

Planning Commission

Wednesday, July 26, 2023 at 6:00 PM

Theodore D. Washington Municipal Building, 20 Bridge Street, Henry "Emmett" McCracken Jr.
Council Chambers

AGENDA

This meeting can be viewed live on <u>Beaufort County Channel</u>, on Hargray Channel 9 and 113 or on Spectrum Channel 1304.

- I. CALL TO ORDER
- II. ROLL CALL
- III. NOTICE REGARDING ADJOURNMENT

The Planning Commission will not hear new items after 9:30 p.m. unless authorized by a majority vote of the Commission Members present. Items which have not been heard before 9:30 p.m. may be continued to the next regular meeting or a special meeting date as determined by the Commission Members.

IV. NOTICE REGARDING PUBLIC COMMENTS*

Every member of the public who is recognized to speak shall address the Chairman and in speaking, avoid disrespect to Commission, Staff, or other members of the Meeting. State your name and address when speaking for the record. COMMENTS ARE LIMITED TO THREE (3) MINUTES.

- V. ADOPTION OF THE AGENDