%
 - Corporal: 7.5%

The 2024 MOU allowed for Police Officers with Advanced P.O.S.T. Certifications to qualify for 2.5% P.O.S.T. Certification Pay; however, only if the Officer was currently not receiving any level of Education Incentive Pay (ie: qualifying educational credits/degrees). In January, upon implementation of the new MOU, it became clear that no language prohibits Officers receiving Career Officer Incentive Pay to also receive the Advanced P.O.S.T. Certification Pay; increasing their overall incentive pay by 2.5% (for a total of 10%), which is higher than the maximum potential education incentive pay.

After meeting with the POA, City staff analyzed potential options to rectify the situation. Staff then negotiated with the POA to come to this proposed solution:

- Increasing Education Incentive Pay at the Bachelor's Degree level by 2.5%
- Ending the new 2.5% Advanced P.O.S.T. Certification incentive but allowing the two officers currently receiving the benefit to continue to do so.

A side letting with language reflecting this solution will be included as additional materials before the Thursday, February 27, City Council meeting.

<u>Fiscal Impact</u>: Increasing Education Incentive Pay (at the bachelor's degree level) by 2.5% will impact seven City employees and will cost an estimated \$23,000 each fiscal year. A similar cost of \$24,000 was estimated when projecting the FY 2024-25 Budget based on negotiations at that time.

Report Prepared By: Chloe Woodmansee, Assistant to the City Manager

Reviewed By: Julia Gautho, City Clerk; Samantha Zutler, City Attorney

Approved By: Jamie Goldstein, City Manager

Capitola City Council Agenda Report

Meeting: February 27, 2025

From: City Manager Department

Subject: Appointment of Capitola Representative to Measure Q Oversight Advisory Board

<u>Recommended Action</u>: Appoint a member of the public to serve as Capitola's representative on the Measure Q Citizens Oversight Advisory Board.

<u>Background</u>: Approved by Santa Cruz County voters in November 2024, the Santa Cruz County Safe Drinking Water, Clean Beaches, Wildfire Risk Reduction, and Wildlife Protection Initiative (Measure Q) is a transformative local effort aimed at protecting and enhancing the county's precious natural resources. This initiative prioritizes water quality, wildfire prevention, habitat restoration, and the creation of resilient ecosystems to ensure the health and well-being of Santa Cruz County's environment and its residents for generations to come.

Measure Q is funded through a modest annual parcel tax of \$87 and is expected to generate more than \$7 million annually.

<u>Discussion</u>: Measure Q establishes a nine-member Citizens Oversight Advisory Board (COAB) to ensure transparency and alignment with community goals. The COAB also engages with the community, helps develop Vision Plans to guide awards and provides annual reporting to the Board of Supervisors. All meetings are open to the public.

The composition of the COAB is as follows:

- Nine subject-matter experts five appointed by the County's Board of Supervisors and four appointed by the cities with one selection per city
- Members are required to have expertise in water quality or flood protection, wildfire reduction or forest management, parks or natural resources management, working lands, environmental justice or park equity, or knowledge of evaluating financial transactions
- Members are not required to live in any specific area
- Members cannot hold an elected office

The COAB's responsibilities include the following:

- Choose land stewardship implementation partner
- May provide recommendations to the Office of Response, Recovery & Resilience (OR3) and County Parks on the development of the Vision Plan.
- Approve the 5-Year Vision Plan prepared by OR3 and County Parks, synthesizing local climate, recreation, and resource management strategies to support grant criteria and awards
- Receive reports on projects funded and provide annual reports to the County's Board of Supervisors on project outcomes and leveraging of Measure Q funds

As of Friday, February 21st, the City received one application to serve as a representative of Capitola on the COAB from Jed Wilson (Attachment 1). Interested members of the public may apply through the County website:

(https://www.santacruzcountyca.gov/Government/Commissions,CommitteesAdvisoryBodies/CommitteesAdvisoryBodies/CommitteesAdvisory

Fiscal Impact: None.

Attachments:

1. Application

<u>Report Prepared By</u>: Julia Gautho, City Clerk <u>Approved By</u>: Jamie Goldstein, City Manager

Gautho, Julia

From:	bdscc <bdscc@santacruzcountyca.gov></bdscc@santacruzcountyca.gov>
Sent:	Thursday, January 30, 2025 12:00 PM
To:	Gautho, Julia
Subject:	[PDF] FW: Commissions Appointment Application - from Jed Wilson
Attachments:	Wilson - Resume.docx.pdf
Follow Up Flag:	Follow up
Flag Status:	Flagged

Hi Julia,

I don't know if your aware of the County's new WWWPA Citizen's Oversight Board (aka Measure Q). Our office has received the attached application. Jed Wilson is interested in being the Capitola City Representative on this Board. If you'd like to move forward in appointing Mr. Wilson, he will need to be nominated at your next City Council meeting. Once I receive confirmation of his nomination, the Board will approve nomination at our March 11th, Board meeting.

If our office receives more application for the Capitola City rep position, I will send them your way for review.

Thank you, Jesseka

Jesseka Rodriguez Office Assistant III

Santa Cruz County Board of Supervisors 701 Ocean Street, Room 500, Santa Cruz, CA 95060 Office: 831-454-2200

From: CommissionsApplication_DoNotReply@santacruzcountyca.gov
<CommissionsApplication_DoNotReply@santacruzcountyca.gov>
Sent: Monday, January 27, 2025 9:38 AM
To: bdscc <bdscc@santacruzcountyca.gov>
Subject: Commissions Appointment Application - from Jed Wilson

Appointment to a County Advisory Body

Commission, Committee, or Board: WWWPA Citizen's Oversight Advisory Board (aka Measure Q)

If applicable, please indicate the seat or category of representation for which you are seeking appointment:

Capitola City

	Item 7 A
APPLICANT INFORMATION	
Name: Jed Wilson	
Street:	
City:	
Capitola	
State:	
CA	
Zip Code:	
95010	
Email Address:	
jedwilson17@gmaill.com	
Phone:	
Preferred Correspondence:	
Email	
Our an in a rial District	

Supervisorial District:

5

Do you currently hold elected office? No

CURRENT/PREVIOUS COMMISSION OR COMMITTEE SERVICE

List your current or previous service on any advisory bodies and state where you served. Previous service is not required.

Advisory Body	Region/County	Term
Statewide Training Group (CALFIRE)	State	2006-2017
	СА	

EDUCATION AND/OR TRAINING

Include any education and/or training related to the advisory body for which you are applying for. This is optional information but beneficial.

Institution/Program	Major/Field	Major/Field Degree/Certificate Y		Item 7 A.
	-	-		
College of the Siskyi	ous Fire Science	AS	2002	

Please select all fields in which you have relevant, demonstrable expertise:

Wildfire or forest management, Wildlife, parks or natural resources stewardship, Working lands or agriculture, Financial and/or program analysis

WORK/VOLUNTEER EXPERIENCE

Include your current or most recent employer as well as any previous employment, volunteer, and community activities you've participated in which are related to the advisory body for which you are applying for.

Organization	Address	Position	Years
CALFIRE	6059 Highway 9, Felton CA 95018	Unit Chief	18
FEEJAYS	Swift St, Santa Cruz, CA	CEO	4

STATEMENT OF INTEREST/QUALIFICATIONS

Complete a brief statement indicating why you are interested in serving on the advisory body in question and why you are qualified through personal, lived, and/or professional experience(s) for the appointment. What do you hope to contribute or gain from your participation in the commission?

I am writing to express my interest in being considered for the upcoming appointment to the Measure Q Board. With my extensive experience in both operational and administrative roles within the fire service, I believe I would bring a unique perspective to the board. In particular, I offer a strong understanding of fuel management practices, forest regulations, and prescribed fire—areas in which I work daily as part of my professional responsibilities.

I am deeply committed to collaboration and would aim to work cohesively with fellow board members to maximize the effectiveness of Measure Q funds, ensuring that they are used in line with the intentions outlined to the public. This measure specifically addresses fire safety and watershed protection—two critical issues for our community. I am passionate about making sure the funds are directed toward maintaining public safety, protecting our natural resources, and ensuring clean water for future generations.

Please upload your CV or resume:

Wilson - Resume.docx.pdf

REASONABLE ACCOMODATIONS

Please identify any reasonable accommodations needed for equal participation. This information is not a consideration nor a factor in any possible appointment and is used only for planning and technology purposes.

None

COMMISSIONS POLICY ORDINANCE OF SANTA CRUZ COUNTY

Iter	m 7 A
Please review Santa Cruz County Code (SCCC) Chapter 2.38, also known as the "Commissions Policy Ordinar- of Santa Cruz County" available at https://www.codepublishing.com/CA/SantaCruzCounty/ which applies to any advisory board, commission, committee or department advisory group over which the County has appointing authority or jurisdiction. In accordance with SCCC Chapter 2.38 and Santa Cruz County Conflict of Interest Code, I agree to:	
Initials: jw Attend meetings regularly and devote the time necessary to fulfill my duties as a member	
Initials: jw Comply with the Ralph M. Brown Act and California Public Records Act	
Initials: jw If required under state and local conflict of interest laws, file a public statement (Form 700) disclosing certain types of economic information	
CERTIFICATION	
By checking this box and entering the date and my initials, I certify that the above information is true and correct and authorize the verification of the information in the application in the event I am a finalist for the appointment.	ł
Certified Date: 2025-01-27 Initials:jw	

Jedidiah A. Wilson

• jedwilson17@gmail.com •

EDUCATION:

2001-2016
Cabrillo College • Aptos, CA • Part Time Student
2000-2003
College of the Siskiyous • Weed, CA • AS Fire Science
1999-2000
Columbia College • Sonora, CA • Part Time Student
1996-2000
Mariposa County High School • Mariposa, CA • Full Time Student

WORK EXPERIENCE:

8/2024-Current

CAL-FIRE • San Mateo - Santa Cruz • TAU Unit Chief

As a Unit Chief of CZU, I am responsible for overseeing the operations and management of a specific geographic unit within California. My role involves ensuring that fire protection services, emergency response efforts, and prevention programs are effectively carried out in our area. I lead a team of dedicated fire personnel, coordinate resources during large incidents, and work closely with local governments, agencies, and communities to reduce wildfire risks. Additionally, I play a key role in strategic planning, budgeting, and implementing CAL FIRE's policies and objectives to ensure public safety while supporting environmental stewardship and resource management.

Assistant Region Chief, Jeff Veik, wk. (707)217-9001

6/2022-8/2024

CAL-FIRE • San Mateo - Santa Cruz • Deputy Chief

Unit operations, I assure that emergency resources, personnel, and equipment are trained, available, and ready to respond to fires and other emergencies; establish incident objectives and ensure the effective management and mitigation of emergencies; coordinate, develop, and implement the unit's Emergency Resource Directory, County Emergency Response Plan, Local Government Mutual Aid Plans, Local Government Automatic Aid Plans, and Interagency Operational Plans. I oversee both Santa Cruz County Fire Department and Pajaro Valley Fire District contracts with CAL FIRE. This includes budgeting, staffing, LG-1 creation and approval.

Unit Chief, Nate Armstrong, wk. (831)254-1700

2/2022-6/2022

CAL-FIRE • San Mateo - Santa Cruz • Battalion Chief (Santa Cruz County Fire)

As a Battalion Chief my job entails providing program management and managing all personnel assigned to Santa Cruz County Fire. I am involved in resolving many different type incidents that fall under the department's ALL RISK mission and providing field battalion coverage. As the Santa Cruz County Fire Battalion Chief, I work in close cooperation with Unit Management, Santa Cruz County and Local Departments.

Unit Chief, Nate Armstrong, wk. (831)254-1700

2016-2022

Feejays • CEO

As CEO I was responsible for managing the companies' overall operations. This includes delegating and directing agendas, driving the company's profitability, managing the company's organizational structure, strategies and communicating directly with the owners. Owner, TJ Moran, (831)425-1292 As a Battalion Chief my job entailed providing program management and managing all personnel assigned to the Training Department. I was involved in resolving many different type incidents that fall under the department's ALL RISK mission and providing field battalion coverage. As the Unit's Training Officer, I worked in close cooperation with Management, Region Training and Local Departments to provide the mandated and career enhancement courses. I was the Santa Cruz County Training Officers Secretary/Treasurer and the Unit Instructor of Record for the JAC program. Assignments: CZU Training Battalion - (July 2013 - May 2016)

Retired Unit Chief, Ian Larkin, wk. (831)254-1700

2012-2013

CAL-FIRE • San Mateo - Santa Cruz • Fire Captain (Training)

As the Santa Cruz County Training Officer, I conducted weekly/monthly/annual training for all paid staff along with conducting the volunteer academy. I oversaw the Training Battalion operations during this period of a vacant position of Battalion Chief. I was the Units Instructor of Record for the JAC Program. I was the Santa Cruz County Training Officers Secretary/Treasurer for the 2012/2013 calendar year. Assignments: CZU Training Battalion – Fire Captain (Feb 2012 – July 2013)

Retired Unit Chief, Ian Larkin, wk. (831)254-1700

Retired Unit Chief, Scott Jalbert, wk. (831)254-1700

2011-2012

CAL-FIRE • San Mateo - Santa Cruz • TAU Battalion Chief (Training)

As a Battalion Chief my job entailed providing program management and managing all personnel assigned to the Training Department. I was involved in resolving many different type incidents that fall under the department's ALL RISK mission and providing field battalion coverage. As the Unit's Training Officer, I worked in close cooperation Management, Region Training and Local Departments to provide the mandated and career enhancement courses. I was also assigned the Unit Safety Officer Position.

Assignments: CZU Training Battalion – (July 2011-Feb 2012)

2008-2011

CAL-FIRE • San Mateo - Santa Cruz • Fire Captain

As a Fire Captain my job entailed providing station management and managing all personnel assigned to the station. I was involved in resolving many different type incidents that fall under the department's ALL RISK mission. I also took part in letting the local community know of the fire danger by conducting LE-100 inspections and putting on fire prevention programs. As the Santa Cruz County Training Officer, I conduct weekly/monthly/annual training for all paid staff. I was the JAC Coordinator and Units Instructor of Record for the JAC Program. Implemented a County wide Volunteer Academy for Multi-Agency participation.

Assignments: Battalion 4 Relief Captain (June 2008 – May 2009) CZU Training Battalion – Fire Captain (May 2009 – July 2011)

Retired Assistant Region Chief, Jake Hess, wk. (707)217-9001

2003-2008

CAL-FIRE • San Mateo - Santa Cruz • Fire Apparatus Engineer

As a Fire Apparatus Engineer my job entailed current upkeep of the department's apparatus and to provide station management. I was involved in resolving many different type incidents that fall under the department's ALL RISK mission. I also took part in letting the local community know of the fire danger by conducting LE-100 inspections and putting on fire prevention programs.

Assignments: Pajaro Valley FS Sch. "A", Saratoga Summit FS Sch. "B", Belmont FS Sch. "A", Ben Lomond Camp CYA "In-Camp Crew/VMP Projects" Corralitos FS Sch. "B".

Retired Captain Scott Agnelli, wk. (831)722-6122

2001-2002 Fire Seasons

CAL-FIRE • San Mateo - Santa Cruz • Firefighter I

As an Amador Firefighter One my job entailed assisting in the upkeep of department apparatus and station maintenance. I was involved in carrying out tasks that were delegated to me from my supervisor. These ranged from fire suppression tactics to duties around the station. Assignments: Big Creek FS Sch. "B"/Amador

Retired Captain Michael Brunson, wk. (831)722-7179

2000-2001

Hammond Ranch Fire Company • Weed, CA • Firefighter/EMT

As a firefighter/EMT (Sleeper), my job entailed current upkeep of the station maintenance and department equipment. I was involved in resolving incidents including medical aids, structure fires, vehicle accidents, wildland fires, and public assist. I was also part of many committees such as:

Item 7 A.

(530)938-4200 **CERTIFICATES AND LICENSES:**

STATE FIRE TRAINING

- **Firefighter One**
- Firefighter Two
- Fire Officer
- Fire Investigator One
- Fire Instructor One
- Fire Command 1A
- Fire Command 1B
- Fire Command 1C •
- Fire Prevention 1A
- Fire Prevention 1B
- Fire Management 1
- Fire Investigation 1A
- Fire Investigation 1B •
- Fire Instructor 1A
- Fire Instructor 1B
- Auto Extrication
- **Basic Pump Operations**
- **Emergency Vehicle Operations** . • Rapid Intervention Crew Tactics (RIC)
- **Firefighter Survival**
- Ethical Leadership in the Classroom
- Region Instructor Orientation (RIO) ICS-200
- Mandated Instructor Update (2012)

FEMA

- I-700
- I-800

CSTI

- HAZMAT 1A
- HAZMAT 1B
- HAZMAT 1C
- HAZMAT 1D

CALFIRE/NWCG

- Supervision 2
- Supervision 3
- Incident Management 2
- Incident Management 3
- C-234 & S-234 Firing Operations
- **Confined Space Awareness** Confined Space Entry & Rescue
- S-290
- Basic 67 Hour Academy
- ICS-100
- **Basic Firing Operations**

Member of the following:

2005-2016 Training Advisory Working Group (TAWG) 2023-Current 7700 Working Group OTHER CERTIFICATES AND LICENSES AVAILABLE UPON REQUEST **REFERENCES:**

• Retired Unit Chief Ian Larkin, wk. (831)254-1700

- Retired Assistant Region Chief Jake Hess, wk. (707)217-9001
- Retired Battalion Chief Greg Estrada, wk. (831)601-1007

- Commanding the Initial Response
- CALCARD Certified Purchasing
- Defensive Driver Train-the-Trainer •
- **Chipper Orientation & Safety** •
- **GPS/Basic Land Navigation**
- Helicopter Rescue Awareness •
- Module 2A
- Module 2B •
- CALFIRE FFA
- S-212 "Level B" • I-300
- I-400
- **Certified Purchaser** •
- FI-110
- FI-210
- S-130 •
- SA-130
- S-190
- S-203 Introduction to Information Officer
- S-244 Field Observer •
- S-245 Display Processor
 - S-330 Task Force/Strike Team Leader
 - S-339 Division/Group Supervisor
- S-404 Safety Officer
- AREP/LOFR
- SITI

OTHER

•

•

•

- Member of 4300 TAWG 2006-2016 •
- Member of BFC TAWG 2009-2016 •
- Swift Water Awareness
- Swift Water Technician 1
- PC 832 Reserve Officer Training w/ Firearms .
- Commanding the Mayday and RIC Operation •
- California Vocational Teaching Credential
- Santa Cruz County Training Officers S/T •
- Unit Instructor of Record (JAC Program)
- Registered State Fire Marshall Instructor

IROC)

- DIVS (Q) ٠
- STEN (Q)
- LOFR(T) •
- FOBS (T) •
 - SOF2 (T)
 - PIOF (T)

Item 7 B.

Capitola City Council Agenda Report

Meeting: February 27, 2025From: Public Works DepartmentSubject: Bay Avenue Corridor Study

<u>Recommended Action</u>: Staff recommends the City Council 1) identify Alternative 2 as the preferred longterm improvement alternative for the Bay Avenue corridor; 2) authorize staff to proceed with public engagement and conceptual design refinement; and 3) direct staff to pursue grant funding opportunities for final design and construction.

<u>Background</u>: This item was originally scheduled for the February 13 City Council meeting; the item was not heard at that meeting and was continued to February 27. The Bay Avenue Corridor Study was initiated to evaluate potential long-term improvements along Bay Avenue, from Highway 1 to Monterey Avenue. The study examines multimodal safety, traffic operations, and community livability. The corridor is a key arterial that supports local businesses, residential neighborhoods, and regional traffic, with existing challenges related to congestion, multimodal safety, and access.

In 2024, a "quick-build" project at the Bay Avenue and Hill Street intersection was implemented to test a road diet and gather feedback. This interim project involved reducing travel lanes, modifying striping, and adding pedestrian safety measures. The feedback from this project, combined with detailed traffic analysis and engineering assessments, has informed the alternatives considered in this study. The study aligns with Capitola's General Plan goals to enhance mobility and economic development along Bay Avenue while improving safety for all users.

The study also includes traffic projections for 2045, indicating that several intersections will exceed acceptable congestion thresholds under current conditions. Without improvements, key intersections, such as Bay Avenue at Hill Street and Capitola Avenue, are projected to operate at LOS E or worse, leading to increased delays and longer vehicle queues.

<u>Discussion</u>: The Bay Avenue Corridor Study evaluates three primary alternatives, each with distinct benefits and trade-offs.

The study utilized multiple data sources and analytical methods to assess current and future traffic conditions. Existing conditions were analyzed using traffic count data from 2024, including peak-hour intersection movements and roadway classifications. Data collection included automated and manual counts at key intersections, as well as pedestrian and bicycle counts. The analysis also incorporated projected growth rates, future development impacts, and traffic simulation models to estimate how corridor operations would evolve under each alternative. Traffic operations were analyzed using Synchro, Sidra, and VISSIM software to model vehicle delay, intersection queuing, and multimodal interactions under different scenarios. A detailed breakdown of methodology is included in Attachment 1 (Bay Avenue Corridor Study Report).

Alternative 1: Stop Control & Road Diet

- Converts current quick build configuration into permanent improvements, implementing a "road diet" to calm traffic and improve bicycle and pedestrian access.
- Includes concrete curb bulb-outs to shorten pedestrian crossing distances and enhanced striping for improved visibility.
- Buffered bike lanes provide a dedicated space for cyclists, improving safety and encouraging multimodal travel.
- Trade-offs include increased vehicle travel times and longer queues at intersections. This alternative is the most cost-effective but does not improve vehicle congestion.

Alternative 2: Roundabout Control

- Converts key intersections at Bay/Hill and Bay/Capitola into single-lane roundabouts to reduce vehicle delay and conflict points.
- Provides a continuous flow of traffic, improving efficiency and reducing emissions by minimizing idling.
- Enhances pedestrian and bicycle safety through protected crossings and designated bike facilities.
- Requires higher upfront capital investment and potential right-of-way acquisition.
- High potential for grant funding
- Similar projects, such as the La Jolla Boulevard corridor redesign in San Diego, have shown significant safety and operational benefits from roundabouts.

Alternative 3: Signal Control

- Installs new traffic signals with designated pedestrian crossing phases at key intersections.
- Provides clear right-of-way assignments to improve traffic efficiency and multimodal safety.
- Increases vehicle queuing at signals, leading to higher vehicle idling and emissions.
- Higher ongoing maintenance costs due to required signal equipment upkeep.
- Less impact on existing right-of-way but may require upgrades to sidewalk and crossing infrastructure.
- Highest potential for high severity collisions.

The alternatives were analyzed based on multiple performance metrics. The staff report simplifies this into a summary table; however, the full analysis (see Table ES-1 in the study) also includes right-of-way impacts, economic effects, and aesthetic considerations.

Criteria	Alternative 1 Stop Control & Road Diet	Alternative 2 Roundabout	Alternative 3 Signal Control
Vehicle Delay	High	Low	Moderate
Pedestrian Safety	Moderate	Good	Moderate
Bicycle Safety	Moderate	Good	Moderate
Capital Cost	Low	High	High
Maintenance Cost	Low	Moderate	High
Greenhouse Gas Emissions	Moderate	Low	Moderate

Table 1. Operations Summary Comparison

Based on the analysis, Alternative 2 (Roundabout Control) provides the greatest safety benefits and operational efficiency but comes with the highest capital cost (grant funding may potentially offset some costs) and potential right-of-way impacts. Alternative 1 (Stop Control & Road Diet) offers an incremental improvement at a lower cost but does not significantly enhance traffic flow. Alternative 3 (Signal Control) improves operations but introduces maintenance, potential safety and aesthetic challenges.

Public Engagement Plan

The Bay Avenue corridor serves as a key regional connector, linking Highway 1 to multiple destinations, including the Capitola Village, local schools, and surrounding neighborhoods. Given its broader impact beyond the immediate area, staff recommends an engagement strategy that reaches a wider community audience while maintaining targeted outreach to directly affected properties.

Pending Council direction, to gather broad input, staff will conduct an online survey, which has proven to be an effective engagement tool in recent traffic projects to reach a broader audience. This approach ensures accessibility and allows for participation from residents, business owners, and commuters who regularly use the corridor.

Additionally, staff has held stakeholder meetings with property owners at the Hill St. and Bay Ave. intersection, and has scheduled a stakeholder meeting for the Bay Ave. and Capitola Ave. intersection prior to this meeting. Pending Council direction, staff will continue outreach with intersections potentially affected by the Corridor Plan.

Regular updates will also be provided at City Council meetings, ensuring ongoing opportunities for public comment.

Following Council direction, staff will refine the conceptual layouts and incorporate public feedback, and stakeholder input before advancing to preliminary engineering and funding identification.

<u>Fiscal Impact</u>: The cost to finalize the conceptual design will depend on the preferred alternative selected. Staff is coordinating with consultants to develop more precise cost estimates. Preliminary cost estimates from the study indicate that roundabout installations could range from \$3 million to \$5 million per intersection, while traffic signals would require an estimated \$1.2 million per intersection, with additional long-term maintenance expenses.

Potential funding sources include:

- State and Federal Grants Opportunities such as the Active Transportation Program (ATP) and Highway Safety Improvement Program (HSIP).
- **Regional Transportation Funds** Allocations from the Santa Cruz County Regional Transportation Commission (SCCRTC).
- Local Capital Improvement Budget Consideration for phased implementation as funding becomes available.

No immediate budget allocation is requested at this time. Staff will return with detailed cost estimates and funding strategies based on Council direction.

Attachments:

1. Bay Avenue Corridor Study

<u>Report Prepared By</u>: Jessica Kahn, Public Works Director <u>Reviewed By</u>: Julia Gautho, City Clerk; Samantha Zutler, City Attorney <u>Approved By</u>: Jamie Goldstein, City Manager

Bay Avenue Corridor Study

Transportation Analysis

February 2025

Prepared for

Prepared by

10 South Almaden Boulevard, Suite 1250 San Jose, CA 95113

TABLE OF CONTENTS

Executive Summary
1. Project Description and Corridor Study Scope
1.1 Corridor Study Scenarios
1.2 Proposed Corridor Alternatives9
1.3 Capitola General Plan Consistency13
1.4 Level-of-Service Criteria and Thresholds14
1.5 Traffic Analysis Methodology16
2. Existing Transportation Conditions
2.1 Study Intersections
2.2 Roadway Network
2.3 Pedestrian and Bicycle Facilities19
2.4 Transit Facilities19
2.5 Roadway Cross Section
3. Traffic Data Collection
3.1 Year 2024 Existing Intersection Volumes22
3.2 Year 2045 Cumulative Intersection Volumes22
3.3 Roadway Daily Traffic and Speed Data23
3.4 Collision Data
3.5 Signal Warrant Analysis27
4. Corridor Operations and Intersection Control Evaluation Results
4.1 Year 2024 Existing ICE Operations29
4.2 Year 2045 Cumulative ICE Operations
4.3 Intersection Queuing Analysis
4.4 Corridor Travel Time Summary
4.5 Driver Behavior & Drone Video Analysis at Bay/Capitola Intersection
4.6 Multimodal Safety and Access Improvements40
5. Corridor Study Conclusions and Recommendations44
6. Appendix

TABLES

FIGURES

Figure 1: Project Site Map	8
Figure 2: Corridor Alternatives Summary	11
Figure 3: Illustrative VISSIM Model for Project Study Area	16
Figure 4: Existing Section – Highway 1 to Center St (80-ft ROW)	20
Figure 5: Existing Section – Center St to Capitola Ave (65-ft ROW)	20
Figure 6: Existing Section – Capitola Ave to Burlingame Ave (56-ft ROW)	21
Figure 7: Existing Section – Burlingame Ave to Monterey Ave (56-ft ROW)	21
Figure 8: Existing Section – Monterey Ave to Park Ave (38-ft ROW)	21
Figure 9: Bay Avenue Collision Heat Map (2013 to 2024)	24
Figure 10: Bay Avenue Collision Types (2013 to 2024)	25
Figure 11: CA MUTCD Signal Warrant 3	27
Figure 12: Year 2024 Existing Corridor Average Travel Times	36
Figure 13: Year 2045 Cumulative Corridor Average Travel Times	38

Executive Summary

Project Overview:

The Bay Avenue Corridor Study, conducted by Kimley-Horn in partnership with the City of Capitola, aims to analyze and propose improvements for the Bay Avenue corridor stretching from Highway 1 to Park Avenue. The primary objectives are to enhance mobility, economic development, traffic operations, and multimodal safety through long-term roadway and intersection modifications. It is intended that the proposed corridor improvements would be funded through grant opportunities.

Study Scope and Methodology:

A traffic operations analysis for existing (Year 2024) and cumulative (Year 2045) conditions was conducted to assess the feasibility of multiple alternative configurations:

- Alternative 0 No Build: Maintain current traffic control and roadway geometry.
- Alternative 1 Stop Control and Road Diet: Convert a portion of Bay Avenue from a four-lane to a two-lane road with enhanced multimodal crossings at the existing all-way stop intersections.
- Alternative 2 Roundabout: Implement single-lane roundabouts at key intersections.
- Alternative 3 Signal: Implement traffic signals at key intersections.

Traffic data, including intersection volumes, daily traffic, speed, and collision statistics, were collected and analyzed using Synchro, Sidra, and VISSIM software.

Existing Conditions (Year 2024) Analysis Results:

- Most intersections operate at an acceptable level of service (LOS).
- The roundabout alternative (Alt 2) demonstrates better LOS operations compared to the stop control (Alt 1) and signal (Alt 3) configurations.
- Significant vehicle queues were observed at some intersections, particularly the Bay Avenue/Highway 1 ramps and Hill Street.

Cumulative Conditions (Year 2045) Analysis Results:

- Several intersections are anticipated to exceed acceptable LOS thresholds.
- The roundabout alternative (Alt 2) consistently provides the best performance in terms of vehicle delay and travel times.
- Signalized intersections (Alt 3) yields acceptable LOS but with increased vehicle queues compared to roundabouts.

Multimodal Access and Safety Improvements

The proposed improvements for each alternative configuration would aim to enhance safety for pedestrians and cyclists through various measures:

- General Multimodal Enhancements:
 - Traffic Calming Features: All alternatives incorporate traffic calming features like narrower lanes and improved intersection design, which inherently enhance safety for all road users.
 - Visibility Improvements: Enhanced lighting, signage, and marked crosswalks improve visibility for pedestrians and cyclists, especially at night or during adverse weather conditions.

- Collision Mitigation: Historical collision data and near-miss analysis inform the design to specifically address risky driver behaviors and common collision types, further ensuring pedestrian and cyclist safety.
- Summary of Multimodal Safety Benefits:
 - Reduced Vehicle Speeds: Slower travel speeds generally lead to decreased collision severity for vehicles, cyclists and pedestrians.
 - Clear Right-of-Way: Signal and roundabout controls provide structured and predictable movement patterns.
 - Protected Space: Buffered and clearly marked spaces for pedestrians and cyclists reduce the risk of conflicts with vehicles.
 - Improved Crossings: Shorter and more visible crossing areas make it safer and easier for pedestrians to navigate intersections.
 - Enhanced Visibility and Lighting: Increased visibility through better lighting and clear signage reduces the risk of accidents.

Conclusion and Recommendations:

The roundabout configuration (Alternative 2) offers the most optimal solution for minimizing vehicle delays, enhancing traffic safety, and improving multimodal access. This option, however, requires significant infrastructure investment and potential right-of-way acquisition.

The stop control and road diet alternative (Alternative 1) would improve pedestrian and cyclist safety with minimal initial capital costs but result in poor corridor operations and long vehicle delay.

The signalized intersection configuration (Alternative 3) presents an intermediate solution, providing moderate operation and multimodal improvements at the expense of infrastructure investment and high ongoing maintenance costs.

Based on the analysis results, the study recommends pursuing the roundabout configuration at key intersections for long-term benefits in traffic operations, safety, economic development, and multimodal accessibility. Compared to the no-build alternative, the stop control and signal control alternatives could also be considered feasible based on budgetary constraints and immediate needs.

ES-1: Qualitative Corridor Operations Summary Comparison

Criteria Operations	Alternative 0 – No Build	Alternative 1 – Stop & Road Diet	Alternative 2 –	Alternative 3 -
	No Build	Stop & Road Dist		
Operations		Stop & Road Diet	Roundabout	Signal
	High	<u>High</u>	Low	<u>Moderate</u>
	Stop control creates	Stop control creates	Yield control reduces	Signal control
Vehicle Delay	delay for intersection	delay for intersection	average delay	reduces average
	, approaches	, approaches	0 ,	delay
	Long	Long	<u>Short</u>	Moderate
Vehicle	Stop control creates	Stop control creates	Yield control reduces	Signal control
Travel Time	delay for intersection	delay for intersection	average delay	reduces average
	approaches	approaches		delay
	Long	Long	Moderate	Moderate
Vehicle	Long queues and	Long queues and	Yield control	Signal control
Queue	spillback into	spillback into	generates average	generates average
Length	adjacent intersection	adjacent intersection	queues	queues
Transit and	Poor	Poor	Moderate	Moderate
Emergency	Slower average travel	Slower average travel	Faster average travel	Opportunity for
Vehicle	times and higher VHT	times and higher VHT	times and lower VHT	emergency vehicle
	times and higher viti			
Access				preemption
Improvement	Low	Leve	Llink	Madavata
Driver	Low	<u>Low</u>	<u>High</u>	<u>Moderate</u>
Adaptation	Existing conditions	Existing conditions	New traffic control in	Existing conditions
Time	on corridor	on corridor	City for users	on corridor
Safety				
o	<u>Moderate</u>	<u>Moderate</u>	Low	<u>High</u>
Collision	Numerous conflict	Numerous conflict	Fewer conflict points	Higher vehicle
Severity	points with stop	points with stop	and controlled lower	speeds and
Potential	control at	control at	speeds at	numerous conflict
	intersection	intersection	intersection	points at intersection
	Poor	Moderate	<u>Good</u>	<u>Moderate</u>
Bicycle	No Build scenario	Buffered bike lanes	Buffered bike lanes	Buffered bike lanes
Access	would not improve	and markings	and markings.	and markings.
Improvement	conditions		Shorter and	Designated crossing
			protected crossings	phases
Pedestrian	<u>Poor</u>	<u>Moderate</u>	<u>Good</u>	<u>Moderate</u>
Access	No Build scenario	Shorter crossings	Shorter and	Designated crossing
Improvement	would not improve	with traffic calming	protected crossings	phases
improvement	conditions			
Economic				
Canital	<u>Low</u>	<u>Low</u>	<u>High</u>	<u>High</u>
	No Build scenario	Updates to existing	New infrastructure	New infrastructure
	would not improve	infrastructure	and utility	and signal equipment
COSL	conditions		coordination	
Right of Way	Low	Low	<u>High</u>	<u>Moderate</u>
Impact				
Capital Construction Cost	would not improve		and utility	

Bay Avenue Corridor Study *Item 7 B.* February 2025

Criteria	Alternative 0 – No Build	Alternative 1 – Stop & Road Diet	Alternative 2 – Roundabout	Alternative 3 - Signal
	No change to existing conditions	Updates to existing infrastructure	Property impacts to accommodate design	New infrastructure and signal equipment
Operation & Maintenance Costs	<u>Low</u> No Build scenario would not improve conditions	<u>Low</u> Landscaping	<u>Moderate</u> Landscaping	<u>High</u> Signal equipment, electricity
Greenhouse Gas Emissions	<u>Moderate</u> Vehicle idling with stop traffic control	<u>Moderate</u> Vehicle idling with stop traffic control	<u>Low</u> Less vehicle idling with yield traffic control	<u>Moderate</u> Higher speeds & vehicle idling with signal traffic control
Aesthetics & Community Character Improvement	<u>Poor</u> No Build scenario would not improve conditions	<u>Moderate</u> Opportunities for art and landscaping with traffic calming	<u>Good</u> Opportunities for art and landscaping at intersection	<u>Moderate</u> Requires signal poles and cabinets
Grant Funding Opportunity	<u>Poor</u> No Build scenario would not improve conditions	<u>Moderate</u> Multimodal safety improvement	<u>Good</u> Multimodal safety improvement, traffic congestion reduction, environmental impact	<u>Moderate</u> Traffic congestion reduction
General Benefits	 Lower initial capital cost and ongoing maintenance 	 Improved driver certainty Lower initial capital cost Improved bike & ped safety 	 Reduction collision severity Improved bike & ped safety Improved operations Reduced GHG emissions 	 Improved operations & capacity Provides designated crossing times and driver certainty
General Challenges	 Decreased operations Increased queues 	 Decreased operations Increased queues 	 High initial capital cost and potential ROW impact Driver adaptation to new traffic operations 	 High capital and maintenance costs Increased queues and collision severity potential

1. Project Description and Corridor Study Scope

Kimley-Horn and Associates, Inc. (Kimley-Horn) is working with the City of Capitola (City) to conduct a traffic operations analysis and corridor study along Bay Avenue from Highway 1 to Park Avenue. This planning study was prepared to assess current and future needs of the Bay Avenue corridor to improve mobility, safety, operations, and economic development for all users.

The study investigates feasible long-term roadway and intersection improvements that could enhance traffic operations and safety for vehicles, bicyclists, and pedestrians through a traffic analysis and intersection control evaluation (ICE) for the Bay Avenue corridor. The overall recommendations of the corridor study are consistent with the Bay Avenue Vision, mobility, and economic goals in the Capitola General Plan. It is anticipated these long-term future improvements would consist of permanent hardscape and geometric roadway changes that would be funded through grant opportunities.

Figure 1 presents an overview map of the Bay Avenue corridor study area.

Figure 1: Project Site Map

1.1 Corridor Study Scenarios

Traffic conditions for Bay Avenue was analyzed during the 7:00 - 9:00 AM and 4:00 - 6:00 PM peak hours of traffic which represent the most heavily congested traffic on a typical weekday. The study area was assessed under the following study scenarios.

• **Existing Scenario**: Existing AM and PM peak-hour traffic volumes from Year 2024 traffic count data and utilizing roadway geometry and intersection traffic control from proposed corridor alternatives aimed to enhance multimodal operations.

Bay Avenue Corridor Study *Item 7 B.* February 2025

Kimley »Horn

• **Cumulative Scenario**: Peak-hour traffic volumes based on the Santa Cruz County Regional Transportation Commission (SCCRTC) Travel Demand Model for Year 2045 and utilizing roadway geometry and intersection traffic control from proposed corridor alternatives aimed to enhance multimodal operations.

1.2 Proposed Corridor Alternatives

The corridor operations and intersection control evaluation (ICE) analysis investigated potential improvements that could improve access and safety for vehicles, bicycles, and pedestrians. Based on internal discussion and direction from City staff, the lane intersection improvement and lane configuration alternatives were evaluated under the Existing Year 2024 and Cumulative Year 2045 study scenarios. Exhibits and tables detailing the general operations, traffic control, and roadway geometry of the conceptual Bay Avenue corridor alternatives are included in **Figure 2**.

Alternative 0 – No Build

• All study intersections and roadways segments are analyzed with its existing traffic control and lane geometry to provide a comparison with the proposed corridor alternatives.

Alternative 1 – Stop Control and Road Diet

- Roadway between Crossroads Loop and Center Street
 - Convert Bay Avenue from a 4-lane roadway into a 2-lane roadway with road diet transition
- Bay Avenue / Crossroads Loop Intersection
 - Adjust Bay Avenue Major Approach (Southbound direction) for 2-lane road diet
 - Bay Avenue / Hill Street Intersection
 - o Install curb bulb-outs and enhanced pedestrian crossings with 2-lane road diet
- Assumes improvements can fit within existing City intersection footprint and right-of-way.
- All other study intersections are analyzed with its existing traffic control and lane geometry

Alternative 2 – Roundabout

•

For the purposes of this study, a qualitative right-of-way evaluation for the Existing and Cumulative condition was conducted to determine if a roundabout is feasible for any of the existing Bay Avenue stop-controlled study intersections.

- Roadway between Crossroads Loop and Center Street
 - Convert Bay Avenue from a 4-lane roadway into a 2-lane roadway with road diet transition
- Bay Avenue / Crossroads Loop Intersection
 - Adjust Bay Avenue Major Approach (Southbound direction) for 2-lane road diet
- Bay Avenue / Hill Street Intersection
 - Convert intersection into single lane roundabout layout with yield control with 2-lane road diet
- Bay Avenue / Capitola Avenue Intersection
 - Convert intersection into single lane roundabout layout with yield control
- Bay Avenue / Monterey Avenue Intersection
 - o Convert intersection into single lane roundabout layout with yield control

- It should be noted that for existing and cumulative conditions, the intersection has rightof-way constraints that impact the economic and construction feasibility for a roundabout; however for consistency and ICE comparison purposes, this intersection was analyzed as a roundabout for the Alternative 2 layout.
- Monterey Avenue / Park Avenue Intersection
 - o Convert intersection into single lane roundabout layout with yield control
 - It should be noted that for existing and cumulative conditions, the intersection has rightof-way constraints that impact the economic and construction feasibility for a roundabout; however for consistency and ICE comparison purposes, this intersection was analyzed as a roundabout for the Alternative 2 layout.
- Assumes roundabout improvements would have minor impacts outside of City right-of-way.
- All other study intersections are analyzed with its existing traffic control and lane geometry

Alternative 3 – Signal

For the purposes of this study and based on the collected traffic volumes, MUTCD peak hour signal warrant #3 was evaluated for the Existing and Cumulative condition to determine if a signal is warranted for any of the existing Bay Avenue stop-controlled study intersections. See Section 3 for analysis.

- Roadway between Crossroads Loop and Center Street
 - Convert Bay Avenue from a 4-lane roadway into a 2-lane roadway with road diet transition
- Bay Avenue / Crossroads Loop Intersection
 - Adjust Bay Avenue Major Approach (Southbound direction) for 2-lane road diet
- Bay Avenue / Hill Street Intersection
 - o Convert intersection into signal control with 2-lane road diet
- Bay Avenue / Capitola Avenue Intersection
 - o Convert intersection into signal control
 - It should be noted that for existing and cumulative conditions, the Bay/Capitola intersection does not meet the Warrant 3 volume criteria for a signal; however for consistency and ICE comparison purposes, this intersection was analyzed as signal for the Alternative 3 layout.
- Bay Avenue / Monterey Avenue Intersection
 - o Convert intersection into signal control
- Monterey Avenue / Park Avenue Intersection
 - Convert intersection into signal control
- Assumes signal equipment can fit within existing City intersection footprint and right-of-way, no physical improvements needed.
- All other study intersections are analyzed with its existing traffic control and lane geometry

It should be noted that a combination of the intersection control alternatives, such as an all-way stop at one location and a roundabout/signal at another location, may be considered along the Bay Avenue corridor pending City direction and public outreach. A detailed analysis of all the possible intersection control combinations is outside the scope of this planning study; however, , While I don't think we need to run a detailed analysis on this, having a general answer prepared would be helpful.

Figure 2: Corridor Alternatives Summary

Ir	ntersection								
_	Intersection		ternative 0 - No Build		ernative 1 - Stop & Road Diet		Alternative 2 - Roundabout		
#	Name	Traffic Control	Intersection Geometry and Operations	Traffic Control	Intersection Geometry and Operations	Traffic Control	Intersection Geometry and Operations	Traffic Control	
1	Bay Avenue / Highway 1 NB Ramps	Signal	No changes to current condition (Intersection in Caltrans right-of-way) 3 NB, 2 SB, 2 WB Lanes	Signal	Same as Alt 0 - No Build	Signal	Same as Alt 0 - No Build	Signal	2
2	Bay Avenue / Highway 1 SB Ramps	Signal	No changes to current conditions (Intersection in Caltrans right-of-way) 2 NB, 3 SB, 3 EB Lanes	Signal	Same as Alt 0 - No Build	Signal	Same as Alt 0 - No Build	Signal	2
3	Bay Avenue / Crossroads Loop	TWSC	No changes to current condition (Minor street access to private driveways) 2 NB, 3 SB, 2 EB, 1 WB Lanes	TWSC	Adjust Bay Avenue Major Approach (Southbound direction) for 2-lane road diet -1 left lane, 1 through lane, 1 right lane -Buffered Class II bike lanes	TWSC	Adjust Bay Avenue Major Approach (Southbound direction) for 2-lane road diet -1 left lane, 1 through lane, 1 right lane -Buffered Class II bike lanes -It should be noted that for existing and cumulative conditions, the Bay/Crossroads intersection has right-of-way constraints that impact the economic and construction feasibility for a roundabout	TWSC	
4	Bay Avenue / Hill Street	AWSC	No changes to current condition 3 NB, 3 SB, 2 EB, 1 WB Lanes	AWSC	Install curb bulb-outs and enhanced pedestrian crossings with 2-lane road diet -Buffered Class II bike lanes -Bay Avenue Major Approach (Northbound and Southbound directions) 1 left lane, 1 shared through- right lane -Hill Street Minor Approach (Westbound direction) 1 shared left-through-right lane -Nob Hill Driveway Minor Approach (Eastbound direction) 1 shared left-through lane, 1 right lane	RDBT	Convert intersection into single lane roundabout layout with yield control with 2-lane road diet -Bay Avenue Major Approach (Northbound and Southbound directions) 1 shared left-through-right lane Lane drop transition prior to roundabout intersection Bike lane transitions and curb ramps onto Class I shared bike/ped pathway prior to roundabout intersection Santa Cruz Metro bus stop and commercial driveway access is maintained along Bay Avenue corridor Hill Street Minor Approach (Westbound direction) 1 shared left-through-right lane Pedestrian crossing relocated before roundabout intersection 1 shared left-through-right lane Pedestrian crossing and pathway relocated inside plaza parking lot before roundabout intersection	Signal	
5	Bay Avenue / Capitola Avenue	AWSC	No changes to current condition 2 NB, 2 SB, 2 EB, 1 WB Lanes	AWSC	Same as Alt 0 - No Build	RDBT	Convert intersection into single lane roundabout layout with yield control -Bay Avenue Major Approach (Northbound and Southbound directions) 1 shared left-through-right lane Bike lane transitions and curb ramps onto Class I shared bike/ped pathway prior to roundabout intersection -Capitola Avenue Minor Approach (Westbound and Eastbound directions) 1 shared left-through-right lane Pedestrian crossing relocated before roundabout intersection	Signal	

Alternative 3 - Signal

Intersection Geometry and Operations

Same as Alt 0 - No Build

Same as Alt 0 - No Build

Adjust Bay Avenue Major Approach (Southbound direction) for 2lane road diet

-1 left lane, 1 through lane, 1 right lane

-Buffered Class II bike lanes

-It should be noted that for existing and cumulative conditions, the Bay/Crossroads intersection does not meet the MUTCD Warrant 3 volume criteria for a signal

Convert intersection into signal control with 2-lane road diet -Bay Avenue Major Approach (Northbound and Southbound directions)

--1 left lane, 1 shared through-right lane

---Protected left turn operations for Northbound and Southbound approaches

-Nob Hill Driveway and Hill Street Minor Approach (Eastbound and Westbound directions)

--Lane geometry same as existing condition

--Permissive yield left turn operations for Eastbound and

Westbound approaches

Convert intersection into signal control

-It should be noted that for existing and cumulative conditions, the Bay/Capitola intersection does not meet the MUTCD Warrant 3 volume criteria for a signal; however for consistency and ICE comparison purposes, this intersection was analyzed as signal for the Alternative 3 layout.

-Lane geometry same as existing condition for all intersection leg approaches

--Permissive yield left turn operations for all approaches

	ntersection								
	Intersection	Al	ternative 0 - No Build	Alte	ernative 1 - Stop & Road Diet		Alternative 2 - Roundabout		
#	Name	Traffic Control	Intersection Geometry and Operations	TrafficIntersection Geometry andControlOperations		Traffic Control	Intersection Geometry and Operations	Traffic Control	
e	Bay Avenue / Monterey Avenue	AWSC	No changes to current condition 1 NB, 1 SB, 1 WB Lanes	AWSC	Same as Alt 0 - No Build	RDBT	Convert intersection into single lane roundabout layout with yield control -It should be noted that for existing and cumulative conditions, the Bay/Monterey intersection has right-of-way constraints that impact the economic and construction feasibility for a roundabout; however for consistency and ICE comparison purposes, this intersection was analyzed as a roundabout for the Alternative 2 layout. -All roadway approaches 1 shared left-through-right lane Bike lane transitions and curb ramps onto Class I shared bike/ped pathway prior to roundabout intersection	Signal	(
7	Monterey 7 Avenue / Park Avenue	AWSC	No changes to current condition 2 NB, 2 SB, 1 EB, 1 WB Lanes	AWSC	Same as Alt 0 - No Build	RDBT	Convert intersection into single lane roundabout layout with yield control -It should be noted that for existing and cumulative conditions, the Monterey/Park intersection has right-of-way constraints that impact the economic and construction feasibility for a roundabout; however for consistency and ICE comparison purposes, this intersection was analyzed as a roundabout for the Alternative 2 layout. -All roadway approaches 1 shared left-through-right lane Bike lane transitions and curb ramps onto Class I shared bike/ped pathway prior to roundabout intersection	Signal	(:

Roadway											
	A	ternative 0 - No Build	Alternative 1 - Stop & Road Diet			Alternative 2 - Roundabout		Alternative 3 - Signal			
# Roadway Segment (Bay Avenue)	# Travel Lanes	Roadway Geometry and Operations	# Travel Lanes	Roadway Geometry and Operations	# Travel Lanes	Roadway Geometry and Operations	# Travel Lanes	Roadway Geometry and Operations			
Highway 1 to Crossroads Loop	4	2 NB, 2 SB, Center left turn lane, Class II Bike	4	Same as Alt 0 - No Build	4	Same as Alt 0 - No Build	4	Same as Alt 0 - No Build			
3 Crossroads Loop to Hill Street	4	2 NB, 2 SB, Center left turn lane, Class II Bike	2	Convert from a 4-lane roadway into a 2-lane roadway with road diet transition	2	Convert from a 4-lane roadway into a 2-lane roadway with road diet transition	2	Convert from a 4-lane roadway into a 2-lane roadway with road diet transition			
C Hill Street to Center Street	4	2 NB, 2 SB, Center left turn lane, Class II Bike	2	Convert from a 4-lane roadway into a 2-lane roadway with road diet transition	2	Convert from a 4-lane roadway into a 2-lane roadway with road diet transition	2	Convert from a 4-lane roadway into a 2-lane roadway with road diet transition			
Center Street to Capitola Avenue	2	1 NB, 1 SB, Class II Bike, On-Street Parking	2	Same as Alt 0 - No Build	2	Same as Alt 0 - No Build	2	Same as Alt 0 - No Build			
Capitola Avenue to Monterey Avenue	2	1 NB, 1 SB, Class II Bike, On-Street Parking	2	Same as Alt 0 - No Build	2	Same as Alt 0 - No Build	2	Same as Alt 0 - No Build			
Monterey Avenue to Park Avenue	2	1 NB, 1 SB, Class II Bike	2	Same as Alt 0 - No Build	2	Same as Alt 0 - No Build	2	Same as Alt 0 - No Build			

Alternative 3 - Signal

Intersection Geometry and Operations

- Convert intersection into signal control
- -Lane geometry same as existing condition for all intersection leg approaches
- --Permissive yield left turn operations for all approaches
- Convert intersection into signal control
- -Lane geometry same as existing condition for all intersection leg approaches
- --Permissive yield left turn operations for all approaches

1.3 Capitola General Plan Consistency

The objectives of the Bay Avenue Corridor Study were prepared to be consistent with the following land use, mobility, and economic goals identified in the City's latest General Plan.

- Goal LU-10 Maintain and enhance Bay Avenue commercial district as a thriving destination with businesses that serve Capitola residents and visitors.
 - Policy LU-10.2 Bay Avenue Streetscape. Enhance the Bay Avenue streetscape in a way that improves the appearance of Bay Avenue, increases safety for bicyclists and pedestrians, and stimulates private investment within the area.
 - Policy LU-10.3 Tree-Lined Boulevard. Encourage a tree-lined boulevard streetscape character along Bay Avenue north of the Capitola Produce property. Encourage installation of drought tolerant and non-invasive street trees and landscaping along the Bay Avenue property frontage in conjunction with capital improvement or redevelopment projects.
 - Action LU-10.1 Medians. Explore opportunities to install medians on Bay Avenue in locations where left turn movements for vehicles would not be restricted.
 - Action LU-10.2 Roundabout. Conduct a public process to study the feasibility of installing a roundabout at the Bay Avenue/Capitola Avenue intersection. The study shall consider impacts on traffic speeds, delays, and air quality.
 - Action LU-10.3 Streetscape Master Plan. Prepare a streetscape master plan for Bay Avenue that presents a unified design theme for the corridors and identifies specific improvements needed to implement this vision.
- Goal MO-4 Provide a roadway system that enhances community aesthetics and promotes a high quality of life
 - Action MO-4.1 Bay Avenue Roundabout. Prepare a study and conduct outreach with business stakeholders and the public to evaluate the feasibility of constructing a roundabout at the intersection of Bay Avenue and Capitola Avenue.
- Goal ED-2 Provide businesses and jobs that create a healthy and stable local economy.
 - Policy ED-2.8 Major Bay Avenue Development Projects. Ensure that major development projects contribute to the vitality and enhance the function of Bay Avenue as a thriving commercial district.

Bay Avenue Vision in the Capitola General Plan

1.4 Level-of-Service Criteria and Thresholds

Analysis of potential adverse effects at roadway intersections is based on the concept of level-of-service (LOS). The LOS of an intersection is a qualitative measure used to describe operational conditions. LOS A (best) represents minimal delay, while LOS F (worst) represents heavy delay and a facility that is operating at or near its functional capacity.

This LOS analysis uses methods defined in the Highway Capacity Manual (HCM) Seventh Edition. HCM 7th Edition methodologies include procedures for analyzing side-street stop-controlled ("SSSC"), all-way stop-controlled ("AWSC"), and signalized intersections. The SSSC procedure defines LOS as a function of average control delay for each minor street approach movement. Conversely, the AWSC and signalized intersection procedures define LOS as a function of average control delay for the overall intersection. **Table 1** relates the operational characteristics associated with each LOS category for signalized and unsignalized intersections.

Table 1: Intersection Operation Standards at Signalized and Unsignalized Intersections

Level of Service	Description	Signalized (Avg. control delay per vehicle sec/veh.)	Unsignalized (Avg. control delay per vehicle sec/veh.)	
А	Free flow with no delays. Users are virtually unaffected by others in the traffic stream	less than 10	less than 10	
в	Stable traffic. Traffic flows smoothly with few delays.	less than or equal to 10 to 20	less than or equal to 10 to 15	
с	Stable flow but the operation of individual users becomes affected by other vehicles. Modest delays.	less than or equal to 20 to 35	less than or equal to 15 to 25	
D	Approaching unstable flow. Operation of individual users becomes significantly affected by other vehicles. Delays may be more than one cycle during peak hours.	less than or equal to 35 to 55	less than or equal to 25 to 35	
E	Unstable flow with operating conditions at or near the capacity level. Long delays and vehicle queuing.	less than or equal to 55 to 80	less than or equal to 35 to 50	
F	Forced or breakdown flow that causes reduced capacity. Stop and go traffic conditions. Excessive long delays and vehicle queuing.	greater than or equal to 80	greater than or equa to 50	

City of Capitola LOS Threshold

The City of Capitola General Plan (adopted June 26, 2014, and updated March 13, 2019) (Policy MO-3.3) establishes a minimum LOS C traffic operation standard at intersections throughout the City, with the exception of the Village Area, Bay Avenue, and 41st Avenue where LOS D is the minimum acceptable standard.

Capitola General Plan Policy MP-3.4 permits a lower LOS and higher congestion at major regional intersections, if necessary, improvements are considered infeasible, as determined by the City's Public Works Director, or result in significant, unacceptable environmental impacts. Any evaluation of the Project's LOS impact on City of Capitola streets follows the City's General Plan.

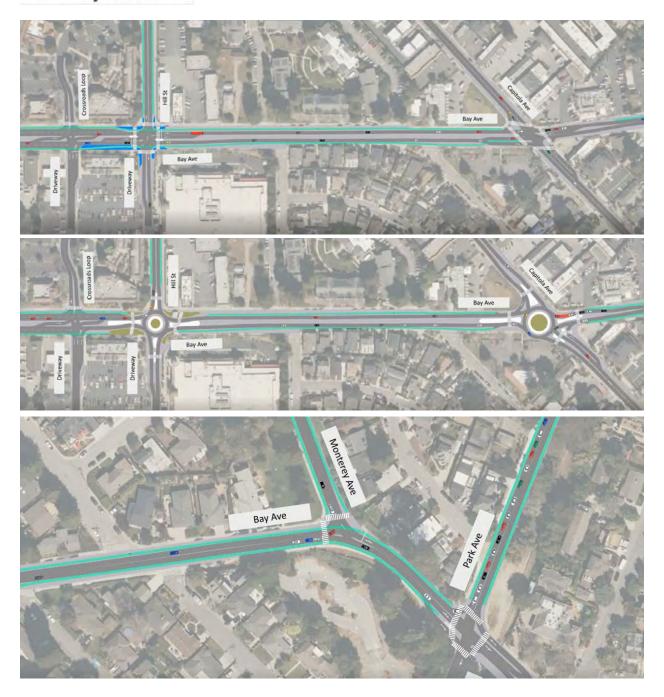
California Department of Transportation (Caltrans) LOS Threshold

An LOS-based analysis of Caltrans facilities is provided using the previously applied LOS standard combined with the County v/c standard for significance criteria purposes. Deficiencies at Caltrans study intersections occur when:

- Cause operations to deteriorate from an acceptable level (LOS C or better) to an unacceptable level (LOS D or worse); or
- Causes the existing measure of effectiveness (average delay) to deteriorate at a State-operated intersection operating at LOS D or worse.

Roundabout Analysis – FHWA Requirements

Roundabouts: An Information Guide (June 2000) by the Federal Highway Administration (FHWA) was used for guidance. The FHWA recommends that no approach to a roundabout should handle more than 85% of its capacity, even if the level of service is still acceptable. This helps ensure that each entrance runs smoothly, preventing congestion and keeping traffic flowing efficiently. The analysis takes this design standard into account.


1.5 Traffic Analysis Methodology

For the Bay Avenue Corridor (Alternative 0 – No Build, Alternative 1 - Stop, Alternative 2 – Roundabout, and Alternative 3 – Signal), the LOS, vehicle delay, and critical vehicle queues were determined using Synchro 12 traffic analysis software. Sidra 9 traffic analysis software was also used to estimate the LOS, vehicle delay, and critical vehicle queues for the proposed roundabout geometry along Bay Avenue.

For the Alternative 1 – Stop and Alternative 2 – Roundabout layouts, a microsimulation analysis using VISSIM software was also conducted for operation comparison purposes. VISSIM was used because the software is the most appropriate tool to simulate the pedestrian, bicycle, vehicular traffic movements, and driver behavior through various traffic control devices. **Figure 3** illustrates the VISSIM model used for the traffic analysis.

Figure 3: Illustrative VISSIM Model for Project Study Area

2. Existing Transportation Conditions

2.1 Study Intersections

Study intersections for the project were selected in consultation with City staff. The intersections evaluated in this study are listed below.

- 1. Bay Avenue / Highway 1 NB Ramps
- 2. Bay Avenue / Highway 1 SB Ramps
- 3. Bay Avenue / Crossroads Loop
- 4. Bay Avenue / Hill Street
- 5. Bay Avenue / Capitola Avenue
- 6. Bay Avenue / Monterey Avenue
- 7. Monterey Avenue / Park Avenue

2.2 Roadway Network

The following local and regional roadways provide access to the project study area:

Highway 1 is 4-lane freeway (that connects with State Route 17 and State Route 156) in the north-south direction. Within Capitola, Highway 1 travels in an east-west direction. Access to and from the project study area is provided by ramp terminals at Porter Street / Bay Avenue.

Bay Avenue is an arterial in the northwest-southeast direction between Highway 1 and Monterey Avenue, and the road is classified as a minor arterial per the City's General Plan. Class II bike lanes and sidewalks exist along both sides of the roadway. The posted speed limit is 25 miles per hour and provides direct access to commercial and residential land uses. Between Highway 1 and Center Street, Bay Avenue is a four-lane facility with a center two-way left-turn lane (TWLTL), and on-street parking is prohibited along this section. Between Center Street and Park Avenue, Bay Avenue is a two-lane facility, and on-street parking is allowed in marked areas next to commercial and residential uses.

Crossroads Loop is a private two-lane street in the east-west direction that provides direct driveway access to commercial uses at the Nob Hill plaza on the westside and at the Crossroads center on the eastside. The roadway provides sidewalks for pedestrians and on-street parking on the private road east of Bay Avenue. Crossroads Loop is located approximately 175-feet north of Hill Street.

Hill Street is a two-lane local street in the east-west direction that provides access to some retail and mostly residential land uses east of Bay Avenue. The roadway provides sidewalks between Bay Avenue and Crossroads Loop. Class II bike lanes are provided in the eastbound direction and Class III shared bike sharrows are provided in the westbound direction from Bay Avenue to Capitola Avenue.

Capitola Avenue is a two-lane street in the north-south direction that provides access to the project study area as well as various commercial and residential land uses between Soquel Drive and Monterey Avenue. The roadway provides sidewalks and Class III shared bike sharrows on both sides of the street. The posted speed limit is 25 miles per hour. Per the General Plan, the road is classified as a minor arterial south of Bay Street and a collector street north of Bay Street.

Monterey Avenue is a two-lane street in the north-south direction that provides access to the project study area as well as various commercial and residential land uses between Kennedy Drive and Esplanade. The roadway provides sidewalks, Class II bike lanes, and Class III shared bike sharrows on both sides of the street. The posted speed limit is 25 miles per hour. Per the General Plan, the road is classified as an arterial south of Bay Street and a collector street north of Bay Street.

Park Avenue is a two-lane street in the east-west direction that provides access to the project study area as well as residential land uses between Monterey Avenue and Soquel Drive. The roadway provides sidewalks and Class II bike lanes, and the posted speed limit is 25 miles per hour. Per the General Plan, the road is classified as an arterial.

2.3 Pedestrian and Bicycle Facilities

Pedestrian and bicycle activity within project vicinity are active along Bay Avenue, Capitola Avenue, and Monterey Avenue with an established pedestrian and bicycle infrastructure. Connected sidewalks at least four (4) feet wide are available on at least one side of all roadways in the study area with adequate lighting and signing. At the Highway 1 ramp signalized intersections, marked crosswalks, Americans with Disabilities Act (ADA) standard curb ramps, and count down pedestrian signals provide improved pedestrian visibility and safety.

Bicycle facilities in the area include Bay Avenue, Hill Street, and Monterey Avenue which consist of Class II bike lanes with buffered striping to separate the vehicle and bike travel way, and Capitola Avenue, which consists of Class III shared bike sharrows. Bay Avenue features green paint markings in potential conflict areas at the Highway 1 ramp signalized intersections. Bicycle parking in the area is limited to private commercial and industrial lots.

Overall, the existing pedestrian and bicycle facilities near the project have adequate connectivity and provide pedestrian and bicyclists with routes to the surrounding land uses. The City of Capitola Bicycle Transportation Plan 2011 does not indicate any future bicycle facilities planned within the study area.

A discussion of potential bike and pedestrian improvements along the Bay Avenue corridor are provided in Section 4.

2.4 Transit Facilities

Transit services in the study area include a bus route provided by the Santa Cruz Metro Transit District (SCMTD). Per the updated latest service schedule, the project study area is served by the following major transit route.

- Mid-County Bus Route 55
 - Capitola Mall Transit Center Seascape Blvd/Via Pacifica
 - Mid-county service approximately every 60-100 minutes on weekdays and approximately every 4 to 5 hours on weekends
 - o This bus route travels through the following study intersections:
 - Bay Avenue / Highway 1 NB Ramps
 - Bay Avenue / Highway 1 SB Ramps
 - Bay Avenue / Crossroads Loop
 - Bay Avenue / Hill Street

Bay Avenue / Capitola Avenue

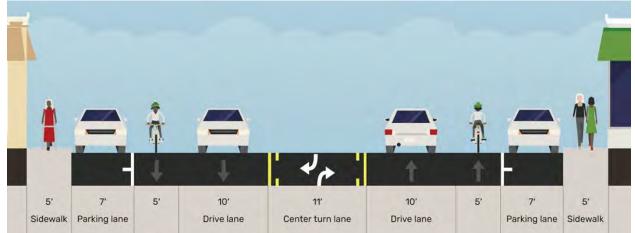
Several bus stops with a bench are located along the Bay Avenue corridor which include the intersections of Bay Avenue / Hill Street and Bay Avenue / Capitola Avenue.

2.5 Roadway Cross Section

The existing roadway cross section of Bay Avenue varies along the corridor with different lane configurations, widths, and multi-modal facilities. **Figures 4-8** summarize the typical roadway cross-section along Bay Avenue.

Figure 4: Existing Section – Highway 1 to Center St (80-ft ROW)

Figure 5: Existing Section – Center St to Capitola Ave (65-ft ROW)



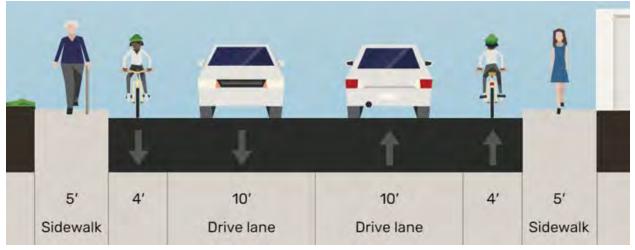

Figure 6: Existing Section – Capitola Ave to Burlingame Ave (56-ft ROW)

Figure 7: Existing Section – Burlingame Ave to Monterey Ave (56-ft ROW)

Figure 8: Existing Section – Monterey Ave to Park Ave (38-ft ROW)

3. Traffic Data Collection

3.1 Year 2024 Existing Intersection Volumes

Year 2024 existing turning movement counts during the 7-9 AM peak, 2-4 PM Midday peak, and 4-6 PM peak hours at the project study intersections were collected by Retkor / All Traffic Data Service. These traffic counts were collected on 3/7/2024 when school was in session and during favorable weather conditions. The collected intersection traffic volume data is provided in **Table 2** and **Attachment A**.

ID	NB/SB Street	WB/EB Street	Peak Hour	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
1	Bay Ave	Hwy 1 NB Ramps	7 AM	369	516	0	0	431	478	0	0	0	59	12	107
2	Bay Ave	Hwy 1 SB Ramps	7 AM	0	572	111	176	314	0	313	0	296	0	0	0
3	Bay Ave	Crossroads Loop	7 AM	1	616	9	39	462	109	53	0	21	0	1	14
4	Bay Ave	Hill St	7 AM	57	441	10	75	377	31	43	19	39	9	28	142
5	Bay Ave	Capitola Ave	7 AM	27	312	55	74	183	128	70	67	6	83	94	42
6	Bay Ave	Monterey Ave	7 AM	0	162	61	219	84	0	0	0	0	87	0	282
7	Monterey Ave	Park Ave	7 AM	1	123	225	41	126	4	0	9	1	418	3	100
1	Bay Ave	Hwy 1 NB Ramps	5 PM	290	401	0	0	642	316	0	0	0	107	1	195
2	Bay Ave	Hwy 1 SB Ramps	5 PM	0	457	91	276	473	0	234	208	347	0	0	0
3	Bay Ave	Crossroads Loop	5 PM	4	462	9	50	658	112	49	2	38	4	1	37
4	Bay Ave	Hill St	5 PM	46	307	21	146	505	49	92	45	84	18	33	76
5	Bay Ave	Capitola Ave	5 PM	29	200	23	56	337	124	72	84	8	61	72	31
6	Bay Ave	Monterey Ave	5 PM	0	124	85	304	141	0	0	0	0	35	0	104
7	Monterey Ave	Park Ave	5 PM	1	165	498	92	83	1	5	3	3	203	3	39

Table 2: Year 2024 Existing Intersection Volumes

It should be noted that the during the morning and mid-day afternoon school drop off times, the Bay Avenue corridor experiences a period of congestion in the northbound and southbound directions from the influx of vehicles accessing the Soquel Elementary School and New Brighton Middle School. Field observations cite that during these times, the average vehicle delay increases, and vehicle queues are longer at the existing stop control intersections at Hill Street and Capitola Avenue.

3.2 Year 2045 Cumulative Intersection Volumes

Cumulative volumes in the study area were determined based on the SCCRTC Travel Demand Model, which was updated for 2019 "base year" conditions and 2045 "future year" condition. Land uses for the cumulative condition include reasonable growth consistent with the growth nodes in the Sustainable Santa Cruz County Plan (2014) and some major projects such as the proposed redevelopment of the Capitola Mall, the redevelopment of the Farmers Market site, and the expansion of the Dignity Healthcare Campus.

2045 future year condition roadway segment volumes from the SCCRTC Travel Demand Model were obtained for Cumulative traffic volume growth estimates. The same Model was used to plot bidirectional AM and PM peak-hour traffic volumes on each segment along roadways within the Project study area. The 2019 base year (2019) and future year (2045) forecast volumes were compared to

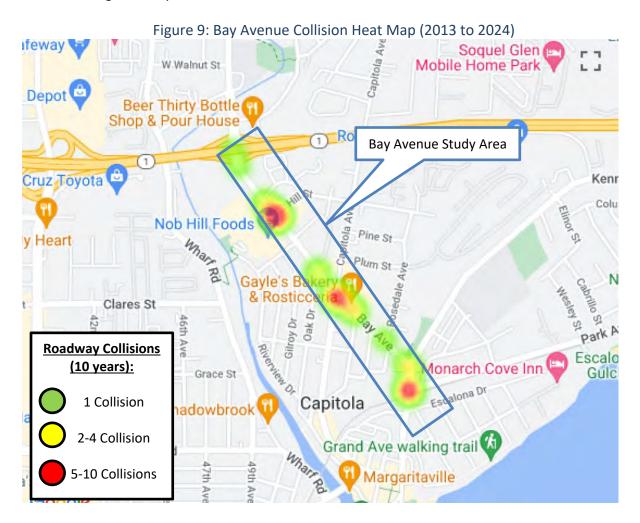
determine the annual incremental growth in traffic volumes at study intersection approach and departure links. 2045 future year turning movement volumes were calculated by adding the growth increment to the base year traffic count volumes to calculate the final adjusted roadway link forecast volume. Final adjusted forecast volumes were then converted to Cumulative intersection turning movement volumes using a process commonly referred to as the Furness Method. The Furness Method uses an iterative process to derive future turning movement volumes based on future year roadway link volumes and an initial estimate of turning percentages (obtained from the existing intersection turning movement counts). The Cumulative traffic volumes are a conservative estimate of future vehicle traffic, and the cumulative scenario traffic volume data is provided in **Table 3**.

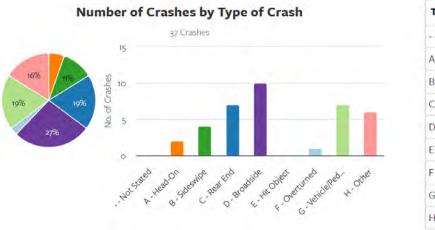
ID	NB/SB Street	WB/EB Street	Peak Hour	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
1	Bay Ave	Hwy 1 NB Ramps	7 AM	321	392	0	0	436	536	0	0	0	161	12	379
2	Bay Ave	Hwy 1 SB Ramps	7 AM	0	465	61	251	346	0	248	0	586	0	0	0
3	Bay Ave	Crossroads Loop	7 AM	1	394	9	69	754	109	53	0	21	0	1	79
4			7 AM	57	293	4	75	669	31	43	19	39	13	28	68
5	Bay Ave Capitola Ave		7 AM	27	312	55	74	183	128	78	67	6	83	94	42
6	Bay Ave	Monterey Ave	7 AM	0	162	61	219	239	0	0	0	0	87	0	282
7	Monterey Ave	Park Ave	7 AM	1	123	238	201	121	4	0	9	1	418	3	100
1	Bay Ave	Hwy 1 NB Ramps	5 PM	683	726	0	0	644	149	0	0	0	77	1	406
2	Bay Ave	Hwy 1 SB Ramps	5 PM	0	992	104	370	351	0	417	208	640	0	0	0
3	Bay Ave	Crossroads Loop	5 PM	4	988	9	92	787	112	49	2	38	4	1	59
4	Bay Ave	Hill St	5 PM	46	717	34	146	634	49	92	45	84	22	33	192
5	Bay Ave	Capitola Ave	5 PM	29	200	23	61	337	171	190	63	8	17	65	73
6	Bay Ave	Monterey Ave	5 PM	0	305	85	304	251	0	0	0	0	35	0	104
7	Monterey Ave	Park Ave	5 PM	1	148	619	202	83	1	5	3	3	203	3	237

Table 3: Year 2045 Cumulative Intersection Volumes

3.3 Roadway Daily Traffic and Speed Data

Average daily traffic (ADT) and speed counts were collected along the Bay Avenue corridor and are summarized in **Table 4** and **Attachment A**.


Tuble 4. buy Avenue Abr & Venue Speed Summary										
	From H	lill St to	From Capitola Ave to Montrey Ave							
	Capito	ola Ave								
Traffic Criteria	3/7/	2024	3/7/2024							
	Northbound	Southbound	Northbound	Southbound						
Average Daily Traffic	4,801	5,415	3,145	3,182						
Posted Speed Limit (mph)	25	25	25	25						
50 th Percentile Speed (mph)	26	26.7	25.5	27						
85 th Percentile Speed (mph)	29.6	30.6	29.4	30.7						
95 th Percentile Speed (mph)	32.2	33.3	32.1	33.4						


Table 4: Bay Avenue ADT & Vehicle Speed Summary

As shown in the table above, the posted speed limit on Bay Avenue is 25 mph, and the 85th percentile (critical) speed is about 30 mph in both the northbound and southbound directions.

3.4 Collision Data

Collision data from 2013 to 2024 along Bay Avenue was obtained using the Transportation Injury Mapping System (TIMS). TIMS is a tool which geocodes, maps, and presents various types of statistical collision reports from the California Statewide Integrated Traffic Records System (SWITRS) database. A heat map showing the location of the reported collisions is shown in **Figure 9** and a summary of the collision types is shown in **Figure 10**. **Table 5** and **Attachment B** summarizes the reported traffic collisions along the study corridor.

Figure 10: Bay Avenue Collision Types	(2013 to 2024)
Bare for bay , were complete types	(2020 00 202 1)

Type of Crash	Count	%
Not Stated	0	0.00%
A - Head-On	2	5.41%
B - Sideswipe	4	10.81%
C - Rear End	7	18.92%
D - Broadside	10	27.03%
E - Hit Object	0	0.00%
F - Overturned	1	2.70%
G - Vehicle/Pedestrian	7	18.92%
H - Other	6	16.22%

Between January 2013 and December 2024, there were 36 total reported collisions along the Bay Avenue study corridor which include ten (10) bicycle and eight (8) pedestrian recorded collisions. One (1) of the collisions was a fatal accident with a pedestrian and the remaining collisions resulted in injuries. Approximately ten (10) of the bike and pedestrian collisions along the Bay Avenue corridor occurred within an intersection. The most common primary crash factors (PCF) that caused the reported bike and pedestrian collisions include unsafe speed, improper turning, and right-of-way violation.

			Tuble 5. Du	y Avenue Colli		15 10 202	27)		
#	Case ID	Date	Primary Road	Secondary Rd	Distance & Direction from Intersection	Bike Collision	Pedestrian Collision	Killed	Injured
1	5737844	5/25/2012	Bay Ave	Hill St	90ft South	No	No	0	1
2	5769463	7/30/2012	Capitola Ave	Bay Ave	80ft West	No	No	0	1
3	5926906	2/2/2013	Highway 1	Bay Ave	200ft North	No	No	0	1
4	6483008	4/24/2014	Bay Ave	Capitola Ave	At Intersection	No	Yes	0	1
5	6494114	4/30/2014	Bay Ave	Capitola Ave	At Intersection	No	No	0	1
6	6487930	5/6/2014	Oak Dr	Bay Ave	37ft South	Yes	No	0	1
7	6487941	5/9/2014	Bay Ave	Hill St	At Intersection	No	No	0	1
8	6511924	6/3/2014	Bay Ave	Hill St	At Intersection	No	Yes	0	1
9	6724062	11/17/2014	Bay Ave	Monterey Ave	26ft South	No	No	0	1
10	6748318	12/3/2014	Monterey Ave	Park Ave	18ft South	No	Yes	0	1
11	6864222	3/19/2015	Bay Ave	Capitola Ave	83ft East	No	Yes	0	1
12	6870050	3/19/2015	Monterey Ave	Park Ave	At Intersection	No	No	0	1
13	6889427	4/4/2015	Bay Ave	Bay Ave	At Intersection	Yes	No	0	1
14	6940786	6/7/2015	Monterey Ave	Bay Ave	At Intersection	No	No	0	1
15	7063888	7/20/2015	Monterey Ave	Park Ave	At Intersection	Yes	No	0	1
16	7075959	9/9/2015	Monterey Ave	Park Ave	At Intersection	No	No	0	1
17	8152095	10/7/2016	Bay Ave	Hill St	At Intersection	No	Yes	0	1
18	8339317	3/26/2017	Bay Ave	Burlingame Ave	90ft North	Yes	No	0	1
19	8373999	4/29/2017	Bay Ave	Hill St	At Intersection	No	No	0	1
20	8506493	11/25/2017		Hill St	40ft North	No	No	0	1
21	8593314	2/13/2018	Bay Ave	Hill St	203ft North	No	No	0	1
22	90781844	7/21/2018	Bay Ave	Monterey Ave	100ft North	Yes	No	0	1
23	8701088	8/13/2018	Bay Ave	Hill St	213ft North	Yes	No	0	1
24	8648318	10/6/2018	Bay Ave	Highway 1	218ft South	No	Yes	1	0
25	9007558	11/22/2019	Monterey Ave	Park Ave	At Intersection	Yes	No	0	1
26	9174869	10/8/2020	Bay Ave	Hill St	At Intersection	No	No	0	1
27	9355886	9/24/2021	Bay Ave	Rosedale Ave	44ft North	No	No	0	1
28	9472209	5/5/2022	Bay Ave	Oak Dr	At Intersection	Yes	No	0	1
29	9472208	5/7/2022	Bay Ave	Hill St	At Intersection	No	No	0	1
30	9495729	8/1/2022	Monterey Ave	Park Ave	At Intersection	No	No	0	1
31	9495924	9/4/2022	Capitola Ave	Bay Ave	58ft South	Yes	No	0	1
32	9534052	12/9/2022	Bay Ave	Hill St	At Intersection	No	Yes	0	1
33	9549472	2/1/2023	, Bay Ave	Burlingame Ave		Yes	No	0	1
34	9625429	8/11/2023	Monterey Ave	Park Ave	35ft South	No	No	0	1
35	9625425	8/24/2023	Bay Ave	Hill St	At Intersection	No	Yes	0	1
36	9646836	10/12/2023	Bay Ave	Burlingame Ave	47ft North	No	No	0	1
			,		Total		8	1	35

Table 5: Bay Avenue Collision Data (2013 to 2024)

Note: Bicycle Collision = Green, Pedestrian Collision = Yellow

3.5 Signal Warrant Analysis

Chapter 4C of the California Manual on Uniform Traffic Control Devices (CAMUTCD) states that an engineering study of traffic conditions, pedestrian characteristics, and physical characteristics of the location shall be performed to determine whether installation of a traffic control signal is justified at a particular location. The investigation of the need for a traffic control signal shall include an analysis of factors related to the existing operation and safety at the study location and the potential to improve these conditions using applicable factors contained in traffic signal warrants.

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal. On local streets and highways, the engineering study should include consideration of a roundabout (yield control). If a roundabout is determined to provide a viable and practical solution, it should be studied in lieu of, or in addition to a traffic control signal.

For the purposes of this study and based on the collected traffic volumes, peak hour signal warrant #3 was evaluated for the Existing and Cumulative condition to determine if a signal is warranted for any of the Bay Avenue stop-controlled study intersections. To be warranted under Warrant #3, peak hour traffic volumes must plot above the corresponding threshold provided in **Figure 10**. The AM and PM peak hour volumes were analyzed using the following assumptions as shown in **Table 6** and **Table 7**.

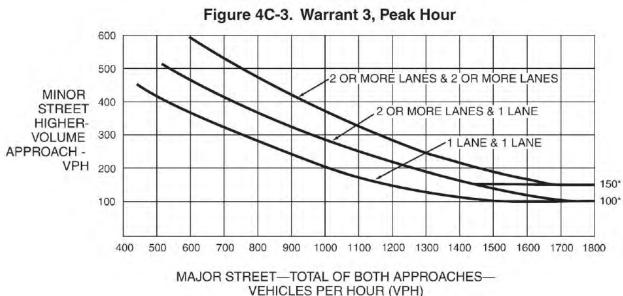


Figure 11: CA MUTCD Signal Warrant 3

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Ma	jor Stree	et	M	linor Stre	eet	
Street Name	# Lanes	Volume (Total of Both Approaches)	Street Name	# Lanes	Volume (Higher Volume Approach)	Meets MUTCD Warrant 3 Criteria?
AM Peak						
Bay Ave	2	1236	Crossroads Lp	1	109	No
Bay Ave	2	991	Hill St	1	179	No
Bay Ave	1	779	Capitola Ave	1	219	No
Bay Ave	1	526	Monterey Ave	1	369	No
Monterey Ave	1	520	Park Ave	1	521	Yes
PM Peak						
Bay Ave	2	1295	Crossroads Lp	1	89	No
Bay Ave	2	1074	Hill St	1	221	No
Bay Ave	1	769	Capitola Ave	1	164	No
Bay Ave	1	654	Monterey Ave	1	139	No
Monterey Ave	1	840	Park Ave	1	245	No

Table 6: CA MUTCD Signal Warrant #3 Assumptions – Year 2024 Existing Conditions

Table 7: CA MUTCD Signal Warrant #3 Assumptions – Year 2045 Cumulative Conditions

Ma	Major Street			linor Stro	eet	
Street Name	# Lanes	Volume (Total of Both Approaches)	Street Name	# Lanes	Volume (Higher Volume Approach)	Meets MUTCD Warrant 3 Criteria?
AM Peak						
Bay Ave	2	1336	Crossroads Lp	1	80	No
Bay Ave	2	1129	Hill St	1	109	No
Bay Ave	1	779	Capitola Ave	1	219	No
Bay Ave	1	681	Monterey Ave	1	369	Yes
Monterey Ave	1	688	Park Ave	1	521	Yes
PM Peak						
Bay Ave	2	2002	Crossroads Lp	1	89	No
Bay Ave	2	1626	Hill St	1	247	Yes
Bay Ave	1	821	Capitola Ave	1	261	No
Bay Ave	1	945	Monterey Ave	1	139	No
Monterey Ave	1	1054	Park Ave	1	443	Yes

Under existing conditions, the Monterey/Park intersection would meet Warrant 3 volume criteria for the AM peak hour. Under cumulative conditions, the peak hour traffic volumes along Bay Avenue would meet the Warrant 3 volume criteria for the Bay/Hill, Bay/Monterey, and Monterey/Park intersections. These intersections were analyzed as a signal for the Alternative 3 layout. It should be noted that for existing and cumulative conditions, the Bay/Capitola intersection does not meet the Warrant 3 volume criteria for a signal; however for consistency and ICE comparison purposes, this intersection was analyzed as signal for the Alternative 3 layout.

4. Corridor Operations and Intersection Control Evaluation Results

4.1 Year 2024 Existing ICE Operations

Traffic operations and ICE analysis were evaluated at the study intersections under Existing conditions based on Existing conditions and utilizing roadway geometry and intersection traffic control from developed corridor concepts to enhance multimodal operations. Traffic operations for the study intersections with Synchro software between the various corridor alternatives are shown below in **Table 8** and **Table 9**. The LOS calculations are included in **Attachment C** and **Attachment D**.

Operations Summary

Under Existing conditions, most of the Bay Avenue corridor is anticipated to operate at acceptable LOS. Compared to the Alt 0 no build and Alt 1 stop configuration, the Alt 2 roundabout option at the Bay/Hill and Bay/Capitola intersections would operate with better LOS and reduced overall intersection delay during the peak periods. The Alt 3 signal layout would also yield acceptable intersection LOS with reduced intersection delay compared to the Alt 1 stop; however, the Alt 3 signal operates at similar LOS to the Alt 2 roundabout layout for the Bay/Hill and Bay/Capitola intersections.

Deficient Operations

- Bay Avenue / Crossroads Loop (Intersection #3)
 - TWSC operates at LOS E during the PM peak.
 - o Alt 0 No Build, Alt 1 Stop, Alt 2 Roundabout, Alt 3 Signal
 - Vehicle queues spillback into the Crossroads Loop intersection and cause delay for the minor leg approach

• Bay Avenue / Hill Street (Intersection #4)

- AWSC operates at LOS E during the PM peak.
- o Alt 1 Stop
 - Vehicle queues and delay on southbound approach spillback into the Crossroads Loop intersection and cause delay for the intersection

_							ting inte			II LOS – AIVI FEAK							
			Alternative No Build				Alternative				Alternative Roundabo				Alternative Signal	e 3	
No.	Intersection	Control Type	Worst Mvmt or RDBT v/c	Delay (sec)	LOS	Control Type	Worst Mvmt or RDBT v/c	Delay (sec)	LOS	Control Type	Worst Mvmt or RDBT v/c	Delay (sec)	LOS	Control Type	Worst Mvmt or RDBT v/c	Delay (sec)	LOS
1	Bay Ave & Hwy 1 NB Ramps	Signal	-	25.2	С	Signal	-	26.8	С	Signal	-	26.8	С	Signal	-	21.0	С
2	Bay Ave & Hwy 1 SB Ramps	Signal	-	17.0	В	Signal	-	17.1	В	Signal	-	17.1	В	Signal	-	30.7	С
3	Bay Ave & Crossroads Loop	TWSC	EB	26.9	D	TWSC	EB	24.0	С	TWSC	EB	24.0	С	TWSC	EB	23.3	С
4	Bay Ave & Hill St	AWSC	-	18.2	С	AWSC	-	28.5	D	RAB	0.482	7.8	Α	Signal	-	13.4	В
5	Bay Ave & Capitola Ave	AWSC	-	27.7	D	AWSC	-	27.7	D	RAB	0.407	7.4	Α	Signal	-	7.6	А
6	Bay Ave & Monterey Ave	AWSC	-	19.7	С	AWSC	-	19.6	С	RAB	0.36	6.1	Α	Signal	-	17.4	В
7	Monterey Ave & Park Ave	AWSC	-	25.1	D	AWSC	-	24.9	D	RAB	0.488	7.2	Α	Signal	-	10.1	В

Table 8: Year 2024 Existing Intersection LOS – AM Peak

Note: TWSC delay is worst movement approach, AWSC, RAB, and Signal delay is overall average

Table 9: Year 2024 Existing Intersection LOS – PM Peak

			Alternative No Build				Alternative				Alternative Roundabo				Alternative Signal	93	
No.	Intersection	Control Type	Worst Mvmt or RDBT v/c	Delay (sec)	LOS	Control Type	Worst Mvmt or RDBT v/c	Delay (sec)	LOS	Control Type	Worst Mvmt or RDBT v/c	Delay (sec)	LOS	Control Type	Worst Mvmt or RDBT v/c	Delay (sec)	LOS
1	Bay Ave & Hwy 1 NB Ramps	Signal	-	28.7	С	Signal	-	23.1	С	Signal	-	28.7	С	Signal	-	28.7	С
2	Bay Ave & Hwy 1 SB Ramps	Signal	-	20.4	С	Signal	-	22.7	С	Signal	-	20.4	С	Signal	-	20.4	С
3	Bay Ave & Crossroads Loop	TWSC	EB	39.7	Е	TWSC	EB	35.3	E	TWSC	EB	35.3	Е	TWSC	EB	33.0	D
4	Bay Ave & Hill St	AWSC	-	22.5	С	AWSC	-	44.2	E	RAB	0.634	10.1	В	Signal	-	14.1	В
5	Bay Ave & Capitola Ave	AWSC	-	20.5	С	AWSC	-	20.5	С	RAB	0.505	7.5	Α	Signal	-	6.7	А
6	Bay Ave & Monterey Ave	AWSC	-	12.1	В	AWSC	-	11.9	В	RAB	0.376	5.9	Α	Signal	-	6.4	А
7	Monterey Ave & Park Ave	AWSC	-	15.4	С	AWSC	-	15.4	С	RAB	0.604	8.5	Α	Signal	-	7.7	Α

Note: TWSC delay is worst movement approach, AWSC, RAB, and Signal delay is overall average

4.2 Year 2045 Cumulative ICE Operations

Traffic operations and ICE analysis were evaluated at the study intersections under Cumulative conditions based on roadway geometry and intersection traffic control from developed corridor concepts to enhance multimodal operations. Traffic operations for the study intersections with Synchro software between the various corridor alternatives are shown below in **Table 10** and **Table 11**. The LOS results are included in **Attachment C** and **Attachment D**.

Operations Summary

Under Cumulative conditions, several intersections along the Bay Avenue corridor are anticipated to operate at a level of service above the City's LOS threshold. Compared to the Alt 0 no build and Alt 1 stop configuration, the Alt 2 roundabout option at the Bay/Hill and Bay/Capitola intersections would operate with better LOS and reduced overall intersection delay during the peak periods. The Alt 3 signal layout would also yield acceptable intersection LOS with reduced intersection delay compared to the Alt 1 stop; however, the Alt 3 signal operates at similar LOS to the Alt 2 roundabout layout for the Bay/Hill and Bay/Capitola intersections.

Deficient Operations

- Bay Avenue / Highway 1 NB Ramps (Intersection #1)
 - Signal operates at LOS E during the AM and PM peak.
 - o Alt 0 No Build, Alt 1 Stop, Alt 2 Roundabout, Alt 3 Signal
 - High traffic volumes from the Bay Avenue southbound approach creates delay and long queues with the signal control.
 - Delay and long queues for southbound vehicles wanting to access the Caltrans freeway on-ramp.

• Bay Avenue / Crossroads Loop (Intersection #3)

- TWSC operates at LOS E during the AM and PM peak.
 - Alt 0 No Build, Alt 1 Stop, Alt 2 Roundabout, Alt 3 Signal
 - Vehicle queues spillback into the Crossroads Loop intersection and cause delay for the minor leg approach

• Bay Avenue / Hill Street (Intersection #4)

- AWSC operates at LOS F during the AM and PM peak.
- o Alt 0 No Build, Alt 1 Stop
 - Vehicle queues and delay on southbound approach spillback into the Crossroads Loop intersection and cause delay for the intersection
- Montrey Avenue / Park Avenue (Intersection #7)
 - AWSC operates at LOS F during the PM peak.
 - o Alt 0 No Build, Alt 1 Stop
 - For the AM peak, high traffic volumes from the Park Avenue westbound approach creates delay and long vehicle queues with the stop control.
 - For the PM peak, high right-turn traffic volumes from the Monterey Avenue NB approach creates delay and long vehicle queues with the stop control.

									00101		AIVI PEAK	-					
			Alternative				Alternative				Alternative				Alternative	e 3	
			No Build			St	op & Road	Diet			Roundabo	ut			Signal		
No.	Intersection	Control Type	Worst Mvmt or RDBT v/c	Delay (sec)	LOS	Control Type	Worst Mvmt or RDBT v/c	Delay (sec)	LOS	Control Type	Worst Mvmt or RDBT v/c	Delay (sec)	LOS	Control Type	Worst Mvmt or RDBT v/c	Delay (sec)	LOS
1	Bay Ave & Hwy 1 NB Ramps	Signal	-	71.2	Е	Signal	-	71.2	Е	Signal	-	71.2	E	Signal	-	71.2	E
2	Bay Ave & Hwy 1 SB Ramps	Signal	-	32.8	С	Signal	-	32.8	С	Signal	-	32.8	С	Signal	-	32.8	С
3	Bay Ave & Crossroads Loop	TWSC	EB	48.0	E	TWSC	EB	44.2	E	TWSC	EB	44.2	E	TWSC	EB	39.1	E
4	Bay Ave & Hill St	AWSC	-	22.2	С	AWSC	-	73.2	F	RAB	0.703	10.5	В	Signal	-	12.8	В
5	Bay Ave & Capitola Ave	AWSC	-	18.4	С	AWSC	-	18.4	С	RAB	0.41	7.4	Α	Signal	-	6.9	А
6	Bay Ave & Monterey Ave	AWSC	-	18.2	С	AWSC	-	18.2	С	RAB	0.41	6.7	А	Signal	-	10.7	В
7	Monterey Ave & Park Ave	AWSC	-	33.0	D	AWSC	-	33.0	D	RAB	0.488	8.4	Α	Signal	-	12.9	В

Table 10: Year 2045 Cumulative Intersection LOS – AM Peak

Note: TWSC delay is worst movement approach, AWSC, RAB, and Signal delay is overall average

Table 11: Year 2045 Cumulative Intersection LOS – PM Peak

			Alternative No Build				Alternative				Alternative Roundabo				Alternative Signal	e 3	
No.	Intersection	Control Type	Worst Mvmt or RDBT v/c	Delay (sec)	LOS	Control Type	Worst Mvmt or RDBT v/c	(sec)	LOS	Control Type	Worst Mvmt or RDBT v/c	Delay (sec)	LOS	Control Type	Worst Mvmt or RDBT v/c	(sec)	LOS
1	Bay Ave & Hwy 1 NB Ramps	Signal	-	71.1	E	Signal	-	64.7	E	Signal	-	76.0	E	Signal	-	71.1	E
2	Bay Ave & Hwy 1 SB Ramps	Signal	-	46.5	D	Signal	-	34.7	С	Signal	-	34.6	С	Signal	-	46.5	D
3	Bay Ave & Crossroads Loop	TWSC	EB	65.9	F	TWSC	EB	63.4	F	TWSC	EB	63.4	F	TWSC	EB	119.1	F
4	Bay Ave & Hill St	AWSC	-	98.7	F	AWSC	-	109.6	F	RAB	0.893	21.0	С	Signal	-	26.5	С
5	Bay Ave & Capitola Ave	AWSC	-	21.7	С	AWSC	-	21.3	С	RAB	0.524	8.1	Α	Signal	-	7.3	А
6	Bay Ave & Monterey Ave	AWSC	-	20.3	С	AWSC	-	24.4	С	RAB	0.469	7.8	Α	Signal	-	7.1	А
7	Monterey Ave & Park Ave	AWSC	-	55.5	F	AWSC	-	60.8	F	RAB	0.792	13.1	В	Signal	-	22.7	С

Note: TWSC delay is worst movement approach, AWSC, RAB, and Signal delay is overall average

4.3 Intersection Queuing Analysis

A queuing analysis with the VISSIM and Synchro software was also performed along the Bay Avenue roadway corridor to determine the queuing effect for each of the alternative layouts. The micro-simulation was conducted to obtain the average and maximum vehicle queue on each approach during the AM and PM peak hour period. The results of the vehicles queues observed in the analysis for the existing and cumulative conditions are summarized in **Table 12, Table 13,** and **Attachment C** and **Attachment D**.

		Intersect	tion Approaches Storag	with Max Queue ge Capacity	that Exceeds
ID	Intersection			AM Peak	
		Control Type	Alternative 1 Stop	Alternative 2 Roundabout	Alternative 3 Signal
1	Bay Ave / SR1 NB Ramps	Signal	NB, SB	NB, SB	NB, SB
2	Bay Ave / SR1 SB Ramps	Signal			
3	Bay Ave / Crossroads	TWSC			
4	Bay Ave / Hill St	Varies	SB	SB	SB, EB
5	Bay Ave / Capitola Ave	Varies			WB
6	Bay Ave / Monterey Ave	Varies			
7	Monterey Ave / Park Ave	Varies	WB	WB	NB, SB, WB

Table 12: Year 2024 Existing Intersection Queue Summary

		Intersect	tion Approaches Storag	ge Capacity	e that Exceeds
ID	Intersection	Control		PM Peak	
		Туре	Alternative 1 Stop	Alternative 2 Roundabout	Alternative 3 Signal
1	Bay Ave / SR1 NB Ramps	Signal	NB, SB	NB, SB	NB, SB
2	Bay Ave / SR1 SB Ramps	Signal			
3	Bay Ave / Crossroads	TWSC			
4	Bay Ave / Hill St	Varies	SB	SB	SB, EB
5	Bay Ave / Capitola Ave	Varies			WB
6	Bay Ave / Monterey Ave	Varies			
7	Monterey Ave / Park Ave	Varies	WB	WB	NB, SB, WB

Note: NB=northbound, SB=southbound, EB=eastbound, WB=westbound

Under existing conditions, each corridor layout option would generate maximum vehicle queues that exceed the storage capacity at several intersection approaches which include the SR1 Caltrans ramps, Hill Street, and Park Avenue. The Alternative 1 AWSC and Alternative 2 roundabout would have similar vehicle queues; however, the Alternative 3 signal would have additional queue impacts due to the nature of signal operations that generate longer queues for vehicles during the red signal phase.

				•	7
		Intersec	tion Approaches Stora	with Max Queu ge Capacity	e that Exceeds
ID	Intersection	Control		AM Peak	
		Control	Alternative 1	Alternative 2	Alternative 3
		Туре	Stop	Roundabout	Signal
1	Bay Ave / SR1 NB Ramps	Signal	NB, SB	NB, SB	NB, SB
2	Bay Ave / SR1 SB Ramps	Signal	SB, EB	SB	EB
3	Bay Ave / Crossroads	TWSC	SB		SB
4	Bay Ave / Hill St	Varies	SB	SB	SB, EB
5	Bay Ave / Capitola Ave	Varies			
6	Bay Ave / Monterey Ave	Varies	SB		SB
7	Monterey Ave / Park Ave	Varies	WB		NB, SB, WB

Table 13: Year 2045 Cumulative Intersection Queue Summary

ID	Intersection	Intersec	tion Approaches Stora	with Max Queu ge Capacity PM Peak	e that Exceeds
U	Intersection	Control Type	Alternative 1 Stop	Alternative 2 Roundabout	Alternative 3 Signal
1	Bay Ave / SR1 NB Ramps	Signal	NB, SB	NB, SB	NB, SB
2	Bay Ave / SR1 SB Ramps	Signal	NB, SB, EB	NB, SB, EB	NB, SB, EB
3	Bay Ave / Crossroads	TWSC	SB, WB	NB, SB	NB, SB, EB, WB
4	Bay Ave / Hill St	Varies	NB, SB, EB	SB, EB	NB, SB, EB
5	Bay Ave / Capitola Ave	Varies	SB	SB	NB, SB, EB, WB
6	Bay Ave / Monterey Ave	Varies	SB		SB, WB
7	Monterey Ave / Park Ave	Varies	NB, WB	NB	NB, SB, WB

Note: NB=northbound, SB=southbound, EB=eastbound, WB=westbound

Under cumulative conditions, each corridor layout option would generate maximum vehicle queues that exceed the storage capacity for at least one intersection approach for all the study intersections. The Alternative 1 AWSC and Alternative 2 roundabout would have similar vehicle queues; however, the Alternative 3 signal would have additional queue impacts due to the nature of signal operations that generate longer queues for vehicles during the red signal phase.

Overall, for the Existing and Cumulative scenarios, the Alternative 2 roundabout option would provide the most optimal intersection configuration to accommodate and minimize the anticipated peak hour vehicle queues along the Bay Avenue corridor.

4.4 Corridor Travel Time Summary

The VISSIM model (Alternative 1 and Alternative 2) and Synchro model (Alternative 3) performed an average travel time comparison for vehicles traveling through Bay Avenue between the Highway 1 SB Ramp and Park Avenue intersections. A summary of the average travel time, average speed, and annual vehicle hours traveled (VHT) results between the Alternative 1 AWSC and Alternative 2 Roundabout layouts is shown in **Figure 12, Figure 13, Table 14,** and **Table 15**.

Vehicle hours traveled (VHT) is a key metric in transportation planning that calculates the total travel time for all vehicles. Since time is a non-renewable resource and is the largest economic cost of traveling and shipping, VHT is used to measure the quality of travel service on a roadway facility. When comparing VHT results, a lower VHT indicates vehicles are traveling through the roadway facility more efficiently and the facility is experiencing less traffic congestion.

Figure 12: Year 2024 Existing Corridor Average Travel Times

Existing Conditions

Vehicles traveling northbound on the Alternative 1 Stop layout would have an average peak hour travel time of 2 minutes 9 seconds, and the estimated annual VHT from Park Avenue to SR1 is 62,501 vehicle-hours. The Alternative 2 Roundabout layout would have an average peak hour travel time of 1 minute 54 seconds and would have an annual VHT of 55,492 vehicle-hours. The Alternative 3 Signal layout would have an average peak hour travel time of 2 minute 50 seconds and would have an annual VHT of 82,726 vehicle-hours.

Similarly, vehicles traveling southbound on the Alternative 1 Stop layout would have an average peak hour travel time of 3 minutes 59 seconds, and the estimated annual VHT from SR1 to Park Avenue is 98,494 vehicle-hours. The Alternative 2 Roundabout layout would have an average peak hour travel time of 2 minute 4 seconds and would have an annual VHT of 68,188 vehicle-hours. The Alternative 3 Signal layout would have an average peak hour travel time of 3 minute 7 seconds and would have an annual VHT of 102,557 vehicle-hours.

For both travel directions, the Alternative 2 Roundabout layout would generate fewer VHT and provide a faster average travel time compared to the Alternative 1 Stop and Alternative 3 signal layout. This is because roundabouts are yield controlled and allow for faster continuous movement of vehicles compared to an all-way stop and signal control where vehicles are required to stop completely at the intersection approach.

ScenarioAnalysis CriteriaAlternative 1 Stop & Road Diet (VISSIM)Alternative 2 Roundabout (VISSIM)Alternative 3 Signal (Synchro)NB - N. of Park Ave to S. of Highway 1 SB Ramps0.62Travel Distance (mi)AM PeakAvg Travel Time (sec)136.2114.6174.8AM PeakAvg Travel Time (sec)136.21 min 55 sec2 min 55 secAvg Travel Speed (mph)16.319.512.3Avg Travel Time (sec)120.6113.4166.1Avg Travel Time (sec)128.41 min 53 sec2 min 45 secAvg Travel Time (min & sec)2 min 1 sec1 min 53 sec2 min 45 secAvg Travel Time (min & sec)2 min 8 sec1 min 54 sec2 min 50 secAvg Peak Hour Travel Time (sec)128.4114.0170.0Avg Peak Hour Travel Time (min & sec)2 min 8 sec1 min 54 sec2 min 50 secAvg Daily Traftic (vehicles)4801480148014801VHT EstimationAnalysis CriteriaStop & Road Diet (VISIM)RoundaboutSignal (Synal)ScenarioAnalysis CriteriaStop & Road Diet (VISIM)RoundaboutSignal (Synal)AM PeakAverage Travel Time (sec)126.6113.4191.2AM PeakAverage Travel Time (sec)2 min 7 sec1 min 53 sec3 min 11 secAM PeakAverage Travel Time (sec)2 min 7 sec1 min 53 sec3 min 2 secAverage Travel Time (sec)2 min 7 sec1 min 53 sec3 min 2 secAverage Trave		Table 14. fear 2024 Ext	-		
VHT Estimation[VISSIM][VISSIM][Synchro]NB - S. of Highway 1 SB Ramps0.62Travel Distance (mi)AM PeakAvg Travel Time (sec)136.2114.6174.8AW g Travel Time (min & sec)2 min 16 sec1 min 55 sec2 min 55 secAvg Travel Speed (mph)16.319.512.3Avg Travel Time (sec)120.6113.4165.1PM PeakAvg Travel Time (sec)2 min 1 sec1 min 53 sec2 min 45 secAvg Travel Speed (mph)18.419.713.4Avg Peak Hour Travel Time (sec)128.4114.0170.0Avg Peak Hour Travel Time (min & sec)2 min 8 sec1 min 54 sec2 min 50 secAvg Daily Traffic (vehicles)480148014801VHT EstimationAnalysis CriteriaStop & Road Diet (VISSIM]Signal (Synchro]ScenarioAnalysis Criteria126.6113.4191.2AM PeakAverage Travel Time (min & sec)2 min 7 sec1 min 53 sec3 min 11 secAM PeakAverage Travel Time (min & sec)2 min 7 sec1 min 53 sec3 min 11 secAM PeakAverage Travel Speed (mph)17.720.010.9PM PeakAverage Travel Time (sec)126.6113.4191.2Average Travel Speed (mph)17.720.010.9Average Travel Time (min & sec)2 min 7 sec1 min 53 sec3 min 11 secAverage Travel Time (min & sec)2 min 7 sec1 min 53 sec3 min 2 secAverage Travel Time (min					Alternative 3
WB - N. of Park Ave to S. of Highway 1 SB Ramps0.62 Travel Distance (mi)AM PeakAvg Travel Time (sec)136.2114.6174.8AM PeakAvg Travel Speed (mph)16.319.512.3Avg Travel Speed (mph)16.319.512.3PM PeakAvg Travel Time (sec)120.6113.4165.1Avg Travel Speed (mph)18.419.713.4Avg Travel Speed (mph)18.419.713.4Avg Peak Hour Travel Time (sec)128.4114.0170.0Avg Peak Hour Travel Time (sec)128.4114.0170.0Avg Peak Hour Travel Time (min & sec)2 min 8 sec1 min 54 sec2 min 50 secAvg Daily Traffic (vehicles)4801480148014801VHT EstimationAnalysis CriteriaStop & Road Diet (VISSIM)RoundaboutSignat (VISSIM)Signat (VISSIM)ScenarioAverage Travel Time (sec)126.6113.4191.2AM PeakAverage Travel Time (sec)2 min 7 sec1 min 53 sec3 min 11 secAverage Travel Time (min & sec)2 min 7 sec1 min 53 sec3 min 11 secAverage Travel Time (sec)126.6113.4191.2Average Travel Time (min & sec)2 min 7 sec1 min 53 sec3 min 11 secAverage Travel Time (sec)232.2135182.4AM PeakAverage Travel Time (sec)232.2135182.4PM PeakAverage Travel Time (sec)3 min 52 sec2 min 15 sec3 min 2 secAver	Scenario	Analysis Criteria	Stop & Road Diet	Roundabout	Signal
AM Peak Avg Travel Time (sec) 136.2 114.6 174.8 AM Peak Avg Travel Time (min & sec) 2 min 16 sec 1 min 55 sec 2 min 55 sec Avg Travel Speed (mph) 16.3 19.5 12.3 PM Peak Avg Travel Speed (mph) 16.3 19.5 12.3 PM Peak Avg Travel Speed (mph) 18.4 19.5 12.3 Avg Travel Speed (mph) 18.4 19.7 13.4 Avg Peak Hour Travel Time (sec) 128.4 114.0 170.0 Avg Peak Hour Travel Time (sec) 2 min 8 sec 1 min 54 sec 2 min 50 sec Avg Daily Traffic (vehicles) 4801 4801 4801 VHT Estimation Analysis Criteria Stop & Road Diet (VISSIM] Roundabout (VISSIM] Signal Scenario Analysis Criteria Stop & Road Diet (VISSIM] Noundabout (VISSIM] Signal AM Peak Average Travel Time (sec) 126.6 113.4 191.2 AM Peak Average Travel Time (sec) 232.2 135 182.4 PM Peak Average					
AM PeakAvg Travel Time (min & sec)2 min 16 sec1 min 55 sec2 min 55 secAvg Travel Speed (mph)16.319.512.3PM PeakAvg Travel Time (sec)120.6113.4165.1Avg Travel Time (min & sec)2 min 1 sec1 min 53 sec2 min 45 secAvg Travel Speed (mph)18.419.713.4VHT EstimationAvg Peak Hour Travel Time (sec)128.4114.0170.0Avg Peak Hour Travel Time (min & sec)2 min 8 sec1 min 54 sec2 min 50 secAvg Daily Traffic (vehicles)4801480148014801VHT EstimationAnalysis CriteriaStop & Road Diet Stop & Road Diet (VISSIM]Roundabout (VISSIM]Signal (Synchro)ScenarioAverage Travel Time (sec)126.6113.4191.2Average Travel Time (min & sec)2 min 7 sec3 min 11 secAverage Travel Time (min & sec)2 min 7 sec1 min 53 sec3 min 11 secAverage Travel Time (min & sec)2 min 7 sec1 min 53 sec3 min 11 secAverage Travel Time (min & sec)2 min 7 sec1 min 53 sec3 min 11 secAverage Travel Time (min & sec)2 32.2135182.4PM PeakAverage Travel Time (sec)2 32.2135182.4Average Travel Time (min & sec)3 min 52 sec2 min 15 sec3 min 2 secAverage Travel Time (min & sec)3 min 52 sec2 min 4 sec3 min 7 secAverage Travel Time (min & sec)3 min 52 sec2 min 4 sec3 min 7 sec <th>NB - N. of Park Av</th> <th>ve to S. of Highway 1 SB Ramps</th> <th>0.62</th> <th>Travel Distance (mi</th> <th>)</th>	NB - N. of Park Av	ve to S. of Highway 1 SB Ramps	0.62	Travel Distance (mi)
Avg Travel Speed (mph) 16.3 19.5 12.3 Avg Travel Speed (mph) 16.3 19.5 12.3 PM Peak Avg Travel Time (sec) 120.6 113.4 165.1 Avg Travel Time (min & sec) 2 min 1 sec 1 min 53 sec 2 min 45 sec Avg Travel Speed (mph) 18.4 19.7 13.4 VHT Estimation Avg Peak Hour Travel Time (sec) 128.4 114.0 170.0 Avg Peak Hour Travel Time (sec) 128.4 114.0 170.0 Avg Peak Hour Travel Time (sec) 2 min 8 sec 1 min 54 sec 2 min 50 sec Avg Daily Traffic (vehicles) 4801 4801 4801 4801 VHT Estimation Analysis Criteria Stop & Road Diet (VISSIM] Roundabout (VISSIM] Signal (VISSIM] Scenario Average Travel Time (sec) 126.6 113.4 191.2 A Average Travel Time (sec) 126.6 113.4 191.2 AM Peak Average Travel Time (sec) 2 min 7 sec 1 min 53 sec 3 min 11 sec Average Travel Time (min & sec)		Avg Travel Time (sec)	136.2	114.6	174.8
Avg Travel Time (sec) 120.6 113.4 165.1 Avg Travel Time (min & sec) 2 min 1 sec 1 min 53 sec 2 min 45 sec Avg Travel Speed (mph) 18.4 19.7 13.4 VHT Estimation Avg Peak Hour Travel Time (sec) 128.4 114.0 170.0 Avg Peak Hour Travel Time (sec) 128.4 114.0 170.0 Avg Peak Hour Travel Time (sec) 2 min 8 sec 1 min 54 sec 2 min 50 sec Avg Daily Traffic (vehicles) 4801 4801 4801 Vehicle Hours Traveled (veh-hr/year) 62,501 55,492 82,726 Scenario Analysis Criteria Stop & Road Diet [VISSIM] Roundabout [VISSIM] Signal SB - S. of Highway 1 SB Ramps to N. of Park Ave 0.62 Travel Distance (mi) Signal Average Travel Time (min & sec) 2 min 7 sec 1 min 53 sec 3 min 11 sec AW Peak Average Travel Time (sec) 232.2 135 182.4 PM Peak Average Travel Time (min & sec) 3 min 52 sec 2 min 15 sec 3 min 2 sec Average Travel Time (min & sec) <td>AM Peak</td> <td>Avg Travel Time (min & sec)</td> <td>2 min 16 sec</td> <td>1 min 55 sec</td> <td>2 min 55 sec</td>	AM Peak	Avg Travel Time (min & sec)	2 min 16 sec	1 min 55 sec	2 min 55 sec
PM PeakAvg Travel Time (min & sec)2 min 1 sec1 min 53 sec2 min 45 secAvg Travel Speed (mph)18.419.713.4Avg Peak Hour Travel Time (sec)128.4114.0170.0Avg Peak Hour Travel Time (min & sec)2 min 8 sec1 min 54 sec2 min 50 secAvg Daily Traffic (vehicles)480148014801VHT EstimationAnalysis CriteriaStop & Road Diet (VISSIM]Roundabout (VISSIM]Signal (Synchro)ScenarioAnalysis CriteriaStop & Road Diet (VISSIM]Roundabout (VISSIM]Signal (Synchro)SB - S. of Highway 1 SB Ramps to N. of Park Ave0.62Travel Distance (mi)AM PeakAverage Travel Time (sec)126.6113.4191.2AM PeakAverage Travel Time (sec)232.2135182.4PM PeakAverage Travel Time (sec)3 min 52 sec3 min 2 secAverage Travel Speed (mph)17.720.010.9Average Travel Time (min & sec)3 min 52 sec3 min 2 secAverage Travel Speed (mph)9.616.712.0Average Travel Speed (mph)9.616.712.0Average Travel Speed (mph)9.616.712.0Average Travel Time (min & sec)2 min 59 sec2 min 4 sec3 min 7 secAverage Travel Time (min & sec)2 min 59 sec2 min 4 sec3 min 7 secAvg Peak Hour Travel Time (min & sec)2 min 59 sec2 min 4 sec3 min 7 secAvg Daily Traffic (vehicles)5415541554		Avg Travel Speed (mph)	16.3	19.5	12.3
Avg Travel Speed (mph)18.419.713.4Avg Peak Hour Travel Time (sec)128.4114.0170.0Avg Peak Hour Travel Time (min & sec)2 min 8 sec1 min 54 sec2 min 50 secAvg Daily Traffic (vehicles)480148014801VHT EstimationAnalysis Criteria62,50155,49282,726ScenarioAnalysis CriteriaStop & Road Diet [VISSIM]RoundaboutSignal [Synchro]SB - S. of Highway 1 SB Ramps to N. of Park Ave0.62Travel Distance (mi)AM PeakAverage Travel Time (min & sec)2 min 7 sec1 min 53 secAM PeakAverage Travel Time (sec)126.6113.4191.2Average Travel Time (min & sec)2 min 7 sec1 min 53 sec3 min 11 secAverage Travel Time (min & sec)2 min 52 sec2 min 15 sec3 min 2 secPM PeakAverage Travel Time (min & sec)3 min 52 sec2 min 15 sec3 min 2 secAverage Travel Time (min & sec)3 min 52 sec2 min 15 sec3 min 2 secAverage Travel Speed (mph)9.616.712.0Average Travel Speed (mph)9.554155415		Avg Travel Time (sec)	120.6	113.4	165.1
WHT EstimationAvg Peak Hour Travel Time (sec)128.4114.0170.0Avg Peak Hour Travel Time (min & sec)2 min 8 sec1 min 54 sec2 min 50 secAvg Daily Traffic (vehicles)480148014801Vehicle Hours Traveled (veh-hr/year)62,50155,49282,726ScenarioAnalysis CriteriaStop & Road Diet [VISSIM]RoundaboutSignal [Synchro]SB - S. of Highway 1 SB Ramps to N. of Park Ave0.62Travel Distance (mi)Average Travel Time (sec)126.6113.4191.2Average Travel Time (min & sec)2 min 7 sec1 min 53 sec3 min 11 secAverage Travel Speed (mph)17.720.010.9Average Travel Time (sec)232.2135182.4PM PeakAverage Travel Time (min & sec)3 min 52 sec3 min 2 secAverage Travel Speed (mph)9.616.712.0Average Travel Time (min & sec)179.4124.2186.8Avg Peak Hour Travel Time (min & sec)2 min 59 sec2 min 4 secAvg Peak Hour Travel Time (min & sec)2 min 59 sec2 min 4 secAvg Daily Traffic (vehicles)541554155415	PM Peak	Avg Travel Time (min & sec)	2 min 1 sec	1 min 53 sec	2 min 45 sec
WHT EstimationAvg Peak Hour Travel Time (min & sec)2 min 8 sec1 min 54 sec2 min 50 secAvg Daily Traffic (vehicles)480148014801Vehicle Hours Traveled (veh-hr/year)62,50155,49282,726ScenarioAnalysis CriteriaStop & Road Diet [VISSIM]RoundaboutSignal [Synchro]SB - S. of Highway 1 SB Ramps to N. of Park Ave0.62Travel Distance (mi)AM PeakAverage Travel Time (sec)126.6113.4191.2AM PeakAverage Travel Time (sec)2 min 7 sec1 min 53 sec3 min 11 secAverage Travel Speed (mph)17.720.010.9Average Travel Time (sec)3 min 52 sec3 min 15 sec3 min 2 secAverage Travel Time (min & sec)3 min 52 sec2 min 15 sec3 min 2 secAverage Travel Speed (mph)9.616.712.0Average Travel Speed (mph)9.616.712.0Average Travel Speed (mph)9.616.712.0Average Travel Time (sec)179.4124.2186.8Avg Peak Hour Travel Time (min & sec)2 min 59 sec2 min 4 sec3 min 7 secAvg Daily Traffic (vehicles)541554155415		Avg Travel Speed (mph)	18.4	19.7	13.4
VHT EstimationAvg Daily Traffic (vehicles)480148014801Avg Daily Traffic (vehicles)480148014801Vehicle Hours Traveled (veh-hr/year)62,50155,49282,726ScenarioAnalysis CriteriaStop & Road Diet [VISSIM]Roundabout [VISSIM]Signal [Synchro]SB - S. of Highway 1 SB Ramps to N. of Park Ave0.62Travel Distance (mi)AM PeakAverage Travel Time (sec)126.6113.4191.2AM PeakAverage Travel Time (min & sec)2 min 7 sec1 min 53 sec3 min 11 secAverage Travel Speed (mph)17.720.010.9Average Travel Time (min & sec)3 min 52 sec2 min 15 sec3 min 2 secAverage Travel Time (min & sec)3 min 52 sec2 min 15 sec3 min 2 secAverage Travel Speed (mph)9.616.712.0Average Travel Speed (mph)9.616.712.0Average Travel Speed (mph)9.616.712.0Average Travel Time (min & sec)179.4124.2186.8Avg Peak Hour Travel Time (min & sec)2 min 59 sec2 min 4 sec3 min 7 secAvg Daily Traffic (vehicles)541554155415		Avg Peak Hour Travel Time (sec)	128.4	114.0	170.0
Avg Daily Traffic (vehicles)480148014801Vehicle Hours Traveled (veh-hr/year)62,50155,49282,726ScenarioAnalysis CriteriaAlternative 1 Stop & Road Diet [VISSIM]Alternative 2 RoundaboutAlternative 3 SignalBe-S. of Highway 1 SB Ramps to N. of Park Ave0.62Travel Distance (mi)Synchro]Be-S. of Highway 1 SB Ramps to N. of Park Ave0.62Travel Distance (mi)Average Travel Time (sec)126.6113.4191.2Average Travel Time (min & sec)2 min 7 sec1 min 53 sec3 min 11 secAverage Travel Speed (mph)17.720.010.9Average Travel Time (sec)232.2135182.4PM PeakAverage Travel Time (min & sec)3 min 52 sec2 min 15 sec3 min 2 secAverage Travel Speed (mph)9.616.712.012.0Average Travel Speed (mph)9.616.712.0186.8Average Travel Time (min & sec)179.4124.2186.8Avg Peak Hour Travel Time (min & sec)2 min 59 sec2 min 4 sec3 min 7 secAvg Peak Hour Travel Time (min & sec)541554155415	VUT Ectimation	Avg Peak Hour Travel Time (min & sec)	2 min 8 sec	1 min 54 sec	2 min 50 sec
ScenarioAnalysis CriteriaAlternative 1 Stop & Road Diet [VISSIM]Alternative 2 Roundabout [VISSIM]Alternative 3 Signal [Synchro]SB - S. of Highway 1 SB Ramps to N. of Park Ave0.62Travel Distance (mi)AM PeakAverage Travel Time (sec)126.6113.4191.2AW PeakAverage Travel Time (min & sec)2 min 7 sec1 min 53 sec3 min 11 secAverage Travel Speed (mph)17.720.010.9Average Travel Time (min & sec)2 32.2135182.4PM PeakAverage Travel Time (min & sec)3 min 52 sec2 min 15 sec3 min 2 secAverage Travel Speed (mph)9.616.712.012.0Average Travel Speed (mph)9.616.712.0186.8Average Travel Time (min & sec)179.4124.2186.8Avg Peak Hour Travel Time (min & sec)2 min 59 sec2 min 4 sec3 min 7 secAvg Daily Traffic (vehicles)541554155415		Avg Daily Traffic (vehicles)	4801	4801	4801
ScenarioAnalysis CriteriaStop & Road Diet [VISSIM]Roundabout [VISSIM]Signal [Synchro]GB - S. of Highway I SB Ramps to N. of Park Ave0.62Travel Distance (mi)AM PeakAverage Travel Time (sec)126.6113.4191.2AM PeakAverage Travel Time (min & sec)2 min 7 sec1 min 53 sec3 min 11 secAverage Travel Speed (mph)17.720.010.9PM PeakAverage Travel Time (sec)232.2135182.4PM PeakAverage Travel Time (min & sec)3 min 52 sec2 min 15 sec3 min 2 secAverage Travel Speed (mph)9.616.712.012.0Average Travel Speed (mph)9.616.712.0186.8Average Travel Speed (mph)9.616.754155415Avg Peak Hour Travel Time (min & sec)2 min 59 sec2 min 4 sec3 min 7 secAvg Daily Traffic (vehicles)5415541554155415		Vehicle Hours Traveled (veh-hr/year)	62,501	55,492	82,726
Contract[VISSIM][VISSIM][Synchro]SB - S. of Highway 1 SB Ramps to N. of Park Ave0.62Travel Distance (mi)AM PeakAverage Travel Time (sec)126.6113.4191.2AM PeakAverage Travel Time (min & sec)2 min 7 sec1 min 53 sec3 min 11 secAverage Travel Speed (mph)17.720.010.9Average Travel Time (sec)232.2135182.4PM PeakAverage Travel Time (min & sec)3 min 52 sec2 min 15 sec3 min 2 secAverage Travel Speed (mph)9.616.712.0Average Travel Time (sec)179.4124.2186.8Avg Peak Hour Travel Time (min & sec)2 min 59 sec2 min 4 sec3 min 7 secAvg Daily Traffic (vehicles)541554155415			Alternative 1	Alternative 2	Alternative 3
SB - S. of Highway 1 SB Ramps to N. of Park Ave0.62 Travel Distance (mi)AM PeakAverage Travel Time (sec)126.6113.4191.2Awerage Travel Time (min & sec)2 min 7 sec1 min 53 sec3 min 11 secAverage Travel Speed (mph)17.720.010.9Average Travel Time (sec)232.2135182.4Average Travel Time (min & sec)3 min 52 sec2 min 15 sec3 min 2 secAverage Travel Time (min & sec)3 min 52 sec2 min 15 sec3 min 2 secAverage Travel Speed (mph)9.616.712.0Average Travel Speed (mph)9.616.712.0Average Travel Speed (mph)9.616.712.0Average Travel Time (sec)179.4124.2186.8Avg Peak Hour Travel Time (min & sec)2 min 59 sec2 min 4 sec3 min 7 secAvg Daily Traffic (vehicles)541554155415	Scenario	Analysis Criteria	Stop & Road Diet	Roundabout	Signal
AM Peak Average Travel Time (sec) 126.6 113.4 191.2 AM Peak Average Travel Time (min & sec) 2 min 7 sec 1 min 53 sec 3 min 11 sec Average Travel Speed (mph) 17.7 20.0 10.9 Average Travel Time (sec) 232.2 135 182.4 Average Travel Time (min & sec) 3 min 52 sec 2 min 15 sec 3 min 2 sec Average Travel Speed (mph) 9.6 16.7 12.0 Average Travel Speed (mph) 9.6 16.7 12.0 Average Travel Time (sec) 179.4 124.2 186.8 Avg Peak Hour Travel Time (min & sec) 2 min 59 sec 2 min 4 sec 3 min 7 sec Avg Daily Traffic (vehicles) 5415 5415 5415			[VISSIM]	[VISSIM]	[Synchro]
AM Peak Average Travel Time (min & sec) 2 min 7 sec 1 min 53 sec 3 min 11 sec Average Travel Speed (mph) 17.7 20.0 10.9 Average Travel Speed (mph) 17.7 20.0 10.9 PM Peak Average Travel Time (sec) 232.2 135 182.4 Average Travel Time (min & sec) 3 min 52 sec 2 min 15 sec 3 min 2 sec Average Travel Speed (mph) 9.6 16.7 12.0 Average Travel Time (sec) 179.4 124.2 186.8 Avg Peak Hour Travel Time (min & sec) 2 min 59 sec 2 min 4 sec 3 min 7 sec Avg Daily Traffic (vehicles) 5415 5415 5415					
PM PeakAverage Travel Speed (mph)17.720.010.9Average Travel Time (sec)232.2135182.4Average Travel Time (min & sec)3 min 52 sec2 min 15 sec3 min 2 secAverage Travel Speed (mph)9.616.712.0Average Travel Speed (mph)9.616.712.0Average Travel Time (sec)179.4124.2186.8Avg Peak Hour Travel Time (min & sec)2 min 59 sec2 min 4 sec3 min 7 secAvg Daily Traffic (vehicles)541554155415	SB - S. of Highwa	y 1 SB Ramps to N. of Park Ave	0.62	Travel Distance (mi)
PM PeakAverage Travel Time (sec)232.2135182.4Average Travel Time (min & sec)3 min 52 sec2 min 15 sec3 min 2 secAverage Travel Speed (mph)9.616.712.0Avg Peak Hour Travel Time (sec)179.4124.2186.8Avg Peak Hour Travel Time (min & sec)2 min 59 sec2 min 4 sec3 min 7 secAvg Daily Traffic (vehicles)541554155415	<mark>SB - S. of Highwa</mark>			•	-
PM PeakAverage Travel Time (min & sec)3 min 52 sec2 min 15 sec3 min 2 secAverage Travel Speed (mph)9.616.712.0Avg Peak Hour Travel Time (sec)179.4124.2186.8Avg Peak Hour Travel Time (min & sec)2 min 59 sec2 min 4 sec3 min 7 secAvg Daily Traffic (vehicles)541554155415		Average Travel Time (sec)	126.6	113.4	191.2
Average Travel Speed (mph)9.616.712.0Average Travel Speed (mph)9.616.712.0Avg Peak Hour Travel Time (sec)179.4124.2186.8Avg Peak Hour Travel Time (min & sec)2 min 59 sec2 min 4 sec3 min 7 secAvg Daily Traffic (vehicles)541554155415		Average Travel Time (sec) Average Travel Time (min & sec)	126.6 2 min 7 sec	113.4 1 min 53 sec	191.2 3 min 11 sec
Avg Peak Hour Travel Time (sec)179.4124.2186.8Avg Peak Hour Travel Time (min & sec)2 min 59 sec2 min 4 sec3 min 7 secAvg Daily Traffic (vehicles)541554155415		Average Travel Time (sec) Average Travel Time (min & sec) Average Travel Speed (mph)	126.6 2 min 7 sec 17.7	113.4 1 min 53 sec 20.0	191.2 3 min 11 sec 10.9
VHT Estimation Avg Peak Hour Travel Time (min & sec) 2 min 59 sec 2 min 4 sec 3 min 7 sec Avg Daily Traffic (vehicles) 5415 5415 5415	AM Peak	Average Travel Time (sec) Average Travel Time (min & sec) Average Travel Speed (mph) Average Travel Time (sec)	126.6 2 min 7 sec 17.7 232.2	113.4 1 min 53 sec 20.0 135	191.2 3 min 11 sec 10.9 182.4
Avg Daily Traffic (vehicles) 5415 5415 5415	AM Peak	Average Travel Time (sec) Average Travel Time (min & sec) Average Travel Speed (mph) Average Travel Time (sec) Average Travel Time (min & sec)	126.6 2 min 7 sec 17.7 232.2 3 min 52 sec	113.4 1 min 53 sec 20.0 135 2 min 15 sec	191.2 3 min 11 sec 10.9 182.4 3 min 2 sec
Avg Daily Traffic (vehicles)54155415	AM Peak	Average Travel Time (sec)Average Travel Time (min & sec)Average Travel Speed (mph)Average Travel Time (sec)Average Travel Time (min & sec)Average Travel Speed (mph)	126.6 2 min 7 sec 17.7 232.2 3 min 52 sec 9.6	113.4 1 min 53 sec 20.0 135 2 min 15 sec 16.7	191.2 3 min 11 sec 10.9 182.4 3 min 2 sec 12.0
Vehicle Hours Traveled (veh-hr/year) 98,494 68,188 102,557	AM Peak PM Peak	Average Travel Time (sec)Average Travel Time (min & sec)Average Travel Speed (mph)Average Travel Time (sec)Average Travel Time (min & sec)Average Travel Speed (mph)Average Travel Speed (mph)Average Hour Travel Time (sec)	126.6 2 min 7 sec 17.7 232.2 3 min 52 sec 9.6 179.4	113.4 1 min 53 sec 20.0 135 2 min 15 sec 16.7 124.2	191.2 3 min 11 sec 10.9 182.4 3 min 2 sec 12.0 186.8
	AM Peak	Average Travel Time (sec) Average Travel Time (min & sec) Average Travel Speed (mph) Average Travel Time (sec) Average Travel Time (min & sec) Average Travel Speed (mph) Avg Peak Hour Travel Time (sec) Avg Peak Hour Travel Time (min & sec)	126.6 2 min 7 sec 17.7 232.2 3 min 52 sec 9.6 179.4 2 min 59 sec	113.4 1 min 53 sec 20.0 135 2 min 15 sec 16.7 124.2 2 min 4 sec	191.2 3 min 11 sec 10.9 182.4 3 min 2 sec 12.0 186.8 3 min 7 sec

Table 14: Year 2024 Existing Corridor Travel Times

Figure 13: Year 2045 Cumulative Corridor Average Travel Times

Cumulative Conditions

Vehicles traveling northbound on the Alternative 1 Stop layout would have an average peak hour travel time of 2 minutes 39 seconds, and the estimated annual VHT from Park Avenue to SR1 is 104,314 vehicle-hours. The Alternative 2 Roundabout layout would have an average peak hour travel time of 2 minute 35 seconds and would have an annual VHT of 101,948 vehicle-hours. The Alternative 3 Signal layout would have an average peak hour travel time of 3 minute 6 seconds and would have an annual VHT of 122,259 vehicle-hours.

For vehicles traveling southbound on the Alternative 1 Stop layout would have an average peak hour travel time of 5 minutes 35 seconds, and the estimated annual VHT from SR1 to Park Avenue is 271,317 vehicle-hours. The Alternative 2 Roundabout layout would have an average peak hour travel time of 3 minute 36 seconds and would have an annual VHT of 175,200 vehicle-hours. The Alternative 3 Signal layout would have an average peak hour travel time of 3 minute 4 seconds and would have an annual VHT of 149,285 vehicle-hours.

For vehicles traveling northbound on Bay Avenue, the Alternative 2 Roundabout layout would generate fewer VHT and provide a faster average travel time; however, for vehicles traveling southbound on Bay Avenue, the Alternative 3 Signal layout would generate fewer VHT and provide a faster average travel time.

Bay Avenue Corridor Study *Item 7 B.* February 2025

Kimley »Horn

	Table 15: Year 2045 Cum			
		Alternative 1	Alternative 2	Alternative 3
Scenario	Analysis Criteria	Stop & Road Diet	Roundabout	Signal
		[VISSIM]	[VISSIM]	[Synchro]
NB - N. of Park Av	ve to S. of Highway 1 SB Ramps	0.62	Travel Distance (mi)
	Avg Travel Time (sec)	125.4	112.8	162.4
AM Peak	Avg Travel Time (min & sec)	2 min 5 sec	1 min 53 sec	2 min 42 sec
	Avg Travel Speed (mph)	17.6	19.8	15.6
	Avg Travel Time (sec)	192	197.4	209.6
PM Peak	Avg Travel Time (min & sec)	3 min 12 sec	3 min 17 sec	3 min 30 sec
	Avg Travel Speed (mph)	11.5	11.3	11.7
	Avg Peak Hour Travel Time (sec)	158.70	155.10	186.00
VHT Estimation	Avg Peak Hour Travel Time (min & sec)	2 min 39 sec	2 min 35 sec	3 min 6 sec
	Avg Daily Traffic (vehicles)	6483	6483	6483
	Vehicle Hours Traveled (veh-hr/year)	104,314	101,948	122,259
		Alternative 1	Alternative 2	Alternative 3
Scenario	Analysis Criteria	Stop & Road Diet	Roundabout	Signal
		[VISSIM]	[VISSIM]	[Synchro]
SB - S. of Highwa				
	ay 1 SB Ramps to N. of Park Ave	0.62	Travel Distance (mi)
	ay 1 SB Ramps to N. of Park Ave Avg Travel Time (sec)	0.62 315.6	Travel Distance (mi 132.6) 182.8
AM Peak	<u>, </u>		•	-
AM Peak	Avg Travel Time (sec)	315.6	132.6	182.8
AM Peak	Avg Travel Time (sec) Avg Travel Time (min & sec)	315.6 5 min 16 sec	132.6 2 min 13 sec	, 182.8 3 min 3 sec
AM Peak PM Peak	Avg Travel Time (sec) Avg Travel Time (min & sec) Avg Travel Speed (mph)	315.6 5 min 16 sec 7.1	132.6 2 min 13 sec 17.0	182.8 3 min 3 sec 10.7
	Avg Travel Time (sec) Avg Travel Time (min & sec) Avg Travel Speed (mph) Avg Travel Time (sec)	315.6 5 min 16 sec 7.1 353.4	132.6 2 min 13 sec 17.0 299.4	182.8 3 min 3 sec 10.7 185.3
	Avg Travel Time (sec)Avg Travel Time (min & sec)Avg Travel Speed (mph)Avg Travel Time (sec)Avg Travel Time (min & sec)	315.6 5 min 16 sec 7.1 353.4 5 min 53 sec	132.6 2 min 13 sec 17.0 299.4 4 min 59 sec	182.8 3 min 3 sec 10.7 185.3 3 min 5 sec
PM Peak	Avg Travel Time (sec) Avg Travel Time (min & sec) Avg Travel Speed (mph) Avg Travel Time (sec) Avg Travel Time (min & sec) Avg Travel Speed (mph) Avg Travel Speed (mph) Avg Travel Speed (mph) Avg Travel Speed (mph) Avg Peak Hour Travel Time (sec)	315.6 5 min 16 sec 7.1 353.4 5 min 53 sec 6.3	132.6 2 min 13 sec 17.0 299.4 4 min 59 sec 7.5	182.8 3 min 3 sec 10.7 185.3 3 min 5 sec 10.3
	Avg Travel Time (sec) Avg Travel Time (min & sec) Avg Travel Speed (mph) Avg Travel Time (sec) Avg Travel Time (min & sec) Avg Travel Speed (mph) Avg Travel Speed (mph) Avg Travel Speed (mph) Avg Travel Speed (mph) Avg Peak Hour Travel Time (sec)	315.6 5 min 16 sec 7.1 353.4 5 min 53 sec 6.3 334.50	132.6 2 min 13 sec 17.0 299.4 4 min 59 sec 7.5 216.00	182.8 3 min 3 sec 10.7 185.3 3 min 5 sec 10.3 184.05

Table 15: Year 2045 Cumulative Corridor Travel Times

Travel Time Impact to Driver Behavior, Transit Access, and Emergency Vehicle Response

Optimizing the travel time along Bay Avenue provides several benefits to multimodal access and safety. Long vehicle delays and queues at intersections typically increases driver frustration and increases risky driver behavior to rush towards their destination. This frustration and risky driver behavior can increase the likelihood and severity of a motor vehicle collision which can jeopardize the safety of vulnerable users such as bikes and pedestrians.

Roadway facilities with travel times optimized to the intended design speed also improves consistency and access of transit services and emergency vehicle response.

4.5 Driver Behavior & Drone Video Analysis at Bay/Capitola Intersection

The current all-way stop intersection of Bay Avenue / Capitola Avenue was evaluated using aerial video collection by drone and processed using video analytics to observe driver behavior and determine vehicle stopping rate, measured speeds, deceleration, and near miss collisions between vehicles, pedestrians, and bicyclists. The drone video collection was conducted by Kimley-Horn on Thursday May 16, 2024, when school was in session and during favorable weather conditions, and the data is representative of the AM peak, school mid-day peak, and PM peak commute times. The technical memo and results of the drone video analysis is provided in **Attachment E**.

The near-miss collision analysis was conducted by calculating the post encroachment time (PET) between vehicles which is the critical or minimum gap between the intersection point of two or more objects on their intended trajectory. For the study, a near-miss collision at the Bay/Capitola is recorded when the PET is equal or less than 1.5 seconds from where objects would collide. A total of 35 near miss-collisions were observed at the Bay/Capitola all-way stop controlled intersection with the most common near miss occurring on Bay Avenue between vehicles making a southbound left turn to access Capitola Avenue and the Gayles driveway and vehicles making a northbound through movement towards Highway 1.

Based on the observed driver behavior and near-miss collisions at the existing all-way stop controlled intersection at Bay/Capitola, the recommended measures to address these intersection challenges may include:

- Convert the intersection into a roundabout. Vehicles entering a roundabout all travel in one direction around a raised center island at a controlled lower speed which reduces the number of conflict points and the severity of potential collisions between vehicles, pedestrians, and bicyclists.
- Convert the intersection into a signal. Signal control provides clear right-of-way instructions to all users and improve driver certainty when traveling through the intersection.

4.6 Multimodal Safety and Access Improvements

This section provides an overview of the potential long-term roadway improvements that may be implemented along the Bay Avenue corridor to enhance multimodal safety and access. The intersection control investigated for each roadway alternative would introduce geometric changes that would benefit bicycle and pedestrian facilities.

Alternative 1: Stop Control and Road Diet

- Road Diet Transition: Converting Bay Avenue from a four-lane to a two-lane roadway reduces vehicle speeds and minimizes the number of lanes pedestrians and cyclists must cross.
- Enhanced Pedestrian Crossings: Installation of curb bulb-outs and enhanced pedestrian crossings shortens the crossing distance and increases visibility.
- Buffered Class IV Bike Facilities: Adding buffered bike lanes separates cyclists from vehicular traffic, enhancing safety and comfort.

Example road diet and traffic calming features implemented at the existing all-way stop at Bay/Hill (Capitola)

Alternative 2: Roundabout

- Reduced Conflict Points: Roundabouts reduce the number of conflict points compared to traditional intersections, lowering the likelihood of collisions.
- Slower Vehicle Speeds: Vehicles travel at lower speeds through roundabouts, reducing the severity of any potential collisions.
- Bike and Pedestrian Pathways: The design includes bike lane transitions and curb ramps onto Class I shared bike/ped pathways, providing a safer and more direct route for cyclists and pedestrians.
- Shorter and Protected Crossings: Pedestrians benefit from shorter crossing distances and protected refuge areas within the roundabout design.

Example bike and pedestrian facilities at a roundabout approach (Lafayette)

41

Alternative 3: Signal

- Signal Control: Traffic signals provide clear right-of-way instructions, thereby improving driver predictability and reducing confusion at intersections.
- Designated Crossing Times: Pedestrian signals provide designated crossing times, ensuring safe passage across intersections.
- Buffered Bike Lanes: Similar to Alternative 1, buffered bike lanes protect cyclists from the main traffic stream.
- Pedestrian Countdown Signals: These signals improve pedestrian safety by providing clear timing information for crossing.
- Protected Intersection Design: Installation of curb bulb-outs that separate travel areas and shorten the pedestrian and bicycle crossings improves multimodal safety and access.

Example protected intersection features for bikes and peds at a signalized intersection (Fremont)

Other Roadway Considerations and Enhancements

- Class IV protected bikeways: Where possible, restripe the existing Class II bike lanes on Bay Avenue with buffered bike lanes via striping and/or raised bollards to increase the physical separation between the vehicle and bicycle travel lanes. The added comfort and visibility of the bikeway improves bicycle safety along the roadway.
- Mid-block crossings: Where feasible and warranted, install mid-block crossings to enhance pedestrian connectivity and safety. Crossing augmented with median refuge areas, flashing signs, and high contrast striping provides shorter crossing distance and improves visibility to pedestrians crossing the street.
- Landscaped medians: Where feasible, implement raised medians with opportunities for landscaping to enhance the Bay Avenue streetscape in a way that improves the appearance of Bay Avenue, increases safety for bicyclists and pedestrians, and stimulates private investment within the area per the Capitola General Plan.

Example of mid-block crosswalk and buffered bike lanes

General Safety Enhancements:

- Traffic Calming Features: All alternatives incorporate traffic calming features like narrower lanes and improved intersection design, which inherently enhance safety for all road users.
- Visibility Improvements: Enhanced lighting, signage, and marked crosswalks improve visibility for pedestrians and cyclists, especially at night or during adverse weather conditions.
- Collision Mitigation: Historical collision data and near-miss analysis inform the design to specifically address risky driver behaviors and common collision types, further ensuring pedestrian and cyclist safety.

Summary of Safety Benefits:

- Reduced Vehicle Speeds: Slower travel speeds generally lead to decreased collision severity for vehicles, cyclists and pedestrians.
- Clear Right-of-Way: Signal and roundabout controls provide structured and predictable movement patterns.
- Protected Space: Buffered and clearly marked spaces for pedestrians and cyclists reduce the risk of conflicts with vehicles.
- Improved Crossings: Shorter and more visible crossing areas make it safer and easier for pedestrians to navigate intersections.
- Enhanced Visibility and Lighting: Increased visibility through better lighting and clear signage reduces the risk of accidents.

5. Corridor Study Conclusions and Recommendations

Table 16 provides a qualitative comparison of the proposed corridor alternatives from an economic, operations, and safety assessment. Based on the analysis results, the study recommends pursuing the roundabout configuration at key intersections for long-term benefits in traffic operations, safety, economic development, and multi-modal accessibility.

Operations

From an intersection operations perspective, the Alternative 2 roundabout configuration would provide the lowest average vehicle LOS delay and shortest average travel time along the Bay Avenue corridor. As a result, improved intersection operations benefit transit and emergency vehicle access. The introduction of roundabouts as a new traffic control in the City would require a longer adjustment period for drivers to adapt to the new infrastructure compared to existing signals or stop control.

The Alternative 1 stop configuration with road diet would result in the worst LOS, longest travel times, and vehicle queues operating similar to the Alternative 0 no build scenario. Forecasted traffic growth from the county travel demand model would cause operation deficiencies with the stop control alternative. With keeping the existing road condition, there is little driver adaptation time.

The Alternative 3 signal configuration would provide acceptable operations for average vehicle delay, queues, and travel time but not to the same level as the roundabout option. It is worth noting that while the LOS would be improved with a signal-controlled intersection, the typical delay for a vehicle to traverse through the intersection would actually increase compared to a roundabout option.

Multimodal Safety

As discussed in Section 4, each potential corridor alternative would introduce geometric changes that would benefit bicycle and pedestrian facilities for safety improvement and access. The Alternative 2 roundabout configuration would have the fewest vehicle conflict points for bikes and pedestrians crossing the street as well as shorter and protected crossings with the roundabout layout introducing raised medians and separated pathways. These features plus slower overall vehicle speeds through the intersection generates the lowest collision severity potential compared to the other alternatives. Based on the observed driver behavior and near-miss collision analysis at the Bay/Capitola all-way stop controlled intersection, a roundabout layout would improve overall safety at the skewed roadway approaches.

The Alternative 1 stop configuration would introduce curb bulb-outs at the stop intersections and road diet traffic calming effects that reduce the crossing distances and enhance visibility of bikes and peds crossing the vehicle conflict areas. These features help reduce the number of vehicle conflict points and provide a moderate safety improvement compared to the roundabout and signal alternatives.

The Alternative 3 signal configuration helps facilitate designated crossing phases for all transportation modes and the infrastructure can be designed with a protected intersection layout to separate and shorten the bike and pedestrian crossings at the corners. These features improve bike and pedestrian access, but the number of vehicle conflict points remains similar with the existing stop layout. For a signal during a green light, vehicles will typically travel at higher speeds than the stop and roundabout alternatives which increases the collision severity potential with more vulnerable users.

Economic Development

For the Alternative 2 roundabout layout to be feasible, substantial infrastructure and construction improvements would be required to convert the existing stop control into a roundabout throughout the corridor. Compared to the other alternatives, the roundabout would have the highest upfront capital costs and potential right-of-way impacts to implement due to the larger geometric footprint needed for designing acceptable operations and the multimodal features. Typical rough order of magnitude (ROM) costs for a single lane roundabout range between \$2 to \$3.5 million per location. Once constructed however, the roundabout would have lower long-term maintenance costs and better environmental benefits than a signal option due to no electrical equipment, lower vehicle emissions, and opportunities for art and landscaping within the intersection. Grant funding opportunities with roundabouts are also advantageous since many state and federal grant programs are focused on active transportation and improving safety for cyclists and pedestrians which are elements that roundabouts provide.

The Alternative 1 stop layout would have the lowest capital costs, right-of-way impact, and ongoing maintenance compared to the roundabout and signal alternatives. Typical ROM costs for a road diet and traffic calming improvements range between \$100,00 to \$500,000 per location. Depending on the traffic calming design, aesthetics can also be improved along the streetscape corridor with landscaping and decorative art. Grant funding opportunities with Alternative 1 are also good with the safety benefits to pedestrians and cyclists from the potential road diet and traffic calming features.

The Alternative 3 signal layout would have high capital costs and high ongoing maintenance costs to support the electrical and signal infrastructure compared to the roundabout and stop alternatives. Typical ROM costs for a signal varies based on the number of travel lanes and approaches and can range between \$500,000 to \$2 million per location.

		Corridor Operations 3	anniary companison	
Criteria	Alternative 0 – No Build	Alternative 1 – Stop & Road Diet	Alternative 2 – Roundabout	Alternative 3 - Signal
Operations				
Vehicle Delay	<u>High</u> Stop control creates delay for intersection approaches	<u>High</u> Stop control creates delay for intersection approaches	<u>Low</u> Yield control reduces average delay	<u>Moderate</u> Signal control reduces average delay
Vehicle Travel Time	<u>Long</u> Stop control creates delay for intersection approaches	<u>Long</u> Stop control creates delay for intersection approaches	<u>Short</u> Yield control reduces average delay	<u>Moderate</u> Signal control reduces average delay
Vehicle Queue Length	<u>Long</u> Long queues and spillback into adjacent intersection	<u>Long</u> Long queues and spillback into adjacent intersection	<u>Moderate</u> Yield control generates average queues	<u>Moderate</u> Signal control generates average queues
Transit and Emergency Vehicle Access Improvement	Poor Slower average travel times and higher VHT	Poor Slower average travel times and higher VHT	Moderate Faster average travel times and lower VHT	<u>Moderate</u> Opportunity for emergency vehicle preemption

Table 16: Qualitative Corridor Operations Summary Comparison

Bay Avenue Corridor Study *Item 7 B.* February 2025

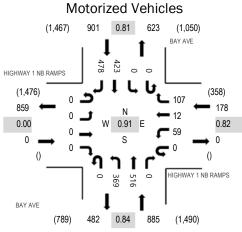
Criteria	Alternative 0 – No Build	Alternative 1 – Stop & Road Diet	Alternative 2 – Roundabout	Alternative 3 - Signal
Driver	Low	Low	High	Moderate
Adaptation	Existing conditions	Existing conditions	New traffic control in	Existing conditions
Time	on corridor	on corridor	City for users	on corridor
Safety				
	<u>Moderate</u>	<u>Moderate</u>	Low	<u>High</u>
Collision	Numerous conflict	Numerous conflict	Fewer conflict points	Higher vehicle
Severity	points with stop	points with stop	and controlled lower	speeds and
Potential	control at	control at	speeds at	numerous conflict
	intersection	intersection	intersection	points at intersection
	<u>Poor</u>	<u>Moderate</u>	<u>Good</u>	<u>Moderate</u>
Bicycle	No Build scenario	Buffered bike lanes	Buffered bike lanes	Buffered bike lanes
Access	would not improve	and markings	and markings.	and markings.
Improvement	conditions		Shorter and	Designated crossing
			protected crossings	phases
Pedestrian	Poor	<u>Moderate</u>	<u>Good</u>	<u>Moderate</u>
Access	No Build scenario	Shorter crossings	Shorter and	Designated crossing
Improvement	would not improve conditions	with traffic calming	protected crossings	phases
Economic	conditions			
Leononne	Low	Low	High	High
Capital	No Build scenario	Updates to existing	New infrastructure	New infrastructure
Construction	would not improve	infrastructure	and utility	and signal equipment
Cost	conditions		coordination	and allow adaptions
	Low	Low	High	Moderate
Right of Way	No change to existing	Updates to existing	Property impacts to	New infrastructure
Impact	conditions	infrastructure	accommodate design	and signal equipment
Operation &	<u>Low</u>	Low	<u>Moderate</u>	<u>High</u>
Maintenance	No Build scenario	Landscaping	Landscaping	Signal equipment,
Costs	would not improve			electricity
	conditions			
Greenhouse	<u>Moderate</u>	<u>Moderate</u>	Low	<u>Moderate</u>
Gas	Vehicle idling with	Vehicle idling with	Less vehicle idling	Higher speeds &
Emissions	stop traffic control	stop traffic control	with yield traffic	vehicle idling with
			control	signal traffic control
Aesthetics &	<u>Poor</u> No Duild coorderie	<u>Moderate</u>	<u>Good</u>	Moderate
Community	No Build scenario	Opportunities for art	Opportunities for art	Requires signal poles
Character	would not improve conditions	and landscaping with	and landscaping at intersection	and cabinets
Improvement	Poor	traffic calming Moderate	Good	Moderate
	No Build scenario	Multimodal safety	Multimodal safety	Traffic congestion
Grant	would not improve	improvement	improvement, traffic	reduction
Funding	conditions	inprovement	congestion	reduction
Opportunity	conditions		reduction,	
opportunity			environmental	
			impact	

Bay Avenue Corridor Study *Item 7 B.* February 2025

Criteria	Alternative 0 – No Build	Alternative 1 – Stop & Road Diet	Alternative 2 – Roundabout	Alternative 3 - Signal
General Benefits	 Lower initial capital cost and ongoing maintenance 	 Improved driver certainty Lower initial capital cost Improved bike & ped safety 	 Reduction collision severity Improved bike & ped safety Improved operations Reduced GHG emissions 	 Improved operations & capacity Provides designated crossing times and driver certainty
General Challenges	 Decreased operations Increased queues 	 Decreased operations Increased queues 	 High initial capital cost and potential ROW impact Driver adaptation to new traffic operations 	 High capital and maintenance costs Increased queues and collision severity potential

6. Appendix

- Attachment A Year 2024 Existing Traffic Count Data
- Attachment B Bike and Pedestrian Collision Data
- Attachment C VISSIM & SIDRA LOS Results (Stop and Roundabout Alternatives)
- Attachment D Synchro LOS Results (No Build, Stop, and Signal Alternatives)
- Attachment E Existing Intersection Observed Driver Behavior at Bay/Capitola Technical Memo

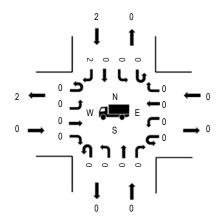

Bay Avenue Corridor Study *Item 7 B.* February 2025

Attachment A – Year 2024 Existing Traffic Count Data

Location: 1 BAY AVE & HIGHWAY 1 NB RAMPS AM Date: Thursday, March 7, 2024 Peak Hour: 08:00 AM - 09:00 AM Peak 15-Minutes: 08:15 AM - 08:30 AM

Peak Hour

Note: Total study counts contained in parentheses.

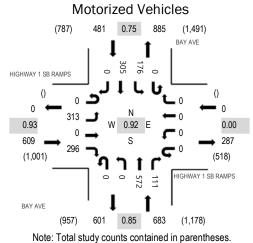

	HV%	PHF
EB	0.0%	0.00
WB	0.0%	0.82
NB	0.0%	0.84
SB	0.2%	0.81
All	0.1%	0.91

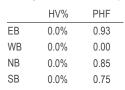
Traffic Counts - Motorized Vehicles

Interval	HIG		1 NB RAN bound	MPS	HIC		1 NB RAI bound	MPS			AVE				AVE bound			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
7:00 AM	0	0	0	0	0	20	0	25	0	43	56	0	0	0	52	38	234	1,351
7:15 AM	0	0	0	0	0	15	0	40	0	69	68	0	0	0	52	87	331	1,639
7:30 AM	0	0	0	0	0	17	0	30	0	91	77	0	0	0	80	99	394	1,848
7:45 AM	0	0	0	0	0	7	5	21	0	91	110	0	0	0	64	94	392	1,892
8:00 AM	0	0	0	0	0	14	4	23	0	105	158	0	0	0	104	114	522	1,964
8:15 AM	0	0	0	0	0	12	4	24	0	90	132	0	0	0	147	131	540	
8:30 AM	0	0	0	0	0	13	1	33	0	87	102	0	0	0	89	113	438	
8:45 AM	0	0	0	0	0	20	3	27	0	87	124	0	0	0	83	120	464	
Count Total	0	0	0	0	0	118	17	223	0	663	827	0	0	0	671	796	3,315	
Peak Hour	0	0	0	0	0	59	12	107	0	369	516	0	0	0	423	478	1,964	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles in Crosswalk

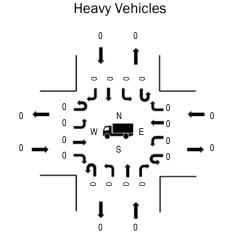
В	Hea	vy Vehicle	ic i		ا مد م م ا			_				_			-	
D			.0		Interval		Bicycle	es on Road	dway		Interval	Pe	destrians/E	Bicycles on	Crosswa	lk
D	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
0	1	0	1	2	7:00 AM	0	0	0	1	1	7:00 AM	2	0	1	0	3
0	1	1	0	2	7:15 AM	0	0	0	0	0	7:15 AM	0	0	3	0	3
0	0	0	0	0	7:30 AM	0	0	0	0	0	7:30 AM	3	0	0	0	3
0	1	0	1	2	7:45 AM	0	0	0	2	2	7:45 AM	2	0	1	0	3
0	0	0	1	1	8:00 AM	0	2	0	4	6	8:00 AM	4	0	1	0	5
0	0	0	0	0	8:15 AM	0	2	0	8	10	8:15 AM	4	0	2	0	6
0	0	0	0	0	8:30 AM	0	1	0	0	1	8:30 AM	1	0	4	0	5
0	0	0	1	1	8:45 AM	0	1	0	0	1	8:45 AM	0	0	1	0	1
0	3	1	4	8	Count Total	0	6	0	15	21	Count Total	16	0	13	0	29
0	0	0	2	2	Peak Hour	0	6	0	12	18	Peak Hour	9	0	8	0	17
	0 0 0 0 0 0 0 0 0	0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3	Imp Imp 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1	NB NB OB 0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 3 1 4	Image Image <th< td=""><td>NB NB OB Hotal 0 1 0 1 2 7:00 AM 0 1 1 0 2 7:15 AM 0 0 0 0 0 7:30 AM 0 1 0 1 2 7:45 AM 0 0 0 1 1 8:00 AM 0 0 0 0 8:15 AM 0 0 0 0 8:30 AM 0 0 0 1 1 8:45 AM 0 3 1 4 8 Count Total</td><td>NB NB OB Hotal LB 0 1 0 1 2 7:00 AM 0 0 1 1 0 2 7:15 AM 0 0 0 0 0 7:30 AM 0 0 1 0 1 2 7:45 AM 0 0 0 0 1 1 8:00 AM 0 0 0 0 0 8:30 AM 0 0 0 0 1 1 8:45 AM 0 0 3 1 4 8 Count Total 0</td><td>NB NB NB<</td><td>NB NB OB NB OB NB NB<</td><td>NB NB OB NB OB NB OB NB OB OB NB OB OB OB NB OB OB OB OB NB OB OD O</td><td>NB NB OB Hold OB Hold OB Hold NB OB Hold Hold</td><td>NB NB OB Hotal NB NB</td><td>NB NB OB NB NB OB NB OB NB NB<</td><td>NB NB OB OB NB OB OB NB OB OD ND ND OD OD OD ND ND OD OD<</td><td>NB NB OB NB OB NB NB<</td><td>NB NB OB NB NB NB OB OB OB NB OB OB<</td></th<>	NB NB OB Hotal 0 1 0 1 2 7:00 AM 0 1 1 0 2 7:15 AM 0 0 0 0 0 7:30 AM 0 1 0 1 2 7:45 AM 0 0 0 1 1 8:00 AM 0 0 0 0 8:15 AM 0 0 0 0 8:30 AM 0 0 0 1 1 8:45 AM 0 3 1 4 8 Count Total	NB NB OB Hotal LB 0 1 0 1 2 7:00 AM 0 0 1 1 0 2 7:15 AM 0 0 0 0 0 7:30 AM 0 0 1 0 1 2 7:45 AM 0 0 0 0 1 1 8:00 AM 0 0 0 0 0 8:30 AM 0 0 0 0 1 1 8:45 AM 0 0 3 1 4 8 Count Total 0	NB NB<	NB NB OB NB OB NB NB<	NB NB OB NB OB NB OB NB OB OB NB OB OB OB NB OB OB OB OB NB OB OD O	NB NB OB Hold OB Hold OB Hold NB OB Hold Hold	NB NB OB Hotal NB NB	NB NB OB NB NB OB NB OB NB NB<	NB NB OB OB NB OB OB NB OB OD ND ND OD OD OD ND ND OD OD<	NB NB OB NB OB NB NB<	NB NB OB NB NB NB OB OB OB NB OB OB<


Heavy Vehicles



Location: 2 BAY AVE & HIGHWAY 1 SB RAMPS AM Date: Thursday, March 7, 2024 Peak Hour: 08:00 AM - 09:00 AM Peak 15-Minutes: 08:00 AM - 08:15 AM

Peak Hour

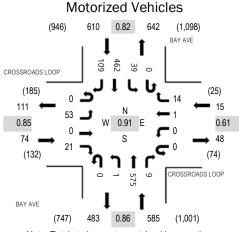

All 0.0% 0.92

Traffic Counts - Motorized Vehicles

Interval	HIG		1 SB RAN bound	/IPS	HIC		1 SB RAI bound	MPS			AVE				AVE bound			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
7:00 AM	0	36	0	39	0	0	0	0	0	0	65	12	1	32	35	0	220	1,193
7:15 AM	0	50	0	49	0	0	0	0	0	0	92	18	0	34	35	0	278	1,455
7:30 AM	0	42	0	49	0	0	0	0	0	0	124	31	0	38	58	0	342	1,655
7:45 AM	0	71	0	56	0	0	0	0	0	0	125	28	0	38	35	0	353	1,713
8:00 AM	0	96	0	68	0	0	0	0	0	0	167	35	0	41	75	0	482	1,773
8:15 AM	0	81	0	75	0	0	0	0	0	0	141	21	0	56	104	0	478	
8:30 AM	0	55	0	73	0	0	0	0	0	0	139	30	0	33	70	0	400	
8:45 AM	0	81	0	80	0	0	0	0	0	0	125	25	0	46	56	0	413	
Count Total	0	512	0	489	0	0	0	0	0	0	978	200	1	318	468	0	2,966	_
Peak Hour	0	313	0	296	0	0	0	0	0	0	572	111	0	176	305	0	1,773	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles in Crosswalk

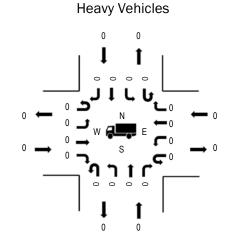
Interval		Hea	avy Vehicl	es		Interval		Bicycle	es on Road	dway		Interval	Pe	destrians/E	Bicycles on	Crosswa	lk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
7:00 AM	1	0	0	0	1	7:00 AM	0	0	0	1	1	7:00 AM	2	0	1	0	3
7:15 AM	0	1	0	0	1	7:15 AM	0	0	0	0	0	7:15 AM	1	0	1	0	2
7:30 AM	0	0	0	0	0	7:30 AM	0	0	0	0	0	7:30 AM	2	0	0	0	2
7:45 AM	0	1	0	0	1	7:45 AM	0	0	0	2	2	7:45 AM	2	0	1	0	3
8:00 AM	0	0	0	0	0	8:00 AM	0	2	0	4	6	8:00 AM	3	0	2	0	5
8:15 AM	0	0	0	0	0	8:15 AM	0	2	0	8	10	8:15 AM	4	0	2	0	6
8:30 AM	0	0	0	0	0	8:30 AM	0	1	0	0	1	8:30 AM	0	0	3	0	3
8:45 AM	0	0	0	0	0	8:45 AM	0	1	0	0	1	8:45 AM	0	0	0	0	0
Count Total	1	2	0	0	3	Count Total	0	6	0	15	21	Count Total	14	0	10	0	24
Peak Hour	0	0	0	0	0	Peak Hour	0	6	0	12	18	Peak Hour	7	0	7	0	14



Location: 3 BAY AVE & CROSSROADS LOOP AM Date: Thursday, March 7, 2024 Peak Hour: 08:00 AM - 09:00 AM Peak 15-Minutes: 08:15 AM - 08:30 AM

Peak Hour

Note: Total study counts contained in parentheses.

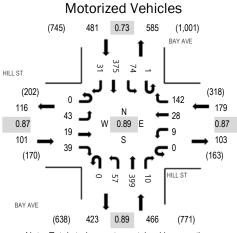

	HV%	PHF
EB	0.0%	0.85
WB	0.0%	0.61
NB	0.0%	0.86
SB	0.0%	0.82
All	0.0%	0.91

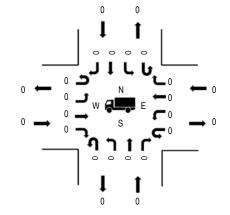
Traffic Counts - Motorized Vehicles

Interval	CF		ADS LO	OP	CROSSROADS LOOP Westbound			BAY AVE Northbound				BAY AVE Southbound					Rolling	
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
7:00 AM	0	7	0	1	0	0	0	0	0	3	61	0	0	2	44	12	130	820
7:15 AM	0	8	0	6	0	1	0	3	0	0	90	1	0	10	60	18	197	1,033
7:30 AM	0	8	0	5	0	0	0	3	0	0	136	1	0	5	64	26	248	1,187
7:45 AM	0	15	0	8	0	0	0	3	0	1	122	1	0	6	75	14	245	1,248
8:00 AM	0	9	0	2	0	0	0	7	0	0	167	3	0	8	116	31	343	1,284
8:15 AM	0	13	0	10	0	0	0	2	0	0	137	2	0	6	155	26	351	
8:30 AM	0	15	0	6	0	0	1	4	0	1	147	2	0	10	94	29	309	
8:45 AM	0	16	0	3	0	0	0	1	0	0	124	2	0	15	97	23	281	
Count Total	0	91	0	41	0	1	1	23	0	5	984	12	0	62	705	179	2,104	
Peak Hour	0	53	0	21	0	0	1	14	0	1	575	9	0	39	462	109	1,284	

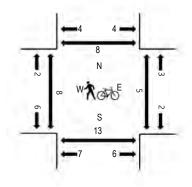
Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles in Crosswalk

Interval		Hea	avy Vehicl	es		Interval		Bicycle	es on Road	dway		Interval	Pe	destrians/E	Bicycles or	n Crosswa	alk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
7:00 AM	0	0	0	0	0	7:00 AM	0	0	0	1	1	7:00 AM	2	1	0	0	3
7:15 AM	0	1	0	0	1	7:15 AM	0	0	0	0	0	7:15 AM	0	0	0	0	0
7:30 AM	0	0	0	0	0	7:30 AM	0	0	0	0	0	7:30 AM	1	0	0	0	1
7:45 AM	0	1	0	0	1	7:45 AM	0	0	0	2	2	7:45 AM	2	0	1	0	3
8:00 AM	0	0	0	0	0	8:00 AM	0	2	0	4	6	8:00 AM	1	0	1	0	2
8:15 AM	0	0	0	0	0	8:15 AM	0	2	0	8	10	8:15 AM	1	0	2	0	3
8:30 AM	0	0	0	0	0	8:30 AM	0	1	0	0	1	8:30 AM	1	0	3	0	4
8:45 AM	0	0	0	0	0	8:45 AM	0	1	0	0	1	8:45 AM	2	0	0	0	2
Count Total	0	2	0	0	2	Count Total	0	6	0	15	21	Count Total	10	1	7	0	18
Peak Hour	0	0	0	0	0	Peak Hour	0	6	0	12	18	Peak Hour	5	0	6	0	11





Location: 4 BAY AVE & HILL ST AM Date: Thursday, March 7, 2024 Peak Hour: 08:00 AM - 09:00 AM Peak 15-Minutes: 08:15 AM - 08:30 AM


Peak Hour

Heavy Vehicles

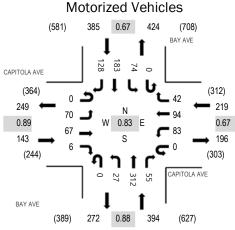
Pedestrians/Bicycles in Crosswalk

Note:	Total	study	counts	contained	in	parentheses.
INULE.	i Ulai	Sluuy	Counts	containeu	ш	parenuieses.

	HV%	PHF
EB	0.0%	0.87
WB	0.0%	0.87
NB	0.0%	0.89
SB	0.0%	0.73
All	0.0%	0.89

Traffic Counts - Motorized Vehicles

Interval		East	L ST bound				L ST bound				AVE				bound			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
7:00 AM	0	10	3	1	0	0	6	18	0	5	37	0	0	10	31	6	127	777
7:15 AM	0	7	2	5	0	2	6	28	0	6	56	0	0	14	42	11	179	976
7:30 AM	0	11	4	5	0	3	5	30	0	11	95	1	0	9	53	3	230	1,141
7:45 AM	0	11	2	8	0	1	7	33	0	12	80	2	0	13	64	8	241	1,209
8:00 AM	0	12	4	10	0	0	11	42	0	13	116	2	0	16	96	4	326	1,227
8:15 AM	0	12	6	9	0	3	5	34	0	15	92	4	1	19	137	7	344	
8:30 AM	0	10	2	7	0	1	8	40	0	17	106	3	0	14	81	9	298	
8:45 AM	0	9	7	13	0	5	4	26	0	12	85	1	0	25	61	11	259	
Count Total	0	82	30	58	0	15	52	251	0	91	667	13	1	120	565	59	2,004	
Peak Hour	0	43	19	39	0	9	28	142	0	57	399	10	1	74	375	31	1,227	

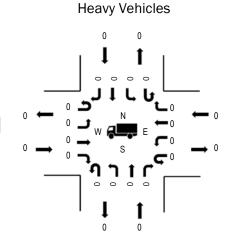

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles in Crosswalk

Interval		Hea	avy Vehicl	es		Interval		Bicycle	es on Road	dway		Interval	Pe	destrians/E	Bicycles on	Crosswa	lk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
7:00 AM	0	0	0	0	0	7:00 AM	1	0	0	1	2	7:00 AM	3	2	1	1	7
7:15 AM	0	1	0	0	1	7:15 AM	0	0	0	0	0	7:15 AM	0	0	0	0	0
7:30 AM	0	0	0	0	0	7:30 AM	0	0	0	0	0	7:30 AM	0	1	0	0	1
7:45 AM	0	1	0	0	1	7:45 AM	0	0	0	2	2	7:45 AM	2	0	1	1	4
8:00 AM	0	0	0	0	0	8:00 AM	0	2	0	4	6	8:00 AM	3	2	0	2	7
8:15 AM	0	0	0	0	0	8:15 AM	1	1	0	8	10	8:15 AM	0	3	2	2	7
8:30 AM	0	0	0	0	0	8:30 AM	0	1	1	0	2	8:30 AM	1	4	1	3	9
8:45 AM	0	0	0	0	0	8:45 AM	0	0	1	0	1	8:45 AM	4	4	2	1	11
Count Total	0	2	0	0	2	Count Total	2	4	2	15	23	Count Total	13	16	7	10	46
Peak Hour	0	0	0	0	0	Peak Hour	1	4	2	12	19	Peak Hour	8	13	5	8	34

Location: 5 BAY AVE & CAPITOLA AVE AM Date: Thursday, March 7, 2024 Peak Hour: 08:00 AM - 09:00 AM Peak 15-Minutes: 08:15 AM - 08:30 AM

Peak Hour

Note: Total study counts contained in parentheses.

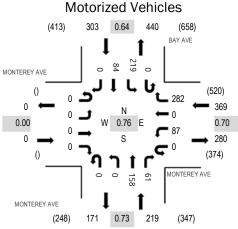

	HV%	PHF
EB	0.0%	0.89
WB	0.0%	0.67
NB	0.0%	0.88
SB	0.0%	0.67
All	0.0%	0.83

Traffic Counts - Motorized Vehicles

Interval			DLA AVE				DLA AVE bound				AVE				AVE nbound			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
7:00 AM	0	12	8	1	0	2	4	5	0	0	18	4	0	10	7	11	82	623
7:15 AM	0	17	10	1	0	2	7	4	0	4	37	8	0	7	24	12	133	821
7:30 AM	0	18	11	0	0	7	13	9	0	0	78	2	0	8	33	15	194	1,032
7:45 AM	0	10	12	1	0	6	24	10	0	6	66	10	0	17	33	19	214	1,118
8:00 AM	0	21	12	4	0	18	21	15	0	3	82	15	0	18	47	24	280	1,141
8:15 AM	0	12	15	1	0	45	26	12	0	5	71	12	0	17	85	43	344	
8:30 AM	0	18	20	0	0	15	26	6	0	7	91	14	0	15	36	32	280	
8:45 AM	0	19	20	1	0	5	21	9	0	12	68	14	0	24	15	29	237	
Count Total	0	127	108	9	0	100	142	70	0	37	511	79	0	116	280	185	1,764	
Peak Hour	0	70	67	6	0	83	94	42	0	27	312	55	0	74	183	128	1,141	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles in Crosswalk

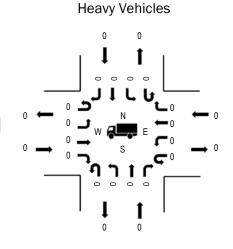
Interval		Hea	avy Vehicl	es		Interval		Bicycle	es on Road	dway		Interval	Pe	destrians/E	Bicycles on	Crosswa	lk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
7:00 AM	0	0	0	0	0	7:00 AM	0	1	0	0	1	7:00 AM	1	0	0	1	2
7:15 AM	0	0	0	0	0	7:15 AM	0	0	1	1	2	7:15 AM	2	2	1	3	8
7:30 AM	0	0	0	0	0	7:30 AM	0	0	1	2	3	7:30 AM	0	1	0	1	2
7:45 AM	0	0	0	0	0	7:45 AM	0	0	0	4	4	7:45 AM	0	3	0	0	3
8:00 AM	0	0	0	0	0	8:00 AM	2	0	1	4	7	8:00 AM	1	3	0	1	5
8:15 AM	0	0	0	0	0	8:15 AM	1	2	1	12	16	8:15 AM	0	1	1	2	4
8:30 AM	0	0	0	0	0	8:30 AM	0	0	1	2	3	8:30 AM	3	4	1	4	12
8:45 AM	0	0	0	0	0	8:45 AM	1	0	0	0	1	8:45 AM	2	1	1	1	5
Count Total	0	0	0	0	0	Count Total	4	3	5	25	37	Count Total	9	15	4	13	41
Peak Hour	0	0	0	0	0	Peak Hour	4	2	3	18	27	Peak Hour	6	9	3	8	26

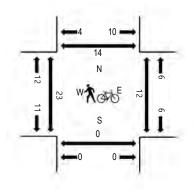


Location: 6 MONTEREY AVE & MONTEREY AVE AM Date: Thursday, March 7, 2024 Peak Hour: 07:45 AM - 08:45 AM Peak 15-Minutes: 08:15 AM - 08:30 AM

Peak Hour

Note: Total study counts contained in parentheses.

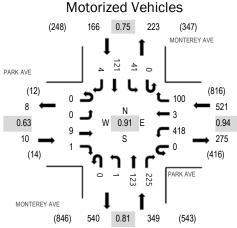

HV%	PHF
0.0%	0.00
0.0%	0.70
0.0%	0.73
0.0%	0.64
0.0%	0.76
	0.0% 0.0% 0.0% 0.0%


Traffic Counts - Motorized Vehicles

Interval			REY AVE	Ξ			REY AVI	E			REY AVE				AVE nbound			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
7:00 AM	0	0	0	0	0	6	0	8	0	0	16	5	0	5	5	0	45	412
7:15 AM	0	0	0	0	0	8	0	28	0	0	22	4	0	18	5	0	85	560
7:30 AM	0	0	0	0	0	17	0	43	0	0	26	7	0	34	10	0	137	768
7:45 AM	0	0	0	0	0	16	0	45	0	0	38	6	0	23	17	0	145	891
8:00 AM	0	0	0	0	0	12	0	65	0	0	38	9	0	45	24	0	193	868
8:15 AM	0	0	0	0	0	25	0	74	0	0	45	31	0	97	21	0	293	
8:30 AM	0	0	0	0	0	34	0	98	0	0	37	15	0	54	22	0	260	
8:45 AM	0	0	0	0	0	8	0	33	0	0	42	6	0	15	18	0	122	
Count Total	0	0	0	0	0	126	0	394	0	0	264	83	0	291	122	0	1,280	
Peak Hour	0	0	0	0	0	87	0	282	0	0	158	61	0	219	84	0	891	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles in Crosswalk

Interval		Hea	avy Vehicle	es		Interval		Bicycle	es on Road	dway		Interval	Pe	destrians/E	Bicycles or	rosswa	lk
tart Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
7:00 AM	0	0	0	0	0	7:00 AM	0	0	0	1	1	7:00 AM	3	0	1	1	5
7:15 AM	0	0	0	0	0	7:15 AM	0	1	2	0	3	7:15 AM	5	0	0	3	8
7:30 AM	0	0	0	0	0	7:30 AM	0	0	1	2	3	7:30 AM	2	0	2	0	4
7:45 AM	0	0	0	0	0	7:45 AM	0	2	1	5	8	7:45 AM	6	0	2	1	9
8:00 AM	0	0	0	0	0	8:00 AM	0	1	1	6	8	8:00 AM	6	0	2	5	13
8:15 AM	0	0	0	0	0	8:15 AM	0	3	3	15	21	8:15 AM	4	0	5	4	13
8:30 AM	0	0	0	0	0	8:30 AM	0	1	2	4	7	8:30 AM	7	0	3	4	14
8:45 AM	0	0	0	0	0	8:45 AM	0	0	1	1	2	8:45 AM	8	0	5	6	19
ount Total	0	0	0	0	0	Count Total	0	8	11	34	53	Count Total	41	0	20	24	85
eak Hour	0	0	0	0	0	Peak Hour	0	7	7	30	44	Peak Hour	23	0	12	14	49
ount Total	0	-	0	0	0	Count Total	0	-	1 11 7	-	53	Count Total	41	0 0 0		20	20 24

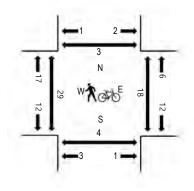


Location: 7 MONTEREY AVE & PARK AVE AM Date: Thursday, March 7, 2024 Peak Hour: 08:00 AM - 09:00 AM Peak 15-Minutes: 08:15 AM - 08:30 AM Item 7 B.

Peak Hour

Note: Total study counts contained in parentheses.

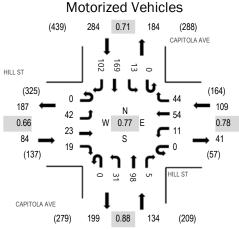

	HV%	PHF
EB	0.0%	0.63
WB	0.2%	0.94
NB	0.0%	0.81
SB	0.0%	0.75
All	0.1%	0.91


Traffic Counts - Motorized Vehicles

Interval			K AVE bound				K AVE bound				REY AVE	E			REY AVE			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
7:00 AM	0	0	0	0	0	35	0	8	0	0	13	10	0	0	10	0	76	575
7:15 AM	0	1	0	0	0	46	1	12	0	1	13	26	0	1	13	0	114	739
7:30 AM	0	0	1	1	0	71	1	14	0	0	19	34	0	2	24	0	167	912
7:45 AM	0	1	0	0	0	83	1	23	0	0	20	58	0	9	23	0	218	1,028
8:00 AM	0	0	0	0	0	94	2	27	0	1	22	57	0	11	25	1	240	1,046
8:15 AM	0	0	4	0	0	101	0	28	0	0	46	63	0	13	32	0	287	
8:30 AM	0	0	3	0	0	116	0	22	0	0	30	55	0	12	44	1	283	
8:45 AM	0	0	2	1	0	107	1	23	0	0	25	50	0	5	20	2	236	
Count Total	0	2	10	2	0	653	6	157	0	2	188	353	0	53	191	4	1,621	
Peak Hour	0	0	9	1	0	418	3	100	0	1	123	225	0	41	121	4	1,046	_

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles in Crosswalk

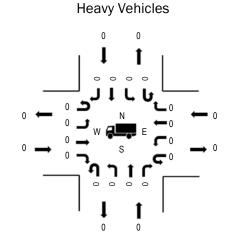
Interval		Hea	avy Vehicl	es		Interval		Bicycle	es on Road	dway		Interval	Pe	destrians/E	Bicycles on	Crosswa	lk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
7:00 AM	0	0	0	0	0	7:00 AM	0	0	1	1	2	7:00 AM	5	1	1	0	7
7:15 AM	0	0	0	0	0	7:15 AM	0	0	2	1	3	7:15 AM	6	1	3	1	11
7:30 AM	0	0	0	0	0	7:30 AM	0	5	2	0	7	7:30 AM	3	1	4	2	10
7:45 AM	0	0	0	0	0	7:45 AM	0	2	2	1	5	7:45 AM	7	2	2	3	14
8:00 AM	0	0	0	0	0	8:00 AM	0	6	2	3	11	8:00 AM	7	2	2	0	11
8:15 AM	0	0	0	0	0	8:15 AM	0	4	6	1	11	8:15 AM	4	1	8	0	13
8:30 AM	0	0	1	0	1	8:30 AM	0	4	2	0	6	8:30 AM	8	0	4	2	14
8:45 AM	0	0	0	0	0	8:45 AM	0	0	0	1	1	8:45 AM	10	1	4	1	16
Count Total	0	0	1	0	1	Count Total	0	21	17	8	46	Count Total	50	9	28	9	96
Peak Hour	0	0	1	0	1	Peak Hour	0	14	10	5	29	Peak Hour	29	4	18	3	54



Location: 8 CAPITOLA AVE & HILL ST AM Date: Thursday, March 7, 2024 Peak Hour: 08:00 AM - 09:00 AM Peak 15-Minutes: 08:15 AM - 08:30 AM Item 7 B.

Peak Hour

Note: Total study counts contained in parentheses.

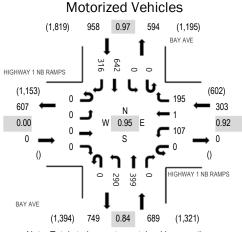

	HV%	PHF
EB	0.0%	0.66
WB	0.0%	0.78
NB	0.0%	0.88
SB	0.0%	0.71
All	0.0%	0.77

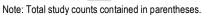
Traffic Counts - Motorized Vehicles

Interval			L ST bound				L ST bound				DLA AVE			CAPITO South	LA AVE			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
7:00 AM	0	9	0	3	0	0	3	4	0	2	8	0	0	2	9	18	58	338
7:15 AM	0	10	3	1	0	0	11	3	0	6	14	1	0	2	13	19	83	428
7:30 AM	0	8	4	0	0	1	12	3	0	8	10	1	0	0	20	21	88	543
7:45 AM	0	12	2	1	0	1	13	4	0	6	19	0	0	1	31	19	109	605
8:00 AM	0	7	6	4	0	3	19	14	0	9	18	1	0	0	37	30	148	611
8:15 AM	0	13	12	7	0	5	9	13	0	11	27	0	0	10	75	16	198	
8:30 AM	0	12	1	3	0	1	17	14	0	4	27	3	0	2	33	33	150	
8:45 AM	0	10	4	5	0	2	9	3	0	7	26	1	0	1	24	23	115	
Count Total	0	81	32	24	0	13	93	58	0	53	149	7	0	18	242	179	949	
Peak Hour	0	42	23	19	0	11	54	44	0	31	98	5	0	13	169	102	611	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles in Crosswalk

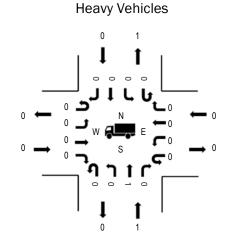
Interval		Hea	avy Vehicl	es		Interval		Bicycle	es on Road	lway		Interval	Pe	destrians/E	Bicycles on	Crosswa	lk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
7:00 AM	0	0	0	0	0	7:00 AM	0	0	0	0	0	7:00 AM	1	0	3	2	6
7:15 AM	0	0	0	0	0	7:15 AM	0	0	0	1	1	7:15 AM	0	2	2	1	5
7:30 AM	0	0	0	0	0	7:30 AM	0	0	0	1	1	7:30 AM	0	0	3	0	3
7:45 AM	0	0	0	0	0	7:45 AM	0	0	0	0	0	7:45 AM	0	0	7	0	7
8:00 AM	0	0	0	0	0	8:00 AM	1	1	1	2	5	8:00 AM	3	1	1	1	6
8:15 AM	0	0	0	0	0	8:15 AM	1	1	0	4	6	8:15 AM	0	2	3	1	6
8:30 AM	0	0	0	0	0	8:30 AM	0	0	1	2	3	8:30 AM	1	0	0	0	1
8:45 AM	0	0	0	0	0	8:45 AM	0	0	0	1	1	8:45 AM	0	0	2	0	2
Count Total	0	0	0	0	0	Count Total	2	2	2	11	17	Count Total	5	5	21	5	36
Peak Hour	0	0	0	0	0	Peak Hour	2	2	2	9	15	Peak Hour	4	3	6	2	15





Location: 1 BAY AVE & HIGHWAY 1 NB RAMPS PM Date: Thursday, March 7, 2024 Peak Hour: 04:00 PM - 05:00 PM Peak 15-Minutes: 04:00 PM - 04:15 PM

Peak Hour

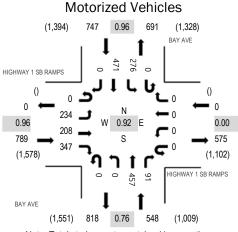

	HV%	PHF
EB	0.0%	0.00
WB	0.0%	0.92
NB	0.1%	0.84
SB	0.0%	0.97
All	0.1%	0.95

Traffic Counts - Motorized Vehicles

Interval	HIG		1 NB RAN bound	/IPS	HIC		1 NB RAI bound	MPS			AVE Ibound				AVE			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
4:00 PM	0	0	0	0	0	32	0	51	0	88	116	0	0	0	154	70	511	1,950
4:15 PM	0	0	0	0	0	23	1	48	0	69	100	0	0	0	169	84	494	1,948
4:30 PM	0	0	0	0	0	23	0	43	0	64	82	0	0	0	157	83	452	1,935
4:45 PM	0	0	0	0	0	29	0	53	0	69	101	0	0	0	162	79	493	1,883
5:00 PM	0	0	0	0	0	25	0	58	0	73	103	0	0	0	167	83	509	1,792
5:15 PM	0	0	0	0	0	19	0	68	0	50	102	0	0	0	170	72	481	
5:30 PM	0	0	0	0	0	20	0	47	0	65	83	0	0	0	117	68	400	
5:45 PM	0	0	0	0	0	19	0	43	0	59	97	0	0	0	108	76	402	
Count Total	0	0	0	0	0	190	1	411	0	537	784	0	0	0	1,204	615	3,742	_
Peak Hour	0	0	0	0	0	107	1	195	0	290	399	0	0	0	642	316	1,950	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles in Crosswalk

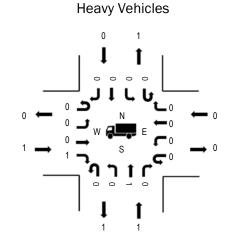
Interval		Hea	avy Vehicle	es		Interval		Bicycle	es on Road	dway		Interval	Pe	destrians/l	Bicycles on	n Crosswa	lk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
4:00 PM	0	1	0	0	1	4:00 PM	0	0	0	2	2	4:00 PM	1	0	3	0	4
4:15 PM	0	0	0	0	0	4:15 PM	0	1	0	2	3	4:15 PM	5	0	0	0	5
4:30 PM	0	0	0	0	0	4:30 PM	0	0	0	3	3	4:30 PM	1	0	1	0	2
4:45 PM	0	0	0	0	0	4:45 PM	0	3	0	1	4	4:45 PM	1	0	0	0	1
5:00 PM	0	0	0	1	1	5:00 PM	0	2	0	1	3	5:00 PM	1	0	2	0	3
5:15 PM	0	0	0	0	0	5:15 PM	0	0	0	2	2	5:15 PM	0	0	6	0	6
5:30 PM	0	0	0	0	0	5:30 PM	0	0	0	0	0	5:30 PM	1	0	0	0	1
5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	4	4	5:45 PM	0	0	2	0	2
Count Total	0	1	0	1	2	Count Total	0	6	0	15	21	Count Total	10	0	14	0	24
Peak Hour	0	1	0	0	1	Peak Hour	0	4	0	8	12	Peak Hour	8	0	4	0	12



Location: 2 BAY AVE & HIGHWAY 1 SB RAMPS PM Date: Thursday, March 7, 2024 Peak Hour: 04:00 PM - 05:00 PM Peak 15-Minutes: 04:00 PM - 04:15 PM

Peak Hour

Note: Total study counts contained in parentheses.

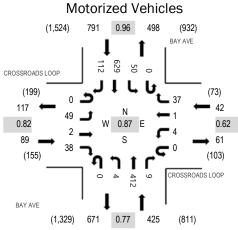

	-	
	HV%	PHF
EB	0.1%	0.96
WB	0.0%	0.00
NB	0.2%	0.76
SB	0.0%	0.96
All	0.1%	0.92

Traffic Counts - Motorized Vehicles

Interval		East	1 SB RAN bound	/IPS		West	1 SB RAI bound			North	AVE Ibound				bound			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
4:00 PM	0	56	57	83	0	0	0	0	0	0	151	30	0	58	132	0	567	2,084
4:15 PM	0	52	52	86	0	0	0	0	0	0	119	19	0	71	120	0	519	2,048
4:30 PM	0	53	57	82	0	0	0	0	0	0	88	25	0	74	109	0	488	2,034
4:45 PM	0	73	42	96	0	0	0	0	0	0	99	17	0	73	110	0	510	1,998
5:00 PM	0	60	53	80	0	0	0	0	0	0	114	27	0	72	125	0	531	1,897
5:15 PM	0	67	53	92	0	0	0	0	0	0	90	20	0	83	100	0	505	
5:30 PM	0	49	56	97	0	0	0	0	0	0	94	13	0	52	91	0	452	
5:45 PM	0	75	40	67	0	0	0	0	0	0	88	15	0	43	81	0	409	
Count Total	0	485	410	683	0	0	0	0	0	0	843	166	0	526	868	0	3,981	_
Peak Hour	0	234	208	347	0	0	0	0	0	0	457	91	0	276	471	0	2,084	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles in Crosswalk

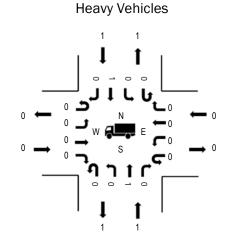
Interval		Hea	avy Vehicle	es		Interval		Bicycle	es on Road	dway		Interval	Pe	destrians/l	Bicycles or	Crosswa	lk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
4:00 PM	0	1	0	0	1	4:00 PM	0	0	0	2	2	4:00 PM	0	0	2	0	2
4:15 PM	1	0	0	0	1	4:15 PM	0	1	0	2	3	4:15 PM	4	0	1	0	5
4:30 PM	0	0	0	0	0	4:30 PM	0	0	0	3	3	4:30 PM	1	0	1	0	2
4:45 PM	0	0	0	0	0	4:45 PM	0	3	0	1	4	4:45 PM	1	0	0	0	1
5:00 PM	0	0	0	1	1	5:00 PM	0	2	0	1	3	5:00 PM	1	0	2	0	3
5:15 PM	0	0	0	0	0	5:15 PM	0	0	0	2	2	5:15 PM	0	0	5	0	5
5:30 PM	0	0	0	0	0	5:30 PM	0	0	0	0	0	5:30 PM	1	0	0	0	1
5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	4	4	5:45 PM	0	0	2	0	2
Count Total	1	1	0	1	3	Count Total	0	6	0	15	21	Count Total	8	0	13	0	21
Peak Hour	1	1	0	0	2	Peak Hour	0	4	0	8	12	Peak Hour	6	0	4	0	10



Location: 3 BAY AVE & CROSSROADS LOOP PM Date: Thursday, March 7, 2024 Peak Hour: 04:00 PM - 05:00 PM Peak 15-Minutes: 04:00 PM - 04:15 PM

Peak Hour

Note: Total study counts contained in parentheses.

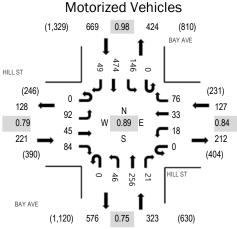

	HV%	PHF
EB	0.0%	0.82
WB	0.0%	0.62
NB	0.2%	0.77
SB	0.1%	0.96
All	0.1%	0.87

Traffic Counts - Motorized Vehicles

Interval		East	ADS LO			West	DADS LO bound	-			AVE Avend			South	AVE			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
4:00 PM	0	14	1	10	0	1	1	15	0	0	135	3	0	11	151	43	385	1,347
4:15 PM	0	15	1	11	0	2	0	8	0	1	91	0	0	13	165	25	332	1,306
4:30 PM	0	9	0	8	0	1	0	7	0	0	93	5	0	13	140	30	306	1,286
4:45 PM	0	11	0	9	0	0	0	7	0	3	93	1	0	13	173	14	324	1,287
5:00 PM	0	16	0	7	0	0	0	12	0	1	100	3	0	8	170	27	344	1,216
5:15 PM	0	11	0	8	0	3	0	3	0	1	87	2	0	10	175	12	312	
5:30 PM	0	6	0	10	0	4	0	4	0	1	94	2	0	10	160	16	307	
5:45 PM	0	7	0	1	0	1	1	3	0	2	91	2	0	5	119	21	253	
Count Total	0	89	2	64	0	12	2	59	0	9	784	18	0	83	1,253	188	2,563	
Peak Hour	0	49	2	38	0	4	1	37	0	4	412	9	0	50	629	112	1,347	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles in Crosswalk

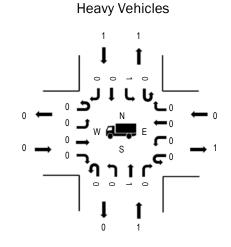
Interval		Hea	avy Vehicle	es		Interval		Bicycle	es on Road	dway		Interval	Peo	destrians/E	Bicycles on	Crosswa	lk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
4:00 PM	0	1	0	0	1	4:00 PM	0	0	1	2	3	4:00 PM	0	0	1	0	1
4:15 PM	0	0	0	1	1	4:15 PM	1	0	0	2	3	4:15 PM	0	0	1	0	1
4:30 PM	0	0	0	0	0	4:30 PM	0	0	0	3	3	4:30 PM	2	0	1	0	3
4:45 PM	0	0	0	0	0	4:45 PM	0	4	0	1	5	4:45 PM	1	0	0	0	1
5:00 PM	0	0	0	0	0	5:00 PM	0	2	0	1	3	5:00 PM	0	0	3	0	3
5:15 PM	0	0	0	0	0	5:15 PM	0	0	0	2	2	5:15 PM	0	0	5	0	5
5:30 PM	0	0	0	0	0	5:30 PM	0	0	0	0	0	5:30 PM	3	0	0	0	3
5:45 PM	0	0	0	0	0	5:45 PM	0	0	1	4	5	5:45 PM	0	0	2	0	2
Count Total	0	1	0	1	2	Count Total	1	6	2	15	24	Count Total	6	0	13	0	19
Peak Hour	0	1	0	1	2	Peak Hour	1	4	1	8	14	Peak Hour	3	0	3	0	6



Location: 4 BAY AVE & HILL ST PM Date: Thursday, March 7, 2024 Peak Hour: 04:00 PM - 05:00 PM Peak 15-Minutes: 04:00 PM - 04:15 PM

Peak Hour

Note: Total study counts contained in parentheses.

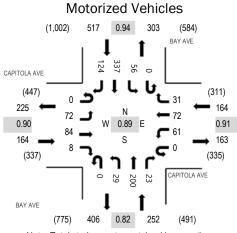

	HV%	PHF
EB	0.0%	0.79
WB	0.0%	0.84
NB	0.3%	0.75
SB	0.1%	0.98
All	0.1%	0.89

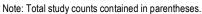
Traffic Counts - Motorized Vehicles

Interval		East	L ST					bound			BAY South		Rolling					
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
4:00 PM	0	30	12	28	0	5	11	22	0	16	85	7	0	35	113	12	376	1,340
4:15 PM	0	19	12	19	0	4	11	17	0	6	57	6	0	37	129	14	331	1,293
4:30 PM	0	20	11	20	0	5	7	25	0	12	52	4	0	35	101	12	304	1,278
4:45 PM	0	23	10	17	0	4	4	12	0	12	62	4	0	39	131	11	329	1,289
5:00 PM	0	24	7	18	0	2	6	15	0	10	69	0	0	43	122	13	329	1,240
5:15 PM	0	18	5	23	0	3	6	14	0	13	53	1	1	44	128	7	316	
5:30 PM	0	11	10	12	0	2	7	19	0	13	68	2	0	35	127	9	315	
5:45 PM	0	15	11	15	0	4	11	15	0	12	64	2	0	32	88	11	280	
Count Total	0	160	78	152	0	29	63	139	0	94	510	26	1	300	939	89	2,580	
Peak Hour	0	92	45	84	0	18	33	76	0	46	256	21	0	146	474	49	1,340	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles in Crosswalk

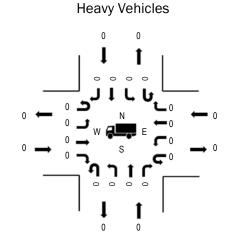
Interval		Hea	avy Vehicle	es		Interval		Bicycle	es on Road	dway		Interval	Pe	lk			
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
4:00 PM	0	1	0	0	1	4:00 PM	0	0	0	2	2	4:00 PM	0	6	0	2	8
4:15 PM	0	0	0	1	1	4:15 PM	0	0	0	2	2	4:15 PM	1	1	0	1	3
4:30 PM	0	0	0	0	0	4:30 PM	1	0	0	3	4	4:30 PM	1	2	1	2	6
4:45 PM	0	0	0	0	0	4:45 PM	2	2	2	1	7	4:45 PM	1	3	0	0	4
5:00 PM	0	0	0	0	0	5:00 PM	0	3	0	1	4	5:00 PM	0	4	7	0	11
5:15 PM	0	0	0	0	0	5:15 PM	1	0	0	2	3	5:15 PM	1	7	2	2	12
5:30 PM	0	0	0	0	0	5:30 PM	3	0	1	0	4	5:30 PM	1	0	1	2	4
5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	4	4	5:45 PM	0	4	1	0	5
Count Total	0	1	0	1	2	Count Total	7	5	3	15	30	Count Total	5	27	12	9	53
Peak Hour	0	1	0	1	2	Peak Hour	3	2	2	8	15	Peak Hour	3	12	1	5	21





Location: 5 BAY AVE & CAPITOLA AVE PM Date: Thursday, March 7, 2024 Peak Hour: 04:00 PM - 05:00 PM Peak 15-Minutes: 04:00 PM - 04:15 PM

Peak Hour

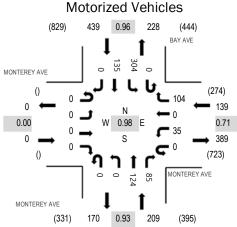

	HV%	PHF
EB	0.0%	0.90
WB	0.0%	0.91
NB	0.0%	0.82
SB	0.0%	0.94
All	0.0%	0.89

Traffic Counts - Motorized Vehicles

Interval				DLA AVE bound			BAY North	AVE bound			BAY South		Rolling					
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
4:00 PM	0	28	23	4	0	19	14	12	0	6	66	5	0	18	80	34	309	1,097
4:15 PM	0	16	19	1	0	16	21	4	0	9	40	11	0	13	91	29	270	1,064
4:30 PM	0	11	19	1	0	13	21	10	0	6	45	2	0	13	71	29	241	1,063
4:45 PM	0	17	23	2	0	13	16	5	0	8	49	5	0	12	95	32	277	1,090
5:00 PM	0	22	14	6	0	14	26	5	0	7	47	11	0	19	74	31	276	1,044
5:15 PM	0	14	24	5	0	13	19	7	0	8	42	5	0	22	83	27	269	
5:30 PM	0	19	18	3	0	12	18	6	0	6	51	5	0	12	86	32	268	
5:45 PM	0	24	22	2	0	4	16	7	0	9	37	11	0	9	67	23	231	
Count Total	0	151	162	24	0	104	151	56	0	59	377	55	0	118	647	237	2,141	_
Peak Hour	0	72	84	8	0	61	72	31	0	29	200	23	0	56	337	124	1,097	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles in Crosswalk

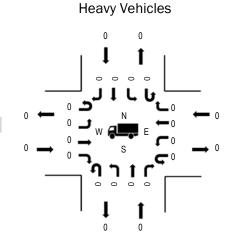
Interval		Hea	avy Vehicle	es		Interval		Bicycle	es on Road	lway		Interval	Pedestrians/Bicycles on Crosswalk					
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	
4:00 PM	0	0	0	0	0	4:00 PM	2	5	0	1	8	4:00 PM	0	3	2	4	9	
4:15 PM	0	0	0	0	0	4:15 PM	0	3	2	1	6	4:15 PM	2	2	0	1	5	
4:30 PM	0	0	0	0	0	4:30 PM	0	0	1	4	5	4:30 PM	2	7	0	2	11	
4:45 PM	0	0	0	0	0	4:45 PM	0	2	1	2	5	4:45 PM	1	1	0	2	4	
5:00 PM	0	0	0	0	0	5:00 PM	0	2	1	2	5	5:00 PM	4	4	2	2	12	
5:15 PM	0	0	0	0	0	5:15 PM	0	0	0	2	2	5:15 PM	2	5	1	3	11	
5:30 PM	0	0	0	0	0	5:30 PM	0	0	1	0	1	5:30 PM	2	2	2	2	8	
5:45 PM	0	0	0	0	0	5:45 PM	0	0	1	5	6	5:45 PM	2	3	4	1	10	
Count Total	0	0	0	0	0	Count Total	2	12	7	17	38	Count Total	15	27	11	17	70	
Peak Hour	0	0	0	0	0	Peak Hour	2	10	4	8	24	Peak Hour	5	13	2	9	29	



Location: 6 MONTEREY AVE & MONTEREY AVE PM Date: Thursday, March 7, 2024 Peak Hour: 04:45 PM - 05:45 PM Peak 15-Minutes: 05:00 PM - 05:15 PM

Peak Hour

Note: Total study counts contained in parentheses.

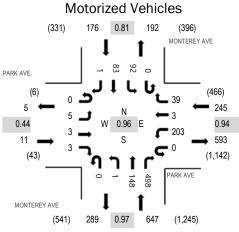

	HV%	PHF
EB	0.0%	0.00
WB	0.0%	0.71
NB	0.0%	0.93
SB	0.0%	0.96
All	0.0%	0.98

Traffic Counts - Motorized Vehicles

Interval		REY AVI	E			REY AVE			BAY South		Rolling							
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
4:00 PM	0	0	0	0	0	16	0	40	0	0	26	17	0	63	39	0	201	753
4:15 PM	0	0	0	0	0	6	0	26	0	0	32	15	0	78	43	0	200	753
4:30 PM	0	0	0	0	0	5	0	18	0	0	24	21	0	63	27	0	158	748
4:45 PM	0	0	0	0	0	7	0	17	0	0	33	23	0	78	36	0	194	787
5:00 PM	0	0	0	0	0	13	0	36	0	0	28	17	0	81	26	0	201	745
5:15 PM	0	0	0	0	0	6	0	22	0	0	31	24	0	70	42	0	195	
5:30 PM	0	0	0	0	0	9	0	29	0	0	32	21	0	75	31	0	197	
5:45 PM	0	0	0	0	0	4	0	20	0	0	30	21	0	56	21	0	152	
Count Total	0	0	0	0	0	66	0	208	0	0	236	159	0	564	265	0	1,498	
Peak Hour	0	0	0	0	0	35	0	104	0	0	124	85	0	304	135	0	787	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles in Crosswalk

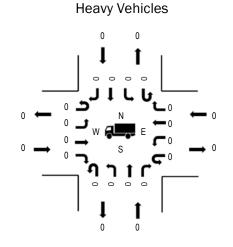
	Hea	avy Vehicle	es		Interval		Bicycle	es on Road	dway		Interval	Pedestrians/Bicycles on Crosswalk						
EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total		
0	0	0	0	0	4:00 PM	0	0	7	2	9	4:00 PM	7	0	3	5	15		
0	0	0	0	0	4:15 PM	0	0	6	1	7	4:15 PM	3	0	6	2	11		
0	0	0	0	0	4:30 PM	0	1	0	4	5	4:30 PM	6	0	0	2	8		
0	0	0	0	0	4:45 PM	0	1	3	2	6	4:45 PM	3	0	5	3	11		
0	0	0	0	0	5:00 PM	0	1	1	1	3	5:00 PM	7	0	5	3	15		
0	0	0	0	0	5:15 PM	0	1	2	2	5	5:15 PM	10	0	8	11	29		
0	0	0	0	0	5:30 PM	0	0	3	1	4	5:30 PM	4	0	1	4	9		
0	0	0	0	0	5:45 PM	0	1	0	2	3	5:45 PM	7	1	1	4	13		
0	0	0	0	0	Count Total	0	5	22	15	42	Count Total	47	1	29	34	111		
0	0	0	0	0	Peak Hour	0	3	9	6	18	Peak Hour	24	0	19	21	64		
	0 0 0 0 0 0 0 0 0 0 0	EB NB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EB NB WB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Image Image <th< td=""><td>EB NB WB SB Total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>EB NB WB SB Total Start Time 0 0 0 0 4:00 PM 0 0 0 0 4:30 PM 0 0 0 0 5:00 PM 0 0 0 0 5:15 PM 0 0 0 0 5:30 PM 0 0 0 0 5:30 PM 0 0 0 0 5:45 PM 0 0 0 0 0 Count Total</td><td>EB NB WB SB Total Start Time EB 0 0 0 0 4:00 PM 0 0 0 0 0 4:00 PM 0 0 0 0 0 4:30 PM 0 0 0 0 0 5:00 PM 0 0 0 0 0 5:15 PM 0 0 0 0 0 5:30 PM 0 0 0 0 0 5:45 PM 0 0 0 0 0 0.0 Count Total 0</td><td>EB NB WB SB Total Start Time EB NB 0 0 0 0 4:00 PM 0 0 0 0 0 0 4:00 PM 0 0 0 0 0 0 4:30 PM 0 0 0 0 0 0 4:35 PM 0 1 0 0 0 0 5:00 PM 0 1 0 0 0 0 5:30 PM 0 1 0 0 0 0 5:45 PM 0 1</td><td>EB NB WB SB Total Start Time EB NB WB 0 0 0 0 4:00 PM 0 0 7 0 0 0 0 4:00 PM 0 0 7 0 0 0 0 4:00 PM 0 0 6 0 0 0 0 4:15 PM 0 0 6 0 0 0 0 4:30 PM 0 1 0 0 0 0 0 4:30 PM 0 1 3 0 0 0 0 5:00 PM 0 1 3 0 0 0 0 5:30 PM 0 1 2 0 0 0 5:30 PM 0 1 0 0 0 0 0 5:45 PM 0 1 0 0 0 0 0<td>EB NB WB SB Total Start Time EB NB WB SB 0 0 0 0 4:00 PM 0 0 7 2 0 0 0 0 4:00 PM 0 0 7 2 0 0 0 0 4:15 PM 0 0 6 1 0 0 0 0 4:30 PM 0 1 0 4 0 0 0 0 4:45 PM 0 1 3 2 0 0 0 0 5:00 PM 0 1 1 1 0 0 0 0 5:15 PM 0 1 2 2 0 0 0 0 5:30 PM 0 0 3 1 0 0 0 0 5:45 PM 0 1 0 2 0 0</td><td>EB NB WB SB Total Start Time EB NB WB SB Total 0 0 0 0 4:00 PM 0 0 7 2 9 0 0 0 0 4:00 PM 0 0 7 2 9 0 0 0 0 4:15 PM 0 0 6 1 7 0 0 0 0 4:30 PM 0 1 0 4 55 0 0 0 0 4:45 PM 0 1 3 2 6 0 0 0 0 5:00 PM 0 1 1 1 3 0 0 0 0 5:30 PM 0 1 2 2 5 0 0 0 5:30 PM 0 1 0 2 3 0 0 0 0</td><td>EB NB WB SB Total Start Time EB NB WB SB Total Start Time 0 0 0 0 4:00 PM 0 0 7 2 9 4:00 PM 0 0 0 0 4:15 PM 0 0 6 1 7 4:15 PM 0 0 0 0 4:30 PM 0 1 0 4 5 4:30 PM 0 0 0 0 4:45 PM 0 1 3 2 6 4:45 PM 0 0 0 0 5:00 PM 0 1 1 3 5:00 PM 0 0 0 0 5:15 PM 0 1 1 3 5:00 PM 0 0 0 0 5:30 PM 0 1 2 2 5 5:15 PM 0 0 0 5:30 PM 0 1 <</td><td>EB NB WB SB Total Start Time EB 0 0 0 0 0 4:00 PM 0 0 7 2 9 4:00 PM 7 0 0 0 0 4:15 PM 0 0 6 1 7 4:15 PM 3 0 0 0 0 4:45 PM 0 1 3 2 6 4:45 PM 3 0 0 0 0 5:00 PM 0 1 1 1 3 5:00 PM 7 0 0 0 0 5:30 PM 0 1 2 2 5 :5:15 PM 10 0 0</td><td>EB NB WB SB Total Start Time EB NB WB SB Total Start Time EB NB WB SB Total Start Time EB NB 0 0 0 0 4:00 PM 0 0 7 2 9 4:00 PM 7 0 0 0 0 0 4:15 PM 0 0 6 1 7 4:15 PM 3 0 0 0 0 0 4:30 PM 0 1 0 4 5 4:30 PM 6 0 0 0 0 0 4:45 PM 0 1 3 2 6 4:45 PM 3 0 0 0 0 0 5:00 PM 0 1 1 1 3 5:00 PM 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>EB NB WB SB Total Start Time EB NB WB 0 0 0 0 4:00 PM 0 0 6 1 7 4:15 PM 3 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>EB NB WB SB Total Start Time EB NB WB SB 0 0 0 0 4:00 PM 0 0 7 2 9 4:00 PM 7 0 3 5 0 0 0 0 4:15 PM 0 0 6 1 7 4:15 PM 3 0 6 2 0 0 0 0 4:30 PM 0 1 3 2:0 PM 6 4:45 PM 3 0 5 3 0 0 0 5:0 PM 0 1 1 2 5:5:15 PM 10 0 8 11 0 0 <</td></td></th<>	EB NB WB SB Total 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EB NB WB SB Total Start Time 0 0 0 0 4:00 PM 0 0 0 0 4:30 PM 0 0 0 0 5:00 PM 0 0 0 0 5:15 PM 0 0 0 0 5:30 PM 0 0 0 0 5:30 PM 0 0 0 0 5:45 PM 0 0 0 0 0 Count Total	EB NB WB SB Total Start Time EB 0 0 0 0 4:00 PM 0 0 0 0 0 4:00 PM 0 0 0 0 0 4:30 PM 0 0 0 0 0 5:00 PM 0 0 0 0 0 5:15 PM 0 0 0 0 0 5:30 PM 0 0 0 0 0 5:45 PM 0 0 0 0 0 0.0 Count Total 0	EB NB WB SB Total Start Time EB NB 0 0 0 0 4:00 PM 0 0 0 0 0 0 4:00 PM 0 0 0 0 0 0 4:30 PM 0 0 0 0 0 0 4:35 PM 0 1 0 0 0 0 5:00 PM 0 1 0 0 0 0 5:30 PM 0 1 0 0 0 0 5:45 PM 0 1	EB NB WB SB Total Start Time EB NB WB 0 0 0 0 4:00 PM 0 0 7 0 0 0 0 4:00 PM 0 0 7 0 0 0 0 4:00 PM 0 0 6 0 0 0 0 4:15 PM 0 0 6 0 0 0 0 4:30 PM 0 1 0 0 0 0 0 4:30 PM 0 1 3 0 0 0 0 5:00 PM 0 1 3 0 0 0 0 5:30 PM 0 1 2 0 0 0 5:30 PM 0 1 0 0 0 0 0 5:45 PM 0 1 0 0 0 0 0 <td>EB NB WB SB Total Start Time EB NB WB SB 0 0 0 0 4:00 PM 0 0 7 2 0 0 0 0 4:00 PM 0 0 7 2 0 0 0 0 4:15 PM 0 0 6 1 0 0 0 0 4:30 PM 0 1 0 4 0 0 0 0 4:45 PM 0 1 3 2 0 0 0 0 5:00 PM 0 1 1 1 0 0 0 0 5:15 PM 0 1 2 2 0 0 0 0 5:30 PM 0 0 3 1 0 0 0 0 5:45 PM 0 1 0 2 0 0</td> <td>EB NB WB SB Total Start Time EB NB WB SB Total 0 0 0 0 4:00 PM 0 0 7 2 9 0 0 0 0 4:00 PM 0 0 7 2 9 0 0 0 0 4:15 PM 0 0 6 1 7 0 0 0 0 4:30 PM 0 1 0 4 55 0 0 0 0 4:45 PM 0 1 3 2 6 0 0 0 0 5:00 PM 0 1 1 1 3 0 0 0 0 5:30 PM 0 1 2 2 5 0 0 0 5:30 PM 0 1 0 2 3 0 0 0 0</td> <td>EB NB WB SB Total Start Time EB NB WB SB Total Start Time 0 0 0 0 4:00 PM 0 0 7 2 9 4:00 PM 0 0 0 0 4:15 PM 0 0 6 1 7 4:15 PM 0 0 0 0 4:30 PM 0 1 0 4 5 4:30 PM 0 0 0 0 4:45 PM 0 1 3 2 6 4:45 PM 0 0 0 0 5:00 PM 0 1 1 3 5:00 PM 0 0 0 0 5:15 PM 0 1 1 3 5:00 PM 0 0 0 0 5:30 PM 0 1 2 2 5 5:15 PM 0 0 0 5:30 PM 0 1 <</td> <td>EB NB WB SB Total Start Time EB 0 0 0 0 0 4:00 PM 0 0 7 2 9 4:00 PM 7 0 0 0 0 4:15 PM 0 0 6 1 7 4:15 PM 3 0 0 0 0 4:45 PM 0 1 3 2 6 4:45 PM 3 0 0 0 0 5:00 PM 0 1 1 1 3 5:00 PM 7 0 0 0 0 5:30 PM 0 1 2 2 5 :5:15 PM 10 0 0</td> <td>EB NB WB SB Total Start Time EB NB WB SB Total Start Time EB NB WB SB Total Start Time EB NB 0 0 0 0 4:00 PM 0 0 7 2 9 4:00 PM 7 0 0 0 0 0 4:15 PM 0 0 6 1 7 4:15 PM 3 0 0 0 0 0 4:30 PM 0 1 0 4 5 4:30 PM 6 0 0 0 0 0 4:45 PM 0 1 3 2 6 4:45 PM 3 0 0 0 0 0 5:00 PM 0 1 1 1 3 5:00 PM 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>EB NB WB SB Total Start Time EB NB WB 0 0 0 0 4:00 PM 0 0 6 1 7 4:15 PM 3 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>EB NB WB SB Total Start Time EB NB WB SB 0 0 0 0 4:00 PM 0 0 7 2 9 4:00 PM 7 0 3 5 0 0 0 0 4:15 PM 0 0 6 1 7 4:15 PM 3 0 6 2 0 0 0 0 4:30 PM 0 1 3 2:0 PM 6 4:45 PM 3 0 5 3 0 0 0 5:0 PM 0 1 1 2 5:5:15 PM 10 0 8 11 0 0 <</td>	EB NB WB SB Total Start Time EB NB WB SB 0 0 0 0 4:00 PM 0 0 7 2 0 0 0 0 4:00 PM 0 0 7 2 0 0 0 0 4:15 PM 0 0 6 1 0 0 0 0 4:30 PM 0 1 0 4 0 0 0 0 4:45 PM 0 1 3 2 0 0 0 0 5:00 PM 0 1 1 1 0 0 0 0 5:15 PM 0 1 2 2 0 0 0 0 5:30 PM 0 0 3 1 0 0 0 0 5:45 PM 0 1 0 2 0 0	EB NB WB SB Total Start Time EB NB WB SB Total 0 0 0 0 4:00 PM 0 0 7 2 9 0 0 0 0 4:00 PM 0 0 7 2 9 0 0 0 0 4:15 PM 0 0 6 1 7 0 0 0 0 4:30 PM 0 1 0 4 55 0 0 0 0 4:45 PM 0 1 3 2 6 0 0 0 0 5:00 PM 0 1 1 1 3 0 0 0 0 5:30 PM 0 1 2 2 5 0 0 0 5:30 PM 0 1 0 2 3 0 0 0 0	EB NB WB SB Total Start Time EB NB WB SB Total Start Time 0 0 0 0 4:00 PM 0 0 7 2 9 4:00 PM 0 0 0 0 4:15 PM 0 0 6 1 7 4:15 PM 0 0 0 0 4:30 PM 0 1 0 4 5 4:30 PM 0 0 0 0 4:45 PM 0 1 3 2 6 4:45 PM 0 0 0 0 5:00 PM 0 1 1 3 5:00 PM 0 0 0 0 5:15 PM 0 1 1 3 5:00 PM 0 0 0 0 5:30 PM 0 1 2 2 5 5:15 PM 0 0 0 5:30 PM 0 1 <	EB NB WB SB Total Start Time EB 0 0 0 0 0 4:00 PM 0 0 7 2 9 4:00 PM 7 0 0 0 0 4:15 PM 0 0 6 1 7 4:15 PM 3 0 0 0 0 4:45 PM 0 1 3 2 6 4:45 PM 3 0 0 0 0 5:00 PM 0 1 1 1 3 5:00 PM 7 0 0 0 0 5:30 PM 0 1 2 2 5 :5:15 PM 10 0 0	EB NB WB SB Total Start Time EB NB WB SB Total Start Time EB NB WB SB Total Start Time EB NB 0 0 0 0 4:00 PM 0 0 7 2 9 4:00 PM 7 0 0 0 0 0 4:15 PM 0 0 6 1 7 4:15 PM 3 0 0 0 0 0 4:30 PM 0 1 0 4 5 4:30 PM 6 0 0 0 0 0 4:45 PM 0 1 3 2 6 4:45 PM 3 0 0 0 0 0 5:00 PM 0 1 1 1 3 5:00 PM 0 0 0 0 0 0 0 0 0 0 0 0 0	EB NB WB SB Total Start Time EB NB WB 0 0 0 0 4:00 PM 0 0 6 1 7 4:15 PM 3 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EB NB WB SB Total Start Time EB NB WB SB 0 0 0 0 4:00 PM 0 0 7 2 9 4:00 PM 7 0 3 5 0 0 0 0 4:15 PM 0 0 6 1 7 4:15 PM 3 0 6 2 0 0 0 0 4:30 PM 0 1 3 2:0 PM 6 4:45 PM 3 0 5 3 0 0 0 5:0 PM 0 1 1 2 5:5:15 PM 10 0 8 11 0 0 <		



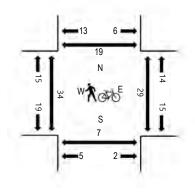
Location: 7 MONTEREY AVE & PARK AVE PM Date: Thursday, March 7, 2024 Peak Hour: 04:00 PM - 05:00 PM Peak 15-Minutes: 04:15 PM - 04:30 PM

Peak Hour

Note: Total study counts contained in parentheses.

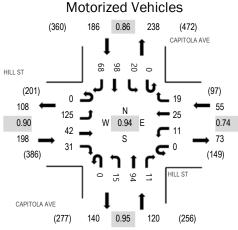

	-	
	HV%	PHF
EB	0.0%	0.44
WB	0.0%	0.94
NB	0.0%	0.97
SB	0.0%	0.81
All	0.0%	0.96

Traffic Counts - Motorized Vehicles


Interval			K AVE bound				K AVE bound				REY AVE		I		REY AVE			Rolling
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour
4:00 PM	0	4	1	0	0	51	0	6	0	0	34	128	0	22	31	1	278	1,079
4:15 PM	0	0	0	3	0	57	0	10	0	0	37	122	0	27	24	0	280	1,063
4:30 PM	0	0	2	0	0	47	3	7	0	0	37	130	0	20	11	0	257	1,040
4:45 PM	0	1	0	0	0	48	0	16	0	1	40	118	0	23	17	0	264	1,036
5:00 PM	0	7	9	2	0	53	0	10	0	0	27	116	0	19	19	0	262	1,006
5:15 PM	0	2	5	1	0	41	0	12	0	0	42	108	0	27	19	0	257	
5:30 PM	0	0	5	0	0	40	0	10	0	0	42	114	0	21	20	1	253	
5:45 PM	0	0	1	0	0	42	0	13	0	0	39	110	0	14	15	0	234	
Count Total	0	14	23	6	0	379	3	84	0	1	298	946	0	173	156	2	2,085	
Peak Hour	0	5	3	3	0	203	3	39	0	1	148	498	0	92	83	1	1,079	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles in Crosswalk

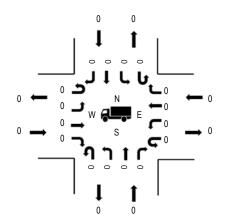
Interval		Hea	avy Vehicle	es		Interval		Bicycle	es on Road	dway		Interval	Pe	destrians/l	Bicycles on	Crosswa	lk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
4:00 PM	0	0	0	0	0	4:00 PM	0	2	2	2	6	4:00 PM	7	1	4	2	14
4:15 PM	0	0	0	0	0	4:15 PM	0	1	1	2	4	4:15 PM	5	0	10	3	18
4:30 PM	0	0	0	0	0	4:30 PM	0	1	2	3	6	4:30 PM	12	6	7	7	32
4:45 PM	0	0	0	0	0	4:45 PM	0	6	0	3	9	4:45 PM	10	0	8	7	25
5:00 PM	0	0	0	0	0	5:00 PM	0	3	2	1	6	5:00 PM	6	2	16	2	26
5:15 PM	0	0	0	0	0	5:15 PM	0	2	5	1	8	5:15 PM	5	3	9	0	17
5:30 PM	0	0	0	0	0	5:30 PM	0	4	1	2	7	5:30 PM	11	1	0	7	19
5:45 PM	0	0	0	0	0	5:45 PM	1	1	1	0	3	5:45 PM	10	0	3	5	18
Count Total	0	0	0	0	0	Count Total	1	20	14	14	49	Count Total	66	13	57	33	169
Peak Hour	0	0	0	0	0	Peak Hour	0	10	5	10	25	Peak Hour	34	7	29	19	89


Pedestrians/Bicycles in Crosswalk

Location: 8 CAPITOLA AVE & HILL ST PM Date: Thursday, March 7, 2024 Peak Hour: 04:00 PM - 05:00 PM Peak 15-Minutes: 04:15 PM - 04:30 PM

Peak Hour

Note: Total study counts contained in parentheses.


	HV%	PHF
EB	0.0%	0.90
WB	0.0%	0.74
NB	0.0%	0.95
SB	0.0%	0.86
All	0.0%	0.94

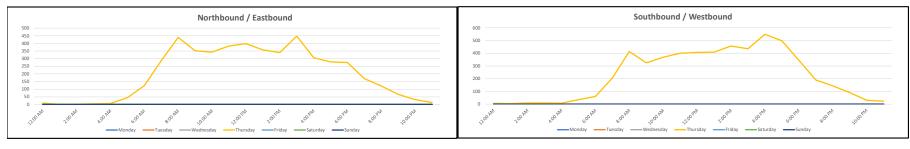
Traffic Counts - Motorized Vehicles

Interval Start Time	U-Turn		L ST bound Thru	Right	U-Turn		L ST bound Thru	Right	U-Turn		DLA AVE nbound Thru	Right	U-Turn		DLA AVE nbound Thru	Right	Total	Rolling Hour
4:00 PM	0	38	8	6	0	3	3	3	0	8	26	1	0	5	25	19	145	559
4:15 PM	0	29	11	11	0	0	9	6	0	1	24	4	0	4	29	21	149	551
4:30 PM	0	30	10	6	0	3	7	2	0	2	18	1	0	2	28	16	125	547
4:45 PM	0	28	13	8	0	5	6	8	0	4	26	5	0	9	16	12	140	559
5:00 PM	0	22	15	13	0	1	5	4	0	7	25	2	1	4	28	10	137	540
5:15 PM	0	35	17	4	0	2	6	2	0	4	28	2	0	5	29	11	145	
5:30 PM	0	28	11	2	0	1	5	4	0	3	32	2	0	3	28	18	137	
5:45 PM	0	23	12	6	0	3	7	2	0	1	28	2	0	1	20	16	121	
Count Total	0	233	97	56	0	18	48	31	0	30	207	19	1	33	203	123	1,099	_
Peak Hour	0	125	42	31	0	11	25	19	0	15	94	11	0	20	98	68	559	_

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles in Crosswalk

Interval		Hea	avv Vehicle	35		Interval		Bicvcle	es on Road	dwav		Interval	Pe	destrians/l	Bicycles on	Crosswa	lk
Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total	Start Time	EB	NB	WB	SB	Total
4:00 PM	0	0	0	0	0	4:00 PM	0	0	0	1	1	4:00 PM	0	2	1	0	3
4:15 PM	0	0	0	0	0	4:15 PM	0	2	0	3	5	4:15 PM	0	0	2	0	2
4:30 PM	0	0	0	0	0	4:30 PM	0	1	0	1	2	4:30 PM	1	1	1	0	3
4:45 PM	0	0	0	0	0	4:45 PM	0	0	2	1	3	4:45 PM	1	1	1	1	4
5:00 PM	0	0	0	0	0	5:00 PM	0	2	0	2	4	5:00 PM	0	3	2	1	6
5:15 PM	0	0	0	0	0	5:15 PM	1	0	0	0	1	5:15 PM	0	4	4	2	10
5:30 PM	0	0	0	0	0	5:30 PM	3	0	0	2	5	5:30 PM	0	2	0	0	2
5:45 PM	0	0	0	0	0	5:45 PM	0	2	0	1	3	5:45 PM	0	2	3	0	5
Count Total	0	0	0	0	0	Count Total	4	7	2	11	24	Count Total	2	15	14	4	35
Peak Hour	0	0	0	0	0	Peak Hour	0	3	2	6	11	Peak Hour	2	4	5	1	12

Heavy Vehicles


Pedestrians/Bicycles in Crosswalk

Vehicle Volume Report - Hourly

Site Description: Bay Ave S.O Center St Site Number: 14 Start Date: 03/07/2024 End Date: 03/07/2024

		Monday			Tuesday			Wednesda	у		Thursday			Friday			Saturday			Sunday		3 Da	iy Avg	5 Da	y Avg	7 Da	y Avg
Time		3/11/24			3/12/24			3/13/24			3/7/24			3/8/24			3/9/24			3/10/24		Tue	e-Thu	Mo	n-Fri	Mor	n-Sun
	NB	SB	Total	NB	SB	Total	NB	SB	Total	NB	SB	Total	NB	SB	Total	NB	SB	Total	NB	SB	Total	NB	SB	NB	SB	NB	SB
12:00 AM	-	-	-	-	-	-	-	-	-	9	6	15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1:00 AM	-	-	-	-	-	-	-	-	-	1	4	5	-	-	-	-	-	-	-	-		-	-	-	-	-	-
2:00 AM	-	-	-	-	-	-	-	-	-	2	8	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3:00 AM	-	-	-	-	-	-	-	-	-	5	8	13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4:00 AM	-	-	-	-	-	-	-	-	-	6	7	13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5:00 AM	-	-	-	-	-	-	-	-	-	44	35	79	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6:00 AM	-	-	-	-	-	-	-	-	-	123	60	183	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7:00 AM	-	-	-	-	-	-	-	-	-	286	207	493	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8:00 AM	-	-	-	-	-	-	-	-	-	440	414	854	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9:00 AM	-	-	-	-	-	-	-	-	-	352	325	677	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10:00 AM	-	-	-	-	-	-	-	-	-	343	368	711	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11:00 AM	-	-	-	-	-	-	-	-	-	383	400	783	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12:00 PM	-	-	-	-	-	-	-	-	-	399	406	805	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1:00 PM	-	-	-	-	-	-	-	-	-	358	409	767	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2:00 PM	-	-	-	-	-	-	-	-	-	340	457	797	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3:00 PM	-	-	-	-	-	-	-	-	-	448	435	883	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4:00 PM	-	-	-	-	-	-	-	-	-	307	548	855	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5:00 PM	-	-	-	-	-	-	-	-	-	279	498	777	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6:00 PM	-	-	-	-	-	-	-	-	-	275	344	619	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7:00 PM	-	-	-	-	-	-	-	-	-	169	190	359	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8:00 PM	-	-	-	-	-	-	-	-	-	121	143	264	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9:00 PM	-	-	-	-	-	-	-	-	-	66	90	156	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10:00 PM	-	-	-	-	-	-	-	-	-	32	30	62	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11:00 PM	-	-	-	-	-	-	-	-	-	13	23	36	-	-	-	-	-	-	-	-		-	-	-	-	-	-
6:00 AM - 9:00 AM	-	-	-	-	-	-	-	-	-	849	681	1530	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3:00 PM - 6:00 PM	-	-	-	-	-	-	-	-	-	1034	1481	2515	-	-	-	-	-	-	-	-		-	-	-	-	-	-
6:00 AM - 7:00 PM	-	-	-	-		-	-	-	-	4333	4871	9204	-	-			-	-	-	-		-	-	-	-		-
12:00 AM - 12:00 AM	-	-	-	-	-	-	-	-	-	4801	5415	10216	-	-	-		-	-		-	-	-	-	-		-	-
Percent										47.0%	53.0%	100.0%															
AM Peak										8:00 AM	9:00 AM																
PM Peak	-	-		-	-		-	-		3:00 PM	4:00 PM		-	-		-	-		-	-							

147

ltem 7 B.

C

Vehicle Speed Report - Hourly

Total Study	/ Speed Summar	y
	<u>Northbound</u>	<u>Southbound</u>
Average Speed	25.9 mph	26.5 mph
50th Percentile	26.0 mph	26.7 mph
85th Percentile	29.6 mph	30.6 mph
95th Percentile	32.2 mph	33.3 mph

							Sp	eed Rang	e (MPH)	· Total St	udy										
	Total	0-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100+
Northbound	4801	22	52	183	1617	2314	544	60	6	3	0	0	0	0	0	0	0	0	0	0	0
Percent	100.0%	0.5%	1.1%	3.8%	33.7%	48.2%	11.3%	1.2%	0.1%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Southbound	5415	51	59	210	1446	2657	878	103	10	1	0	0	0	0	0	0	0	0	0	0	0
Percent	100.0%	0.9%	1.1%	3.9%	26.7%	49.1%	16.2%	1.9%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Total	10216	73	111	393	3063	4971	1422	163	16	4	0	0	0	0	0	0	0	0	0	0	0
Percent	100.0%	0.7%	1.1%	3.8%	30.0%	48.7%	13.9%	1.6%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

 Site Description:
 Bay Ave S.O Center St

 Site Number:
 14

 Start Date:
 03/07/2024

 End Date:
 03/07/2024

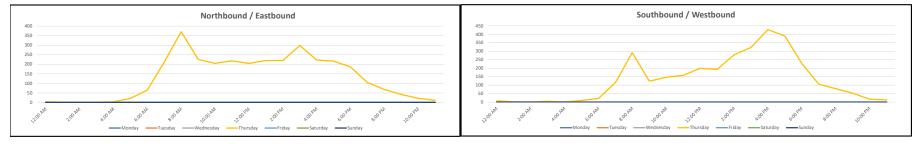
Vehicle Speed Report (Northbound - 03/07/2024)

Thursday										Northbo	und										
3/7/24	Total	0-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100+
12:00 AM	9	1	0	1	3	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:00 AM	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:00 AM	2	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 AM	5	0	0	0	1	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:00 AM	6	0	0	0	2	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 AM	44	0	0	1	11	19	9	4	0	0	0	0	0	0	0	0	0	0	0	0	0
6:00 AM	123	0	0	2	41	55	23	2	0	0	0	0	0	0	0	0	0	0	0	0	0
7:00 AM	286	1	2	6	86	161	27	3	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	440	1	4	12	157	225	38	3	0	0	0	0	0	0	0	0	0	0	0	0	0
9:00 AM	352	0	2	16	137	163	32	2	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00 AM	343	1	1	5	77	156	77	20	3	3	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	383	2	8	16	117	197	39	4	0	0	0	0	0	0	0	0	0	0	0	0	0
12:00 PM	399	2	4	24	139	186	41	3	0	0	0	0	0	0	0	0	0	0	0	0	0
1:00 PM	358	3	6	11	138	165	32	3	0	0	0	0	0	0	0	0	0	0	0	0	0
2:00 PM	340	2	5	15	134	140	39	5	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	448	0	5	20	178	205	39	0	1	0	0	0	0	0	0	0	0	0	0	0	0
4:00 PM	307	1	4	18	80	159	40	5	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	279	2	4	9	79	148	36	1	0	0	0	0	0	0	0	0	0	0	0	0	0
6:00 PM	275	1	4	16	105	126	23	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:00 PM	169	1	0	5	67	84	11	0	1	0	0	0	0	0	0	0	0	0	0	0	0
8:00 PM	121	3	0	3	38	58	15	3	1	0	0	0	0	0	0	0	0	0	0	0	0
9:00 PM	66	1	1	1	18	35	9	1	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00 PM	32	0	1	2	5	18	5	1	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 PM	13	0	1	0	4	6	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:00 AM - 9:00 AM	849	2	6	20	284	441	88	8	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM - 6:00 PM	1034	3	13	47	337	512	115	6	1	0	0	0	0	0	0	0	0	0	0	0	0
6:00 AM - 7:00 PM	4333	16	49	170	1468	2086	486	51	4	3	0	0	0	0	0	0	0	0	0	0	0
12:00 AM - 12:00 AM	4801	22	52	183	1617	2314	544	60	6	3	0	0	0	0	0	0	0	0	0	0	0
Percent	100%	0.5%	1.1%	3.8%	33.7%	48.2%	11.3%	1.2%	0.1%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
50th Percentile	26.0 mph																				
85th Percentile	29.6 mph																				
95th Percentile	32.2 mph																				

 Site Description:
 Bay Ave S.O Center St

 Site Number:
 14

 Start Date:
 03/07/2024


 End Date:
 03/07/2024

Vehicle Speed Report (Southbound - 03/07/2024)

Thursday										Southbo	und										
3/7/24	Total	0-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100+
12:00 AM	6	0	0	0	0	2	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:00 AM	4	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
2:00 AM	8	0	0	0	3	2	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 AM	8	0	0	0	2	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:00 AM	7	0	0	0	0	3	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 AM	35	0	0	2	8	14	8	3	0	0	0	0	0	0	0	0	0	0	0	0	0
6:00 AM	60	0	0	0	7	34	13	6	0	0	0	0	0	0	0	0	0	0	0	0	0
7:00 AM	207	0	1	5	47	98	51	5	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	414	4	9	43	124	186	44	4	0	0	0	0	0	0	0	0	0	0	0	0	0
9:00 AM	325	1	1	11	99	151	59	3	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00 AM	368	0	1	14	52	150	116	29	6	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	400	2	3	14	95	218	61	6	1	0	0	0	0	0	0	0	0	0	0	0	0
12:00 PM	406	1	6	15	100	209	69	6	0	0	0	0	0	0	0	0	0	0	0	0	0
1:00 PM	409	2	2	6	85	232	73	7	2	0	0	0	0	0	0	0	0	0	0	0	0
2:00 PM	457	3	6	18	146	225	55	4	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	435	2	2	15	109	244	62	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4:00 PM	548	10	11	29	172	257	64	5	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	498	22	9	23	162	213	61	7	1	0	0	0	0	0	0	0	0	0	0	0	0
6:00 PM	344	2	2	4	100	181	48	7	0	0	0	0	0	0	0	0	0	0	0	0	0
7:00 PM	190	1	1	4	52	103	27	2	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 PM	143	1	3	3	48	63	23	1	0	1	0	0	0	0	0	0	0	0	0	0	0
9:00 PM	90	0	0	4	27	43	13	3	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00 PM	30	0	0	0	5	14	10	1	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 PM	23	0	2	0	2	10	7	2	0	0	0	0	0	0	0	0	0	0	0	0	0
6:00 AM - 9:00 AM	681	4	10	48	178	318	108	15	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM - 6:00 PM	1481	34	22	67	443	714	187	13	1	0	0	0	0	0	0	0	0	0	0	0	0
6:00 AM - 7:00 PM	4871	49	53	197	1298	2398	776	90	10	0	0	0	0	0	0	0	0	0	0	0	0
12:00 AM - 12:00 AM	5415	51	59	210	1446	2657	878	103	10	1	0	0	0	0	0	0	0	0	0	0	0
Percent	100%	0.9%	1.1%	3.9%	26.7%	49.1%	16.2%	1.9%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
50th Percentile	26.7 mph																				
85th Percentile	30.6 mph																				
95th Percentile	33.3 mph																				

Vehicle Volume Report - Hourly

		Monday			Tuesday			Wednesda	у		Thursday			Friday			Saturday			Sunday		3 Da	iy Avg	5 Da	y Avg	7 Day	y Avg
Time		3/11/24			3/12/24			3/13/24			3/7/24			3/8/24			3/9/24			3/10/24		Tue	e-Thu	Mo	n-Fri	Mor	n-Sun
	NB	SB	Total	NB	SB	Total	NB	SB	Total	NB	SB	Total	NB	SB	Total	NB	SB	Total	NB	SB	Total	NB	SB	NB	SB	NB	SB
12:00 AM	-	-	-	-	-	-	-	-	-	3	7	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- I
1:00 AM	-	-	-	-	-	-	-	-	-	2	2	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2:00 AM	-	-	-	-	-	-	-	-	-	0	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3:00 AM	-	-	-	-	-	-	-	-	-	2	4	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4:00 AM	-	-	-	-	-	-	-	-	-	4	1	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5:00 AM	-	-	-	-	-	-	-	-	-	21	9	30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6:00 AM	-	-	-	-	-	-	-	-	-	65	22	87	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7:00 AM	-	-	-	-	-	-	-	-	-	212	115	327	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8:00 AM	-	-	-	-	-	-	-	-	-	371	292	663	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9:00 AM	-	-	-	-	-	-	-	-	-	226	123	349	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10:00 AM		-	-	-	-	-	-	-	-	205	146	351	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11:00 AM	-	-	-	-	-	-	-	-	-	218	157	375	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- I
12:00 PM	-	-	-	-	-	-	-	-	-	205	199	404	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1
1:00 PM	-	-	-	-	-	-	-	-	-	220	192	412	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2:00 PM	-	-	-	-	-	-	-	-	-	220	278	498	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3:00 PM	-	-	-	-	-	-	-	-	-	299	323	622	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4:00 PM	-	-	-	-	-	-	-	-	-	222	427	649	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5:00 PM	-	-	-	-	-	-	-	-	-	217	390	607	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6:00 PM	-	-	-	-	-	-	-	-	-	186	227	413	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7:00 PM	-	-	-	-	-	-	-	-	-	104	105	209	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8:00 PM	-	-	-	-	-	-	-	-	-	68	79	147	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9:00 PM	-	-	-	-	-	-	-	-	-	42	53	95	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10:00 PM	-	-	-	-	-	-	-	-	-	22	17	39	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11:00 PM	-	-	-	-	-	-	-	-	-	11	13	24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6:00 AM - 9:00 AM	-	-	-	-	-	-	-	-	-	648	429	1077	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3:00 PM - 6:00 PM	-	-	-	-	-	-	-	-	-	738	1140	1878	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6:00 AM - 7:00 PM	-	-	-	-	-	-	-	-	-	2866	2891	5757	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
12:00 AM - 12:00 AM	-	-	-	-	-	-	-	-	-	3145	3182	6327	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Percent										49.7%	50.3%	100.0%										-	-				
AM Peak										8:00 AM	9:00 AM																
PM Peak										4:00 PM	5:00 PM																

Vehicle Speed Report - Hourly

Total Study Speed Summary							
	<u>Northbound</u>	<u>Southbound</u>					
Average Speed	25.2 mph	26.7 mph					
50th Percentile	25.5 mph	27.0 mph					
85th Percentile	29.4 mph	30.7 mph					
95th Percentile	32.1 mph	33.4 mph					

	Speed Range (MPH) - Total Study																				
	Total	0-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100+
Northbound	3145	66	39	179	1108	1372	345	30	3	3	0	0	0	0	0	0	0	0	0	0	0
Percent	100.0%	2.1%	1.2%	5.7%	35.2%	43.6%	11.0%	1.0%	0.1%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Southbound	3182	39	35	100	759	1630	552	56	8	3	0	0	0	0	0	0	0	0	0	0	0
Percent	100.0%	1.2%	1.1%	3.1%	23.9%	51.2%	17.3%	1.8%	0.3%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Total	6327	105	74	279	1867	3002	897	86	11	6	0	0	0	0	0	0	0	0	0	0	0
Percent	100.0%	1.7%	1.2%	4.4%	29.5%	47.4%	14.2%	1.4%	0.2%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Vehicle Speed Repor	t (Northbound - 03/07/2024)

Thursday										Northbo	und										
3/7/24	Total	0-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100+
12:00 AM	3	0	0	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:00 AM	2	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 AM	2	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:00 AM	4	0	0	0	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 AM	21	0	0	0	1	9	7	3	0	1	0	0	0	0	0	0	0	0	0	0	0
6:00 AM	65	0	1	3	14	35	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:00 AM	212	0	2	6	66	107	31	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	371	5	7	38	186	111	22	1	0	1	0	0	0	0	0	0	0	0	0	0	0
9:00 AM	226	0	1	10	101	94	18	2	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00 AM	205	0	2	10	77	89	24	2	1	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	218	0	2	11	92	91	21	1	0	0	0	0	0	0	0	0	0	0	0	0	0
12:00 PM	205	0	4	24	76	87	13	1	0	0	0	0	0	0	0	0	0	0	0	0	0
1:00 PM	220	0	3	18	66	113	15	5	0	0	0	0	0	0	0	0	0	0	0	0	0
2:00 PM	220	1	1	6	82	105	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	299	59	14	25	89	83	27	2	0	0	0	0	0	0	0	0	0	0	0	0	0
4:00 PM	222	0	2	10	48	119	40	2	1	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	217	1	0	5	61	112	37	0	0	1	0	0	0	0	0	0	0	0	0	0	0
6:00 PM	186	0	0	7	71	87	19	1	1	0	0	0	0	0	0	0	0	0	0	0	0
7:00 PM	104	0	0	3	38	51	9	3	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 PM	68	0	0	1	15	37	12	3	0	0	0	0	0	0	0	0	0	0	0	0	0
9:00 PM	42	0	0	0	15	22	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00 PM	22	0	0	0	5	11	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 PM	11	0	0	0	2	5	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0
6:00 AM - 9:00 AM	648	5	10	47	266	253	65	1	0	1	0	0	0	0	0	0	0	0	0	0	0
3:00 PM - 6:00 PM	738	60	16	40	198	314	104	4	1	1	0	0	0	0	0	0	0	0	0	0	0
6:00 AM - 7:00 PM	2866	66	39	173	1029	1233	304	17	3	2	0	0	0	0	0	0	0	0	0	0	0
12:00 AM - 12:00 AM	3145	66	39	179	1108	1372	345	30	3	3	0	0	0	0	0	0	0	0	0	0	0
Percent	100%	2.1%	1.2%	5.7%	35.2%	43.6%	11.0%	1.0%	0.1%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
50th Percentile	25.5 mph																				
85th Percentile	29.4 mph																				
95th Percentile	32.1 mph																				

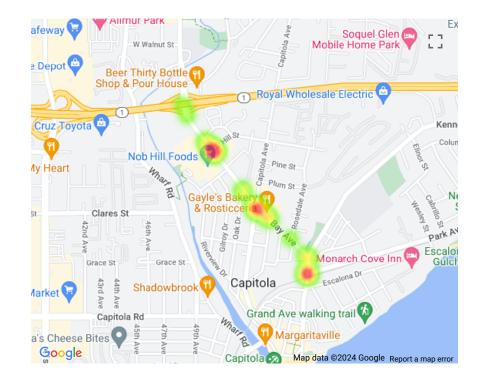
Vehicle S	peed Repor	t (Southbound - 03/07/2024)

Thursday										Southbo	und										
3/7/24	Total	0-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	100+
12:00 AM	7	0	0	0	1	3	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0
1:00 AM	2	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:00 AM	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 AM	4	0	2	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:00 AM	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 AM	9	0	0	0	1	6	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
6:00 AM	22	0	0	1	3	11	6	1	0	0	0	0	0	0	0	0	0	0	0	0	0
7:00 AM	115	0	2	2	19	64	26	1	1	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	292	32	10	22	75	132	17	2	0	2	0	0	0	0	0	0	0	0	0	0	0
9:00 AM	123	0	1	6	33	67	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00 AM	146	1	1	2	36	84	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	157	0	3	3	35	96	18	2	0	0	0	0	0	0	0	0	0	0	0	0	0
12:00 PM	199	2	1	11	53	101	31	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:00 PM	192	0	1	6	41	103	34	6	1	0	0	0	0	0	0	0	0	0	0	0	0
2:00 PM	278	0	4	6	94	134	38	2	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	323	4	4	13	91	144	61	5	1	0	0	0	0	0	0	0	0	0	0	0	0
4:00 PM	427	0	2	9	76	230	100	9	1	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	390	0	3	6	71	209	81	16	3	1	0	0	0	0	0	0	0	0	0	0	0
6:00 PM	227	0	0	10	58	107	47	5	0	0	0	0	0	0	0	0	0	0	0	0	0
7:00 PM	105	0	1	1	29	58	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 PM	79	0	0	0	24	37	15	2	1	0	0	0	0	0	0	0	0	0	0	0	0
9:00 PM	53	0	0	1	13	29	9	1	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00 PM	17	0	0	1	4	6	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 PM	13	0	0	0	1	6	5	1	0	0	0	0	0	0	0	0	0	0	0	0	0
6:00 AM - 9:00 AM	429	32	12	25	97	207	49	4	1	2	0	0	0	0	0	0	0	0	0	0	0
3:00 PM - 6:00 PM	1140	4	9	28	238	583	242	30	5	1	0	0	0	0	0	0	0	0	0	0	0
6:00 AM - 7:00 PM	2891	39	32	97	685	1482	497	49	7	3	0	0	0	0	0	0	0	0	0	0	0
12:00 AM - 12:00 AM	3182	39	35	100	759	1630	552	56	8	3	0	0	0	0	0	0	0	0	0	0	0
Percent	100%	1.2%	1.1%	3.1%	23.9%	51.2%	17.3%	1.8%	0.3%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
50th Percentile	27.0 mph																				
85th Percentile	30.7 mph																				
95th Percentile	33.4 mph																				

Bay Avenue Corridor Study *Item 7 B.* February 2025

Attachment B – Bike and Pedestrian Collision Data

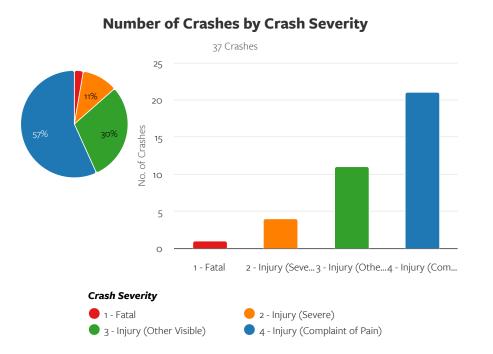
Overview


This report was created with the help of The Transportation Injury Mapping System (TIMS). TIMS has been developed by UC Berkeley SafeTREC to provide quick, easy and free access to California crash data, the Statewide Integrated Traffic Records System (SWITRS), that has been geo-coded by SafeTREC to make it easy to map crashes.

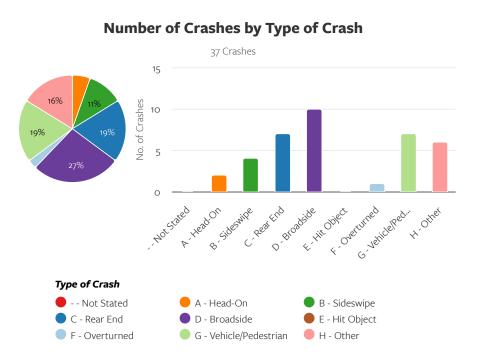
Query by Case ID(s)

User Entered SWITRS Case ID(s)

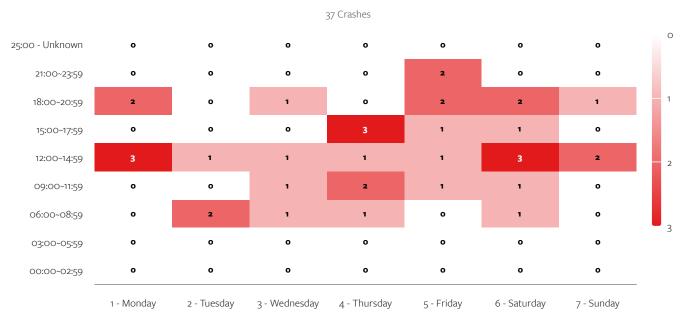
Result


Total Crashes37Total Victims1 Killed & 38 InjuredState Highway1 (2.7%)Ped Involved8 (21.6%)Bike Involved11 (29.7%)Motorcycle Involved1 (2.7%)

37 of 37 (100%) Crashes are geocoded and mapped.

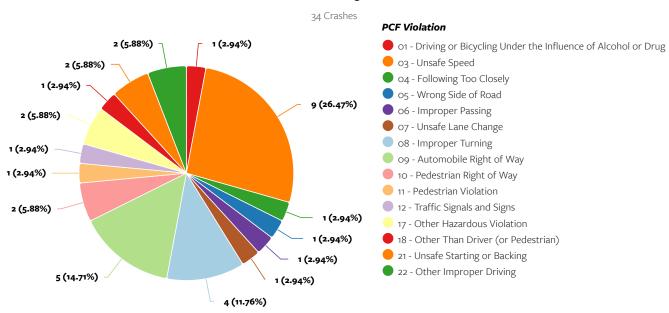

Crash Summary

By Crash Severity



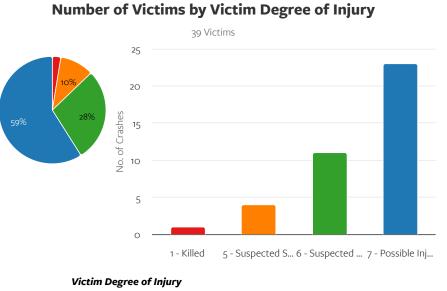
Crash Severity	Count	%
1 - Fatal	1	2.70%
2 - Injury (Severe)	4	10.81%
3 - Injury (Other Visible)	11	29.73%
4 - Injury (Complaint of Pain)	21	56.76%

By Crash Type



Type of Crash	Count	%
Not Stated	Ο	0.00%
A - Head-On	2	5.41%
B - Sideswipe	4	10.81%
C - Rear End	7	18.92%
D - Broadside	10	27.03%
E - Hit Object	0	0.00%
F - Overturned	1	2.70%
G - Vehicle/Pedestrian	7	18.92%
H - Other	6	16.22%

Number of Crashes per Day of Week per Time

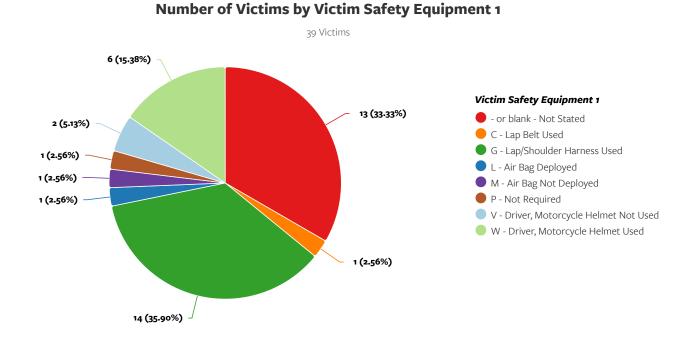

By Primary Crash Factor (PCF) Violation

Number of Crashes by PCF Violation

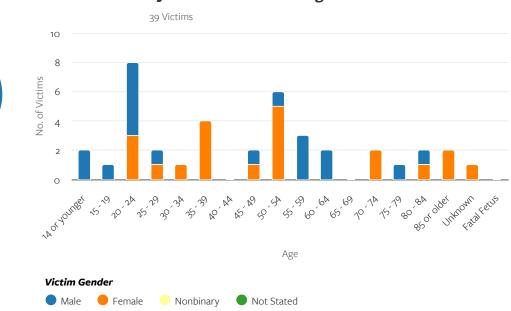
Victim Summary

By Victim Degree of Injury

Victim Degree of	.	0/
Injury	Count	%
1 - Killed	1	2.56%
5 - Suspected Serious Injury	4	10.26%
6 - Suspected Minor Injury	11	28.21%
7 - Possible Injury	23	58.97%

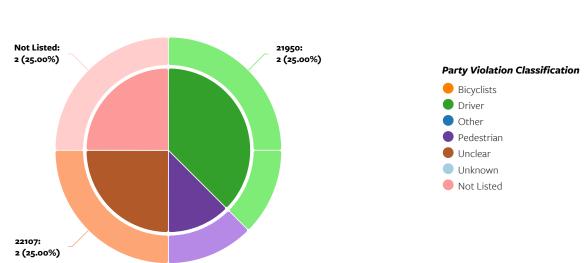


By Victim Role


Victim Role	Count	%
1 - Driver	13	33.33%
2 - Passenger	7	17.95%
3 - Pedestrian	8	20.51%
4 - Bicyclist	11	28.21%
5 - Other	0	0.00%
6 - Non-Injured Party	0	0.00%

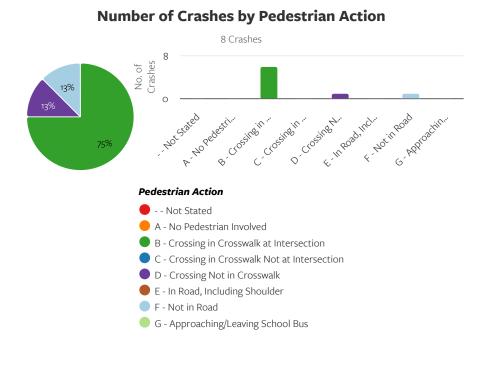
By Victim Safety Equipment 1

By Victim Gender and Age

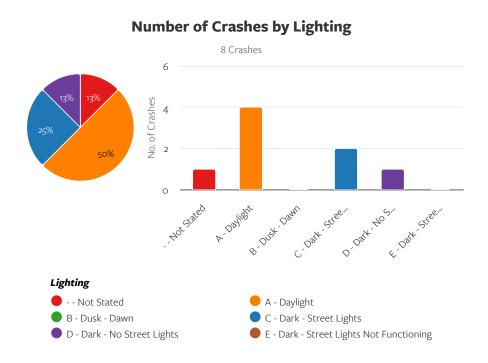

54%

Number of Victims by Victim Gender and Age

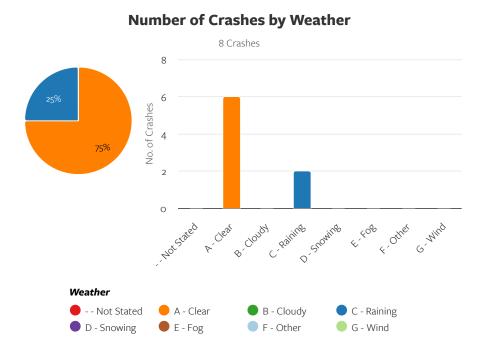
Ped Crash Summary


By Type of Violation

Party Violation Classification	Type of Violation	Description	Count	%
Driver	21950	Driver failure to yield right-of-way to pedestrians at a marked or unmarked crosswalk	2	25.00%
Unclear	22107	Unsafe turning or moving right or left on a roadway Turning without signaling	2	25.00%
Not Listed	Not Listed	Violation code was not included in the crash	2	25.00%
Driver	22106	Unsafe starting or backing of a vehicle on a highway	1	12.50%
Pedestrian	21954	Pedestrian failure to yield right-of-way to vehicles when crossing outside of a marked or unmarked crosswalk	1	12.50%


Number of Crashes by Type of Violation

8 Crashes


Pedestrian Action Count % - - Not Stated 0 0.00% A - No Pedestrian 0.00% 0 Involved B - Crossing in Crosswalk at 6 75.00% Intersection C - Crossing in Crosswalk Not at Ο 0.00% Intersection D - Crossing Not in 1 12.50% Crosswalk E - In Road, Including 0.00% 0 Shoulder F - Not in Road 12.50% 1 G -Approaching/Leaving 0 0.00% School Bus

By Lighting

Lighting	Count	%
Not Stated	1	12.50%
A - Daylight	4	50.00%
B - Dusk - Dawn	0	0.00%
C - Dark - Street Lights	2	25.00%
D - Dark - No Street Lights	1	12.50%
E - Dark - Street Lights Not Functioning	0	0.00%

By Weather

Weather	Count	%
Not Stated	0	0.00%
A - Clear	6	75.00%
B - Cloudy	0	0.00%
C - Raining	2	25.00%
D - Snowing	0	0.00%
E - Fog	0	0.00%
F - Other	0	0.00%
G - Wind	0	0.00%

Berkeley SafeTREC Item 7 B.

Crash Details for: Case ID 5737844 Crash Information

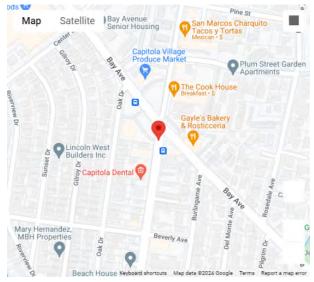
County	Santa Cruz				
City	Capito	Capitola			
Date & Time (M/D/Y)	05/25/2012 10:01				
Location (Intersection)	Bay Av & Hill St				
Dist. & Dir. from Intersection	90.00 ft South				
State Highway	No				
Geocoded Location	36.9809602, -121.9553731				
Type of Crash	H - Other				
Motor Vehicle Involved With	J - Other Object				
Crash Severity	4 - Inj	ury (Complaint of Pain)			
PCF Violation Category	22 - 0	Other Improper Driving			
Weather	B - Cloudy				
Alcohol Involved	No				
Pedestrian Crash	No Bicycle Crash No				
Motorcycle Crash	No Truck Crash No				

Map View

Street View

Parties: 1

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	-	K - Parking Maneuver


Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
1	2 - Passenger	F - Female	88	7 - Possible Injury

Crash Details for: Case ID 5769463 Crash Information

Santa Cruz				
Capito	bla			
07/30/2012 12:40				
Capitola Av & Bay Av				
80.00 ft West				
No				
36.9784681, -121.9531876				
C - Rear End				
C - Other Motor Vehicle				
4 - Inji	ury (Complaint of Pain)			
	0 , 0			
A - Cl	ear			
Yes				
No	Bicycle Crash	No		
No Truck Crash No				
	Capito 07/30, Capito 80.00 No 36.97 C - Re C - Ot 4 - Inji 01 - D Influen A - Ch Yes No	Capitola 07/30/2012 12:40 Capitola Av & Bay Av 80.00 ft West No 36.9784681, -121.9531876 C - Rear End C - Other Motor Vehicle 4 - Injury (Complaint of Pain) 01 - Driving or Bicycling Under the Influence of Alcohol or Drug A - Clear Yes No		

Map View

Street View

Parties: 3

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	D - Pickup or Panel Truck	Yes	East	B - Proceeding Straight
2	1 - Driver (including Hit and Run)	D - Pickup or Panel Truck	No	East	A - Stopped
3	1 - Driver (including Hit and Run)	D - Pickup or Panel Truck	No	-	A - Stopped

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
1	1 - Driver	F - Female	23	7 - Possible Injury

Crash Details for: Case ID 5926906 Crash Information

County	Santa Cruz				
City	Capito	bla			
Date & Time (M/D/Y)	02/02	/2013 14:01			
Location (Intersection)	Rt 1 & Bay Av				
Dist. & Dir. from Intersection	200.00 ft North				
State Highway Info	Route Number 1 Side of Hwy S Postmile 13.230 Location Type H - Highway				
Geocoded Location	36.983175, -121.957233				
Type of Crash	C - Rear End				
Motor Vehicle Involved With	C - O1	her Motor Vehicle			
Crash Severity	4 - Inj	ury (Complaint of Pain)			
PCF Violation Category	04 - F	ollowing Too Closely			
Weather	B - Cloudy				
Alcohol Involved	No				
Pedestrian Crash	No	Bicycle Crash	No		
Motorcycle Crash	No Truck Crash No				

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	South	B - Proceeding Straight
2	1 - Driver (including Hit and Run)	D - Pickup or Panel Truck	No	South	H - Slowing/Stopping

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
1	1 - Driver	F - Female	23	7 - Possible Injury

Berkeley SafeTREC

Crash Details for: Case ID 6487941 Crash Information

County	Santa Cruz			
City	Capito	ola		
Date & Time (M/D/Y)	05/09/2014 20:40			
Location (Intersection)	Bay Av & Hill St			
Dist. & Dir. from Intersection	At Intersection			
State Highway	No			
Geocoded Location	36.9811, -121.95551			
Type of Crash	D - Broadside			
Motor Vehicle Involved With	C - Other Motor Vehicle			
Crash Severity	4 - Inj	ury (Complaint of Pain)		
PCF Violation Category	12 - T	raffic Signals and Signs		
Weather	A - Clear			
Alcohol Involved	No			
Pedestrian Crash	No Bicycle Crash No			
Motorcycle Crash	No Truck Crash No			

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	South	B - Proceeding Straight
2	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	No	West	E - Making Left Turn

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
1	2 - Passenger	M - Male	20	7 - Possible Injury
2	2 - Passenger	M - Male	6	7 - Possible Injury

Berkeley SafeTREC Item 7 B.

Crash Details for: Case ID 6494114 Crash Information

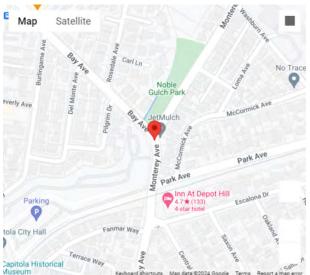
Santa Cruz				
Capito	bla			
04/30/2014 12:20				
Bay A	v & Capitola Av			
At Intersection				
No				
36.97867, -121.9531299				
C - Rear End				
C - Other Motor Vehicle				
2 - Inj	ury (Severe)			
18 - C	Other Than Driver (or Pedestr	ian)		
A - Clear				
No				
No	Bicycle Crash	No		
No	Truck Crash	Yes		
	Capito 04/30, Bay A At Inte No 36.97 C - Re C - Ot 2 - Inj 18 - C A - Cl No	Capitola $04/30/2014$ 12:20Bay Av & Capitola AvAt IntersectionNo $36.97867, -121.9531299$ C - Rear EndC - Other Motor Vehicle2 - Injury (Severe)18 - Other Than Driver (or Pedestre A - ClearNoNoNoNoBicycle Crash		

Map View

Street View

Parties: 3

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	D - Pickup or Panel Truck	No	East	B - Proceeding Straight
2	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	No	East	B - Proceeding Straight
3	3 - Parked Vehicle	F - Truck or Truck Tractor	No	-	O - Parked


Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
1	1 - Driver	M - Male	82	5 - Suspected Serious Injury
2	1 - Driver	F - Female	36	7 - Possible Injury

Crash Details for: Case ID 6940786 Crash Information

CountySanta CruzCityCapitaDate & Time (M/D/Y)OG/07/2015 12:39Location (Intersection)MonutersectionDist. & Dir. from ItersectionAt IntersectionState HighwayNoGeocoded LocationSologeocoded LocationType of CrashD - JerretsectionMotor Vehicle Involved WithC - JerretsectionPCF Violation Category NeatherA - ClerretsectionPedestrian CrashNoBiogle CrashNoPedestrian CrashNoMotor Cycle CrashNoNoBicycle CrashNoTruck CrashNoTruck CrashNoTruck Crash					
Date & Time (M/D/Y)06/07/2015 12:39Location (Intersection)Monterey Av & Bay AvDist. & Dir. from IntersectionAt IntersectionState HighwayNoGeocoded Location36.97634, -121.9502099Type of CrashD - BradsideMotor Vehicle Involved WithC - Other Motor VehiclePCF Violation Category09 - Automobile Right of WayWeatherA - ClearAlcohol InvolvedNoBicycle CrashNoPedestrian CrashNoBicycle CrashNo	County	Santa	Cruz		
Location (Intersection)Monterse Av & Bay AvDist. & Dir. from IntersectionAt IntersectionState HighwayNoGeocoded Location36.97-34, -121.9502099Type of CrashD - BroadsideMotor Vehicle Involved WithC - Other Motor VehicleCrash Severity3 - Injury (Other Visible)PCF Violation Category09 - Automobile Right of WayWeatherAr ClearAlcohol InvolvedNoPedestrian CrashNo	City	Capito	bla		
Nite and the sectionAt IntersectionState HighwayNoGeocoded Location 36.97634 , -121.9502099Type of CrashD - BroadsideMotor Vehicle Involved WithC - Other Motor VehicleCrash Severity $3 - Injury$ (Other Visible)PCF Violation Category09 - Jury (Other Visible)WeatherA - ClearAlcohol InvolvedNoNoBicycle CrashNoDo State CrashNoDo State CrashNoNo	Date & Time (M/D/Y)	06/07/2015 12:39			
IntersectionNoState HighwayNoGeocoded Location36.97634, -121.9502099Type of CrashD - BroadsideMotor Vehicle Involved WithC - Other Motor VehicleCrash Severity3 - Injury (Other Visible)PCF Violation Category09 - Automobile Right of WayWeatherA - ClearAlcohol InvolvedNoBicycle CrashNo	Location (Intersection)	Monte	erey Av & Bay Av		
Geocoded Location36.97634, -121.9502099Type of CrashD - BroadsideMotor Vehicle Involved WithC - Other Motor VehicleCrash Severity3 - Injury (Other Visible)PCF Violation Category09 - Automobile Right of WayWeatherA - ClearAlcohol InvolvedNoBicycle CrashNo		At Intersection			
Type of CrashD - BroadsideMotor Vehicle Involved WithC - Other Motor VehicleCrash Severity3 - Injury (Other Visible)PCF Violation Category09 - Automobile Right of WayWeatherA - ClearAlcohol InvolvedNoPedestrian CrashNo	State Highway	No			
Motor Vehicle Involved WithC - Other Motor VehicleCrash Severity3 - Injury (Other Visible)PCF Violation Category09 - Automobile Right of WayWeatherA - ClearAlcohol InvolvedNoPedestrian CrashNo	Geocoded Location	36.97634, -121.9502099			
With3 - Injury (Other Visible)Crash Severity3 - Injury (Other Visible)PCF Violation Category09 - Automobile Right of WayWeatherA - ClearAlcohol InvolvedNoPedestrian CrashNo	Type of Crash	D - Broadside			
PCF Violation Category09 - Automobile Right of WayWeatherA - ClearAlcohol InvolvedNoPedestrian CrashNo		C - Oi	her Motor Vehicle		
Weather A - Clear Alcohol Involved No Pedestrian Crash No	Crash Severity	3 - Inj	ury (Other Visible)		
Alcohol Involved No Bicycle Crash No	PCF Violation Category	09 - A	utomobile Right of Way		
Pedestrian Crash No Bicycle Crash No	Weather	A - Cl	ear		
	Alcohol Involved	No			
Motorcycle Crash No Truck Crash No	Pedestrian Crash	No	Bicycle Crash	No	
	Motorcycle Crash	No Truck Crash No			

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	West	D - Making Right Turn
2	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	No	North	B - Proceeding Straight

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
2	1 - Driver	F - Female	82	6 - Suspected Minor Injury

Berkeley SafeTR FC

Crash Details for: Case ID 7075959 Crash Information

County	Santa Cruz			
City	Capito	bla		
Date & Time (M/D/Y)	09/09/2015 20:08			
Location (Intersection)	Monte	erey Av & Park Av		
Dist. & Dir. from Intersection	At Intersection			
State Highway	No			
Geocoded Location	36.97564, -121.95022			
Type of Crash	A - Head-On			
Motor Vehicle Involved With	C - O	her Motor Vehicle		
Crash Severity	4 - Inj	ury (Complaint of Pain)		
PCF Violation Category	09 - A	utomobile Right of Way		
Weather	A - Clear			
Alcohol Involved	No			
Pedestrian Crash	No	Bicycle Crash	No	
Motorcycle Crash	No Truck Crash No			

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	South	E - Making Left Turn
2	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	No	North	B - Proceeding Straight

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
2	1 - Driver	F - Female	52	7 - Possible Injury

Berkeley SafeTREC

Crash Details for: Case ID 8373999 Crash Information

County	Santa Cruz				
City	Capito	bla			
Date & Time (M/D/Y)	04/29/2017 18:10				
Location (Intersection)	Bay A	v & Hill St			
Dist. & Dir. from Intersection	At Intersection				
State Highway	No				
Geocoded Location	36.9811, -121.95551				
Type of Crash	G - Vehicle/Pedestrian				
Motor Vehicle Involved With	B - Pe	edestrian			
Crash Severity	3 - Inj	ury (Other Visible)			
PCF Violation Category	No	t Stated			
Weather	A - Clear				
Alcohol Involved	No				
Pedestrian Crash	No	Bicycle Crash	No		
Motorcycle Crash	No Truck Crash No				

Map View

Street View

Parties: 1

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	South	B - Proceeding Straight

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
1	2 - Passenger	M - Male	18	6 - Suspected Minor Injury

Berkeley SafeTREC

Crash Details for: Case ID 8506493 Crash Information

County	Santa	Santa Cruz			
City	Capito	ola			
Date & Time (M/D/Y)	11/25	/2017 12:01			
Location (Intersection)	Bay Av & Hill St				
Dist. & Dir. from Intersection	40.00 ft North				
State Highway	No				
Geocoded Location	36.9811865, -121.9555946				
Type of Crash	C - Rear End				
Motor Vehicle Involved With	C - O1	ther Motor Vehicle			
Crash Severity	4 - Inj	ury (Complaint of Pain)			
PCF Violation Category	03 - L	Insafe Speed			
Weather	A - Cl	ear			
Alcohol Involved	No				
Pedestrian Crash	No	Bicycle Crash	No		
Motorcycle Crash	No Truck Crash No				

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	South	H - Slowing/Stopping
2	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	No	South	A - Stopped

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
2	1 - Driver	F - Female	20	7 - Possible Injury

Berkeley SafeTREC Item 7 B.

Crash Details for: Case ID 8593314 Crash Information

County	Santa Cruz			
City	Capito	ola		
Date & Time (M/D/Y)	02/13	/2018 07:50		
Location (Intersection)	Bay A	v & Hill St		
Dist. & Dir. from Intersection	203.00 ft North			
State Highway	No			
Geocoded Location	36.9815369, -121.9559402			
Type of Crash	D - Broadside			
Motor Vehicle Involved With	C - O1	ther Motor Vehicle		
Crash Severity	4 - Inj	ury (Complaint of Pain)		
PCF Violation Category	09 - A	utomobile Right of Way		
Weather	A - Cl	ear		
Alcohol Involved	No			
Pedestrian Crash	No Bicycle Crash No			
Motorcycle Crash	No Truck Crash No			

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	D - Pickup or Panel Truck	Yes	South	L - Entering Traffic
2	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	No	South	B - Proceeding Straight

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
2	1 - Driver	F - Female	39	7 - Possible Injury

Berkeley SafeTREC

Crash Details for: Case ID 9174869 Crash Information

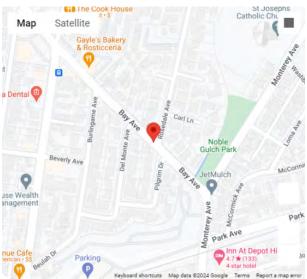
County	Santa Cruz			
City	Capito	bla		
Date & Time (M/D/Y)	10/08	/2020 16:00		
Location (Intersection)	Bay A	v & Hill St		
Dist. & Dir. from Intersection	At Intersection			
State Highway	No			
Geocoded Location	36.9810982, -121.955513			
Type of Crash	D - Broadside			
Motor Vehicle Involved With	C - Other Motor Vehicle			
Crash Severity	4 - Inj	ury (Complaint of Pain)		
PCF Violation Category	03 - L	Insafe Speed		
Weather	A - Cl	ear		
Alcohol Involved	No			
Pedestrian Crash	No	Bicycle Crash	No	
Motorcycle Crash	No Truck Crash No			

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	West	B - Proceeding Straight
2	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	No	North	B - Proceeding Straight


Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
2	2 - Passenger	F - Female	32	7 - Possible Injury

Crash Details for: Case ID 9355886 Crash Information

County	Santa Cruz				
City	Capito	bla			
Date & Time (M/D/Y)	09/24	/2021 22:16			
Location (Intersection)	Bay A	v & Rosedale Av			
Dist. & Dir. from Intersection	44.00 ft North				
State Highway	No				
Geocoded Location	36.9772072, -121.9512329				
Type of Crash	B - Sideswipe				
Motor Vehicle Involved With	E - Parked Motor Vehicle				
Crash Severity	3 - Inj	ury (Other Visible)			
PCF Violation Category	07 - L	Insafe Lane Change			
Weather	A - Clear				
Alcohol Involved	No				
Pedestrian Crash	No	Bicycle Crash	No		
Motorcycle Crash	No Truck Crash No				

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	North	M - Other Unsafe Turning
2	3 - Parked Vehicle	A - Passenger Car/Station Wagon	No	-	O - Parked

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
1	2 - Passenger	M - Male	28	6 - Suspected Minor Injury

Berkeley SafeTREC

Crash Details for: Case ID 9472208 Crash Information

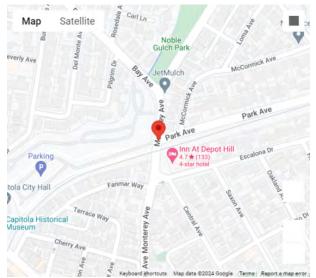
County	Santa Cruz			
City	Capito	ola		
Date & Time (M/D/Y)	05/07	/2022 10:04		
Location (Intersection)	Bay Av & Hill St			
Dist. & Dir. from Intersection	At Intersection			
State Highway	No			
Geocoded Location	36.9810982, -121.9555054			
Type of Crash	B - Sideswipe			
Motor Vehicle Involved With	C - Other Motor Vehicle			
Crash Severity	4 - Inj	ury (Complaint of Pain)		
PCF Violation Category	09 - A	utomobile Right of Way		
Weather	A - Cl	ear		
Alcohol Involved	No			
Pedestrian Crash	No	Bicycle Crash	No	
Motorcycle Crash	No Truck Crash No			

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	North	B - Proceeding Straight
2	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	No	North	E - Making Left Turn


Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
1	1 - Driver	F - Female	52	7 - Possible Injury

Crash Details for: Case ID 9495729 Crash Information

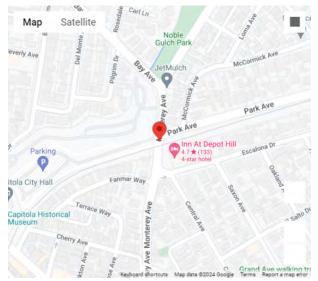
County	Santa Cruz			
City	Capito	bla		
Date & Time (M/D/Y)	08/01	/2022 13:16		
Location (Intersection)	Monterey Av & Park Av			
Dist. & Dir. from Intersection	At Intersection			
State Highway	No			
Geocoded Location	36.9756355, -121.9502182			
Type of Crash	A - Head-On			
Motor Vehicle Involved With	C - Other Motor Vehicle			
Crash Severity	4 - Inj	ury (Complaint of Pain)		
PCF Violation Category	03 - L	Insafe Speed		
Weather	A - Cl	ear		
Alcohol Involved	No			
Pedestrian Crash	No	Bicycle Crash	No	
Motorcycle Crash	No Truck Crash No			

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	South	E - Making Left Turn
2	1 - Driver (including Hit and Run)	D - Pickup or Panel Truck	No	North	A - Stopped


Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
1	2 - Passenger	M - Male	22	0 - No Injury
1	2 - Passenger	F - Female	19	0 - No Injury
2	1 - Driver	M - Male	59	7 - Possible Injury

Crash Details for: Case ID 9625429 Crash Information

County	Santa Cruz			
City	Capito	bla		
Date & Time (M/D/Y)	08/11	/2023 15:10		
Location (Intersection)	Monterey Av & Park Av			
Dist. & Dir. from Intersection	35.00 ft South			
State Highway	No			
Geocoded Location	36.975544, -121.9502335			
Type of Crash	C - Rear End			
Motor Vehicle Involved With	C - Other Motor Vehicle			
Crash Severity	4 - Inj	ury (Complaint of Pain)		
PCF Violation Category	03 - L	Insafe Speed		
Weather	A - Cl	ear		
Alcohol Involved	No			
Pedestrian Crash	No	Bicycle Crash	No	
Motorcycle Crash	No Truck Crash No			

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	D - Pickup or Panel Truck	Yes	North	B - Proceeding Straight
2	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	No	North	A - Stopped

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
2	1 - Driver	F - Female	26	7 - Possible Injury

Crash Details for: Case ID 9646836 Crash Information

County	Santa Cruz			
City	Capito	bla		
Date & Time (M/D/Y)	10/12	/2023 15:11		
Location (Intersection)	Bay Av & Burlingame Av			
Dist. & Dir. from Intersection	47.00 ft North			
State Highway	No			
Geocoded Location	36.978157, -121.9524689			
Type of Crash	D - Broadside			
Motor Vehicle Involved With	C - Other Motor Vehicle			
Crash Severity	4 - Inj	ury (Complaint of Pain)		
PCF Violation Category	09 - A	utomobile Right of Way		
Weather	A - Cl	ear		
Alcohol Involved	No			
Pedestrian Crash	No	Bicycle Crash	No	
Motorcycle Crash	No Truck Crash No			

Map View

Street View

Parties: 3

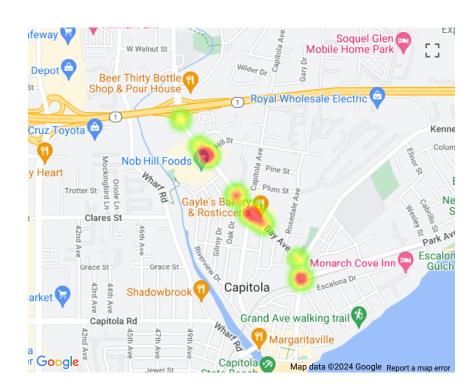
Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	South	E - Making Left Turn
2	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	No	South	B - Proceeding Straight
3	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	No	North	A - Stopped

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
1	2 - Passenger	M - Male	1	0 - No Injury

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
1	2 - Passenger	M - Male	5	0 - No Injury
1	2 - Passenger	F - Female	12	0 - No Injury
1	2 - Passenger	M - Male	36	0 - No Injury
1	1 - Driver	F - Female	37	7 - Possible Injury
2	2 - Passenger	F - Female	6	0 - No Injury
3	2 - Passenger	M - Male	13	0 - No Injury

Crash List

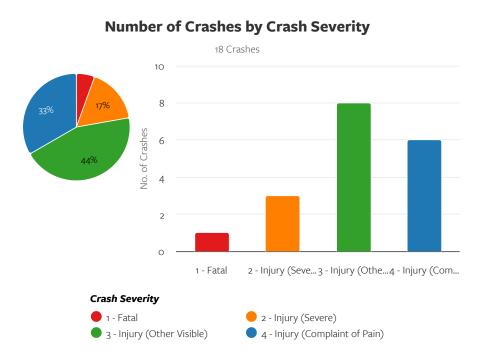
CASE ID	Date	Time	Primary Rd	Secondary Rd	Dist & Dir from Int.	Bike	Ped	Killed	Injured	
6483008	04/24/2014	11:00	Bay Av	Capitola Av	At Int	No	Yes		0	1
6487930	05/06/2014	07:21	Oak Dr	Bay Av	37 ft South	Yes	No		0	1
6511924	06/03/2014	14:04	Bay Av	Hill St	At Int	No	Yes		0	1
6748318	12/03/2014	10:41	Monterey Av	Park Av	18 ft South	No	Yes		0	1
6864222	03/19/2015	12:43	Bay Av	Capitola Av	83 ft East	No	Yes		0	1
6889427	04/04/2015	12:50	Bay Av	Bay Av 504	At Int	Yes	No		0	1
7063888	07/20/2015	19:19	Monterey Av	Park Pl	At Int	Yes	No		0	1
8152095	10/07/2016	21:28	Bay Av	Hill St	At Int	No	Yes		0	1
8339317	03/26/2017	12:07	Bay Av	Burlingame Av	90 ft North	Yes	No		0	1
90781844	07/21/2018	16:05	Bay Ave	Monterey Ave	100 ft North	Yes	No		0	1
8701088	08/13/2018	20:13	Bay Av	Hill Av	213 ft North	Yes	No		0	1
8648318	10/06/2018	19:46	Bay Av	Rt 1	218 ft South	No	Yes		1	0
9007558	11/22/2019	13:57	Monterey Av	Park Av	At Int	Yes	No		0	1
9472209	05/05/2022	17:48	Bay Av	Oak Dr	At Int	Yes	No		0	1
9495924	09/04/2022	20:42	Capitola Av	Bay Av	58 ft South	Yes	No		0	1
9534052	12/09/2022	18:24	Bay Av	Hill St	At Int	No	Yes		0	1
9549472	02/01/2023	08:15	Bay Av	Burlingame Av	At Int	Yes	No		0	1
9625425	08/24/2023	08:40	Bay Av	Hill St	At Int	No	Yes		0	1


This report was created with the help of The Transportation Injury Mapping System (TIMS). TIMS has been developed by UC Berkeley SafeTREC to provide quick, easy and free access to California crash data, the Statewide Integrated Traffic Records System (SWITRS), that has been geo-coded by SafeTREC to make it easy to map crashes.

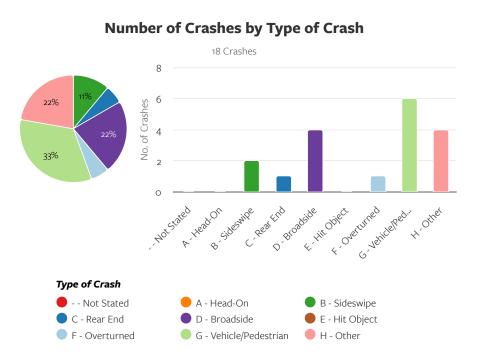
Query by Case ID(s)

User Entered SWITRS Case ID(s)

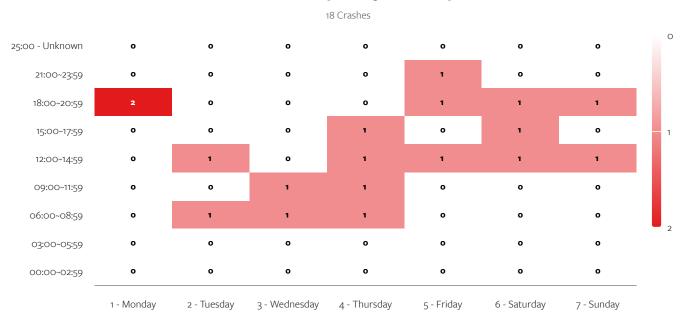
Result


Total Crashes 18 Total Victims 1 Killed & 17 Injured State Highway None Ped Involved 8 (44.4%) Bike Involved 10 (55.6%) Motorcycle Involved None

18 of 18 (100%) Crashes are geocoded and mapped.

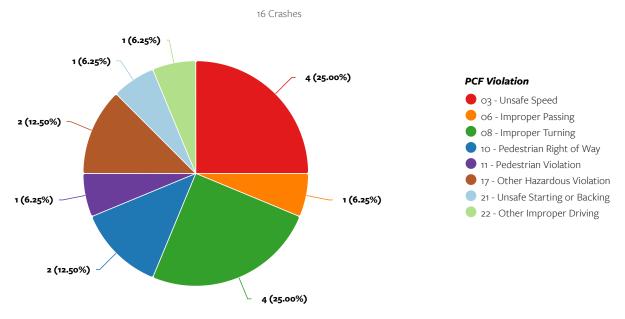

Crash Summary

By Crash Severity



Crash Severity	Count	%
1 - Fatal	1	5.56%
2 - Injury (Severe)	3	16.67%
3 - Injury (Other Visible)	8	44.44%
4 - Injury (Complaint of Pain)	6	33.33%

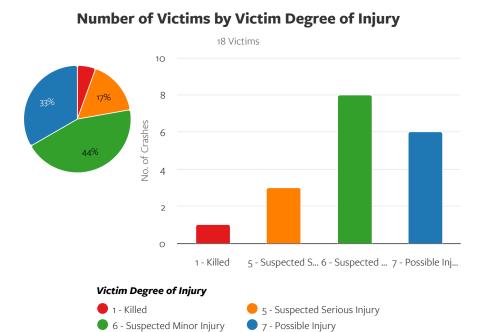
By Crash Type



Count	%
Ο	0.00%
Ο	0.00%
2	11.11%
1	5.56%
4	22.22%
Ο	0.00%
1	5.56%
6	33.33%
4	22.22%
	0 0 2 1 4 0 1 1 6

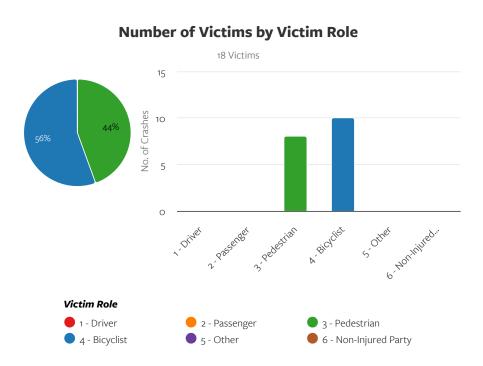
Number of Crashes per Day of Week per Time

By Primary Crash Factor (PCF) Violation

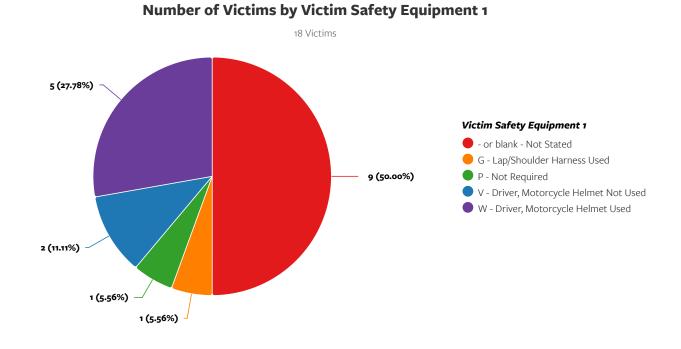


Number of Crashes by PCF Violation

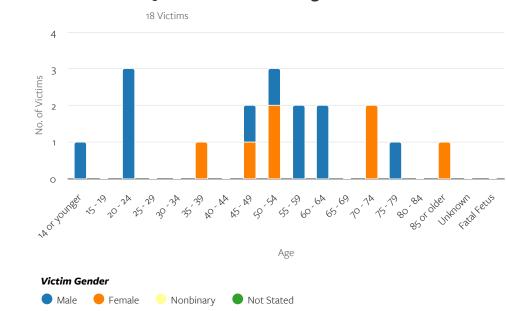
Item 7 B.


Victim Summary

By Victim Degree of Injury

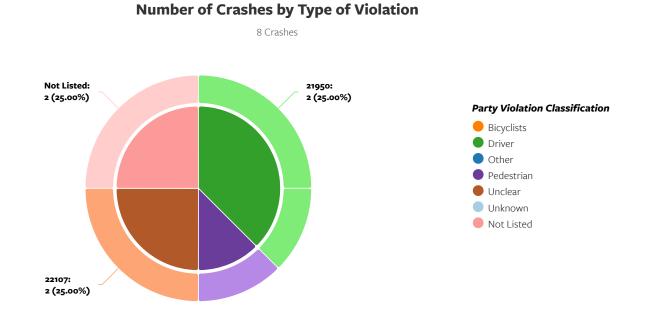

Victim Degree of Injury	Count	%
1 - Killed	1	5.56%
5 - Suspected Serious Injury	3	16.67%
6 - Suspected Minor Injury	8	44.44%
7 - Possible Injury	6	33.33%

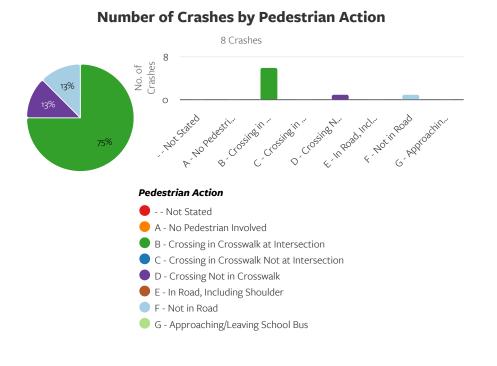
By Victim Role


Victim Role	Count	%
1 - Driver	0	0.00%
2 - Passenger	0	0.00%
3 - Pedestrian	8	44.44%
4 - Bicyclist	10	55.56%
5 - Other	0	0.00%
6 - Non-Injured Party	0	0.00%

By Victim Safety Equipment 1

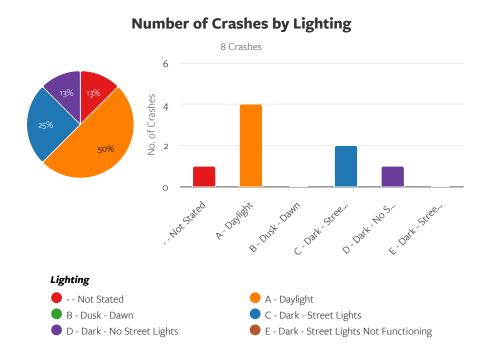
By Victim Gender and Age


39%

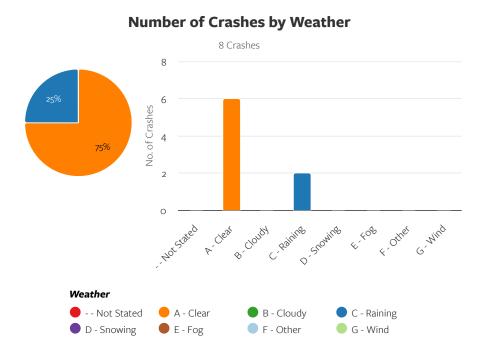

Number of Victims by Victim Gender and Age

Ped Crash Summary

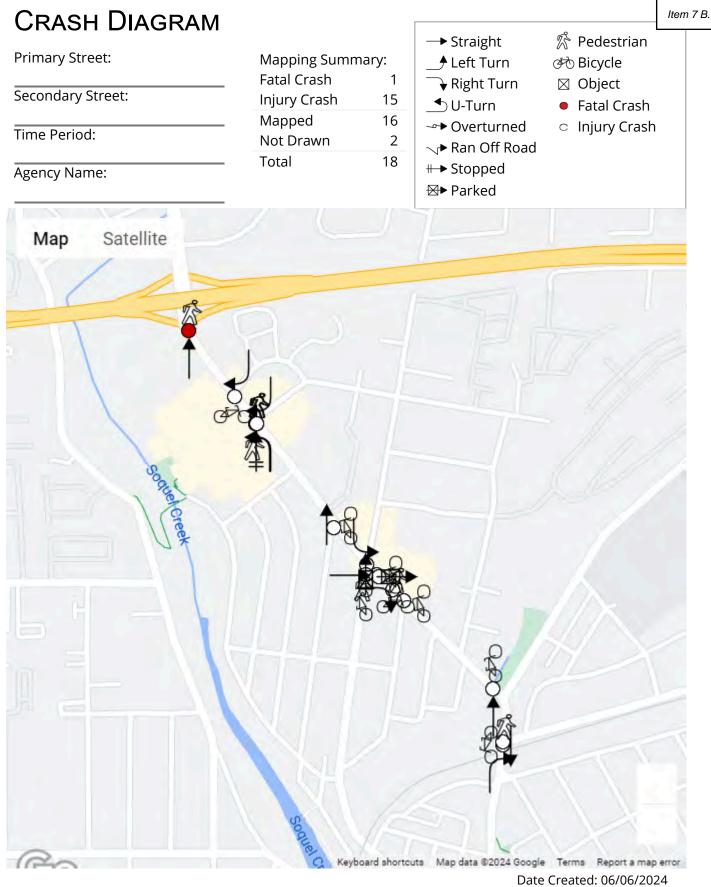
By Type of Violation



Party Violation Classification	Type of Violation	Description	Count	%
Driver	21950	Driver failure to yield right-of-way to pedestrians at a marked or unmarked crosswalk	2	25.00%
Unclear	22107	Unsafe turning or moving right or left on a roadway Turning without signaling	2	25.00%
Not Listed	Not Listed	Violation code was not included in the crash	2	25.00%
Driver	22106	Unsafe starting or backing of a vehicle on a highway	1	12.50%
Pedestrian	21954	Pedestrian failure to yield right-of-way to vehicles when crossing outside of a marked or unmarked crosswalk	1	12.50%


Pedestrian Action Count % - - Not Stated 0 0.00% A - No Pedestrian 0.00% 0 Involved B - Crossing in Crosswalk at 6 75.00% Intersection C - Crossing in Crosswalk Not at 0 0.00% Intersection D - Crossing Not in 1 12.50% Crosswalk E - In Road, Including 0.00% 0 Shoulder F - Not in Road 1 12.50% G -Approaching/Leaving 0 0.00% School Bus

By Lighting



Lighting	Count	%
Not Stated	1	12.50%
A - Daylight	4	50.00%
B - Dusk - Dawn	0	0.00%
C - Dark - Street Lights	2	25.00%
D - Dark - No Street Lights	1	12.50%
E - Dark - Street Lights Not Functioning	0	0.00%

By Weather

Weather	Count	%
Not Stated	0	0.00%
A - Clear	6	75.00%
B - Cloudy	0	0.00%
C - Raining	2	25.00%
D - Snowing	0	0.00%
E - Fog	0	0.00%
F - Other	0	0.00%
G - Wind	0	0.00%

Created by TIMS (https://tims.berkeley.edu) © UC Regents, 2014-2024

Crash Details for: Case ID 6483008 Crash Information

County	Santa Cruz				
City	Capitola				
Date & Time (M/D/Y)	D/Y) 04/24/2014 11:00				
Location (Intersection)	Bay A	v & Capitola Av			
Dist. & Dir. from Intersection	At Intersection				
State Highway	No				
Geocoded Location	36.97867, -121.9531299				
Type of Crash	G - Vehicle/Pedestrian				
Motor Vehicle Involved With	B - Pedestrian				
Crash Severity	4 - Injury (Complaint of Pain)				
PCF Violation Category	No	t Stated			
Weather	A - Clear				
Alcohol Involved	No				
Pedestrian Crash	Yes	Bicycle Crash	No		
Motorcycle Crash	No	Truck Crash	No		

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	South	E - Making Left Turn
2	2 - Pedestrian	N - Pedestrian	No	South	R - Other

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
2	3 - Pedestrian	F - Female	70	7 - Possible Injury

Berkeley SafeTR FC Item 7 B.

Crash Details for: Case ID 6487930 Crash Information

County	Santa Cruz				
City	Capitola				
Date & Time (M/D/Y)	05/06	/2014 07:21			
Location (Intersection)	Oak E	Dr & Bay Av			
Dist. & Dir. from Intersection	37.00 ft South				
State Highway	No				
Geocoded Location	36.9793094, -121.9538479				
Type of Crash	B - Sideswipe				
Motor Vehicle Involved With	G - Bicycle				
Crash Severity	4 - Injury (Complaint of Pain)				
PCF Violation Category	06 - Ir	nproper Passing			
Weather	A - Clear				
Alcohol Involved	No				
Pedestrian Crash	No Bicycle Crash				
Motorcycle Crash	No	Truck Crash	No		

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	North	I - Passing Other Vehicle
2	4 - Bicyclist	L - Bicycle	No	North	B - Proceeding Straight

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
2	4 - Bicyclist	M - Male	54	7 - Possible Injury

Crash Details for: Case ID 6511924 Crash Information

County	Santa	Cruz		
City	Capito	bla		
Date & Time (M/D/Y)	06/03	/2014 14:04		
Location (Intersection)	Bay A	v & Hill St		
Dist. & Dir. from Intersection	At Intersection			
State Highway	No			
Geocoded Location	36.9811, -121.95551			
Type of Crash	G - Vehicle/Pedestrian			
Motor Vehicle Involved With	B - Pedestrian			
Crash Severity	4 - Inj	ury (Complaint of Pain)		
PCF Violation Category	No	t Stated		
Weather	A - Cl	ear		
Alcohol Involved	No			
Pedestrian Crash	Yes	Bicycle Crash	No	
Motorcycle Crash	No	Truck Crash	No	

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	North	A - Stopped
2	2 - Pedestrian	N - Pedestrian	No	-	Not Stated

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
2	3 - Pedestrian	F - Female	36	7 - Possible Injury

Berkeley SafeTR FC Item 7 B.

Crash Details for: Case ID 6748318 Crash Information

County	Santa	Cruz		
City	Capito	bla		
Date & Time (M/D/Y)	12/03	/2014 10:41		
Location (Intersection)	Monte	erey Av & Park Av		
Dist. & Dir. from Intersection	18.00 ft South			
State Highway	No			
Geocoded Location	36.9755907, -121.9502255			
Type of Crash	G - Vehicle/Pedestrian			
Motor Vehicle Involved With	B - Pe	edestrian		
Crash Severity	3 - Inj	ury (Other Visible)		
PCF Violation Category	10 - F	edestrian Right of Way		
Weather	C - Ra	aining		
Alcohol Involved	No			
Pedestrian Crash	Yes	Bicycle Crash	No	
Motorcycle Crash	No	Truck Crash	No	

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	North	D - Making Right Turn
2	2 - Pedestrian	N - Pedestrian	No	-	A - Stopped

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
2	3 - Pedestrian	F - Female	53	6 - Suspected Minor Injury

Crash Details for: Case ID 6864222 Crash Information

County	Santa	Cruz		
City	Capito	bla		
Date & Time (M/D/Y)	03/19	/2015 12:43		
Location (Intersection)	Bay A	v & Capitola Av		
Dist. & Dir. from Intersection	83.00 ft East			
State Highway	No			
Geocoded Location	36.9785132, -121.9529236			
Type of Crash	G - Vehicle/Pedestrian			
Motor Vehicle Involved With	B - Pedestrian			
Crash Severity	4 - Inj	ury (Complaint of Pain)		
PCF Violation Category	21 - L	Insafe Starting or Backing		
Weather	A - Cl	ear		
Alcohol Involved	No			
Pedestrian Crash	Yes	Bicycle Crash	No	
Motorcycle Crash	No Truck Crash No			

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	North	G - Backing
2	2 - Pedestrian	N - Pedestrian	No	East	B - Proceeding Straight

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
2	3 - Pedestrian	M - Male	62	7 - Possible Injury

Crash Details for: Case ID 6889427 Crash Information

County	Santa	Cruz		
City	Capito	bla		
Date & Time (M/D/Y)	04/04	/2015 12:50		
Location (Intersection)	Bay A	v & Bay Av 504		
Dist. & Dir. from Intersection	At Intersection			
State Highway	No			
Geocoded Location	36.9784767, -121.9528824			
Type of Crash	H - Other			
Motor Vehicle Involved With	G - Bicycle			
Crash Severity	2 - Inj	ury (Severe)		
PCF Violation Category	17 - C	Other Hazardous Violation		
Weather	A - CI	ear		
Alcohol Involved	No			
Pedestrian Crash	No	Bicycle Crash	Yes	
Motorcycle Crash	No	Truck Crash	No	

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	3 - Parked Vehicle	A - Passenger Car/Station Wagon	Yes	North	O - Parked
2	4 - Bicyclist	L - Bicycle	No	North	B - Proceeding Straight

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
2	4 - Bicyclist	M - Male	21	5 - Suspected Serious Injury

Crash Details for: Case ID 7063888 Crash Information

County	Santa Cruz				
City	Capito	bla			
Date & Time (M/D/Y)	07/20	/2015 19:19			
Location (Intersection)	Monterey Av & Park Pl				
Dist. & Dir. from Intersection	At Intersection				
State Highway	No				
Geocoded Location	36.97564, -121.95022				
Type of Crash	H - Other				
Motor Vehicle Involved With	G - Bi	cycle			
Crash Severity	3 - Inj	ury (Other Visible)			
PCF Violation Category	17 - C	Other Hazardous Violation			
Weather	A - Cl	ear			
Alcohol Involved	No				
Pedestrian Crash	No	Bicycle Crash	Yes		
Motorcycle Crash	No	Truck Crash	No		

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	3 - Parked Vehicle	A - Passenger Car/Station Wagon	Yes	-	O - Parked
2	4 - Bicyclist	L - Bicycle	No	-	B - Proceeding Straight

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
2	4 - Bicyclist	M - Male	46	6 - Suspected Minor Injury

Crash Details for: Case ID 8152095 Crash Information

County	Santa Cruz				
City	Capito	bla			
Date & Time (M/D/Y)	10/07	/2016 21:28			
Location (Intersection)	Bay Av & Hill St				
Dist. & Dir. from Intersection	At Intersection				
State Highway	No				
Geocoded Location	36.9811, -121.95551				
Type of Crash	D - Broadside				
Motor Vehicle Involved With	B - Pe	edestrian			
Crash Severity	4 - Inj	ury (Complaint of Pain)			
PCF Violation Category	08 - Ir	nproper Turning			
Weather	A - Clear				
Alcohol Involved	No				
Pedestrian Crash	Yes	Bicycle Crash	No		
Motorcycle Crash	No	Truck Crash	No		

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	North	E - Making Left Turn
2	2 - Pedestrian	N - Pedestrian	No	West	B - Proceeding Straight

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
2	3 - Pedestrian	F - Female	53	7 - Possible Injury

Berkeley SafeTRFC Item 7 B.

Crash Details for: Case ID 8339317 Crash Information

County	Santa Cruz			
City	Capito	bla		
Date & Time (M/D/Y)	03/26	/2017 12:07		
Location (Intersection)	Bay Av & Burlingame Av			
Dist. & Dir. from Intersection	90.00 ft North			
State Highway	No			
Geocoded Location	36.9782415, -121.952572			
Type of Crash	H - Other			
Motor Vehicle Involved With	G - Bi	cycle		
Crash Severity	3 - Inj	ury (Other Visible)		
PCF Violation Category	22 - C	Other Improper Driving		
Weather	B - Cloudy			
Alcohol Involved	No			
Pedestrian Crash	No	Bicycle Crash	Yes	
Motorcycle Crash	No	Truck Crash	No	

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	East	O - Parked
2	4 - Bicyclist	L - Bicycle	No	East	Not Stated

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
2	4 - Bicyclist	M - Male	61	6 - Suspected Minor Injury

Crash Details for: Case ID 90781844 Crash Information

Santa	Cruz			
Capito	bla			
07/21	/2018 16:05			
Bay A	ve & Monterey Ave			
100.00 ft North				
No				
36.9765549, -121.9504242				
C - Rear End				
G - Bi	cycle			
3 - Inj	ury (Other Visible)			
03 - U	Insafe Speed			
A - Cl	ear			
No				
No	Bicycle Crash	Yes		
No	Truck Crash	No		
	Capito 07/21, Bay A 100.00 No 36.970 C - Re G - Bi 3 - Inji 03 - U A - Cl No	No 36.9765549, -121.9504242 C - Rear End G - Bicycle 3 - Injury (Other Visible) 03 - Unsafe Speed A - Clear No No Bicycle Crash		

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	4 - Bicyclist	L - Bicycle	Yes	North	B - Proceeding Straight
2	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	No	North	H - Slowing/Stopping

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
1	4 - Bicyclist	M - Male	23	6 - Suspected Minor Injury

Berkeley SafeTR FC Item 7 B.

Crash Details for: Case ID 8701088 Crash Information

County	Santa	Cruz	
City	Capito	bla	
Date & Time (M/D/Y)	08/13	/2018 20:13	
Location (Intersection)	Bay A	v & Hill Av	
Dist. & Dir. from Intersection	213.0	0 ft North	
State Highway	No		
Geocoded Location	36.98	15598, -121.9559631	
Type of Crash	D - Br	oadside	
Motor Vehicle Involved With	G - Bi	cycle	
Crash Severity	4 - Inj	ury (Complaint of Pain)	
PCF Violation Category	08 - Ir	nproper Turning	
Weather	A - Cl	ear	
Alcohol Involved	No		
Pedestrian Crash	No	Bicycle Crash	Yes
Motorcycle Crash	No	Truck Crash	No

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	South	D - Making Right Turn
2	4 - Bicyclist	L - Bicycle	No	South	B - Proceeding Straight

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
2	4 - Bicyclist	M - Male	22	7 - Possible Injury

Crash Details for: Case ID 8648318 Crash Information

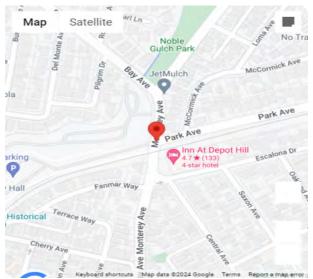
County	Santa	Cruz	
City	Capito	bla	
Date & Time (M/D/Y)	10/06	/2018 19:46	
Location (Intersection)	Bay A	v & Rt 1	
Dist. & Dir. from Intersection	218.0	0 ft South	
State Highway	No		
Geocoded Location	36.98	26889, -121.9569473	
Type of Crash	G - Ve	ehicle/Pedestrian	
Motor Vehicle Involved With	B - Pe	edestrian	
Crash Severity	1 - Fa	tal	
PCF Violation Category	11 - P	edestrian Violation	
Weather	A - Cl	ear	
Alcohol Involved	Yes		
Pedestrian Crash	Yes	Bicycle Crash	No
Motorcycle Crash	No	Truck Crash	No

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	2 - Pedestrian	N - Pedestrian	Yes	-	R - Other
2	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	No	North	B - Proceeding Straight


Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
1	3 - Pedestrian	M - Male	59	1 - Killed

Berkeley SafeTR FC Item 7 B.

Crash Details for: Case ID 9007558 Crash Information

County	Santa	Cruz	
City	Capito	ola	
Date & Time (M/D/Y)	11/22	/2019 13:57	
Location (Intersection)	Monte	erey Av & Park Av	
Dist. & Dir. from Intersection	At Inte	ersection	
State Highway	No		
Geocoded Location	36.97	56393, -121.9502182	
Type of Crash	B - Si	deswipe	
Motor Vehicle Involved With	G - Bi	cycle	
Crash Severity	3 - Inj	ury (Other Visible)	
PCF Violation Category	08 - Ir	mproper Turning	
Weather	A - CI	ear	
Alcohol Involved	No		
Pedestrian Crash	No	Bicycle Crash	Yes
Motorcycle Crash	No	Truck Crash	No

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	4 - Bicyclist	L - Bicycle	Yes	South	E - Making Left Turn
2	1 - Driver (including Hit and Run)	D - Pickup or Panel Truck	No	South	B - Proceeding Straight

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
1	4 - Bicyclist	M - Male	77	6 - Suspected Minor Injury
2	2 - Passenger	F - Female	0	0 - No Injury

Crash Details for: Case ID 9472209 Crash Information

CountySanta CruzCityCapitolaDate & Time (M/D/Y)05/05/2022 17:48Location (Intersection)Bay Av & Oak DrDist. & Dir. from IntersectionAt IntersectionState HighwayNoGeocoded Location36.9794083, -121.9538269	
Date & Time (M/D/Y) 05/05/2022 17:48 Location (Intersection) Bay Av & Oak Dr Dist. & Dir. from Intersection At Intersection State Highway No	
Location (Intersection)Bay Av & Oak DrDist. & Dir. from IntersectionAt IntersectionState HighwayNo	
Dist. & Dir. from Intersection At Intersection State Highway No	
Intersection No	
Geocoded Location 36.9794083, -121.9538269	
Type of Crash H - Other	
Motor Vehicle Involved Not Stated With	
Crash Severity 2 - Injury (Severe)	
PCF Violation Category 03 - Unsafe Speed	
Weather A - Clear	
Alcohol Involved Yes	
Pedestrian Crash No Bicycle Crash Ye	(es
Motorcycle Crash No Truck Crash No	No

Map View

Street View

Parties: 1

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	4 - Bicyclist	L - Bicycle	Yes	South	B - Proceeding Straight

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
1	4 - Bicyclist	M - Male	59	5 - Suspected Serious Injury

Crash Details for: Case ID 9495924 Crash Information

County	Santa Cruz					
City	Capito	bla				
Date & Time (M/D/Y)	09/04	/2022 20:42				
Location (Intersection)	Capitola Av & Bay Av					
Dist. & Dir. from Intersection	58.00 ft South					
State Highway	No					
Geocoded Location	36.9785118, -121.9531555					
Type of Crash	F - Overturned					
Motor Vehicle Involved With	A - Non-Collision					
Crash Severity	3 - Inj	ury (Other Visible)				
PCF Violation Category	03 - L	Insafe Speed				
Weather	A - Clear					
Alcohol Involved	Yes					
Pedestrian Crash	No	Bicycle Crash	Yes			
Motorcycle Crash	No Truck Crash No					

Map View

Street View

Parties: 1

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	4 - Bicyclist	L - Bicycle	Yes	North	B - Proceeding Straight

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
1	4 - Bicyclist	F - Female	45	6 - Suspected Minor Injury

Crash Details for: Case ID 9534052 Crash Information

County	Santa Cruz					
City	Capito	Capitola				
Date & Time (M/D/Y)	12/09/2022 18:24					
Location (Intersection)	Bay Av & Hill St					
Dist. & Dir. from Intersection	At Intersection					
State Highway	No					
Geocoded Location	36.9810982, -121.9555054					
Type of Crash	G - Vehicle/Pedestrian					
Motor Vehicle Involved With	B - Pedestrian					
Crash Severity	2 - Inj	ury (Severe)				
PCF Violation Category	08 - Ir	mproper Turning				
Weather	A - Clear					
Alcohol Involved	No					
Pedestrian Crash	Yes	Bicycle Crash	No			
Motorcycle Crash	No Truck Crash No					

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	D - Pickup or Panel Truck	Yes	South	D - Making Right Turn
2	2 - Pedestrian	N - Pedestrian	No	East	B - Proceeding Straight

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
2	3 - Pedestrian	F - Female	74	5 - Suspected Serious Injury

Crash Details for: Case ID 9549472 Crash Information

Santa	Santa Cruz				
Capito	Capitola				
02/01/2023 08:15					
Bay A	Bay Av & Burlingame Av				
At Intersection					
No					
36.9780655, -121.9523468					
D - Broadside					
G - Bicycle					
3 - Inj	ury (Other Visible)				
03 - L	Insafe Speed				
A - Cl	ear				
Yes					
No	Bicycle Crash	Yes			
NoTruck CrashNo					
	Capito 02/01, Bay A At Inte No 36.97 D - Br G - Bi 3 - Inji 03 - U A - Cla Yes No	Capitola $02/01/2023 08:15$ Bay Av & Burlingame AvAt IntersectionAt IntersectionNo $36.97 \times 0655, -121.9523468$ D - BroadsideG - Bicycle $3 - Injury (Other Visible)$ $03 - Unsafe Speed$ A - ClearYesNoBicycle Crash			

Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	East	D - Making Right Turn
2	4 - Bicyclist	L - Bicycle	No	East	B - Proceeding Straight

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury
2	4 - Bicyclist	M - Male	0	6 - Suspected Minor Injury

Crash Details for: Case ID 9625425 Crash Information

County	Santa Cruz				
City	Capito	bla			
Date & Time (M/D/Y)	08/24/2023 08:40				
Location (Intersection)	Bay A	v & Hill St			
Dist. & Dir. from Intersection	At Intersection				
State Highway	No				
Geocoded Location	36.9810982, -121.9555054				
Type of Crash	D - Broadside				
Motor Vehicle Involved With	B - Pedestrian				
Crash Severity	3 - Inj	ury (Other Visible)			
PCF Violation Category	10 - P	edestrian Right of Way			
Weather	C - Raining				
Alcohol Involved	No				
Pedestrian Crash	Yes	Bicycle Crash	No		
Motorcycle Crash	No Truck Crash No				

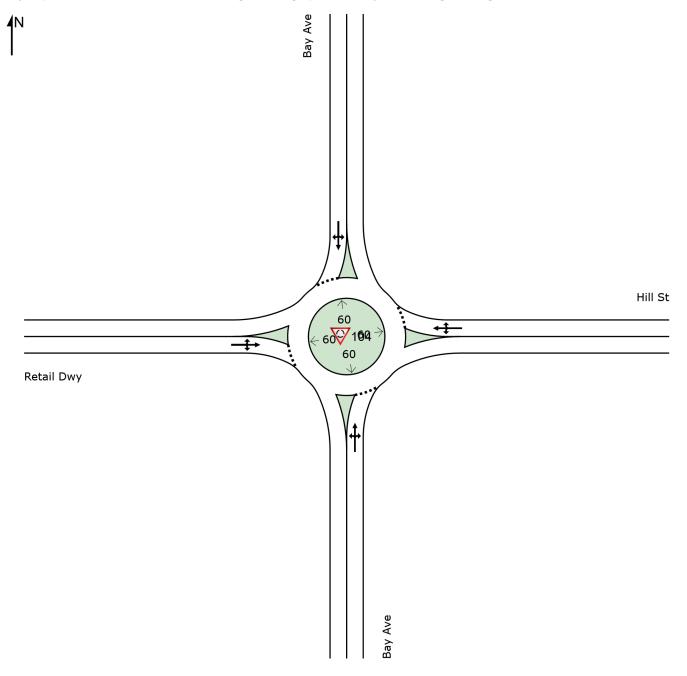
Map View

Street View

Parties: 2

Party Number	Party Type	Statewide Vehicle Type	At Fault	Party Direction	Movement Preceding Collision
1	1 - Driver (including Hit and Run)	A - Passenger Car/Station Wagon	Yes	North	E - Making Left Turn
2	2 - Pedestrian	N - Pedestrian	No	-	Not Stated

Party Number	Victim Role	Victim Gender	Victim Age	Victim Degree of Injury			
2	3 - Pedestrian	F - Female	86	6 - Suspected Minor Injury			

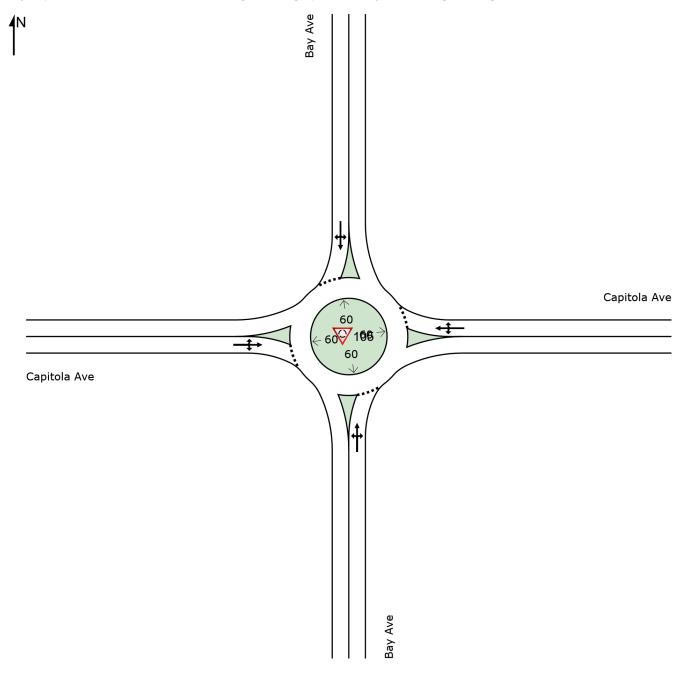

Attachment C – VISSIM and SIDRA LOS Results (Stop and Roundabout Alternatives)

SITE LAYOUT

V Site: 104 [Bay/Hill (Site Folder: 2024 Existing AM)]

Alt 3 Roundabout Site Category: Base Year Roundabout

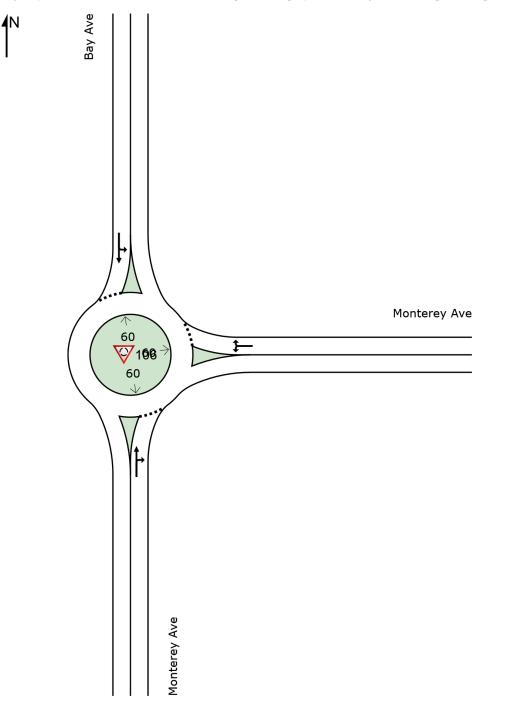
Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.


SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Created: Monday, January 6, 2025 2:32:14 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

SITE LAYOUT

Alt 3 Roundabout Site Category: Base Year Roundabout

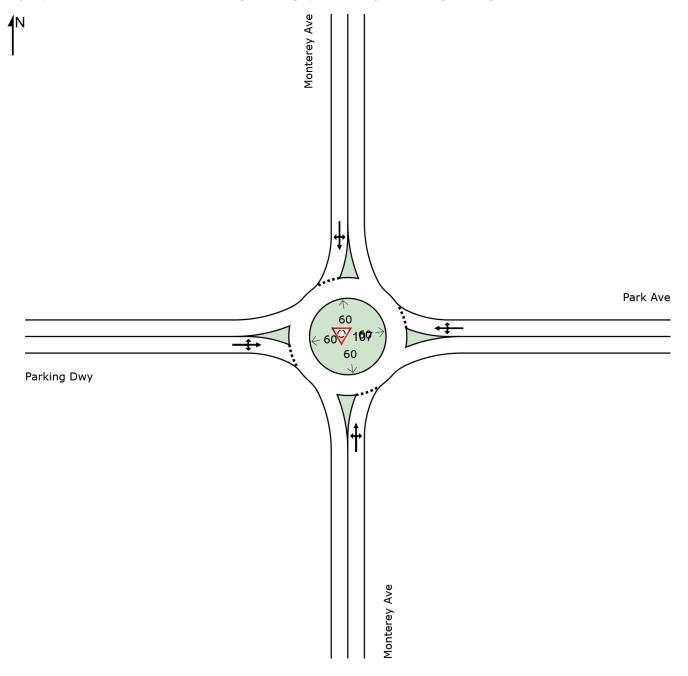
Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.



SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Created: Monday, January 6, 2025 2:32:14 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

SITE LAYOUT V Site: 106 [Bay/Monterey (Site Folder: 2024 Existing AM)]

Alt 3 Roundabout Site Category: Base Year Roundabout


Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SITE LAYOUT V Site: 107 [Monterey/Park (Site Folder: 2024 Existing AM)]

Alt 3 Roundabout Site Category: Base Year Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Created: Monday, January 6, 2025 2:32:14 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

MOVEMENT SUMMARY

V Site: 104 [Bay/Hill (Site Folder: 2024 Existing AM)]

Alt 3 Roundabout Site Category: Base Year Roundabout

Vehicle Movement Performance														
Mov ID	' Turn	INP VOLU [Total veh/h		DEM/ FLO ^V [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
Sou	th: Bay A	ve												
3	L2	57	3.0	62	3.0	0.482	8.4	LOS A	3.2	81.9	0.46	0.30	0.46	32.0
8	T1	441	3.0	479	3.0	0.482	8.4	LOS A	3.2	81.9	0.46	0.30	0.46	23.9
18	R2	10	3.0	11	3.0	0.482	8.4	LOS A	3.2	81.9	0.46	0.30	0.46	31.5
Арр	roach	508	3.0	552	3.0	0.482	8.4	LOS A	3.2	81.9	0.46	0.30	0.46	25.3
Eas	t: Hill St													
1	L2	9	3.0	10	3.0	0.269	8.2	LOS A	1.2	29.8	0.63	0.63	0.63	32.3
6	T1	28	3.0	30	3.0	0.269	8.2	LOS A	1.2	29.8	0.63	0.63	0.63	32.4
16	R2	142	3.0	154	3.0	0.269	8.2	LOS A	1.2	29.8	0.63	0.63	0.63	24.9
Арр	roach	179	3.0	195	3.0	0.269	8.2	LOS A	1.2	29.8	0.63	0.63	0.63	26.9
Nor	th: Bay A	ve												
7	L2	75	3.0	82	3.0	0.436	7.5	LOS A	2.8	72.3	0.36	0.20	0.36	29.3
4	T1	377	3.0	410	3.0	0.436	7.5	LOS A	2.8	72.3	0.36	0.20	0.36	29.6
14	R2	31	3.0	34	3.0	0.436	7.5	LOS A	2.8	72.3	0.36	0.20	0.36	28.6
Арр	roach	483	3.0	525	3.0	0.436	7.5	LOS A	2.8	72.3	0.36	0.20	0.36	29.5
Wes	st: Retail	Dwy												
5	L2	43	3.0	47	3.0	0.139	6.0	LOS A	0.6	14.5	0.55	0.49	0.55	24.2
2	T1	19	3.0	21	3.0	0.139	6.0	LOS A	0.6	14.5	0.55	0.49	0.55	32.7
12	R2	39	3.0	42	3.0	0.139	6.0	LOS A	0.6	14.5	0.55	0.49	0.55	32.0
Арр	roach	101	3.0	110	3.0	0.139	6.0	LOS A	0.6	14.5	0.55	0.49	0.55	29.3
All \	/ehicles	1271	3.0	1382	3.0	0.482	7.8	LOS A	3.2	81.9	0.46	0.33	0.46	27.3

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Monday, January 6, 2025 2:04:01 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

MOVEMENT SUMMARY

V Site: 105 [Bay/Capitola (Site Folder: 2024 Existing AM)]

Alt 3 Roundabout Site Category: Base Year Roundabout

Vehicle Movement Performance														
Mov ID	' Turn	INP VOLU [Total veh/h		DEMA FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
Sou	th: Bay A	ve												
3	L2	27	3.0	29	3.0	0.407	7.8	LOS A	2.3	59.4	0.51	0.38	0.51	32.4
8	T1	312	3.0	339	3.0	0.407	7.8	LOS A	2.3	59.4	0.51	0.38	0.51	32.5
18	R2	55	3.0	60	3.0	0.407	7.8	LOS A	2.3	59.4	0.51	0.38	0.51	31.9
Арр	roach	394	3.0	428	3.0	0.407	7.8	LOS A	2.3	59.4	0.51	0.38	0.51	32.4
Eas	t: Capitol	a Ave												
1	L2	83	3.0	90	3.0	0.283	7.4	LOS A	1.3	33.3	0.58	0.53	0.58	32.0
6	T1	94	3.0	102	3.0	0.283	7.4	LOS A	1.3	33.3	0.58	0.53	0.58	32.1
16	R2	42	3.0	46	3.0	0.283	7.4	LOS A	1.3	33.3	0.58	0.53	0.58	31.4
Арр	roach	219	3.0	238	3.0	0.283	7.4	LOS A	1.3	33.3	0.58	0.53	0.58	31.9
Nort	th: Bay A	ve												
7	L2	74	3.0	80	3.0	0.394	7.6	LOS A	2.2	57.0	0.49	0.36	0.49	32.3
4	T1	183	3.0	199	3.0	0.394	7.6	LOS A	2.2	57.0	0.49	0.36	0.49	32.4
14	R2	128	3.0	139	3.0	0.394	7.6	LOS A	2.2	57.0	0.49	0.36	0.49	31.7
Арр	roach	385	3.0	418	3.0	0.394	7.6	LOS A	2.2	57.0	0.49	0.36	0.49	32.1
Wes	st: Capito	la Ave												
5	L2	70	3.0	76	3.0	0.171	5.6	LOS A	0.7	19.0	0.50	0.41	0.50	32.6
2	T1	67	3.0	73	3.0	0.171	5.6	LOS A	0.7	19.0	0.50	0.41	0.50	32.7
12	R2	6	3.0	7	3.0	0.171	5.6	LOS A	0.7	19.0	0.50	0.41	0.50	32.0
Арр	roach	143	3.0	155	3.0	0.171	5.6	LOS A	0.7	19.0	0.50	0.41	0.50	32.6
All \	/ehicles	1141	3.0	1240	3.0	0.407	7.4	LOS A	2.3	59.4	0.52	0.41	0.52	32.3

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Monday, January 6, 2025 2:04:02 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

MOVEMENT SUMMARY

W Site: 106 [Bay/Monterey (Site Folder: 2024 Existing AM)]

Alt 3 Roundabout Site Category: Base Year Roundabout

Vehi	cle Mo	ovement	Perform	nance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c	Aver. Delay sec	Level of Service		ACK OF EUE Dist] ft	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
South	: Mont	erey Ave	/0	VEN/II	70	v/c	360	_	VEIT	п	_		_	mph
8 18	T1 R2	162 61	3.0 3.0	176 66	3.0 3.0	0.232 0.232	5.7 5.7	LOS A LOS A	1.1 1.1	28.3 28.3	0.43 0.43	0.31 0.31	0.43 0.43	31.2 30.1
Appro	bach	223	3.0	242	3.0	0.232	5.7	LOS A	1.1	28.3	0.43	0.31	0.43	30.9
East:	Monte	rey Ave												
1 16	L2 R2	87 282	3.0 3.0	95 307	3.0 3.0	0.360 0.360	6.8 6.8	LOS A LOS A	2.0 2.0	51.5 51.5	0.43 0.43	0.29 0.29	0.43 0.43	27.2 32.0
Appro	bach	369	3.0	401	3.0	0.360	6.8	LOS A	2.0	51.5	0.43	0.29	0.43	31.1
North	: Bay A	Ave												
7	L2	219	3.0	238	3.0	0.271	5.4	LOS A	1.4	36.7	0.28	0.15	0.28	32.2
4	T1	84	3.0	91	3.0	0.271	5.4	LOS A	1.4	36.7	0.28	0.15	0.28	27.6
Appro	bach	303	3.0	329	3.0	0.271	5.4	LOS A	1.4	36.7	0.28	0.15	0.28	31.2
All Ve	hicles	895	3.0	973	3.0	0.360	6.1	LOS A	2.0	51.5	0.38	0.25	0.38	31.1

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Monday, January 6, 2025 2:21:26 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

V Site: 107 [Monterey/Park (Site Folder: 2024 Existing AM)]

Alt 3 Roundabout Site Category: Base Year Roundabout

Veh	icle Mo	vement	Perform	nance										
Mov ID	• Turn	INP VOLU [Total veh/h		DEM/ FLO ^v [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
Sou	th: Monte	erey Ave												
3	L2	1	3.0	1	3.0	0.300	5.6	LOS A	1.7	42.8	0.22	0.09	0.22	31.1
8	T1	123	3.0	134	3.0	0.300	5.6	LOS A	1.7	42.8	0.22	0.09	0.22	12.9
18	R2	225	3.0	245	3.0	0.300	5.6	LOS A	1.7	42.8	0.22	0.09	0.22	30.2
Арр	roach	349	3.0	379	3.0	0.300	5.6	LOS A	1.7	42.8	0.22	0.09	0.22	26.0
Eas	t: Park A	ve												
1	L2	418	3.0	454	3.0	0.488	8.4	LOS A	3.3	84.5	0.45	0.28	0.45	25.2
6	T1	3	3.0	3	3.0	0.488	8.4	LOS A	3.3	84.5	0.45	0.28	0.45	30.9
16	R2	100	3.0	109	3.0	0.488	8.4	LOS A	3.3	84.5	0.45	0.28	0.45	25.5
Арр	roach	521	3.0	566	3.0	0.488	8.4	LOS A	3.3	84.5	0.45	0.28	0.45	25.3
Nor	th: Monte	erey Ave												
7	L2	41	3.0	45	3.0	0.225	6.7	LOS A	1.0	25.2	0.56	0.51	0.56	29.5
4	T1	126	3.0	137	3.0	0.225	6.7	LOS A	1.0	25.2	0.56	0.51	0.56	16.3
14	R2	4	3.0	4	3.0	0.225	6.7	LOS A	1.0	25.2	0.56	0.51	0.56	28.8
Арр	roach	171	3.0	186	3.0	0.225	6.7	LOS A	1.0	25.2	0.56	0.51	0.56	21.9
Wes	st: Parkin	g Dwy												
5	L2	1	3.0	1	3.0	0.017	5.4	LOS A	0.1	1.7	0.56	0.44	0.56	25.2
2	T1	9	3.0	10	3.0	0.017	5.4	LOS A	0.1	1.7	0.56	0.44	0.56	33.6
12	R2	1	3.0	1	3.0	0.017	5.4	LOS A	0.1	1.7	0.56	0.44	0.56	28.9
Арр	roach	11	3.0	12	3.0	0.017	5.4	LOS A	0.1	1.7	0.56	0.44	0.56	32.7
All \	/ehicles	1052	3.0	1143	3.0	0.488	7.2	LOS A	3.3	84.5	0.39	0.26	0.39	25.3

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Monday, January 6, 2025 2:21:34 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

V Site: 104 [Bay/Hill (Site Folder: 2024 Existing PM)]

Alt 3 Roundabout Site Category: Base Year Roundabout

Veł	nicle Mo	vement	Perforn	nance										
Mov ID	/ Turn	INP VOLL [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
Sou	th: Bay A	ve												
3	L2	46	3.0	50	3.0	0.419	8.5	LOS A	2.3	59.1	0.57	0.48	0.57	32.0
8	T1	307	3.0	334	3.0	0.419	8.5	LOS A	2.3	59.1	0.57	0.48	0.57	23.9
18	R2	21	3.0	23	3.0	0.419	8.5	LOS A	2.3	59.1	0.57	0.48	0.57	31.4
Арр	roach	374	3.0	407	3.0	0.419	8.5	LOS A	2.3	59.1	0.57	0.48	0.57	25.7
Eas	t: Hill St													
1	L2	18	3.0	20	3.0	0.171	6.2	LOS A	0.7	18.4	0.55	0.50	0.55	33.0
6	T1	33	3.0	36	3.0	0.171	6.2	LOS A	0.7	18.4	0.55	0.50	0.55	33.1
16	R2	76	3.0	83	3.0	0.171	6.2	LOS A	0.7	18.4	0.55	0.50	0.55	25.8
Арр	roach	127	3.0	138	3.0	0.171	6.2	LOS A	0.7	18.4	0.55	0.50	0.55	29.3
Nor	th: Bay A	ve												
7	L2	146	3.0	159	3.0	0.634	11.2	LOS B	5.7	145.2	0.51	0.30	0.51	26.9
4	T1	505	3.0	549	3.0	0.634	11.2	LOS B	5.7	145.2	0.51	0.30	0.51	27.1
14	R2	49	3.0	53	3.0	0.634	11.2	LOS B	5.7	145.2	0.51	0.30	0.51	26.2
Арр	roach	700	3.0	761	3.0	0.634	11.2	LOS B	5.7	145.2	0.51	0.30	0.51	27.0
We	st: Retail	Dwy												
5	L2	92	3.0	100	3.0	0.385	11.3	LOS B	1.9	49.0	0.71	0.76	0.88	22.0
2	T1	45	3.0	49	3.0	0.385	11.3	LOS B	1.9	49.0	0.71	0.76	0.88	30.4
12	R2	84	3.0	91	3.0	0.385	11.3	LOS B	1.9	49.0	0.71	0.76	0.88	29.8
Арр	roach	221	3.0	240	3.0	0.385	11.3	LOS B	1.9	49.0	0.71	0.76	0.88	27.1
All	/ehicles	1422	3.0	1546	3.0	0.634	10.1	LOS B	5.7	145.2	0.56	0.44	0.59	26.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Monday, January 6, 2025 2:05:36 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

V Site: 105 [Bay/Capitola (Site Folder: 2024 Existing PM)]

Alt 3 Roundabout Site Category: Base Year Roundabout

Vel	nicle Mo	vement	Perform	nance										
Mov ID	/ Turn	INP VOLU [Total veh/h		DEM/ FLO ^V [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
Sou	th: Bay A	ve												
3	L2	29	3.0	32	3.0	0.260	5.9	LOS A	1.3	32.7	0.44	0.31	0.44	33.2
8	T1	200	3.0	217	3.0	0.260	5.9	LOS A	1.3	32.7	0.44	0.31	0.44	33.3
18	R2	23	3.0	25	3.0	0.260	5.9	LOS A	1.3	32.7	0.44	0.31	0.44	32.6
Арр	roach	252	3.0	274	3.0	0.260	5.9	LOS A	1.3	32.7	0.44	0.31	0.44	33.3
Eas	t: Capitol	a Ave												
1	L2	61	3.0	66	3.0	0.188	5.6	LOS A	0.8	21.3	0.48	0.38	0.48	32.8
6	T1	72	3.0	78	3.0	0.188	5.6	LOS A	0.8	21.3	0.48	0.38	0.48	33.0
16	R2	31	3.0	34	3.0	0.188	5.6	LOS A	0.8	21.3	0.48	0.38	0.48	32.3
Арр	roach	164	3.0	178	3.0	0.188	5.6	LOS A	0.8	21.3	0.48	0.38	0.48	32.8
Nor	th: Bay A	ve												
7	L2	56	3.0	61	3.0	0.505	9.0	LOS A	3.4	86.4	0.51	0.36	0.51	31.8
4	T1	337	3.0	366	3.0	0.505	9.0	LOS A	3.4	86.4	0.51	0.36	0.51	31.9
14	R2	124	3.0	135	3.0	0.505	9.0	LOS A	3.4	86.4	0.51	0.36	0.51	31.2
Арр	roach	517	3.0	562	3.0	0.505	9.0	LOS A	3.4	86.4	0.51	0.36	0.51	31.7
We	st: Capito	la Ave												
5	L2	72	3.0	78	3.0	0.223	6.9	LOS A	1.0	24.7	0.58	0.54	0.58	32.1
2	T1	84	3.0	91	3.0	0.223	6.9	LOS A	1.0	24.7	0.58	0.54	0.58	32.2
12	R2	8	3.0	9	3.0	0.223	6.9	LOS A	1.0	24.7	0.58	0.54	0.58	31.5
Арр	roach	164	3.0	178	3.0	0.223	6.9	LOS A	1.0	24.7	0.58	0.54	0.58	32.1
All	/ehicles	1097	3.0	1192	3.0	0.505	7.5	LOS A	3.4	86.4	0.50	0.38	0.50	32.3

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Monday, January 6, 2025 2:06:34 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

W Site: 106 [Bay/Monterey (Site Folder: 2024 Existing PM)]

Alt 3 Roundabout Site Category: Base Year Roundabout

Vehi	cle Mo	ovement	Perfor	nance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
South	: Mont	erey Ave												
8 18 Appro	T1 R2 bach	124 85 209	3.0 3.0 3.0	135 92 227	3.0 3.0 3.0	0.240 0.240 0.240	6.2 6.2 6.2	LOS A LOS A LOS A	1.1 1.1 1.1	28.4 28.4 28.4	0.50 0.50 0.50	0.41 0.41 0.41	0.50 0.50 0.50	30.8 29.7 30.4
East:	Monte	rey Ave												
1 16 Appro	L2 R2 bach	35 104 139	3.0 3.0 3.0	38 113 151	3.0 3.0 3.0	0.130 0.130 0.130	4.2 4.2 4.2	LOS A LOS A LOS A	0.6 0.6 0.6	14.9 14.9 14.9	0.30 0.30 0.30	0.16 0.16 0.16	0.30 0.30 0.30	28.8 33.2 32.4
North	: Bay A	Ave												
7 4 Appro	L2 T1	304 141 445	3.0 3.0 3.0	330 153 484	3.0 3.0 3.0	0.376 0.376 0.376	6.3 6.3 6.3	LOS A LOS A LOS A	2.3 2.3 2.3	60.0 60.0 60.0	0.20 0.20 0.20	0.07 0.07 0.07	0.20 0.20 0.20	31.9 27.2 30.7
All Ve	hicles	793	3.0	862	3.0	0.376	5.9	LOS A	2.3	60.0	0.29	0.18	0.29	31.0

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Monday, January 6, 2025 2:30:21 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

V Site: 107 [Monterey/Park (Site Folder: 2024 Existing PM)]

Alt 3 Roundabout Site Category: Base Year Roundabout

Veh	icle Mo	vement	Perform	nance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO ^v [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
Sout	h: Monte	erey Ave												
3	L2	1	3.0	1	3.0	0.604	10.5	LOS B	5.1	129.9	0.49	0.29	0.49	27.7
8	T1	165	3.0	179	3.0	0.604	10.5	LOS B	5.1	129.9	0.49	0.29	0.49	10.6
18	R2	498	3.0	541	3.0	0.604	10.5	LOS B	5.1	129.9	0.49	0.29	0.49	27.0
Аррі	roach	664	3.0	722	3.0	0.604	10.5	LOS B	5.1	129.9	0.49	0.29	0.49	24.2
East	: Park A	ve												
1	L2	203	3.0	221	3.0	0.242	5.5	LOS A	1.2	30.3	0.39	0.26	0.39	26.7
6	T1	3	3.0	3	3.0	0.242	5.5	LOS A	1.2	30.3	0.39	0.26	0.39	32.1
16	R2	39	3.0	42	3.0	0.242	5.5	LOS A	1.2	30.3	0.39	0.26	0.39	27.0
Аррі	roach	245	3.0	266	3.0	0.242	5.5	LOS A	1.2	30.3	0.39	0.26	0.39	26.8
Nort	h: Monte	erey Ave												
7	L2	92	3.0	100	3.0	0.181	5.1	LOS A	0.8	21.1	0.40	0.28	0.40	29.9
4	T1	83	3.0	90	3.0	0.181	5.1	LOS A	0.8	21.1	0.40	0.28	0.40	16.9
14	R2	1	3.0	1	3.0	0.181	5.1	LOS A	0.8	21.1	0.40	0.28	0.40	29.1
Аррі	roach	176	3.0	191	3.0	0.181	5.1	LOS A	0.8	21.1	0.40	0.28	0.40	26.0
Wes	t: Parkin	g Dwy												
5	L2	5	3.0	5	3.0	0.014	4.3	LOS A	0.1	1.4	0.47	0.31	0.47	25.1
2	T1	3	3.0	3	3.0	0.014	4.3	LOS A	0.1	1.4	0.47	0.31	0.47	33.5
12	R2	3	3.0	3	3.0	0.014	4.3	LOS A	0.1	1.4	0.47	0.31	0.47	28.6
Аррі	roach	11	3.0	12	3.0	0.014	4.3	LOS A	0.1	1.4	0.47	0.31	0.47	28.7
All V	éhicles	1096	3.0	1191	3.0	0.604	8.5	LOS A	5.1	129.9	0.45	0.28	0.45	25.2

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Monday, January 6, 2025 2:30:25 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

W Site: 104 [Bay/Hill (Site Folder: 2045 Cumulative AM)]

Alt 3 Roundabout Site Category: Future Conditions 1 Roundabout

Veł	nicle Mo	vement	Perform	nance										
Mov ID	/ Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	ACK OF EUE Dist] ft	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
Sou	th: Bay A	ve												
3	L2	57	3.0	62	3.0	0.336	6.4	LOS A	1.9	47.5	0.39	0.24	0.39	32.9
8	T1	293	3.0	318	3.0	0.336	6.4	LOS A	1.9	47.5	0.39	0.24	0.39	24.8
18	R2	4	3.0	4	3.0	0.336	6.4	LOS A	1.9	47.5	0.39	0.24	0.39	32.3
Арр	roach	354	3.0	385	3.0	0.336	6.4	LOS A	1.9	47.5	0.39	0.24	0.39	26.5
Eas	t: Hill St													
1	L2	13	3.0	14	3.0	0.139	5.6	LOS A	0.6	14.8	0.52	0.44	0.52	33.4
6	T1	28	3.0	30	3.0	0.139	5.6	LOS A	0.6	14.8	0.52	0.44	0.52	33.5
16	R2	68	3.0	74	3.0	0.139	5.6	LOS A	0.6	14.8	0.52	0.44	0.52	26.2
Арр	roach	109	3.0	118	3.0	0.139	5.6	LOS A	0.6	14.8	0.52	0.44	0.52	29.5
Nor	th: Bay A	ve												
7	L2	75	3.0	82	3.0	0.703	13.3	LOS B	7.2	185.3	0.59	0.35	0.59	26.0
4	T1	669	3.0	727	3.0	0.703	13.3	LOS B	7.2	185.3	0.59	0.35	0.59	26.1
14	R2	31	3.0	34	3.0	0.703	13.3	LOS B	7.2	185.3	0.59	0.35	0.59	25.3
Арр	roach	775	3.0	842	3.0	0.703	13.3	LOS B	7.2	185.3	0.59	0.35	0.59	26.1
We	st: Retail	Dwy												
5	L2	43	3.0	47	3.0	0.195	8.9	LOS A	0.8	19.3	0.66	0.66	0.66	22.9
2	T1	19	3.0	21	3.0	0.195	8.9	LOS A	0.8	19.3	0.66	0.66	0.66	31.4
12	R2	39	3.0	42	3.0	0.195	8.9	LOS A	0.8	19.3	0.66	0.66	0.66	30.7
Арр	roach	101	3.0	110	3.0	0.195	8.9	LOS A	0.8	19.3	0.66	0.66	0.66	28.0
All ۱	/ehicles	1339	3.0	1455	3.0	0.703	10.5	LOS B	7.2	185.3	0.54	0.35	0.54	26.7

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Monday, January 6, 2025 2:10:27 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

W Site: 105 [Bay/Capitola (Site Folder: 2045 Cumulative AM)]

Alt 3 Roundabout Site Category: Future Conditions 1 Roundabout

Ve	hicle Mo	vement	Perform	nance										
Mo ID	v Turn	INP VOLL [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
So	uth: Bay A		/0	Voli/II		0/0			Von	10				mpri
3	L2	27	3.0	29	3.0	0.410	7.9	LOS A	2.3	59.8	0.52	0.39	0.52	32.3
8	T1	312	3.0	339	3.0	0.410	7.9	LOS A	2.3	59.8	0.52	0.39	0.52	32.5
18	R2	55	3.0	60	3.0	0.410	7.9	LOS A	2.3	59.8	0.52	0.39	0.52	31.8
Ар	oroach	394	3.0	428	3.0	0.410	7.9	LOS A	2.3	59.8	0.52	0.39	0.52	32.4
Eas	st: Capitol	a Ave												
1	L2	83	3.0	90	3.0	0.286	7.5	LOS A	1.3	33.5	0.59	0.54	0.59	31.9
6	T1	94	3.0	102	3.0	0.286	7.5	LOS A	1.3	33.5	0.59	0.54	0.59	32.1
16	R2	42	3.0	46	3.0	0.286	7.5	LOS A	1.3	33.5	0.59	0.54	0.59	31.4
Ар	oroach	219	3.0	238	3.0	0.286	7.5	LOS A	1.3	33.5	0.59	0.54	0.59	31.9
No	rth: Bay A	ve												
7	L2	74	3.0	80	3.0	0.394	7.6	LOS A	2.2	57.0	0.49	0.36	0.49	32.3
4	T1	183	3.0	199	3.0	0.394	7.6	LOS A	2.2	57.0	0.49	0.36	0.49	32.4
14	R2	128	3.0	139	3.0	0.394	7.6	LOS A	2.2	57.0	0.49	0.36	0.49	31.7
Ap	oroach	385	3.0	418	3.0	0.394	7.6	LOS A	2.2	57.0	0.49	0.36	0.49	32.1
We	st: Capito	la Ave												
5	L2	78	3.0	85	3.0	0.181	5.7	LOS A	0.8	20.2	0.50	0.41	0.50	32.5
2	T1	67	3.0	73	3.0	0.181	5.7	LOS A	0.8	20.2	0.50	0.41	0.50	32.6
12	R2	6	3.0	7	3.0	0.181	5.7	LOS A	0.8	20.2	0.50	0.41	0.50	31.9
Ар	oroach	151	3.0	164	3.0	0.181	5.7	LOS A	0.8	20.2	0.50	0.41	0.50	32.5
All	Vehicles	1149	3.0	1249	3.0	0.410	7.4	LOS A	2.3	59.8	0.52	0.41	0.52	32.2

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Monday, January 6, 2025 2:11:46 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

W Site: 106 [Bay/Monterey (Site Folder: 2045 Cumulative AM)]

Alt 3 Roundabout Site Category: Future Conditions 1 Roundabout

Vehic	cle Mo	vement	Perform	nance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] ft	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
South	: Mont	erey Ave												
8 18	T1 R2	162 61	3.0 3.0	176 66	3.0 3.0	0.232	5.7 5.7	LOS A LOS A	1.1 1.1	28.3 28.3	0.43 0.43	0.31 0.31	0.43 0.43	31.2 30.1
Appro East:		223 rey Ave	3.0	242	3.0	0.232	5.7	LOS A	1.1	28.3	0.43	0.31	0.43	30.9
1 16	L2 R2	87 282	3.0 3.0	95 307	3.0 3.0	0.360 0.360	6.8 6.8	LOS A LOS A	2.0 2.0	51.5 51.5	0.43 0.43	0.29 0.29	0.43 0.43	27.2 32.0
Appro		369	3.0	401	3.0	0.360	6.8	LOS A	2.0	51.5	0.43	0.29	0.43	31.1
North	: Bay A	ve												
7	L2	219	3.0	238	3.0	0.410	7.1	LOS A	2.6	66.0	0.34	0.18	0.34	31.9
4	T1	239	3.0	260	3.0	0.410	7.1	LOS A	2.6	66.0	0.34	0.18	0.34	27.2
Appro	ach	458	3.0	498	3.0	0.410	7.1	LOS A	2.6	66.0	0.34	0.18	0.34	29.9
All Ve	hicles	1050	3.0	1141	3.0	0.410	6.7	LOS A	2.6	66.0	0.39	0.25	0.39	30.6

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Monday, January 6, 2025 2:22:02 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

V Site: 107 [Monterey/Park (Site Folder: 2045 Cumulative AM)]

Alt 3 Roundabout Site Category: Future Conditions 1 Roundabout

Veh	icle Mo	vement	Perform	nance										
Mov ID	r Turn	INP VOLU [Total veh/h		DEM/ FLO ^V [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
Sou	th: Monte		70	VCH/H	70	V/C	300	_	VCII	1.	_		_	тірії
3	L2	1	3.0	1	3.0	0.374	7.3	LOS A	2.1	52.6	0.49	0.36	0.49	29.8
8	T1	123	3.0	134	3.0	0.374	7.3	LOS A	2.1	52.6	0.49	0.36	0.49	12.0
18	R2	238	3.0	259	3.0	0.374	7.3	LOS A	2.1	52.6	0.49	0.36	0.49	29.0
Арр	roach	362	3.0	393	3.0	0.374	7.3	LOS A	2.1	52.6	0.49	0.36	0.49	25.0
Eas	t: Park A	ve												
1	L2	418	3.0	454	3.0	0.488	8.4	LOS A	3.3	84.5	0.45	0.28	0.45	25.2
6	T1	3	3.0	3	3.0	0.488	8.4	LOS A	3.3	84.5	0.45	0.28	0.45	30.9
16	R2	100	3.0	109	3.0	0.488	8.4	LOS A	3.3	84.5	0.45	0.28	0.45	25.5
Арр	roach	521	3.0	566	3.0	0.488	8.4	LOS A	3.3	84.5	0.45	0.28	0.45	25.3
Nor	th: Monte	erey Ave												
7	L2	201	3.0	218	3.0	0.428	9.7	LOS A	2.5	63.3	0.66	0.67	0.76	26.8
4	T1	121	3.0	132	3.0	0.428	9.7	LOS A	2.5	63.3	0.66	0.67	0.76	13.7
14	R2	4	3.0	4	3.0	0.428	9.7	LOS A	2.5	63.3	0.66	0.67	0.76	26.2
Арр	roach	326	3.0	354	3.0	0.428	9.7	LOS A	2.5	63.3	0.66	0.67	0.76	23.7
Wes	st: Parkin	g Dwy												
5	L2	1	3.0	1	3.0	0.021	6.5	LOS A	0.1	1.9	0.61	0.52	0.61	24.7
2	T1	9	3.0	10	3.0	0.021	6.5	LOS A	0.1	1.9	0.61	0.52	0.61	33.1
12	R2	1	3.0	1	3.0	0.021	6.5	LOS A	0.1	1.9	0.61	0.52	0.61	28.2
Арр	roach	11	3.0	12	3.0	0.021	6.5	LOS A	0.1	1.9	0.61	0.52	0.61	32.2
All \	/ehicles	1220	3.0	1326	3.0	0.488	8.4	LOS A	3.3	84.5	0.52	0.41	0.55	24.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Monday, January 6, 2025 2:22:09 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

V Site: 104 [Bay/Hill (Site Folder: 2045 Cumulative PM)]

Alt 3 Roundabout Site Category: Future Conditions 1 Roundabout

Vehi	icle Mo	vement	Perform	nance										
Mov ID	Turn	INP VOLU [Total veh/h		DEMA FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
Sout	h: Bay A	ve												
3	L2	46	3.0	50	3.0	0.893	29.6	LOS D	28.3	725.6	1.00	1.60	2.56	24.6
8	T1	717	3.0	779	3.0	0.893	29.6	LOS D	28.3	725.6	1.00	1.60	2.56	17.1
18	R2	34	3.0	37	3.0	0.893	29.6	LOS D	28.3	725.6	1.00	1.60	2.56	24.3
Appr	oach	797	3.0	866	3.0	0.893	29.6	LOS D	28.3	725.6	1.00	1.60	2.56	18.0
East	: Hill St													
1	L2	22	3.0	24	3.0	0.532	17.6	LOS C	3.0	77.9	0.79	0.93	1.26	28.3
6	T1	33	3.0	36	3.0	0.532	17.6	LOS C	3.0	77.9	0.79	0.93	1.26	28.4
16	R2	192	3.0	209	3.0	0.532	17.6	LOS C	3.0	77.9	0.79	0.93	1.26	20.9
Appr	oach	247	3.0	268	3.0	0.532	17.6	LOS C	3.0	77.9	0.79	0.93	1.26	22.9
North	h: Bay A	ve												
7	L2	146	3.0	159	3.0	0.755	15.4	LOS C	8.7	223.1	0.68	0.41	0.68	24.7
4	T1	634	3.0	689	3.0	0.755	15.4	LOS C	8.7	223.1	0.68	0.41	0.68	24.9
14	R2	49	3.0	53	3.0	0.755	15.4	LOS C	8.7	223.1	0.68	0.41	0.68	24.2
Appr	oach	829	3.0	901	3.0	0.755	15.4	LOS C	8.7	223.1	0.68	0.41	0.68	24.8
West	t: Retail	Dwy												
5	L2	92	3.0	100	3.0	0.448	14.3	LOS B	2.3	59.8	0.75	0.85	1.07	20.9
2	T1	45	3.0	49	3.0	0.448	14.3	LOS B	2.3	59.8	0.75	0.85	1.07	29.2
12	R2	84	3.0	91	3.0	0.448	14.3	LOS B	2.3	59.8	0.75	0.85	1.07	28.6
Appr	oach	221	3.0	240	3.0	0.448	14.3	LOS B	2.3	59.8	0.75	0.85	1.07	26.0
All V	ehicles	2094	3.0	2276	3.0	0.893	21.0	LOS C	28.3	725.6	0.82	0.97	1.50	21.7

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Monday, January 6, 2025 2:14:47 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

W Site: 105 [Bay/Capitola (Site Folder: 2045 Cumulative PM)]

Alt 3 Roundabout Site Category: Future Conditions 1 Roundabout

Ve	nicle Mo	vement	Perform	nance										
Mo [*] ID	v Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
Sou	uth: Bay A	ve												
3	L2	29	3.0	32	3.0	0.293	6.9	LOS A	1.4	36.1	0.53	0.45	0.53	32.7
8	T1	200	3.0	217	3.0	0.293	6.9	LOS A	1.4	36.1	0.53	0.45	0.53	32.9
18	R2	23	3.0	25	3.0	0.293	6.9	LOS A	1.4	36.1	0.53	0.45	0.53	32.2
Арр	broach	252	3.0	274	3.0	0.293	6.9	LOS A	1.4	36.1	0.53	0.45	0.53	32.8
Eas	st: Capito	a Ave												
1	L2	17	3.0	18	3.0	0.203	6.5	LOS A	0.9	22.4	0.55	0.50	0.55	33.0
6	T1	65	3.0	71	3.0	0.203	6.5	LOS A	0.9	22.4	0.55	0.50	0.55	33.1
16	R2	73	3.0	79	3.0	0.203	6.5	LOS A	0.9	22.4	0.55	0.50	0.55	32.4
Арр	broach	155	3.0	168	3.0	0.203	6.5	LOS A	0.9	22.4	0.55	0.50	0.55	32.7
Nor	th: Bay A	ve												
7	L2	61	3.0	66	3.0	0.524	9.0	LOS A	3.8	97.2	0.45	0.27	0.45	31.8
4	T1	337	3.0	366	3.0	0.524	9.0	LOS A	3.8	97.2	0.45	0.27	0.45	31.9
14	R2	171	3.0	186	3.0	0.524	9.0	LOS A	3.8	97.2	0.45	0.27	0.45	31.2
Арр	broach	569	3.0	618	3.0	0.524	9.0	LOS A	3.8	97.2	0.45	0.27	0.45	31.7
We	st: Capito	la Ave												
5	L2	190	3.0	207	3.0	0.340	8.2	LOS A	1.6	41.6	0.61	0.57	0.61	31.0
2	T1	63	3.0	68	3.0	0.340	8.2	LOS A	1.6	41.6	0.61	0.57	0.61	31.1
12	R2	8	3.0	9	3.0	0.340	8.2	LOS A	1.6	41.6	0.61	0.57	0.61	30.5
App	broach	261	3.0	284	3.0	0.340	8.2	LOS A	1.6	41.6	0.61	0.57	0.61	31.0
All	Vehicles	1237	3.0	1345	3.0	0.524	8.1	LOS A	3.8	97.2	0.51	0.40	0.51	31.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Monday, January 6, 2025 2:16:42 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

W Site: 106 [Bay/Monterey (Site Folder: 2045 Cumulative PM)]

Alt 3 Roundabout Site Category: Future Conditions 1 Roundabout

Vehi	cle Mo	ovement	Perform	nance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] ft	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
South	n: Mont	erey Ave												
8 18	T1 R2	305 85	3.0 3.0	332 92	3.0 3.0	0.448 0.448	9.1 9.1	LOS A LOS A	2.5 2.5	64.2 64.2	0.61 0.61	0.52 0.52	0.61 0.61	28.8 27.9
Appro	bach	390	3.0	424	3.0	0.448	9.1	LOS A	2.5	64.2	0.61	0.52	0.61	28.6
East:	Monte	rey Ave												
1 16	L2 R2	35 104	3.0 3.0	38 113	3.0 3.0	0.160 0.160	5.3 5.3	LOS A LOS A	0.7 0.7	17.8 17.8	0.47 0.47	0.37 0.37	0.47 0.47	28.1 32.6
Appro	bach	139	3.0	151	3.0	0.160	5.3	LOS A	0.7	17.8	0.47	0.37	0.47	31.8
North	: Bay A	ve												
7	L2	304	3.0	330	3.0	0.469	7.6	LOS A	3.4	86.4	0.23	0.09	0.23	31.6
4	T1	251	3.0	273	3.0	0.469	7.6	LOS A	3.4	86.4	0.23	0.09	0.23	26.8
Appro	bach	555	3.0	603	3.0	0.469	7.6	LOS A	3.4	86.4	0.23	0.09	0.23	29.8
All Ve	hicles	1084	3.0	1178	3.0	0.469	7.8	LOS A	3.4	86.4	0.39	0.28	0.40	29.8

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Monday, January 6, 2025 2:22:17 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

V Site: 107 [Monterey/Park (Site Folder: 2045 Cumulative PM)]

Alt 3 Roundabout Site Category: Future Conditions 1 Roundabout

Ve	nicle Mo	vement	Perform	mance										
Mo ID	v Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] ft	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
So	uth: Monte													
3	L2	1	3.0	1	3.0	0.792	18.9	LOS C	18.9	483.9	0.88	1.07	1.60	23.4
8	T1	148	3.0	161	3.0	0.792	18.9	LOS C	18.9	483.9	0.88	1.07	1.60	8.2
18	R2	619	3.0	673	3.0	0.792	18.9	LOS C	18.9	483.9	0.88	1.07	1.60	22.9
Ар	broach	768	3.0	835	3.0	0.792	18.9	LOS C	18.9	483.9	0.88	1.07	1.60	20.8
Eas	st: Park A	ve												
1	L2	203	3.0	221	3.0	0.428	7.7	LOS A	2.6	66.9	0.45	0.31	0.45	26.2
6	T1	3	3.0	3	3.0	0.428	7.7	LOS A	2.6	66.9	0.45	0.31	0.45	31.8
16	R2	237	3.0	258	3.0	0.428	7.7	LOS A	2.6	66.9	0.45	0.31	0.45	26.6
App	broach	443	3.0	482	3.0	0.428	7.7	LOS A	2.6	66.9	0.45	0.31	0.45	26.5
No	th: Monte	erey Ave												
7	L2	202	3.0	220	3.0	0.294	6.3	LOS A	1.5	38.2	0.45	0.32	0.45	28.6
4	T1	83	3.0	90	3.0	0.294	6.3	LOS A	1.5	38.2	0.45	0.32	0.45	15.7
14	R2	1	3.0	1	3.0	0.294	6.3	LOS A	1.5	38.2	0.45	0.32	0.45	27.9
Ap	broach	286	3.0	311	3.0	0.294	6.3	LOS A	1.5	38.2	0.45	0.32	0.45	26.4
We	st: Parkin	g Dwy												
5	L2	5	3.0	5	3.0	0.016	4.8	LOS A	0.1	1.5	0.52	0.38	0.52	24.8
2	T1	3	3.0	3	3.0	0.016	4.8	LOS A	0.1	1.5	0.52	0.38	0.52	33.2
12	R2	3	3.0	3	3.0	0.016	4.8	LOS A	0.1	1.5	0.52	0.38	0.52	28.3
Ар	broach	11	3.0	12	3.0	0.016	4.8	LOS A	0.1	1.5	0.52	0.38	0.52	28.4
All	Vehicles	1508	3.0	1639	3.0	0.792	13.1	LOS B	18.9	483.9	0.67	0.70	1.04	23.4

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Monday, January 6, 2025 2:22:23 PM Project: K:\SJC_TPTO\City of Capitola\097763143 - Bay Avenue Corridor Study\03 Analysis\Sidra\Bay Corridor_20250102.sip9

Bay Avenue Corridor Improvement Project

Existing 2024 VISSIM Results: Bay Ave Peak Hour Intersection Results

						ternative AWSC	1 AM				,	Alternative RAB	2 AM					Alternative AWSC					Δ	l ternative RAB	2 PM		
No.	Intersection	Movement	Vol	ume (vp	oh)	Avg. Delav	LOS	Avg. Queue	Max.	Volu	ume (vph)	Avg. Delav	LOS	Avg. Oueue	Max.	Volu	ume (vph)	Avg. Delav	LOS	Avg. Queue	Max.	Volu	ume (vph)	Avg.	LOS	Avg. Queue	Max.
			Count	Ser	ved	(sec)	LUS	(ft)	Queue (ft)	Count	Served	(sec)	LUS	(ft)	Queue (ft)	Count	Served	(sec)	LUS	(ft)	Queue (ft)	Count	Served	Delay (sec)	LUS	(ft)	Queue (ft)
		NBL NBT	369 516	377 518	2% 0%	17.0 0.9	B	33 33	220 219	369 516	379 3% 518 0%	17.9 1.0	B	35 35	218 218	290 401	291 0% 407 1%		B	28 28	184 184	290 401	290 0% 408 2%	18.7 1.0	B	29 29	200 200
	Davi Avia R. Llumi 1 ND	SBT	431	435	1%	13.0	В	41	258	431	435 1%	13.0	В	41	264	642	646 1%	14.3	В	40	255	642	646 1%	14.2	B	40	252
1	Bay Ave & Hwy 1 NB Ramps	SBR WBL	478 59	478 59	0% 0%	13.3 27.8	B	43	262 72	478 59	478 0% 59 0%	13.2	B C	43 8	268 72	316 107	315 0% 108 1%	10.0	B	39 15	259 110	316 107	315 0% 108 1%	10.1	BC	39 15	256 108
		WBT WBR	12	13	8% 1%	28.1	c	4	82	12	13 8% 108 1%	28.1	C	4	84	1	1 0% 197 1%	26.1	č	4	103	1	1 0% 197 1%	26.5	c	4	97
		Overall	107 1972	108 1988	1%	8.0 10.9	B	5	82	107 1972	108 1% 1990 1%	7.9 11.1	B	5	84	195 1952	197 1% 1965 1%		B	5	103	195 1952	197 1% 1965 1%	7.3 11.5	A B	5	97
		NBT NBR	572 111	585 112	2% 1%	17.4 7.4	B	45 46	252 255	572 111	586 2% 113 2%	18.1 8.0	B	47 48	259 262	457 91	458 0% 89 -2%		B	36 38	201 203	457 91	457 0% 89 -2%	17.9 8.1	B	35 37	204 207
		SBL	176	178	1%	34.6	C	36	170	176	177 1%	34.4	C	36	156	276	274 -1%	35.2	D	60	251	276	274 -1%	34.9	C	58	259
2	Bay Ave & Hwy 1 SB Ramps	SBT EBL	314 313	317 312	1% 0%	8.9 26.4	A C	36 29	171 139	314 313	316 1% 311 -1%	8.8 26.7	A C	36 29	157 135	473 234	480 1% 239 2%		B	60 140	250 704	473 234	480 1% 240 3%	9.7 29.7	A C	59 66	259 385
		EBT EBR	0 296	0300	-	0.0	AB	29 29	139 139	0 296	0 - 299 1%	0.0 10.4	AB	29 29	135 135	208 347	206 -1% 341 -2%	55.6	EC	140 140	704 704	208 347	208 0% 345 -1%	40.7 17.7	DB	66 66	385
		Overall	1782	1804	1% 1%	10.4 17.4	B	29	139	1782	1802 1%	10.4 17.7	B	29	135	347 2086	2087 0%		C	140	704	347 2086	2093 0%	21.4	C	66	385
		NBL NBT	1 616	1 625	0% 1%	6.5 0.1	A	0	26 14	1 616	1 0% 625 1%	3.5 0.2	A	0	23	4 462	3 -259 457 -1%		C	1	57 5	4 462	4 0% 457 -1%	13.4 0.2	BA	0	60 0
		NBR	9	8	-11%	0.8	Α	0	10	9	8 -11%	1.0	Α	0	10	9	8 -119	6 0.8	A	0	6	9	8 -11%	0.9	A	0	3
		SBL SBT	39 462	39 469	0% 2%	5.7 2.8	A	1 5	36 164	39 462	39 0% 469 2%	5.9 0.9	A	1	40 35	50 658	49 -2% 654 -1%		F	23 289	234 547	50 658	50 0% 665 1%	4.4	A	1 2	40 124
3	Bay Ave & Crossroads	SBR	109	109	0%	1.2	A	4	162	109	109 0%	1.2	A	0	71	112	108 -4%	58.2	F	288	545	112	110 -2%	1.4	A	2	121
3	Loop	EBL EBT	53 0	55 0	4% -	11.1 0.0	B	0	41 41	53 0	55 4% 0 -	12.6 0.0	B A	0	42 42	49 2	51 4% 2 0%		B	1	43 43	49 2	51 4% 2 0%	17.2 19.7	C C	1	45 45
		EBR WBL	21 0	23 0	10%	9.3 0.0	A	0	27 33	21 0	23 10% 0 -	8.4	A	0	27 34	38 4	37 -3%	- 5.5	A	0	35 48	38 4	37 -3% 4 0%	12.1 17.2	BC	0	43 44
		WBT	1	1	0%	15.5	ĉ	0	33	1	1 0%	23.9	ĉ	0	34	1	1 0%	17.8	C	2	48	1	1 0%	20.9	c	1	44
		WBR Overall	14 1325	17 1347	21%	8.0 15.5	A C	0	33	14 1325	17 21% 1347 2%	8.0 23.9	A C	0	34	37 1426	37 0% 1410 -1%	0.1	A	2	48	37 1426	37 0% 1426 0%	7.8 20.9	A C	1	43
		NBL	57	59	4%	9.4	A	1	45	57	59 4%	2.1	A	4	148	46	50 9%	7.2	A	1	44	46	49 7%	3.2	A	6	150
		NBT NBR	441 10	446 10	1% 0%	18.5 19.0	C C	51 47	252 252	441 10	446 1% 10 0%	2.2 1.8	A	4 4	148 148	307 21	302 -2% 20 -5%	9.3	B	13 9	129 129	307 21	302 -2% 21 0%	3.5 3.1	A	6 6	150 150
		SBL SBT	75 377	77 383	3% 2%	8.9 15.9	A	2 36	83 216	75 377	77 3% 383 2%	1.9	A	3	189 189	146 505	148 1% 498 -1%		C	7 121	210 228	146 505	150 3% 505 0%	2.7	A	8	203 203
		SBR	31	31	0%	14.8	B	34	216	31	31 0%	1.8	A	3	189	49	48 -2%	27.7	D	120	228	49	49 0%	2.4	Â	8	203
4	Bay Ave & Hill St	EBL EBT	43 19	43 20	0% 5%	10.2 12.2	B	2	61 62	43 19	43 0% 20 5%	5.6 5.0	A	1	58 58	92 45	92 0% 44 -2%		B	7	102 102	92 45	92 0% 44 -2%	10.3 10.1	B	9	143 143
		EBR	39	40	3%	9.5	A	1	62	39	40 3%	7.0	Α	1	58	84	86 2%	11.4	В	7	102	84	86 2%	12.4	В	9	143
		WBL WBT	9 28	9 27	0% -4%	13.2 12.9	B	3 3	95 95	9 28	9 0% 27 -4%	9.4 8.4	A	6 6	130 130	18 33	17 -6% 34 3%		B	2	66 66	18 33	18 0% 34 3%	6.6 5.3	A	2	83 83
		WBR Overall	142 1271	145 1290	2% 1%	11.0 15.0	B	5	95	142 1271	145 2% 1290 1%	8.4 9.4	A	6	130	76 1422	75 -1% 1414 -1%		B	2	66	76 1422	75 -1% 1425 0%	6.0 12.4	AB	2	83
		NBL	27	27	0%	8.8	A	1	38	27	27 0%	2.7	A	1	62	29	30 3%	8.7	A	1	39	29	30 3%	2.3	A	0	36
		NBT NBR	312 55	311 56	0% 2%	14.7 12.2	B	25 22	174 173	312 55	311 0% 56 2%	2.9	A	1	62 62	200 23	196 -2% 24 4%		A	6	84 84	200 23	196 -2% 24 4%	2.1 2.4	A	0	36 36
		SBL SBT	74 183	78 179	5% -2%	9.3 9.3	A	5 6	95 95	74 183	78 5% 180 -2%	2.6 2.7	A	3 3	167 167	56 337	56 0% 333 -1%	11.1	B B	14 18	166 166	56 337	56 0% 337 0%	2.3 2.4	A	4	168 168
	Bay Ave & Capitola	SBR	183	134	-2%	6.3	A	2	68	183	134 5%	2.7	A	3	167	124	126 2%	6.6	A	2	53	124	129 4%	2.5	A	4	168
5	Ave	EBL EBT	70 67	69 69	-1% 3%	11.7 11.7	B	3	65 65	70 67	69 -1% 69 3%	3.9 3.7	A	1 1	71 71	72 84	72 0% 88 5%		B	4	80 80	72 84	72 0% 88 5%	4.2 4.4	A	2	92 92
		EBR	6	6	0%	8.0	A	Ō	28	6	6 0%	2.7	A	0	28	8	8 0%	8.2	A	0	22	8	8 0%	2.4	A	Ō	19
		WBL WBT	83 94	83 96	0% 2%	13.0 13.9	BB	7 7	105 105	83 94	82 -1% 96 2%	4.2 4.1	A	2 2	94 94	61 72	60 -2% 77 7%		B	4	89 89	61 72	60 -2% 77 7%	2.9 2.7	A	1	68 68
		WBR Overall	42 1141	45 1153	7% 1%	10.9 11.5	B	4	97	42 1141	45 7% 1153 1%	3.2 4.2	A	0	70	31 1097	31 0% 1101 0%		AB	2	81	31 1097	31 0% 1108 1%	2.5	A	0	52
-	1	NBT	162	160	-1%	8.8	A	4	61	162	160 -1%	9.0	A	4	67	124	123 -1%	8.2	A	2	58	124	123 -1%	8.2	A	2	54
	Day Ave 8 Mant	NBR SBL	61 219	63 222	3% 1%	2.2 11.6	AB	3 16	61 151	61 219	64 5% 223 2%	2.4	AB	3 21	67 194	85 304	85 0% 303 0%		A C	2	58 270	85 304	85 0% 305 0%	1.6 34.4	A D	2 104	54 385
6	Bay Ave & Monterey Ave	SBT	84 87	82	-2%	11.9	В	15	151	84	82 -2%	13.9	В	20	194	141	141 0%	25.0	C	67	270	141	141 0%	35.0	E	104	385
	-	WBL WBR	87 282	85 287	-2% 2%	21.3 18.1	C C	36 37	236 236	87 282	85 -2% 286 1%	20.6 17.7	C C	35 36	220 220	35 104	36 3% 102 -2%	9.0	B A	3 4	71 71	35 104	36 3% 102 -2%	11.4 9.0	B A	3 4	73 73
-		Overall NBL	895 1	899	0%	13.5 9.0	B	1	62	895	900 1%	13.9 8.0	B	1	68	793 1	790 0%	16.8 25.5	C D	9	252	793 1	792 0%	22.6 23.9	<u>с</u>	16	280
		NBT	123	127	3%	10.2	В	3	61	123	127 3%	10.1	В	3	68	165	167 1%	32.6	D	11	252	165	167 1%	33.1	D	18	279
		NBR SBL	225 41	221 41	-2% 0%	8.5 8.6	A	7	154 74	225 41	221 -2% 41 0%	8.6	A	7	156 78	498 92	503 1% 93 1%		A	183 4	609 84	498 92	504 1% 93 1%	41.8 9.4	E A	186 5	626 98
		SBT SBR	126 4	123 3	-2% -25%	8.7 5.2	A	4	71 18	126 4	123 -2% 3 -25%	8.5 5.3	A	4 0	81 18	83 1	83 0% 1 0%	0.5	A	3	84 13	83 1	84 1% 1 0%	9.3 7.0	A	4	97 15
7	Monterey Ave & Park Ave	EBL	0	0	-	0.0	Α	0	10	0	0 -	0.0	Α	0	10	5	5 0%	9.4	Α	0	26	5	5 0%	9.4	A	0	28
	AVE	EBT EBR	9 1	11 1	22% 0%	12.4 8.7	B	0	26 8	9 1	11 22% 1 0%	12.2 8.3	BA	0	26 8	3	4 33% 3 0%	- 12.0	B	0	28 12	3 3	4 33% 3 0%	12.6 8.2	BA	0	30 15
		WBL	418	426	2%	60.6	F	222	518	418	426 2%	56.7	F	207	472	203	210 3%	10.2	В	9	114	203	210 3%	10.0	В	9	109
		WBT WBR	3 100	4 97	33% -3%	61.5 58.5	F	222 222	518 518	3 100	4 33% 97 -3%	59.8 54.3	F	206 206	472 472	3 39	2 -339 35 -109	8.4	B A	7 7	114 114	3 39	2 -33% 36 -8%	13.1 8.3	B A	7 7	109 109
		Overall	1051	1055	0%	34.6	D			1051	1055 0%	32.6	D			1096	1107 1%	27.2	D			1096	1110 1%	27.8	D		

Bay Avenue Corridor Improvement Project

Existing 2024 VISSIM Results: Bay Ave AM Peak Hour Travel Time Summary

Scenario	Segment	Distance	Free Flow	Simulation
Scenario	Segment	(mi)	Speed	Car
NB - N. of Park A	ve to S. of Highway 1 SB Ramps			
Alternative 1	Average Travel Time (mins)	0.62	1.5	2.27
AWSC	Average Travel Speed (mph)		25	16
Alternative 2	Average Travel Time (mins)	0.62	1.5	1.91
Roundabout	Average Travel Speed (mph)		25	20
SB - S. of Highwa	ay 1 SB Ramps to N. of Park Ave			
Alternative 1	Average Travel Time (mins)	0.62	1.5	2.11
AWSC	Average Travel Speed (mph)		25	18
Alternative 2	Average Travel Time (mins)	0.63	1.5	1.89
Roundabout	Average Travel Speed (mph)		25	20

Existing 2024 VISSIM Results: Bay Ave PM Peak Hour Travel Time Summary

Alternative	Segment	Distance	Free Flow	Simulation
Alternative	Jegment	(mi)	Speed	Car
NB - N. of Park A	Ave to S. of Highway 1 SB Ramps			
Alternative 1	Average Travel Time (mins)	0.62	1.5	2.01
AWSC	Average Travel Speed (mph)		25	18
Alternative 2	Average Travel Time (mins)	0.62	1.5	1.89
Roundabout	Average Travel Speed (mph)		25	20
SB - S. of Highwa	ay 1 SB Ramps to N. of Park Ave			
Alternative 1	Average Travel Time (mins)	0.62	1.5	3.87
AWSC	Average Travel Speed (mph)		25	10
Alternative 2	Average Travel Time (mins)	0.63	1.5	2.25
Roundabout	Average Travel Speed (mph)		25	17

				Alternative	1	1	AM Peak Hou Alternative 2			Alternative	2		Alternative	1	1	PM Peak Hou Alternative 2		1	Alternative	ltem
				Alternative . AWSC (VISSIN			Roundabout (VIS			Signal (Synchi			Alternative AWSC (VISSI			Roundabout (VIS			Signal (Synchr	
o. I	Intersection	Movement	Capacity (ft)	Avg Queue (ft)	Max Queue (ft)	Capacity (ft)	Avg Queue (ft)	Max Queue (ft)	Capacity (ft)	Avg Queue (ft)	Max Queue (ft)	Capacity (ft)	Avg Queue (ft)	Max Queue (ft)	Capacity (ft)	Avg Queue (ft)	Max Queue (ft)	Capacity (ft)	Avg Queue (ft)	Max Queu (ft)
		NBL	200	33	220	200	35	218	200	182	261	200	28	184	200	29	200	200	129	258
		NBT	200	33	219	200	35	218	200	23	68	200	28	184	200	29	200	200	25	70
Bay	y Ave & Hwy 1	SBT SBR	130 130	41	258 262	130 130	41 43	264 268	130 130	141 252	484	130 130	40 39	255 259	130 130	40 39	252 256	130 130	151 262	480
1,	NB Ramps	WBL	220	43	72	220	43 8	72	220	31	496 70	220	15	110	220	15	108	220	59	496 152
		WBT	730	4	82	730	4	84	730	40	173	730	4	103	730	4	97	730	40	86
		WBR	730	5	82	730	5	84	730	40	173	730	5	103	730	5	97	730	40	86
		NBT	450	45	252	450	47	259	450	105	228	450	36	201	450	35	204	450	76	156
		NBR	450	46	255	450	48	262	450	136	244	450	38	203	450	37	207	450	104	181
	y Ave & Hwy 1	SBL SBT	200 200	36 36	170 171	200 200	36 36	156 157	200 200	74 65	116 152	200 200	60 60	251 250	200 200	58 59	259 259	200 200	111 103	218 161
-	SB Ramps	EBL	200	29	139	200	29	135	200	130	175	200	140	704	200	66	385	200	138	175
		EBT	360	29	139	360	29	135	360	249	358	360	140	704	360	66	385	360	346	387
		EBR	360	29	139	360	29	135	360	249	358	360	140	704	360	66	385	360	346	387
		NBL	60	0	26	60	0	23	60	0	16	60	1	57	60	0	60	60	3	29
		NBT NBR	145 145	0	14 10	145 145	0	7 10	145 145	0	16 16	145 145	0	5	145 145	0	0	145 145	1	16 16
		SBL	60	1	36	60	1	40	60	13	45	60	23	234	60	1	40	60	15	74
		SBT	450	5	164	450	0	35	450	6	45	450	289	547	450	2	124	450	24	172
	Bay Ave &	SBR	450	4	162	450	0	71	450	6	45	450	288	545	450	2	121	450	24	172
Cro	ossroads Loop	EBL	80	0	41	80	0	42	80	30	73	80	1	43	80	1	45	80	29	72
		EBT	80	0	41	80	0	42	80	30	73	80	1	43	80	1	45	80	29	72
		EBR WBL	80 100	0	27 33	80 100	0	27 34	80 100	13 15	26 29	80 100	0	35 48	80 100	0	43	80 100	20 21	48
		WBL	100	0	33	100	0	34	100	15	29	100	2	48	100	1	44	100	21	50
		WBR	100	0	33	100	0	34	100	15	29	100	2	48	100	1	43	100	21	50
		NBL	100	1	45	340	4	148	100	48	85	100	1	44	340	6	150	340	37	85
		NBT	340	51	252	340	4	148	340	106	226	340	13	129	340	6	150	340	89	208
		NBR	340	47	252	340	4	148	340	106	226	340	9	129	340	6	150	340	89	208
		SBL SBT	100 160	2 36	83 216	160 160	3 3	189 189	100 160	47 99	80 162	100 160	7 121	210 228	160 160	8	203 203	160 160	64 125	80
		SBR	160	30	216	160	3	189	160	99	162	160	121	228	160	8	203	160	125	165
Ba	y Ave & Hill St	EBL	100	2	61	100	1	58	100	51	111	100	7	102	100	9	143	100	63	164
		EBT	100	1	62	100	1	58	100	51	111	100	6	102	100	9	143	100	63	164
		EBR	100	1	62	100	1	58	100	51	111	100	7	102	100	9	143	100	63	164
		WBL WBT	340 340	3	95	340	6	130 130	340 340	51	115	340 340	2	66	340	2	83	340 340	37 37	71
		WBR	340 340	3	95 95	340 340	6 6	130	340	51 51	115 115	340	2	66 66	340 340	2	83 83	340 340	37	71
		NBL	90	1	38	260	1	62	90	9	54	90	1	39	260	0	36	260	10	44
		NBT	220	25	174	260	1	62	220	51	150	220	6	84	260	0	36	260	18	68
		NBR	220	22	173	220	1	62	220	51	150	220	4	84	220	0	36	220	18	68
		SBL	230	5	95	170	3	167	230	59	220	230	14	166	170	4	168	170	73	173
Bau	Ave & Capitola	SBT SBR	230 130	6 2	95 68	170 170	3 3	167 167	230 130	59 21	220 95	230 130	18 2	166 53	170 170	4	168 168	170 170	73 17	173 95
Ddy	Ave & Capitola	EBL	200	3	65	230	1	71	200	33	63	200	4	80	230	2	92	230	45	89
		EBT	200	3	65	230	1	71	200	33	63	200	4	80	230	2	92	230	45	89
		EBR	60	0	28	150	0	28	60	3	28	60	0	22	150	0	19	150	5	28
		WBL	180	7	105	180	2	94	180	64	227	180	4	89	180	1	68	180	39	89
		WBT WBR	180 180	7	105 97	180 180	2 0	94 70	180 180	64 64	227 227	180 180	4	89 81	180 180	1	68 52	180 180	39 39	89 89
		NBT	215	4	61	215	4	67	215	46	120	215	2	58	215	2	52	215	28	56
		NBR	215	3	61	215	3	67	215	46	120	215	2	58	215	2	54	215	28	56
	Bay Ave &	SBL	240	16	151	240	21	194	240	76	194	240	68	270	240	104	385	240	69	140
M	Ionterey Ave	SBT	240	15	151	240	20	194	240	76	194	240	67	270	240	104	385	240	69	140
		WBL	400	36	236	400	35	220	400	78	167	400	3	71	400	3	73	400	43	72
		WBR NBL	400 90	37	236 62	400 90	36 1	220 68	400 90	78 69	167 188	400 90	4	71 252	400 90	4	73 280	400 90	43 93	72
		NBL	90 90	3	61	90	3	68	90	69	188	90	11	252	90	16	280	90	93	194
		NBR	180	7	154	180	7	156	180	69	188	180	183	609	180	186	626	180	93	194
		SBL	215	3	74	215	3	78	215	59	111	215	4	84	215	5	98	215	84	238
		SBT	215	4	71	215	4	81	215	59	111	215	3	84	215	4	97	215	84	238
Mo	onterey Ave &	SBR	50	0	18	50	0	18	50	59	111	50	0	13	50	0	15	50	84	238
	Park Ave	EBL EBT	250 250	0	10 26	250 250	0 0	10 26	250 250	9	28 28	250 250	0	26 28	250 250	0	28 30	250 250	9 9	28 28
		EBR	250	0	8	250	0	8	250	9	28	250	0	12	250	0	15	250	9	28
		WBL	85	222	518	85	207	472	85	134	268	85	9	114	85	9	109	85	79	182
		WBT	85	222	518	85	206	472	85	134	268	85	7	114	85	7	109	85	79	182
		WBR	85	222	518	85	206	472	85	134	268	85	7	114	85	7	109	85	79	182

Г

* Red = Queue exceeds capacity

Bay Avenue Corridor Improvement Project

Item 7 B.

Bay Avenue Corridor Improvement Project

	nulative 2040 VISSI					lternative						Alt	ernative	2 AM					Alt	ternative	1 PM					Alte	ernative	2 PM		
lo.	Intersection	Movement				AWSC Avg.	:	Avg.	Max.				RAB Avg.		Avg.	Max.				AWSC Avg.	:	Avg.	Max.				RAB Avg.		Avg.	Max
			Vol Count	ume (v	ph) rved	Delay	LOS	Queue	Queue	Vol Count	ume (vpl		Delay	LOS	Queue	Queue	Vol Count	ume (vp		Delay	LOS	Queue	Queue	Volu Count	ume (vph) Served		Delay	LOS	Queue	Queu
		NBI	321	315	-2%	(sec) 19.9	В	(ft) 33	(ft) 208	321	315	-2%	(sec) 17.7	В	(ft) 29	(ft) 210	683	567	-17%	(sec) 21.5	C	(ft) 60	(ft) 270	683		18%	(sec) 20.3	C	(ft) 55	(ft) 283
		NBT	392	307	-22%	1.3	Ă	33	207	392	398	2%	1.1	Ă	29	209	726	598	-18%	2.4	Ă	60	281	726	636 -1	12%	3.9	Ă	55	283
	Bay Ave & Hwy 1 NB	SBT SBR	436	436	0%	17.7	B	70	328	436	435	0%	17.1	B	69	325	644	648	1%	50.0	D	151	401	644		0%	49.4	D	146	419
1	Ramps	WBL	536 161	538 165	0% 2%	19.4 29.1	B	73 24	333 168	536 161	538 165	0% 2%	19.1 27.7	B	72	329 159	149 77	144 81	-3% 5%	22.4	C C	152	406	149 77		-1%	23.1 33.8	C C	148 13	424
	numps	WBT	12	11	-8%	30.5	č	21	240	12	11	-8%	30.6	č	23	247	1	1	0%	31.2	č	30	238	1	1 (0%	34.5	č	26	209
		WBR Overall	379 2237	376 2148	-1%	12.1 16.1	B	22	240	379 2237	376 2238	-1%	12.6 14.9	B	24	247	406 2686	396 2435	-2%	14.1 23.6	B	31	238	406 2686		-3%	14.2 23.3	BC	27	210
		NBT	465	460	-4%	18.5	B	37	219	465	460	-1%	16.7	B	34	215	992	770	-22%	47.6	D	171	480	992		22%	92.9	F	302	518
		NBR	61	59	-3%	6.5	Α	39	221	61	59	-3%	6.1	Α	35	217	104	85	-18%	31.2	С	173	482	104	82 -2	21%	61.5	E	304	520
	Bay Ave & Hwy 1 SB	SBL SBT	251 346	251 349	0% 1%	33.8 21.8	C C	55 56	235 236	251 346	251 349	0% 1%	33.9 6.0	C A	49 50	224	370 351	369 359	0% 2%	49.9 18.9	DB	109 109	261 261	370 351		1% -1%	50.9 14.8	D B	119 119	285
2	Ramps	EBL	248	163	-34%	515.0	F	3156	3423	248	254	2%	26.3	c	30	153	417	394	-6%	139.8	F	1582	2743	417		3%	64.6	E	509	1664
		EBT	0	0	-	0.0	A	3156	3423	0	0	-	0.0	A	30	153	208	188	-10%	160.6	F	1582	2743	208		1%	73.3	E	509	1664
		EBR Overall	586 1957	389 1671	-34%	578.9 200.0	F	3156	3423	586 1957	582 1955	-1% 0%	11.5 16.4	B	30	153	640 3082	468 2633	-27%	134.5 80.8	F	1582	2743	640 3082		21%	52.3 62.6	D	509	1664
		NBL	1	1	0%	11.3	В	0	22	1	1	0%	3.0	A	0	18	4	5	25%	8.7	A	0	58	4		25%	13.8	B	1	120
		NBT	394	392	-1%	0.1	A	0	0	394	391	-1%	0.2	A	0	0	988	751	-24%	1.9	A	3	113	988		24%	5.8	A	15	239
		NBR SBL	9 69	9 55	0% -20%	0.8	A	0 174	4 299	9 69	9 68	0% -1%	1.0	A	0	5	9 92	8 73	-11%	1.8 95.8	A	3 87	124 498	9 92		11% 15%	4.0	A	13 2	226
		SBT	754	599	-21%	159.5	F	517	578	754	755	0%	1.3	Â	1	101	787	645	-18%	96.4	F	354	572	787		15%	2.1	Â	4	168
_	Bay Ave & Crossroads	SBR	109	85	-22%	143.9	F	515	576	109	106	-3%	1.0	Α	1	134	112	102	-9%	68.4	F	352	570	112		-3%	1.5	A	3	165
3	Loop	EBL EBT	53 0	52	-2%	12.0 0.0	B	0	41 41	53 0	52 0	-2%	14.4 0.0	B	0	41 41	49 2	47	-4% -50%	13.8 13.8	B	0	40 40	49 2		-4% 50%	21.3 26.6	C D	1 1	57 57
		EBR	21	20	-5%	44.0	Ē	Ő	33	21	20	-5%	11.5	B	0	26	38	36	-5%	8.0	A	0	41	38		-5%	13.1	в	1	52
		WBL	0	0		0.0	Α	2	53	0	0	-	0.0	Α	2	51	4	3	-25%	157.5	F	13	127	4		25%	21.7	С	5	63
		WBT WBR	1 79	1 78	0% -1%	15.9 7.8	C	2	53 53	1 79	1 78	0% -1%	16.7 7.9	C	2	51 51	1 59	1	0% -5%	74.6	F	13 13	127 127	1 59		0% -7%	21.0 19.5	C C	5 5	63 62
		Overall	1490	1292	-13%	159.5	F	2	55	1490	1481	-1%	16.7	c	-	51	2145	1728	-19%	157.5	F	15	127	2145		18%	26.6	D	Ĵ	02
		NBL	57	57	0%	6.9	A	1	48	57	58	2%	1.7	A	2	94	46	43	-7%	24.8	С	1	46	46		-2%	5.6	A	17	268
		NBT NBR	293 4	291 4	-1% 0%	8.9 7.6	A	9 4	92 92	293 4	291 4	-1% 0%	1.7 1.4	A	2	94 94	717 34	484 29	-32% -15%	39.6 39.4	E	166 165	529 529	717 34		33% 15%	6.0 5.2	A	17 17	268 268
		SBL	75	61	-19%	18.3	C	2	149	75	77	3%	2.8	A	9	240	146	142	-3%	15.8	C	5	163	146	147	1%	3.1	A	9	220
		SBT SBR	669	532	-20% -16%	33.1	D	144 144	227 227	669	666	0% 0%	3.1	A	9	240 240	634 49	493 48	-22% -7%	27.8	D	102	222 223	634 49		20%	2.9 2.5	A	9	220
4	Bay Ave & Hill St	EBL	31 43	26 43	-16%	32.0	D B	2	62	31 43	31 43	0%	2.7 14.5	AB	6	90	92	48 90	-2%	26.3 12.2	DB	102	100	49 92		-3%	2.5	AB	9	220 133
	*	EBT	19	20	5%	12.3	В	1	62	19	20	5%	14.3	В	6	90	45	43	-4%	14.4	В	6	101	45	46	2%	10.0	в	9	133
		EBR WBL	39	40	3% 8%	10.0	A	2	63	39	40	3% 8%	17.4 5.4	C	6	91	84	82	-2% 0%	11.3	B	6	101	84		-4%	12.9	B	9	134
		WBL	13 28	27	-4%	11.8 11.6	B	1	63 63	13 28	14 27	-4%	4.6	A	1	75 75	22 33	22 34	3%	13.9 15.0	B C	8	121 120	22 33		3%	8.7 7.2	A	9	135 135
		WBR	68	68	0%	10.0	Α	2	63	68	68	0%	4.9	Α	1	75	192	191	-1%	13.1	В	10	120	192		1%	7.3	Α	9	135
		Overall NBL	1339 27	1183 27	-12% 0%	21.0 8.6	C	1	36	1339 27	1339 27	0%	17.4 2.6	C A	0	58	2094 29	1701 28	-19% -3%	26.2 9.5	D	1	38	2094 29		18%	12.9 4.0	B	0	32
		NBT	312	310	-1%	14.5	B	24	172	312	311	0%	2.7	Â	ő	58	200	184	-8%	9.7	Â	6	86	200		-8%	2.9	Â	ŏ	32
		NBR	55	56	2%	11.9	В	21	171	55	56	2%	2.8	Α	0	58	23	22	-4%	7.1	Α	3	85	23		-9%	3.3	A	0	32
		SBL SBT	74 183	63 144	-15% -21%	8.2 8.4	A	3 4	72	74 183	76 178	3% -3%	2.5 2.6	A	3	129 129	61 337	53 319	-13% -5%	16.6 16.9	C	57 59	305 305	61 337		-8% -4%	5.2 9.7	A	16 16	335 335
	Bay Ave & Capitola	SBR	128	108	-16%	6.2	Â	2	52	128	131	2%	2.3	Â	3	129	171	134	-22%	9.0	A	3	76	171		16%	5.1	Â	16	335
5	Ave	EBL	78	76	-3%	11.8	B	3 3	78	78	76	-3%	4.0	A	1	73	190	186	-2%	15.2	C	13	131	190		-3%	7.0	A	8	156
		EBT EBR	67 6	68 6	1% 0%	11.6 7.8	B	3 0	78 28	67 6	68 6	1% 0%	3.7 2.3	A	1	73 13	63 8	63 8	0% 0%	15.8 9.3	C A	11 0	131 26	63 8		2% 0%	7.4 11.8	A B	8 1	156 44
		WBL	83	83	0%	12.8	В	7	109	83	82	-1%	4.4	Α	2	93	17	16	-6%	12.8	В	2	87	17		6%	11.4	В	1	51
		WBT WBR	94 42	96 45	2% 7%	13.7 10.8	B	7	109 102	94 42	96 45	2% 7%	4.3 3.6	A	2	93 75	65 73	67 67	3% -8%	13.4 10.1	B	3	87 79	65 73		-2% -7%	4.7 2.7	A	1 0	51 51
		Overall	1149	1082	-6%	11.4	B		102	1149	1152	0%	4.4	A	0	//3	1237	1147	-7%	13.4	B	3		1237	1164 -	-6%	11.8	B	0	
		NBT	162	160	-1%	9.0	Α	4	77	162	160	-1%	9.0	Α	4	71	305	282	-8%	9.8	Α	9	112	305	200	-8%	9.8	A	9	106
		NBR SBL	61 219	63 207	3% -5%	2.2	A	3	77 316	61 219	63 223	3% 2%	2.1 25.9	A	2 75	72	85 304	295	-9% -3%	3.5 89.3	A	486	112 841	85 304		12% -5%	3.5	A	7	106
6	Bay Ave & Monterey	SBT	239	220	-8%	24.7	c	65	316	239	236	-1%	27.0	D	75	344	251	232	-8%	90.3	F	486	841	251	238 -	-5%	112.3	Ē.	753	1228
	Ave	WBL	87	85	-2%	21.1	C	36	227	87	85	-2%	19.3	C	30	205	35	35	0%	12.0	B	3	76	35		3%	12.0	B	3	75
		WBR Overall	282 1050	287 1022	2% -3%	18.0 18.6	С С	36	227	282 1050	286 1053	1% 0%	16.2 19.0	С С	30	206	104 1084	104 1025	0% -5%	9.1 50.4	A	4	76	104 1084		-1% -6%	9.3 62.1	A	4	75
		NBL	1	1	0%	9.6	A	2	72	1	1	0%	11.5	В	2	69	1	1	0%	229.3	F	711	877	1	1 (0%	247.6	F	615	888
		NBT NBR	123 238	127 233	3% -2%	10.7	B	4	72	123 238	127 233	3% -2%	10.7 9.4	B	4	68 158	148 619	125 528	-16% -15%	242.2 251.6	F	712 1340	877 1417	148 619			249.6 260.1	F	616 1345	888 1418
		SBL	238	191	-2%	9.5	B	15	135	238	199	-2%	9.4	B	19	158	202	188	-15%	10.4	B	9	1417	202		-3%	10.9	B	1345	1418
		SBT	121	112	-7%	12.2	В	14	134	121	118	-2%	13.1	В	18	159	83	78	-6%	9.8	A	7	103	83	78 -	-6%	10.8	В	9	104
7	Monterey Ave & Park	SBR EBL	4	3	-25%	6.8 0.0	A	0	20	4	4	0%	6.2 0.0	A	0	22	1	1	0% -60%	6.2 9.3	A	0	12 20	1	-	0%	8.5 9.6	A	0	8
'	Ave	EBL	9	11	22%	12.7	B	0	28	9	11	22%	13.1	B	0	28	3	2	-60%	9.3	B	0	18	3		40% 33%	9.6 12.5	B	0	20
		EBR	1	1	0%	8.0	Α	0	12	1	1	0%	7.9	Α	0	12	3	2	-33%	8.6	Α	0	4	3	1 -6	67%	8.8	Α	0	6
		WBL WBT	418 3	419 4	0% 33%	102.3 105.8	F	389 389	700 700	418 3	422 4	1% 33%	95.8 97.1	F	363 363	650 650	203 3	205 3	1% 0%	20.6 23.1	C C	48 47	255 256	203 3		3% 33%	20.4 23.2	C C	49 47	256 256
		WBR	100	96	-4%	105.8	F	389	700	100	96	-4%	97.1	F	363	650	237	230	-3%	19.1	c	47	255	237		-4%	18.7	c	47	256
	1	Overall	1219	1198	-2%	50.3	F			1219	1216	0%	47.5	E			1508	1365	-9%	128.1	F			1508	1358 -1	10%	129.8	F		

Bay Avenue Corridor Improvement Project

Cumulative 2040 VISSIM Results: Bay Ave AM Peak Hour Travel Time Summary

Scenario	Segment	Distance	Free Flow	Simulation
Scenario	Segment	(mi)	Speed	Car
NB - N. of Park A	ve to S. of Highway 1 SB Ramps			
Alternative 1	Average Travel Time (mins)	0.62	1.5	2.09
AWSC	Average Travel Speed (mph)		25	18
Alternative 2	Segment	0.62	1.5	1.88
Roundabout	Average Travel Speed (mph)		25	20
SB - S. of Highwa	ay 1 SB Ramps to N. of Park Ave			
Alternative 1	Average Travel Time (mins)	0.62	1.5	5.26
AWSC	Average Travel Speed (mph)		25	7
Alternative 2	Average Travel Time (mins)	0.63	1.5	2.21
Roundabout	Average Travel Speed (mph)		25	17

Cumulative 2040 VISSIM Results: Bay Ave PM Peak Hour Travel Time Summary

Alternative	Segment	Distance	Free Flow	Simulation
Alternative	Segment	(mi)	Speed	Car
NB - N. of Park A	we to S. of Highway 1 SB Ramps			
Alternative 1	Average Travel Time (mins)	0.62	1.5	3.20
AWSC	Average Travel Speed (mph)		25	12
Alternative 2	Average Travel Time (mins)	0.62	1.5	3.29
Roundabout	Average Travel Speed (mph)		25	11
SB - S. of Highwa	ay 1 SB Ramps to N. of Park Ave			
Alternative 1	Average Travel Time (mins)	0.62	1.5	5.89
AWSC	Average Travel Speed (mph)		25	6
Alternative 2	Average Travel Time (mins)	0.63	1.5	4.99
Roundabout	Average Travel Speed (mph)		25	8

Bay Avenue Corridor Improvement Project

Cumulative 2040 VISSIM Results: Bay Ave Peak Hour Queueing Summary

	ve 2040 VISSIM R			Alternative	1		AM Peak Hou Alternative 2	!		Alternative 3			Alternative			PM Peak Hou Alternative	2		Alternative	-
No.	Intersection	Movement	Capacity	AWSC (VISSIN	Max Queue	Capacity	Roundabout (VIS Avg Queue	Max Queue	Capacity	Signal (Synchr Avg Queue	Max Queue	Capacity	AWSC (VISSI Avg Queue	Max Queue	Capacity	Roundabout (VIS Avg Queue	Max Queue	Capacity	Signal (Synchi Avg Queue	Max Queue
	-	NBL	(ft) 200	(ft) 33	(ft) 208	(ft) 200	(ft) 29	(ft) 210	(ft) 200	(ft) 159	(ft) 242	(ft) 200	(ft) 60	(ft) 270	(ft) 200	(ft) 55	(ft) 283	(ft) 200	(ft) 244	(ft) 252
		NBT	200	33	207	200	29	209	200	26	73	200	60	281	200	55	283	200	25	50
	Bay Ave & Hwy 1	SBT	130	70	328	130	69	325	130	336	544	130	151	401	130	146	419	130	340	520
1	NB Ramps	SBR WBL	130 220	73	333 168	130 220	72	329 159	130 220	413 89	533 204	130 220	152 13	406 117	130 220	148 13	424 112	130 220	356 54	515 149
		WBT	730	21	240	730	23	247	730	101	295	730	30	238	730	26	209	730	86	173
		WBR	730	22	240	730	24	247	730	101	295	730 450	31	238	730 450	27	210	730	86	173
		NBT	450 450	37 39	219 221	450 450	34 35	215 217	450 450	86 126	151 224	450 450	171 173	480	450	302 304	518 520	450	417 421	452 469
	Bay Ave & Hwy 1	SBL	200	55	235	200	49	224	200	100	184	200	109	261	200	119	285	200	246	269
2	SB Ramps	SBT	200	56	236	200	50	224	200	66	118	200	109	261	200	119	285	200	38	205
		EBL	200 360	3156 3156	3423 3423	200 360	30 30	153 153	200 360	166 348	175 376	200 360	1582 1582	2743 2743	200 360	509 509	1664 1664	200 360	130 343	175 376
		EBR	360	3156	3423	360	30	153	360	348	376	360	1582	2743	360	509	1664	360	343	376
		NBL	60	0	22	60	0	18	60	0	0	60	0	58	60	1	120	60	6	75
		NBT NBR	145 145	0	0	145 145	0	0	145 145	0	0	145 145	3	113 124	145 145	15 13	239 226	145 145	162 169	193 202
		SBL	60	174	299	60	1	51	60	12	74	60	87	498	60	2	79	60	21	74
		SBT	450	517	578	450	1	101	450	30	215	450	354	572	450	4	168	450	92	344
3	Bay Ave & Crossroads Loop	SBR EBL	450 80	515 0	576 41	450 80	1 0	134 41	450 80	30 41	215 76	450 80	352	570 40	450 80	3	165 57	450 80	92 223	344 236
		EBT	80	0	41	80	0	41	80	41	76	80	0	40	80	1	57	80	165	236
		EBR	80	0	33	80	0	26	80	15	26	80	0	41	80	1	52	80	165	236
		WBL WBT	100 100	2	53 53	100 100	2	51 51	100 100	35 35	73 73	100 100	13 13	127 127	100 100	5	63 63	100 100	337 337	482 482
		WBR	100	2	53	100	2	51	100	35	73	100	13	127	100	5	62	100	337	482
		NBL	100	1	48	340	2	94	100	38	84	100	1	46	340	17	268	340	37	84
		NBT NBR	340 340	9	92 92	340 340	2	94	340 340	69 69	144 144	340 340	166 165	529 529	340 340	17 17	268 268	340 340	393 393	433 433
		SBL	100	2	149	160	9	240	100	53	80	100	5	163	160	9	220	160	65	80
		SBT	160	144	227	160	9	240	160	124	163	160	102	222	160	9	220	160	127	163
4	Bay Ave & Hill St	SBR EBL	160 100	144 2	227 62	160 100	9	240 90	160 100	124 48	163 114	160 100	102 6	223 100	160 100	9	220 133	160 100	127 171	163 202
		EBT	100	1	62	100	6	90	100	48	114	100	6	101	100	9	133	100	171	202
		EBR	100	2	63	100	6	91	100	48	114	100	6	101	100	9	134	100	171	202
		WBL WBT	340 340	1	63 63	340 340	1	75 75	340 340	38 38	93 93	340 340	8	121 120	340 340	9	135 135	340 340	183 183	290 290
		WBR	340	2	63	340	1	75	340	38	93	340	10	120	340	9	135	340	183	290
		NBL	90	1	36	260	0	58	90	10	54	90	1	38	260	0	32	260	22	55
		NBT NBR	220 220	24 21	172 171	260 220	0	58 58	220 220	51 51	154 154	220 220	6	86 85	260 220	0	32 32	260 220	186 186	697 697
		SBL	230	3	72	170	3	129	230	60	204	230	57	305	170	16	335	170	58	188
		SBT	230	4	71	170	3	129	230	26	95	230	59	305	170	16	335	170	58	188
5	Bay Ave & Capitola Ave	SBR EBL	130 200	2	52	170 230	3	129 73	130 200	26 50	95 85	130 200	3	76	170 230	16 8	335 156	170 230	24 206	95 786
		EBT	200	3	78	230	1	73	200	50	85	200	11	131	230	8	156	230	206	786
		EBR	60	0	28	150	0	13	60	3	28	60	0	26	150	1	44	150	4	79
		WBL WBT	180 180	7	109 109	180 180	2	93 93	180 180	57 57	131 131	180 180	2	87	180 180	1	51	180 180	64 64	277 277
		WBR	180	4	102	180	0	75	180	57	131	180	3	79	180	0	51	180	64	277
		NBT	215	4	77	215	4	71	215	61	186	215	9	112	215	9	106	215	77	158
	Bay Ave &	NBR SBL	215 240	3 65	77 316	215 240	2 75	72 344	215 240	61 105	186 261	215 240	7 486	112 841	215 240	7 753	106 1228	215 240	77 601	158 1065
6	Monterey Ave	SBT	240	65	316	240	75	344	240	105	261	240	486	841	240	753	1228	240	601	1065
		WBL	400	36	227	400	30	205	400	88	159	400	3	76	400	3	75	400	185	451
		WBR NBL	400 90	36	227	400 90	30	206 69	400 90	88	159 237	400 90	4 711	76 877	400 90	4 615	75 888	400 90	185 155	451 269
		NBT	90	4	72	90	4	68	90	84	237	90	712	877	90	616	888	90	155	269
		NBR	180	9	159	180	9	158	180	84	237	180	1340	1417	180	1345	1418	180	155	269
		SBL SBT	215 215	15 14	135 134	215 215	19 18	159 159	215 215	136 136	244 244	215 215	9 7	104 103	215 215	11 9	104 104	215 215	169 169	427 427
7	Monterey Ave &	SBR	50	0	20	50	0	22	50	136	244	50	0	105	50	0	8	50	169	427
,	Park Ave	EBL	250	0	14	250	0	14	250	4	28	250	0	20	250	0	20	250	2	27
		EBT EBR	250 250	0	28 12	250 250	0	28 12	250 250	4	28 28	250 250	0	18	250 250	0	20	250 250	2	27 27
		WBL	85	389	700	85	363	650	85	131	269	85	48	255	85	49	256	85	155	269
		WBT	85	389	700	85	363	650	85	131	269	85	47	256	85	47	256	85	155	269
	iouo oxeoode capa	WBR	85	389	700	85	363	650	85	131	269	85	48	255	85	49	256	85	155	269

* Red = Queue exceeds capacity

Attachment D – Synchro LOS Results (No Build, Stop, and Signal Alternatives)

HCM 7th Signalized Intersection Summary 1: Bay Ave & Hwy 1 NB Off-Ramp

01/06/2025

	۶	-	\mathbf{F}	∢	-	*	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				۲	eî.		٦	††			A	
Traffic Volume (veh/h)	0	0	0	59	12	107	369	516	0	0	431	478
Future Volume (veh/h)	0	0	0	59	12	107	369	516	0	0	431	478
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Lane Width Adj.				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		0.94
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1826	1900	1885	1885	1856	0	0	1870	1885
Adj Flow Rate, veh/h				65	13	118	405	567	0	0	474	525
Peak Hour Factor				0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %				5	0	1	1	3	0.01	0	2	1
Cap, veh/h				164	15	139	535	2628	0	0	646	545
Arrive On Green				0.09	0.09	0.09	0.30	0.75	0.00	0.00	0.36	0.36
Sat Flow, veh/h				1739	162	1473	1795	3618	0.00	0.00	1870	1498
				65	0	131	405	567	0	0	474	525
Grp Volume(v), veh/h				1739		1635		1763	-	0		
Grp Sat Flow(s),veh/h/ln					0		1795		0		1777	1498
Q Serve(g_s), s				1.9	0.0	4.3	11.2	2.7	0.0	0.0	12.7	18.9
Cycle Q Clear(g_c), s				1.9	0.0	4.3	11.2	2.7	0.0	0.0	12.7	18.9
Prop In Lane				1.00	0	0.90	1.00	0000	0.00	0.00	0.40	1.00
Lane Grp Cap(c), veh/h				164	0	155	535	2628	0	0	646	545
V/C Ratio(X)				0.40	0.00	0.85	0.76	0.22	0.00	0.00	0.73	0.96
Avail Cap(c_a), veh/h				164	0	155	565	2628	0	0	646	545
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	1.00	0.82	0.82	0.00	0.00	1.00	1.00
Uniform Delay (d), s/veh				23.4	0.0	24.5	17.5	2.1	0.0	0.0	15.2	17.1
Incr Delay (d2), s/veh				0.6	0.0	31.8	4.0	0.2	0.0	0.0	7.2	30.6
Initial Q Delay(d3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In				0.7	0.0	2.9	4.8	0.5	0.0	0.0	5.9	10.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh				24.0	0.0	56.3	21.5	2.3	0.0	0.0	22.4	47.8
LnGrp LOS				С		E	С	А			С	D
Approach Vol, veh/h					196			972			999	
Approach Delay, s/veh					45.6			10.3			35.7	
Approach LOS					D			В			D	
Timer - Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), s	21.0	24.6		9.4		45.6						
Change Period (Y+Rc), s	4.6	* 4.6		9.4 4.2		45.0						
Max Green Setting (Gmax), s	4.0 17.3	4.0 * 20		4.Z 5.2		4.0 41.0						
Max Green Setting (Gmax), s Max Q Clear Time (g_c+11), s	17.3			5.2 6.3		41.0						
	13.2 0.1	20.9 0.0		0.3 0.0		4.7 1.7						
Green Ext Time (p_c), s	U. I	0.0		0.0		1.7						
Intersection Summary			05.0									
HCM 7th Control Delay, s/veh			25.2									
HCM 7th LOS			С									
Notes												

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Synchro 12 Report Page 1

01/06/2025

	۶	+	\mathbf{F}	4	Ļ	∢	•	†	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4	1					_ ≜ î≽		5	† †	
Traffic Volume (veh/h)	313	0	296	0	0	0	0	572	111	176	314	0
Future Volume (veh/h)	313	0	296	0	0	0	0	572	111	176	314	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		0.97	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac		No	1.00				1.00	No	1.00	1.00	No	1.00
Adj Sat Flow, veh/h/ln	1826	1900	1856				0	1885	1856	1870	1856	0
Adj Flow Rate, veh/h	440	0	215				0	622	121	191	341	Ũ
Peak Hour Factor	0.92	0.92	0.92				0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	0.52 5	0.52	0.52				0.52	0.52	3	0.52	3	0.52
Cap, veh/h	613	0	277				0	1035	201	370	2283	0
Arrive On Green	0.18	0.00	0.18				0.00	0.35	0.35	0.21	0.65	0.00
Sat Flow, veh/h	3478	0.00	1572				0.00	3069	577	1781	3618	0.00
	440	0	215				0	374	369	191	341	0
Grp Volume(v), veh/h			215 1572					374 1791	369 1762	1781	341 1763	
Grp Sat Flow(s),veh/h/lr		0					0	8.6		4.8		0
Q Serve(g_s), s	6.0	0.0	6.5				0.0		8.6		1.9	0.0
Cycle Q Clear(g_c), s	6.0	0.0	6.5				0.0	8.6	8.6	4.8	1.9	0.0
Prop In Lane	1.00	^	1.00				0.00	000	0.33	1.00	0000	0.00
Lane Grp Cap(c), veh/h		0	277				0	623	613	370	2283	0
V/C Ratio(X)	0.72	0.00	0.78				0.00	0.60	0.60	0.52	0.15	0.00
Avail Cap(c_a), veh/h	751	0	340				0	623	613	370	2283	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00				0.00	1.00	1.00	0.70	0.70	0.00
Uniform Delay (d), s/vel		0.0	19.6				0.0	13.4	13.4	17.6	3.4	0.0
Incr Delay (d2), s/veh	1.7	0.0	6.8				0.0	4.2	4.3	0.4	0.1	0.0
Initial Q Delay(d3), s/ve		0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel		0.0	2.6				0.0	3.7	3.7	1.8	0.5	0.0
Unsig. Movement Delay												
LnGrp Delay(d), s/veh	21.2	0.0	26.5				0.0	17.7	17.8	18.0	3.5	0.0
LnGrp LOS	С		С					В	В	В	Α	
Approach Vol, veh/h		655						743			532	
Approach Delay, s/veh		22.9						17.7			8.7	
Approach LOS		С						В			А	
Timer - Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc)), S	37.0			15.0	22.0		13.0				
Change Period (Y+Rc),		4.6			4.6	* 4.6		4.2				
Max Green Setting (Gm		30.4			9.3	* 17		10.8				
Max Q Clear Time (g_c		3.9			6.8	10.6		8.5				
Green Ext Time (p_c), s		0.9			0.0	1.3		0.3				
Intersection Summary												
HCM 7th Control Delay.	s/voh		17.0									
HCM 7th LOS	, 3/ / 5/ 1		В									
Notes												

User approved volume balancing among the lanes for turning movement.

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Existing AM 2:13 pm 06/24/2024 No Build Kimley-Horn

Synchro 12 Report Page 2 1.9

Intersection

Int Delay, s/veh

	EDI	FDT			MOT		NIDI	NDT	NDD	0.01	ODT	000	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		्रस्	1		- 44		ኘ	- † Þ			- † Þ		
Traffic Vol, veh/h	53	0	21	0	1	14	1	616	9	39	462	109	
Future Vol, veh/h	53	0	21	0	1	14	1	616	9	39	462	109	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	0	-	-	-	50	-	-	50	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	58	0	23	0	1	15	1	677	10	43	508	120	

Major/Minor	Minor2		N	/linor1		Ν	/lajor1		Ν	lajor2			
Conflicting Flow All	995	1342	314	1024	1397	343	627	0	0	687	0	0	
Stage 1	653	653	-	684	684	-	-	-	-	-	-	-	
Stage 2	341	689	-	340	713	-	-	-	-	-	-	-	
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-	
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-	
Pot Cap-1 Maneuver	199	151	682	190	140	653	950	-	-	903	-	-	
Stage 1	422	462	-	405	447	-	-	-	-	-	-	-	
Stage 2	647	445	-	649	433	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	184	144	682	174	133	653	950	-	-	903	-	-	
Mov Cap-2 Maneuver	184	144	-	174	133	-	-	-	-	-	-	-	
Stage 1	402	440	-	404	446	-	-	-	-	-	-	-	
Stage 2	630	444	-	597	413	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Dela	ay, s/v26.93	12.18	0.01	0.59	
HCM LOS	D	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	EBLn2	WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	950	-	-	184	682	518	903	-	-	
HCM Lane V/C Ratio	0.001	-	-	0.317	0.034	0.032	0.047	-	-	
HCM Control Delay (s/veh)	8.8	-	-	33.5	10.5	12.2	9.2	-	-	
HCM Lane LOS	А	-	-	D	В	В	А	-	-	
HCM 95th %tile Q(veh)	0	-	-	1.3	0.1	0.1	0.1	-	-	

01/06/2025

Intersection 18.2

С

Intersection Delay, s/veh Intersection LOS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1		4		٦	↑ î≽		٦	- † 1-	
Traffic Vol, veh/h	43	19	39	9	28	142	57	441	10	75	377	31
Future Vol, veh/h	43	19	39	9	28	142	57	441	10	75	377	31
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles, %	6	0	0	0	3	1	2	1	9	0	3	3
Mvmt Flow	48	21	44	10	31	160	64	496	11	84	424	35
Number of Lanes	0	1	1	0	1	0	1	2	0	1	2	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			1			2		
HCM Control Delay, s/veh	13.2			16.7			20.3			17.5		
HCM LOS	В			С			С			С		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2	SBLn3	
Vol Left, %	100%	0%	0%	69%	0%	5%	100%	0%	0%	
Vol Thru, %	0%	100%	94%	31%	0%	16%	0%	100%	80%	
Vol Right, %	0%	0%	6%	0%	100%	79%	0%	0%	20%	
Sign Control	Stop									
Traffic Vol by Lane	57	294	157	62	39	179	75	251	157	
LT Vol	57	0	0	43	0	9	75	0	0	
Through Vol	0	294	147	19	0	28	0	251	126	
RT Vol	0	0	10	0	39	142	0	0	31	
Lane Flow Rate	64	330	176	70	44	201	84	282	176	
Geometry Grp	6	6	6	6	6	6	6	6	6	
Degree of Util (X)	0.142	0.683	0.369	0.179	0.098	0.439	0.188	0.593	0.362	
Departure Headway (Hd)	7.976	7.447	7.54	9.257	8.084	7.849	8.014	7.554	7.412	
Convergence, Y/N	Yes									
Сар	448	486	476	386	441	457	447	477	484	
Service Time	5.744	5.215	5.308	7.051	5.876	5.624	5.781	5.321	5.179	
HCM Lane V/C Ratio	0.143	0.679	0.37	0.181	0.1	0.44	0.188	0.591	0.364	
HCM Control Delay, s/veh	12.1	24.9	14.7	14.1	11.8	16.7	12.6	20.8	14.4	
HCM Lane LOS	В	С	В	В	В	С	В	С	В	
HCM 95th-tile Q	0.5	5.1	1.7	0.6	0.3	2.2	0.7	3.8	1.6	

Intersection

Intersection Delay, s/veh27.7 Intersection LOS D

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		्र	1		- 44		ሻ	4			्स	1	
Traffic Vol, veh/h	70	67	6	83	94	42	27	312	55	74	183	128	
Future Vol, veh/h	70	67	6	83	94	42	27	312	55	74	183	128	
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	84	81	7	100	113	51	33	376	66	89	220	154	
Number of Lanes	0	1	1	0	1	0	1	1	0	0	1	1	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			2			2			2			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	2			2			2			1			
Conflicting Approach R	igh N B			SB			WB			EB			
Conflicting Lanes Right	2			2			1			2			
HCM Control Delay, s/v	/eħ6.8			22.6			41.7			20.2			
HCM LOS	С			С			Е			С			

Lane	NBLn1	NBLn2	EBLn1	EBLn2V	VBLn1	SBLn1	SBLn2
Vol Left, %	100%	0%	51%	0%	38%	29%	0%
Vol Thru, %	0%	85%	49%	0%	43%	71%	0%
Vol Right, %	0%	15%	0%	100%	19%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	27	367	137	6	219	257	128
LT Vol	27	0	70	0	83	74	0
Through Vol	0	312	67	0	94	183	0
RT Vol	0	55	0	6	42	0	128
Lane Flow Rate	33	442	165	7	264	310	154
Geometry Grp	5	5	5	5	4b	5	5
Degree of Util (X)	0.071	0.884	0.399	0.015	0.598	0.661	0.292
Departure Headway (Hd)	7.949	7.327	8.703	7.714	8.153	7.687	6.816
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Сар	453	500	414	465	446	471	529
Service Time	5.649	5.027	6.435	5.445	6.168	5.409	4.538
HCM Lane V/C Ratio	0.073	0.884	0.399	0.015	0.592	0.658	0.291
HCM Control Delay, s/veh	11.3	43.9	17.1	10.6	22.6	24.2	12.3
HCM Lane LOS	В	E	С	В	С	С	В
HCM 95th-tile Q	0.2	9.7	1.9	0	3.8	4.7	1.2

Existing AM 2:13 pm 06/24/2024 No Build

Kimley-Horn

Synchro 12 Report	
Page 6	

Intersection Intersection Delay, s/veh19.7 Intersection LOS C

Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		4			र्च
Traffic Vol, veh/h	87	282	162	61	219	84
Future Vol, veh/h	87	282	162	61	219	84
Peak Hour Factor	0.76	0.76	0.76	0.76	0.76	0.76
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	114	371	213	80	288	111
Number of Lanes	1	0	1	0	0	1
Approach	WB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		1		1	
Conflicting Approach Lo	eft NB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach R	ligh€B		WB			
Conflicting Lanes Right	t 1		1		0	
HCM Control Delay, s/v	ve22.4		14.4		20.3	
HCM LOS	С		В		С	

Lane	NBLn1\	NBLn1	SBLn1
Vol Left, %	0%	24%	72%
Vol Thru, %	73%	0%	28%
Vol Right, %	27%	76%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	223	369	303
LT Vol	0	87	219
Through Vol	162	0	84
RT Vol	61	282	0
Lane Flow Rate	293	486	399
Geometry Grp	1	1	1
Degree of Util (X)	0.48	0.737	0.665
Departure Headway (Hd)	5.895	5.462	6.007
Convergence, Y/N	Yes	Yes	Yes
Сар	607	655	598
Service Time	3.983	3.534	4.086
HCM Lane V/C Ratio	0.483	0.742	0.667
HCM Control Delay, s/veh	14.4	22.4	20.3
HCM Lane LOS	В	С	С
HCM 95th-tile Q	2.6	6.5	5

01/06/2025

Intersection

Intersection Delay, s/veh25.1 Intersection LOS D D

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			्	1		्	1	
Traffic Vol, veh/h	0	9	1	418	3	100	1	123	225	41	126	4	
Future Vol, veh/h	0	9	1	418	3	100	1	123	225	41	126	4	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	10	1	459	3	110	1	135	247	45	138	4	
Number of Lanes	0	1	0	0	1	0	0	1	1	0	1	1	
Approach		EB		WB			NB			SB			
Opposing Approach		WB		EB			SB			NB			
Opposing Lanes		1		1			2			2			
Conflicting Approach Le	eft	SB		NB			EB			WB			
Conflicting Lanes Left		2		2			1			1			
Conflicting Approach R	ight	NB		SB			WB			EB			
Conflicting Lanes Right		2		2			1			1			
HCM Control Delay, s/v	/eh	10		37.6			12.5			13.8			
HCM LOS		А		Е			В			В			

Lane	NBLn1	NBLn2	EBLn1\	VBLn1	SBLn1	SBLn2
Vol Left, %	1%	0%	0%	80%	25%	0%
Vol Thru, %	99%	0%	90%	1%	75%	0%
Vol Right, %	0%	100%	10%	19%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	124	225	10	521	167	4
LT Vol	1	0	0	418	41	0
Through Vol	123	0	9	3	126	0
RT Vol	0	225	1	100	0	4
Lane Flow Rate	136	247	11	573	184	4
Geometry Grp	5	5	2	2	5	5
Degree of Util (X)	0.254	0.411	0.021	0.89	0.361	0.008
Departure Headway (Hd)	6.702	5.982	6.816	5.598	7.083	6.238
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	533	598	528	647	505	569
Service Time	4.482	3.761	4.816	3.656	4.871	4.026
HCM Lane V/C Ratio	0.255	0.413	0.021	0.886	0.364	0.007
HCM Control Delay, s/veh	11.8	12.9	10	37.6	13.9	9.1
HCM Lane LOS	В	В	А	E	В	А
HCM 95th-tile Q	1	2	0.1	10.8	1.6	0

HCM 7th Signalized Intersection Summary 1: Bay Ave & Hwy 1 NB Off-Ramp

01/06/2025

	≯	+	\mathbf{F}	4	+	*	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				۲	4Î		۲	竹			A	
Traffic Volume (veh/h)	0	0	0	107	1	195	290	401	0	0	642	316
Future Volume (veh/h)	0	0	0	107	1	195	290	401	0	0	642	316
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Lane Width Adj.				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A pbT)				1.00		1.00	1.00		1.00	1.00		0.94
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1826	1900	1885	1885	1856	0	0	1870	1885
Adj Flow Rate, veh/h				113	1	205	305	422	0	0	676	333
Peak Hour Factor				0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %				5	0	1	1	3	0	0	2	1
Cap, veh/h				209	1	192	415	2413	0	0	792	390
Arrive On Green				0.12	0.12	0.12	0.23	0.68	0.00	0.00	0.35	0.35
Sat Flow, veh/h				1739	8	1604	1795	3618	0.00	0.00	2351	1112
Grp Volume(v), veh/h				113	0	206	305	422	0	0	532	477
Grp Sat Flow(s), veh/h/ln				1739	0	1611	1795	1763	0	0	1777	1592
1 (7)				2.8	0.0	5.4	7.1	1.9	0.0	0.0	12.5	
Q Serve(g_s), s												12.5
Cycle Q Clear(g_c), s				2.8	0.0	5.4	7.1	1.9	0.0	0.0	12.5	12.5
Prop In Lane				1.00	0	1.00	1.00	0440	0.00	0.00	004	0.70
Lane Grp Cap(c), veh/h				209	0	193	415	2413	0	0	624	559
V/C Ratio(X)				0.54	0.00	1.07	0.74	0.17	0.00	0.00	0.85	0.85
Avail Cap(c_a), veh/h				209	0	193	451	2413	0	0	624	559
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	1.00	0.82	0.82	0.00	0.00	1.00	1.00
Uniform Delay (d), s/veh				18.6	0.0	19.8	16.0	2.5	0.0	0.0	13.5	13.5
Incr Delay (d2), s/veh				1.6	0.0	83.1	3.9	0.1	0.0	0.0	13.8	15.2
Initial Q Delay(d3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In				1.0	0.0	6.2	3.0	0.4	0.0	0.0	6.5	6.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh				20.2	0.0	102.9	19.9	2.7	0.0	0.0	27.4	28.7
LnGrp LOS				С		F	В	А			С	С
Approach Vol, veh/h					319			727			1009	
Approach Delay, s/veh					73.6			9.9			28.0	
Approach LOS					E			А			С	
Timer - Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), s	15.0	20.4		9.6		35.4						
Change Period (Y+Rc), s	4.6	* 4.6		4.2		4.6						
Max Green Setting (Gmax), s	11.3	* 16		5.4		30.8						
Max Q Clear Time (g_c+I1), s	9.1	14.5		7.4		3.9						
Green Ext Time (p_c), s	0.0	0.5		0.0		1.2						
Intersection Summary												
HCM 7th Control Delay, s/veh			28.7									
HCM 7th LOS			20.7 C									
			v									
Notes												

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

01/06/2025

t ∢ ۶ ţ ∖ WBT WBR EBL EBT EBR WBL NBL NBT NBR SBL SBT SBR Movement Lane Configurations ٦ 4 7 ŧÞ ٦ ħħ 234 208 347 0 276 Traffic Volume (veh/h) 0 0 457 91 473 0 0 Future Volume (veh/h) 234 208 347 0 0 0 0 457 91 276 473 0 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 Lane Width Adj. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Ped-Bike Adj(A pbT) 1.00 0.97 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No Adj Sat Flow, veh/h/ln 1826 1900 1856 0 1885 1856 1870 1856 0 Adj Flow Rate, veh/h 245 305 306 0 497 99 300 514 0 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 3 0 2 3 Percent Heavy Veh, % 5 0 1 3 0 396 433 358 879 449 2205 Cap, veh/h 0 174 0 Arrive On Green 0.23 0.23 0.23 0.00 0.30 0.30 0.25 0.63 0.00 Sat Flow, veh/h 1739 1900 1572 0 3057 587 1781 3618 0 245 305 0 299 297 300 514 0 Grp Volume(v), veh/h 306 Grp Sat Flow(s), veh/h/ln1739 1900 1791 1759 1781 1763 1572 0 0 11.2 8.5 9.1 Q Serve(q s), s 7.6 8.9 0.0 8.6 3.8 0.0 Cycle Q Clear(g_c), s 7.6 8.9 11.2 0.0 8.5 8.6 9.1 3.8 0.0 1.00 1.00 0.00 0.33 1.00 0.00 Prop In Lane 433 531 Lane Grp Cap(c), veh/h 396 358 522 449 2205 0 0 0.62 0.70 0.85 0.56 0.67 0.23 0.00 V/C Ratio(X) 0.00 0.57 Avail Cap(c_a), veh/h 446 488 404 531 522 449 2205 0 0 1.00 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 0.00 1.00 1.00 0.66 0.66 0.00 Uniform Delay (d), s/veh 20.8 21.3 22.2 0.0 17.8 17.9 20.2 4.9 0.0 Incr Delay (d2), s/veh 13.5 0.0 2.0 0.0 1.2 3.0 4.3 4.5 0.2 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/lr2.9 3.9 5.1 0.0 3.9 3.9 3.8 1.1 0.0 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 24.3 35.8 0.0 22.1 22.3 22.2 5.1 0.0 22.1 LnGrp LOS С С D С С С А Approach Vol, veh/h 856 596 814 Approach Delay, s/veh 22.2 11.4 27.8 Approach LOS С С В 2 8 Timer - Assigned Phs 5 6 Phs Duration (G+Y+Rc), s 42.1 19.7 22.4 17.9 4.6 4.2 Change Period (Y+Rc), s 4.6 * 4.6 Max Green Setting (Gmax), s 35.8 14.3 * 18 15.4 11.1 13.2

10.6

1.0

0.1

0.5

Intersection Summary HCM 7th Control Delay, s/veh

Max Q Clear Time (g_c+l1), s

Green Ext Time (p_c), s

20.4 HCM 7th LOS С

Notes

User approved volume balancing among the lanes for turning movement.

5.8

1.5

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Existing PM 2:13 pm 06/24/2024 No Build

Synchro 12 Report Page 2 3.2

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		र्च	1		4		۲.	_ ≜ †₽		۲.	_ ≜ î⊧		
Traffic Vol, veh/h	49	2	38	4	1	37	4	462	9	50	658	112	
Future Vol, veh/h	49	2	38	4	1	37	4	462	9	50	658	112	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	0	-	-	-	50	-	-	50	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	56	2	44	5	1	43	5	531	10	57	756	129	

Major/Minor	Minor2		N	Ainor1		Ν	/lajor1		Ν	1ajor2			
Conflicting Flow All	1211	1486	443	1040	1545	271	885	0	0	541	0	0	
Stage 1	936	936	-	545	545	-	-	-	-	-	-	-	
Stage 2	275	551	-	494	1000	-	-	-	-	-	-	-	
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-	
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-	
Pot Cap-1 Maneuver	138	123	563	185	113	727	760	-	-	1023	-	-	
Stage 1	285	342	-	490	517	-	-	-	-	-	-	-	
Stage 2	707	514	-	525	319	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	· 121	116	563	157	106	727	760	-	-	1023	-	-	
Mov Cap-2 Maneuver	· 121	116	-	157	106	-	-	-	-	-	-	-	
Stage 1	269	323	-	487	513	-	-	-	-	-	-	-	
Stage 2	661	511	-	454	301	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Dela	ay, s/v39.65	13.16	0.08	0.53	
HCM LOS	E	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	EBLn2V	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	760	-	-	121	563	490	1023	-	-	
HCM Lane V/C Ratio	0.006	-	-	0.486	0.078	0.099	0.056	-	-	
HCM Control Delay (s/veh)	9.8	-	-	60.3	11.9	13.2	8.7	-	-	
HCM Lane LOS	А	-	-	F	В	В	А	-	-	
HCM 95th %tile Q(veh)	0	-	-	2.2	0.3	0.3	0.2	-	-	

22.5

EBL

92

92

6

0

103

EB

WB

1

0.89

EBT

đ

45

45

0

51

1

0.89

EBR

۴

84

84

0

94

1

0.89

WBL

18

18

0

20

0

WB

EΒ

2

0.89

WBT

4 33

33

3

37

1

0.89

WBR

76

76

1

85

0

0.89

NBL

٦

46

46

2

52

1

NB

SB

3

0.89

NBT

↑ 307

307

0.89

1

2

345

NBR

21

21

9

24

0

0.89

SBL

٦

146

146

0.89

164

SB

NB

3

0

1

SBT

↑ 505

505

0.89

567

3

2

С

Intersection

Movement

Mvmt Flow

Approach

Intersection LOS

Lane Configurations

Traffic Vol, veh/h

Future Vol, veh/h

Peak Hour Factor

Heavy Vehicles, %

Number of Lanes

Opposing Approach

Opposing Lanes

Intersection Delay, s/veh

01/06/2025

SBR

49

49

3

55

0

0.89

ltem 7 B.

Existing PM 2:13 pm 06/24/2	2024 No Build
-----------------------------	---------------

	-			_			-			-	
Conflicting Approach Left	SB			NB			EB			WB	
Conflicting Lanes Left	3			3			2			1	
Conflicting Approach Right	NB			SB			WB			EB	
Conflicting Lanes Right	3			3			1			2	
HCM Control Delay, s/veh	16.7			16.8			18.3			27.6	
HCM LOS	С			С			С			D	
Lane		NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2	SBLn3	
Vol Left, %		100%	0%	0%	67%	0%	14%	100%	0%	0%	
Vol Thru, %		0%	100%	83%	33%	0%	26%	0%	100%	77%	
Vol Right, %		0%	0%	17%	0%	100%	60%	0%	0%	23%	
Sign Control		Stop									
Traffic Vol by Lane		46	205	123	137	84	127	146	337	217	
LT Vol		46	0	0	92	0	18	146	0	0	
Through Vol		0	205	102	45	0	33	0	337	168	
RT Vol		0	0	21	0	84	76	0	0	49	
Lane Flow Rate		52	230	139	154	94	143	164	378	244	
Geometry Grp		6	6	6	6	6	6	6	6	6	
Degree of Util (X)		0.13	0.546	0.33	0.407	0.219	0.358	0.38	0.828	0.524	
Departure Headway (Hd)		9.081	8.547	8.564	9.525	8.364	9.043	8.345	7.882	7.719	
Convergence, Y/N		Yes									
Сар		395	423	420	379	428	398	433	461	469	
Service Time		6.833	6.299	6.316	7.283	6.121	6.806	6.045	5.582	5.419	
HCM Lane V/C Ratio		0.132	0.544	0.331	0.406	0.22	0.359	0.379	0.82	0.52	
HCM Control Delay, s/veh		13.2	21.2	15.5	18.7	13.5	16.8	16.1	38.5	18.6	
HCM Lane LOS		В	С	С	С	В	С	С	E	С	
HCM 95th-tile Q		0.4	3.2	1.4	1.9	0.8	1.6	1.7	8	3	

Intersection

Intersection Delay, s/veh20.5 Intersection LOS C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		्	1		4		ľ	ef -			÷	1	
Traffic Vol, veh/h	72	84	8	61	72	31	29	200	23	56	337	124	
Future Vol, veh/h	72	84	8	61	72	31	29	200	23	56	337	124	
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	81	94	9	69	81	35	33	225	26	63	379	139	
Number of Lanes	0	1	1	0	1	0	1	1	0	0	1	1	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			2			2			2			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	2			2			2			1			
Conflicting Approach R	ightNB			SB			WB			EB			
Conflicting Lanes Right	2			2			1			2			
HCM Control Delay, s/v	/eħ4.9			15.3			15.3			26.5			
HCM LOS	В			С			С			D			

Lane	NBLn1	NBLn2	EBLn1	EBLn2V	VBLn1	SBLn1	SBLn2
Vol Left, %	100%	0%	46%	0%	37%	14%	0%
Vol Thru, %	0%	90%	54%	0%	44%	86%	0%
Vol Right, %	0%	10%	0%	100%	19%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	29	223	156	8	164	393	124
LT Vol	29	0	72	0	61	56	0
Through Vol	0	200	84	0	72	337	0
RT Vol	0	23	0	8	31	0	124
Lane Flow Rate	33	251	175	9	184	442	139
Geometry Grp	5	5	5	5	4b	5	5
Degree of Util (X)	0.068	0.481	0.379	0.017	0.386	0.809	0.225
Departure Headway (Hd)	7.496	6.91	7.788	6.834	7.541	6.598	5.812
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Сар	478	521	463	523	477	548	617
Service Time	5.242	4.655	5.537	4.583	5.59	4.336	3.549
HCM Lane V/C Ratio	0.069	0.482	0.378	0.017	0.386	0.807	0.225
HCM Control Delay, s/veh	10.8	15.9	15.2	9.7	15.3	31.7	10.2
HCM Lane LOS	В	С	С	А	С	D	В
HCM 95th-tile Q	0.2	2.6	1.7	0.1	1.8	7.9	0.9

Intersection		
Intersection Delay, s/ve	h12.1	
Intersection LOS	В	

Movement	WBL	WBR	NBT	NBR	SBL	SBT	Γ
Lane Configurations	۰Y		4			ર્સ	
Traffic Vol, veh/h	35	104	124	85	304	141	1
Future Vol, veh/h	35	104	124	85	304	141	1
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	3
Heavy Vehicles, %	2	2	2	2	2	2	2
Mvmt Flow	36	106	127	87	310	144	1
Number of Lanes	1	0	1	0	0	1	1
Approach	WB		NB		SB		
Opposing Approach			SB		NB		
Opposing Lanes	0		1		1		
Conflicting Approach L	eft NB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach F	RighSB		WB				
Conflicting Lanes Righ	it 1		1		0		
HCM Control Delay, s/	veh9.4		9.3		14.2		
HCM LOS	А		А		В		

Lane	NBLn1\	NBLn1	SBLn1
Vol Left, %	0%	25%	68%
Vol Thru, %	59%	0%	32%
Vol Right, %	41%	75%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	209	139	445
LT Vol	0	35	304
Through Vol	124	0	141
RT Vol	85	104	0
Lane Flow Rate	213	142	454
Geometry Grp	1	1	1
Degree of Util (X)	0.27	0.198	0.588
Departure Headway (Hd)	4.564	5.034	4.664
Convergence, Y/N	Yes	Yes	Yes
Сар	783	708	772
Service Time	2.618	3.098	2.71
HCM Lane V/C Ratio	0.272	0.201	0.588
HCM Control Delay, s/veh	9.3	9.4	14.2
HCM Lane LOS	А	А	В
HCM 95th-tile Q	1.1	0.7	3.9

Intersection

Intersection Delay, s/veh15.4 Intersection LOS C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			्	1		÷	1	
Traffic Vol, veh/h	5	3	3	203	3	39	1	165	498	92	83	1	
Future Vol, veh/h	5	3	3	203	3	39	1	165	498	92	83	1	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	5	3	3	211	3	41	1	172	519	96	86	1	
Number of Lanes	0	1	0	0	1	0	0	1	1	0	1	1	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			2			2			
Conflicting Approach L	eft SB			NB			EB			WB			
Conflicting Lanes Left	2			2			1			1			
Conflicting Approach R	RightNB			SB			WB			EB			
Conflicting Lanes Righ	t 2			2			1			1			
HCM Control Delay, s/	veh9.7			13.4			17			12.3			
HCM LOS	А			В			С			В			

Lane	NBLn1	NBLn2	EBLn1\	VBLn1	SBLn1	SBLn2
Vol Left, %	1%	0%	45%	83%	53%	0%
Vol Thru, %	99%	0%	27%	1%	47%	0%
Vol Right, %	0%	100%	27%	16%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	166	498	11	245	175	1
LT Vol	1	0	5	203	92	0
Through Vol	165	0	3	3	83	0
RT Vol	0	498	3	39	0	1
Lane Flow Rate	173	519	11	255	182	1
Geometry Grp	5	5	2	2	5	5
Degree of Util (X)	0.272	0.714	0.021	0.424	0.327	0.002
Departure Headway (Hd)	5.667	4.956	6.462	5.985	6.466	5.487
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	635	731	552	602	556	651
Service Time	3.398	2.687	4.52	4.021	4.21	3.23
HCM Lane V/C Ratio	0.272	0.71	0.02	0.424	0.327	0.002
HCM Control Delay, s/veh	10.5	19.1	9.7	13.4	12.3	8.2
HCM Lane LOS	В	С	А	В	В	А
HCM 95th-tile Q	1.1	6.1	0.1	2.1	1.4	0

HCM 7th Signalized Intersection Summary 1: Bay Ave & Hwy 1 NB Off-Ramp

01/06/2025

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBR SBR Lane Configurations 0 0 161 12 379 321 392 0 0 436 536 Future Volume (velnh) 0 0 161 12 379 321 392 0 0 436 536 Future Volume (velnh) 0 0 1.00		≯	-	\mathbf{F}	∢	←	*	1	Ť	1	1	Ŧ	-
Traffic Volume (veh/n) 0 0 0 161 12 379 321 392 0 4 36 536 Future Volume (veh/n) 0 0 0 161 12 379 321 392 0 0 436 536 Future Volume (veh/n) 0<	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (veh/n) 0 0 0 161 12 379 321 392 0 0 436 536 Future Volume (veh/n) 0 0 0 100 1.00	Lane Configurations				۲	4		۲	^			A	
Future Volume (veh/n) 0 0 161 12 379 321 392 0 436 536 Initial Q (Db), veh 0	Traffic Volume (veh/h)	0	0	0	161		379			0	0		536
Initial Q(b), veh 0		0	0	0	161	12	379	321	392	0	0	436	536
Lane Width Adj. 1.00					0	0	0			0	0		
Pad-Bike Adj(Å pbT) 1.00												1.00	
Parking Bus, Adj 1.00 No No Adj Sat Flow, veh/h1 168 133 399 338 413 0 0 459 564 Percent Heavy Veh, % 5 0 1 1 3 0 0 2 1 Cap, veh/h 341 10 308 433 0 0 152 431 Grp Volume(v), veh/h 1739 0 1618 1795 3618 0 0 177 1489 0 0 0 0 0 0 100 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Work Zone On Ápproach No No No No Ad] Sat Flow, veln/hin 1826 1900 1885 1856 0 0 1870 1885 Ad] Sat Flow, veln/hin 169 13 399 338 413 0 0 459 564 Peak Hour Factor 0.95						1.00			1.00			1.00	
Acj Sat Flow, veh/hlin 1826 1900 1885 1885 1885 0 0 1870 1885 Adj Flow Rate, veh/h 169 13 399 338 413 0 0 459 564 Peak Hour Factor 0.95													
Adj Flow Rate, veh/h 169 13 399 338 413 0 0 459 564 Peak Hour Factor 0.95 0.					1826		1885	1885		0	0		1885
Pack Hour Factor 0.95 0.9													
Percent Heavy Veh, % 5 0 1 1 3 0 0 2 1 Cap, veh/h 341 10 308 437 2269 0 0 562 471 Arrive On Green 0.20 0.20 0.49 1.00 0.00 0.00 0.00 0.02 0.20 Sat Flow, veh/h 1739 51 1567 1795 3618 0 0 1870 1489 Grp Volume(V), veh/h 169 4412 338 413 0 0 459 564 Grp Volume(V), veh/h 1739 0 1618 1795 1763 0 0 1777 1489 Q Serve(g.s), s 4.8 0.0 10.8 8.5 0.0 0.0 0.13.1 17.4 Prop In Lane 1.00 0.09 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Cap, veh/h 341 10 308 437 2269 0 0 562 471 Arrive On Green 0.20 0.20 0.20 0.49 1.00 0.00 0.32 0.32 Sat Flow, veh/h 1739 51 1567 1795 3618 0 1870 1489 Grp Volume(v), veh/h 169 0 418 0 0 459 564 Grp Sat Flow(s), veh/h/ln 1739 0 1618 1795 1763 0 0 1777 1489 Q Serve(g.s), s 4.8 0.0 10.8 8.5 0.0 0.0 0.13.1 17.4 Orpolin Lane 1.00 0.97 1.00 0.00 0.00 1.00													
Arrive On Green 0.20 0.20 0.20 0.49 1.00 0.00 0.01 0.32 0.32 Sat Flow, veh/h 1739 51 1567 1795 3618 0 0 1870 1489 Grp Volume(v), veh/h 169 0 412 338 413 0 0 459 564 Grp Sat Flow(s), veh/h/in 1739 0 1618 1795 1763 0 0 171 1489 Q Serve(g, s), s 4.8 0.0 10.8 8.5 0.0 0.0 0.0 131 17.4 Cycle Q Clear(g_c), veh/h 341 0 318 437 2269 0 0 562 471 V/C Rato(X) 0.49 0.00 1.30 0.77 0.18 0.00 0.00 1.00 1.00 V/C Rato(X) 0.49 0.00 1.30 0.77 0.18 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00													
Sat Flow, veh/h 1739 51 1567 1795 3618 0 0 1870 1489 Grp Volume(v), veh/h 169 0 412 338 413 0 0 459 564 Grp Sat Flow(s), veh/h/ln 1739 0 1618 1795 1763 0 0 1777 1489 Q Serve(g.s), s 4.8 0.0 10.8 8.5 0.0 0.0 0.0 13.1 17.4 Cycle Q Clear(g.c), s 4.8 0.0 10.8 8.5 0.0 0.0 0.0 13.1 17.4 Prop In Lane 1.00 0.97 1.00 0.00 0.00 1.31 17.4 V/C Ratio(X) 0.49 0.00 1.30 0.77 0.18 0.00 0.00 0.82 1.20 Avail Cap(c.a), veh/h 341 0 318 467 2269 0 0 562 471 V/C Ratio(X) 0.49 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	•												
Grp Volume(v), veh/h 169 0 412 338 413 0 0 459 564 Grp Sat Flow(s), veh/h/ln 1739 0 1618 1795 1763 0 0 1777 1489 Q Serve(g. s), s 4.8 0.0 10.8 8.5 0.0 0.0 0.0 13.1 17.4 Cycle Q Clear(g. c), s 4.8 0.0 10.8 8.5 0.0 0.0 0.0 0.0 13.1 17.4 Cycle Q Clear(g. c), s 4.8 0.0 10.8 8.5 0.0 0.0 0.0 1.0 1.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Grp Sat Flow(s),veh/h/ln 1739 0 1618 1795 1763 0 0 1777 1489 Q Serve(g. s), s 4.8 0.0 10.8 8.5 0.0 0.0 0.0 13.1 17.4 Cycle Q Clear(g_c), s 4.8 0.0 10.8 8.5 0.0 0.0 0.0 13.1 17.4 Cycle Q Clear(g_c), seh/h 341 0 318 437 2269 0 0 562 471 V/C Rato(X) 0.49 0.00 1.30 0.77 0.18 0.00 0.00 0.82 1.20 Avail Cap(c_a), veh/h 341 0 318 467 2269 0 0 562 471 HCM Platon Ratio 1.00													
Q Serve(g_s), s 4.8 0.0 10.8 8.5 0.0 0.0 13.1 17.4 Cycle Q Clear(g_c), s 4.8 0.0 10.8 8.5 0.0 0.0 0.0 13.1 17.4 Prop In Lane 1.00 0.97 1.00 0.00 0.00 13.1 17.4 Prop In Lane GP Cap(c), veh/h 341 0 318 437 2269 0 0 562 471 V/C Ratio(X) 0.49 0.00 1.30 0.77 0.18 0.00 0.00 1.00	1 (//												
Cycle Q Clear(g_c), s 4.8 0.0 10.8 8.5 0.0 0.0 0.0 13.1 17.4 Prop In Lane 1.00 0.97 1.00 0.00 0.00 100 Lane Grp Cap(c), veh/h 341 0 318 437 2269 0 0 562 471 V/C Ratio(X) 0.49 0.00 1.30 0.77 0.18 0.00 0.00 0.82 1.20 Avail Cap(c_a), veh/h 341 0 318 467 2269 0 0 562 471 HCM Platoon Ratio 1.00 1.0.1													
Prop In Lane 1.00 0.97 1.00 0.00 0.00 1.00 Lane Grp Cap(c), veh/h 341 0 318 437 2269 0 0 562 471 V/C Ratio(X) 0.49 0.00 1.30 0.77 0.18 0.00 0.00 0.82 1.20 Avail Cap(c. a), veh/h 341 0 318 467 2269 0 0 562 471 HCM Platoon Ratio 1.00 1.													
Lane Grp Cap(c), veh/h 341 0 318 437 2269 0 0 562 471 V/C Ratio(X) 0.49 0.00 1.30 0.77 0.18 0.00 0.00 0.82 1.20 Avail Cap(c_a), veh/h 341 0 318 467 2269 0 0 562 471 HCM Platon Ratio 1.00 1.00 1.00 2.00 1.00	, (0=):					0.0			0.0			13.1	
V/C Ratio (X) 0.49 0.00 1.30 0.77 0.18 0.00 0.00 0.82 1.20 Avail Cap(c_a), veh/h 341 0 318 467 2269 0 0 562 471 HCM Platoon Ratio 1.00 1.00 1.00 0.00 0.00 0.00 1.00	•												
Avail Cap(c_a), veh/h 341 0 318 467 2269 0 0 562 471 HCM Platoon Ratio 1.00 1.00 1.00 1.00 2.00 2.00 1.00													
HCM Platoon Ratio 1.00 1.00 1.00 2.00 2.00 1.	. ,												
Upstream Filter(I) 1.00 0.00 1.00 0.83 0.83 0.00 0.00 1.00 1.00 Uniform Delay (d), s/veh 19.7 0.0 22.1 12.8 0.0 0.0 17.3 18.8 Incr Delay (d2), s/veh 0.4 0.0 154.9 5.4 0.1 0.0 0.0 12.4 107.7 Intial Q Delay(d3), s/veh 0.0													
Uniform Delay (d), s/veh 19.7 0.0 22.1 12.8 0.0 0.0 17.3 18.8 Incr Delay (d2), s/veh 0.4 0.0 154.9 5.4 0.1 0.0 0.0 12.4 107.7 Initial Q Delay(d3), s/veh 0.0 1.0 0.0 0.0 0.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1<													
Incr Delay (d2), s/veh 0.4 0.0 154.9 5.4 0.1 0.0 0.0 12.4 107.7 Initial Q Delay(d3), s/veh 0.0													
Initial Q Delay(d3), s/veh 0.0 <										0.0			
%ile BackOfQ(50%),veh/ln 1.8 0.0 17.3 3.0 0.0 0.0 6.7 19.5 Unsig. Movement Delay, s/veh 20.1 0.0 177.0 18.3 0.1 0.0 0.0 29.7 126.5 LnGrp Delay(d), s/veh 20.1 0.0 177.0 18.3 0.1 0.0 0.0 29.7 126.5 LnGrp LOS C F B A C F Approach Vol, veh/h 581 751 1023 Approach Delay, s/veh 131.4 8.3 83.1 Approach LOS F A F Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 18.0 22.0 15.0 40.0 40.0 Change Period (Y+Rc), s 4.6 4.2 4.6 4.6 4.2 4.6 Max Green Setting (Gmax), s 14.3 * 17 10.8 35.4 35.4 35.4 Max Q Clear Time (g_c+I1), s 10.5 19.4 12.8 2.0 36.4 4.6 Intersection Summary 71	Incr Delay (d2), s/veh				0.4	0.0	154.9	5.4	0.1	0.0	0.0	12.4	107.7
Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 20.1 0.0 177.0 18.3 0.1 0.0 0.0 29.7 126.5 LnGrp LOS C F B A C F Approach Vol, veh/h 581 751 1023 Approach Delay, s/veh 131.4 8.3 83.1 Approach LOS F A F Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 18.0 22.0 15.0 40.0 Change Period (Y+Rc), s 4.6 4.2 4.6 4.6 Max Green Setting (Gmax), s 14.3 * 17 10.8 35.4 Max Q Clear Time (g_c+I1), s 10.5 19.4 12.8 2.0 Green Ext Time (p_c), s 0.1 0.0 0.0 1.2 Intersection Summary T1.2 HCM 7th Control Delay, s/veh 71.2 HCM 7th LOS E E 11.2	Initial Q Delay(d3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LnGrp Delay(d), s/veh 20.1 0.0 177.0 18.3 0.1 0.0 0.0 29.7 126.5 LnGrp LOS C F B A C F Approach Vol, veh/h 581 751 1023 Approach Delay, s/veh 131.4 8.3 83.1 Approach LOS F A F Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 18.0 22.0 15.0 40.0 Change Period (Y+Rc), s 4.6 4.2 4.6 4.6 Max Green Setting (Gmax), s 14.3 * 17 10.8 35.4 Max Q Clear Time (g_c+I1), s 10.5 19.4 12.8 2.0 Green Ext Time (p_c), s 0.1 0.0 0.0 1.2 Intersection Summary T1.2 E E E	%ile BackOfQ(50%),veh/In				1.8	0.0	17.3	3.0	0.0	0.0	0.0	6.7	19.5
LnGrp LOS C F B A C F Approach Vol, veh/h 581 751 1023 Approach Delay, s/veh 131.4 8.3 83.1 Approach LOS F A F Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 18.0 22.0 15.0 40.0 Change Period (Y+Rc), s 4.6 4.2 4.6 4.6 Max Green Setting (Gmax), s 14.3 * 17 10.8 35.4 Max Q Clear Time (g_c+I1), s 10.5 19.4 12.8 2.0 Green Ext Time (p_c), s 0.1 0.0 0.0 1.2 Intersection Summary F F F F HCM 7th Control Delay, s/veh 71.2 F F F	Unsig. Movement Delay, s/veh												
LnGrp LOS C F B A C F Approach Vol, veh/h 581 751 1023 Approach Delay, s/veh 131.4 8.3 83.1 Approach LOS F A F Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 18.0 22.0 15.0 40.0 Change Period (Y+Rc), s 4.6 4.2 4.6 4.6 Max Green Setting (Gmax), s 14.3 * 17 10.8 35.4 Max Q Clear Time (g_c+I1), s 10.5 19.4 12.8 2.0 Green Ext Time (p_c), s 0.1 0.0 0.0 1.2 Intersection Summary F F F F HCM 7th Control Delay, s/veh 71.2 F F F	LnGrp Delay(d), s/veh				20.1	0.0	177.0	18.3	0.1	0.0	0.0	29.7	126.5
Approach Vol, veh/h 581 751 1023 Approach Delay, s/veh 131.4 8.3 83.1 Approach LOS F A F Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 18.0 22.0 15.0 40.0 Change Period (Y+Rc), s 4.6 4.2 4.6 Max Green Setting (Gmax), s 14.3 * 17 10.8 35.4 Max Q Clear Time (g_c+I1), s 10.5 19.4 12.8 2.0 Green Ext Time (p_c), s 0.1 0.0 0.0 1.2 Intersection Summary T1.2 E E					С		F	В	А			С	F
Approach Delay, s/veh 131.4 8.3 83.1 Approach LOS F A F Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 18.0 22.0 15.0 40.0 Change Period (Y+Rc), s 4.6 * 4.6 4.2 4.6 Max Green Setting (Gmax), s 14.3 * 17 10.8 35.4 Max Q Clear Time (g_c+I1), s 10.5 19.4 12.8 2.0 Green Ext Time (p_c), s 0.1 0.0 0.0 1.2 Intersection Summary F F F F F HCM 7th Control Delay, s/veh 71.2 F F F F HCM 7th LOS E F <td></td> <td></td> <td></td> <td></td> <td></td> <td>581</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1023</td> <td></td>						581						1023	
Approach LOS F A F Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 18.0 22.0 15.0 40.0 Change Period (Y+Rc), s 4.6 4.2 4.6 Max Green Setting (Gmax), s 14.3 * 17 10.8 35.4 Max Q Clear Time (g_c+I1), s 10.5 19.4 12.8 2.0 Green Ext Time (p_c), s 0.1 0.0 0.0 1.2 Intersection Summary 71.2 E 1.2													
Phs Duration (G+Y+Rc), s 18.0 22.0 15.0 40.0 Change Period (Y+Rc), s 4.6 * 4.6 4.2 4.6 Max Green Setting (Gmax), s 14.3 * 17 10.8 35.4 Max Q Clear Time (g_c+I1), s 10.5 19.4 12.8 2.0 Green Ext Time (p_c), s 0.1 0.0 0.0 1.2 Intersection Summary													
Phs Duration (G+Y+Rc), s 18.0 22.0 15.0 40.0 Change Period (Y+Rc), s 4.6 * 4.6 4.2 4.6 Max Green Setting (Gmax), s 14.3 * 17 10.8 35.4 Max Q Clear Time (g_c+I1), s 10.5 19.4 12.8 2.0 Green Ext Time (p_c), s 0.1 0.0 0.0 1.2 Intersection Summary	Timer - Assigned Phs	1	2		4		6						
Change Period (Y+Rc), s 4.6 * 4.6 4.2 4.6 Max Green Setting (Gmax), s 14.3 * 17 10.8 35.4 Max Q Clear Time (g_c+I1), s 10.5 19.4 12.8 2.0 Green Ext Time (p_c), s 0.1 0.0 0.0 1.2 Intersection Summary T1.2 T1.2 HCM 7th Control Delay, s/veh 71.2 HCM 7th LOS E													
Max Green Setting (Gmax), s 14.3 * 17 10.8 35.4 Max Q Clear Time (g_c+I1), s 10.5 19.4 12.8 2.0 Green Ext Time (p_c), s 0.1 0.0 0.0 1.2 Intersection Summary 71.2 HCM 7th LOS E													
Max Q Clear Time (g_c+l1), s 10.5 19.4 12.8 2.0 Green Ext Time (p_c), s 0.1 0.0 0.0 1.2 Intersection Summary Provide the sector of t													
Green Ext Time (p_c), s 0.1 0.0 0.0 1.2 Intersection Summary Intersection Delay, s/veh 71.2													
Intersection Summary HCM 7th Control Delay, s/veh 71.2 HCM 7th LOS E													
HCM 7th Control Delay, s/veh 71.2 HCM 7th LOS E	u = <i>y</i> ,												
HCM 7th LOS E	•			71.0									
Notes													
	Notes												

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

01/06/2025

		-	•	•		-	7		\mathcal{L}		*	-	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	1	\$	1					∱î ≽		1	<u>†</u> †		
Traffic Volume (veh/h)	248	0	586	0	0	0	0	465	61	251	346	0	
Future Volume (veh/h)	248	0	586	0	0	0	0	465	61	251	346	0	
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0	
Lane Width Adj.	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		0.97	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac		No						No			No		
Adj Sat Flow, veh/h/ln	1826	1900	1856				0	1885	1856	1870	1856	0	
Adj Flow Rate, veh/h	174	0	710				0	489	64	264	364	Ũ	
Peak Hour Factor	0.95	0.95	0.95				0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	0.35	0.55	0.55				0.55	0.33	0.55	0.55	0.55	0.55	
Cap, veh/h	373	0	675				0	1062	138	369	2205	0	
	0.21	0.00	0.21				0.00	0.33	0.33		1.00	0.00	
Arrive On Green										0.41			
Sat Flow, veh/h	1739	0	3145				0	3268	413	1781	3618	0	
Grp Volume(v), veh/h	174	0	710				0	275	278	264	364	0	
Grp Sat Flow(s),veh/h/l		0	1572				0	1791	1796	1781	1763	0	
Q Serve(g_s), s	4.8	0.0	11.8				0.0	6.6	6.7	6.8	0.0	0.0	
Cycle Q Clear(g_c), s	4.8	0.0	11.8				0.0	6.6	6.7	6.8	0.0	0.0	
Prop In Lane	1.00		1.00				0.00		0.23	1.00		0.00	
Lane Grp Cap(c), veh/r	ו 373 ו	0	675				0	599	601	369	2205	0	
V/C Ratio(X)	0.47	0.00	1.05				0.00	0.46	0.46	0.72	0.17	0.00	
Avail Cap(c_a), veh/h	373	0	675				0	599	601	398	2205	0	
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	2.00	2.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00				0.00	1.00	1.00	0.67	0.67	0.00	
Uniform Delay (d), s/ve	h 18.9	0.0	21.6				0.0	14.4	14.4	14.7	0.0	0.0	
Incr Delay (d2), s/veh	0.3	0.0	49.2				0.0	2.5	2.6	3.0	0.1	0.0	
Initial Q Delay(d3), s/ve	h 0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),ve		0.0	8.4				0.0	2.8	2.9	2.4	0.0	0.0	
Unsig. Movement Dela													
LnGrp Delay(d), s/veh	19.2	0.0	70.8				0.0	16.9	17.0	17.8	0.1	0.0	
LnGrp LOS	B	0.0	70.0 F				5.0	B	B	B	A	5.0	
Approach Vol, veh/h	0	884						553	0	5	628		
Approach Delay, s/veh		60.6						16.9			7.5		
Approach LOS		60.6 E						16.9 B			7.5 A		
••											А		
Timer - Assigned Phs		2			5	6		8					
Phs Duration (G+Y+Rc		39.0			16.0	23.0		16.0					
Change Period (Y+Rc)		4.6			4.6	* 4.6		4.2					
Max Green Setting (Gn	nax), s	34.4			12.3	* 18		11.8					
Max Q Clear Time (g_c	;+l1), s	2.0			8.8	8.7		13.8					
Green Ext Time (p_c),		1.0			0.1	1.0		0.0					
Intersection Summary													
HCM 7th Control Delay	s/veh		32.8										
HCM 7th LOS	, 0, 7011		52.0 C										
			J										
Notes													

Notes

User approved volume balancing among the lanes for turning movement.

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Year 2045 AM 2:06 pm 06/24/2024 No Build

3.3

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		्र	1		4		۲	∱ î⊧		٦	_ ≜ î₽		
Traffic Vol, veh/h	53	0	21	0	1	79	1	394	9	69	754	109	
Future Vol, veh/h	53	0	21	0	1	79	1	394	9	69	754	109	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	0	-	-	-	50	-	-	50	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	56	0	22	0	1	83	1	415	9	73	794	115	

Major/Minor	Minor2		Ν	/linor1		Ν	/lajor1		Ν	lajor2			
Conflicting Flow All	1206	1423	454	964	1475	212	908	0	0	424	0	0	
Stage 1	996	996	-	422	422	-	-	-	-	-	-	-	
Stage 2	210	426	-	542	1054	-	-	-	-	-	-	-	
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-	
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-	
Pot Cap-1 Maneuver	139	135	553	210	125	793	745	-	-	1131	-	-	
Stage 1	262	320	-	580	587	-	-	-	-	-	-	-	
Stage 2	773	584	-	492	301	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	· 115	126	553	188	117	793	745	-	-	1131	-	-	
Mov Cap-2 Maneuver	· 115	126	-	188	117	-	-	-	-	-	-	-	
Stage 1	245	300	-	579	586	-	-	-	-	-	-	-	
Stage 2	689	583	-	442	282	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s/v	48	10.49	0.02	0.62	
HCM LOS	Е	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1 E	EBLn2V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	745	-	-	115	553	740	1131	-	-
HCM Lane V/C Ratio	0.001	-	-	0.483	0.04	0.114	0.064	-	-
HCM Control Delay (s/veh)	9.8	-	-	62.4	11.8	10.5	8.4	-	-
HCM Lane LOS	А	-	-	F	В	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	2.2	0.1	0.4	0.2	-	-

01/06/2025

Intersection Delay, s/veh 22.2 Intersection LOS C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	1		4		٦	- † Þ		٦	≜ î≽	
Traffic Vol, veh/h	43	19	39	13	28	68	57	293	4	75	669	31
Future Vol, veh/h	43	19	39	13	28	68	57	293	4	75	669	31
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	6	0	0	0	3	1	2	1	9	0	3	3
Mvmt Flow	45	20	41	14	29	72	60	308	4	79	704	33
Number of Lanes	0	1	1	0	1	0	1	2	0	1	2	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			1			2		
HCM Control Delay, s/veh	12.4			13.3			14			28.4		
HCM LOS	В			В			В			D		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2	SBLn3	
Vol Left, %	100%	0%	0%	69%	0%	12%	100%	0%	0%	
Vol Thru, %	0%	100%	96%	31%	0%	26%	0%	100%	88%	
Vol Right, %	0%	0%	4%	0%	100%	62%	0%	0%	12%	
Sign Control	Stop									
Traffic Vol by Lane	57	195	102	62	39	109	75	446	254	
LT Vol	57	0	0	43	0	13	75	0	0	
Through Vol	0	195	98	19	0	28	0	446	223	
RT Vol	0	0	4	0	39	68	0	0	31	
Lane Flow Rate	60	206	107	65	41	115	79	469	267	
Geometry Grp	6	6	6	6	6	6	6	6	6	
Degree of Util (X)	0.132	0.422	0.223	0.159	0.087	0.251	0.156	0.868	0.488	
Departure Headway (Hd)	7.915	7.388	7.499	8.786	7.621	7.863	7.113	6.657	6.571	
Convergence, Y/N	Yes									
Сар	453	487	478	408	469	457	508	549	551	
Service Time	5.664	5.137	5.248	6.547	5.382	5.62	4.813	4.357	4.271	
HCM Lane V/C Ratio	0.132	0.423	0.224	0.159	0.087	0.252	0.156	0.854	0.485	
HCM Control Delay, s/veh	11.9	15.5	12.4	13.2	11.1	13.3	11.1	38.7	15.4	
HCM Lane LOS	В	С	В	В	В	В	В	E	С	
HCM 95th-tile Q	0.5	2.1	0.8	0.6	0.3	1	0.5	9.5	2.7	

Intersection

Intersection Delay, s/veh18.4 Intersection LOS C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		्र	1		4		ľ	et -			÷	1	
Traffic Vol, veh/h	78	67	6	83	94	42	27	312	55	74	183	128	
Future Vol, veh/h	78	67	6	83	94	42	27	312	55	74	183	128	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	82	71	6	87	99	44	28	328	58	78	193	135	
Number of Lanes	0	1	1	0	1	0	1	1	0	0	1	1	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			2			2			2			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	2			2			2			1			
Conflicting Approach R	ighŊB			SB			WB			EB			
Conflicting Lanes Right	2			2			1			2			
HCM Control Delay, s/v	/eħ4.5			17.2			23.8			15.2			
HCM LOS	В			С			С			С			

Lane	NBLn1	NBLn2	EBLn1	EBLn2V	VBLn1	SBLn1	SBLn2
Vol Left, %	100%	0%	54%	0%	38%	29%	0%
Vol Thru, %	0%	85%	46%	0%	43%	71%	0%
Vol Right, %	0%	15%	0%	100%	19%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	27	367	145	6	219	257	128
LT Vol	27	0	78	0	83	74	0
Through Vol	0	312	67	0	94	183	0
RT Vol	0	55	0	6	42	0	128
Lane Flow Rate	28	386	153	6	231	271	135
Geometry Grp	5	5	5	5	4b	5	5
Degree of Util (X)	0.058	0.718	0.336	0.012	0.477	0.527	0.23
Departure Headway (Hd)	7.308	6.689	7.923	6.928	7.442	7.015	6.151
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Сар	490	541	453	515	484	514	582
Service Time	5.059	4.44	5.685	4.689	5.499	4.77	3.905
HCM Lane V/C Ratio	0.057	0.713	0.338	0.012	0.477	0.527	0.232
HCM Control Delay, s/veh	10.5	24.8	14.7	9.8	17.2	17.4	10.7
HCM Lane LOS	В	С	В	Α	С	С	В
HCM 95th-tile Q	0.2	5.8	1.5	0	2.5	3	0.9

- L			

01/06/2025

Intersection							
Intersection Delay, s/v	/eh18.2						
Intersection LOS	С						

Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		ef -			र्भ	
Traffic Vol, veh/h	87	282	162	61	219	239	
Future Vol, veh/h	87	282	162	61	219	239	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	92	297	171	64	231	252	
Number of Lanes	1	0	1	0	0	1	
Approach	WB		NB		SB		
Opposing Approach			SB		NB		
Opposing Lanes	0		1		1		
Conflicting Approach L	eft NB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach R	igh S B		WB				
Conflicting Lanes Right	t 1		1		0		
HCM Control Delay, s/v	/eh 16		12		22.9		
HCM LOS	С		В		С		

Lane	NBLn1\	WBLn1	SBLn1
Vol Left, %	0%	24%	48%
Vol Thru, %	73%	0%	52%
Vol Right, %	27%	76%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	223	369	458
LT Vol	0	87	219
Through Vol	162	0	239
RT Vol	61	282	0
Lane Flow Rate	235	388	482
Geometry Grp	1	1	1
Degree of Util (X)	0.369	0.587	0.742
Departure Headway (Hd)	5.665	5.441	5.539
Convergence, Y/N	Yes	Yes	Yes
Сар	631	660	651
Service Time	3.729	3.499	3.589
HCM Lane V/C Ratio	0.372	0.588	0.74
HCM Control Delay, s/veh	12	16	22.9
HCM Lane LOS	В	С	С
HCM 95th-tile Q	1.7	3.8	6.6

Intersection

Intersection Delay, s/veh 33 Intersection LOS D

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			4			्	1		्	1	
Traffic Vol, veh/h	0	9	1	418	3	100	1	123	238	201	121	4	
Future Vol, veh/h	0	9	1	418	3	100	1	123	238	201	121	4	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	9	1	440	3	105	1	129	251	212	127	4	
Number of Lanes	0	1	0	0	1	0	0	1	1	0	1	1	
Approach		EB		WB			NB			SB			
Opposing Approach		WB		EB			SB			NB			
Opposing Lanes		1		1			2			2			
Conflicting Approach Le	eft	SB		NB			EB			WB			
Conflicting Lanes Left		2		2			1			1			
Conflicting Approach Ri	ght	NB		SB			WB			EB			
Conflicting Lanes Right		2		2			1			1			
HCM Control Delay, s/v	eh	11		50.8			14.1			26.3			
HCM LOS		В		F			В			D			

Lane	NBLn1	NBLn2	EBLn1\	NBLn1	SBLn1	SBLn2
Vol Left, %	1%	0%	0%	80%	62%	0%
Vol Thru, %	99%	0%	90%	1%	38%	0%
Vol Right, %	0%	100%	10%	19%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	124	238	10	521	322	4
LT Vol	1	0	0	418	201	0
Through Vol	123	0	9	3	121	0
RT Vol	0	238	1	100	0	4
Lane Flow Rate	131	251	11	548	339	4
Geometry Grp	5	5	2	2	5	5
Degree of Util (X)	0.265	0.457	0.023	0.949	0.707	0.008
Departure Headway (Hd)	7.297	6.572	7.779	6.23	7.509	6.468
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	492	546	458	581	481	552
Service Time	5.053	4.327	5.864	4.267	5.261	4.219
HCM Lane V/C Ratio	0.266	0.46	0.024	0.943	0.705	0.007
HCM Control Delay, s/veh	12.7	14.8	11	50.8	26.5	9.3
HCM Lane LOS	В	В	В	F	D	А
HCM 95th-tile Q	1.1	2.4	0.1	12.6	5.5	0

HCM 7th Signalized Intersection Summary 1: Bay Ave & Hwy 1 NB Off-Ramp

01/06/2025

Movement EBI EBI EBR WBL WBT WBT NBT NBT NBR SBL SBR MD		≯	+	*	4	+	*	N	1	1	*	ţ	~
Traffic Volume (veh/n) 0 0 0 77 1 406 683 726 0 0 644 149 Future Volume (veh/n) 0 0 0 77 1 406 683 726 0 0 644 149 Initial Q (2b), veh 0	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (veh/n) 0 0 0 77 1 406 683 726 0 0 644 149 Initial Q (Qb), veh 0	Lane Configurations				۲	ef -		۲	<u></u>			∱1 ≱	
Initial Q (Ob), veh 0	Traffic Volume (veh/h)	0	0	0	77		406	683		0	0		149
Lane Writh Adj. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.03 Parking Bus, Adj 1.00	Future Volume (veh/h)	0	0	0	77	1	406	683	726	0	0	644	149
Ped-Bike Adj(Å.pbT) 1.00	Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Parking Bus, Adj 1.00 No No Adj Star Flow, veh/h1 1 1 22 0 1 1 3 0 0 2 1 Cap, veh/h 286 1 266 1 264 746 2601 0 0 765 17.7 Arrive On Green 0.16 0.16 0.16 0.16 0.16 0.16 0.00 0.00 0.00 0.027 0.27 Sat Flow, veh/h 1739 0 1611 1795 3618 0 0 277 1688 G Sar Velow, veh/h 1739 0 1611 1795 1763 0 0 0.0 0.00 0.00 0	Lane Width Adj.				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach No No No No No Ad] Sat Flow, veh/hin 1826 1900 1885 1885 1856 0 0 1870 1885 Ad] Fox Rate, veh/h 81 1 427 719 764 0 0.78 1857 Peak Hour Factor 0.95	Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		0.93
Acj Sat Flow, veh/h/ln 1826 1900 1885 1885 1886 0 0 1870 1885 Adj Flow Rate, veh/h 81 1 427 719 764 0 0 678 157 Peak Hour Factor 0.95	Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Flow Rate, ve/h 81 1 427 719 764 0 0 678 157 Peak Hour Factor 0.95<	Work Zone On Approach					No			No			No	
Pack Hour Factor 0.95 0.27 0.27 0.27 0.27 0.27 0.29 0.0	Adj Sat Flow, veh/h/ln				1826	1900	1885	1885	1856	0	0	1870	1885
Peak Hour Factor 0.95 0.29 0.0 0.0<	Adj Flow Rate, veh/h				81	1	427	719	764	0	0	678	157
Cap, veh/h 286 1 264 746 2601 0 0 765 177 Arrive On Green 0.16 0.16 0.16 0.83 1.00 0.00 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.28 1611 1795 3618 0 0 2915 653 Grg Volume(y), veh/h 81 0 427 408 Grp Sat Flow(s), veh/h/ln 1739 0 1611 1795 1763 0 0 1777 1688 Q Serve(g, s), s 3.7 0.0 14.8 30.6 0.0 0.0 0.207 20.8 Prop In Lane 1.00 1.00 1.00 1.00 1.00 0 482 460 V/C Ratio(X) 0.28 0.00 1.62 9.60 0.29 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Cap, veh/h 286 1 264 746 2601 0 0 765 177 Arrive On Green 0.16 0.16 0.16 0.83 1.00 0.00 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.28 563 613 0 0.427 408 Grp SdtIme(V), veh/h 81 0 428 719 764 0 0 427 408 Q Serve(g, s), s 3.7 0.0 14.8 30.6 0.0 0.0 0.207 20.8 Cycle Q Clear(g, c), s 3.7 0.0 14.8 30.6 0.0 0.0 0.0 20.7 20.8 Prop In Lane 1.00 1.00 1.00 1.00 1.00 0 482 460 VC Ratio(X) 0.28 0.00 1.62 9.6 0.29 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Percent Heavy Veh, %				5	0	1	1			0		
Arrive On Green 0.16 0.16 0.16 0.83 1.00 0.00 0.00 0.27 0.27 Sat Flow, veh/h 1739 4 1607 1795 3618 0 0 2215 653 Grp Volume(v), veh/h 81 0 428 719 764 0 0 427 448 Grp Sat Flow(s), veh/h 1739 0 1611 1795 1763 0 0 1777 1698 Q Serve(g, s), s 3.7 0.0 14.8 30.6 0.0 0.0 0.0 20.7 20.8 Cycle Q Clear(g_c), veh/h 286 0 265 746 2601 0 0 482 460 V/C Ratio(X) 0.28 0.00 1.62 0.96 0.29 0.00 0.00 0.89 0.89 V/C Ratio(X) 0.28 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	· · · · · · · · · · · · · · · · · · ·				286	1	264	746	2601	0	0	765	177
Sat Flow, veh/h 1739 4 1607 1795 3618 0 0 2915 653 Grp Volume(v), veh/h 81 0 428 719 764 0 0 427 408 Grp Sat Flow(s), veh/h/ln 1739 0 1611 1795 1763 0 0 1777 1698 Qserve(g, s), s 3.7 0.0 14.8 30.6 0.0 0.0 0.0 20.7 20.8 Cycle Q Clear(g_c), s 3.7 0.0 14.8 30.6 0.0 0.0 0.0 20.7 20.8 Prop In Lane 1.00 1.00 1.00 0.00 0.0 20.7 20.8 Avait Cap(c, a), veh/h 286 0 265 764 2601 0 0 442 460 V/C Ratio(X) 0.28 0.00 1.62 0.96 0.29 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00					0.16	0.16				0.00	0.00		
Grp Volume(v), veh/h 81 0 428 719 764 0 0 427 408 Grp Sat Flow(s), veh/h/ln 1739 0 1611 1739 0 0 0 0 1777 1698 Q Serve(g, s), s 3.7 0.0 14.8 30.6 0.0 0.0 0.0 20.7 20.8 Cycle Q Clear(g, c), s 3.7 0.0 14.8 30.6 0.0 0.0 0.0 20.7 20.8 Cycle Q Clear(g, c), s 3.7 0.0 14.8 30.6 0.0 0.0 0.0 20.7 20.8 Cycle Q Clear(g, c), wh/h 286 0 265 764 2601 0 0 482 460 V/C Ratio(X) 0.28 0.00 1.00 1.00 1.00 1.00 1.00 0.00 0.89 A89 Avail Cap(C, a), veh/h 286 0 265 764 2601 0 482 460 HCM Platon Ratio													
Grp Sat Flow(s), veh/h/ln 1739 0 1611 1795 1763 0 0 1777 1698 Q Serve(g. s), s 3.7 0.0 14.8 30.6 0.0 0.0 20.7 20.8 Cycle Q Clear(g_c), s 3.7 0.0 14.8 30.6 0.0 0.0 20.7 20.8 Prop In Lane 100 1.00 1.00 0.00 0.89 Avait Cap(c_a), veh/h 286 0 2.65 7.44 2.601 0 0 4.82 460 HCM Platon Ratio 1.00													
Q Serve(g.s), s 3.7 0.0 14.8 30.6 0.0 0.0 20.7 20.8 Cycle Q Clear(g.c), s 3.7 0.0 14.8 30.6 0.0 0.0 20.7 20.8 Prop In Lane 1.00 1.00 1.00 0.00 0.00 0.0 20.7 20.8 Prop In Lane 1.00 1.00 1.00 0.00 0.00 0.00 0.38 Lane Grp Cap(c), veh/h 286 0 265 764 2601 0 0 482 460 V/C Ratio(X) 0.28 0.00 1.00													
Cycle Q Clear(g_c), s 3.7 0.0 14.8 30.6 0.0 0.0 20.7 20.8 Prop In Lane 1.00 1.00 1.00 0.00 0.00 0.38 Lane Grp Cap(c), veh/h 286 0 265 746 2601 0 0 482 460 V/C Ratio(X) 0.28 0.00 1.62 0.96 0.29 0.00 0.00 0.89 0.89 Avail Cap(c_a), veh/h 286 0 2.65 764 2601 0 0 482 460 UPstream Filter(I) 1.00	(<i>P</i>)												
Prop In Lane 1.00 1.00 1.00 1.00 0.00 0.00 0.038 Lane Grp Cap(c), veh/h 286 0 265 746 2601 0 0 482 460 V/C Ratio(X) 0.28 0.00 1.62 0.96 0.29 0.00 0.00 0.89 0.89 Avail Cap(c. a), veh/h 266 0 265 764 2601 0 0 482 460 HCM Platoon Ratio 1.00 1.00 1.00 2.00 2.00 1													
Lane Grp Cap(c), veh/h 286 0 265 746 2601 0 0 482 460 V/C Ratio(X) 0.28 0.00 1.62 0.96 0.29 0.00 0.00 0.89 0.89 Avail Cap(c_a), veh/h 286 0 265 764 2601 0 0 482 460 HCM Platoon Ratio 1.00 1.00 1.00 0.00 0.00 1.00						0.0			0.0			20.1	
V/C Ratio(X) 0.28 0.00 1.62 0.96 0.29 0.00 0.00 0.89 0.89 Avail Cap(c_a), veh/h 286 0 265 764 2601 0 0 482 460 HCM Platoon Ratio 1.00 1.00 1.00 1.00 0.00 0.29 0.29 0.00 0.00 1.00						0			2601			/82	
Avail Cap(c_a), veh/h 286 0 265 764 2601 0 0 482 460 HCM Platoon Ratio 1.00 1.00 1.00 2.00 2.00 1.00													
HCM Platoon Ratio 1.00 1.	()												
Upstream Filter(I) 1.00 0.00 1.00 0.29 0.29 0.00 1.00 1.00 Uniform Delay (d), s/veh 33.0 0.0 37.6 7.0 0.0 0.0 31.5 31.5 Incr Delay (d2), s/veh 0.2 0.0 293.9 10.2 0.1 0.0 0.0 20.7 21.6 Initial Q Delay(d3), s/veh 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1													
Uniform Delay (d), s/veh 33.0 0.0 37.6 7.0 0.0 0.0 31.5 31.5 Incr Delay (d2), s/veh 0.2 0.0 293.9 10.2 0.1 0.0 0.0 20.7 21.6 Initial Q Delay(d3), s/veh 0.0 </td <td></td>													
Incr Delay (d2), s/veh 0.2 0.0 293.9 10.2 0.1 0.0 0.0 20.7 21.6 Initial Q Delay(d3), s/veh 0.0													
Initial Q Delay(d3), s/veh 0.0 <													
%ile BackOfQ(50%),veh/ln 1.5 0.0 27.3 4.9 0.0 0.0 11.5 11.1 Unsig. Movement Delay, s/veh 33.2 0.0 331.5 17.2 0.1 0.0 0.0 52.1 53.1 LnGrp Delay(d), s/veh 33.2 0.0 331.5 17.2 0.1 0.0 0.0 52.1 53.1 LnGrp LOS C F B A D D D Approach Vol, veh/h 509 1483 835 Approach Delay, s/veh 284.1 8.4 52.6 Approach LOS F A D D Timer - Assigned Phs 1 2 4 6 - Phs Duration (G+Y+Rc), s 4.6 4.2 4.6 - - - Max Green Setting (Gmax), s 38.3 *24 14.8 66.4 - - - - Max Q Clear Time (g_c+I1), s 32.6 22.8 16.8 2.0 - - - - - - - - - - -													
Unsig. Movement Delay, s/veh 33.2 0.0 331.5 17.2 0.1 0.0 0.0 52.1 53.1 LnGrp LOS C F B A D D Approach Vol, veh/h 509 1483 835 Approach Delay, s/veh 284.1 8.4 52.6 Approach LOS F A D Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 4.6 4.2 4.6 Max Green Setting (Gmax), s 38.3 * 24 14.8 66.4 Max Q Clear Time (g_c+11), s 32.6 22.8 16.8 2.0 Green Ext Time (p_c), s 0.3 0.5 0.0 2.4 Intersection Summary 71.1 HCM 7th Control Delay, s/veh 71.1 HCM 7th LOS E 50.0 2.4													
LnGrp Delay(d), s/veh 33.2 0.0 331.5 17.2 0.1 0.0 0.0 52.1 53.1 LnGrp LOS C F B A D D D Approach Vol, veh/h 509 1483 835 Approach Delay, s/veh 284.1 8.4 52.6 Approach LOS F A D D Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 42.0 29.0 19.0 71.0 Change Period (Y+Rc), s 4.6 * 4.6 4.2 4.6 Max Green Setting (Gmax), s 38.3 * 24 14.8 66.4 Max Q Clear Time (g_c+I1), s 32.6 22.8 16.8 2.0 Green Ext Time (p_c), s 0.3 0.5 0.0 2.4 Intersection Summary HCM 7th Control Delay, s/veh 71.1 HCM 7th LOS E Image: Control Delay, s/veh 71.1					1.5	0.0	21.5	4.5	0.0	0.0	0.0	11.5	11.1
LnGrp LOS C F B A D D Approach Vol, veh/h 509 1483 835 Approach Delay, s/veh 284.1 8.4 52.6 Approach LOS F A D Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 42.0 29.0 19.0 71.0 Change Period (Y+Rc), s 4.6 4.2 4.6 4.6 Max Green Setting (Gmax), s 38.3 *24 14.8 66.4 Max Q Clear Time (g_c+I1), s 32.6 22.8 16.8 2.0 Green Ext Time (p_c), s 0.3 0.5 0.0 2.4 4 Intersection Summary HCM 7th Control Delay, s/veh 71.1 F 4					33.0	0.0	331 5	17.0	0.1	0.0	0.0	52.1	53.1
Approach Vol, veh/h 509 1483 835 Approach Delay, s/veh 284.1 8.4 52.6 Approach LOS F A D Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 42.0 29.0 19.0 71.0 Change Period (Y+Rc), s 4.6 4.2 4.6 Max Green Setting (Gmax), s 38.3 * 24 14.8 66.4 Max Q Clear Time (g_c+I1), s 32.6 22.8 16.8 2.0 Green Ext Time (p_c), s 0.3 0.5 0.0 2.4 Intersection Summary 71.1 HCM 7th Control Delay, s/veh 71.1						0.0				0.0	0.0		
Approach Delay, s/veh 284.1 8.4 52.6 Approach LOS F A D Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 42.0 29.0 19.0 71.0 Change Period (Y+Rc), s 4.6 * 4.6 4.2 4.6 Max Green Setting (Gmax), s 38.3 * 24 14.8 66.4 Max Q Clear Time (g_c+I1), s 32.6 22.8 16.8 2.0 Green Ext Time (p_c), s 0.3 0.5 0.0 2.4 Intersection Summary HCM 7th Control Delay, s/veh 71.1 HCM 7th LOS E	•				U	500	Г	D					
Approach LOS F A D Timer - Assigned Phs 1 2 4 6 D D D D D D D D <													_
Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 42.0 29.0 19.0 71.0 Change Period (Y+Rc), s 4.6 *4.6 4.2 4.6 Max Green Setting (Gmax), s 38.3 *24 14.8 66.4 Max Q Clear Time (g_c+11), s 32.6 22.8 16.8 2.0 Green Ext Time (p_c), s 0.3 0.5 0.0 2.4 Intersection Summary													
Phs Duration (G+Y+Rc), s 42.0 29.0 19.0 71.0 Change Period (Y+Rc), s 4.6 * 4.6 4.2 4.6 Max Green Setting (Gmax), s 38.3 * 24 14.8 66.4 Max Q Clear Time (g_c+I1), s 32.6 22.8 16.8 2.0 Green Ext Time (p_c), s 0.3 0.5 0.0 2.4 Intersection Summary	Approach LOS					F			A			D	
Change Period (Y+Rc), s 4.6 4.2 4.6 Max Green Setting (Gmax), s 38.3 * 24 14.8 66.4 Max Q Clear Time (g_c+I1), s 32.6 22.8 16.8 2.0 Green Ext Time (p_c), s 0.3 0.5 0.0 2.4 Intersection Summary T1.1 HCM 7th Control Delay, s/veh 71.1 HCM 7th LOS E T1.1 T1.1	Timer - Assigned Phs	1	2		4		6						
Max Green Setting (Gmax), s 38.3 * 24 14.8 66.4 Max Q Clear Time (g_c+11), s 32.6 22.8 16.8 2.0 Green Ext Time (p_c), s 0.3 0.5 0.0 2.4 Intersection Summary	Phs Duration (G+Y+Rc), s	42.0	29.0		19.0		71.0						
Max Green Setting (Gmax), s 38.3 * 24 14.8 66.4 Max Q Clear Time (g_c+11), s 32.6 22.8 16.8 2.0 Green Ext Time (p_c), s 0.3 0.5 0.0 2.4 Intersection Summary	Change Period (Y+Rc), s	4.6	* 4.6		4.2		4.6						
Max Q Clear Time (g_c+l1), s 32.6 22.8 16.8 2.0 Green Ext Time (p_c), s 0.3 0.5 0.0 2.4 Intersection Summary HCM 7th Control Delay, s/veh 71.1 HCM 7th LOS E		38.3	* 24		14.8		66.4						
Green Ext Time (p_c), s 0.3 0.5 0.0 2.4 Intersection Summary	Max Q Clear Time (q c+l1), s		22.8		16.8		2.0						
HCM 7th Control Delay, s/veh 71.1 HCM 7th LOS E													
HCM 7th Control Delay, s/veh 71.1 HCM 7th LOS E	Intersection Summarv												
HCM 7th LOS E	•			71 1									
	Notes												

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

01/06/2025

t ∢ ۶ ţ ∖ WBT WBR Movement EBL EBT EBR WBL NBL NBT NBR SBL SBT SBR Lane Configurations ٦ 4 7 ŧÞ ኘ ŧ۴ 417 208 640 0 104 370 351 Traffic Volume (veh/h) 0 0 992 0 0 992 Future Volume (veh/h) 417 208 640 0 0 0 0 104 370 351 0 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 Lane Width Adj. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Ped-Bike Adj(A pbT) 1.00 0.97 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No Adj Sat Flow, veh/h/ln 1826 1900 1856 0 1885 1856 1870 1856 0 Adj Flow Rate, veh/h 366 500 483 0 1044 109 389 369 0 0.95 Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 3 0 3 2 Percent Heavy Veh, % 5 0 1 3 0 1138 468 2336 Cap, veh/h 498 545 451 0 119 0 Arrive On Green 0.29 0.29 0.29 0.00 0.35 0.35 0.44 1.00 0.00 Sat Flow, veh/h 1739 1900 1572 0 3357 340 1781 3618 0 500 573 580 389 0 Grp Volume(v), veh/h 366 483 0 369 Grp Sat Flow(s), veh/h/ln1739 1900 1572 1791 1812 1781 1763 0 0 22.9 25.8 27.5 27.6 17.4 Q Serve(q s), s 17.1 0.0 0.0 0.0 Cycle Q Clear(g_c), s 17.1 22.9 25.8 0.0 27.5 27.6 17.4 0.0 0.0 0.00 1.00 0.00 Prop In Lane 1.00 1.00 0.19 625 Lane Grp Cap(c), veh/h 498 545 451 632 468 2336 0 0 0.73 0.92 0.92 0.16 0.00 V/C Ratio(X) 1.07 0.00 0.92 0.83 Avail Cap(c_a), veh/h 498 545 451 625 632 468 2336 0 0 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.67 1.67 1.00 Upstream Filter(I) 1.00 1.00 1.00 0.00 1.00 1.00 0.55 0.55 0.00 Uniform Delay (d), s/veh 29.0 31.1 32.1 0.0 28.0 28.1 23.5 0.0 0.0 20.3 Incr Delay (d2), s/veh 62.8 20.5 20.5 0.0 4.9 0.0 6.6 0.1 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln7.5 13.1 17.2 0.0 15.0 15.2 6.7 0.0 0.0 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 51.3 94.9 0.0 48.5 48.5 30.1 0.1 0.0 33.9 LnGrp LOS С D F D D С А Approach Vol, veh/h 1349 1153 758 Approach Delay, s/veh 48.5 15.5

D

8

30.0 4.2

25.8

27.8

0.0

В

Intersection Summary HCM 7th Control Delay, s/veh

Approach LOS

Timer - Assigned Phs

Phs Duration (G+Y+Rc), s

Change Period (Y+Rc), s

Green Ext Time (p_c), s

Max Green Setting (Gmax), s

Max Q Clear Time (g_c+I1), s

HCM 7th LOS

Notes

User approved volume balancing among the lanes for turning movement.

46.5

D

62.2

Е

2

64.2

4.6

55.4

2.0

1.1

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

5

28.2

4.6

20.3

19.4

0.0

6

36.0

* 4.6

* 31

29.6

0.8

Year 2045 PM 10:46 am 06/28/2024 No Build

8

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		्र	1		4		٦	∱ ₽		٦	_ ≜ î₽		
Traffic Vol, veh/h	49	2	38	4	1	59	4	988	9	92	787	112	
Future Vol, veh/h	49	2	38	4	1	59	4	988	9	92	787	112	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	0	-	-	-	50	-	-	50	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	52	2	40	4	1	62	4	1040	9	97	828	118	

Major/Minor	Minor2		Ν	/linor1		ľ	Major1		Ν	/lajor2			
Conflicting Flow All	1610	2139	473	1662	2193	525	946	0	0	1049	0	0	
Stage 1	1081	1081	-	1053	1053	-	-	-	-	-	-	-	
Stage 2	529	1058	-	609	1140	-	-	-	-	-	-	-	
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-	
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-	
Pot Cap-1 Maneuver	70	48	537	64	45	497	721	-	-	659	-	-	
Stage 1	232	292	-	242	301	-	-	-	-	-	-	-	
Stage 2	501	300	-	449	274	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver		41	537	48	38	497	721	-	-	659	-	-	
Mov Cap-2 Maneuver		41	-	48	38	-	-	-	-	-	-	-	
Stage 1	198	249	-	240	299	-	-	-	-	-	-	-	
Stage 2	434	298	-	351	234	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	\$/\$65.89			21.9			0.04			1.06			
HCM LOS	F			С									
Minor Lane/Major Mvi	mt	NBL	NBT	NBR	EBLn1	EBLn2V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		721	-	-	50	537	280	659	-	-			
HCM Lane V/C Ratio		0.006	-	-	1.073	0.074	0.241	0.147	-	-			
HCM Control Delay (s	s/veh)	10	-	-	280.4	12.2	21.9	11.4	-	-			

Notes

HCM Lane LOS

HCM 95th %tile Q(veh)

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined

В

0.2

С

0.9

В

0.5

-

_

-

-

F

4.7

-

-

*: All major volume in platoon

-

-

В

0

01/06/2025

Intersection Intersection Delay, s/veh 98.7 Intersection LOS F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्च	1		\$		٢	∱î ≽		ľ	- † 12	
Traffic Vol, veh/h	92	45	84	22	33	192	46	717	34	146	634	49
Future Vol, veh/h	92	45	84	22	33	192	46	717	34	146	634	49
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	6	0	0	0	3	1	2	1	9	0	3	3
Mvmt Flow	97	47	88	23	35	202	48	755	36	154	667	52
Number of Lanes	0	1	1	0	1	0	1	2	0	1	2	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			1			2		
HCM Control Delay, s/veh	23.7			44.9			145.5			89.8		
HCM LOS	С			E			F			F		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2	SBLn3	
Vol Left, %	100%	0%	0%	67%	0%	9%	100%	0%	0%	
Vol Thru, %	0%	100%	88%	33%	0%	13%	0%	100%	81%	
Vol Right, %	0%	0%	12%	0%	100%	78%	0%	0%	19%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	46	478	273	137	84	247	146	423	260	
LT Vol	46	0	0	92	0	22	146	0	0	
Through Vol	0	478	239	45	0	33	0	423	211	
RT Vol	0	0	34	0	84	192	0	0	49	
Lane Flow Rate	48	503	287	144	88	260	154	445	274	
Geometry Grp	6	6	6	6	6	6	6	6	6	
Degree of Util (X)	0.14	1.382	0.793	0.476	0.264	0.775	0.435	1.203	0.731	
Departure Headway (Hd)	10.87	10.326	10.377	12.914	11.72	11.575	10.83	10.357	10.218	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	332	357	351	281	309	315	335	356	356	
Service Time	8.57	8.026	8.077	10.614	9.42	9.275	8.53	8.057	7.918	
HCM Lane V/C Ratio	0.145	1.409	0.818	0.512	0.285	0.825	0.46	1.25	0.77	
HCM Control Delay, s/veh	15.3	216.5	43.1	26.8	18.6	44.9	21.6	146.4	36.2	
HCM Lane LOS	С	F	E	D	С	E	С	F	E	
HCM 95th-tile Q	0.5	24.1	6.6	2.4	1	6.1	2.1	17.7	5.6	

Intersection

Intersection Delay, s/veh21.7 Intersection LOS C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		्	1		4		ľ	4			÷	1	
Traffic Vol, veh/h	190	63	8	17	65	73	29	200	23	61	337	171	
Future Vol, veh/h	190	63	8	17	65	73	29	200	23	61	337	171	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	200	66	8	18	68	77	31	211	24	64	355	180	
Number of Lanes	0	1	1	0	1	0	1	1	0	0	1	1	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			2			2			2			
Conflicting Approach L	eft SB			NB			EB			WB			
Conflicting Lanes Left	2			2			2			1			
Conflicting Approach R	lighNB			SB			WB			EB			
Conflicting Lanes Righ				2			1			2			
HCM Control Delay, s/	ve20.9			14.9			16			26.4			
HCM LOS	С			В			С			D			

Lane	NBLn1	NBLn2	EBLn1	EBLn2V	VBLn1	SBLn1	SBLn2
Vol Left, %	100%	0%	75%	0%	11%	15%	0%
Vol Thru, %	0%	90%	25%	0%	42%	85%	0%
Vol Right, %	0%	10%	0%	100%	47%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	29	223	253	8	155	398	171
LT Vol	29	0	190	0	17	61	0
Through Vol	0	200	63	0	65	337	0
RT Vol	0	23	0	8	73	0	171
Lane Flow Rate	31	235	266	8	163	419	180
Geometry Grp	5	5	5	5	4b	5	5
Degree of Util (X)	0.067	0.477	0.585	0.016	0.349	0.807	0.307
Departure Headway (Hd)	7.907	7.318	7.913	6.811	7.693	6.935	6.14
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Сар	452	491	455	524	467	519	583
Service Time	5.672	5.083	5.672	4.569	5.764	4.69	3.895
HCM Lane V/C Ratio	0.069	0.479	0.585	0.015	0.349	0.807	0.309
HCM Control Delay, s/veh	11.2	16.6	21.3	9.7	14.9	32.8	11.6
HCM Lane LOS	В	С	С	Α	В	D	В
HCM 95th-tile Q	0.2	2.5	3.7	0	1.5	7.7	1.3

Year 2045 PM 10:46 am 06/28/2024 No Build

Intersection		
Intersection Delay, s/ve	eh20.3	
Intersection LOS	С	

Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		ef -			र्भ	
Traffic Vol, veh/h	35	104	305	85	304	251	
Future Vol, veh/h	35	104	305	85	304	251	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	37	109	321	89	320	264	
Number of Lanes	1	0	1	0	0	1	
Approach	WB		NB		SB		
Opposing Approach			SB		NB		
Opposing Lanes	0		1		1		
Conflicting Approach Le	eft NB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach R	igh S B		WB				
Conflicting Lanes Right	t 1		1		0		
HCM Control Delay, s/v	/eħ0.8		14.5		26.7		
HCM LOS	В		В		D		

Lane	NBLn1\	WBLn1	SBLn1
Vol Left, %	0%	25%	55%
Vol Thru, %	78%	0%	45%
Vol Right, %	22%	75%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	390	139	555
LT Vol	0	35	304
Through Vol	305	0	251
RT Vol	85	104	0
Lane Flow Rate	411	146	584
Geometry Grp	1	1	1
Degree of Util (X)	0.571	0.239	0.82
Departure Headway (Hd)	5.007	5.876	5.05
Convergence, Y/N	Yes	Yes	Yes
Сар	718	610	724
Service Time	3.04	3.924	3.05
HCM Lane V/C Ratio	0.572	0.239	0.807
HCM Control Delay, s/veh	14.5	10.8	26.7
HCM Lane LOS	В	В	D
HCM 95th-tile Q	3.6	0.9	8.8

Intersection

Intersection Delay, s/veh55.3 Intersection LOS F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			\$			र्च	1		र्च	1	
Traffic Vol, veh/h	5	3	3	203	3	237	1	148	619	202	83	1	
Future Vol, veh/h	5	3	3	203	3	237	1	148	619	202	83	1	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	5	3	3	214	3	249	1	156	652	213	87	1	
Number of Lanes	0	1	0	0	1	0	0	1	1	0	1	1	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			2			2			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	2			2			1			1			
Conflicting Approach Ri	ightNB			SB			WB			EB			
Conflicting Lanes Right	2			2			1			1			
HCM Control Delay, s/v	/eħ1.8			33.7			80.2			23.7			
HCM LOS	В			D			F			С			

Lane	NBLn1	NBLn2	EBLn1\	VBLn1	SBLn1	SBLn2
Vol Left, %	1%	0%	45%	46%	71%	0%
Vol Thru, %	99%	0%	27%	1%	29%	0%
Vol Right, %	0%	100%	27%	53%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	149	619	11	443	285	1
LT Vol	1	0	5	203	202	0
Through Vol	148	0	3	3	83	0
RT Vol	0	619	3	237	0	1
Lane Flow Rate	157	652	12	466	300	1
Geometry Grp	5	5	2	2	5	5
Degree of Util (X)	0.3	1.115	0.027	0.826	0.638	0.002
Departure Headway (Hd)	6.88	6.159	8.605	6.626	7.97	6.881
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	519	586	419	550	456	523
Service Time	4.667	3.945	6.605	4.626	5.67	4.581
HCM Lane V/C Ratio	0.303	1.113	0.029	0.847	0.658	0.002
HCM Control Delay, s/veh	12.6	96.5	11.8	33.7	23.7	9.6
HCM Lane LOS	В	F	В	D	С	А
HCM 95th-tile Q	1.3	20.2	0.1	8.3	4.4	0

HCM 7th Signalized Intersection Summary 1: Bay Ave & Hwy 1 NB Off-Ramp

01/06/2025

	٠	-	\mathbf{F}	∢	+	*	1	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				٦	ef 🔰		٦	<u></u>			∱ ⊅	
Traffic Volume (veh/h)	0	0	0	59	12	107	369	516	0	0	423	478
Future Volume (veh/h)	0	0	0	59	12	107	369	516	0	0	423	478
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Lane Width Adj.				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		0.94
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1826	1900	1885	1885	1856	0	0	1870	1885
Adj Flow Rate, veh/h				65	13	118	405	567	0	0	465	525
Peak Hour Factor				0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %				5	0	1	1	3	0	0	2	1
Cap, veh/h				168	16	142	581	2668	0	0	634	534
Arrive On Green				0.10	0.10	0.10	0.32	0.76	0.00	0.00	0.36	0.36
Sat Flow, veh/h				1739	162	1473	1795	3618	0	0	1870	1497
Grp Volume(v), veh/h				65	0	131	405	567	0	0	465	525
Grp Sat Flow(s), veh/h/ln				1739	0	1635	1795	1763	0	0	1777	1497
Q Serve(g_s), s				2.1	0.0	4.7	11.8	2.8	0.0	0.0	13.7	20.9
Cycle Q Clear(g_c), s				2.1	0.0	4.7	11.8	2.8	0.0	0.0	13.7	20.9
Prop In Lane				1.00	0.0	0.90	1.00	2.0	0.00	0.00	10.1	1.00
Lane Grp Cap(c), veh/h				168	0	158	581	2668	0.00	0.00	634	534
V/C Ratio(X)				0.39	0.00	0.83	0.70	0.21	0.00	0.00	0.73	0.98
Avail Cap(c_a), veh/h				168	0.00	158	607	2668	0.00	0.00	634	534
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	1.00	0.82	0.82	0.00	0.00	1.00	1.00
Uniform Delay (d), s/veh				25.4	0.0	26.6	17.7	2.1	0.0	0.0	16.8	19.1
Incr Delay (d2), s/veh				0.5	0.0	27.8	2.2	0.1	0.0	0.0	7.4	35.1
Initial Q Delay(d3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				0.8	0.0	2.9	4.9	0.5	0.0	0.0	6.4	11.7
Unsig. Movement Delay, s/veh				0.0	0.0	2.5	4.0	0.0	0.0	0.0	0.4	11.7
LnGrp Delay(d), s/veh				26.0	0.0	54.4	20.0	2.3	0.0	0.0	24.2	54.2
LnGrp LOS				20.0 C	0.0	D	20.0 B	2.0 A	0.0	0.0	24.2 C	04.2 D
Approach Vol, veh/h				0	196			972			990	
Approach Delay, s/veh					45.0			9.6			40.1	
Approach LOS					45.0 D			9.0 A			40.1 D	
Approach 203					U			A			U	
Timer - Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), s	24.0	26.0		10.0		50.0						
Change Period (Y+Rc), s	4.6	* 4.6		4.2		4.6						
Max Green Setting (Gmax), s	20.3	* 21		5.8		45.4						
Max Q Clear Time (g_c+I1), s	13.8	22.9		6.7		4.8						
Green Ext Time (p_c), s	0.1	0.0		0.0		1.7						
Intersection Summary												
HCM 7th Control Delay, s/veh			26.8									
HCM 7th LOS			С									
Notes												

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Existing AM Bay-Hill Analysis 3:26 pm 05/30/2024 Stop & Road Diet Kimley-Horn

01/06/2025

t ∢ ۶ ţ ∖ WBT WBR EBL EBT EBR WBL NBL NBT NBR SBL SBT SBR Movement Lane Configurations ٦ 4 7 ŧÞ ኘ ** 313 0 296 0 176 305 Traffic Volume (veh/h) 0 0 572 0 0 111 296 Future Volume (veh/h) 313 0 0 0 0 0 572 111 176 305 0 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 Lane Width Adj. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Ped-Bike Adj(A pbT) 1.00 0.97 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No Adj Sat Flow, veh/h/ln 1826 1900 1856 0 1885 1856 1870 1856 0 Adj Flow Rate, veh/h 440 0 215 0 622 121 191 332 0 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 3 0 3 2 3 Percent Heavy Veh, % 5 0 1 0 1035 370 2283 Cap, veh/h 613 0 277 0 201 0 Arrive On Green 0.18 0.00 0.18 0.00 0.35 0.35 0.21 0.65 0.00 Sat Flow, veh/h 3478 0 1572 0 3069 577 1781 3618 0 Grp Volume(v), veh/h 215 0 374 369 191 332 0 440 0 Grp Sat Flow(s), veh/h/ln1739 1572 1791 1762 1781 1763 0 0 0 Q Serve(q s), s 6.5 8.6 8.6 4.8 0.0 6.0 0.0 0.0 1.8 Cycle Q Clear(g_c), s 6.0 0.0 6.5 0.0 8.6 8.6 4.8 1.8 0.0 1.00 1.00 0.00 0.33 1.00 0.00 Prop In Lane 623 Lane Grp Cap(c), veh/h 613 0 277 0 613 370 2283 0 0.00 0.78 0.60 0.15 0.00 V/C Ratio(X) 0.72 0.00 0.60 0.52 Avail Cap(c_a), veh/h 340 623 370 2283 751 0 0 613 0 1.00 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 0.00 1.00 0.00 1.00 1.00 0.70 0.70 0.00 Uniform Delay (d), s/veh 19.4 0.0 19.6 0.0 13.4 13.4 17.6 0.0 3.4 Incr Delay (d2), s/veh 0.0 0.0 1.7 0.0 6.8 4.2 4.3 0.4 0.1 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/lr2.2 0.0 2.6 0.0 3.7 3.7 1.8 0.4 0.0 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 0.0 26.5 0.0 17.7 17.8 18.0 3.5 0.0 21.2 LnGrp LOS С С В В В А Approach Vol, veh/h 655 743 523 Approach Delay, s/veh 17.7 22.9 8.8 Approach LOS С В А 2 8 Timer - Assigned Phs 5 6 Phs Duration (G+Y+Rc), s 37.0 15.0 22.0 13.0 4.2 Change Period (Y+Rc), s 4.6 4.6 * 4.6 Max Green Setting (Gmax), s 30.4 9.3 * 17 10.8 Max Q Clear Time (g_c+I1), s 6.8 10.6 8.5 3.8 Green Ext Time (p_c), s 0.9 0.0 0.3 1.3 Intersection Summary HCM 7th Control Delay, s/veh 17.1 HCM 7th LOS В

Notes

User approved volume balancing among the lanes for turning movement.

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Existing AM Bay-Hill Analysis 3:26 pm 05/30/2024 Stop & Road Diet Kimley-Horn

1.8

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		.			4		۲.	_ ≜ î≽		ኘ	1	1
Traffic Vol, veh/h	53	0	21	0	1	14	1	575	9	39	462	109
Future Vol, veh/h	53	0	21	0	1	14	1	575	9	39	462	109
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	0
Veh in Median Storage	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	58	0	23	0	1	15	1	632	10	43	508	120

Major/Minor	Minor2			Minor1			Major1			Ма	ajor2			
Conflicting Flow All	912	1237	508	1232	1352	321	627	0	C)	642	0	0	
Stage 1	593	593	-	639	639	-	-	-	-	-	-	-	-	
Stage 2	319	644	-	593	713	-	-	-	-	-	-	-	-	
Critical Hdwy	7.33	6.53	6.23	7.33	6.53	6.93	4.13	-	-	-	4.13	-	-	
Critical Hdwy Stg 1	6.13	5.53	-	6.53	5.53	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.53	5.53	-	6.13	5.53	-	-	-	-	-	-	-	-	
Follow-up Hdwy	3.519	4.019	3.319	3.519	4.019	3.319	2.219	-	-	- 2	2.219	-	-	
Pot Cap-1 Maneuver	241	175	564	143	149	676	952	-	-	-	941	-	-	
Stage 1	491	492	-	432	469	-	-	-	-	-	-	-	-	
Stage 2	668	467	-	491	434	-	-	-	-	-	-	-	-	
Platoon blocked, %								-	-	-		-	-	
Mov Cap-1 Maneuver	223	167	564	131	142	676	952	-	-	-	941	-	-	
Mov Cap-2 Maneuver	223	167	-	131	142	-	-	-	-	-	-	-	-	
Stage 1	468	470	-	431	469	-	-	-	-	-	-	-	-	
Stage 2	650	467	-	449	415	-	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Dela	ay, s/v24.04	11.87	0.02	0.58	
HCM LOS	С	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	/BLn1	SBL	SBT	SBR
Capacity (veh/h)	952	-	-	269	541	941	-	-
HCM Lane V/C Ratio	0.001	-	-	0.302	0.03	0.046	-	-
HCM Control Delay (s/veh)	8.8	-	-	24	11.9	9	-	-
HCM Lane LOS	А	-	-	С	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	1.2	0.1	0.1	-	-

01/06/2025

Intersection

28.5 D

Intersection Delay, s/veh Intersection LOS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	1		4		٦.	4		٦.	ef 👘	
Traffic Vol, veh/h	43	19	39	9	28	142	57	399	10	75	375	31
Future Vol, veh/h	43	19	39	9	28	142	57	399	10	75	375	31
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles, %	6	0	0	0	3	1	2	1	9	0	3	3
Mvmt Flow	48	21	44	10	31	160	64	448	11	84	421	35
Number of Lanes	0	1	1	0	1	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			1			2		
HCM Control Delay, s/veh	12.4			15.6			33.6			31.7		
HCM LOS	В			С			D			D		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2	
Vol Left, %	100%	0%	69%	0%	5%	100%	0%	
Vol Thru, %	0%	98%	31%	0%	16%	0%	92%	
Vol Right, %	0%	2%	0%	100%	79%	0%	8%	
Sign Control	Stop							
Traffic Vol by Lane	57	409	62	39	179	75	406	
LT Vol	57	0	43	0	9	75	0	
Through Vol	0	399	19	0	28	0	375	
RT Vol	0	10	0	39	142	0	31	
Lane Flow Rate	64	460	70	44	201	84	456	
Geometry Grp	5	5	5	5	4b	5	5	
Degree of Util (X)	0.128	0.851	0.167	0.091	0.414	0.168	0.842	
Departure Headway (Hd)	7.215	6.669	8.646	7.459	7.409	7.162	6.648	
Convergence, Y/N	Yes							
Сар	496	542	414	479	485	501	543	
Service Time	4.965	4.419	6.413	5.226	5.467	4.911	4.397	
HCM Lane V/C Ratio	0.129	0.849	0.169	0.092	0.414	0.168	0.84	
HCM Control Delay, s/veh	11	36.7	13.2	11	15.6	11.4	35.5	
HCM Lane LOS	В	E	В	В	С	В	E	
HCM 95th-tile Q	0.4	9	0.6	0.3	2	0.6	8.8	

01/06/2025

Intersection

Intersection Delay, s/veh27.7 Intersection LOS D

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		्र	1		4		ľ	4			÷	1	
Traffic Vol, veh/h	70	67	6	83	94	42	27	312	55	74	183	128	
Future Vol, veh/h	70	67	6	83	94	42	27	312	55	74	183	128	
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	84	81	7	100	113	51	33	376	66	89	220	154	
Number of Lanes	0	1	1	0	1	0	1	1	0	0	1	1	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			2			2			2			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	2			2			2			1			
Conflicting Approach R	ighNB			SB			WB			EB			
Conflicting Lanes Right	2			2			1			2			
HCM Control Delay, s/v	/eħ6.8			22.6			41.7			20.2			
HCM LOS	С			С			Е			С			

Lane	NBLn1	NBLn2	EBLn1	EBLn2V	VBLn1	SBLn1	SBLn2
Vol Left, %	100%	0%	51%	0%	38%	29%	0%
Vol Thru, %	0%	85%	49%	0%	43%	71%	0%
Vol Right, %	0%	15%	0%	100%	19%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	27	367	137	6	219	257	128
LT Vol	27	0	70	0	83	74	0
Through Vol	0	312	67	0	94	183	0
RT Vol	0	55	0	6	42	0	128
Lane Flow Rate	33	442	165	7	264	310	154
Geometry Grp	5	5	5	5	4b	5	5
Degree of Util (X)	0.071	0.884	0.399	0.015	0.598	0.661	0.292
Departure Headway (Hd)	7.949	7.327	8.703	7.714	8.153	7.687	6.816
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Сар	453	500	414	465	446	471	529
Service Time	5.649	5.027	6.435	5.445	6.168	5.409	4.538
HCM Lane V/C Ratio	0.073	0.884	0.399	0.015	0.592	0.658	0.291
HCM Control Delay, s/veh	11.3	43.9	17.1	10.6	22.6	24.2	12.3
HCM Lane LOS	В	E	С	В	С	С	В
HCM 95th-tile Q	0.2	9.7	1.9	0	3.8	4.7	1.2

ltem 7 B.	
-----------	--

Intersection		
Intersection Delay, s/v	veh19.6	
Intersection LOS	С	

Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰Y		ef –			र्भ
Traffic Vol, veh/h	87	282	158	61	219	84
Future Vol, veh/h	87	282	158	61	219	84
Peak Hour Factor	0.76	0.76	0.76	0.76	0.76	0.76
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	114	371	208	80	288	111
Number of Lanes	1	0	1	0	0	1
Approach	WB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		1		1	
Conflicting Approach L	eft NB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach F	Righ S B		WB			
Conflicting Lanes Righ	it 1		1		0	
HCM Control Delay, s/	ve22.2		14.2		20.2	
HCM LOS	С		В		С	

Lane	NBLn1	WBLn1	SBLn1
Vol Left, %	0%	24%	72%
Vol Thru, %	72%	0%	28%
Vol Right, %	28%	76%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	219	369	303
LT Vol	0	87	219
Through Vol	158	0	84
RT Vol	61	282	0
Lane Flow Rate	288	486	399
Geometry Grp	1	1	1
Degree of Util (X)		0.734	
Departure Headway (Hd)	5.888	5.445	5.994
Convergence, Y/N	Yes	Yes	Yes
Сар	608	660	598
Service Time	3.972	3.519	4.069
HCM Lane V/C Ratio	0.474	0.736	0.667
HCM Control Delay, s/veh	14.2	22.2	20.2
HCM Lane LOS	В	С	С
HCM 95th-tile Q	2.5	6.4	4.9

Intersection

Intersection Delay, s/veh24.9 Intersection LOS C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			4			्	1		्	1	
Traffic Vol, veh/h	0	9	1	418	3	100	1	123	225	41	121	4	
Future Vol, veh/h	0	9	1	418	3	100	1	123	225	41	121	4	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	10	1	459	3	110	1	135	247	45	133	4	
Number of Lanes	0	1	0	0	1	0	0	1	1	0	1	1	
Approach		EB		WB			NB			SB			
Opposing Approach		WB		EB			SB			NB			
Opposing Lanes		1		1			2			2			
Conflicting Approach Le	əft	SB		NB			EB			WB			
Conflicting Lanes Left		2		2			1			1			
Conflicting Approach R	ight	NB		SB			WB			EB			
Conflicting Lanes Right		2		2			1			1			
HCM Control Delay, s/v	/eh	9.9		37			12.5			13.6			
HCM LOS		А		Е			В			В			

Lane	NBLn1	NBLn2	EBLn1	VBLn1	SBLn1	SBLn2
Vol Left, %	1%	0%	0%	80%	25%	0%
Vol Thru, %	99%	0%	90%	1%	75%	0%
Vol Right, %	0%	100%	10%	19%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	124	225	10	521	162	4
LT Vol	1	0	0	418	41	0
Through Vol	123	0	9	3	121	0
RT Vol	0	225	1	100	0	4
Lane Flow Rate	136	247	11	573	178	4
Geometry Grp	5	5	2	2	5	5
Degree of Util (X)	0.253	0.409	0.021	0.887	0.35	0.008
Departure Headway (Hd)	6.682	5.962	6.78	5.579	7.079	6.231
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	534	601	531	647	506	570
Service Time	4.462	3.741	4.78	3.635	4.866	4.017
HCM Lane V/C Ratio	0.255	0.411	0.021	0.886	0.352	0.007
HCM Control Delay, s/veh	11.7	12.9	9.9	37	13.7	9.1
HCM Lane LOS	В	В	А	E	В	А
HCM 95th-tile Q	1	2	0.1	10.7	1.6	0

HCM 7th Signalized Intersection Summary 1: Bay Ave & Hwy 1 NB Off-Ramp

01/06/2025

Movement EBI EBI EBR WBI WBT WBI NBI NBI SBL SBL SBR SB		۶	+	*	4	+	*	1	1	1	1	Ŧ	~
Traffic Volume (veh/n) 0 0 0 107 1 195 290 399 0 0 642 316 Future Volume (veh/n) 0 0 0 100 100 1.00	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (veh/h) 0 0 0 195 290 399 0 0 642 316 Initial Q (Ob), veh 0 <td< td=""><td>Lane Configurations</td><td></td><td></td><td></td><td>ሻ</td><td>4</td><td></td><td>ሻ</td><td>^</td><td></td><td></td><td>∱⊅</td><td></td></td<>	Lane Configurations				ሻ	4		ሻ	^			∱ ⊅	
Initial Q (Ob), veh 0		0	0	0	107		195	290		0	0	642	316
Lane Writh Adj. 1.00	Future Volume (veh/h)	0	0	0	107	1	195	290	399	0	0	642	316
Pack-Bike Adj(Å, pbT) 1.00 1.01 <t< td=""><td>Initial Q (Qb), veh</td><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	Initial Q (Qb), veh					0	0	0	0	0	0	0	0
Parking Bus, Adj 1.00 1.0	Lane Width Adj.				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Åppraach No No No No Adj Sat Flow, veh/hln 1826 1900 1885 1885 1885 0 0 1870 1885 Adj Sat Flow, veh/hln 113 1 205 305 0.95 114 0 0 0.0	Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		0.95
Acj Sat Flow, veh/h/ln 1826 1900 1885 1885 1886 0 0 1870 1885 Adj Flow Rate, veh/h 113 1 205 305 420 0 0 676 333 Peak Hour Factor 0.95	Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Flow Rate, ve/h 113 1 205 305 420 0 0 676 333 Peak Hour Factor 0.95	Work Zone On Approach					No			No			No	
Peak Hour Factor 0.95 0.0	Adj Sat Flow, veh/h/ln				1826	1900	1885	1885	1856	0	0	1870	1885
Peak Hour Factor 0.95 0.9	Adj Flow Rate, veh/h				113	1	205	305	420	0	0	676	333
Percent Heavy Veh, % 5 0 1 1 3 0 0 2 1 Cap, veh/h 226 1 208 431 2550 0 0 920 453 Arrive On Green 0.13 0.013 0.01 0.00 0.0 0.0 531 478 Grp Sat Flow(s), veh/h 1739 0 1611 1795 1763 0 0 177 1589 Q Serve(g.s), s 3.6 0.0 7.7 8.0 0.0 0.0 15.2 15.2 Q Serve(g.s), s 3.6 0.0 7.7 8.0 0.0 0.00 723 650 V/C Ratio(X) 0.50 0.00 0.98 0.71 0.16 0.00 0.723 650 V/C Ratio(X), siveh					0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Cap, veh/h 226 1 208 431 2550 0 0 920 453 Arrive On Green 0.13 0.13 0.13 0.13 0.48 1.00 0.00 0.41 0.41 Sat Flow, veh/h 1739 8 1604 1795 3618 0 0 2355 1114 Grp Sat Flow(s), veh/h/ln 1739 0 1611 1795 1763 0 0 1777 1599 Q Serve(g, s), s 3.6 0.0 7.7 8.0 0.0 0.0 15.2 15.2 Prop In Lane 1.00 1.00 1.00 1.00 0.00 0.00 15.2 15.2 V/C Ratio(X) 0.50 0.00 0.89 0.71 0.16 0.00 0.723 650 V/C Ratio(X) 0.50 0.00 0.89 0.71 0.16 0.00 0.723 650 V/C Ratio(X) 0.50 0.00 0.89 0.71 0.10 0.00 0.723 650 Uniform Delay (d), siveh 2.26 0.299 458													
Arrive On Green 0.13 0.13 0.13 0.13 0.13 0.48 1.00 0.00 0.00 0.41 0.41 Sat Flow, veh/h 1739 8 1604 1795 3618 0 0 2355 1114 Grp Volume(v), veh/h 113 0 206 305 420 0 0 531 478 Grp Sat Flow(s), veh/h/in 1739 0 1611 1795 1763 0 0 177 1599 Q Serve(g, s), s 3.6 0.0 7.7 8.0 0.0 0.0 0.0 15.2 15.2 Prop In Lane 1.00 1.00 1.00 1.00 0.00 0.00 0.07 15.2 15.2 V/C Rato(X) 0.50 0.00 0.98 0.71 0.16 0.00 0.00 0.723 650 V/C Rato(X) 0.50 0.00 0.98 0.10 0.10 0.00 0.00 0.723 650 V/C Rato(X) 0.50 0.00 1.00 1.00 1.00 1.00 1.00 1.00	· · · · · · · · · · · · · · · · · · ·												
Sat Flow, veh/h 1739 8 1604 1795 3618 0 0 2355 1114 Grp Volume(v), veh/h 113 0 206 305 420 0 0 531 478 Grp Sat Flow(s), veh/h/ln 1739 0 1611 1795 1763 0 0 1777 1599 Q Serve(g, s), s 3.6 0.0 7.7 8.0 0.0 0.0 0.0 15.2 15.2 Cycle Q Clear(g_c), s 3.6 0.0 7.7 8.0 0.0 0.0 0.0 15.2 15.2 Cycle Q Clear(g_c), veh/h 226 0 209 431 2550 0 0 723 650 V/C Ratio(X) 0.50 0.00 0.98 0.71 0.16 0.00 0.00 1.00 Lone Grp Cap(c), veh/h 226 0 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Grp Volume(v), veh/h 113 0 206 305 420 0 0 531 478 Grp Sat Flow(s), veh/h/ln 1739 0 1611 1795 1763 0 0 1777 1599 Q Serve(g, s), s 3.6 0.0 7.7 8.0 0.0 0.0 15.2 15.2 Cycle Q Clear(g, c), s 3.6 0.0 7.7 8.0 0.0 0.0 15.2 15.2 Prop In Lane 1.00 1.00 1.00 0.00 0.00 15.2 15.2 V/C Ratio(X) 0.50 0.00 0.98 0.71 0.16 0.00 0.00 1.73 650 V/C Ratio(X) 0.50 0.00 0.98 0.71 0.16 0.00 0.07 723 650 HCM Platoon Ratio 1.00 <													
Grp Sat Flow(s), veh/h/ln 1739 0 1611 1795 1763 0 0 1777 1599 Q Serve(g. s), s 3.6 0.0 7.7 8.0 0.0 0.0 15.2 15.2 Cycle Q Clear(g_c), s 3.6 0.0 7.7 8.0 0.0 0.0 0.0 15.2 15.2 Prop In Lane 1.00 1.00 1.00 0.00 0.00 0.0 0.723 650 V/C Ratio(X) 0.50 0.00 9.88 2.550 0 0 723 650 HCM Platoon Ratio 1.00													
Q Serve(g. s), s 3.6 0.0 7.7 8.0 0.0 0.0 15.2 15.2 Cycle Q Clear(g_c), s 3.6 0.0 7.7 8.0 0.0 0.0 15.2 15.2 Prop In Lane 1.00 1.00 1.00 0.00 0.00 0.00 0.77 Lane Grp Cap(c), veh/h 226 0 209 431 2550 0 0 723 650 V/C Ratio(X) 0.50 0.00 0.98 0.71 0.16 0.00 0.00 1.00 1.00 Upstream Filter(1) 1.00													
Cycle Q Clear(g, c), s 3.6 0.0 7.7 8.0 0.0 0.0 1.5.2 15.2 Prop In Lane 1.00 1.00 1.00 0.00 0.00 0.70 Lane Grp Cap(c), veh/h 226 0 209 4.31 2550 0 0 723 650 V/C Ratio(X) 0.50 0.00 0.98 0.71 0.16 0.00 0.07 0.723 650 HCM Platoon Ratio 1.00													
Prop In Lane 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.70 Lane Grp Cap(c), veh/h 226 0 209 431 2550 0 0 723 650 V/C Ratio(X) 0.50 0.00 0.98 0.71 0.16 0.00 0.00 0.74 0.74 Avail Cap(c. a), veh/h 226 0 209 458 2550 0 0 723 650 HCM Platoon Ratio 1.00 1.													
Lane Grp Cap(c), veh/h 226 0 209 431 2550 0 0 723 650 V/C Ratio(X) 0.50 0.00 0.98 0.71 0.16 0.00 0.00 0.74 0.74 Avail Cap(c, a), veh/h 226 0 209 458 2550 0 0 723 650 HCM Platoon Ratio 1.00 1.00 1.00 2.00 2.00 1.00						0.0			0.0			13.2	
V/C Ratio (X) 0.50 0.00 0.98 0.71 0.16 0.00 0.074 0.74 Avail Cap(c_a), veh/h 226 0 209 458 2550 0 0 723 650 HCM Platoon Ratio 1.00 1.00 1.00 2.00 2.00 1.00	•					٥			2550			702	
Avail Cap(c_a), veh/h 226 0 209 458 2550 0 0 723 650 HCM Platoon Ratio 1.00 1.00 1.00 2.00 2.00 1.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
HCM Platoon Ratio 1.00 1.00 1.00 2.00 2.00 1.													
Upstream Filter(I) 1.00 0.00 1.00 0.82 0.82 0.00 0.00 1.00 1.00 Uniform Delay (d), s/veh 24.3 0.0 26.0 13.9 0.0 0.0 1.01 1.00 Incr Delay (d2), s/veh 0.6 0.0 57.1 3.1 0.1 0.0 0.0 15.1 15.1 Intial Q Delay(d3), s/veh 0.0 1.0 0.0 0.0 1.0 0.													
Uniform Delay (d), s/veh 24.3 0.0 26.0 13.9 0.0 0.0 15.1 15.1 Incr Delay (d2), s/veh 0.6 0.0 57.1 3.1 0.1 0.0 0.0 6.5 7.2 Initial Q Delay(d3), s/veh 0.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.1													
Incr Delay (d2), s/veh 0.6 0.0 57.1 3.1 0.1 0.0 0.0 6.5 7.2 Initial Q Delay(d3), s/veh 0.0 1.1 0.0 0.0 0.0 1.2 1.4 0.0 0.0 1.2 1.2 1.2 4.6 4.6													
Initial Q Delay(d3), s/veh 0.0 <													
%ile BackOfQ(50%),veh/ln 1.4 0.0 6.0 2.7 0.0 0.0 0.0 6.8 6.2 Unsig. Movement Delay, s/veh 24.9 0.0 83.1 17.1 0.1 0.0 0.0 21.6 22.3 LnGrp Delay(d), s/veh 24.9 0.0 83.1 17.1 0.1 0.0 0.0 21.6 22.3 LnGrp LOS C F B A C C C Approach Vol, veh/h 319 725 1009 1009 Approach Delay, s/veh 62.5 7.2 21.9 Approach LOS E A C C Timer - Assigned Phs 1 2 4 6 C C Timer - Assigned Phs 1 2 4 6 C C Timer - Assigned Phs 1 2 4 6 C C Timer - Assigned Phs 1 2 4 6 C C Timer - Assigned Phs 1 2 4 6 C C Timer - Assigned Phs 15.3 *24 7.8 43.4 Max Q Clear Time (g_c+11), s <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Unsig. Movement Delay, s/veh 24.9 0.0 83.1 17.1 0.1 0.0 0.0 21.6 22.3 LnGrp LOS C F B A C C Approach Vol, veh/h 319 725 1009 Approach Delay, s/veh 62.5 7.2 21.9 Approach LOS E A C Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 19.0 29.0 12.0 48.0 Change Period (Y+Rc), s 4.6 4.2 4.6 Max Green Setting (Gmax), s 15.3 * 24 7.8 43.4 Max Q Clear Time (g_c+11), s 10.0 17.2 9.7 2.0 Green Ext Time (p_c), s 0.1 2.0 0.0 1.2 Intersection Summary 23.1 HCM 7th Control Delay, s/veh 23.1 HCM 7th LOS C C C													
LnGrp Delay(d), s/veh 24.9 0.0 83.1 17.1 0.1 0.0 0.0 21.6 22.3 LnGrp LOS C F B A C C Approach Vol, veh/h 319 725 1009 Approach Delay, s/veh 62.5 7.2 21.9 Approach LOS E A C Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 19.0 29.0 12.0 48.0 Change Period (Y+Rc), s 4.6 4.2 4.6 Max Green Setting (Gmax), s 15.3 * 24 7.8 43.4 Max Q Clear Time (g_c+I1), s 10.0 17.2 9.7 2.0 Green Ext Time (p_c), s 0.1 2.0 0.0 1.2 Intersection Summary 12.0 0.0 1.2 1.2 Intersection Summary C 23.1 1.4 1.0 HCM 7th LOS C C 1.2 1.2					1.4	0.0	6.0	2.7	0.0	0.0	0.0	6.8	6.2
LnGrp LOS C F B A C Approach Vol, veh/h 319 725 1009 Approach Delay, s/veh 62.5 7.2 21.9 Approach LOS E A C C Timer - Assigned Phs 1 2 4 6 C Timer - Assigned Phs 1 2 4 6 C Timer - Assigned Phs 1 2 4 6 4 C Timer - Assigned Phs 1 2 4 6 4 C Timer - Assigned Phs 1 2 4 6 4 C Timer - Assigned Phs 1 10.0 17.2 9.7 2.0 C C C C C </td <td></td> <td></td> <td></td> <td></td> <td>04.0</td> <td>0.0</td> <td>00.4</td> <td>47.4</td> <td>0.4</td> <td>0.0</td> <td>0.0</td> <td>04.0</td> <td>00.0</td>					04.0	0.0	00.4	47.4	0.4	0.0	0.0	04.0	00.0
Approach Vol, veh/h 319 725 1009 Approach Delay, s/veh 62.5 7.2 21.9 Approach LOS E A C Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 19.0 29.0 12.0 48.0 Change Period (Y+Rc), s 4.6 4.2 4.6 Max Green Setting (Gmax), s 15.3 * 24 7.8 43.4 Max Q Clear Time (g_c+I1), s 10.0 17.2 9.7 2.0 Green Ext Time (p_c), s 0.1 2.0 0.0 1.2 Intersection Summary HCM 7th Control Delay, s/veh 23.1 HCM 7th LOS C C C						0.0				0.0	0.0		
Approach Delay, s/veh 62.5 7.2 21.9 Approach LOS E A C Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 19.0 29.0 12.0 48.0 Change Period (Y+Rc), s 4.6 *4.6 4.2 4.6 Max Green Setting (Gmax), s 15.3 *24 7.8 43.4 Max Q Clear Time (g_c+I1), s 10.0 17.2 9.7 2.0 Green Ext Time (p_c), s 0.1 2.0 0.0 1.2 Intersection Summary Veh 23.1 C					C		F	В					C
Approach LOS E A C Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 19.0 29.0 12.0 48.0 Change Period (Y+Rc), s 4.6 * 4.6 4.2 4.6 Max Green Setting (Gmax), s 15.3 * 24 7.8 43.4 Max Q Clear Time (g_c+11), s 10.0 17.2 9.7 2.0 Green Ext Time (p_c), s 0.1 2.0 0.0 1.2 Intersection Summary HCM 7th Control Delay, s/veh 23.1 HCM 7th LOS C													
Timer - Assigned Phs 1 2 4 6 Phs Duration (G+Y+Rc), s 19.0 29.0 12.0 48.0 Change Period (Y+Rc), s 4.6 4.2 4.6 Max Green Setting (Gmax), s 15.3 * 24 7.8 43.4 Max Q Clear Time (g_c+I1), s 10.0 17.2 9.7 2.0 Green Ext Time (p_c), s 0.1 2.0 0.0 1.2 Intersection Summary													
Phs Duration (G+Y+Rc), s 19.0 29.0 12.0 48.0 Change Period (Y+Rc), s 4.6 *4.6 4.2 4.6 Max Green Setting (Gmax), s 15.3 *24 7.8 43.4 Max Q Clear Time (g_c+I1), s 10.0 17.2 9.7 2.0 Green Ext Time (p_c), s 0.1 2.0 0.0 1.2 Intersection Summary	Approach LOS					E			A			С	
Phs Duration (G+Y+Rc), s 19.0 29.0 12.0 48.0 Change Period (Y+Rc), s 4.6 *4.6 4.2 4.6 Max Green Setting (Gmax), s 15.3 *24 7.8 43.4 Max Q Clear Time (g_c+I1), s 10.0 17.2 9.7 2.0 Green Ext Time (p_c), s 0.1 2.0 0.0 1.2 Intersection Summary	Timer - Assigned Phs	1	2		4		6						
Change Period (Y+Rc), s 4.6 4.2 4.6 Max Green Setting (Gmax), s 15.3 * 24 7.8 43.4 Max Q Clear Time (g_c+I1), s 10.0 17.2 9.7 2.0 Green Ext Time (p_c), s 0.1 2.0 0.0 1.2 Intersection Summary HCM 7th Control Delay, s/veh 23.1 HCM 7th LOS C													
Max Green Setting (Gmax), s 15.3 * 24 7.8 43.4 Max Q Clear Time (g_c+I1), s 10.0 17.2 9.7 2.0 Green Ext Time (p_c), s 0.1 2.0 0.0 1.2 Intersection Summary 23.1 HCM 7th LOS C	(,,												
Max Q Clear Time (g_c+l1), s 10.0 17.2 9.7 2.0 Green Ext Time (p_c), s 0.1 2.0 0.0 1.2 Intersection Summary HCM 7th Control Delay, s/veh 23.1 HCM 7th LOS C													
Green Ext Time (p_c), s 0.1 2.0 0.0 1.2 Intersection Summary													
HCM 7th Control Delay, s/veh 23.1 HCM 7th LOS C													
HCM 7th Control Delay, s/veh 23.1 HCM 7th LOS C	Intersection Summary												
HCM 7th LOS C	,			23.1									
	Notes												

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Existing PM Bay-Hill Analysis 3:33 pm 06/20/2024 Stop & Road Diet Kimley-Horn

01/06/2025

	≁	+	\mathbf{F}	4	Ļ	۲	1	†	*	4	ţ	∢
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	4	1					≜ †}		5	† †	
Traffic Volume (veh/h)	234	208	347	0	0	0	0	457	91	276	471	0
Future Volume (veh/h)	234	208	347	0	0	0	0	457	91	276	471	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		0.97	1.00		1.00
	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	า	No						No			No	
Adj Sat Flow, veh/h/ln 1	1826	1900	1856				0	1885	1856	1870	1856	0
Adj Flow Rate, veh/h	245	305	306				0	497	99	300	512	0
Peak Hour Factor	0.92	0.92	0.92				0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	5	0	3				0	1	3	2	3	0
Cap, veh/h	396	433	358				0	879	174	449	2205	0
Arrive On Green	0.23	0.23	0.23				0.00	0.30	0.30	0.08	0.21	0.00
Sat Flow, veh/h	1739	1900	1572				0	3057	587	1781	3618	0
Grp Volume(v), veh/h	245	305	306				0	299	297	300	512	0
Grp Sat Flow(s),veh/h/ln		1900	1572				0	1791	1759	1781	1763	0
Q Serve(g_s), s	7.6	8.9	11.2				0.0	8.5	8.6	9.8	7.3	0.0
Cycle Q Clear(g_c), s	7.6	8.9	11.2				0.0	8.5	8.6	9.8	7.3	0.0
	1.00		1.00				0.00		0.33	1.00		0.00
Lane Grp Cap(c), veh/h	396	433	358				0	531	522	449	2205	0
V/C Ratio(X)	0.62	0.70	0.85				0.00	0.56	0.57	0.67	0.23	0.00
Avail Cap(c_a), veh/h	446	488	404				0	531	522	449	2205	0
	1.00	1.00	1.00				1.00	1.00	1.00	0.33	0.33	1.00
Upstream Filter(I)	1.00	1.00	1.00				0.00	1.00	1.00	0.69	0.69	0.00
Uniform Delay (d), s/veh	20.8	21.3	22.2				0.0	17.8	17.9	25.1	11.8	0.0
Incr Delay (d2), s/veh	1.2	3.0	13.5				0.0	4.3	4.5	2.1	0.2	0.0
Initial Q Delay(d3), s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/		3.9	5.1				0.0	3.9	3.9	4.8	2.9	0.0
Unsig. Movement Delay,	s/veh											
LnGrp Delay(d), s/veh	22.1	24.3	35.8				0.0	22.1	22.3	27.2	12.0	0.0
LnGrp LOS	С	С	D					С	С	С	В	
Approach Vol, veh/h		856						596			812	
Approach Delay, s/veh		27.8						22.2			17.6	
Approach LOS		С						С			В	
Timer - Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc),	S	42.1			19.7	22.4		17.9				
Change Period (Y+Rc), s		4.6			4.6	* 4.6		4.2				
Max Green Setting (Gma		35.8			14.3	* 18		15.4				
Max Q Clear Time (g_c+		9.3			11.8	10.6		13.2				
Green Ext Time (p_c), s	,, 2	1.5			0.1	1.0		0.5				
Intersection Summary												
HCM 7th Control Delay,	s/veh		22.7									
HCM 7th LOS	0,1011		C									
Notes												

User approved volume balancing among the lanes for turning movement.

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Existing PM Bay-Hill Analysis 3:33 pm 06/20/2024 Stop & Road Diet Kimley-Horn

3.1

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	LDL		LDIX	VVDL		VIDIN	INDL		NDIN	JDL		JUN
Lane Configurations		- 4 >			- 4 +			- † Þ			- T	- T
Traffic Vol, veh/h	49	2	38	4	1	37	4	412	9	50	629	112
Future Vol, veh/h	49	2	38	4	1	37	4	412	9	50	629	112
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	0
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	56	2	44	5	1	43	5	474	10	57	723	129

Major/Minor	Minor2			Minor1			Major1			Major2			
Conflicting Flow All	1084	1331	723	1327	1455	242	852	0	0	484	0	0	
Stage 1	838	838	-	488	488	-	-	-	-	-	-	-	
Stage 2	247	493	-	839	967	-	-	-	-	-	-	-	
Critical Hdwy	7.33	6.53	6.23	7.33	6.53	6.93	4.13	-	-	4.13	-	-	
Critical Hdwy Stg 1	6.13	5.53	-	6.53	5.53	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.53	5.53	-	6.13	5.53	-	-	-	-	-	-	-	
Follow-up Hdwy	3.519	4.019	3.319	3.519	4.019	3.319	2.219	-	-	2.219	-	-	
Pot Cap-1 Maneuver	182	154	425	122	129	760	785	-	-	1077	-	-	
Stage 1	360	381	-	531	549	-	-	-	-	-	-	-	
Stage 2	736	546	-	359	332	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	161	145	425	102	122	760	785	-	-	1077	-	-	
Mov Cap-2 Maneuver	161	145	-	102	122	-	-	-	-	-	-	-	
Stage 1	341	360	-	528	546	-	-	-	-	-	-	-	
Stage 2	689	543	-	303	314	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Del	lay, s/v35.33	14.27	0.09	0.54	
HCM LOS	E	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	785	-	-	218	437	1077	-	-
HCM Lane V/C Ratio	0.006	-	-	0.469	0.111	0.053	-	-
HCM Control Delay (s/veh)	9.6	-	-	35.3	14.3	8.5	-	-
HCM Lane LOS	А	-	-	E	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	2.3	0.4	0.2	-	-

Е

01/06/2025

Intersection Intersection Delay, s/veh Intersection LOS 44.2

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1		4		٦	ef 👘		٦	ef 👘	
Traffic Vol, veh/h	92	45	84	18	33	76	46	256	21	146	474	49
Future Vol, veh/h	92	45	84	18	33	76	46	256	21	146	474	49
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles, %	6	0	0	0	3	1	2	1	9	0	3	3
Mvmt Flow	103	51	94	20	37	85	52	288	24	164	533	55
Number of Lanes	0	1	1	0	1	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			1			2		
HCM Control Delay, s/veh	14.2			14.6			19.5			71.7		
HCM LOS	В			В			С			F		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2
Vol Left, %	100%	0%	67%	0%	14%	100%	0%
Vol Thru, %	0%	92%	33%	0%	26%	0%	91%
Vol Right, %	0%	8%	0%	100%	60%	0%	9%
Sign Control	Stop						
Traffic Vol by Lane	46	277	137	84	127	146	523
LT Vol	46	0	92	0	18	146	0
Through Vol	0	256	45	0	33	0	474
RT Vol	0	21	0	84	76	0	49
Lane Flow Rate	52	311	154	94	143	164	588
Geometry Grp	5	5	5	5	4b	5	5
Degree of Util (X)	0.109	0.609	0.351	0.186	0.307	0.326	1.082
Departure Headway (Hd)	7.901	7.315	8.537	7.365	8.089	7.153	6.627
Convergence, Y/N	Yes						
Сар	456	498	423	490	447	499	547
Service Time	5.601	5.015	6.237	5.065	6.089	4.945	4.419
HCM Lane V/C Ratio	0.114	0.624	0.364	0.192	0.32	0.329	1.075
HCM Control Delay, s/veh	11.6	20.8	15.8	11.7	14.6	13.4	88
HCM Lane LOS	В	С	С	В	В	В	F
HCM 95th-tile Q	0.4	4	1.6	0.7	1.3	1.4	17.7

Intersection

Intersection Delay, s/veh20.5 Intersection LOS C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		र्भ	1		4		ľ	ef -			्	1	
Traffic Vol, veh/h	72	84	8	61	72	31	29	200	23	56	337	124	
Future Vol, veh/h	72	84	8	61	72	31	29	200	23	56	337	124	
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	81	94	9	69	81	35	33	225	26	63	379	139	
Number of Lanes	0	1	1	0	1	0	1	1	0	0	1	1	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			2			2			2			
Conflicting Approach L	eft SB			NB			EB			WB			
Conflicting Lanes Left	2			2			2			1			
Conflicting Approach R	ightNB			SB			WB			EB			
Conflicting Lanes Right	: 2			2			1			2			
HCM Control Delay, s/	/eħ4.9			15.3			15.3			26.5			
HCM LOS	В			С			С			D			

Lane	NBLn1	NBLn2	EBLn1	EBLn2V	VBLn1	SBLn1	SBLn2
Vol Left, %	100%	0%	46%	0%	37%	14%	0%
Vol Thru, %	0%	90%	54%	0%	44%	86%	0%
Vol Right, %	0%	10%	0%	100%	19%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	29	223	156	8	164	393	124
LT Vol	29	0	72	0	61	56	0
Through Vol	0	200	84	0	72	337	0
RT Vol	0	23	0	8	31	0	124
Lane Flow Rate	33	251	175	9	184	442	139
Geometry Grp	5	5	5	5	4b	5	5
Degree of Util (X)	0.068	0.481	0.379	0.017	0.386	0.809	0.225
Departure Headway (Hd)	7.496	6.91	7.788	6.834	7.541	6.598	5.812
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Сар	478	521	463	523	477	548	617
Service Time	5.242	4.655	5.537	4.583	5.59	4.336	3.549
HCM Lane V/C Ratio	0.069	0.482	0.378	0.017	0.386	0.807	0.225
HCM Control Delay, s/veh	10.8	15.9	15.2	9.7	15.3	31.7	10.2
HCM Lane LOS	В	С	С	А	С	D	В
HCM 95th-tile Q	0.2	2.6	1.7	0.1	1.8	7.9	0.9

Item	7 B.	

01/06/2025

Intersection	
Intersection Delay, s/veh11.9	
Intersection LOS B	

Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	۰¥		et -			र्भ	
Traffic Vol, veh/h	35	104	124	85	304	135	
Future Vol, veh/h	35	104	124	85	304	135	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	36	106	127	87	310	138	
Number of Lanes	1	0	1	0	0	1	
Approach	WB		NB		SB		
Opposing Approach			SB		NB		
Opposing Lanes	0		1		1		
Conflicting Approach L	eft NB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach F	Righ S B		WB				
Conflicting Lanes Righ	t 1		1		0		
HCM Control Delay, s/	veh9.3		9.3		14		
HCM LOS	А		А		В		

Lane	NBLn1\	WBLn1	SBLn1
Vol Left, %	0%	25%	69%
Vol Thru, %	59%	0%	31%
Vol Right, %	41%	75%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	209	139	439
LT Vol	0	35	304
Through Vol	124	0	135
RT Vol	85	104	0
Lane Flow Rate	213	142	448
Geometry Grp	1	1	1
Degree of Util (X)	0.27	0.198	0.58
Departure Headway (Hd)	4.556	5.022	4.664
Convergence, Y/N	Yes	Yes	Yes
Сар	785	711	770
Service Time	2.61	3.084	2.712
HCM Lane V/C Ratio	0.271	0.2	0.582
HCM Control Delay, s/veh	9.3	9.3	14
HCM Lane LOS	А	А	В
HCM 95th-tile Q	1.1	0.7	3.8

Intersection

Intersection Delay, s/veh15.4 Intersection LOS C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			र्च	1		÷	1	
Traffic Vol, veh/h	5	3	3	203	3	39	1	148	498	92	83	1	
Future Vol, veh/h	5	3	3	203	3	39	1	148	498	92	83	1	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	5	3	3	211	3	41	1	154	519	96	86	1	
Number of Lanes	0	1	0	0	1	0	0	1	1	0	1	1	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			2			2			
Conflicting Approach L	_eft SB			NB			EB			WB			
Conflicting Lanes Left	2			2			1			1			
Conflicting Approach F	RightNB			SB			WB			EB			
Conflicting Lanes Righ	nt 2			2			1			1			
HCM Control Delay, s	/veh9.6			13.3			17.1			12.3			
HCM LOS	А			В			С			В			

Lane	NBLn1	NBLn2	EBLn1\	NBLn1	SBLn1	SBLn2
Vol Left, %	1%	0%	45%	83%	53%	0%
Vol Thru, %	99%	0%	27%	1%	47%	0%
Vol Right, %	0%	100%	27%	16%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	149	498	11	245	175	1
LT Vol	1	0	5	203	92	0
Through Vol	148	0	3	3	83	0
RT Vol	0	498	3	39	0	1
Lane Flow Rate	155	519	11	255	182	1
Geometry Grp	5	5	2	2	5	5
Degree of Util (X)	0.244	0.714	0.021	0.423	0.326	0.002
Departure Headway (Hd)	5.665	4.953	6.441	5.969	6.442	5.463
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	635	731	554	602	558	654
Service Time	3.396	2.684	4.5	4.005	4.185	3.206
HCM Lane V/C Ratio	0.244	0.71	0.02	0.424	0.326	0.002
HCM Control Delay, s/veh	10.2	19.1	9.6	13.3	12.3	8.2
HCM Lane LOS	В	С	А	В	В	А
HCM 95th-tile Q	1	6.1	0.1	2.1	1.4	0

HCM 7th Signalized Intersection Summary 1: Bay Ave & Hwy 1 NB Off-Ramp

01/06/2025

	≯	+	*	•	+	*	N	Ť	1	*	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				۲	ef 👘		٦	<u></u>			↑ ĵ≽	
Traffic Volume (veh/h)	0	0	0	161	12	379	321	392	0	0	436	536
Future Volume (veh/h)	0	0	0	161	12	379	321	392	0	0	436	536
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Lane Width Adj.				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		0.94
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1826	1900	1885	1885	1856	0	0	1870	1885
Adj Flow Rate, veh/h				169	13	399	338	413	0	0	459	564
Peak Hour Factor				0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %				5	0	1	1	3	0	0	2	1
Cap, veh/h				341	10	308	437	2269	0	0	562	471
Arrive On Green				0.20	0.20	0.20	0.49	1.00	0.00	0.00	0.32	0.32
Sat Flow, veh/h				1739	51	1567	1795	3618	0	0	1870	1489
Grp Volume(v), veh/h				169	0	412	338	413	0	0	459	564
Grp Sat Flow(s), veh/h/ln				1739	0	1618	1795	1763	0	0	1777	1489
Q Serve(g_s), s				4.8	0.0	10.8	8.5	0.0	0.0	0.0	13.1	17.4
Cycle Q Clear(g_c), s				4.8	0.0	10.8	8.5	0.0	0.0	0.0	13.1	17.4
Prop In Lane				1.00	0.0	0.97	1.00	0.0	0.00	0.00	10.1	1.00
Lane Grp Cap(c), veh/h				341	0	318	437	2269	0.00	0.00	562	471
V/C Ratio(X)				0.49	0.00	1.30	0.77	0.18	0.00	0.00	0.82	1.20
Avail Cap(c_a), veh/h				341	0.00	318	467	2269	0.00	0.00	562	471
HCM Platoon Ratio				1.00	1.00	1.00	2.00	2.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	1.00	0.83	0.83	0.00	0.00	1.00	1.00
Uniform Delay (d), s/veh				19.7	0.0	22.1	12.8	0.03	0.00	0.00	17.3	18.8
Incr Delay (d2), s/veh				0.4	0.0	154.9	5.4	0.0	0.0	0.0	12.4	107.7
Initial Q Delay(d3), s/veh				0.4	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				1.8	0.0	17.3	3.0	0.0	0.0	0.0	0.0 6.7	19.5
Unsig. Movement Delay, s/veh				1.0	0.0	17.5	3.0	0.0	0.0	0.0	0.7	19.5
				20.1	0.0	177.0	18.3	0.1	0.0	0.0	29.7	126.5
LnGrp Delay(d), s/veh				20.1 C	0.0	F	10.3 B		0.0	0.0	29.7 C	
LnGrp LOS				U	504	Г	D	A				F
Approach Vol, veh/h					581			751			1023	
Approach Delay, s/veh					131.4			8.3			83.1	
Approach LOS					F			A			F	
Timer - Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), s	18.0	22.0		15.0		40.0						
Change Period (Y+Rc), s	4.6	* 4.6		4.2		4.6						
Max Green Setting (Gmax), s	14.3	* 17		10.8		35.4						
Max Q Clear Time (g_c+I1), s	10.5	19.4		12.8		2.0						
Green Ext Time (p_c), s	0.1	0.0		0.0		1.2						
Intersection Summary												
HCM 7th Control Delay, s/veh			71.2									
HCM 7th LOS			Е									
Notes												

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Year 2045 AM Bay-Hill Analysis 3:33 pm 06/20/2024 Stop & Road Diet Kimley-Horn

01/06/2025

- * + * * * * * * * * * * *

-	_	•	•		-	١	I	1		•	•
Movement EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	4	1					∱ î⊧		1	^	
Traffic Volume (veh/h) 248	0	586	0	0	0	0	465	61	251	346	0
Future Volume (veh/h) 248	0	586	0	0	0	0	465	61	251	346	0
Initial Q (Qb), veh 0	0	0				0	0	0	0	0	0
Lane Width Adj. 1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT) 1.00		1.00				1.00		0.97	1.00		1.00
Parking Bus, Adj 1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No						No			No	
Adj Sat Flow, veh/h/ln 1826	1900	1856				0	1885	1856	1870	1856	0
Adj Flow Rate, veh/h 174	0	710				0	489	64	264	364	0
Peak Hour Factor 0.95	0.95	0.95				0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, % 5	0	3				0	1	3	2	3	0
Cap, veh/h 373	0	675				0	1062	138	369	2205	0
Arrive On Green 0.21	0.00	0.21				0.00	0.33	0.33	0.41	1.00	0.00
Sat Flow, veh/h 1739	0	3145				0	3268	413	1781	3618	0
Grp Volume(v), veh/h 174	0	710				0	275	278	264	364	0
Grp Sat Flow(s),veh/h/ln1739	0	1572				0	1791	1796	1781	1763	0
Q Serve(g_s), s 4.8	0.0	11.8				0.0	6.6	6.7	6.8	0.0	0.0
Cycle Q Clear(g_c), s 4.8	0.0	11.8				0.0	6.6	6.7	6.8	0.0	0.0
Prop In Lane 1.00		1.00				0.00		0.23	1.00		0.00
Lane Grp Cap(c), veh/h 373	0	675				0	599	601	369	2205	0
V/C Ratio(X) 0.47	0.00	1.05				0.00	0.46	0.46	0.72	0.17	0.00
Avail Cap(c_a), veh/h 373	0	675				0	599	601	398	2205	0
HCM Platoon Ratio 1.00	1.00	1.00				1.00	1.00	1.00	2.00	2.00	1.00
Upstream Filter(I) 1.00	0.00	1.00				0.00	1.00	1.00	0.67	0.67	0.00
Uniform Delay (d), s/veh 18.9	0.0	21.6				0.0	14.4	14.4	14.7	0.0	0.0
Incr Delay (d2), s/veh 0.3	0.0	49.2				0.0	2.5	2.6	3.0	0.1	0.0
Initial Q Delay(d3), s/veh 0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/Inl.8	0.0	8.4				0.0	2.8	2.9	2.4	0.0	0.0
Unsig. Movement Delay, s/veh											
LnGrp Delay(d), s/veh 19.2	0.0	70.8				0.0	16.9	17.0	17.8	0.1	0.0
LnGrp LOS B		F					В	В	В	Α	
Approach Vol, veh/h	884						553			628	
Approach Delay, s/veh	60.6						16.9			7.5	
Approach LOS	Е						В			А	
Timer - Assigned Phs	2			5	6		8				
Phs Duration (G+Y+Rc), s	39.0			16.0	23.0		16.0				
Change Period (Y+Rc), s	4.6			4.6	* 4.6		4.2				
Max Green Setting (Gmax), s	34.4			12.3	* 18		11.8				
Max Q Clear Time (g_c+l1), s	2.0			8.8	8.7		13.8				
Green Ext Time (p_c), s	1.0			0.1	1.0		0.0				
Intersection Summary											
HCM 7th Control Delay, s/veh		32.8									
HCM 7th LOS		52.0 C									
		U									
Notes											

Notes

User approved volume balancing among the lanes for turning movement.

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Year 2045 AM Bay-Hill Analysis 3:33 pm 06/20/2024 Stop & Road Diet Kimley-Horn

3.2

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		.			4		ኘ	∱ ₽		ኘ	1	1
Traffic Vol, veh/h	53	0	21	0	1	79	1	394	9	69	754	109
Future Vol, veh/h	53	0	21	0	1	79	1	394	9	69	754	109
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	0
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	56	0	22	0	1	83	1	415	9	73	794	115

Major/Minor	Minor2			Minor1			Major1		l	Major2			
Conflicting Flow All	1149	1365	794	1361	1475	212	908	0	0	424	0	0	
Stage 1	939	939	-	422	422	-	-	-	-	-	-	-	
Stage 2	210	426	-	939	1054	-	-	-	-	-	-	-	
Critical Hdwy	7.33	6.53	6.23	7.33	6.53	6.93	4.13	-	-	4.13	-	-	
Critical Hdwy Stg 1	6.13	5.53	-	6.53	5.53	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.53	5.53	-	6.13	5.53	-	-	-	-	-	-	-	
Follow-up Hdwy	3.519	4.019	3.319	3.519	4.019	3.319	2.219	-	-	2.219	-	-	
Pot Cap-1 Maneuver	164	147	387	116	126	794	747	-	-	1133	-	-	
Stage 1	316	342	-	581	588	-	-	-	-	-	-	-	
Stage 2	773	585	-	316	302	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	136	137	387	102	118	794	747	-	-	1133	-	-	
Mov Cap-2 Maneuver	136	137	-	102	118	-	-	-	-	-	-	-	
Stage 1	296	320	-	580	587	-	-	-	-	-	-	-	
Stage 2	690	584	-	279	283	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Dela	ay, s/v44.16	10.48	0.02	0.62	
HCM LOS	E	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	747	-	-	167	741	1133	-	-
HCM Lane V/C Ratio	0.001	-	-	0.467	0.114	0.064	-	-
HCM Control Delay (s/veh)	9.8	-	-	44.2	10.5	8.4	-	-
HCM Lane LOS	А	-	-	Ε	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	2.2	0.4	0.2	-	-

01/06/2025

Intersection Delay, s/veh 73.2 Intersection LOS F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	1		4		٦	ef 👘		٦	ef 👘	
Traffic Vol, veh/h	43	19	39	13	28	68	57	293	4	75	669	31
Future Vol, veh/h	43	19	39	13	28	68	57	293	4	75	669	31
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	6	0	0	0	3	1	2	1	9	0	3	3
Mvmt Flow	45	20	41	14	29	72	60	308	4	79	704	33
Number of Lanes	0	1	1	0	1	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			1			2		
HCM Control Delay, s/veh	11.8			12.8			15.6			116		
HCM LOS	В			В			С			F		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2	
Vol Left, %	100%	0%	69%	0%	12%	100%	0%	
Vol Thru, %	0%	99%	31%	0%	26%	0%	96%	
Vol Right, %	0%	1%	0%	100%	62%	0%	4%	
Sign Control	Stop							
Traffic Vol by Lane	57	297	62	39	109	75	700	
LT Vol	57	0	43	0	13	75	0	
Through Vol	0	293	19	0	28	0	669	
RT Vol	0	4	0	39	68	0	31	
Lane Flow Rate	60	313	65	41	115	79	737	
Geometry Grp	5	5	5	5	4b	5	5	
Degree of Util (X)	0.112	0.539	0.145	0.078	0.227	0.14	1.204	
Departure Headway (Hd)	7.029	6.492	8.453	7.27	7.595	6.368	5.882	
Convergence, Y/N	Yes							
Сар	513	560	427	496	476	564	619	
Service Time	4.729	4.192	6.153	4.97	5.595	4.099	3.613	
HCM Lane V/C Ratio	0.117	0.559	0.152	0.083	0.242	0.14	1.191	
HCM Control Delay, s/veh	10.6	16.5	12.6	10.6	12.8	10.1	127.4	
HCM Lane LOS	В	С	В	В	В	В	F	
HCM 95th-tile Q	0.4	3.2	0.5	0.3	0.9	0.5	26.1	

01/06/2025

Intersection

Intersection Delay, s/veh18.4 С

Intersection	LOS
--------------	-----

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		्र	1		- 44		ሻ	4			्रस्	1	
Traffic Vol, veh/h	78	67	6	83	94	42	27	312	55	74	183	128	
Future Vol, veh/h	78	67	6	83	94	42	27	312	55	74	183	128	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	82	71	6	87	99	44	28	328	58	78	193	135	
Number of Lanes	0	1	1	0	1	0	1	1	0	0	1	1	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			2			2			2			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	2			2			2			1			
Conflicting Approach R	ighNB			SB			WB			EB			
Conflicting Lanes Right	2			2			1			2			
HCM Control Delay, s/v	/eħ4.5			17.2			23.8			15.2			
HCM LOS	В			С			С			С			

Lane	NBLn1	NBLn2	EBLn1	EBLn2V	VBLn1	SBLn1	SBLn2
Vol Left, %	100%	0%	54%	0%	38%	29%	0%
Vol Thru, %	0%	85%	46%	0%	43%	71%	0%
Vol Right, %	0%	15%	0%	100%	19%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	27	367	145	6	219	257	128
LT Vol	27	0	78	0	83	74	0
Through Vol	0	312	67	0	94	183	0
RT Vol	0	55	0	6	42	0	128
Lane Flow Rate	28	386	153	6	231	271	135
Geometry Grp	5	5	5	5	4b	5	5
Degree of Util (X)	0.058	0.718	0.336	0.012	0.477	0.527	0.23
Departure Headway (Hd)	7.308	6.689	7.923	6.928	7.442	7.015	6.151
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Сар	490	541	453	515	484	514	582
Service Time	5.059	4.44	5.685	4.689	5.499	4.77	3.905
HCM Lane V/C Ratio	0.057	0.713	0.338	0.012	0.477	0.527	0.232
HCM Control Delay, s/veh	10.5	24.8	14.7	9.8	17.2	17.4	10.7
HCM Lane LOS	В	С	В	Α	С	С	В
HCM 95th-tile Q	0.2	5.8	1.5	0	2.5	3	0.9

ltem 7	В.
--------	----

Intersection		
Intersection Delay, s/ve	eh18.2	
Intersection LOS	С	

Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ef -			ર્ન
Traffic Vol, veh/h	87	282	162	61	219	239
Future Vol, veh/h	87	282	162	61	219	239
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	92	297	171	64	231	252
Number of Lanes	1	0	1	0	0	1
Approach	WB		NB		SB	
	110					
Opposing Approach			SB		NB	
Opposing Lanes	0		1		1	
Conflicting Approach L	eft NB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach R	RighSB		WB			
Conflicting Lanes Righ	t 1		1		0	
HCM Control Delay, s/	veh 16		12		22.9	
HCM LOS	С		В		С	

Lane	NBLn1\	NBLn1	SBLn1
Vol Left, %	0%	24%	48%
Vol Thru, %	73%	0%	52%
Vol Right, %	27%	76%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	223	369	458
LT Vol	0	87	219
Through Vol	162	0	239
RT Vol	61	282	0
Lane Flow Rate	235	388	482
Geometry Grp	1	1	1
Degree of Util (X)	0.369	0.587	0.742
Departure Headway (Hd)	5.665	5.441	5.539
Convergence, Y/N	Yes	Yes	Yes
Сар	631	660	651
Service Time	3.729	3.499	3.589
HCM Lane V/C Ratio	0.372	0.588	0.74
HCM Control Delay, s/veh	12	16	22.9
HCM Lane LOS	В	С	С
HCM 95th-tile Q	1.7	3.8	6.6

Intersection

Intersection Delay, s/veh 33 Intersection LOS D

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			4			्	1		÷	1	
Traffic Vol, veh/h	0	9	1	418	3	100	1	123	238	201	121	4	
Future Vol, veh/h	0	9	1	418	3	100	1	123	238	201	121	4	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	9	1	440	3	105	1	129	251	212	127	4	
Number of Lanes	0	1	0	0	1	0	0	1	1	0	1	1	
Approach		EB		WB			NB			SB			
Opposing Approach		WB		EB			SB			NB			
Opposing Lanes		1		1			2			2			
Conflicting Approach L	eft	SB		NB			EB			WB			
Conflicting Lanes Left		2		2			1			1			
Conflicting Approach R		NB		SB			WB			EB			
Conflicting Lanes Right		2		2			1			1			
HCM Control Delay, s/	veh	11		50.8			14.1			26.3			
HCM LOS		В		F			В			D			

Lane	NBLn1	NBLn2	EBLn1\	VBLn1	SBLn1	SBLn2
Vol Left, %	1%	0%	0%	80%	62%	0%
Vol Thru, %	99%	0%	90%	1%	38%	0%
Vol Right, %	0%	100%	10%	19%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	124	238	10	521	322	4
LT Vol	1	0	0	418	201	0
Through Vol	123	0	9	3	121	0
RT Vol	0	238	1	100	0	4
Lane Flow Rate	131	251	11	548	339	4
Geometry Grp	5	5	2	2	5	5
Degree of Util (X)	0.265	0.457	0.023	0.949	0.707	0.008
Departure Headway (Hd)	7.297	6.572	7.779	6.23	7.509	6.468
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	492	546	458	581	481	552
Service Time	5.053	4.327	5.864	4.267	5.261	4.219
HCM Lane V/C Ratio	0.266	0.46	0.024	0.943	0.705	0.007
HCM Control Delay, s/veh	12.7	14.8	11	50.8	26.5	9.3
HCM Lane LOS	В	В	В	F	D	А
HCM 95th-tile Q	1.1	2.4	0.1	12.6	5.5	0

HCM 7th Signalized Intersection Summary 1: Bay Ave & Hwy 1 NB Off-Ramp

01/06/2025

	≯	+	\mathbf{F}	∢	+	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	ef 👘		ሻ	^			≜ ⊅	
Traffic Volume (veh/h)	0	0	0	77	1	406	593	629	0	0	644	149
Future Volume (veh/h)	0	0	0	77	1	406	593	629	0	0	644	149
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Lane Width Adj.				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		0.93
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1826	1900	1885	1885	1856	0	0	1870	1885
Adj Flow Rate, veh/h				81	1	427	624	662	0	0	678	157
Peak Hour Factor				0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %				5	0	1	1	3	0	0	2	1
Cap, veh/h				371	1	343	581	2256	0	0	676	156
Arrive On Green				0.21	0.21	0.21	0.32	0.64	0.00	0.00	0.24	0.24
Sat Flow, veh/h				1739	4	1607	1795	3618	0.00	0.00	2911	652
Grp Volume(v), veh/h				81	0	428	624	662	0	0	427	408
Grp Sat Flow(s), veh/h/ln				1739	0	1611	1795	1763	0	0	1777	1692
				2.3	0.0	12.8	195	5.0	0.0	0.0	14.4	14.4
Q Serve(g_s), s				2.3	0.0	12.0				0.0		
Cycle Q Clear(g_c), s					0.0		19.4	5.0	0.0		14.4	14.4
Prop In Lane				1.00	0	1.00	1.00	0050	0.00	0.00	400	0.39
Lane Grp Cap(c), veh/h				371	0	344	581	2256	0	0	426	406
V/C Ratio(X)				0.22	0.00	1.25	1.07	0.29	0.00	0.00	1.00	1.00
Avail Cap(c_a), veh/h				371	0	344	581	2256	0	0	426	406
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	1.00	0.41	0.41	0.00	0.00	1.00	1.00
Uniform Delay (d), s/veh				19.5	0.0	23.6	20.3	4.8	0.0	0.0	22.8	22.8
Incr Delay (d2), s/veh				0.1	0.0	132.6	46.8	0.1	0.0	0.0	44.1	45.6
Initial Q Delay(d3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				0.9	0.0	17.0	14.9	1.4	0.0	0.0	10.8	10.5
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh				19.6	0.0	156.2	67.1	4.9	0.0	0.0	66.9	68.4
LnGrp LOS				В		F	F	А			F	F
Approach Vol, veh/h					509			1286			835	
Approach Delay, s/veh					134.5			35.1			67.6	
Approach LOS					F			D			Е	
Timer - Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), s	24.0	19.0		17.0		43.0						
Change Period (Y+Rc), s	4.6	* 4.6		4.2		4.6						
Max Green Setting (Gmax), s	17.3	* 14		12.8		38.4						
Max Q Clear Time (g_c+I1), s	21.4	16.4		14.8		7.0						
Green Ext Time (p_c), s	0.0	0.0		0.0		2.0						
Intersection Summary												
HCM 7th Control Delay, s/veh			64.7									
HCM 7th LOS			64.7 E									
Notes												

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Year 2045 PM Bay-Hill Analysis 3:33 pm 06/20/2024 Stop & Road Diet Kimley-Horn

01/06/2025

	۶	→	\mathbf{F}	4	+	٠	•	1	1	1	ţ	∢
Movement I	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	4	1					≜ t}		۲	† †	
-	417	208	512	0	0	0	0	805	91	370	351	0
	417	208	512	0	0	0	0	805	91	370	351	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
	1.00		1.00				1.00		0.97	1.00		1.00
	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln 1	826	1900	1856				0	1885	1856	1870	1856	0
Adj Flow Rate, veh/h	366	437	416				0	847	96	389	369	0
	0.95	0.95	0.95				0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	5	0	3				0	1	3	2	3	0
Cap, veh/h	482	527	436				0	1008	114	475	2255	0
	0.28	0.28	0.28				0.00	0.31	0.31	0.27	0.64	0.00
Sat Flow, veh/h 1	739	1900	1572				0	3325	366	1781	3618	0
	366	437	416				0	469	474	389	369	0
Grp Sat Flow(s),veh/h/ln1		1900	1572				0	1791	1806	1781	1763	0
	14.4	16.2	19.5				0.0	18.3	18.3	15.4	3.2	0.0
	14.4	16.2	19.5				0.0	18.3	18.3	15.4	3.2	0.0
	1.00		1.00				0.00		0.20	1.00		0.00
	482	527	436				0	559	564	475	2255	0
	0.76	0.83	0.95				0.00	0.84	0.84	0.82	0.16	0.00
	482	527	436				0	559	564	475	2255	0
	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00				0.00	1.00	1.00	0.53	0.53	0.00
Uniform Delay (d), s/veh 2	24.8	25.4	26.6				0.0	24.1	24.1	25.8	5.4	0.0
Incr Delay (d2), s/veh	6.2	10.1	31.2				0.0	14.2	14.1	5.7	0.1	0.0
Initial Q Delay(d3), s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/l	ln6.4	8.2	10.5				0.0	9.6	9.7	7.0	1.0	0.0
Unsig. Movement Delay,												
LnGrp Delay(d), s/veh	31.0	35.5	57.8				0.0	38.2	38.1	31.5	5.5	0.0
LnGrp LOS	С	D	E					D	D	С	А	
Approach Vol, veh/h		1219						943			758	
Approach Delay, s/veh		41.8						38.2			18.9	
Approach LOS		D						D			В	
Timer - Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc),	s	52.6			24.6	28.0		25.0				
Change Period (Y+Rc), s		4.6			4.6	* 4.6		4.2				
Max Green Setting (Gmax		45.4			18.3	* 23		20.8				
Max Q Clear Time (g_c+l	1.	5.2			17.4	20.3		21.5				
Green Ext Time (p_c), s		1.1			0.0	1.0		0.0				
Intersection Summary												
HCM 7th Control Delay, s	/veh		34.7									
HCM 7th LOS			С									
Notes												

Notes

User approved volume balancing among the lanes for turning movement.

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Year 2045 PM Bay-Hill Analysis 3:33 pm 06/20/2024 Stop & Road Diet Kimley-Horn

4.2

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		۲	≜ †₽		٦	1	1
Traffic Vol, veh/h	49	2	38	4	1	59	4	788	9	79	672	112
Future Vol, veh/h	49	2	38	4	1	59	4	788	9	79	672	112
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	50	-	-	50	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	52	2	40	4	1	62	4	829	9	83	707	118

Major/Minor	Minor2		l	Minor1			Major1		I	Major2			
Conflicting Flow All	1297	1721	707	1717	1834	419	825	0	0	839	0	0	
Stage 1	874	874	-	843	843	-	-	-	-	-	-	-	
Stage 2	424	847	-	875	992	-	-	-	-	-	-	-	
Critical Hdwy	7.33	6.53	6.23	7.33	6.53	6.93	4.13	-	-	4.13	-	-	
Critical Hdwy Stg 1	6.13	5.53	-	6.53	5.53	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.53	5.53	-	6.13	5.53	-	-	-	-	-	-	-	
Follow-up Hdwy	3.519	4.019	3.319	3.519	4.019	3.319	2.219	-	-	2.219	-	-	
Pot Cap-1 Maneuver	129	89	434	64	76	583	803	-	-	794	-	-	
Stage 1	344	366	-	326	379	-	-	-	-	-	-	-	
Stage 2	579	377	-	343	323	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	101	79	434	50	67	583	803	-	-	794	-	-	
Mov Cap-2 Maneuver	101	79	-	50	67	-	-	-	-	-	-	-	
Stage 1	308	328	-	324	377	-	-	-	-	-	-	-	
Stage 2	514	375	-	277	289	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Dela	ay, s/v63.37	18.8	0.05	0.92	
HCM LOS	F	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR E	BLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	803	-	-	149	328	794	-	-
HCM Lane V/C Ratio	0.005	-	-	0.63	0.206	0.105	-	-
HCM Control Delay (s/veh)	9.5	-	-	63.4	18.8	10.1	-	-
HCM Lane LOS	А	-	-	F	С	В	-	-
HCM 95th %tile Q(veh)	0	-	-	3.4	0.8	0.3	-	-

01/06/2025

Intersection

Intersection Delay, s/veh Intersection LOS

109.6

F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		स	1		4		٦.	4		<u>۲</u>	ef 👘	
Traffic Vol, veh/h	92	45	84	22	33	192	46	517	34	146	519	49
Future Vol, veh/h	92	45	84	22	33	192	46	517	34	146	519	49
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	6	0	0	0	3	1	2	1	9	0	3	3
Mvmt Flow	97	47	88	23	35	202	48	544	36	154	546	52
Number of Lanes	0	1	1	0	1	0	1	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			2			2		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			2			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	2			2			1			2		
HCM Control Delay, s/veh	17.1			25.9			146.2			136.7		
HCM LOS	С			D			F			F		

Lane	NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2
Vol Left, %	100%	0%	67%	0%	9%	100%	0%
Vol Thru, %	0%	94%	33%	0%	13%	0%	91%
Vol Right, %	0%	6%	0%	100%	78%	0%	9%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	46	551	137	84	247	146	568
LT Vol	46	0	92	0	22	146	0
Through Vol	0	517	45	0	33	0	519
RT Vol	0	34	0	84	192	0	49
Lane Flow Rate	48	580	144	88	260	154	598
Geometry Grp	5	5	5	5	4b	5	5
Degree of Util (X)	0.112	1.254	0.374	0.201	0.607	0.351	1.281
Departure Headway (Hd)	8.874	8.292	10.307	9.11	9.418	8.783	8.253
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Сар	406	441	352	396	387	412	442
Service Time	6.574	5.992	8.007	6.81	7.418	6.483	5.953
HCM Lane V/C Ratio	0.118	1.315	0.409	0.222	0.672	0.374	1.353
HCM Control Delay, s/veh	12.7	157.3	19	14.1	25.9	16.2	167.7
HCM Lane LOS	В	F	С	В	D	С	F
HCM 95th-tile Q	0.4	22.8	1.7	0.7	3.8	1.6	24

01/06/2025

Intersection

Intersection Delay, s/veh21.3 Intersection LOS C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		्	1		4		ľ	4			्	1	
Traffic Vol, veh/h	190	63	8	17	65	73	29	200	23	56	337	142	
Future Vol, veh/h	190	63	8	17	65	73	29	200	23	56	337	142	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	200	66	8	18	68	77	31	211	24	59	355	149	
Number of Lanes	0	1	1	0	1	0	1	1	0	0	1	1	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			2			2			2			
Conflicting Approach Lo	eft SB			NB			EB			WB			
Conflicting Lanes Left	2			2			2			1			
Conflicting Approach R	ighNB			SB			WB			EB			
Conflicting Lanes Right	t 2			2			1			2			
HCM Control Delay, s/v	ve20.7			14.7			15.8			26			
HCM LOS	С			В			С			D			

Lane	NBLn1	NBLn2	EBLn1	EBLn2V	VBLn1	SBLn1	SBLn2
Vol Left, %	100%	0%	75%	0%	11%	14%	0%
Vol Thru, %	0%	90%	25%	0%	42%	86%	0%
Vol Right, %	0%	10%	0%	100%	47%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	29	223	253	8	155	393	142
LT Vol	29	0	190	0	17	56	0
Through Vol	0	200	63	0	65	337	0
RT Vol	0	23	0	8	73	0	142
Lane Flow Rate	31	235	266	8	163	414	149
Geometry Grp	5	5	5	5	4b	5	5
Degree of Util (X)	0.067	0.473	0.581	0.016	0.346	0.794	0.254
Departure Headway (Hd)	7.847	7.258	7.848	6.747	7.634	6.911	6.122
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Сар	455	495	458	529	470	521	584
Service Time	5.611	5.022	5.606	4.504	5.705	4.665	3.876
HCM Lane V/C Ratio	0.068	0.475	0.581	0.015	0.347	0.795	0.255
HCM Control Delay, s/veh	11.2	16.4	21	9.6	14.7	31.4	11
HCM Lane LOS	В	С	С	Α	В	D	В
HCM 95th-tile Q	0.2	2.5	3.6	0	1.5	7.4	1

Kimley-Horn

Year 2045 PM Bay-Hill Analysis 3:33 pm 06/20/2024 Stop & Road Diet	
Kimley-Horn	

298

Synchro 12 Report

Intersection		
Intersection Delay, s/v	eh24.4	
Intersection LOS	С	

WBL	WBR	NBT	NBR	SBL	SBT
Y		ef 👘			ર્ન
35	104	305	85	304	296
35	104	305	85	304	296
0.95	0.95	0.95	0.95	0.95	0.95
2	2	2	2	2	2
37	109	321	89	320	312
1	0	1	0	0	1
WB		NB		SB	
0		1		1	
eft NB				WB	
1		0		1	
ligh S B		WB			
t 1		1		0	
veh 11		14.9		33.7	
В		В		D	
t	35 35 0.95 2 37 1 WB 0 eft NB 1 ighSB t 1 yeh 11	35 104 35 104 0.95 0.95 2 2 37 109 1 0 WB 0 eft NB 1 1 1 ighSB 1 t 1 yeh 11 1	Y Image: height symbols 35 104 305 35 104 305 0.95 0.95 0.95 2 2 2 37 109 321 1 0 1 WB NB SB 0 1 eft NB 1 0 ighSB WB WB t 1 1 t 1 1	Y 104 305 85 35 104 305 85 35 104 305 85 0.95 0.95 0.95 0.95 2 2 2 2 37 109 321 89 1 0 1 0 WB NB SB SB 0 1 0 1 eft NB 1 0 1 ighSB WB t 1 t 1 1 1 veh 11 14.9 14.9	Y Image: height symbols Image: height s

Lane	NBLn1\	NBLn1	SBLn1
Vol Left, %	0%		
Vol Thru, %	78%	0%	49%
Vol Right, %	22%	75%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	390	139	600
LT Vol	0	35	304
Through Vol	305	0	296
RT Vol	85	104	0
Lane Flow Rate	411	146	632
Geometry Grp	1	1	1
Degree of Util (X)	0.579	0.243	0.883
Departure Headway (Hd)	5.077	5.987	5.033
Convergence, Y/N	Yes	Yes	Yes
Сар	710	598	720
Service Time	3.108	4.033	3.058
HCM Lane V/C Ratio	0.579	0.244	0.878
HCM Control Delay, s/veh	14.9	11	33.7
HCM Lane LOS	В	В	D
HCM 95th-tile Q	3.7	0.9	11

Intersection Intersection Delay, s/veh60.8 Intersection LOS F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			्र	1		्	1	
Traffic Vol, veh/h	5	3	3	203	3	237	1	148	619	247	83	1	
Future Vol, veh/h	5	3	3	203	3	237	1	148	619	247	83	1	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	5	3	3	214	3	249	1	156	652	260	87	1	
Number of Lanes	0	1	0	0	1	0	0	1	1	0	1	1	
Approach	EB			WB			NB			SB			
Opposing Approach	WB			EB			SB			NB			
Opposing Lanes	1			1			2			2			
Conflicting Approach Le	eft SB			NB			EB			WB			
Conflicting Lanes Left	2			2			1			1			
Conflicting Approach Ri	ightNB			SB			WB			EB			
Conflicting Lanes Right	2			2			1			1			
HCM Control Delay, s/v	/eħ2.2			36.2			88.8			30.6			
HCM LOS	В			Е			F			D			

Lane	NBLn1	NBLn2	EBLn1\	VBLn1	SBLn1	SBLn2
Vol Left, %	1%	0%	45%	46%	75%	0%
Vol Thru, %	99%	0%	27%	1%	25%	0%
Vol Right, %	0%	100%	27%	53%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	149	619	11	443	330	1
LT Vol	1	0	5	203	247	0
Through Vol	148	0	3	3	83	0
RT Vol	0	619	3	237	0	1
Lane Flow Rate	157	652	12	466	347	1
Geometry Grp	5	5	2	2	5	5
Degree of Util (X)	0.307	1.143	0.027	0.842	0.744	0.002
Departure Headway (Hd)	7.038	6.315	8.95	6.79	8.059	6.947
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	507	573	402	536	452	518
Service Time	4.832	4.108	6.95	4.79	5.759	4.647
HCM Lane V/C Ratio	0.31	1.138	0.03	0.869	0.768	0.002
HCM Control Delay, s/veh	13	107.1	12.2	36.2	30.7	9.7
HCM Lane LOS	В	F	В	E	D	А
HCM 95th-tile Q	1.3	21.3	0.1	8.7	6.1	0

HCM 7th Signalized Intersection Summary 1: Bay Ave & Hwy 1 NB Off-Ramp

01/06/2025

	≯	-	\mathbf{F}	4	←	•	•	Ť	۲	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				۲.	et		ľ	<u></u>			↑ 1≱	
Traffic Volume (veh/h)	0	0	0	59	12	107	369	516	0	0	431	478
Future Volume (veh/h)	0	0	0	59	12	107	369	516	0	0	431	478
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Lane Width Adj.				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		0.96
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1826	1900	1885	1885	1856	0	0	1870	1885
Adj Flow Rate, veh/h				65	13	118	405	567	0	0	474	525
Peak Hour Factor				0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %				5	0	1	1	3	0	0	2	1
Cap, veh/h				172	16	145	426	2867	0	0	957	817
Arrive On Green				0.10	0.10	0.10	0.47	1.00	0.00	0.00	0.54	0.54
Sat Flow, veh/h				1739	162	1473	1795	3618	0	0	1870	1516
Grp Volume(v), veh/h				65	0	131	405	567	0	0	474	525
Grp Sat Flow(s), veh/h/ln				1739	0	1635	1795	1763	0	0	1777	1516
Q Serve(g_s), s				3.5	0.0	7.9	21.6	0.0	0.0	0.0	16.8	24.4
Cycle Q Clear(g_c), s				3.5	0.0	7.9	21.6	0.0	0.0	0.0	16.8	24.4
Prop In Lane				1.00	0.0	0.90	1.00	0.0	0.00	0.00	10.0	1.00
Lane Grp Cap(c), veh/h				172	0	161	426	2867	0	0	957	817
V/C Ratio(X)				0.38	0.00	0.81	0.95	0.20	0.00	0.00	0.50	0.64
Avail Cap(c_a), veh/h				195	0	183	634	2867	0	0	957	817
HCM Platoon Ratio				1.00	1.00	1.00	2.00	2.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	1.00	0.84	0.84	0.00	0.00	1.00	1.00
Uniform Delay (d), s/veh				42.2	0.0	44.2	25.7	0.0	0.0	0.0	14.5	16.3
Incr Delay (d2), s/veh				0.5	0.0	18.8	13.9	0.0	0.0	0.0	1.8	3.9
Initial Q Delay(d3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				1.5	0.0	4.0	8.5	0.0	0.0	0.0	7.1	9.0
Unsig. Movement Delay, s/veh				1.0	0.0	4.0	0.0	0.1	0.0	0.0	7.1	0.0
LnGrp Delay(d), s/veh				42.7	0.0	63.0	39.6	0.1	0.0	0.0	16.3	20.1
LnGrp LOS				D	0.0	60.0 E	00.0 D	A	0.0	0.0	B	20.1
Approach Vol, veh/h					196	<u> </u>	0	972			999	
Approach Delay, s/veh					56.2			16.6			18.3	
Approach LOS					50.2 E			B			10.5 B	
					L			U			U	
Timer - Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), s	27.4	58.5		14.1		85.9						
Change Period (Y+Rc), s	3.7	4.6		4.2		4.6						
Max Green Setting (Gmax), s	35.3	41.0		11.2		80.0						
Max Q Clear Time (g_c+l1), s	23.6	26.4		9.9		2.0						
Green Ext Time (p_c), s	0.2	2.8		0.1		1.7						
Intersection Summary												
HCM 7th Control Delay, s/veh			21.0									
HCM 7th LOS			С									

Existing AM Bay-Hill Analysis 2:13 pm 06/24/2024 Signal Kimley-Horn

01/06/2025

t ∢ ۶ ţ WBT WBR EBL EBT EBR WBL NBL NBT NBR SBL SBT SBR Movement Lane Configurations ٦ 4 7 ŧÞ ٦ ** 313 0 296 0 176 Traffic Volume (veh/h) 0 0 572 314 0 0 111 296 Future Volume (veh/h) 313 0 0 0 0 0 572 111 176 314 0 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 Lane Width Adj. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Ped-Bike Adj(A pbT) 1.00 0.97 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No Adj Sat Flow, veh/h/ln 1826 1900 1856 0 1885 1856 1870 1856 0 Adj Flow Rate, veh/h 440 0 215 0 622 121 191 341 0 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 3 0 3 2 3 Percent Heavy Veh, % 5 0 1 0 252 2651 Cap, veh/h 557 0 0 1113 216 591 0 Arrive On Green 0.16 0.00 0.16 0.00 0.37 0.37 0.11 0.25 0.00 Sat Flow, veh/h 3478 0 1572 0 3070 578 1781 3618 0 Grp Volume(v), veh/h 215 0 374 369 191 341 0 440 0 Grp Sat Flow(s), veh/h/ln1739 1572 1791 1762 1781 1763 0 0 0 Q Serve(q s), s 13.3 16.5 16.6 9.9 0.0 12.2 0.0 0.0 7.5 Cycle Q Clear(g_c), s 12.2 0.0 13.3 0.0 16.5 16.6 9.9 7.5 0.0 1.00 1.00 0.00 1.00 0.00 Prop In Lane 0.33 Lane Grp Cap(c), veh/h 557 0 252 0 670 659 591 2651 0 0.00 0.85 0.56 0.56 0.32 0.13 0.00 V/C Ratio(X) 0.79 0.00 Avail Cap(c_a), veh/h 437 659 591 2651 967 0 0 670 0 1.00 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 0.33 0.33 Upstream Filter(I) 1.00 0.00 1.00 0.00 1.00 1.00 0.82 0.82 0.00 Uniform Delay (d), s/veh 40.4 0.0 40.9 0.0 24.8 24.8 34.2 12.2 0.0 Incr Delay (d2), s/veh 3.2 0.0 3.4 0.0 1.0 0.0 3.3 0.1 0.1 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/lr5.2 0.0 5.3 0.0 7.6 7.5 4.7 3.1 0.0 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 0.0 44.0 0.0 28.1 28.2 34.3 12.2 0.0 41.3 LnGrp LOS D D С С С В Approach Vol, veh/h 655 743 532 Approach Delay, s/veh 28.2 20.1 42.2 Approach LOS D С С 2 8 Timer - Assigned Phs 5 6 Phs Duration (G+Y+Rc), s 79.8 37.8 42.0 20.2 4.6 4.2 Change Period (Y+Rc), s 4.6 * 4.6 Max Green Setting (Gmax), s 63.4 22.3 * 37 27.8 Max Q Clear Time (g_c+I1), s 11.9 18.6 15.3 9.5 Green Ext Time (p_c), s 0.1 0.7 1.0 1.8 Intersection Summary HCM 7th Control Delay, s/veh 30.7 HCM 7th LOS С

Notes

User approved volume balancing among the lanes for turning movement.

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Existing AM Bay-Hill Analysis 2:13 pm 06/24/2024 Signal Kimley-Horn

1.7

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		ર્ન	1		4		1	_ ≜ î₽		1	1	1	
Traffic Vol, veh/h	53	0	21	0	1	14	1	616	9	39	462	109	
Future Vol, veh/h	53	0	21	0	1	14	1	616	9	39	462	109	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	0	-	-	-	50	-	-	50	-	0	
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	58	0	23	0	1	15	1	677	10	43	508	120	

Major/Minor	Minor2			Minor1			Major1		N	lajor2			
Conflicting Flow All	935	1282	508	1277	1397	343	627	0	0	687	0	0	
Stage 1	593	593	-	684	684	-	-	-	-	-	-	-	
Stage 2	341	689	-	593	713	-	-	-	-	-	-	-	
Critical Hdwy	7.33	6.53	6.23	7.33	6.53	6.93	4.13	-	-	4.13	-	-	
Critical Hdwy Stg 1	6.13	5.53	-	6.53	5.53	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.53	5.53	-	6.13	5.53	-	-	-	-	-	-	-	
Follow-up Hdwy	3.519	4.019	3.319	3.519	4.019	3.319	2.219	-	- 1	2.219	-	-	
Pot Cap-1 Maneuver	233	165	564	133	140	653	952	-	-	905	-	-	
Stage 1	491	492	-	406	448	-	-	-	-	-	-	-	
Stage 2	648	446	-	491	434	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	215	157	564	121	133	653	952	-	-	905	-	-	
Mov Cap-2 Maneuver	215	157	-	121	133	-	-	-	-	-	-	-	
Stage 1	468	469	-	405	447	-	-	-	-	-	-	-	
Stage 2	630	445	-	448	414	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Dela	y, s/v 23.3	12.17	0.01	0.59	
HCM LOS	С	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	EBLn2\	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	952	-	-	215	564	519	905	-	-
HCM Lane V/C Ratio	0.001	-	-	0.271	0.041	0.032	0.047	-	-
HCM Control Delay (s/veh)	8.8	-	-	27.9	11.7	12.2	9.2	-	-
HCM Lane LOS	А	-	-	D	В	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	1.1	0.1	0.1	0.1	-	-

HCM 7th Signalized Intersection Summary 4: Bay Ave & Retail Dwy/Hill St

01/06/2025

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBR SBR Lane Configurations 4 1 9 9 28 142 57 441 10 75 377 31 Folure Volume (velvh) 43 19 39 9 28 142 57 441 10 75 377 31 Initial Q (Db), veh 0		≯	+	*	•	+	*	N	1	1	1	ţ	~
Traffic Volume (veh/n) 43 19 39 9 28 142 57 441 10 75 377 31 Future Volume (veh/n) 43 19 39 9 28 142 57 441 10 75 377 31 Future Volume (veh/n) 43 19 39 9 28 142 57 441 10 75 377 31 Initial Q (Db) (veh) 0	Movement	EBL	EBT		WBL	WBT	WBR		NBT	NBR		SBT	SBR
Future Volume (veh/h) 43 19 39 9 28 142 57 441 10 75 377 31 Initial Q (2b), veh 0													
Initial (2b), ven 0													
Lane Width Adj. 1.00													
Pack-Bike Adj(Å pbT) 0.99 0.96 0.99 1.00 0.96 1.00 0.97 Parking Bus, Adj 1.00 <td></td>													
Parking Bus, Adj 1.00			1.00			1.00			1.00			1.00	
Work Zone On Åppraach No No No No No Adj Sat Flow, veh/hlin 1811 1900 1900 1856 1885 1870 1885 1767 1900 1856 Adj Flow Rate, veh/h 48 21 44 10 31 160 64 496 11 84 424 35 Peak Hour Factor 0.89 0.80 0.08 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.97</td></t<>													0.97
Adj Sat Flow, veh/hiln 1811 1900 1900 1900 1856 1885 1870 1885 1767 1900 1856 1856 Adj Kow Rate, veh/h 48 21 44 10 31 160 64 446 11 84 424 35 Peak Hour Factor 0.89 0.80 0.83 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80	Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Flow Rate, veh/h 48 21 44 10 31 160 64 496 11 84 424 35 Peak Hour Factor 0.89 0.37 33 33 33 33 Star Star Star Star Star Star Star Star	Work Zone On Approach		No			No						No	
Peak Hour Factor 0.89 0.83 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.85 0.35 0.35 0.35	Adj Sat Flow, veh/h/ln	1811	1900	1900	1900	1856	1885	1870	1885	1767	1900	1856	1856
Percent Heavy Veh, % 6 0 0 3 1 2 1 9 0 3 3 Cap, veh/h 359 130 314 105 59 259 169 679 15 139 593 49 Arrive On Green 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.10 0.37 0.37 0.38 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.36 0.35 0.35 0.35 0.37 0.48 0 459 0.33 0.3 0.44 0.20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1781 0.85 41 1810 0 84 0 1825 0 0.0 1682 0 0.17 0.0 84 0 130 0.90 1.7 0.0 84 0 0.05 0.80 1.00 0.00 0.01 0.00 0.00 0.02 1.00 0.00 0.01 0.01 0.01 0.01	Adj Flow Rate, veh/h	48	21	44	10	31	160	64	496	11	84	424	35
Cap, veh/h 359 130 314 105 59 259 169 679 15 139 593 49 Arrive On Green 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.37 0.37 0.08 0.35 0.35 Sat Flow, veh/h 987 641 1542 35 291 1271 1781 1835 411 1810 1686 139 Grp Volume(v), veh/h 69 0 44 201 0 0 64 0 507 84 0 459 Grp Sat Flow(s), veh/h 1628 0 1542 1596 0 0 177 0.0 84 Cycle Q Clear(g_o, s 1.2 0.0 0.9 4.4 0.0 0.00 1.3 0.0 9.0 1.7 0.0 8.4 Prop In Lane 0.70 1.00 0.00 0.48 0.00 0.038 0.00 0.73 0.60 0.00 0.	Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Arrive On Green 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.37 0.37 0.08 0.35 0.35 Sat Flow, veh/h 987 641 1542 35 291 1271 1781 1835 41 1810 1686 139 Grp Volume(v), veh/h 69 0 44 201 0 0 64 0 507 84 0 459 Grp Sat Flow(s), veh/h/ln 1628 0 1542 1596 0 0 137 0.0 84 0 1822 Q Clear(g0), s 1.2 0.0 0.9 4.4 0.0 0.0 1.3 0.0 9.0 1.7 0.0 84 Prop In Lane 0.70 1.00 0.05 0.80 1.00 0.02 1.00 0.02 1.00 0.02 1.00 0.02 1.00 0.02 1.00 0.00 0.0 0.0 0.0 0.0 0.0 1.1	Percent Heavy Veh, %	6	0	0	0	3	1	2	1	9	0	3	3
Sat Flow, veh/h 987 641 1542 35 291 1271 1781 1835 41 1810 1686 139 Grp Volume(v), veh/h 69 0 44 201 0 0 64 0 507 84 0 459 Grp Sat Flow(s), veh/h/ln 1628 0 1542 1596 0 0 1781 0 1876 1810 0 1825 Q Serve(g, s), s 0.0 0.0 0.0 0.0 1.3 0.0 9.0 1.7 0.0 8.4 Cycle Q Clear(g_c), s 1.2 0.0 0.9 4.4 0.0 0.0 1.3 0.0 9.0 1.7 0.0 8.4 Cycle Q Clear(g_c), veh/h 489 0 314 423 0 0 169 0 695 139 0 642 V/C Ratio(X) 0.14 0.00 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <td>Cap, veh/h</td> <td>359</td> <td>130</td> <td>314</td> <td>105</td> <td>59</td> <td>259</td> <td>169</td> <td>679</td> <td>15</td> <td>139</td> <td>593</td> <td>49</td>	Cap, veh/h	359	130	314	105	59	259	169	679	15	139	593	49
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Arrive On Green	0.20	0.20	0.20	0.20	0.20	0.20	0.10	0.37	0.37	0.08	0.35	0.35
Grp Volume(v), veh/h 69 0 44 201 0 0 64 0 507 84 0 4459 Grp Sat Flow(s), veh/h/ln 1628 0 1542 1596 0 0 1731 0 1876 1810 0 1825 Q Serve(g.s), s 0.0 0.0 0.0 0.0 0.0 1.3 0.0 9.0 1.7 0.0 8.4 Cycle Q Clear(g.c), s 1.2 0.0 0.9 4.4 4.0 0.0 0.13 0.0 9.0 1.7 0.0 8.4 Prop In Lane 0.70 1.00 0.05 0.80 1.00 0.02 1.00 0.08 Lane Grp Cap(C), veh/h 489 0 314 423 0 0 169 0 695 139 0 642 V/C Ratio(X) 0.14 0.00 0.14 0.48 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 </td <td>Sat Flow, veh/h</td> <td>987</td> <td>641</td> <td>1542</td> <td>35</td> <td>291</td> <td>1271</td> <td>1781</td> <td>1835</td> <td>41</td> <td>1810</td> <td>1686</td> <td>139</td>	Sat Flow, veh/h	987	641	1542	35	291	1271	1781	1835	41	1810	1686	139
Grp Sat Flow(s), veh/h/ln 1628 0 1542 1596 0 0 1781 0 1876 1810 0 1825 Q Serve(g, s), s 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 9.0 1.7 0.0 8.4 Cycle Q Clear(g, c), s 1.2 0.0 0.9 4.4 0.0 0.0 1.3 0.0 9.0 1.7 0.0 8.4 Prop In Lane 0.70 1.00 0.05 0.80 1.00 0.02 1.00 0.08 Lane Grp Cap(c), veh/h 489 0 314 423 0 0 169 0 695 139 0 642 V/C Ratio(X) 0.14 0.48 0.00 0.00 0.38 0.00 0.73 0.60 0.00 1.01 Upstream Filter(1) 1.00 1.0		69	0	44	201			64	0	507	84	0	459
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
Prop In Lane 0.70 1.00 0.05 0.80 1.00 0.02 1.00 0.08 Lane Grp Cap(c), veh/h 489 0 314 423 0 0 169 0 695 139 0 642 V/C Ratio(X) 0.14 0.00 0.14 0.48 0.00 0.03 0.00 0.73 0.60 0.00 0.71 Avail Cap(c_a), veh/h 848 0 722 841 0 0 254 0 1111 258 0 1081 HCM Platoon Ratio 1.00													
Lane Grp Cap(c), veh/h 489 0 314 423 0 0 169 0 695 139 0 642 V/C Ratio(X) 0.14 0.00 0.14 0.48 0.00 0.00 0.38 0.00 0.73 0.60 0.00 0.71 Avail Cap(c_a), veh/h 848 0 722 841 0 0 254 0 1111 258 0 1081 HCM Platoon Ratio 1.00			0.0			0.0			0.0			0.0	
V/C Ratic(X) 0.14 0.00 0.14 0.48 0.00 0.00 0.38 0.00 0.73 0.60 0.00 0.71 Avail Cap(c_a), veh/h 848 0 722 841 0 0 254 0 1111 258 0 1081 HCM Platoon Ratio 1.00 <td< td=""><td>•</td><td></td><td>0</td><td></td><td></td><td>0</td><td></td><td></td><td>0</td><td></td><td></td><td>0</td><td></td></td<>	•		0			0			0			0	
Avail Cap(c_a), veh/h 848 0 722 841 0 0 254 0 1111 258 0 1081 HCM Platoon Ratio 1.00 </td <td></td>													
HCM Platon Ratio 1.00 1.0	()												
Upstream Filter(I) 1.00 0.00 1.00 1.00 0.00 1													
Uniform Delay (d), s/veh 12.7 0.0 12.6 14.0 0.0 0.0 16.4 0.0 10.5 17.3 0.0 10.8 Incr Delay (d2), s/veh 0.1 0.0 0.2 0.8 0.0 0.0 1.4 0.0 1.5 4.2 0.0 1.5 Initial Q Delay(d3), s/veh 0.0 12.0 21.4 0.0 12.3 InGrp Delay (d), s/veh 12.8 14.8 0.0 12.0 2													
Incr Delay (d2), s/veh 0.1 0.0 0.2 0.8 0.0 0.0 1.4 0.0 1.5 4.2 0.0 1.5 Initial Q Delay(d3), s/veh 0.0 1.3 1.4 0.0 12.3 12.4 12.0 12.4 13.7 7 7													
Initial Q Delay(d3), s/veh 0.0 <													
%ile BackOfQ(50%),veh/ln 0.4 0.0 0.3 1.4 0.0 0.0 0.5 0.0 3.1 0.8 0.0 2.9 Unsig. Movement Delay, s/veh 12.9 0.0 12.8 14.8 0.0 0.0 17.8 0.0 12.0 21.4 0.0 12.3 InGrp Delay(d), s/veh 12.9 0.0 12.8 14.8 0.0 0.0 17.8 0.0 12.0 21.4 0.0 12.3 InGrp LOS B B B C B Approach Vol, veh/h 113 201 571 543 Approach Delay, s/veh 12.8 14.8 12.6 13.7 Approach LOS B B B B B B Timer - Assigned Phs 1 2 4 5 6 8 B B B B B B C Image: State S													
Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 12.9 0.0 12.8 14.8 0.0 0.0 17.8 0.0 12.0 21.4 0.0 12.3 LnGrp LOS B B B B B C B Approach Vol, veh/h 113 201 571 543 Approach Delay, s/veh 12.8 14.8 12.6 13.7 Approach LOS B B B B B B Timer - Assigned Phs 1 2 4 5 6 8 B Timer - Assigned Phs 1 2 4 5 6 8 B C B B C I3.7 I3.7 Approach LOS B 1 2.4 8.2 18.1 12.4 12.4 Change Period (Y+Rc), s 7.5 18.8 12.4													
LnGrp Delay(d), s/veh 12.9 0.0 12.8 14.8 0.0 0.0 17.8 0.0 12.0 21.4 0.0 12.3 LnGrp LOS B B B B B C B Approach Vol, veh/h 113 201 571 543 Approach Delay, s/veh 12.8 14.8 12.6 13.7 Approach LOS B B B B B B Timer - Assigned Phs 1 2 4 5 6 8 B Timer - Assigned Phs 1 2 4 5 6 8 B B B B Timer - Assigned Phs 1 2 4 5 6 8 B <			0.0	0.0	1.7	0.0	0.0	0.0	0.0	0.1	0.0	0.0	2.5
LnGrp LOS B B B B C B Approach Vol, veh/h 113 201 571 543 Approach Delay, s/veh 12.8 14.8 12.6 13.7 Approach LOS B B B B B Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 7.5 18.8 12.4 8.2 18.1 12.4 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 5.5 22.9 18.1 5.5 22.9 18.1 Max Q Clear Time (g_c+I1), s 3.7 11.0 3.2 3.3 10.4 6.4 Green Ext Time (p_c), s 0.0 2.7 0.4 0.0 2.5 0.9 Intersection Summary HCM 7th Control Delay, s/veh 13.4 13.4 13.4			0.0	12.8	1/1 8	0.0	0.0	17.8	0.0	12.0	21 /	0.0	12.3
Approach Vol, veh/h 113 201 571 543 Approach Delay, s/veh 12.8 14.8 12.6 13.7 Approach LOS B B B B B Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 7.5 18.8 12.4 8.2 18.1 12.4 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 5.5 22.9 18.1 5.5 22.9 18.1 Max Q Clear Time (g_c+I1), s 3.7 11.0 3.2 3.3 10.4 6.4 Green Ext Time (p_c), s 0.0 2.7 0.4 0.0 2.5 0.9 Intersection Summary HCM 7th Control Delay, s/veh 13.4 13.4 13.4			0.0			0.0	0.0		0.0			0.0	
Approach Delay, s/veh 12.8 14.8 12.6 13.7 Approach LOS B B B B B Timer - Assigned Phs 1 2 4 5 6 8 B Timer - Assigned Phs 1 2 4 5 6 8 B S	•		112			201			571		0	5/3	D
Approach LOS B B B B B Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 7.5 18.8 12.4 8.2 18.1 12.4 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 5.5 22.9 18.1 5.5 22.9 Max Q Clear Time (g_c+I1), s 3.7 11.0 3.2 3.3 10.4 6.4 Green Ext Time (p_c), s 0.0 2.7 0.4 0.0 2.5 0.9 Intersection Summary HCM 7th Control Delay, s/veh 13.4 13.4 13.4													
Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 7.5 18.8 12.4 8.2 18.1 12.4 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 5.5 22.9 18.1 5.5 22.9 Max Q Clear Time (g_c+11), s 3.7 11.0 3.2 3.3 10.4 6.4 Green Ext Time (p_c), s 0.0 2.7 0.4 0.0 2.5 0.9 Intersection Summary HCM 7th Control Delay, s/veh 13.4													
Phs Duration (G+Y+Rc), s 7.5 18.8 12.4 8.2 18.1 12.4 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 5.5 22.9 18.1 5.5 22.9 18.1 Max Q Clear Time (g_c+I1), s 3.7 11.0 3.2 3.3 10.4 6.4 Green Ext Time (p_c), s 0.0 2.7 0.4 0.0 2.5 0.9 Intersection Summary HCM 7th Control Delay, s/veh 13.4 13.4 13.4	Approach LOS		D			D			D			D	
Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 5.5 22.9 18.1 5.5 22.9 18.1 Max Q Clear Time (g_c+I1), s 3.7 11.0 3.2 3.3 10.4 6.4 Green Ext Time (p_c), s 0.0 2.7 0.4 0.0 2.5 0.9 Intersection Summary HCM 7th Control Delay, s/veh 13.4 13.4													
Max Green Setting (Gmax), s 5.5 22.9 18.1 5.5 22.9 18.1 Max Q Clear Time (g_c+I1), s 3.7 11.0 3.2 3.3 10.4 6.4 Green Ext Time (p_c), s 0.0 2.7 0.4 0.0 2.5 0.9 Intersection Summary HCM 7th Control Delay, s/veh 13.4 13.4 13.4													
Max Q Clear Time (g_c+l1), s 3.7 11.0 3.2 3.3 10.4 6.4 Green Ext Time (p_c), s 0.0 2.7 0.4 0.0 2.5 0.9 Intersection Summary HCM 7th Control Delay, s/veh 13.4 13.4													
Green Ext Time (p_c), s 0.0 2.7 0.4 0.0 2.5 0.9 Intersection Summary													
Intersection Summary HCM 7th Control Delay, s/veh 13.4		3.7			3.2								
HCM 7th Control Delay, s/veh 13.4	Green Ext Time (p_c), s	0.0	2.7		0.4	0.0	2.5		0.9				
	•												
HCM 7th LOS B	HCM 7th Control Delay, s/veh			13.4									
	HCM 7th LOS			В									

Existing AM Bay-Hill Analysis 2:13 pm 06/24/2024 Signal Kimley-Horn

Item 7 B.

01/06/2025

	۶	-	\mathbf{r}	4	+	€	•	t	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1		4		٦	f)			र्च	1
Traffic Volume (veh/h)	70	67	6	83	94	42	27	312	55	74	183	128
Future Volume (veh/h)	70	67	6	83	94	42	27	312	55	74	183	128
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	0.99		0.98	0.99		0.98	0.99		0.99	0.99		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	84	81	7	100	113	51	33	376	66	89	220	154
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	366	288	436	298	231	85	449	623	109	252	468	630
Arrive On Green	0.28	0.28	0.28	0.28	0.28	0.28	0.40	0.40	0.40	0.40	0.40	0.40
Sat Flow, veh/h	626	1030	1557	440	824	303	1002	1545	271	220	1160	1561
Grp Volume(v), veh/h	165	0	7	264	024	0	33	0	442	309	0	154
Grp Sat Flow(s), veh/h/li		0	1557	1566	0	0	1002	0	1817	1380	0	1561
1 (<i>1</i>)	0.0	0.0	0.1	2.1	0.0	0.0	0.8	0.0	5.5	0.5	0.0	1.9
Q Serve(g_s), s	2.0	0.0	0.1	4.1	0.0	0.0	0.8 6.7	0.0	5.5	0.5 5.9	0.0	1.9
Cycle Q Clear(g_c), s	0.51	0.0	1.00	0.38	0.0	0.0	1.00	0.0	0.15	0.29	0.0	1.00
Prop In Lane		٥	436	613	٥		449	0	733	720	٥	630
Lane Grp Cap(c), veh/h		0	430		0	0		-	0.60	0.43	0	0.24
V/C Ratio(X)	0.25	0.00		0.43 1160	0.00	0.00	0.07	0.00		0.43	0.00	0.24 989
Avail Cap(c_a), veh/h	1172	0	986		0	0	680	0	1151		0	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/vel		0.0	7.4	8.8	0.0	0.0	9.5	0.0	6.7	6.1	0.0	5.6
Incr Delay (d2), s/veh	0.2	0.0	0.0	0.5	0.0	0.0	0.1	0.0	0.8	0.4	0.0	0.2
Initial Q Delay(d3), s/ve		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel		0.0	0.0	1.0	0.0	0.0	0.1	0.0	1.4	0.8	0.0	0.4
Unsig. Movement Delay			7 4	0.0	0.0	0.0	0.0	0.0	7 5	0 5	0.0	F 0
LnGrp Delay(d), s/veh	8.3	0.0	7.4	9.3	0.0	0.0	9.6	0.0	7.5	6.5	0.0	5.8
LnGrp LOS	A	470	A	A	001		A	4	А	А	400	A
Approach Vol, veh/h		172			264			475			463	
Approach Delay, s/veh		8.2			9.3			7.6			6.3	
Approach LOS		A			A			A			А	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc)		16.0		12.5		16.0		12.5				
Change Period (Y+Rc),	S	4.5		4.5		4.5		4.5				
Max Green Setting (Gm	nax), s	18.0		18.0		18.0		18.0				
Max Q Clear Time (g_c	+l1), s	8.7		4.0		7.9		6.1				
Green Ext Time (p_c), s		2.1		0.8		1.9		1.3				
Intersection Summary												
HCM 7th Control Delay	. s/veh		7.6									
HCM 7th LOS	,		A									

Existing AM Bay-Hill Analysis 2:13 pm 06/24/2024 Signal Kimley-Horn

	•	€	Ť	۲	1	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		4			र्च	
Traffic Volume (veh/h)	87	282	162	61	219	84	
Future Volume (veh/h)	87	282	162	61	219	84	
Initial Q (Qb), veh	0	0	0	0	0	0	
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	n No		No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	114	371	213	80	288	111	
Peak Hour Factor	0.76	0.76	0.76	0.76	0.76	0.76	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	129	421	- 599	225	454	154	
Arrive On Green	0.34	0.34	0.46	0.46	0.46	0.46	
Sat Flow, veh/h	382	1242	1296	487	685	333	
Grp Volume(v), veh/h	486	0	0	293	399	0	
Grp Sat Flow(s), veh/h/ln		0	0	1783	1017	0	
Q Serve(g_s), s	12.7	0.0	0.0	4.8	12.3	0.0	
Cycle Q Clear(g_c), s	12.7	0.0	0.0	4.8	17.0	0.0	
Prop In Lane	0.23	0.76	0.0	0.27	0.72	0.0	
Lane Grp Cap(c), veh/h		0.70	0	824	607	0	
V/C Ratio(X)	0.88	0.00	0.00	0.36	0.66	0.00	
Avail Cap(c_a), veh/h	647	0.00	0.00	1102	799	0.00	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
	1.00	0.00	0.00	1.00	1.00	0.00	
Upstream Filter(I)					12.5		
Uniform Delay (d), s/veh		0.0	0.0	7.8		0.0	
Incr Delay (d2), s/veh	12.1	0.0	0.0	0.3	1.2	0.0	
Initial Q Delay(d3), s/veh		0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh		0.0	0.0	1.4	3.1	0.0	
Unsig. Movement Delay,			0.0	0.4	40 7	0.0	
	26.2	0.0	0.0	8.1	13.7	0.0	
LnGrp LOS	C			A	В		
Approach Vol, veh/h	486		293			399	
Approach Delay, s/veh			8.1			13.7	
Approach LOS	С		A			В	
Timer - Assigned Phs		2				6	8
Phs Duration (G+Y+Rc),		25.4				25.4	19.8
Change Period (Y+Rc), s		4.5				4.5	4.5
Max Green Setting (Gma	ax), s	28.0				28.0	18.0
Max Q Clear Time (g_c+	-I1), s	6.8				19.0	14.7
Green Ext Time (p_c), s		1.7				1.9	0.6
Intersection Summary							
HCM 7th Control Delay,	s/veh		17.4				
HCM 7th LOS			В				

Existing AM Bay-Hill Analysis 2:13 pm 06/24/2024 Signal Kimley-Horn

ltem 7 B.

01/06/2025

	۶	-	\mathbf{r}	4	-	•	•	1	~	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्च	1		र्च	1
Traffic Volume (veh/h)	0	9	1	418	3	100	1	123	225	41	126	4
Future Volume (veh/h)	0	9	1	418	3	100	1	123	225	41	126	4
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac	h	No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	0	10	1	459	3	110	1	135	247	45	138	4
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	0	837	84	763	4	137	107	442	376	187	338	376
Arrive On Green	0.00	0.50	0.50	0.50	0.50	0.50	0.24	0.24	0.24	0.24	0.24	0.24
Sat Flow, veh/h	0	1673	167	1146	7	275	4	1865	1585	238	1426	1585
Grp Volume(v), veh/h	0	0	11	572	0	0	136	0	247	183	0	4
Grp Sat Flow(s), veh/h/lr		0	1840	1428	0	0	1868	0	1585	1664	0	1585
Q Serve(g_s), s	0.0	0.0	0.1	11.4	0.0	0.0	0.0	0.0	4.8	0.0	0.0	0.1
Cycle Q Clear(g_c), s	0.0	0.0	0.1	11.5	0.0	0.0	2.1	0.0	4.8	2.8	0.0	0.1
Prop In Lane	0.00	0.0	0.09	0.80	0.0	0.19	0.01	0.0	1.00	0.25		1.00
Lane Grp Cap(c), veh/h	0	0	921	904	0	0	549	0	376	525	0	376
V/C Ratio(X)	0.00	0.00	0.01	0.63	0.00	0.00	0.25	0.00	0.66	0.35	0.00	0.01
Avail Cap(c_a), veh/h	0.00	0.00	1690	1504	0.00	0.00	1166	0.00	901	1036	0.00	901
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh		0.0	4.3	7.2	0.0	0.0	10.8	0.0	11.8	11.1	0.0	10.0
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.7	0.0	0.0	0.2	0.0	2.0	0.4	0.0	0.0
Initial Q Delay(d3), s/vel		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh		0.0	0.0	2.0	0.0	0.0	0.7	0.0	1.5	0.9	0.0	0.0
Unsig. Movement Delay			5.0		5.5	5.0		5.0		5.0	5.0	5.0
LnGrp Delay(d), s/veh	0.0	0.0	4.3	7.9	0.0	0.0	11.0	0.0	13.8	11.5	0.0	10.0
LnGrp LOS		5.0	A	A	5.5	2.0	В	5.0	B	B		B
Approach Vol, veh/h		11			572			383			187	
Approach Delay, s/veh		4.3			7.9			12.8			11.4	
Approach LOS		A			A			В			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc)	. S	12.6		21.7		12.6		21.7				
Change Period (Y+Rc),		4.5		4.5		4.5		4.5				
Max Green Setting (Gm		19.5		31.5		19.5		31.5				
Max Q Clear Time (g_c-		6.8		2.1		4.8		13.5				
Green Ext Time (p_c), s		1.3		0.0		0.9		3.7				
Intersection Summary												
HCM 7th Control Delay,	s/veh		10.1									
HCM 7th LOS	5, 1011		B									
			U									

Existing AM Bay-Hill Analysis 2:13 pm 06/24/2024 Signal Kimley-Horn

HCM 7th Signalized Intersection Summary 1: Bay Ave & Hwy 1 NB Off-Ramp

01/06/2025

	۶	-	\mathbf{F}	∢	-	*	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				۲.	ef 🔰		٦	<u></u>			≜ ⊅	
Traffic Volume (veh/h)	0	0	0	107	1	195	290	401	0	0	642	316
Future Volume (veh/h)	0	0	0	107	1	195	290	401	0	0	642	316
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Lane Width Adj.				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		0.94
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1826	1900	1885	1885	1856	0	0	1870	1885
Adj Flow Rate, veh/h				113	1	205	305	422	0	0	676	333
Peak Hour Factor				0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %				5	0	1	1	3	0	0	2	1
Cap, veh/h				209	1	192	415	2413	0	0	792	390
Arrive On Green				0.12	0.12	0.12	0.23	0.68	0.00	0.00	0.35	0.35
Sat Flow, veh/h				1739	8	1604	1795	3618	0	0	2351	1112
Grp Volume(v), veh/h				113	0	206	305	422	0	0	532	477
Grp Sat Flow(s), veh/h/ln				1739	0	1611	1795	1763	0	0	1777	1592
Q Serve(g_s), s				2.8	0.0	5.4	7.1	1.9	0.0	0.0	12.5	12.5
Cycle Q Clear(g_c), s				2.8	0.0	5.4	7.1	1.9	0.0	0.0	12.5	12.5
Prop In Lane				1.00	0.0	1.00	1.00	1.9	0.00	0.00	12.5	0.70
Lane Grp Cap(c), veh/h				209	0	193	415	2413	0.00	0.00	624	559
V/C Ratio(X)				0.54	0.00	1.07	0.74	0.17	0.00	0.00	0.85	0.85
· · · · ·				209	0.00	193	451	2413	0.00	0.00	624	559
Avail Cap(c_a), veh/h				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
HCM Platoon Ratio				1.00		1.00	0.82	0.82		0.00	1.00	
Upstream Filter(I)					0.00			2.5	0.00			1.00
Uniform Delay (d), s/veh				18.6	0.0	19.8	16.0		0.0	0.0	13.5	13.5
Incr Delay (d2), s/veh				1.6	0.0	83.1	3.9	0.1	0.0	0.0	13.8	15.2
Initial Q Delay(d3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In				1.0	0.0	6.2	3.0	0.4	0.0	0.0	6.5	6.1
Unsig. Movement Delay, s/veh				00.0	0.0	400.0	40.0	07	0.0	0.0	07.4	00.7
LnGrp Delay(d), s/veh				20.2	0.0	102.9	19.9	2.7	0.0	0.0	27.4	28.7
LnGrp LOS				С		F	В	A			C	С
Approach Vol, veh/h					319			727			1009	
Approach Delay, s/veh					73.6			9.9			28.0	
Approach LOS					E			A			С	
Timer - Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), s	15.0	20.4		9.6		35.4						
Change Period (Y+Rc), s	4.6	* 4.6		4.2		4.6						
Max Green Setting (Gmax), s	11.3	* 16		5.4		30.8						
Max Q Clear Time (g_c+I1), s	9.1	14.5		7.4		3.9						
Green Ext Time (p_c), s	0.0	0.5		0.0		1.2						
Intersection Summary												
HCM 7th Control Delay, s/veh			28.7									
HCM 7th LOS			C									
Notes												

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Existing PM Bay-Hill Analysis 2:13 pm 06/24/2024 Signal Kimley-Horn

01/06/2025

	۶	+	\mathbf{F}	4	Ļ	₹	•	t	1	1	ŧ	∢
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘ	4	1					A		5	† †	
Traffic Volume (veh/h)	234	208	347	0	0	0	0	457	91	276	473	0
Future Volume (veh/h)	234	208	347	0	0	0	0	457	91	276	473	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		0.97	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac	ch	No						No			No	
Adj Sat Flow, veh/h/ln	1826	1900	1856				0	1885	1856	1870	1856	0
Adj Flow Rate, veh/h	245	305	306				0	497	99	300	514	0
Peak Hour Factor	0.92	0.92	0.92				0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	5	0	3				0	1	3	2	3	0
Cap, veh/h	396	433	358				0	879	174	449	2205	0
Arrive On Green	0.23	0.23	0.23				0.00	0.30	0.30	0.25	0.63	0.00
Sat Flow, veh/h	1739	1900	1572				0	3057	587	1781	3618	0
Grp Volume(v), veh/h	245	305	306				0	299	297	300	514	0
Grp Sat Flow(s), veh/h/li		1900	1572				0	1791	1759	1781	1763	0
Q Serve(g_s), s	7.6	8.9	11.2				0.0	8.5	8.6	9.1	3.8	0.0
Cycle Q Clear(g_c), s	7.6	8.9	11.2				0.0	8.5	8.6	9.1	3.8	0.0
Prop In Lane	1.00	0.0	1.00				0.00	0.0	0.33	1.00	0.0	0.00
Lane Grp Cap(c), veh/h		433	358				0.00	531	522	449	2205	0.00
V/C Ratio(X)	0.62	0.70	0.85				0.00	0.56	0.57	0.67	0.23	0.00
Avail Cap(c_a), veh/h	446	488	404				0.00	531	522	449	2205	0.00
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00				0.00	1.00	1.00	0.66	0.66	0.00
Uniform Delay (d), s/vel		21.3	22.2				0.0	17.8	17.9	20.2	4.9	0.0
Incr Delay (d2), s/veh	1.2	3.0	13.5				0.0	4.3	4.5	2.0	0.2	0.0
Initial Q Delay(d3), s/ve		0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel		3.9	5.1				0.0	3.9	3.9	3.8	1.1	0.0
Unsig. Movement Delay			2.1				5.0	5.0	5.0	5.0		510
LnGrp Delay(d), s/veh	22.1	24.3	35.8				0.0	22.1	22.3	22.2	5.1	0.0
LnGrp LOS	C	24.0 C	00.0 D				5.0	C	22.0 C	C	A	0.0
Approach Vol, veh/h	v	856						596	v	•	814	
Approach Delay, s/veh		27.8						22.2			11.4	
Approach LOS		27.0 C						22.2 C			B	
					_	-					U	
Timer - Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc)		42.1			19.7	22.4		17.9				
Change Period (Y+Rc),		4.6			4.6	* 4.6		4.2				
Max Green Setting (Gr		35.8			14.3	* 18		15.4				
Max Q Clear Time (g_c		5.8			11.1	10.6		13.2				
Green Ext Time (p_c), s	S	1.5			0.1	1.0		0.5				
Intersection Summary												
HCM 7th Control Delay	, s/veh		20.4									
HCM 7th LOS			С									
Notes												

User approved volume balancing among the lanes for turning movement.

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Existing PM Bay-Hill Analysis 2:13 pm 06/24/2024 Signal Kimley-Horn

2.8

Intersection

Int Delay, s/veh

M		FDT						NDT			ODT	000	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		्रस्	1		- 4		ኘ	- † Þ		ኘ	↑	1	
Traffic Vol, veh/h	49	2	38	4	1	37	4	462	9	50	658	112	
Future Vol, veh/h	49	2	38	4	1	37	4	462	9	50	658	112	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	0	-	-	-	50	-	-	50	-	0	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	56	2	44	5	1	43	5	531	10	57	756	129	

Major/Minor	Minor2		I	Minor1			Major1		1	Major2			
Conflicting Flow All	1147	1422	756	1418	1545	271	885	0	0	541	0	0	
Stage 1	871	871	-	545	545	-	-	-	-	-	-	-	
Stage 2	275	551	-	872	1000	-	-	-	-	-	-	-	
Critical Hdwy	7.33	6.53	6.23	7.33	6.53	6.93	4.13	-	-	4.13	-	-	
Critical Hdwy Stg 1	6.13	5.53	-	6.53	5.53	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.53	5.53	-	6.13	5.53	-	-	-	-	-	-	-	
Follow-up Hdwy	3.519	4.019	3.319	3.519	4.019	3.319	2.219	-	-	2.219	-	-	
Pot Cap-1 Maneuver	165	136	407	105	114	728	763	-	-	1025	-	-	
Stage 1	345	367	-	491	517	-	-	-	-	-	-	-	
Stage 2	708	515	-	344	320	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	144	127	407	87	107	728	763	-	-	1025	-	-	
Mov Cap-2 Maneuver	144	127	-	87	107	-	-	-	-	-	-	-	
Stage 1	325	347	-	488	514	-	-	-	-	-	-	-	
Stage 2	661	512	-	288	302	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s/v	33	15.37	0.08	0.53	
HCM LOS	D	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	EBLn2	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	763	-	-	143	407	395	1025	-	-	
HCM Lane V/C Ratio	0.006	-	-	0.409	0.107	0.122	0.056	-	-	
HCM Control Delay (s/veh)	9.7	-	-	46.5	14.9	15.4	8.7	-	-	
HCM Lane LOS	А	-	-	Ε	В	С	А	-	-	
HCM 95th %tile Q(veh)	0	-	-	1.8	0.4	0.4	0.2	-	-	

HCM 7th Signalized Intersection Summary 4: Bay Ave & Retail Dwy/Hill St

01/06/2025

	٠	+	\mathbf{F}	4	+	*	N	t	1	×	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1		4		ሻ	ef 👘		ሻ	ef 👘	
Traffic Volume (veh/h)	92	45	84	18	33	76	46	307	21	146	505	49
Future Volume (veh/h)	92	45	84	18	33	76	46	307	21	146	505	49
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	0.99		0.95	0.99		0.99	1.00		0.96	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1811	1900	1900	1900	1856	1885	1870	1885	1767	1900	1856	1856
Adj Flow Rate, veh/h	103	51	94	20	37	85	52	345	24	164	567	55
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, %	6	0	0	0	3	1	2	1	9	0	3	3
Cap, veh/h	320	112	265	126	88	163	98	637	44	214	714	69
Arrive On Green	0.17	0.17	0.17	0.17	0.17	0.17	0.06	0.37	0.37	0.12	0.43	0.43
Sat Flow, veh/h	974	650	1536	123	511	947	1781	1736	121	1810	1660	161
Grp Volume(v), veh/h	154	0	94	142	0	0	52	0	369	164	0	622
Grp Sat Flow(s),veh/h/ln	1624	0	1536	1581	0	0	1781	0	1857	1810	0	1821
Q Serve(g_s), s	0.0	0.0	2.1	0.2	0.0	0.0	1.1	0.0	6.2	3.5	0.0	11.7
Cycle Q Clear(g_c), s	3.0	0.0	2.1	3.2	0.0	0.0	1.1	0.0	6.2	3.5	0.0	11.7
Prop In Lane	0.67		1.00	0.14		0.60	1.00		0.07	1.00		0.09
Lane Grp Cap(c), veh/h	433	0	265	377	0	0	98	0	681	214	0	783
V/C Ratio(X)	0.36	0.00	0.35	0.38	0.00	0.00	0.53	0.00	0.54	0.77	0.00	0.79
Avail Cap(c_a), veh/h	840	0	702	820	0	0	231	0	938	395	0	1081
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	14.7	0.0	14.4	14.8	0.0	0.0	18.1	0.0	9.9	16.8	0.0	9.7
Incr Delay (d2), s/veh	0.5	0.0	0.8	0.6	0.0	0.0	4.4	0.0	0.7	5.7	0.0	2.9
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.1	0.0	0.7	1.1	0.0	0.0	0.5	0.0	2.1	1.6	0.0	4.0
Unsig. Movement Delay, s/veh		0.0	•		0.0	0.0	0.0	0.0			0.0	
LnGrp Delay(d), s/veh	15.2	0.0	15.2	15.4	0.0	0.0	22.5	0.0	10.5	22.5	0.0	12.6
LnGrp LOS	В		В	В			С		В	С		В
Approach Vol, veh/h	_	248	_		142		•	421	_	•	786	
Approach Delay, s/veh		15.2			15.4			12.0			14.7	
Approach LOS		B			13.4 B			12.0 B			В	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	9.2	19.0		11.3	6.7	21.4		11.3				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	4.5 8.6	4.5		4.5	4.5 5.1	23.4		4.5				
Max Q Clear Time (g_c+l1), s	5.5	8.2		5.0	3.1	13.7		5.2				
Green Ext Time (p_c), s	0.1	0.2 1.8		1.0	0.0	3.1		0.6				
<u> </u>	0.1	1.0		1.0	0.0	J. I		0.0				
Intersection Summary			1.1.1									
HCM 7th Control Delay, s/veh			14.1 P									
HCM 7th LOS			В									

Existing PM Bay-Hill Analysis 2:13 pm 06/24/2024 Signal Kimley-Horn

ltem	7	В.

01/06/2025

	۶	→	\mathbf{i}	4	+	*	<	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1		4		5	4			र्च	1
Traffic Volume (veh/h)	72	84	8	61	72	31	29	200	23	56	337	124
Future Volume (veh/h)	72	84	8	61	72	31	29	200	23	56	337	124
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A pbT)	0.99		0.98	0.99		0.98	0.99		0.99	0.99		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	81	94	9	69	81	35	33	225	26	63	379	139
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	348	266	376	290	200	69	473	659	76	220	655	627
Arrive On Green	0.24	0.24	0.24	0.24	0.24	0.24	0.40	0.40	0.40	0.40	0.40	0.40
Sat Flow, veh/h	576	1096	1552	387	824	283	878	1643	190	142	1632	1561
Grp Volume(v), veh/h	175	0	9	185	024	0	33	0	251	442	0	139
Grp Sat Flow(s), veh/h/li		0	1552	1495	0	0	878	0	1833	1775	0	1561
Q Serve(g_s), s	0.0	0.0	0.1	0.8	0.0	0.0	0.8	0.0	2.4	0.5	0.0	1.5
Cycle Q Clear(g_c), s	2.0	0.0	0.1	2.8	0.0	0.0	5.5	0.0	2.4	4.7	0.0	1.5
Prop In Lane	0.46	0.0	1.00	0.37	0.0	0.19	1.00	0.0	0.10	0.14	0.0	1.00
Lane Grp Cap(c), veh/h		0	376	558	0	0.19	473	0	736	875	0	627
V/C Ratio(X)	0.29	0.00	0.02	0.33	0.00	0.00	0.07	0.00	0.34	0.51	0.00	0.22
Avail Cap(c_a), veh/h	1332	0.00	1106	1282	0.00	0.00	746	0.00	1306	1406	0.00	1113
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/vel		0.00	7.3	8.2	0.00	0.00	8.1	0.00	5.2	5.9	0.00	5.0
Incr Delay (d2), s/veh	0.3	0.0	0.0	0.2 0.3	0.0	0.0	0.1	0.0	5.Z 0.3	5.9 0.5	0.0	5.0 0.2
• • •		0.0	0.0	0.3	0.0	0.0	0.1	0.0	0.3	0.5	0.0	0.2
Initial Q Delay(d3), s/ve		0.0	0.0									0.0
%ile BackOfQ(50%),vel			0.0	0.6	0.0	0.0	0.1	0.0	0.5	1.0	0.0	0.3
Unsig. Movement Delay			70	0.0	0.0	0.0	0.0	0.0	EE	6.4	0.0	E 4
LnGrp Delay(d), s/veh	8.3	0.0	7.3	8.6	0.0	0.0	8.2	0.0	5.5		0.0	5.1
LnGrp LOS	A	104	A	A	405		A	004	A	A	E04	A
Approach Vol, veh/h		184			185			284			581	
Approach Delay, s/veh		8.2			8.6			5.8			6.1	
Approach LOS		A			А			А			A	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc)		14.6		10.6		14.6		10.6				
Change Period (Y+Rc),		4.5		4.5		4.5		4.5				
Max Green Setting (Gm	nax), s	18.0		18.0		18.0		18.0				
Max Q Clear Time (g_c	+l1), s	7.5		4.0		6.7		4.8				
Green Ext Time (p_c), s	5	1.2		0.8		2.7		0.8				
Intersection Summary												
HCM 7th Control Delay	. s/veh		6.7									
HCM 7th LOS	, .,		A									

Existing PM Bay-Hill Analysis 2:13 pm 06/24/2024 Signal Kimley-Horn

	•	Ł	Ť	۲	\$	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		4			र्भ
Traffic Volume (veh/h)	35	104	124	85	304	141
Future Volume (veh/h)	35	104	124	85	304	141
Initial Q (Qb), veh	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac	ch No		No			No
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	36	106	127	87	310	144
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	52	154	521	357	641	254
Arrive On Green	0.13	0.13	0.50	0.50	0.50	0.50
Sat Flow, veh/h	411	1210	1034	709	780	504
Grp Volume(v), veh/h	143	0	0	214	454	0
Grp Sat Flow(s), veh/h/l		0	0	1743	1284	0
Q Serve(g_s), s	2.0	0.0	0.0	1.7	5.2	0.0
Cycle Q Clear(g_c), s	2.0	0.0	0.0	1.7	6.9	0.0
Prop In Lane	0.25	0.74	0.0	0.41	0.68	0.0
Lane Grp Cap(c), veh/h		0.74	0	878	895	0
V/C Ratio(X)	0.69	0.00	0.00	0.24	0.51	0.00
Avail Cap(c_a), veh/h	1211	0.00	0.00	2352	2016	0.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/ve		0.0	0.0	3.4	4.8	0.0
Incr Delay (d2), s/veh	4.0	0.0	0.0	0.1	0.4	0.0
Initial Q Delay(d3), s/ven		0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),ve		0.0	0.0	0.0	0.0	0.0
Unsig. Movement Dela			0.0	0.2	U. T	0.0
LnGrp Delay(d), s/veh	14.2	0.0	0.0	3.6	5.2	0.0
LnGrp LOS	В	0.0	0.0	3.0 A	3.2 A	0.0
Approach Vol, veh/h	143		214			454
Approach Delay, s/veh			3.6			454 5.2
	14.Z B					
Approach LOS	В		A			A
Timer - Assigned Phs		2				6
Phs Duration (G+Y+Rc), s	16.8				16.8
Change Period (Y+Rc),		4.5				4.5
Max Green Setting (Gr		32.9				32.9
Max Q Clear Time (g_c		3.7				8.9
Green Ext Time (p_c),		1.3				3.4
Intersection Summary						
	aluah		6.4			
HCM 7th Control Delay	, s/ven		6.4			
HCM 7th LOS			А			

Existing PM Bay-Hill Analysis 2:13 pm 06/24/2024 Signal Kimley-Horn

01/06/2025

	۶	-	\mathbf{r}	4	+	•	•	1	*	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्च	1		र्च	1
Traffic Volume (veh/h)	5	3	3	203	3	39	1	165	498	92	83	1
Future Volume (veh/h)	5	3	3	203	3	39	1	165	498	92	83	1
Initial Q (Qb), veh	Ũ	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac		No	1.00	1.00	No	1.00	1.00	No	1.00	1.00	No	1.00
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	5	3	3	211	3	41	10/0	172	519	96	86	1070
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	0.50	2	2	0.30	0.30	0.50	0.30	2	2	0.30	2	0.30
Cap, veh/h	319	174	112	526	7	56	135	800	679	404	302	679
Arrive On Green	0.24	0.24	0.24	0.24	0.24	0.24	0.43	0.43	0.43	0.43	0.43	0.43
Sat Flow, veh/h	523	727	469	1186	29	233	0.43	1867	1585	469	705	1585
,	11						173			182	0	1565
Grp Volume(v), veh/h		0	0	255	0	0		0	519			
Grp Sat Flow(s),veh/h/li		0	0	1447	0	0	1869	0	1585	1174	0	1585
Q Serve(g_s), s	0.0	0.0	0.0	4.3	0.0	0.0	0.0	0.0	7.5	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.1	0.0	0.0	4.4	0.0	0.0	1.6	0.0	7.5	1.7	0.0	0.0
Prop In Lane	0.45	0	0.27	0.83	^	0.16	0.01	0	1.00	0.53	^	1.00
Lane Grp Cap(c), veh/h		0	0	589	0	0	935	0	679	706	0	679
V/C Ratio(X)	0.02	0.00	0.00	0.43	0.00	0.00	0.19	0.00	0.76	0.26	0.00	0.00
Avail Cap(c_a), veh/h	1258	0	0	1202	0	0	1376	0	1054	954	0	1054
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/vel		0.0	0.0	9.5	0.0	0.0	4.9	0.0	6.6	4.9	0.0	4.4
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.5	0.0	0.0	0.1	0.0	1.8	0.2	0.0	0.0
Initial Q Delay(d3), s/ve		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel		0.0	0.0	1.0	0.0	0.0	0.3	0.0	1.4	0.3	0.0	0.0
Unsig. Movement Delay												
LnGrp Delay(d), s/veh	7.9	0.0	0.0	10.0	0.0	0.0	5.0	0.0	8.4	5.1	0.0	4.4
LnGrp LOS	Α			Α			A		Α	Α		Α
Approach Vol, veh/h		11			255			692			183	
Approach Delay, s/veh		7.9			10.0			7.5			5.1	
Approach LOS		А			А			А			А	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc)), s	16.1		11.0		16.1		11.0				
Change Period (Y+Rc),	S	4.5		4.5		4.5		4.5				
Max Green Setting (Gm		18.0		18.0		18.0		18.0				
Max Q Clear Time (g_c		9.5		2.1		3.7		6.4				
Green Ext Time (p_c), s		2.1		0.0		1.1		1.1				
Intersection Summary												
HCM 7th Control Delay	s/veh		7.7									
HCM 7th LOS	, 0, 7011		A									

Existing PM Bay-Hill Analysis 2:13 pm 06/24/2024 Signal Kimley-Horn

HCM 7th Signalized Intersection Summary 1: Bay Ave & Hwy 1 NB Off-Ramp

01/06/2025

	≯	-	\mathbf{F}	∢	←	*	•	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				٦	ef 👘		٦	<u></u>			∱ }	
Traffic Volume (veh/h)	0	0	0	161	12	379	321	392	0	0	436	536
Future Volume (veh/h)	0	0	0	161	12	379	321	392	0	0	436	536
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Lane Width Adj.				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		0.94
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1826	1900	1885	1885	1856	0	0	1870	1885
Adj Flow Rate, veh/h				169	13	399	338	413	0	0	459	564
Peak Hour Factor				0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %				5	0	1	1	3	0	0	2	1
Cap, veh/h				341	10	308	437	2269	0	0	562	471
Arrive On Green				0.20	0.20	0.20	0.49	1.00	0.00	0.00	0.32	0.32
Sat Flow, veh/h				1739	51	1567	1795	3618	0	0	1870	1489
Grp Volume(v), veh/h				169	0	412	338	413	0	0	459	564
Grp Sat Flow(s), veh/h/ln				1739	0	1618	1795	1763	0	0	1777	1489
Q Serve(g_s), s				4.8	0.0	10.8	8.5	0.0	0.0	0.0	13.1	17.4
Cycle Q Clear(g_c), s				4.8	0.0	10.8	8.5	0.0	0.0	0.0	13.1	17.4
Prop In Lane				1.00	0.0	0.97	1.00	0.0	0.00	0.00	13.1	1.00
Lane Grp Cap(c), veh/h				341	0	318	437	2269	0.00	0.00	562	471
V/C Ratio(X)				0.49	0.00	1.30	437 0.77	0.18	0.00	0.00	0.82	1.20
				341	0.00	318	467	2269	0.00	0.00	562	471
Avail Cap(c_a), veh/h HCM Platoon Ratio				1.00	1.00	1.00			1.00	1.00	1.00	
				1.00			2.00	2.00				1.00
Upstream Filter(I)					0.00	1.00	0.83	0.83	0.00	0.00	1.00	1.00
Uniform Delay (d), s/veh				19.7	0.0	22.1	12.8	0.0	0.0	0.0	17.3	18.8
Incr Delay (d2), s/veh				0.4	0.0	154.9	5.4	0.1	0.0	0.0	12.4	107.7
Initial Q Delay(d3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In				1.8	0.0	17.3	3.0	0.0	0.0	0.0	6.7	19.5
Unsig. Movement Delay, s/veh				00.4	0.0	477.0	40.0	0.4	0.0	0.0	00.7	400 5
LnGrp Delay(d), s/veh				20.1	0.0	177.0	18.3	0.1	0.0	0.0	29.7	126.5
LnGrp LOS				С		F	В	A			С	F
Approach Vol, veh/h					581			751			1023	
Approach Delay, s/veh					131.4			8.3			83.1	
Approach LOS					F			A			F	
Timer - Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), s	18.0	22.0		15.0		40.0						
Change Period (Y+Rc), s	4.6	* 4.6		4.2		4.6						
Max Green Setting (Gmax), s	14.3	* 17		10.8		35.4						
Max Q Clear Time (g_c+l1), s	10.5	19.4		12.8		2.0						
Green Ext Time (p_c), s	0.1	0.0		0.0		1.2						
Intersection Summary												
HCM 7th Control Delay, s/veh			71.2									
HCM 7th LOS			E									
Notes												

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Year 2045 AM Bay-Hill Analysis 2:06 pm 06/24/2024 Signal Kimley-Horn

01/06/2025

		•	•		-)	1	1		•		
Movement EBI	_ EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ነ ቆ	1					Åî≽		ľ	- † †		
Traffic Volume (veh/h) 24			0	0	0	0	465	61	251	346	0	
Future Volume (veh/h) 24	30	586	0	0	0	0	465	61	251	346	0	
Initial Q (Qb), veh	0 C	0				0	0	0	0	0	0	
Lane Width Adj. 1.0	0 1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT) 1.0)	1.00				1.00		0.97	1.00		1.00	
Parking Bus, Adj 1.0		1.00				1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No						No			No		
Adj Sat Flow, veh/h/ln 182		1856				0	1885	1856	1870	1856	0	
Adj Flow Rate, veh/h 17						0	489	64	264	364	0	
Peak Hour Factor 0.9		0.95				0.95	0.95	0.95	0.95	0.95	0.95	
	5 0					0	1	3	2	3	0	
Cap, veh/h 37						0	1062	138	369	2205	0	
Arrive On Green 0.2						0.00	0.33	0.33	0.41	1.00	0.00	
Sat Flow, veh/h 173						0.00	3268	413	1781	3618	0.00	
Grp Volume(v), veh/h 174						0	275	278	264	364	0	
Grp Sat Flow(s), veh/h/ln173		1572				0	1791	1796	1781	1763	0	
Q Serve(g_s), s 4.						0.0	6.6	6.7	6.8	0.0	0.0	
Cycle Q Clear(g_c), s 4.0 Cycle Q Clear(g_c), s 4.0						0.0	0.0 6.6	6.7	0.0 6.8	0.0	0.0	
Prop In Lane 1.0		1.00				0.0	0.0	0.23	1.00	0.0	0.00	
							599	601	369	2205	0.00	
Lane Grp Cap(c), veh/h 373						0						
V/C Ratio(X) 0.4						0.00	0.46	0.46	0.72	0.17	0.00	
Avail Cap(c_a), veh/h 373		675				0	599	601	398	2205	0	
HCM Platoon Ratio 1.0						1.00	1.00	1.00	2.00	2.00	1.00	
Upstream Filter(I) 1.0		1.00				0.00	1.00	1.00	0.67	0.67	0.00	
Uniform Delay (d), s/veh 18.						0.0	14.4	14.4	14.7	0.0	0.0	
Incr Delay (d2), s/veh 0.3		49.2				0.0	2.5	2.6	3.0	0.1	0.0	
Initial Q Delay(d3), s/veh 0.						0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In1.		8.4				0.0	2.8	2.9	2.4	0.0	0.0	
Unsig. Movement Delay, s/v												
LnGrp Delay(d), s/veh 19.		70.8				0.0	16.9	17.0	17.8	0.1	0.0	
	3	F					В	В	В	Α		
Approach Vol, veh/h	884						553			628		
Approach Delay, s/veh	60.6						16.9			7.5		
Approach LOS	E						В			А		
Timer - Assigned Phs	2			5	6		8					
Phs Duration (G+Y+Rc), s	39.0			16.0	23.0		16.0					
Change Period (Y+Rc), s	4.6			4.6	* 4.6		4.2					
Max Green Setting (Gmax),				12.3	* 18		11.8					
Max Q Clear Time (g_c+l1),				8.8	8.7		13.8					
Green Ext Time (p_c), s	1.0			0.0	1.0		0.0					
Intersection Summary												
HCM 7th Control Delay, s/ve	h	32.8										
HCM 7th LOS	11	52.0 C										
		0										
Notes												

Notes

User approved volume balancing among the lanes for turning movement.

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Year 2045 AM Bay-Hill Analysis 2:06 pm 06/24/2024 Signal Kimley-Horn

2.9

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्च	1		4		۲.	∱ î⊧		٦	1	1
Traffic Vol, veh/h	53	0	21	0	1	79	1	394	9	69	754	109
Future Vol, veh/h	53	0	21	0	1	79	1	394	9	69	754	109
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	0	-	-	-	50	-	-	50	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	56	0	22	0	1	83	1	415	9	73	794	115

Major/Minor	Minor2		I	Minor1			Major1		Ν	/lajor2			
Conflicting Flow All	1149	1365	794	1361	1475	212	908	0	0	424	0	0	
Stage 1	939	939	-	422	422	-	-	-	-	-	-	-	
Stage 2	210	426	-	939	1054	-	-	-	-	-	-	-	
Critical Hdwy	7.33	6.53	6.23	7.33	6.53	6.93	4.13	-	-	4.13	-	-	
Critical Hdwy Stg 1	6.13	5.53	-	6.53	5.53	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.53	5.53	-	6.13	5.53	-	-	-	-	-	-	-	
Follow-up Hdwy	3.519	4.019	3.319	3.519	4.019	3.319	2.219	-	-	2.219	-	-	
Pot Cap-1 Maneuver	164	147	387	116	126	794	747	-	-	1133	-	-	
Stage 1	316	342	-	581	588	-	-	-	-	-	-	-	
Stage 2	773	585	-	316	302	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	136	137	387	102	118	794	747	-	-	1133	-	-	
Mov Cap-2 Maneuver	136	137	-	102	118	-	-	-	-	-	-	-	
Stage 1	296	320	-	580	587	-	-	-	-	-	-	-	
Stage 2	690	584	-	279	283	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Dela	ay, s/v39.07	10.48	0.02	0.62	
HCM LOS	E	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR E	BLn1	EBLn2V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	747	-	-	136	387	741	1133	-	-
HCM Lane V/C Ratio	0.001	-	-	0.41	0.057	0.114	0.064	-	-
HCM Control Delay (s/veh)	9.8	-	-	48.7	14.9	10.5	8.4	-	-
HCM Lane LOS	А	-	-	E	В	В	А	-	-
HCM 95th %tile Q(veh)	0	-	-	1.8	0.2	0.4	0.2	-	-

HCM 7th Signalized Intersection Summary 4: Bay Ave & Retail Dwy/Hill St

01/06/2025

Movement EBL EBT EBR WBL WBT WBL NBL NBT NBR SBL SBT SBR Lane Configurations 4 1 4 1 4 1 5 1 5 1 5 1 5 1 5 1 5 5 233 4 75 669 31 Initial Q (2b), veh 0		≯	+	7	•	+	*	N	1	1	*	ţ	~
Traffic Oxlume (veh/n) 43 19 39 13 28 68 57 293 4 75 669 31 Future Volume (veh/n) 43 19 39 13 28 68 57 293 4 75 669 31 Initial Q (2b), veh 0 <th>Movement</th> <th>EBL</th> <th>EBT</th> <th></th> <th>WBL</th> <th>WBT</th> <th>WBR</th> <th></th> <th>NBT</th> <th>NBR</th> <th></th> <th>SBT</th> <th>SBR</th>	Movement	EBL	EBT		WBL	WBT	WBR		NBT	NBR		SBT	SBR
Future Volume (veh/h) 43 19 39 13 28 66 57 293 4 75 669 31 Initial Q (Db), veh 0													
Initial Q(b), ven 0													
Lane Width Adj. 1.00													
Pack-Bike Adj(Å, pbT) 0.99 0.97 0.99 0.98 1.00 0.96 1.00 0.97 Parking Bus, Adj 1.00 <td></td>													
Parking Bus, Adj 1.00 1.0	,		1.00			1.00			1.00			1.00	
Work Zone On Åpproach No No No No No Adj Sat Flow, veh/hilin 1811 1900 1900 1856 1885 1870 1885 1767 1900 1856 Adj Gat Flow, veh/hilin 1811 1900 1900 1856 1885 1870 1885 1767 1900 1856 1855 Adj Flow Rate, veh/h 45 0 0 0 3 1 2 1 9 0 3 3 Cap, veh/h 268 95 214 107 67 139 105 903 12 127 874 41 Arrive On Green 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.05 0.33 12 79 0 737 Grp Sat Flow(s), veh/h 650 0 111 491 1008 1781 1886 1810 0 1838 Q Serve(g, s), s 0.0 0.0 1.4 0.0 </td <td></td> <td>0.97</td>													0.97
Adj Sat Flow, veh/hiln 1811 1900 1900 1900 1856 1885 1870 1885 1767 1900 1856 1856 Adj Kow Rate, veh/h 45 20 41 14 29 72 60 308 4 79 704 33 Peak Hour Factor 0.95		1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00
Adj Flow Rate, veh/h 45 20 41 14 29 72 60 308 4 79 704 33 Peak Hour Factor 0.95	Work Zone On Approach		No			No						No	
Peak Hour Factor 0.95 0.9	Adj Sat Flow, veh/h/ln	1811	1900	1900	1900	1856	1885	1870	1885	1767	1900	1856	1856
Percent Heavy Veh, % 6 0 0 3 1 2 1 9 0 3 3 Cap, veh/h 268 95 214 107 67 139 105 903 12 127 874 41 Arrive On Green 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.06 0.49 0.07 0.50 0.50 Sat Flow, veh/h 943 690 1559 111 491 1008 1781 0 810 0 1838 Grp Sat Flow(s), veh/h/In 1632 0 1.0 0.3 0.0 0.0 1.4 0.0 4.5 1.9 0.0 14.8 Oscal Calce(s), s 1.4 0.0 1.0 0.2 0.03 1.00 0.01 1.00 0.01 1.00 0.04 1.88 1.810 0.0 1.48 Org Lace(c), s 1.4 0.0 1.0 0.0 0.0 0.0 1.4 0.0 1.4 0.0 1.4 0.0 1.4 0.	Adj Flow Rate, veh/h		20		14			60	308	4		704	33
Cap, veh/h 268 95 214 107 67 139 105 903 12 127 874 41 Arrive On Green 0.14 0.04 0.49 0.07 0.50 0.50 0.50 Sat Flow, veh/h 650 0 111 491 1008 1781 1856 24 1810 1756 82 Gry bolume(y), veh/h 650 0 1559 1610 0 0 1781 0 1850 1810 0 1838 1810 0 148 2 0 148 2 0 148 2 0 144 10 0 144 127 0 915 V////////////////////////////////////	Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Arrive On Green 0.14 0.16 0.41 115 0 0 60 0 312 79 0 737 Grp Sat Flow(s), veh/h/in 1632 0 1559 1610 0 0 1781 0 1880 1810 0 1838 Q Serve(g, s), s 0.0 0.0 1.0 0.3 0.0 0.0 1.4 0.0 4.5 1.9 0.0 14.8 Cycle Q Clear(gc), s 1.4 0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.01 1.00 0.01 1.00 0.01 1.00 1.00 1.00 1.00 1.00	Percent Heavy Veh, %	6	0	0	0	3	1	2	1	9	0		3
Sat Flow, veh/h 943 690 1559 111 491 1008 1781 1856 24 1810 1756 82 Grp Volume(v), veh/h 65 0 41 115 0 0 0 312 79 0 737 Grp Sat Flow(s), veh/h/ln 1632 0 1559 1610 0 0 1781 0 1880 1810 0 1838 Q Serve(g, s), s 0.0 0.0 1.0 0.3 0.0 0.0 1.4 0.0 4.5 1.9 0.0 14.8 Cycle Q Clear(g, c), s 1.4 0.0 1.0 2.9 0.0 0.0 1.4 0.0 4.5 1.9 0.0 14.8 Cycle Q Clear(g, c), seh/h 362 0 214 313 0 0 105 914 127 0 915 V/C Ratio(X) 0.18 0.00 0.10 1.00 1.00 1.00 1.00 1.00 1.00 <	Cap, veh/h	268	95	214	107	67	139	105	903	12	127	874	41
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Arrive On Green	0.14	0.14	0.14	0.14	0.14	0.14	0.06	0.49	0.49	0.07	0.50	0.50
Grp Sat Flow(s), veh/h/ln 1632 0 1559 1610 0 0 1781 0 1880 1810 0 1838 Q Serve(g, s), s 0.0 0.0 1.0 0.3 0.0 0.0 1.4 0.0 4.5 1.9 0.0 1.4 Cycle Q Clear(g, c), s 1.4 0.0 1.0 2.9 0.0 0.0 1.4 0.0 4.5 1.9 0.0 1.4.8 Cycle Q Clear(g, c), s 1.4 0.0 1.0 2.9 0.0 0.0 1.4 0.0 4.5 1.9 0.0 1.4.8 Prop In Lane 0.66 1.00 0.12 0.63 1.00 0.01 1.00 0.04 Lane Grp Cap(c), veh/h 755 0 639 744 0 0 214 0 1269 353 0 1370 Mold Dapt Cap(c), veh/h 755 0 639 744 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 </td <td>Sat Flow, veh/h</td> <td>943</td> <td>690</td> <td>1559</td> <td>111</td> <td>491</td> <td>1008</td> <td>1781</td> <td>1856</td> <td>24</td> <td>1810</td> <td>1756</td> <td>82</td>	Sat Flow, veh/h	943	690	1559	111	491	1008	1781	1856	24	1810	1756	82
Grp Sat Flow(s), veh/h/ln 1632 0 1559 1610 0 0 1781 0 1880 1810 0 1838 Q Serve(g, s), s 0.0 0.0 1.0 0.3 0.0 0.0 1.4 0.0 4.5 1.9 0.0 1.4 Cycle Q Clear(g, c), s 1.4 0.0 1.0 2.9 0.0 0.0 1.4 0.0 4.5 1.9 0.0 1.4.8 Cycle Q Clear(g, c), s 1.4 0.0 1.0 2.9 0.0 0.0 1.4 0.0 4.5 1.9 0.0 1.4.8 Prop In Lane 0.66 1.00 0.12 0.63 1.00 0.01 1.00 0.04 Lane Grp Cap(c), veh/h 755 0 639 744 0 0 214 0 1269 353 0 1370 Mold Dapt Cap(c), veh/h 755 0 639 744 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 </td <td>Grp Volume(v), veh/h</td> <td>65</td> <td>0</td> <td>41</td> <td>115</td> <td>0</td> <td>0</td> <td>60</td> <td>0</td> <td>312</td> <td>79</td> <td>0</td> <td>737</td>	Grp Volume(v), veh/h	65	0	41	115	0	0	60	0	312	79	0	737
Q Serve(g_s), s 0.0 0.0 1.0 0.3 0.0 0.0 1.4 0.0 4.5 1.9 0.0 14.8 Cycle Q Clear(g_c), s 1.4 0.0 1.0 2.9 0.0 0.0 1.4 0.0 4.5 1.9 0.0 14.8 Prop In Lane 0.69 1.00 0.12 0.63 1.00 0.01 1.00 0.04 Lane Grp Cap(c), veh/h 362 0 214 313 0 0 105 0 914 127 0 915 V/C Ratio(X) 0.18 0.00 0.19 0.37 0.00 0.00 0.57 0.00 0.34 0.62 0.00 0.81 Avail Cap(c_a), veh/h 755 0 639 744 0 0 214 0 0.00 1	• • • • • •												
Cycle Q Clear(g_c), s 1.4 0.0 1.0 2.9 0.0 0.0 1.4 0.0 4.5 1.9 0.0 14.8 Prop In Lane 0.69 1.00 0.12 0.63 1.00 0.01 1.00 0.04 Lane Grp Cap(c), veh/h 362 0 214 313 0 0 105 0 914 127 0 915 V/C Ratio(X) 0.18 0.00 0.19 0.37 0.00 0.00 0.57 0.00 0.34 0.62 0.00 0.81 Avail Cap(c_a), veh/h 755 0 639 744 0 0 214 0 1.00													
Prop In Lane 0.69 1.00 0.12 0.63 1.00 0.01 1.00 0.04 Lane Grp Cap(c), veh/h 362 0 214 313 0 0 105 0 914 127 0 915 V/C Ratio(X) 0.18 0.00 0.19 0.37 0.00 0.00 0.57 0.00 0.34 0.62 0.00 0.81 Avail Cap(c_a), veh/h 755 0 633 744 0 0 214 0 1269 353 0 1378 HCM Platoon Ratio 1.00 0.0													
Lane Grp Cap(c), veh/h 362 0 214 313 0 0 105 0 914 127 0 915 V/C Ratio(X) 0.18 0.00 0.19 0.37 0.00 0.00 0.57 0.00 0.34 0.62 0.00 0.81 Avail Cap(c_a), veh/h 755 0 639 744 0 0 214 0 1269 353 0 1378 HCM Platoon Ratio 1.00													
V/C Ratio X 0.18 0.00 0.19 0.37 0.00 0.00 0.57 0.00 0.34 0.62 0.00 0.81 Avail Cap(c_a), veh/h 755 0 639 744 0 0 214 0 1269 353 0 1378 HCM Platoon Ratio 1.00			0			0			0			0	
Avail Cap(c_a), veh/h 755 0 639 744 0 0 214 0 1269 353 0 1378 HCM Platoon Ratio 1.00 </td <td></td>													
HCM Platoon Ratio 1.00 1.	()												
Upstream Filter(I) 1.00 0.00 1.00 1.00 0.00 1													
Uniform Delay (d), s/veh 17.0 0.0 16.9 17.7 0.0 0.0 20.2 0.0 7.0 19.9 0.0 9.3 Incr Delay (d2), s/veh 0.2 0.0 0.4 0.7 0.0 0.0 4.8 0.0 0.2 4.9 0.0 2.2 Initial Q Delay(d3), s/veh 0.0													
Incr Delay (d2), siveh 0.2 0.0 0.4 0.7 0.0 0.0 4.8 0.0 0.2 4.9 0.0 2.2 Initial Q Delay(d3), siveh 0.0 <	• • • • • • • • • • • • • • • • • • • •												
Initial Q Delay(d3), s/veh 0.0 <													
%ile BackOfQ(50%), veh/ln 0.6 0.0 0.4 1.0 0.0 0.0 0.7 0.0 1.4 0.9 0.0 4.8 Unsig. Movement Delay, s/veh InGrp Delay(d), s/veh 17.2 0.0 17.3 18.4 0.0 0.0 25.0 0.0 7.2 24.8 0.0 11.4 LnGrp Delay(s/veh 17.2 0.0 17.3 18.4 0.0 0.0 25.0 0.0 7.2 24.8 0.0 11.4 LnGrp Delay(s/veh 17.3 18.4 0.0 11.5 372 816 Approach Vol, veh/h 106 115 372 816 8 8 8 8 8 8 Approach LOS B C Na Na </td <td></td>													
Unsig. Movement Delay, s/veh 17.2 0.0 17.3 18.4 0.0 0.0 25.0 0.0 7.2 24.8 0.0 11.4 LnGrp Dols B B B C A C B Approach Vol, veh/h 106 115 372 816 Approach Delay, s/veh 17.3 18.4 10.1 12.7 Approach LOS B B B B B B Timer - Assigned Phs 1 2 4 5 6 8 B Timer - Assigned Phs 1 2 4 5 6 8 B B B C A C B Timer - Assigned Phs 1 2 4 5 6 8 B B B B B B B B B B B B B C Ma													
LnGrp Delay(d), s/veh 17.2 0.0 17.3 18.4 0.0 0.0 25.0 0.0 7.2 24.8 0.0 11.4 LnGrp LOS B B B C A C B Approach Vol, veh/h 106 115 372 816 Approach Delay, s/veh 17.3 18.4 10.1 12.7 Approach LOS B B B B B Timer - Assigned Phs 1 2 4 5 6 8 B Timer - Assigned Phs 1 2 4 5 6 8 B B B B B Timer - Assigned Phs 1 2 4 5 6 8 B <t< td=""><td></td><td></td><td>0.0</td><td>•</td><td>•</td><td>0.0</td><td>0.0</td><td>•</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td></td></t<>			0.0	•	•	0.0	0.0	•	0.0		0.0	0.0	
LnGrp LOS B B B B C A C B B Approach Vol, veh/h 106 115 372 816 Approach Delay, s/veh 17.3 18.4 10.1 12.7 Approach LOS B B B B B Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 7.6 26.0 10.6 7.1 26.5 10.6 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 8.6 29.8 18.1 5.3 33.1 18.1 Max Q Clear Time (g_c+I1), s 3.9 6.5 3.4 3.4 16.8 4.9 Green Ext Time (p_c), s 0.1 2.0 0.3 0.0 5.1 0.5 Intersection Summary HCM 7th Control Delay, s/veh 12.8 12.8 12.8 12.8			0.0	17.3	18.4	0.0	0.0	25.0	0.0	7.2	24.8	0.0	11.4
Approach Vol, veh/h 106 115 372 816 Approach Delay, s/veh 17.3 18.4 10.1 12.7 Approach LOS B B B B B Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 7.6 26.0 10.6 7.1 26.5 10.6 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 8.6 29.8 18.1 5.3 33.1 18.1 Max Q Clear Time (g_c+I1), s 3.9 6.5 3.4 3.4 16.8 4.9 Green Ext Time (p_c), s 0.1 2.0 0.3 0.0 5.1 0.5 Intersection Summary HCM 7th Control Delay, s/veh 12.8 12.8 12.8			0.0			0.0	0.0		0.0			0.0	
Approach Delay, s/veh 17.3 18.4 10.1 12.7 Approach LOS B B B B B Timer - Assigned Phs 1 2 4 5 6 8 B Timer - Assigned Phs 1 2 4 5 6 8 B D	•		106			115			372		<u> </u>	816	
Approach LOS B B B B Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 7.6 26.0 10.6 7.1 26.5 10.6 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 8.6 29.8 18.1 5.3 33.1 18.1 Max Q Clear Time (g_c+11), s 3.9 6.5 3.4 3.4 16.8 4.9 Green Ext Time (p_c), s 0.1 2.0 0.3 0.0 5.1 0.5 Intersection Summary 12.8 12.8 12.8 12.8 12.8													
Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 7.6 26.0 10.6 7.1 26.5 10.6 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 8.6 29.8 18.1 5.3 33.1 18.1 Max Q Clear Time (g_c+11), s 3.9 6.5 3.4 3.4 16.8 4.9 Green Ext Time (p_c), s 0.1 2.0 0.3 0.0 5.1 0.5 Intersection Summary HCM 7th Control Delay, s/veh 12.8 12.8													
Phs Duration (G+Y+Rc), s 7.6 26.0 10.6 7.1 26.5 10.6 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 8.6 29.8 18.1 5.3 33.1 18.1 Max Q Clear Time (g_c+11), s 3.9 6.5 3.4 3.4 16.8 4.9 Green Ext Time (p_c), s 0.1 2.0 0.3 0.0 5.1 0.5 Intersection Summary HCM 7th Control Delay, s/veh 12.8 12.8							•					D	
Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 8.6 29.8 18.1 5.3 33.1 18.1 Max Q Clear Time (g_c+I1), s 3.9 6.5 3.4 3.4 16.8 4.9 Green Ext Time (p_c), s 0.1 2.0 0.3 0.0 5.1 0.5 Intersection Summary HCM 7th Control Delay, s/veh 12.8 12.8 12.8	•												
Max Green Setting (Gmax), s 8.6 29.8 18.1 5.3 33.1 18.1 Max Q Clear Time (g_c+I1), s 3.9 6.5 3.4 3.4 16.8 4.9 Green Ext Time (p_c), s 0.1 2.0 0.3 0.0 5.1 0.5 Intersection Summary HCM 7th Control Delay, s/veh 12.8 12.8													
Max Q Clear Time (g_c+11), s 3.9 6.5 3.4 3.4 16.8 4.9 Green Ext Time (p_c), s 0.1 2.0 0.3 0.0 5.1 0.5 Intersection Summary HCM 7th Control Delay, s/veh 12.8 12.8													
Green Ext Time (p_c), s 0.1 2.0 0.3 0.0 5.1 0.5 Intersection Summary HCM 7th Control Delay, s/veh 12.8													
Intersection Summary HCM 7th Control Delay, s/veh 12.8													
HCM 7th Control Delay, s/veh 12.8	. ,	0.1	2.0		0.3	0.0	5.1		0.5				
	•												
HCM 7th LOS B													
	HCM 7th LOS			В									

Year 2045 AM Bay-Hill Analysis 2:06 pm 06/24/2024 Signal Kimley-Horn

ltem 7 B.

01/06/2025

	۶	-	\mathbf{F}	4	+	•	•	†	~	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1		4		5	4			र्च	1
Traffic Volume (veh/h)	78	67	6	83	94	42	27	312	55	74	183	128
Future Volume (veh/h)	78	67	6	83	94	42	27	312	55	74	183	128
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	0.99		0.98	0.99		0.98	0.99		0.98	0.99		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	82	71	6	87	99	44	28	328	58	78	193	135
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	386	263	408	312	220	79	502	590	104	275	483	596
Arrive On Green	0.26	0.26	0.26	0.26	0.26	0.26	0.38	0.38	0.38	0.38	0.38	0.38
Sat Flow, veh/h	638	1002	1555	440	838	302	1044	1543	273	242	1265	1560
Grp Volume(v), veh/h	153	0	6	230	0	0	28	0	386	271	0	135
Grp Sat Flow(s), veh/h/lr		0	1555	1580	0	0	1044	0	1816	1506	0	1560
Q Serve(g_s), s	0.0	0.0	0.1	1.4	0.0	0.0	0.6	0.0	4.2	0.2	0.0	1.5
Cycle Q Clear(g_c), s	1.7	0.0	0.1	3.1	0.0	0.0	5.0	0.0	4.2	4.4	0.0	1.5
Prop In Lane	0.54	0.0	1.00	0.38	0.0	0.19	1.00	0.0	0.15	0.29	0.0	1.00
Lane Grp Cap(c), veh/h		0	408	611	0	0.10	502	0	694	759	0	596
V/C Ratio(X)	0.24	0.00	0.01	0.38	0.00	0.00	0.06	0.00	0.56	0.36	0.00	0.23
Avail Cap(c_a), veh/h	1304	0.00	1105	1307	0.00	0.00	845	0.00	1291	1248	0.00	1109
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/vel		0.0	6.9	8.0	0.0	0.00	8.2	0.0	6.1	5.7	0.0	5.3
Incr Delay (d2), s/veh	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.3	0.0	0.2
Initial Q Delay(d3), s/ven		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
%ile BackOfQ(50%),vel		0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.6	0.0	0.0
Unsig. Movement Delay			0.0	5.1	5.0	0.0	5.1	5.0	1.0	0.0	0.0	0.0
LnGrp Delay(d), s/veh	7.7	0.0	6.9	8.4	0.0	0.0	8.2	0.0	6.8	6.0	0.0	5.5
LnGrp LOS	A	0.0	A	A	5.0	0.0	A	5.0	A	A	0.0	A
Approach Vol, veh/h		159			230			414			406	
Approach Delay, s/veh		7.7			8.4			6.9			5.8	
Approach LOS		A			A			0.5 A			0.0 A	
Timer - Assigned Phs		2		1	~	6		8				
				4								
Phs Duration (G+Y+Rc)		14.2		11.2		14.2		11.2				
Change Period (Y+Rc),		4.5		4.5		4.5		4.5				
Max Green Setting (Gm		18.0		18.0		18.0		18.0				
Max Q Clear Time (g_c		7.0		3.7		6.4		5.1				
Green Ext Time (p_c), s	5	2.0		0.7		1.8		1.1				
Intersection Summary	. / . !		0.0									
HCM 7th Control Delay,	, s/veh		6.9									
HCM 7th LOS			А									

Year 2045 AM Bay-Hill Analysis 2:06 pm 06/24/2024 Signal Kimley-Horn

	•	•	Ť	۲	\$	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		4			र्स
Traffic Volume (veh/h)	87	282	162	61	219	239
Future Volume (veh/h)	87	282	162	61	219	239
Initial Q (Qb), veh	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac			No			No
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	92	297	171	64	231	252
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	114	367	588	220	402	371
Arrive On Green	0.30	0.30	0.45	0.45	0.45	0.45
Sat Flow, veh/h	384	1240	1297	486	561	819
Grp Volume(v), veh/h	390	0	0	235	483	015
Grp Sat Flow(s), veh/h/l		0	0	1783	1380	0
Q Serve(g_s), s	8.0	0.0	0.0	3.0	7.9	0.0
Cycle Q Clear(g_c), s	8.0	0.0	0.0	3.0	10.9	0.0
Prop In Lane	0.24	0.0	0.0	0.27	0.48	0.0
Lane Grp Cap(c), veh/h		0.76	0	808	0.40 774	0
V/C Ratio(X)	0.81	0.00	0.00	0.29	0.62	0.00
	816	0.00	0.00	1639	1443	0.00
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/ve		0.0	0.0	6.2	8.4	0.0
Incr Delay (d2), s/veh	3.3	0.0	0.0	0.2	0.8	0.0
Initial Q Delay(d3), s/ve		0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),ve		0.0	0.0	0.7	2.2	0.0
Unsig. Movement Delay	•					
LnGrp Delay(d), s/veh	15.0	0.0	0.0	6.4	9.3	0.0
LnGrp LOS	В			А	A	
Approach Vol, veh/h	390		235			483
Approach Delay, s/veh	15.0		6.4			9.3
Approach LOS	В		А			А
Timer - Assigned Phs		2				6
Phs Duration (G+Y+Rc), s	20.8				20.8
Change Period (Y+Rc),		4.5				4.5
Max Green Setting (Gr		33.0				33.0
Max Q Clear Time (g_c		5.0				12.9
Green Ext Time (p_c), s		1.4				3.4
Intersection Summary						
HCM 7th Control Delay	. s/veh		10.7			
HCM 7th LOS	, 0, 7011		B			
			U			

Year 2045 AM Bay-Hill Analysis 2:06 pm 06/24/2024 Signal Kimley-Horn

01/06/2025

	٠	+	\mathbf{F}	4	+	€	•	t	۲	1	ŧ	∢_	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			र्च	1		र्च	1	
Traffic Volume (veh/h)	0	9	1	418	3	100	1	123	238	201	121	4	
Future Volume (veh/h)	0	9	1	418	3	100	1	123	238	201	121	4	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	0	9	1	440	3	105	1	129	251	212	127	4	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	0	737	82	657	3	122	82	658	558	362	167	558	
Arrive On Green	0.00	0.45	0.45	0.45	0.45	0.45	0.35	0.35	0.35	0.35	0.35	0.35	
Sat Flow, veh/h	0	1654	184	1147	8	274	2	1867	1585	655	475	1585	
Grp Volume(v), veh/h	0	0	10	548	0	0	130	0	251	339	0	4	
Grp Sat Flow(s), veh/h/lr		0	1837	1428	0	0	1869	0	1585	1130	0	1585	
Q Serve(g_s), s	0.0	0.0	0.1	15.3	0.0	0.0	0.0	0.0	5.4	10.5	0.0	0.1	
Cycle Q Clear(g_c), s	0.0	0.0	0.1	15.4	0.0	0.0	2.2	0.0	5.4	12.7	0.0	0.1	
Prop In Lane	0.00	0.0	0.10	0.80	0.0	0.19	0.01	0.0	1.00	0.63	0.0	1.00	
Lane Grp Cap(c), veh/h		0	819	782	0	0.15	740	0	558	529	0	558	
V/C Ratio(X)	0.00	0.00	0.01	0.70	0.00	0.00	0.18	0.00	0.45	0.64	0.00	0.01	
Avail Cap(c_a), veh/h	0.00	0.00	1092	996	0.00	0.00	899	0.00	693	633	0.00	693	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	0.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00	
Uniform Delay (d), s/vel		0.0	6.9	11.2	0.0	0.00	10.0	0.0	11.1	13.9	0.0	9.4	
Incr Delay (d2), s/veh	0.0	0.0	0.0	1.6	0.0	0.0	0.1	0.0	0.6	1.6	0.0	0.0	
Initial Q Delay(d3), s/ve		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),vel		0.0	0.0	3.9	0.0	0.0	0.0	0.0	1.6	2.8	0.0	0.0	
Unsig. Movement Delay			0.0	0.0	0.0	0.0	0.1	0.0	1.0	2.0	0.0	0.0	
LnGrp Delay(d), s/veh	0.0	0.0	6.9	12.7	0.0	0.0	10.2	0.0	11.7	15.5	0.0	9.4	
LnGrp LOS	0.0	0.0	0.9 A	12.7 B	0.0	0.0	10.2 B	0.0	В	13.5 B	0.0	9.4 A	
Approach Vol, veh/h		10		U	548			381	U		343		
Approach Delay, s/veh		6.9 A			12.7 B			11.2 B			15.4 B		
Approach LOS		A			D			В			D		
Timer - Assigned Phs		2		4		6		8					
Phs Duration (G+Y+Rc)		20.2		24.4		20.2		24.4					
Change Period (Y+Rc),		4.5		4.5		4.5		4.5					
Max Green Setting (Gm		19.5		26.5		19.5		26.5					
Max Q Clear Time (g_c	+l1), s	7.4		2.1		14.7		17.4					
Green Ext Time (p_c), s	5	1.3		0.0		1.0		2.5					
Intersection Summary													
HCM 7th Control Delay,	, s/veh		12.9										
HCM 7th LOS			В										

Year 2045 AM Bay-Hill Analysis 2:06 pm 06/24/2024 Signal Kimley-Horn

HCM 7th Signalized Intersection Summary 1: Bay Ave & Hwy 1 NB Off-Ramp

01/06/2025

	۶	+	\mathbf{F}	4	ł	*	•	t	*	*	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	ef -		۲	† †			A	
Traffic Volume (veh/h)	0	0	0	77	1	406	683	726	0	0	644	149
Future Volume (veh/h)	0	0	0	77	1	406	683	726	0	0	644	149
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Lane Width Adj.				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		0.93
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1826	1900	1885	1885	1856	0	0	1870	1885
Adj Flow Rate, veh/h				81	1	427	719	764	0	0	678	157
Peak Hour Factor				0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %				5	0	1	1	3	0	0	2	1
Cap, veh/h				286	1	264	746	2601	0	0	765	177
Arrive On Green				0.16	0.16	0.16	0.83	1.00	0.00	0.00	0.27	0.27
Sat Flow, veh/h				1739	4	1607	1795	3618	0.00	0.00	2915	653
Grp Volume(v), veh/h				81	0	428	719	764	0	0	427	408
Grp Sat Flow(s), veh/h/ln				1739	0	1611	1795	1763	0	0	1777	1698
Q Serve(g_s), s				3.7	0.0	14.8	30.6	0.0	0.0	0.0	20.7	20.8
Cycle Q Clear(g_c), s				3.7	0.0	14.0	30.6	0.0	0.0	0.0	20.7	20.8
Prop In Lane				1.00	0.0	14.0	1.00	0.0	0.00	0.00	20.7	0.38
				286	0	265		2601		0.00	482	460
Lane Grp Cap(c), veh/h				0.28	0	1.62	746		0			
V/C Ratio(X)					0.00		0.96	0.29	0.00	0.00	0.89	0.89
Avail Cap(c_a), veh/h				286	0	265	764	2601	0	0	482	460
HCM Platoon Ratio				1.00	1.00	1.00	2.00	2.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	1.00	0.29	0.29	0.00	0.00	1.00	1.00
Uniform Delay (d), s/veh				33.0	0.0	37.6	7.0	0.0	0.0	0.0	31.5	31.5
Incr Delay (d2), s/veh				0.2	0.0	293.9	10.2	0.1	0.0	0.0	20.7	21.6
Initial Q Delay(d3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In				1.5	0.0	27.3	4.9	0.0	0.0	0.0	11.5	11.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh				33.2	0.0	331.5	17.2	0.1	0.0	0.0	52.1	53.1
LnGrp LOS				С		F	В	А			D	D
Approach Vol, veh/h					509			1483			835	
Approach Delay, s/veh					284.1			8.4			52.6	
Approach LOS					F			А			D	
Timer - Assigned Phs	1	2		4		6						
Phs Duration (G+Y+Rc), s	42.0	29.0		19.0		71.0						
Change Period (Y+Rc), s	4.6	* 4.6		4.2		4.6						
Max Green Setting (Gmax), s	38.3	* 24		14.8		66.4						
Max Q Clear Time (g_c+I1), s	32.6	22.8		16.8		2.0						
Green Ext Time (p_c), s	0.3	0.5		0.0		2.4						
Intersection Summary												
HCM 7th Control Delay, s/veh			71.1									
HCM 7th LOS			E									
Notes												

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

01/06/2025

	۶	-	\mathbf{F}	4	+	×	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘ	4	1					A		5	† †	
Traffic Volume (veh/h)	417	208	640	0	0	0	0	992	104	370	351	0
Future Volume (veh/h)	417	208	640	0	0	0	0	992	104	370	351	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A pbT)	1.00		1.00				1.00		0.97	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac		No						No			No	
Adj Sat Flow, veh/h/ln	1826	1900	1856				0	1885	1856	1870	1856	0
Adj Flow Rate, veh/h	366	500	483				0	1044	109	389	369	0
Peak Hour Factor	0.95	0.95	0.95				0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	5	0.00	3				0.00	1	3	2	3	0.00
Cap, veh/h	498	545	451				0	1138	119	468	2336	0
Arrive On Green	0.29	0.29	0.29				0.00	0.35	0.35	0.44	1.00	0.00
Sat Flow, veh/h	1739	1900	1572				0.00	3357	340	1781	3618	0.00
Grp Volume(v), veh/h	366	500	483				0	573	580	389	369	0
Grp Sat Flow(s), veh/h/lr		1900	1572				0	1791	1812	1781	1763	0
Q Serve(g_s), s	17.1	22.9	25.8				0.0	27.5	27.6	17.4	0.0	0.0
Cycle Q Clear(g_c), s	17.1	22.9	25.8				0.0	27.5	27.6	17.4	0.0	0.0
Prop In Lane	1.00	22.9	1.00				0.00	21.5	0.19	1.00	0.0	0.00
Lane Grp Cap(c), veh/h		545	451				0.00	625	632	468	2336	0.00
V/C Ratio(X)	0.73	0.92	1.07				0.00	0.92	0.92	0.83	0.16	0.00
	498	0.92 545	451				0.00	625	632	468	2336	0.00
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.67	1.67	1.00
								1.00				
Upstream Filter(I)	1.00	1.00	1.00 32.1				0.00	28.0	1.00 28.1	0.55	0.55	0.00
Uniform Delay (d), s/vel		31.1					0.0			23.5	0.0	0.0
Incr Delay (d2), s/veh	4.9	20.3	62.8				0.0	20.5	20.5	6.6	0.1	0.0
Initial Q Delay(d3), s/ve		0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel		13.1	17.2				0.0	15.0	15.2	6.7	0.0	0.0
Unsig. Movement Delay			04.0				0.0	10 E	10 F	20.4	0.4	0.0
LnGrp Delay(d), s/veh	33.9	51.3	94.9				0.0	48.5	48.5	30.1	0.1	0.0
LnGrp LOS	С	D	F					D	D	С	A	
Approach Vol, veh/h		1349						1153			758	
Approach Delay, s/veh		62.2						48.5			15.5	
Approach LOS		E						D			В	
Timer - Assigned Phs		2			5	6		8				
Phs Duration (G+Y+Rc)), S	64.2			28.2	36.0		30.0				
Change Period (Y+Rc),		4.6			4.6	* 4.6		4.2				
Max Green Setting (Gm		55.4			20.3	* 31		25.8				
Max Q Clear Time (g_c		2.0			19.4	29.6		27.8				
Green Ext Time (p_c), s		1.1			0.0	0.8		0.0				
Intersection Summary												
HCM 7th Control Delay,	s/voh		46.5									
HCM 7th LOS	, 3/ VEIT		40.5 D									
			U									
Notes												

User approved volume balancing among the lanes for turning movement.

* HCM 7th computational engine requires equal clearance times for the phases crossing the barrier.

Year 2045 PM Bay-Hill Analysis 10:46 am 06/28/2024 Signal

Synchro 12 Report Page 2 6.3

Intersection

Int Delay, s/veh

Maximum		EDT					NDI	NDT			ODT	000	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		्रस्	1		- 4 >		ኘ	- † Þ			- †	1	
Traffic Vol, veh/h	49	2	38	4	1	59	4	988	9	92	787	112	
Future Vol, veh/h	49	2	38	4	1	59	4	988	9	92	787	112	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	0	-	-	-	50	-	-	50	-	0	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	52	2	40	4	1	62	4	1040	9	97	828	118	

Major/Minor	Minor2		l	Minor1			Major1		I	Major2			
Conflicting Flow All	1551	2080	828	2076	2193	525	946	0	0	1049	0	0	
Stage 1	1022	1022	-	1053	1053	-	-	-	-	-	-	-	
Stage 2	529	1058	-	1023	1140	-	-	-	-	-	-	-	
Critical Hdwy	7.33	6.53	6.23	7.33	6.53	6.93	4.13	-	-	4.13	-	-	
Critical Hdwy Stg 1	6.13	5.53	-	6.53	5.53	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.53	5.53	-	6.13	5.53	-	-	-	-	-	-	-	
Follow-up Hdwy	3.519	4.019	3.319	3.519	4.019	3.319	2.219	-	-	2.219	-	-	
Pot Cap-1 Maneuver	84	53	370	35	45	498	723	-	-	661	-	-	
Stage 1	284	312	-	243	302	-	-	-	-	-	-	-	
Stage 2	502	301	-	283	275	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	61	45	370	25	38	498	723	-	-	661	-	-	
Mov Cap-2 Maneuver	61	45	-	25	38	-	-	-	-	-	-	-	
Stage 1	242	267	-	241	300	-	-	-	-	-	-	-	
Stage 2	435	299	-	214	235	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Del	ay, s/ ∕19.07	29.77	0.04	1.06	
HCM LOS	F	D			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	EBLn2	WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	723	-	-	60	370	212	661	-	-	
HCM Lane V/C Ratio	0.006	-	-	0.889	0.108	0.318	0.147	-	-	
HCM Control Delay (s/veh)	10	-	-	195.9	15.9	29.8	11.4	-	-	
HCM Lane LOS	В	-	-	F	С	D	В	-	-	
HCM 95th %tile Q(veh)	0	-	-	4.1	0.4	1.3	0.5	-	-	

HCM 7th Signalized Intersection Summary 4: Bay Ave & Retail Dwy/Hill St

01/06/2025

	≯	+	\mathbf{F}	4	+	*	1	Ť	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		स	1				<u>۲</u>	ef 👘		<u>۲</u>	4	
Traffic Volume (veh/h)	92	45	84	22	33	192	46	717	34	146	634	49
Future Volume (veh/h)	92	45	84	22	33	192	46	717	34	146	634	49
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		0.99	1.00		0.96	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1811	1900	1900	1900	1856	1885	1870	1885	1767	1900	1856	1856
Adj Flow Rate, veh/h	97	47	88	23	35	202	48	755	36	154	667	52
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	6	0	0	0	3	1	2	1	9	0	3	3
Cap, veh/h	200	82	380	63	56	230	76	837	40	191	904	70
Arrive On Green	0.24	0.24	0.24	0.24	0.24	0.24	0.04	0.47	0.47	0.11	0.53	0.53
Sat Flow, veh/h	490	341	1573	41	233	952	1781	1781	85	1810	1695	132
Grp Volume(v), veh/h	144	0	88	260	0	0	48	0	791	154	0	719
Grp Sat Flow(s),veh/h/ln	831	0	1573	1225	0	0	1781	0	1866	1810	0	1828
Q Serve(g_s), s	0.0	0.0	3.3	3.2	0.0	0.0	2.0	0.0	28.8	6.1	0.0	22.4
Cycle Q Clear(g_c), s	12.6	0.0	3.3	15.8	0.0	0.0	2.0	0.0	28.8	6.1	0.0	22.4
Prop In Lane	0.67	0.0	1.00	0.09	0.0	0.78	1.00	0.0	0.05	1.00	0.0	0.07
Lane Grp Cap(c), veh/h	282	0	380	349	0	0	76	0	876	191	0	974
V/C Ratio(X)	0.51	0.00	0.23	0.74	0.00	0.00	0.64	0.00	0.90	0.80	0.00	0.74
Avail Cap(c_a), veh/h	287	0	386	355	0	0	123	0	1003	213	0	1072
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	25.4	0.0	22.5	26.3	0.0	0.0	34.8	0.0	18.0	32.3	0.0	13.3
Incr Delay (d2), s/veh	1.4	0.0	0.3	8.2	0.0	0.0	8.5	0.0	10.3	18.1	0.0	2.5
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.4	0.0	1.2	5.1	0.0	0.0	1.0	0.0	13.8	3.6	0.0	8.9
Unsig. Movement Delay, s/veh		0.0	1.2	0.1	0.0	0.0	1.0	0.0	10.0	0.0	0.0	0.0
LnGrp Delay(d), s/veh	26.8	0.0	22.8	34.4	0.0	0.0	43.3	0.0	28.3	50.4	0.0	15.7
LnGrp LOS	20.0 C	0.0	22.0 C	н.но С	0.0	0.0	40.0 D	0.0	20.0 C	50.4 D	0.0	B
Approach Vol, veh/h	0	232	0	0	260			839	0		873	
Approach Delay, s/veh Approach LOS		25.3 C			34.4 C			29.2 C			21.8 C	
					U						U	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	12.3	39.2		22.3	7.6	43.9		22.3				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	8.7	39.7		18.1	5.1	43.3		18.1				
Max Q Clear Time (g_c+I1), s	8.1	30.8		14.6	4.0	24.4		17.8				
Green Ext Time (p_c), s	0.0	3.9		0.4	0.0	5.3		0.1				
Intersection Summary												
HCM 7th Control Delay, s/veh			26.5									
HCM 7th LOS			С									

Item 7	' B.
--------	------

01/06/2025

	۶	+	*	4	Ł	€	•	1	۲	1	ŧ	∢
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्च	1		4		۲.	ef -			र्च	1
Traffic Volume (veh/h)	190	63	8	17	65	73	29	200	23	61	337	171
Future Volume (veh/h)	190	63	8	17	65	73	29	200	23	61	337	171
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	0.99		0.98	0.99		0.98	0.99		0.98	0.99		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Nork Zone On Approac	h	No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	200	66	8	18	68	77	31	211	24	64	355	180
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	528	125	448	172	230	228	437	627	71	212	614	- 594
Arrive On Green	0.29	0.29	0.29	0.29	0.29	0.29	0.38	0.38	0.38	0.38	0.38	0.38
Sat Flow, veh/h	1029	433	1558	86	798	791	865	1646	187	156	1613	1560
Grp Volume(v), veh/h	266	0	8	163	0	0	31	0	235	419	0	180
Grp Sat Flow(s), veh/h/lr		0	1558	1675	0	0	865	0	1833	1769	0	1560
Q Serve(g_s), s	1.9	0.0	0.1	0.0	0.0	0.0	0.8	0.0	2.5	0.8	0.0	2.2
Cycle Q Clear(g_c), s	3.9	0.0	0.1	2.0	0.0	0.0	5.8	0.0	2.5	4.9	0.0	2.2
Prop In Lane	0.75	0.0	1.00	0.11	0.0	0.47	1.00	0.0	0.10	0.15	0.0	1.00
Lane Grp Cap(c), veh/h		0	448	629	0	0.47	437	0	698	827	0	594
V/C Ratio(X)	0.41	0.00	0.02	0.26	0.00	0.00	0.07	0.00	0.34	0.51	0.00	0.30
Avail Cap(c_a), veh/h	1156	0.00	1032	1243	0.00	0.00	681	0.00	1215	1306	0.00	1034
HCM Platoon Ratio	1.00	1.00	1.00	1243	1.00	1.00	1.00	1.00	1215	1.00	1.00	1.00
	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Jpstream Filter(I)								0.00	6.0	6.7	0.00	5.9
Jniform Delay (d), s/vel		0.0	6.9	7.6	0.0	0.0	9.0					
Incr Delay (d2), s/veh	0.4	0.0	0.0	0.2	0.0	0.0	0.1	0.0	0.3	0.5	0.0	0.3
Initial Q Delay(d3), s/vel		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh		0.0	0.0	0.5	0.0	0.0	0.1	0.0	0.6	1.2	0.0	0.5
Jnsig. Movement Delay			6.0	7.0	0.0	0.0	0.4	0.0	6.0	70	0.0	0.0
nGrp Delay(d), s/veh	8.6	0.0	6.9	7.8	0.0	0.0	9.1	0.0	6.3	7.2	0.0	6.2
InGrp LOS	A	074	A	А	400		A	000	A	A	500	A
Approach Vol, veh/h		274			163			266			599	
Approach Delay, s/veh		8.5			7.8			6.6			6.9	
Approach LOS		A			A			А			А	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc)	, S	14.8		12.3		14.8		12.3				
Change Period (Y+Rc),	S	4.5		4.5		4.5		4.5				
Max Green Setting (Gm		18.0		18.0		18.0		18.0				
Max Q Clear Time (g_c·	+l1), s	7.8		5.9		6.9		4.0				
Green Ext Time (p_c), s		1.1		1.4		2.7		0.7				
ntersection Summary												
CM 7th Control Delay,	s/voh		7.3									
HCM 7th LOS	3/ VEII		7.3 A									

Year 2045 PM Bay-Hill Analysis 10:46 am 06/28/2024 Signal

	•	€	Ť	1	1	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		f,			र्स
Traffic Volume (veh/h)	35	104	305	85	304	251
Future Volume (veh/h)	35	104	305	85	304	251
Initial Q (Qb), veh	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac			No			No
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	37	109	321	89	320	264
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	48	141	879	244	510	378
Arrive On Green	0.12	0.12	0.62	0.62	0.62	0.62
Sat Flow, veh/h	411	1210	1409	391	561	605
Grp Volume(v), veh/h	147	0	0	410	584	0
Grp Sat Flow(s),veh/h/l	n1632	0	0	1800	1166	0
Q Serve(g_s), s	3.0	0.0	0.0	3.9	10.3	0.0
Cycle Q Clear(g_c), s	3.0	0.0	0.0	3.9	14.1	0.0
Prop In Lane	0.25	0.74		0.22	0.55	
Lane Grp Cap(c), veh/h		0	0	1123	888	0
V/C Ratio(X)	0.77	0.00	0.00	0.36	0.66	0.00
Avail Cap(c_a), veh/h	845	0	0	2487	1831	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/ve		0.0	0.0	3.2	5.4	0.0
Incr Delay (d2), s/veh	6.4	0.0	0.0	0.2	0.8	0.0
Initial Q Delay(d3), s/ven		0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),ve		0.0	0.0	0.0	0.0	0.0
Unsig. Movement Delay			0.0	U. T	0.0	0.0
LnGrp Delay(d), s/veh	•	0.0	0.0	3.4	6.2	0.0
LnGrp LOS	21.3 C	0.0	0.0	3.4 A	0.2 A	0.0
	-		440	A	A	E0 /
Approach Vol, veh/h	147		410			584
Approach Delay, s/veh			3.4			6.2
Approach LOS	С		A			A
Timer - Assigned Phs		2				6
Phs Duration (G+Y+Rc), s	26.2				26.2
Change Period (Y+Rc),		4.5				4.5
Max Green Setting (Gr		48.0				48.0
Max Q Clear Time (g_c		5.9				16.1
Green Ext Time (p_c),		2.9				5.6
Intersection Summary						
HCM 7th Control Delay	s/veh		7.1			
HCM 7th LOS	, 5/ VEI I		7.1 A			
			A			

Year 2045 PM Bay-Hill Analysis 10:46 am 06/28/2024 Signal

01/06/2025

	۶	→	\mathbf{v}	4	+	*	•	t	~	\mathbf{k}	ţ	∢
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्च	1		र्च	1
Traffic Volume (veh/h)	5	3	3	203	3	237	1	148	619	202	83	1
Future Volume (veh/h)	5	3	3	203	3	237	1	148	619	202	83	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	5	3	3	214	3	249	1	156	652	213	87	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	315	188	142	351	27	290	87	800	679	368	127	679
Arrive On Green	0.36	0.36	0.36	0.36	0.36	0.36	0.43	0.43	0.43	0.43	0.43	0.43
Sat Flow, veh/h	533	525	397	632	75	811	2	1868	1585	516	296	1585
Grp Volume(v), veh/h	11	0	0	466	0	0	157	0	652	300	230	1303
		0	0	400 1518	0	0	1870	0	652 1585	300 812	0	1585
Grp Sat Flow(s), veh/h/ln	0.0	0.0	0.0	10.7	0.0	0.0	0.0	0.0	1565	12.0	0.0	0.0
Q Serve(g_s), s												
Cycle Q Clear(g_c), s	0.2	0.0	0.0	11.9	0.0	0.0	2.2	0.0	16.8	14.2	0.0	0.0
Prop In Lane	0.45	0	0.27	0.46	0	0.53	0.01	0	1.00	0.71	0	1.00
Lane Grp Cap(c), veh/h		0	0	667	0	0	887	0	679	494	0	679
V/C Ratio(X)	0.02	0.00	0.00	0.70	0.00	0.00	0.18	0.00	0.96	0.61	0.00	0.00
Avail Cap(c_a), veh/h	743	0	0	774	0	0	887	0	679	494	0	679
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh		0.0	0.0	12.4	0.0	0.0	7.5	0.0	11.7	11.0	0.0	6.9
Incr Delay (d2), s/veh	0.0	0.0	0.0	2.3	0.0	0.0	0.1	0.0	25.0	2.1	0.0	0.0
Initial Q Delay(d3), s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh		0.0	0.0	3.5	0.0	0.0	0.7	0.0	8.9	2.1	0.0	0.0
Unsig. Movement Delay												
LnGrp Delay(d), s/veh	8.7	0.0	0.0	14.7	0.0	0.0	7.6	0.0	36.6	13.1	0.0	6.9
LnGrp LOS	Α			В			A		D	В		Α
Approach Vol, veh/h		11			466			809			301	
Approach Delay, s/veh		8.7			14.7			31.0			13.1	
Approach LOS		А			В			С			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc),		22.5		19.5		22.5		19.5				
Change Period (Y+Rc),	S	4.5		4.5		4.5		4.5				
Max Green Setting (Gma	ax), s	18.0		18.0		18.0		18.0				
Max Q Clear Time (g_c+		18.8		2.2		16.2		13.9				
Green Ext Time (p_c), s		0.0		0.0		0.5		1.2				
Intersection Summary												
HCM 7th Control Delay,	s/veh		22.7									
HCM 7th LOS			С									

Item 7 B.

01/06/2025

Arterial Level of Service: NB Bay Ave

Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Capitola Ave	IV	25	36.4	9.9	46.3	0.22	17.1	С
Hill St	IV	25	36.2	12.0	48.2	0.22	16.4	С
Hwy 1 SB Off-Ramp	IV	25	24.9	19.5	44.4	0.14	11.2	D
Hwy 1 NB Off-Ramp	IV	25	16.0	3.0	19.0	0.06	11.4	D
Total	IV		113.5	44.4	157.9	0.64	14.5	С

Arterial Level of Service: SB Bay Ave

Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Hwy 1 NB Off-Ramp	IV	25	21.0	12.2	33.2	0.10	10.3	D
Hwy 1 SB Off-Ramp	IV	25	16.0	5.0	21.0	0.06	10.3	D
Retail Dwy	IV	25	24.9	12.2	37.1	0.14	13.4	С
Capitola Ave	IV	25	36.2	10.3	46.5	0.22	17.0	С
Monterey Ave	IV	25	36.4	18.3	54.7	0.22	14.5	С
Total	IV		134.5	58.0	192.5	0.73	13.7	С

Arterial Level of Service: NB Monterey Ave

Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Park Ave	IV	25	19.0	16.9	35.9	0.09	8.6	E
Monterey Ave	IV	25	14.9	0.0	14.9	0.06	13.6	С
Total	IV		33.9	16.9	50.8	0.14	10.1	D

	Arterial	Flow	Running	Signal	Travel	Dist	Arterial	Arterial
Cross Street	Class	Speed	Time	Delay	Time (s)	(mi)	Speed	LOS
Bay Ave	IV	25	19.8	12.1	31.9	0.09	10.2	D
Park Ave	IV	25	14.9	19.4	34.3	0.06	5.9	F
Total	IV		34.7	31.5	66.2	0.15	8.0	E

01/06/2025

Arterial Level of Service: NB Bay Ave

Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Capitola Ave	IV	25	36.4	6.8	43.2	0.22	18.4	С
Hill St	IV	25	36.2	15.5	51.7	0.22	15.3	С
Hwy 1 SB Off-Ramp	IV	25	24.9	17.8	42.7	0.14	11.7	D
Hwy 1 NB Off-Ramp	IV	25	16.0	2.5	18.5	0.06	11.7	D
Total	IV		113.5	42.6	156.1	0.64	14.7	С

Arterial Level of Service: SB Bay Ave

	Arterial	Flow	Running	Signal	Travel	Dist	Arterial	Arterial
Cross Street	Class	Speed	Time	Delay	Time (s)	(mi)	Speed	LOS
Hwy 1 NB Off-Ramp	IV	25	21.0	13.6	34.6	0.10	9.9	D
Hwy 1 SB Off-Ramp	IV	25	16.0	5.6	21.6	0.06	10.0	D
Retail Dwy	IV	25	24.9	16.6	41.5	0.14	12.0	D
Capitola Ave	IV	25	36.2	9.3	45.5	0.22	17.3	С
Monterey Ave	IV	25	36.4	7.8	44.2	0.22	18.0	С
Total	IV		134.5	52.9	187.4	0.73	14.1	С

Arterial Level of Service: NB Monterey Ave

Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Park Ave	IV	25	19.0	8.5	27.5	0.09	11.3	D
Monterey Ave	IV	25	14.9	0.0	14.9	0.06	13.6	С
Total	IV		33.9	8.5	42.4	0.14	12.1	D

Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Bay Ave	IV	25	19.8	9.8	29.6	0.09	11.0	D
Park Ave	IV	25	14.9	9.2	24.1	0.06	8.4	E
Total	IV		34.7	19.0	53.7	0.15	9.8	D

Arterial Level of Service: NB Bay Ave

Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Capitola Ave	IV	25	36.4	8.7	45.1	0.22	17.6	С
Hill St	IV	25	36.2	9.5	45.7	0.22	17.3	С
	IV	25	24.9	14.4	39.3	0.14	12.7	D
Hwy 1 NB Off-Ramp	IV	25	16.0	1.3	17.3	0.06	12.5	D
Total	IV		113.5	33.9	147.4	0.64	15.6	С

Arterial Level of Service: SB Bay Ave

Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
	IV	25	21.0	9.9	30.9	0.10	11.1	D
Hwy 1 SB Off-Ramp	IV	25	16.0	2.6	18.6	0.06	11.7	D
Retail Dwy	IV	25	24.9	13.1	38.0	0.14	13.1	С
Capitola Ave	IV	25	36.2	9.0	45.2	0.22	17.5	С
Monterey Ave	IV	25	36.4	14.5	50.9	0.22	15.6	С
Total	IV		134.5	49.1	183.6	0.73	14.4	С

Arterial Level of Service: NB Monterey Ave

Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Park Ave	IV	25	19.0	13.3	32.3	0.09	9.6	D
Monterey Ave	IV	25	14.9	0.0	14.9	0.06	13.6	С
Total	IV		33.9	13.3	47.2	0.14	10.9	D

	Arterial	Flow	Running	Signal	Travel	Dist	Arterial	Arterial
Cross Street	Class	Speed	Time	Delay	Time (s)	(mi)	Speed	LOS
Bay Ave	IV	25	19.8	10.3	30.1	0.09	10.8	D
Park Ave	IV	25	14.9	26.9	41.8	0.06	4.8	F
Total	IV		34.7	37.2	71.9	0.15	7.3	E

Arterial Level of Service: NB Bay Ave

Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Capitola Ave	IV	25	36.4	8.4	44.8	0.22	17.7	С
Hill St	IV	25	36.2	31.8	68.0	0.22	11.6	D
Hwy 1 SB Off-Ramp	IV	25	24.9	43.2	68.1	0.14	7.3	E
Hwy 1 NB Off-Ramp	IV	25	16.0	3.5	19.5	0.06	11.1	D
Total	IV		113.5	86.9	200.4	0.64	11.5	D

Arterial Level of Service: SB Bay Ave

Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Hwy 1 NB Off-Ramp	IV	25	21.0	36.7	57.7	0.10	5.9	F
Hwy 1 SB Off-Ramp	IV	25	16.0	1.2	17.2	0.06	12.6	D
Retail Dwy	IV	25	24.9	15.8	40.7	0.14	12.2	D
Capitola Ave	IV	25	36.2	11.1	47.3	0.22	16.7	С
Monterey Ave	IV	25	36.4	9.4	45.8	0.22	17.3	С
Total	IV		134.5	74.2	208.7	0.73	12.6	D

Arterial Level of Service: NB Monterey Ave

Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Park Ave	IV	25	19.0	9.7	28.7	0.09	10.8	D
Monterey Ave	IV	25	14.9	0.0	14.9	0.06	13.6	С
Total	IV		33.9	9.7	43.6	0.14	11.8	D

	Arterial	Flow	Running	Signal	Travel	Dist	Arterial	Arterial
Cross Street	Class	Speed	Time	Delay	Time (s)	(mi)	Speed	LOS
Bay Ave	IV	25	19.8	14.5	34.3	0.09	9.5	D
Park Ave	IV	25	14.9	17.4	32.3	0.06	6.3	F
Total	IV		34.7	31.9	66.6	0.15	7.9	E

Attachment E – Existing Intersection Observed Driver Behavior at Bay/Capitola Technical Memo

DRAFT TECHNICAL MEMORANDUM

RE: Capitola Avenue at Bay Avenue - Existing Intersection Observed Driver Behavior

- From: Sean Houck, P.E, Kimley-Horn Derek Wu P.E, Kimley-Horn
- To: Kailash Mozumder, City of Capitola

Date: July 23, 2024

This document as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

INTRODUCTION

This Technical Memorandum evaluates vehicle navigation and observes driver behavior at the intersection of Capitola Avenue and Bay Avenue (study intersection) in Capitola, California. The existing, four-leg intersection currently operates as an all-way stop-controlled (AWSC) intersection. The intersection was evaluated using aerial video collected by drone and processed using video analytics (VA). VA is the process of applying artificial intelligence (AI) to define vehicle kinematics in the video for the purpose of extracting time-spatial data, applying prediction kinematic models, and visualizing driver behavior trends. VA were used in this study to evaluate:

- Stopping Rate
- Measured Speed
- Deceleration Rate
- Near Miss Collisions Vehicles, Pedestrians, and Bicyclists

The study intersection is shown below in Figure 1.

Figure 1: Study Location

EXISTING CONDITIONS

Capitola Avenue is a two-lane, north-south roadway with a posted speed limit of 25 miles per hour (mph). Capitola Avenue is classified as an arterial south of Bay Avenue and a collector north of Bay Avenue. The northbound approach has a dedicated right-turn lane and a shared left-turn/through lane. The southbound approach has a shared left/through/right-turn lane. Bay Avenue is a two-lane, east-west arterial with a posted speed limit of 25 mph. There is a two-way left-turn lane west of the intersection. The eastbound approach consists of a dedicated right-turn lane and shared left-turn/through lane. The westbound approach consists of a dedicated left-turn lane and a shared left-turn lane.

There are crosswalks and sidewalks located along all legs of the intersection. There are Class II bike lanes along the western leg of Bay Avenue. The north, east, and south legs have Class III bike routes in which bicyclists share the road with the vehicles. There are two (2) schools located within a half-mile radius of the study intersection including one elementary and one middle school.

DATA COLLECTION

Data collection occurred at the study intersection using drone imagery, on May 16th, 2024, during the following time periods:

- AM peak hour/school drop-off
- PM school pick-up
- PM peak hour
- PM evening off-peak

The data collection start and end times of each captured video is identified in Table 1.

Video	Peak Hour	Peak Hour Start Time	
1	AM Peak/School Drop-off	7:50 AM	8:40 AM
2	PM School Pick-up	2:45 PM	3:30 PM
3	PM Peak	3:55 PM	4:45 PM
4	PM Evening Off-Peak	7:05 PM	7:35 PM

Table 1: Video Times

EXISTING CONDITIONS ASSESSMENT

Drone videos were processed using pixel tracing software which identifies and measures vehicle movement as shown in **Figure 2**. The focus of this assessment was to identify the following of the observed vehicles:

- Deceleration speeds approaching the stop signs
- Heavy braking
- Interaction with other vehicles and pedestrians/bicyclists

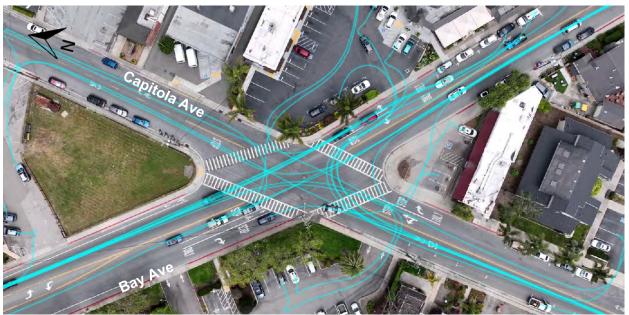


Figure 2: Pixel Tracing Software for PM School Pick-up Video

Stopping Rate

Traffic regions were created at each approach to measure the minimum speed of each vehicle before entering the intersection. See **Figure 3** for the location of the traffic regions.

Figure 3: Speed Measurement Gates

The vehicle speed analysis may vary by 0.5 mph or less as compared to actual speeds, therefore the criteria for making a complete stop was determined to be vehicles traveling between 0 and 1 mph. Vehicles traveling at a speed of 0 to 1 mph within the traffic regions identified in **Figure 3** meet the criteria for vehicles making a complete stop. **Table 2** through **Table 6** summarize the number of vehicles that met the complete stop criteria along each intersection approach for each observed period.

	All Observed Periods									
Approach	Total Number of	Criteria Met	Criteria Not Met							
Approach	Vehicles	Vehicle Count	Vehicle Count	Percentage						
NB	405	217	188	46.4%						
WB	907	342	565	62.3%						
SB	270	109	161	59.6%						
EB	1227	413	814	66.3%						

Table 2: Intersection Stopping Rate

Table 3: AM Peak/School Drop-off Stopping Rate

	AM Peak/School Drop-off Period									
Approach	AM Peak Number of	Criteria Met	Criteria N	lot Met						
Арргоасн	Vehicles	Vehicle Count	Vehicle Count	Percentage						
NB	81	36	45	55.6%						
WB	331	104	227	68.6%						
SB	85	37	48	56.5%						
EB	333	95	238	71.5%						

Table 4: PM School Pick-up Stopping Rate

	PM School Pick-up Period									
Approach	School Pick-up	Criteria Met	Criteria Not Met							
Approach	Number of Vehicles	Vehicle Count	Vehicle Count	Percentage						
NB	160	104	56	35.0%						
WB	300	145	155	51.7%						
SB	71	36	35	49.3%						
EB	395	171	224	56.7%						

Table 5: PM Peak Stopping Rate

	PM Peak Period									
Approach	PM Peak Number of	Criteria Met	Criteria Not Met							
Approach	Vehicles	Vehicle Count	Vehicle Count	Percentage						
NB	116	61	55	47.4%						
WB	215	76	139	64.7%						
SB	80	32	48	60.0%						
EB	378	123	255	67.5%						

PM Evening Off-Peak Period									
Approach	PM Off-Peak	Criteria Met	Criteria Not Met						
Арргоасп	Number of Vehicles	Vehicle Count	Vehicle Count	Percentage					
NB	48	16	32	66.7%					
WB	61	17	44	72.1%					
SB	34	4	30	88.2%					
EB	121	24	97	80.2%					

Table 6: PM Evening Off-Peak Stopping Rate

The tables above summarize approaching vehicles that did and did not meet the criteria of traveling 0 to 1 mph. The tables identify the percentage of vehicles not making a complete stop at the intersection along each directional approach. The PM evening off-peak period had the highest recorded percentage of 66.3% of vehicles not making a complete stop.

Measured Vehicle Speed

Vehicle speeds within the designated traffic regions were further analyzed to capture the maximum and 85th percentile speed entering the region. These speeds are summarized below in **Table 7** for each studied time period combined. The vehicle speeds were further reviewed for each studied time period by directional approach and are graphically shown in **Figure 4** through **Figure 11**.

Table 7: Total	Intersection Measured	Vehicle Speed	

	/ / / / Otal /			1011101	0 00000				
All Obs	erved Periods	AM Peak/ S	chool Drop-offPeriods	PM Scho	ol Pick-up Period	PM P	eak Period	PM Evenir	ng Off-Peak Period
Speed	Total Vehicles	Speed	Total Vehicles	Speed	Total Vehicles	Speed	Total Vehicles	Speed	Total Vehicles
0	235	0	65	0	127	0	39	0	4
2	1088	2	313	2	405	2	307	2	63
4	932	4	299	4	267	4	267	4	99
6	358	6	94	6	76	6	124	6	64
8	113	8	28	8	31	8	32	8	22
10	32	10	10	10	10	10	8	10	4
12	22	12	9	12	4	12	7	12	2
14	15	14	4	14	3	14	3	14	5
16	8	16	3	16	3	16	2	16	0
18	6	18	5	18	0	18	0	18	1
				Max	Speed				
19.223969 19.223969		19.223969	17.837877		17.749456		18.966279		
				85th Pe	ercentile				
6.5047956 6.4144871			5.	.86448425	6.	7806282	7	.5144739	

Item 7 B.

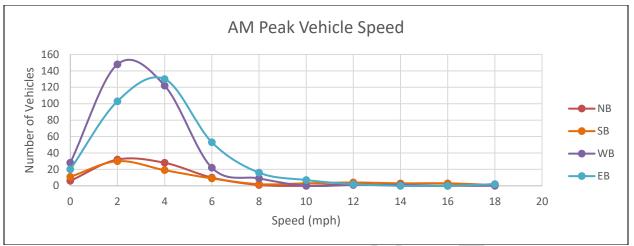


Figure 4: Vehicle Speed per Approach (AM Peak/School Drop-off)

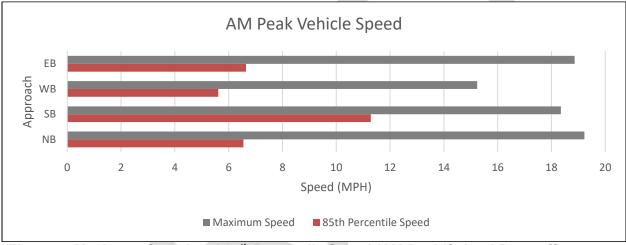


Figure 5: Maximum Speed and 85th Percentile Speed (AM Peak/School Drop-off)

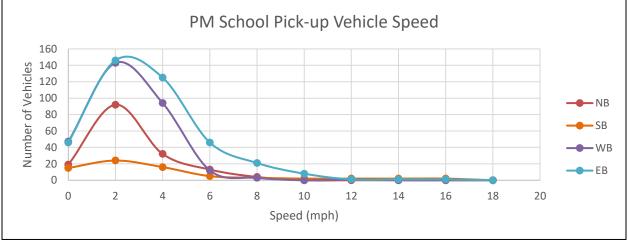


Figure 6: Vehicle Speed per Approach (PM School Pick-up)

Item 7 B.

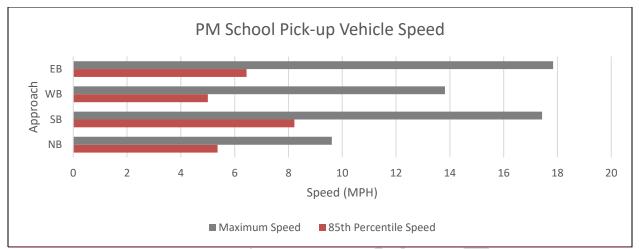


Figure 7: Maximum Speed and 85th Percentile Speed (PM School Pick-up)

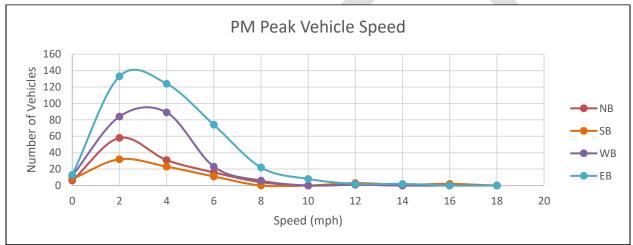


Figure 8: Vehicle Speed per Approach (PM Peak)

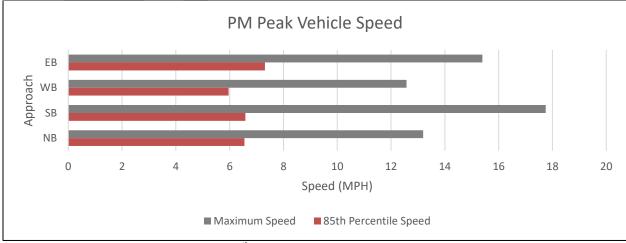


Figure 9: Maximum Speed and 85th Percentile Speed (PM Peak)

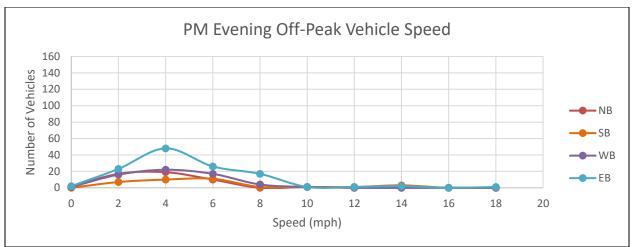


Figure 10: Vehicle Speed per Approach (PM Evening Off-Peak)

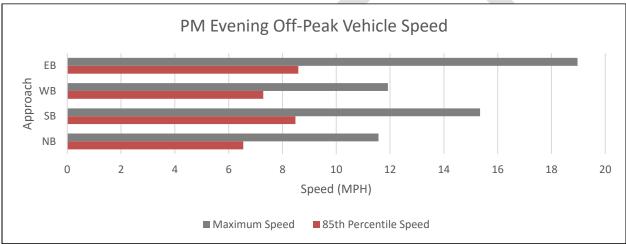


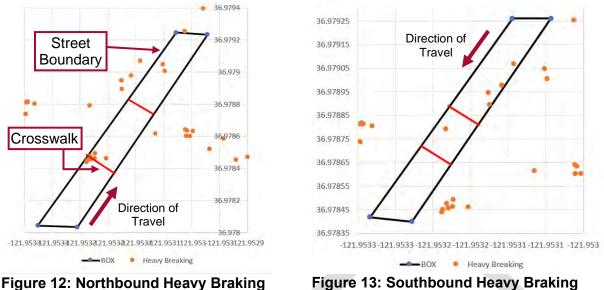
Figure 11: Maximum Speed and 85th Percentile Speed (PM Evening Off-Peak)

The table and figures above portray the number of approaching vehicles and vehicle speeds within the approach regions. The percentage of vehicles within the 2 to 6 mph category was 72%, which indicates that majority of vehicles do not meet the complete stop criteria. Furthermore, six (6) vehicles were driving at a speed greater than 18 mph during the AM peak and PM evening off-peak periods.

Deceleration Rate

VA was used to identify vehicles decelerating at a rate equal to or greater than 10 ft/s². Vehicles decelerating at or above this criteria were classified as Heavy Braking. An example of an observed heavy braking incident was vehicle id 293 shown in **Figure 16**. The vehicle approached the intersection at a recorded speed of 28 mph and decelerated to nearly 0 mph in under 5 seconds resulting in a deceleration rate of 13 ft/s². **Figure 17** illustrates the rapid deceleration of the vehicle over the short period of time.

Figure 16:Heavy Braking


Figure 17: Car Deceleration

The number of vehicles identified as meeting the heavy braking criteria are summarized in **Table 8** below.

	AM Peak/Sch				PM Schoo	ol Pick-up	
		Vehicles				Vehicles	
Approach	Heavy Braking	Total	% Heavy Braking	Approach	Heavy Braking	Total	% Heavy Braking
NB	14	81	17.3%	NB	3	160	1.9%
WB	41	331	12.4%	WB	16	300	5.3%
SB	6	85	7.1%	SB	4	71	5.6%
EB	36	333	10.8%	EB	14	395	3.5%
PM Peak				PM Evenin	g Off-Peak		
	Vehicl				Vehicles		
Approach	Heavy Braking	Total	% Heavy Braking	Approach	Heavy Braking	Total	% Heavy Braking
NB	7	116	6.0%	NB	3	48	6.3%
WB	6	215	2.8%	WB	8	61	13.1%
SB	3	80	3.8%	SB	2	34	5.9%
EB	23	378	6.1%	EB	14	121	11.6%
			All Observ	ed Periods			
Appr	aach			Vehi	icles		
Appr	Uden	Heavy	Braking	То	tal	% Heavy	/ Braking
N	В	2	7	4()5	6.	7%
W	/B	7	1	907		7.8%	
S	В	1	5	270		5.6%	
EB		8	7	1227		7.1%	

Table 8: Heavy Braking Summary

Figure 12 through **Figure 15** illustrate the vehicle position and direction of travel of each identified heavy braking incident. Approach and departure crosswalks are identified to reference the vehicle position.

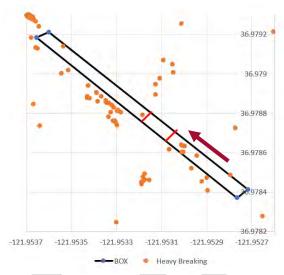


Figure 14: Westbound Heavy Braking

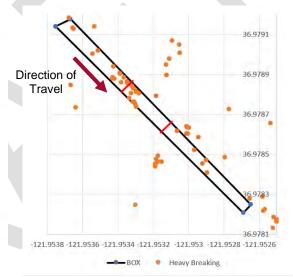
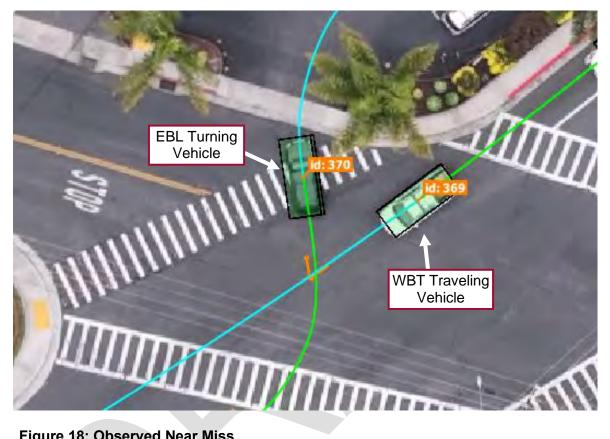



Figure 15: Eastbound Heavy Braking

The table and figures above portray the number of vehicles heavy braking along each approach of the intersection. The figures identify where the 200 recorded heavy braking occurrences, over all observed time periods, happened relative to the crosswalk. Of the observed 200 heavy braking incidents, approximately 43.5% of them occurred along the eastbound directional approach.

Near Miss Collisions

Post encroachment time (PET) is the time it takes for an object to leave a point that a second object reaches. A near-miss collision occurs when the PET is equal to or less than 1.5 seconds. Figure 18 shows an example of a near-miss occurrence. Vehicle id 370 makes an eastbound leftturn movement while vehicle id 369 travels westbound, reaching the same point of the left-turning vehicle in 1.5 seconds.

Figure 18: Observed Near Miss

Table 9: Recorded Near Misses		
Time	Number of PET ≤ 1.5	
AM Peak/School Drop-off	13	
PM School Pick-up	10	
PM Peak	10	
PM Evening Off-Peak	2	
Total	35	

Table 10: Direction of Travel for Near Misses

Directions	Number of PET	Percentage
WBT/EBL	23	65.7%
EBT/WBL	6	17.1%
NBL/EBL	3	8.6%
WBR/EBL	2	5.7%
NBL/EBR	1	2.9%

The tables above summarize the number of near miss collisions and their direction of travel during each observed time period. Of the total recorded 35 near miss collisions, approximately 65.7% of them occurred between vehicles making the eastbound left-turning movement and westbound vehicles traveling through the intersection (WBT/EBL).

CONCLUSION

Kimley Horn conducted a study on the way drivers interact with the AWSC intersection of Capitola Avenue and Bay Avenue in the city of Capitola. Driver behavior was evaluated using aerial video collected by drone and processed using VA to document the following:

- 1. Stopping Rate
 - a. The highest rate of vehicles not making a complete stop within the region was during the PM evening off-peak period.
 - b. The eastbound approach trended higher rates of not making a complete stop compared to the other approaches.
- 2. Measured Vehicle Speed

i.

- a. The maximum speed was approximately 19 mph.
- b. 85th percentile speed was approximately 7.5 mph.
 - i. The eastbound and southbound approaches saw the highest 85th percentile speeds during all observed time periods.
- 3. Deceleration Rate
 - a. The percentage identified as heavy braking was 7.1% of all observed vehicles during all observed periods.
 - b. The highest rate of heavy braking occurred during the AM peak/school drop-off period.
 - c. The highest rate of heavy braking occurred along the eastbound approach accounting for 43.5% of the total heavy braking incidents.
- 4. Near Miss Collisions Vehicles, Pedestrians, and Bicyclists
 - a. A total of 35 near misses were recorded during the observed time periods.
 - Conflict occurrences between vehicles making an eastbound left-turning movement and westbound vehicles traveling through the intersection accounted for 65.7% of recorded near misses.
 - b. There were no observed occurrences of a near miss between a vehicle and a bicyclist or pedestrian.

Bay Avenue Corridor Study

City Council February 27, 2024

Bay Avenue Corridor Study **Background and Purpose**

Evaluates long-term improvements

- Highway 1
- Hill Street
- Monterey Avenue
- Crossroads Loop
- Capitola Avenue
- Park Avenue

Goals

- Enhance multimodal safety
- Manage traffic flow
- Improve community livability

Integrates Past Initiatives

- 2024 Bay/Hill Quick Build
- Roundabout at Capitola Avenue

Bay Avenue Corridor Study **Recommended Action**

01

Confirm the preferred longterm improvements for the Bay Avenue corridor

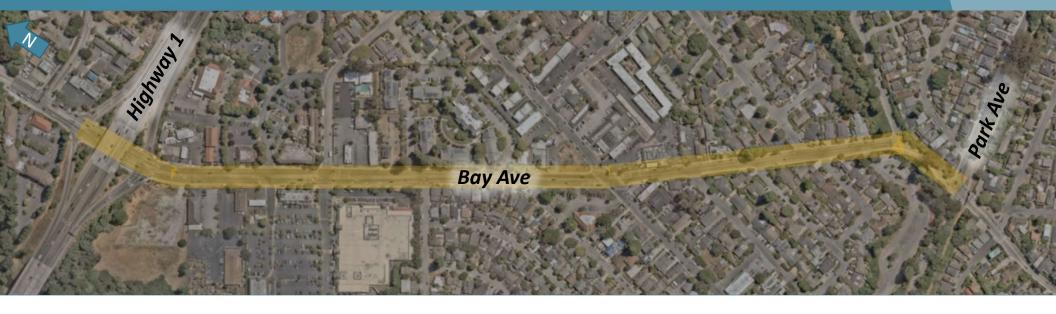
02

Move forward with public engagement and refine the conceptual design

03

Seek grant funding for the final design and construction phases

Bay Avenue Corridor Study


City Council February 2025

Kimley **»Horn**

Item 7 B.

What is a Corridor Study?

A planning study used to assess current and future needs of a transportation route to improve mobility, safety, operations, and economic development for all users.

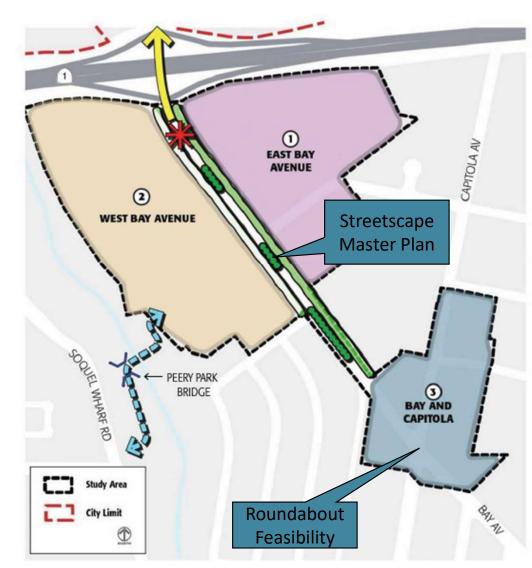
Bay Avenue Corridor Study Objectives

Determine feasible long-term improvements for the Bay Avenue corridor between Highway 1 and Park Avenue

- 1. Enhance access and safety for all users including vehicles, pedestrians, and cyclists
- 2. Maintain acceptable traffic operations along the corridor
- 3. Compliment the Bay Avenue Vision, mobility, and economic goals in the Capitola General Plan
- 4. Prepare a long-term plan to pursue grant funding opportunities

Corridor Study Overview

- 1. Project Background
- 2. Existing Conditions & Traffic Data
- 3. Corridor Alternatives & Multimodal Improvements
- 4. Corridor Analysis Results
- 5. Next Steps & Action Items


1. Project Background

357

Capitola General Plan

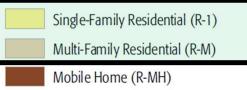
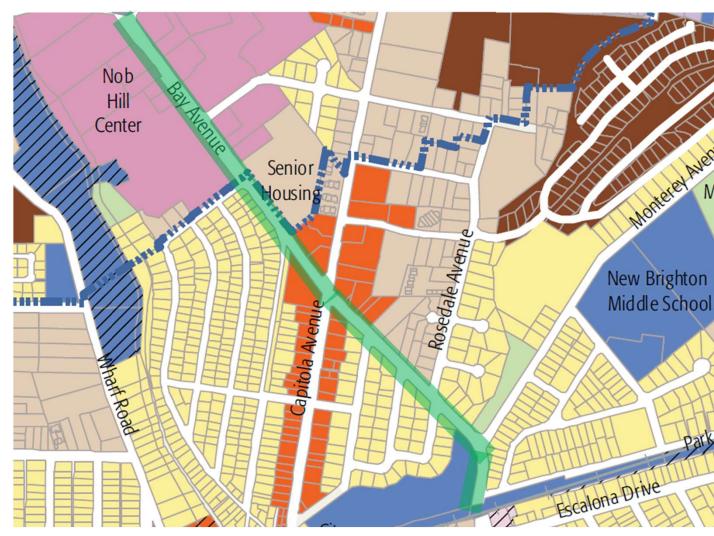

- Goal LU-10:
 - Maintain and enhance Bay Avenue commercial district as a thriving destination with businesses that serve Capitola residents and visitors.
- Goal MO-4:
 - Provide a roadway system that enhances community aesthetics and promotes a high quality of life

FIGURE LU-7 BAY AVENUE VISION

Capitola Land Use Map

Mixed-Use Designations

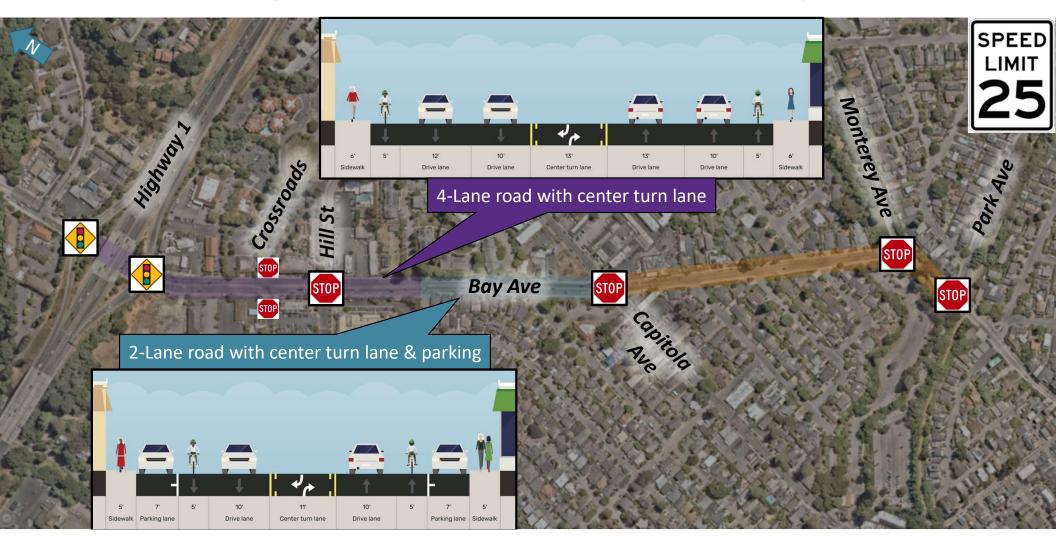

Village Mixed-Use (MU-V)
Neighborhood Mixed-Use (MU-N)

Other Designations

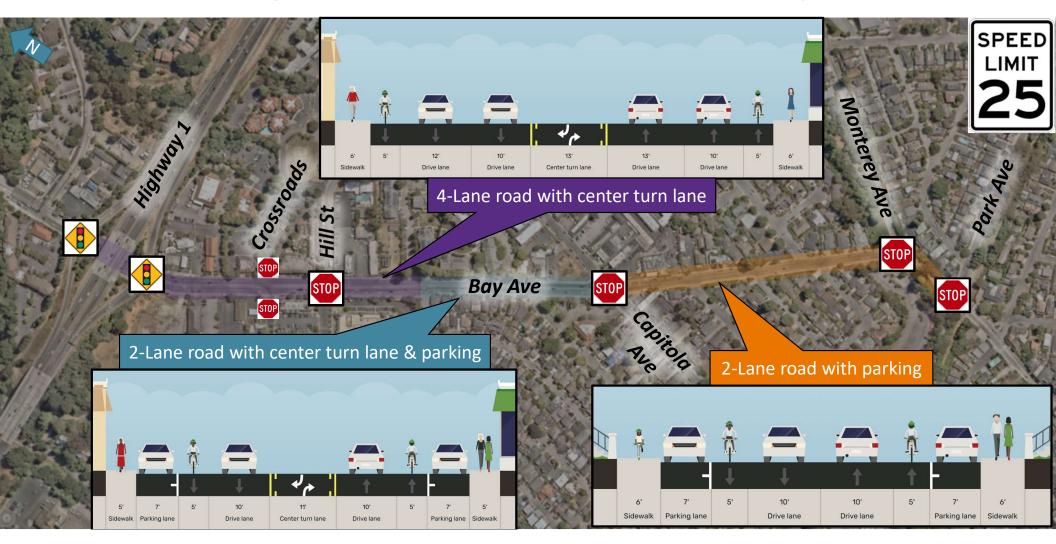
Parks and Open Space (P/OS)	
	Public/Quasi-Public (P/QP)
	Visitor Serving (VS)

Commercial/Industrial Designations

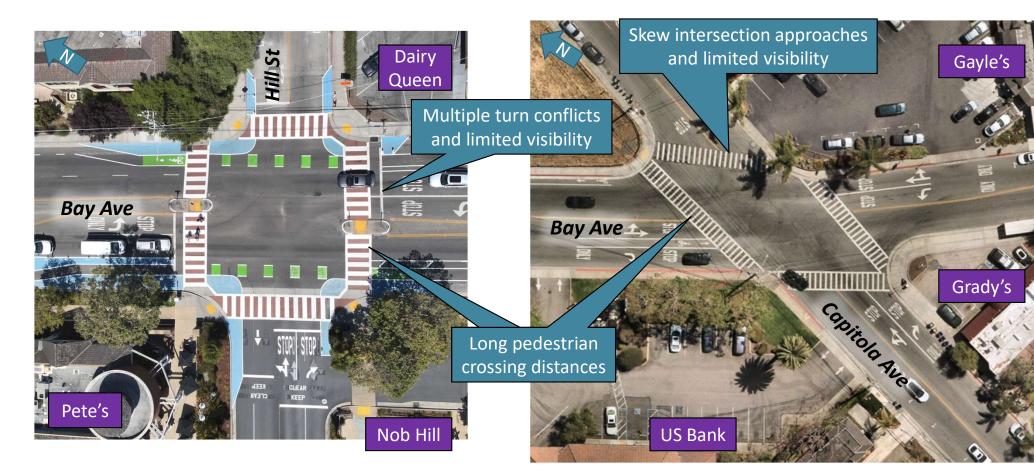
Project Study Area

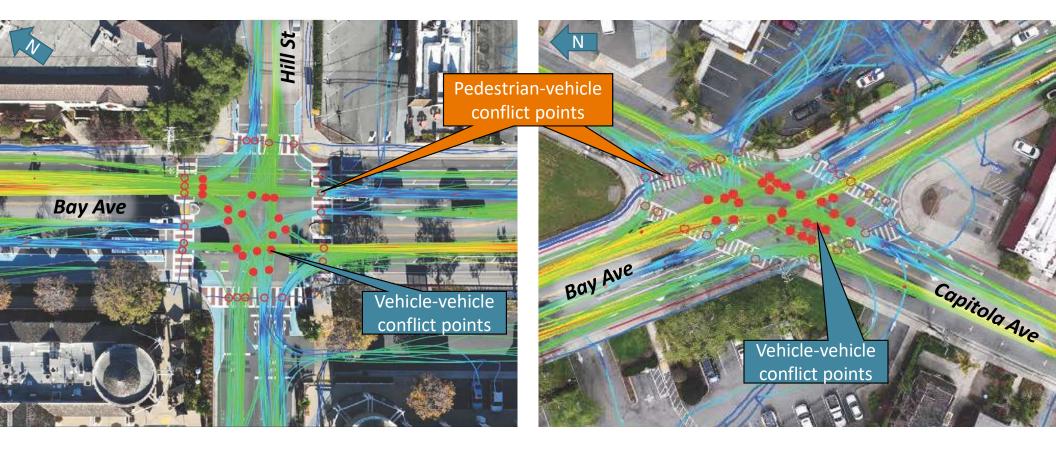

Item 7 B.

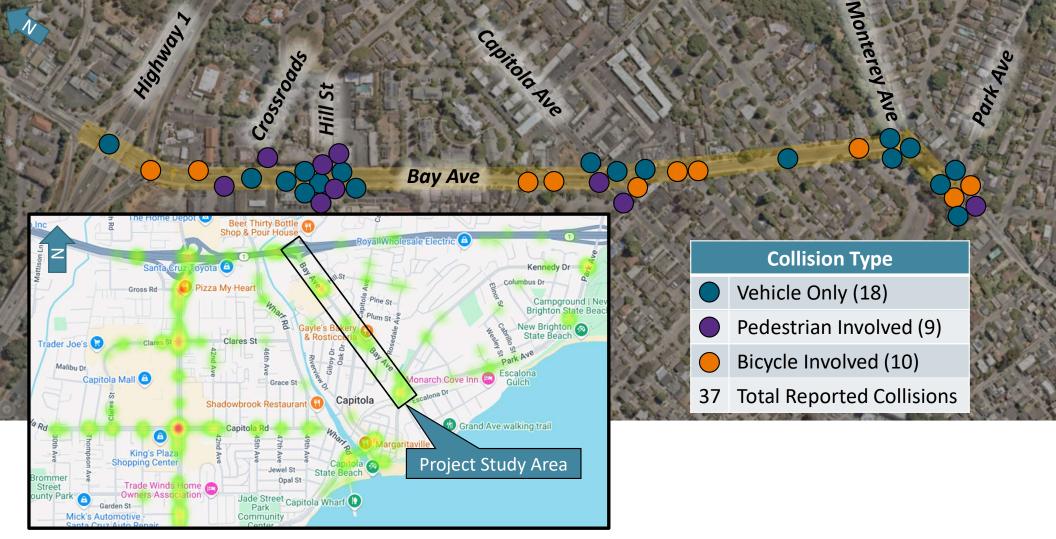
2. Existing Conditions & Traffic Data


Pre-Existing Conditions – Roadway

Pre-Existing Conditions – Roadway


Pre-Existing Conditions – Roadway


Existing Conditions – Bike & Pedestrian


Existing Conditions – Intersection

Existing Conditions – Near Miss Analysis

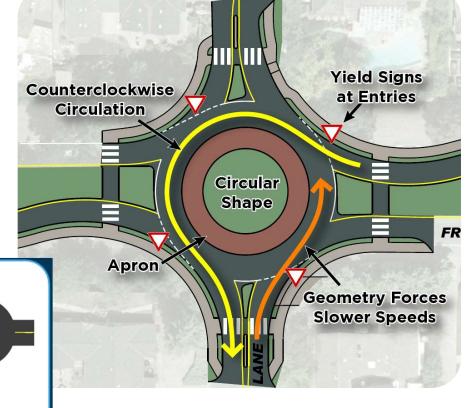
Collision Data – 2013 to 2024

3. Corridor Alternatives & Multimodal Improvements

Corridor Alternatives

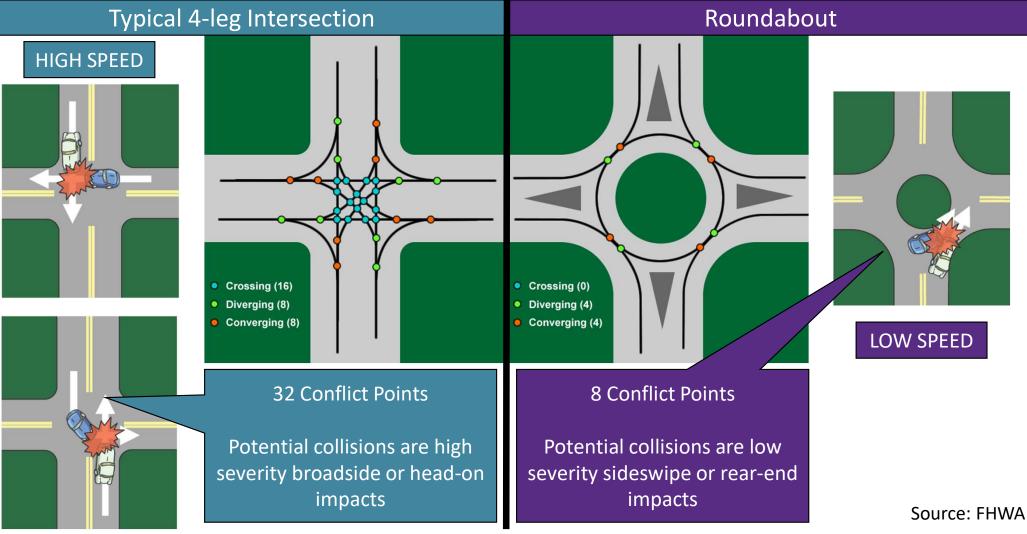
0 No-Build	1 Stop Control & Road Diet	2 Roundabout Control	3 Signal Control
			<image/>

Alternative 1 – Stop Control & Road Diet

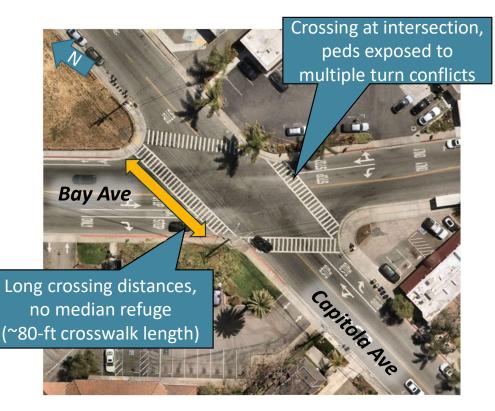

- Traffic calming features improve bike & ped safety
- Lower capital costs & preserve existing intersection infrastructure

Wharf/Clares

 Tradeoff - reduced roadway operations with stop control



- Traffic Control Yield at entry
- Traffic Deflection Vehicles directed into One-way counterclockwise flow
- Geometrics Circular road & entry angles designed to slow vehicle speeds



Source: FHWA

Existing 4-leg Intersection

Roundabout

Crossings shifted away from intersection, improved ped visibility --**Bay Ave** Copirola Rue Shorter crossing distances with medians, look & cross one lane at a time (~30-ft crosswalk length)

Bay/Capitola

- Reduced conflict points & collision severity
- Separated ped & bike facilities improve safety
- Improved operations & capacity
- Tradeoff higher capital costs & right-of-way impacts

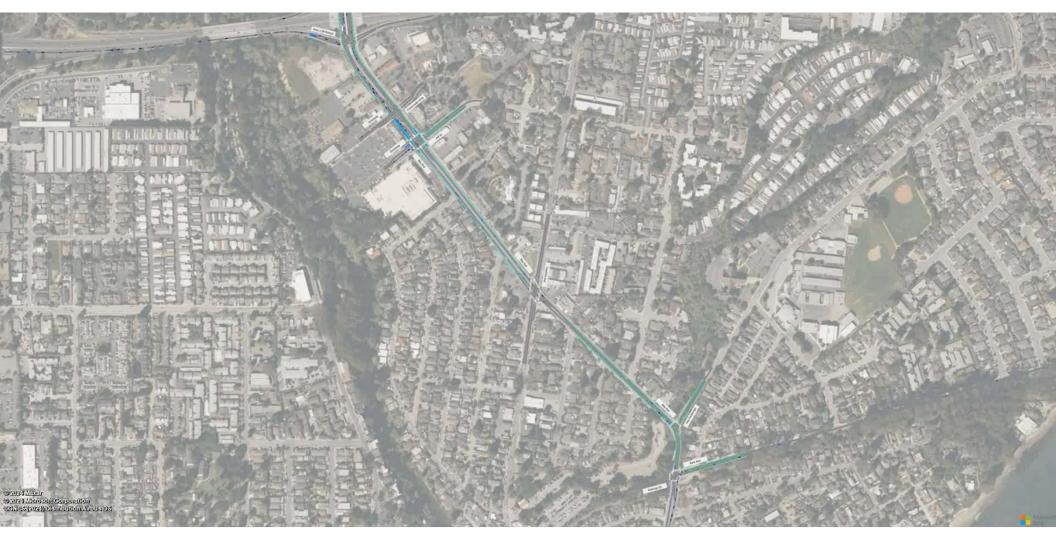
375

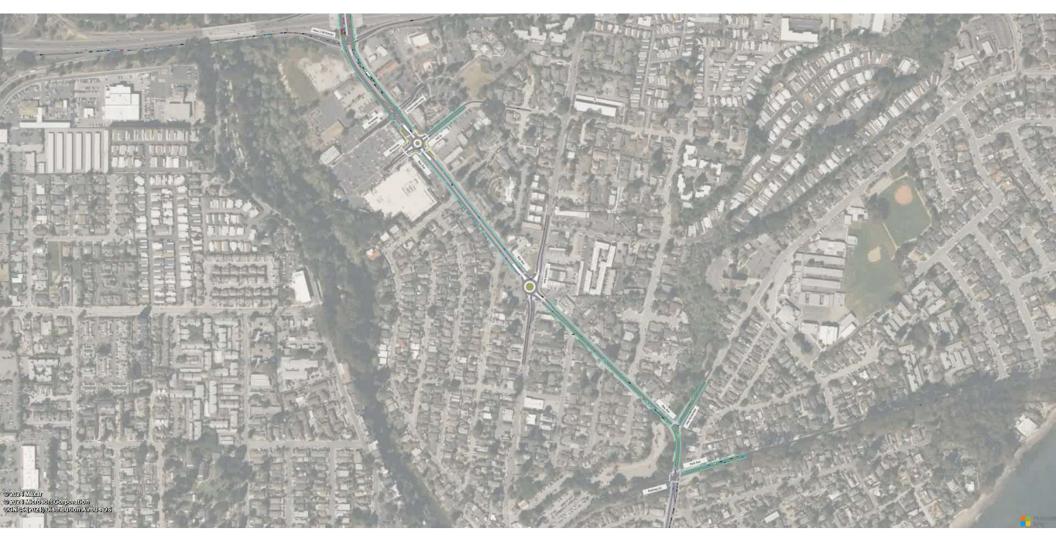
Roundabout – La Jolla (San Diego, CA)

Alternative 3 – Signal Control

- Designated crossing phases & quick user adaptation
- Improved operations & capacity
- Potential bike & ped improvements with protected intersection design
- Tradeoff higher capital & maintenance costs, aesthetics, collision severity

Other Multimodal Considerations


- Maintain existing parking and driveway access
- Buffered class IV bikeways
 - Striping, bollards, or hardscape
- Protected mid-block crossings
 - Rectangular Rapid Flashing Beacons (RRFB)



4. Corridor Analysis Results

Future Conditions (PM) – Alt 1 Stop

Future Conditions (PM) – Alt 2 Roundabout

Alternatives Summary – Economic

Criteria	Alternative 0 No Build	Alternative 1 Stop & Road Diet	Alternative 2 Roundabout	Alternative 3 Signal
Capital Construction Cost	Low	Low	Higher	High
Right of Way Impact	Low	Low	High	Moderate
Operation & Maintenance Cost	Low	Low	Moderate	High
Environmental Benefit	Moderate	Moderate	High	Moderate
Grant Funding Availability	Poor	Moderate	High	Moderate

Alternatives Summary – Operations

Criteria	Alternative 0 No Build	Alternative 1 Stop & Road Diet	Alternative 2 Roundabout	Alternative 3 Signal
Vehicle Delay	High	Higher	Low	Moderate
Transit & Emergency Vehicle Access Improvement	Poor	Poor	Moderate	Moderate
Driver Adaptation Time	Low	Low	High	Moderate

Alternatives Summary – Safety

Criteria	Alternative 0 No Build	Alternative 1 Stop & Road Diet	Alternative 2 Roundabout	Alternative 3 Signal
Collision Severity Potential	Moderate	Moderate	Low	High
Bicycle Access Improvement	Poor	Moderate	Good	Moderate
Pedestrian Access Improvement	Poor	Moderate	Good	Moderate

5. Next Steps & Action Items

Recommendations

- Pursue the roundabout alternative as the preferred long-term improvement for the Bay Avenue corridor
 - The stop and signal alternatives can be feasible to address budget constraints and short-term corridor needs

Council Actions

- Direction on corridor alternatives for refinement and outreach
- Follow up meeting with input from public outreach

Item 7 B

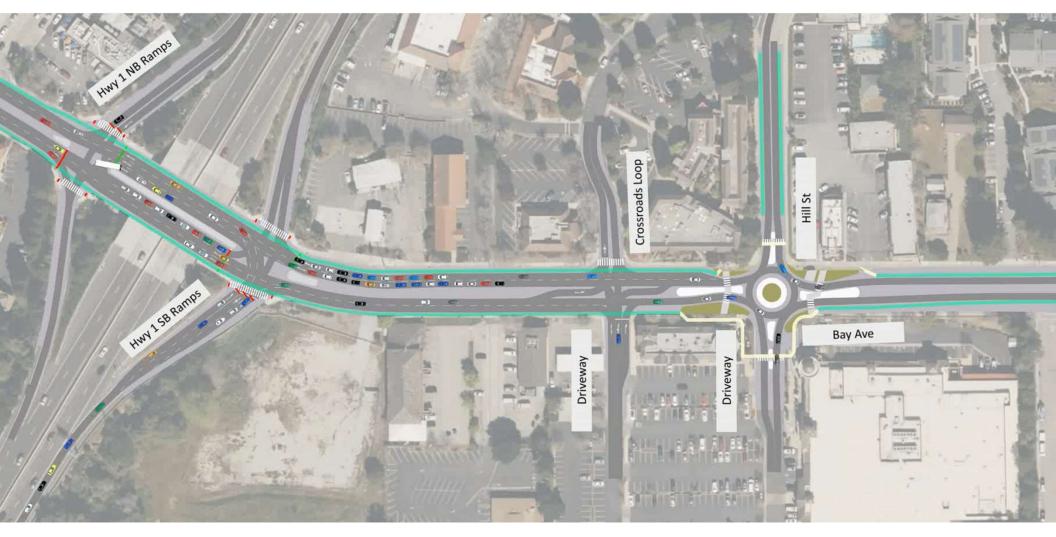
5. Next Steps & Action Items

Short-Term

- Conduct corridor public outreach
- Prepare concept designs

Long-Term

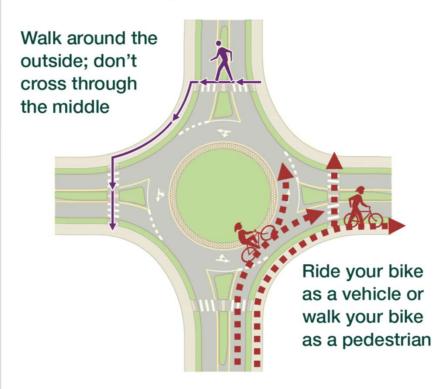
- Pursue grant funding opportunities
- Design corridor improvements
- Construct corridor improvements pending available funds


Questions & Discussion

PM Peak – Highway 1 & Hill St (Stop)

PM Peak – Highway 1 & Hill St (Roundabout)

AM Peak – Monterey & Park (Stop)


Item 7 B.

PM Peak – Monterey & Park (Stop)

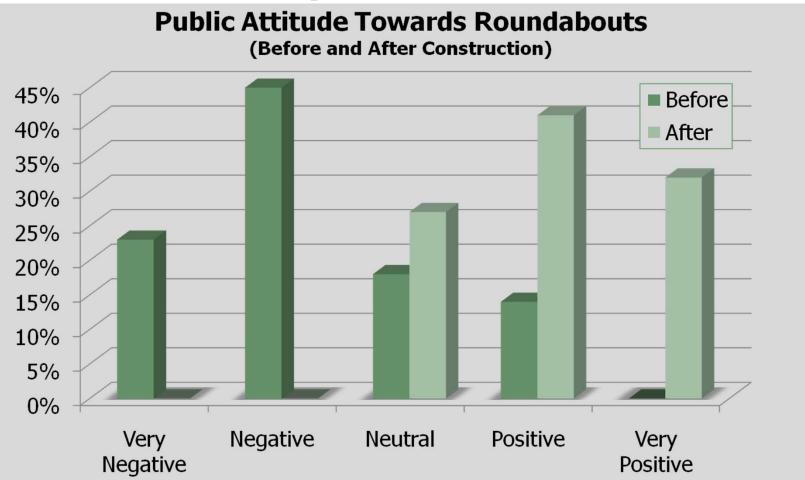
Pedestrian and Bicycle Circulation

Tips for safely walking and biking through a roundabout

Research is ongoing on additional treatments and design considerations to address the needs of visually impaired pedestrians.

Roundabouts are Good for Older Drivers

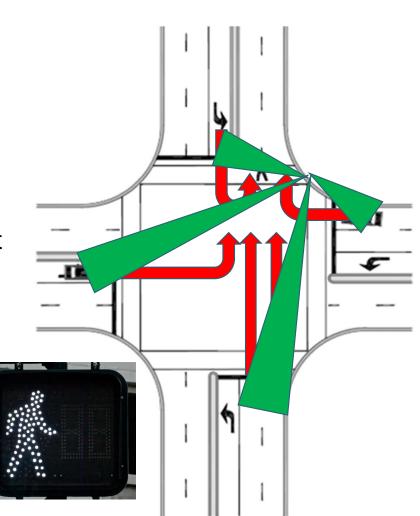
- Lower Speeds through roundabout
- Forgiving, mistakes not lethal
- Longer decision-making time
- No demand to accurately judge closing speeds of fast traffic
- Low energy crashes
- No wide visual scans
- Simple decision-making
- By 2020, the 85-percentile design driver will be someone aged 65 or older


Crossing (0 Crossing (16) Diverging (8)

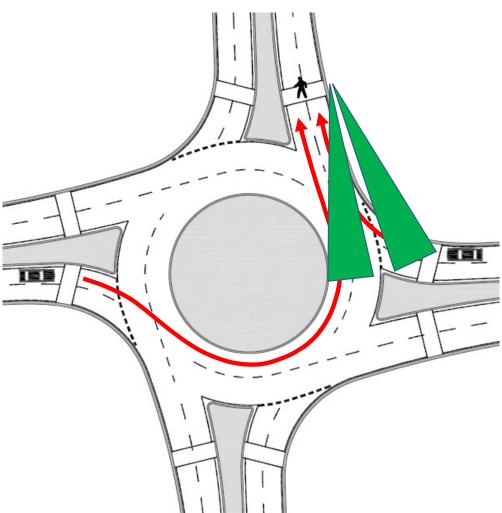
Source: Mark Doctor, P.E., FHWA Resource Center

Benefits Comparison

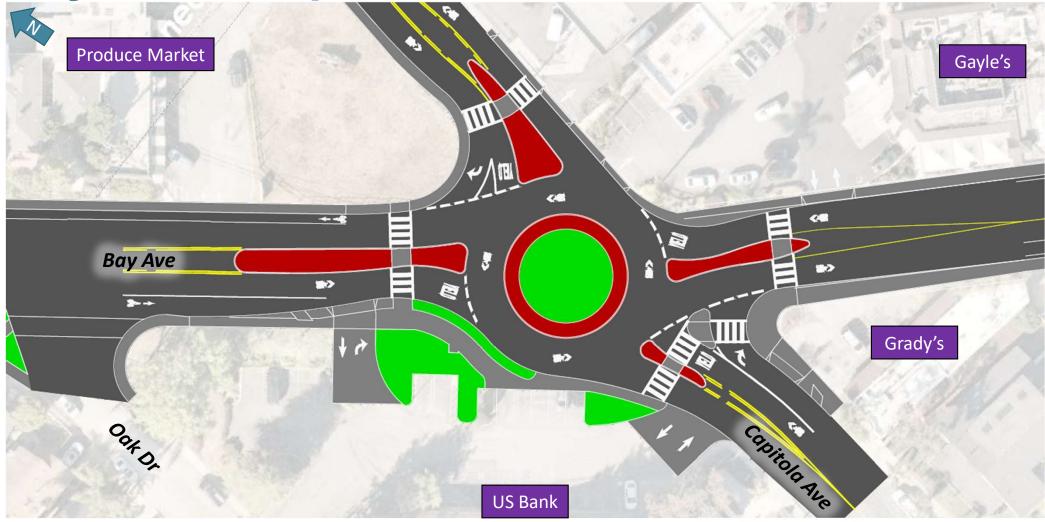
	Roundabout	Traffic Signals
Vehicle and Driver Safety	Eliminates high-speed crashes and reduces fatalities and injuries by 70+%	Numerous vehicle and pedestrian conflict points on standard intersection (32 vehicle/24 pedestrian)
Pedestrian and Bicyclist Safety	Shorter one-directional crossings provide greater pedestrian focus and awareness	Vehicles are more focused on signal changes than on pedestrian movements
Space/ Development Footprint	Reduces additional right-of-way between links of intersections	May require additional turn lanes in future if traffic volumes or traffic patterns change
Cost and Sustainability	Less expensive than a signal for greenfield construction (new location)	Increase in fuel consumption and emissions due to stopped and delayed vehicles during red lights
Traffic Capacity	Creates equal priority for all approaches	Typically prioritizes mainline traffic allowing progression of high volumes approaches
Access Management	Provides equal priority of driveway/business access	Requires drivers to make additional left turns or right turns to access certain properties/businesses
Aesthetics	Provides attractive entries and gateways to communities	Various lighting and signing distractions can impact the overall aesthetic appeal for the user
Maintenance	Pavement markings, lighting, and some landscape maintenance may be more intensive than signals	Requires staff time required to maintain signals, provide retiming, and conduct repair


Roundabout Perception

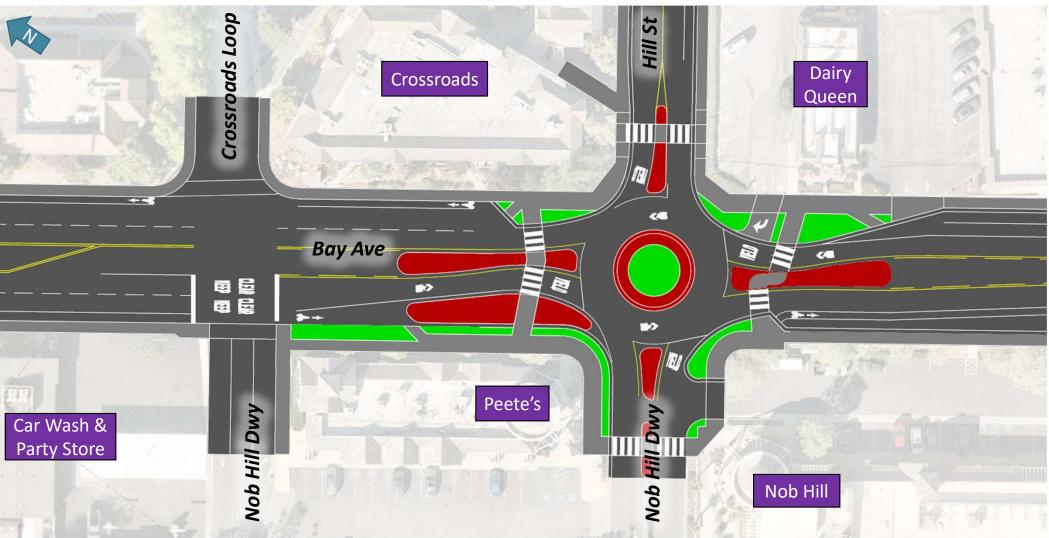
Source: US Department of Transportation: Federal Highway Administration


Safety vs. Security at Signalized Intersections

- Pedestrian experiences an exaggerated level of security because the signals tell them it's safe to cross
- Most crashes occur when drivers turn left or right across the crosswalk while the pedestrian has a walk indication


Safety vs. Security at Roundabouts

 Pedestrian feeling of security more closely matches their actual level of safety


Bay Ave – Capitola Ave

CONCEPT LAYOUT FOR ILLUSTRATIVE PURPOSES

Bay Ave, Hill St, Crossroads

CONCEPT LAYOUT FOR ILLUSTRATIVE PURPOSES

La Jolla Boulevard, Bird Rock, San Diego

Reduced lanes from 5 to 2, added angled parking, widened sidewalks, landscaped medians, added 5 roundabouts at intersections

Lowered speeds from 40mph to 20mph

- Traffic volumes have stayed constant at 22,000 cars/day
- New investment in restaurants, coffee shops, offices, drugstore and nearby infill housing
 - 20% increase in sales tax revenue

Local Government Commission

www.lgc.org

Item 7 C.

Capitola City Council Agenda Report

Meeting: February 13, 2025

From: **Public Works Department**

Subject: Bay Avenue and Hill Street Traffic Safety Update

Recommended Action: Provide direction on short-term modifications to the Bay Avenue and Hill Street intersection.

Background: This item was originally scheduled for the February 13 City Council meeting; the item was not heard at that meeting and was continued to February 27.

On November 21, 2024, the City Council discussed the Quick Build Project at Bay Avenue and Hill Street, implemented in late July/early August 2024. The project introduced lane reductions, enhanced crosswalk markings, and temporary bulb-outs to improve pedestrian safety and manage traffic flow.

Since implementation, community feedback, technical evaluations, and further Council discussions have identified areas for improvement. During the November 21st meeting, staff was instructed to remove the current configuration in spring 2025 and implement specific modifications. These modifications include extending striping for a continuous bike lane, examining costs for raised crosswalks, expanding the crosswalk by adjusting the stop sign line, and determining whether bollards can remain at all intersection corners.

The City Council also directed staff to collect additional data to enable a comparison between the current Quick Build Project configuration and the proposed new layout. The Council requested that staff return in early 2025 to present updated findings and assess whether the new configuration could be implemented in coordination with the upcoming Bay Avenue Corridor Study.

Discussion: Following Council direction, staff collected updated traffic data to evaluate the current intersection configuration.

Traffic volume data was gathered on a single non-rainy day during regular school schedules to maintain consistency. While seasonal variations may impact certain modes of travel-such as lower bicycle volumes in colder months-the methodology ensures a reliable baseline for comparison. The data confirms that this intersection remains a high-use location for both vehicles and pedestrians, emphasizing the need for effective safety measures.

Traffic Data Summary

	Bicycle Volumes (Total at Intersection)				
	Bike Vo	olume Intersed	ction Total		
Count Date	Timeline	AM Peak	Mid-Day Peak	PM Peak	
2/15/2022	Before QB	24	25	19	
3/7/2024	Before QB	19	N/A	15	
10/24/2025	After QB	49	23	23	
1/25/2025	After QB	31	22	20	

Pedestrian Volumes (Total at Intersection)

Pedestrian Volume Intersection Total					
Count Date Timeline AM Peak Mid-Day Peak PM Peak					
2/15/2022	Before QB	31	51	49	
3/7/2024	Before QB	34	N/A	21	
10/24/2025	After QB	18	57	61	
1/25/2025	After QB	32	48	40	

Vehicle Traffic Bay Avenue Approach Southbound					
Count Date	Timeline	AM Peak	Mid-Day Peak	PM Peak	
2/15/2022	Before QB	435	635	633	
3/7/2024	Before QB	481	N/A	669	
10/24/2025	After QB	484	538	545	
1/25/2025	After QB	501	521	570	

Vehicle Traffic – Bay Avenue Approach (Southbound)

Vehicle Traffic – Bay Avenue Approach (Northbound)

Vehicle Traffic Bay Avenue Approach Northbound					
Count Date	Timeline	AM Peak	Mid-Day Peak	PM Peak	
2/15/2022	Before QB	462	485	392	
3/7/2024	Before QB	466	N/A	323	
10/24/2025	After QB	477	418	417	
1/25/2025	After QB	502	444	380	

Intersection Level of Service (LOS) Observations

The Level of Service (LOS) analysis indicates the intersection's performance in January 2025 is expected to be similar to October 2024. The primary factors influencing LOS at this location are the northbound (NB) and southbound (SB) vehicle volumes along Bay Avenue.

Between October 2024 and January 2025, northbound traffic increased by approximately 5% during the morning and mid-day peak hours but saw a slight 4% decrease in the evening peak. Conversely, southbound traffic decreased by about 3% in the morning and mid-day, while remaining unchanged in the evening.

Despite these fluctuations, the changes are not significant enough to impact the overall LOS rating. While minor variations in vehicle delay (1–2 seconds) may occur, the intersection's letter grade classification (e.g., A, B, C) remains consistent.

Evaluation of Proposed Modifications

The City's traffic consultant, Kimley Horn, prepared a comparison which outlines the proposed modifications to the Bay Avenue and Hill Street intersection (Attachment 1). These modifications aim to enhance pedestrian and cyclist safety while balancing traffic operations and community needs. Below is an evaluation of key options under consideration:

Option	Benefits	Challenges	Staff Consideration	Estimated Cost
Raised Crosswalks	Safer, ADA access.	Cost, drainage, delays.	Worth considering (varies by material).	\$6K–\$25K each (asphalt, brick, stamped concrete).
Additional Green Bike Lanes	Improves bike safety.	Cost, driver confusion.	Possible improvement (includes striping removal).	\$15–\$30/sq. ft.
Bollards	Adds buffer, slows turns.	Maintenance, large vehicles.	Could be explored (durability concerns).	\$50–\$200 each
Staggered Stop Bars	May help visibility.	Minimal impact.	Not recommended	\$8–\$20/ft.

Staff recommends integrating the evaluation of these modifications into the broader context of corridor improvements. This approach will ensure that any short-term changes to the Bay Avenue and Hill Street intersection align with long-term strategies for the corridor.

Council is requested to provide direction to staff on the following:

- 1. Whether to proceed with short-term modifications, such as continuous green bike lanes, while awaiting the corridor study's final recommendations.
- 2. Identify any additional data collection or analysis required to further refine the proposed intersection changes.
- 3. Remove all quick-build components and return intersection to pre-project conditions.

<u>Fiscal Impact</u>: Costs for proposed modifications will depend on the selected measures. Based on preliminary estimates from the City's traffic consultant (Attachment 1):

- Raised crosswalks are estimated at \$6,000 \$25,000 per location, with additional costs for brickwork, stamped materials, and drainage modifications.
- Continuous bike lanes (green thermoplastic striping) are estimated at \$15 \$30 per square foot, including existing striping removal.
- Bollards for bike lane separation and pedestrian safety are estimated at \$50 \$200 per bollard, depending on size and durability.
- Staggered stop bars are estimated at \$8 \$20 per linear foot for white thermoplastic striping.
- Removing all quick build components will cost approximately \$40,000.

Staff will incorporate approved actions into the annual Pavement Management Project budget for Council consideration on February 27, 2025.

Attachments:

1. Potential Improvement Matrix

Report Prepared By: Jessica Kahn, Public Works Director;

Reviewed By: Julia Gautho, City Clerk; Samantha Zutler, City Attorney

Approved By: Jamie Goldstein, City Manager

11/21/2024 CC Notes

Raised crosswalk. Existing median and drainage modifications needed.

Bay Ave

Green bike striping through intersection along Bay Avenue. Connects with existing Class II facilities.

It B

#1

Item 7 C.

406

Install bollards on bike lane for bike/vehicle separation approaching the intersection. Widen bike lane buffer and narrow travel lanes to fit raised bollards.

4-lane roadway on

Park Avenue

1.

Crossroads

Loop

Dwy

Nob Hill Plaza Dwy

Hill St

Adjust stop bar behind crosswalk. Staggered bar between each lane not recommended due to sight distance conflicts.

SHELON

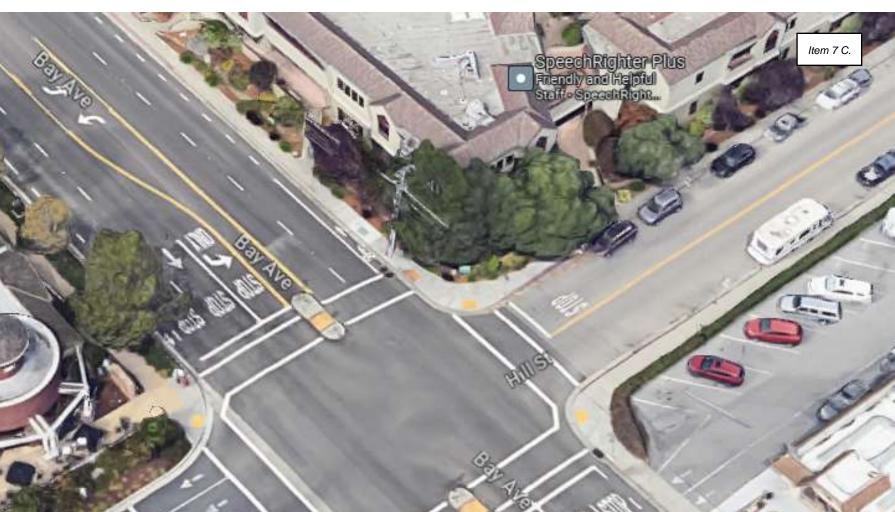
12/10/2024 21:21		Poter			•	er 11/21/2024 City Co	u
	Raised Crosswalk		Raised	Bollards	Stagger Stop Bar for	Bay Ave Travel Lanes	
Criteria	Physical Measure		Physical Measure		Striping / Sig	Ining Measure	
	Benefits	Challenges	Benefits	Challenges	Benefits	Challenges	
Pedestrian & Bike Safety	Identified traffic calming measure that increases visibility to approaching vehicles Increased driver-yield compliance at crossing from vertical deflection Improved ADA access since crosswalk at same elevation as the sidewalk		Increased visiblity to approaching vehicles Provides physical separation buffer between vehicle and bike/ped areas on roadway		Potential improved sight lines of bike/peds on crosswalk for driver in the forward staggered lane	For adjacent movements, stop bars staggered different distances between lanes would improve sight lines for the forward vehicle but reduce sight lines for back vehicle in next lane. No net improvement to overall safety (Bay Avenue 4-lane road)	Inc bik witi app Re turn Pro fac
Traffic Operations	Reduced vehicle speeds through crosswalk due to grade change improves bike/ped safety	Increased average vehicle delay and travel times through intersection due to slower speeds to traverse crosswalk	Bollards used to create curb extension / reduce curb radius will reduce vehicle turning speeds at corners			Potential impact to sight lines (see above)	No
Vehicle Queues & Vehicle Access	No impact to non-emergency vehicles	Potential increase in queues to traverse through intersection from slower speeds Typically not appropriate for primary emergency vehicle routes. Requires coordination with fire & police	No impact to non-emergency vehicles	Posts at intersection corners may potentially be struck from large delivery or emergency vehicles	No anticipated impacts		No
Design, Construction, & Maintenance	Recommended on streets with posted speed up to 30mph Existing raised crosswalks implemented in Capitola (Clares St and Jewel Box neighborhood)	Modification of drainage design along the curb needed to prevent ponding Increase noise due to vehicle acceleration/braking over crosswalk Recommend improvement to nighttime visibility for approaching vehicles / bikes	For bike lanes, center delineator within the buffer zone along the edge of the bikeway. Typical spacing is every 8 - 20 ft, depending on the thoroughfare's design speed / bikeway configuration. Allow a minimum of 1.5 ft. clear width for installation of smaller delineators	Ongoing maintenance from vehicle strikes. Smaller bollard sizes have lower durability and will require more replacement. For Bay Avenue with 4-lane geometry, wider bike lane buffer width (1.5' min) recommeded to use bollards	Recommend stop lines to be placed at least 4-ft in advance of crosswalk (no stagger between adjacent lanes)	Staggered stop bar between left turn and through lanes permitted in MUTCD to increase turning radius clearance for large vehicles making a left turn. This issue is not present at Bay/Hill intersection (see example below).	Pro sou exi
Cost Range	\$6,000 to \$25,000 per crosswalk location (Additional costs for brickwork, stamped ma enhancements used at pedestrian crossing	aterial, concrete ramps, and other	\$50 to \$200 per bollard or segment (deper Flexible delineator post < High performanc Delineator Post	nding on size and type) e delineator < Raised lane separator < K71	\$8 to \$20 per linear foot (white thermoplas Includes removal of existing striping	stic striping)	\$1 Inc
Examples	Gource: Google Maps, Boulder, Colorado	Source: Delaware Department of Transportation)			D - Typical dotted line markings to extend center Note: Lane line extensions in the intersection may be dotted or sold white lines. Intersection shall be dotted yellow lines. Optional dotted extension	The and lane line markings into the intersection	
Source	https://highways.dot.gov/safety/speed-mar part-2#3.14 https://www.ite.org/technical-resources/tra http://www.pedbikesafe.org/BIKESAFE/cou		https://tacticalurbanismguide.com/material https://tacticalurbanismguide.com/material		https://mutcd.fhwa.dot.gov/htm/2009/part3	3/part3b.htm	htti tre:

ouncil)

Continuous Bike Intersection Crossing Markings					
Striping / Signing Measure					
Benefits	Challenges				
Increased visibility and identification of bike space and intended path of travel within the intersection and at the approaches					
Reinforces bikes have priority over turning vehicles in conflict areas					
Provides connectivity to existing bike facilities					
No anticpated impacts					
No anticpated impacts					
Provides benefit on northbound and southbound Bay Avenue approaches with existing Class II bike facilities	May not be applicable to install on for the eastbound and westbound Nob Hill and Hill Street approaches due to lack of existing bike facilities/striping				
\$15 to \$30 per square foot (green thermop Includes removal of existing striping	lastic striping)				
	totol II				
https://nacto.org/publication/urban-bikeway treatments/intersection-crossing-markings					

Bay Avenue and Hill Street Traffic Safety Update

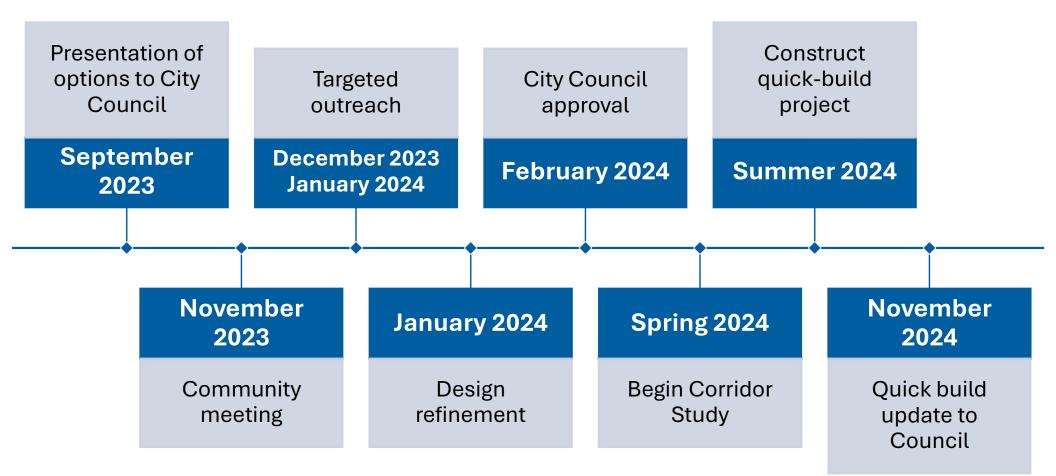
February 13, 2025


AGENTAL CICLEAR

Item 7 C.

Bay Ave/Hill St Traffic Safety Update Recommended Action

Provide direction on short-term modifications to the Bay Avenue and Hill Street intersection. Implement approved short-term modifications in coordination with the Bay Avenue Corridor Study.



z County Bank

s Coffee

Bay/Hill Street Traffic Safety Project Timeline

Bay Ave/Hill St Traffic Safety Update 11/21/24 City Council Meeting Recap

Remove the current intersection configuration in Spring 2025

Implement specific modifications

- Extend striping for a continuous bike lane
- Examine costs for raised crosswalks
- Expand the crosswalk by adjusting the stop sign line
- Determine whether bollards can remain at all intersection corners

Collect additional data

Bay Ave/Hill St Traffic Safety Update Traffic Data Summary

Before Quick-Build:

February 15, 2022, & March 7, 2024

After Quick-Build: October 24, 2024, &

January 25, 2025

Bicycle Volumes: Increased after the quickbuild implementation, particularly in the morning peak

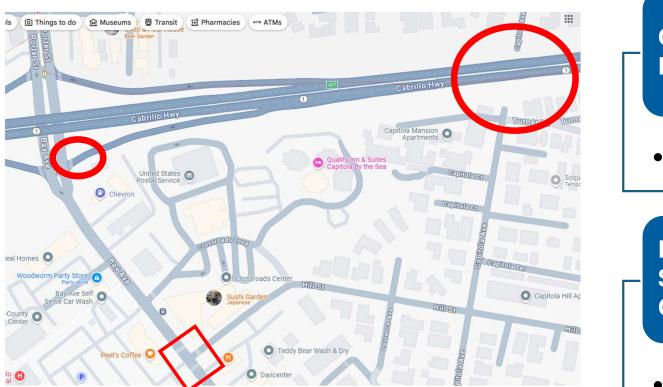
Pedestrian Volumes: Slight fluctuations, but overall consistent before and after modifications

Vehicle Traffic: Southbound volumes remained stable, with minor variations across peak times

Bay Ave/Hill St Traffic Safety Update Intersection Level of Service

January 2025 LOS is similar to October 2024

• Primary factors: northbound and southbound vehicle volumes on Bay Avenue.

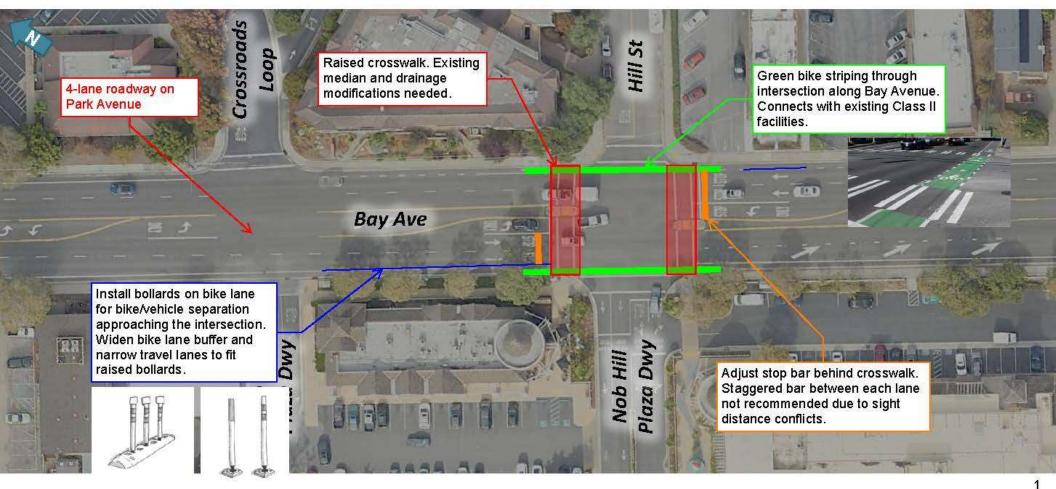

Between October 2024 and January 2025

- NB: ~5% increase in AM and mid-day peaks; ~4% decrease in PM peak.
- SB: ~3% decrease in AM and mid-day peaks; unchanged in PM peak.

Fluctuations are minor

• Do not significantly impact overall LOS

Bay Ave/Hill St Traffic Safety Update Additional Traffic Impacts



Capitola Avenue Bridge Closed until Fall 2025 **Bay Avenue** Southbound Onramp Open week of March 10th, 2025

Item 7 C.

PORAT

11/21/2024 CC Notes

Bay Ave/Hill St Traffic Safety Update Evaluation of Proposed Modifications

Option	Benefits	Challenges	Estimated Cost
Raised Crosswalks	Safer, ADA access	Cost, drainage, delays	\$6K–\$25K per crosswalk
Additional Green Bike Lanes	Improves bike safety	Cost, driver confusion	\$15–\$30/sq. ft.
Bollards	Enhances visibility	Maintenance, aesthetics	\$50 - \$200 per bollard
Staggered Stop Bars	May help visibility	Minimal impact	\$8–\$20/ft.

Item 7 C.

Recommendations

- Provide direction on short-term modifications to the Bay Avenue and Hill Street intersection.
- Implement approved shortterm modifications in coordination with the upcoming Bay Avenue Corridor Study.

Capitola City Council Agenda Report

Meeting: February 27, 2025

From: Finance Department

Subject: FY 2024-25 Mid-Year Budget Report

<u>Recommended Action</u>: Receive the Fiscal Year 2024-25 Mid-Year Budget Report and adopt a resolution amending the Fiscal Year 2024-25 Budget.

<u>Background</u>: The Fiscal Year (FY) 2024-25 Mid-Year Budget Report provides an update on the City's financial status as of December 31, 2024, and recommends budget adjustments for FY 2024-25 that better reflect current projections. The City's major revenue sources are currently tracking slightly below budget projections while General Fund expenditures are slightly ahead of projections but are expected to end the year at or below budget.

The City ended FY 2023-24 slightly ahead of budget estimates returning approximately \$126,000 to the General Fund balance. The estimated June 30, 2025, General Fund balance consists of:

Employee Down Payment Assistance Program

	Operating Contingency Balance	528,931	
	Additional FY 2023-24 General Fund resources	126,000	-
	Total Balance	\$ 754,931	
above bu	on: General Fund revenues are performing as budgeted udget projections while TOT are slightly behind projectio eral short-term rental operators, staff believes that the slov	ns. Based on comm	nunication

above budget projections while TOT are slightly behind projections. Based on communication with several short-term rental operators, staff believes that the slowing of TOT revenue is due to a reduction in rental rates and not a reduction in occupancy rates. All other General Fund revenues are performing as projected and as expected, showing signs of leveling off following the growth experienced over the last few years. Expenditures are tracking consistently with the FY 2024-25 Amended Budget.

Revenues

The FY 2024-25 adopted budget included approximately \$8.5 million of sales tax revenue, which is approximately 3.5% above receipts in the prior fiscal year. At the mid-point of this fiscal year, sales tax receipts are above budget projections by \$87,000 (2.1%) following a strong 2nd quarter performance over the holiday season.

In November 2024, Capitola voters approved Measure Y, a one-half percent (0.50%) district sales tax, and repealed Measure F, which was a one-quarter percent (0.25%) district sales tax. Measure Y will become effective April 1, 2025, and result in an estimated increase in sales tax revenues of \$277,000 for the remainder of the fiscal year. The estimated annual increase in sales tax revenue beginning in FY2025-26 from Measure Y is \$1.1 million.

\$100,000

Property tax revenues are slightly above budget estimates while TOT is slightly below budget estimates. All the other revenues are tracking within budget expectations for this point in the fiscal year. At the midpoint of the fiscal year the City has received 49% of budgeted revenues and staff anticipates that revenues will end the year close to budget projections.

Expenditures

City departments have consistently maintained expenditures within the adopted budget. Through December, the General Fund has expended 61% of the budget while being 50% through the year. The primary reason is that the City prepaid the annual \$2.6 million Unfunded Actuarial Pension Liability (UAL) in July 2024, as opposed to making monthly payments, resulting in savings of approximately \$85,000. This results in personnel costs showing higher as a percentage of the budget as the payment is amortized over the course of the year.

The passage of Measure Y in November 2024 also resulted in an increase in personnel costs due to contingent salary increases negotiated by the various labor groups. The estimated increase in personnel costs for the remainder of the fiscal year is \$226,400, while the estimated annual cost is \$452,800.

Budget Amendments

During the FY 2024-25 budget hearings the Council requested to revisit the City Hall Phase II study, which is estimated at \$67,000 but remains unfunded. Staff is recommending including the City Hall Phase II study discussion as part of the FY 2025-26 budget hearings following the adoption of the City's strategic plan.

Due to the passage of Measure Y, staff is requesting a budget amendment in the General Fund to increase sales tax revenues and personnel expenditures as follows:

	Revenue			
Amount	Description			
\$277,000	Sales Tax Revenue – Measure Y			
	Expenditures			
\$ 227,000	Personnel – Labor MOU's Contingencies – Measure Y			

<u>Fiscal Impact</u>: If approved, the requested budget amendment would increase the June 30, 2025, estimated General Fund balance to approximately \$804,931 an increase of \$50,000 from previous estimates.

Attachments:

- 1. Resolution
- 2. Budget Amendment

Report Prepared By: Jim Malberg, Finance Director

Reviewed By: Julia Gautho, City Clerk; Samantha Zutler, City Attorney

Approved By: Jamie Goldstein, City Manager

RESOLUTION NO.

RESOLUTION OF THE CITY COUNCIL OF THE CITY OF CAPITOLA AMENDING THE 2024-25 FISCAL YEAR CITY BUDGET AND CAPITAL IMPROVEMENT PROGRAM BUDGET

WHEREAS, it is necessary to adopt the 2024-25 Fiscal Year Budget for all City funds and Capital Improvement Program; and

WHEREAS, the City Council conducted budget study sessions, heard and considered public comments, had modified and proposed a budget accordingly, and on June 27, 2024, adopted such budget for the Fiscal Year July 1, 2024, through June 30, 2025; and

WHAREAS, the City Council previously amended the FY 2024-25 Fiscal Year Budget on September 24, 2024, and January 30, 2025; and

WHEREAS, since the last budget amendment Capitola voters passed Measure Y resulting in an estimated \$277,000 of district sales tax revenue and \$227,000 of additional personnel expenditures; and

WHEREAS, it is necessary to amend the Fiscal Year 2024-25 Adopted Budget to allocate the additional revenues and expenditures related to the passage of Measure Y; and

NOW, THEREFORE, BE IT HEREBY RESOLVED by the City Council of the City of Capitola that the 2024-25 Fiscal Year Budget is hereby amended, including Exhibit A (Budget Amendment) to this Resolution; and

BE IT FURTHER RESOLVED that the Finance Director is directed to enter the budget into the City's accounting records in accordance with appropriate accounting practices, and the City Manager, with the Finance Director's assistance, shall assure compliance therewith.

I HEREBY CERTIFY that the foregoing Resolution was passed and adopted by the City Council of the City of Capitola on the 27th day of February 2025, by the following vote:

AYES: NOES: ABSENT: ABSTAIN:

Joe Clarke, Mayor

ATTEST:

Julia Gautho, City Clerk

Date

02/20/2025

Requesting Department*

Finance

Type of Adjustment

- Administrative
- Council

Item

Council Date

2/27/25

Council Approval

Revenues

Account Number	Account Description	Increase/Decrease
1000-00-000-3130.304	Sales Tax - Measure Y	\$277,000.00

Total Revenues

\$277,000.00

Expenditures

Account Number	Account Description	Increase/Decrease
1000-xx-xx-xxx4110.000	Wages Permanent	\$227,000.00

Total Expenditures

\$227,000.00

Net Impact

\$50,000.00

Purpose

Amend FY 2024-25 budget to account for fiscal impacts from passage of Measure Y.

Department Head Approval

Tim Matterg

Tim Matherg

City Manager Approval

Jamie GoldsTein

Submit	by Jim Malberg 2/20/2025 2:08:43 pm (Budget Amendment Request Submitted)
Approve	 by Jim Malberg 2/20/2025 2:09:44 pm (Routed to Finance) The task was assigned to Jim Malberg 2/20/2025 2:08:43 pm
oprove (send to CM for approval)	 by Jim Malberg 2/20/2025 2:11:09 pm (Routed to Finance Director) The task was assigned to Jim Malberg 2/20/2025 2:09:44 pm
Approve (return to Finance for processing)	 by Jamie Goldstein 2/21/2025 12:05:22 pm (Routed to CM for final approval) The task was assigned to Jamie Goldstein 2/20/2025 2:11:09 pm

Fiscal Year 2024-25 Mid-Year Budget

February 27, 2025

Report

General Fund Balance Summary

Employee Down Payment Assistance Program	\$ 100,000
Operating Contingency	\$ 528,931
Additional FY 2023-24 General Fund resources	\$ 126,000
Total Balance	\$ 754,931

Financial Highlights

- Sales Tax performing slightly above projections
 - Approximately \$87,000 above budget
 - Measure Y effective April 1st
- Property Tax
 - Slightly above estimates
- Transient Occupancy Tax (TOT)
 - Slightly below estimates
- All other FY 2024-25 revenues and expenditures tracking close to budget projections

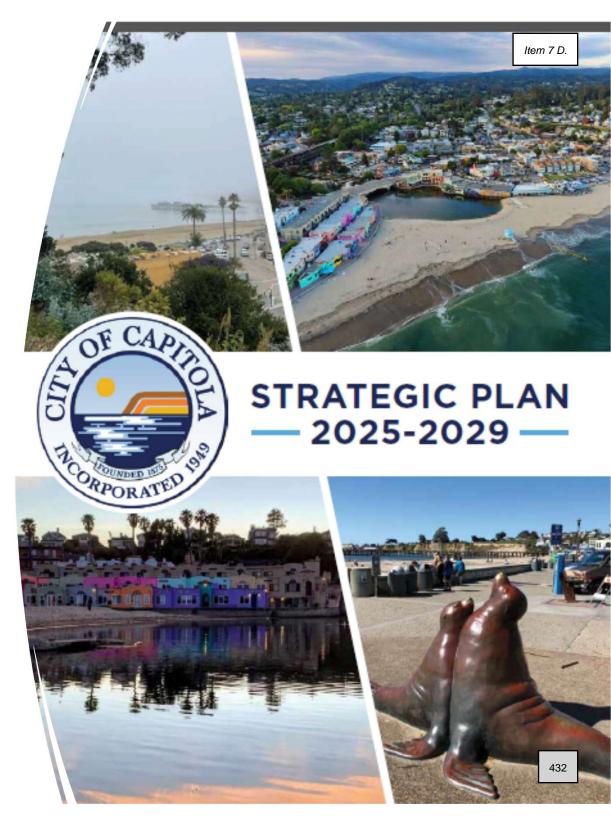
Account	Y-T-D Activity	% of Budge t	Prior Year Activity	\$ Change	% Change
Taxes	\$ 7,535,113	50%	\$ 7,469,844	\$ 65,269	0.9%
Licenses & Permits	237,925	33	279,199	(41,274)	(14.8)
Intergovernmental	58,498	44	35,470	23,029	64.9
Charges for Services	1,178,731	50	977,495	201,236	20.6
Fines & Forfeitures	259,325	43	219,011	40,314	18.4
Use of Money & Property	142,941	83	281,846	(138,905)	(49.3)
Other	49,204	26	58,208	(9,004)	(15.5)
Total	\$ 9,461,737	49%	\$ 9,321,073	\$ 140,664	1.5%

Expenditure Review

Account	Y-T-D Activity	% of Budget	Prior Year	\$ Change	% Change
Personnel	\$ 7,949,075	62%	\$ 7,045,703	\$ 903,372	12.8%
Contract Services	2,311,819	63	2,067,579	244,240	11.8
Training / Memberships	54,778	33	106,212	(51,434)	(48.4)
Supplies	459,554	55	541,740	(82,186)	(15.2)
Grants & Subsidies	57,500	46	62,500	(5,000)	(8.0)
Internal Service Funds	761,790	50	808,921	(47,131)	(5.8)
Other financing uses	143,784	50	125,000	18,784	15.0
Total	\$ 11,463,304	61%	\$ 10,757,654	\$ 705,649	6.6%

Proposed General Fund Budget Amendments

Amount	Description
	Revenue
\$ 277,000	Sales Tax revenue – Measure Y
	Expenditures
\$ 227,000	Personnel – Labor MOU contingencies – Measure Y
\$ 50,000	Net impact to General Fund Balance


Budget Amendment Summary

- Fiscal Impact
 - If approved, increases estimated June 30, 2025, General Fund balance to \$804,931

Item 7 D.

Strategic Plan/Goals Setting

- Planned Council consideration of Strategic Plan March 13
- Staff intends to utilize Strategic Plan – Implementation Plan to guide preparation of initial draft budget for Council review

FY 2025-26 Budget Process

- Proposed Budget distribution
 - May 2nd
- Proposed Special City Council meeting budget hearings
 - May 15th
 - May 29th (If necessary)
 - June 5th (If necessary)
 - June 18th (If necessary)
- Proposed Finance Advisory Committee meetings
 - May 13th (special meeting)
 - May 20th (special meeting, if necessary)
 - June 17th
- Proposed Budget Adoption
 - June 26th

Recommended Action

 Receive Fiscal Year 2024-25 Mid-Year Budget Report and Adopt Proposed Resolution Amending the Fiscal Year 2024-25 Budget

14

21

28

13

20

27

15

22

Item 7 D.

Capitola City Council Agenda Report

Meeting: February 27, 2025

From: Community Development Department

Subject: CDBG Program Income Funds

<u>Recommended Action</u>: 1) Conduct a public hearing and receive public comment regarding Program Income and its eligible uses; 2) adopt a resolution rescinding Resolution No. 4414 and allocating \$170,000 of Program Income for the Community Center Rehabilitation Project; and 3) adopt a resolution amending the FY 2024-25 budget.

<u>Background</u>: The City of Capitola has successfully completed several Community Development Block Grant (CDBG) funded programs and projects over the past several years, some of which generate Program Income. Program Income is defined as the gross income that is directly generated from CDBG funded activity, such as homebuyer loans, housing rehabilitation loans, etc. When these monies are loaned out and then repaid to the City, they take the form of Program Income. Program Income is regulated by the State Department of Housing and Community Development (HCD) and the City's Program Income must be obligated to a project before any grant funds are drawn from a grant or must be paid back to the State. These monies keep the same federal ties so long as they are Program Income.

On January 30, 2025, the City Council adopted a resolution allocating \$160,240.62 of Program Income from a CDBG rehabilitation loan payoff to the Community Center Rehabilitation Project. At the time of submittal to HCD, staff identified additional interest (LAIF) in the CDBG-PI account. This funding must be allocated prior to drawing down funds from the 2023 CDBG grant award for the Community Cent Rehabilitation Project.

<u>Discussion</u>: At the end of December 2024, staff received a loan payoff from a prior housing rehabilitation loan in the amount of \$160,240.62. The loan originated from a 2014 CDBG grant, thus the funds that have now been deposited are considered CDBG Program Income. The CDBG PI fund also includes LAIF interest earned of \$4,825 as well as accrued interest of approximately \$5,000 which was not included in the January 30, 2025 resolution. The purpose of the updated resolution is to increase the amount stated in the resolution to include the current balance in the CDBG PI fund and any additional interest that may be deposited in the fund in 2025.

This funding will be added to the project contingency for the Community Center, bringing the total project contingency to approximately 9.7% of the \$4,725,00 construction contract.

<u>Fiscal Impact</u>: The \$170,000 in Program Income is available grant funds that can be reutilized. The City's grant administrator, Adams Ashby Group, will coordinate the grant amendment efforts through their existing 2023 CDBG grant administration contract to allocate the funds toward the Community Center Rehabilitation Project. No general funds or fiscal impact should be incurred by the City.

Attachments:

- 1. CDBG Resolution
- 2. Public Hearing Notice
- 3. Budget Amendment Resolution
- 4. Budget Amendment

Report Prepared By: Katie Herlihy, Community Development Director

<u>Reviewed By</u>: Julia Gautho, City Clerk; Jim Malberg, Finance Director; Sam Zutler, City Attorney<u>Approved By</u>: Jamie Goldstein, City Manager

Appendix C: Resolution Template of the Governing Body (Required)

Applicants are required to use the resolution form on the following page with no changes to content other than what is in the fillable fields.

When completing and preparing the Resolution, please refer to section V.F.4 of the 2024 NOFA.

Please note: On the next page, hidden text is used to provide instructions. Once a document is printed or converted to a pdf, the hidden text will be omitted.

To display hidden text:

- 1. Go to the Files Tab
- 2. Select Options from the bottom of the left-hand column
- 3. Click on the "Display" option
- 4. Check the "Hidden Text" box.
- 5. Make sure the "Print hidden text" box is not checked. This will ensure that when you convert to PDF or print the document, the instructional, hidden text is not displayed.

Note 1: The attesting officer cannot be the person identified in the Resolution as the authorized signer.

Note 2: Unless there is a city ordinance stating otherwise, the mayor <u>must</u> be the designated official in Section 5.

Resolution of the Governing Body

RESOLUTION NO. Insert Number

A RESOLUTION APPROVING AN APPLICATION FOR FUNDING AND THE EXECUTION OF A GRANT AGREEMENT AND ANY AMENDMENTS THERETO FROM THE 2024 FUNDING YEAR OF THE STATE CDBG PROGRAM

BE IT RESOLVED by the City Council of the **City** of Capitola as follows:

SECTION 1:

The City Council has reviewed and hereby approves the submission to the State of California of one or more application(s) in the aggregate amount, not to exceed, of \$170,000.00 for the following CDBG activities, pursuant to the and 2024 CDBG NOFA:

List activities and amounts

Activity (e.g. Public Services, Infrastructure, etc.)	Dollar Amount Being Requested for the Activity
Community Center Rehabilitation Project (23A-CDBG-	\$ 170,000.00
20002)	\$
	\$
	\$
	\$

SECTION 2:

The **City Council** hereby approves the use of Program Income in an amount not to exceed \$170,000.00 for the CDBG activities described in Section 1.

SECTION 3:

The **City Council** acknowledges compliance with all state and federal public participation requirements in the development of its application(s).

SECTION 4:

The **City Council** hereby authorizes and directs the City Manager or designee^{*}, to execute and deliver all applications and act on the **City**'s behalf in all matters pertaining to all such applications.

SECTION 5:

If an application is approved, the City Manager or designee*, is authorized to enter into, execute and deliver the grant agreement (*i.e.*, Standard Agreement), any recordable or

nonrecordable contract documents, and any and all subsequent amendments thereto with the State of California for the purposes of the grant.

SECTION 6:

If an application is approved, the City Manager or designee*, is authorized to sign and submit Funds Requests and all required reporting forms and other documentation as may be required by the State of California from time to time in connection with the grant.

PASSED AND ADOPTED at a regular meeting of the City Council of the **City** of Capitola held on 2/27/2025 by the following vote:

AYES: Enter # of votes or names NOES: Enter # of votes or names

ABSENT: Enter # absentees or names ABSTAIN: Enter # of abstains or names

> Enter Name and Title. City Council

STATE OF CALIFORNIA City of Capitola

I, Julia Gautho, **City** Clerk of the **City** of Capitola, State of California, hereby certify the above and foregoing to be a full, true and correct copy of a resolution adopted by said City Council on this 27th day of February, 2025 and that said resolution has not been amended, modified, repealed, or rescinded since its date of adoption and is in full force and effect as of the date hereof.

By: Julia Gautho, City Clerk of the City of Capitola, State of California

NOTICE OF PUBLIC HEARING CITY OF CAPITOLA CDBG PROGRAM INCOME COMMITMENT AND APPLICATION

NOTICE IS HEREBY GIVEN that the City of Capitola will conduct a public hearing on **Thursday**, **February 27**, **2025**, beginning at the hour of 6 p.m. in the City Council Chambers, 420 Capitola Avenue, Capitola, California, to discuss the commitment of Community Development Block Grant (CDBG) Program Income (PI) funds and to solicit public input regarding how these funds will be allocated.

Under the CDBG Program, there are specific rules and requirements associated with the management and use of Program Income received by grantees. Program Income are monies that have been loaned out in various forms (i.e. housing rehab loan, homebuyer assistance loan) and are paid back to the City via a loan payoff or sale in property. Program Income constitutes federal CDBG funds and must be expended and used in compliance with all CDBG statutes and regulations once they have been returned to the City.

The City is proposing to commit up to \$170,000 in Program Income towards the Community Center Rehabilitation project.

The agenda and staff reports will be available the Friday before the public hearing. You may view this information on the City's website at <u>cityofcapitola.org</u>. Remote access for this meeting is available at <u>https://www.youtube.com/channel/UCJgSsB5qqoS7CcD8lq9Yw1g</u> and live on Spectrum Cable Television channel 8. If you require special assistance in order to attend the meeting, including needs addressed by the Americans with Disabilities Act, notify the City at least 3 days prior to the meeting by calling 831-475-7300. If you are unable to attend the public hearing, you may direct written comments to the City of Capitola, Attn: Community Development, 420 Capitola Avenue, Capitola, CA 95010, or email kherlihy@ci.capitola.ca.us.

The City of Capitola promotes fair housing and makes all its programs available to low- and moderate-income families regardless of age, race, color, religion, sex, national origin, sexual orientation, marital status, or handicap.

For further information, please contact the City Clerk at 831-475-7300 during normal business hours, write to the City of Capitola, 420 Capitola Avenue, CA 95010, or via email at <u>jgautho@ci.capitola.ca.us</u>.

RESOLUTION NO.

RESOLUTION OF THE CITY COUNCIL OF THE CITY OF CAPITOLA AMENDING THE 2024-25 FISCAL YEAR CITY BUDGET AND CAPITAL IMPROVEMENT PROGRAM BUDGET

WHEREAS, it is necessary to adopt the 2024-25 Fiscal Year Budget for all City funds and Capital Improvement Program; and

WHEREAS, the City Council conducted budget study sessions, heard and considered public comments, had modified and proposed a budget accordingly, and on June 27, 2024, adopted such budget for the Fiscal Year July 1, 2024, through June 30, 2025; and

WHAREAS, the City Council previously amended the FY 2024-25 Fiscal Year Budget on September 24, 2024; and

WHEREAS, the City Council adopted Resolution No. 4415 amending the FY2024-25 budget allocating \$160,240 of Community Development Block Grant Program Income (CDBG-PI) to the Jade Street Community Center Rehabilitation project; and

WHEREAS, since the adoption of Resolution No. 4415 the City has received LAIF interest payments in the amount of \$\$4,825.00 as well accrued interest of approximately \$5,000; and

WHEREAS, it is necessary to amend the Fiscal Year 2024-25 Adopted Budget to allocate \$9,825.00 CDBG PI funds to the Jade Street Community Center Rehabilitation project; and

NOW, THEREFORE, BE IT HEREBY RESOLVED by the City Council of the City of Capitola that the 2024-25 Fiscal Year Budget is hereby amended, including Exhibit A (Budget Amendment) to this Resolution; and

BE IT FURTHER RESOLVED that the Finance Director is directed to enter the budget into the City's accounting records in accordance with appropriate accounting practices, and the City Manager, with the Finance Director's assistance, shall assure compliance therewith.

I HEREBY CERTIFY that the foregoing Resolution was passed and adopted by the City Council of the City of Capitola on the 27 February 2025, by the following vote:

AYES: NOES: ABSENT: ABSTAIN:

Joe Clark, Mayor

ATTEST:

Julia Gautho, City Clerk

Date 02/20/2025

Requesting Department*

Community Development

Type of Adjustment

- Administrative
- Council

Item

Council Date

2/27/25

Council Approval

Revenues

Account Number	Account Description	Increase/Decrease
1350-00-00-000-3910.351	Interfund Transfer In - CDBG PI	\$9,825.00

Total Revenues

\$9,825.00

Expenditures

Account Number	Account Description	Increase/Decrease
1351-00-00-000-4910.351	Interfund Transfer Out - CDBG	\$9,825.00

Total Expenditures

\$9,825.00

Net Impact

\$0.00

Purpose Transfer CDBG-PI interest earning to CDBG fund for Community Center project

Department Head Approval

Herlihy

Finance Director Approval *Jim Matherg*

City Manager Approval

Jamie GoldsTein

Action History (all history times shown in Pacific Standard Time)			
Submit	by Jim Malberg 2/20/2025 2:35:00 pm (Budget Amendment Request Submitted)		
Approve	 by kherlihy@ci.capitola.ca.us 2/20/2025 3:27:38 pm (Routed to CDD) The task was assigned to kherlihy@ci.capitola.ca.us 2/20/2025 2:35:00 pm 		
Approve (send to CM for approval)	 by Jim Malberg 2/20/2025 3:29:46 pm (Routed to Finance Director) The task was assigned to Jim Malberg 2/20/2025 3:27:38 pm 		
Approve (return to Finance for processing)	 by Jamie Goldstein 2/21/2025 12:05:07 pm (Routed to CM for final approval) The task was assigned to Jamie Goldstein 2/20/2025 3:29:46 pm 		

Item 7 E.

Received - Hem 4 Okal communications

STOP Lithium Battery Energy Storage Installations

PLANNED** for Our Neighborhoods! Near Homes, Schools, Churches, Businesses! **Near Dominican Hospital, Aptos High School, & in 90 Minto-Road Watsonville!

DANGERS Include: Thermal Instability / Thermal Runaway Explosions / Catastrophic Fires (Like the Jan. 16, 2025 Moss Landing Disastrous Fire) Fires Cannot be Extinguished Conventionally

Lithium Battery Fires Release TOXIC Smoke, Ash, Dangerous Chemicals, including Hydrogen Fluoride, Hydrogen Cyanide, Carbon Monoxide, other Fluorinated Gases, & Toxic Heavy Metals (cobalt, nickel, etc.) that pose

SEVERE HEALTH RISKS, including:

Acute Coughing, Difficulty Breathing, Irritation of Eyes & Skin Long Term Lung Damage, Carcinogenic Effects

> CONTAMINANTS Can LINGER in the Environment, Posing Ongoing Health Risks!

WHAT CAN YOU DO??

<u>SIGN</u> the <u>Change.org</u> petition: Title = "Halt the Establishment of Battery Storage Facilities in Monterey & Santa Cruz County"

CONTACT Co. Supervisors / Santa Cruz 831-454-2200 / Monterey 831-755-5066 CA State Senator John Laird / Santa Cruz 831-425-0401 / Monterey 831-657-6315 CA State Assembly Members: District 28 / Pellerin 831-425-1503, District 29 / Rivas 831-759-8676, District 30 / Addis 831-649-2832 CA Gov. Gavin Newsome 916-445-2841 CA Coastal Commission 415-904-5202 justin.cumming@santacruzcountyca.gov

INFORM your neighbors, friends, contacts

Websites:

Elkhorn Strong https://elkhornstrong.com/ Never Again Moss Landing https://www.neveragainmosslanding.org/

<u>Facebook Groups</u> (go to facebook.com): Moss Landing Battery Plant Environmental Disaster Community Group Moss Landing Power Plant / Vistra Fire Symptoms Santa Cruz County Organized to Protect Our Community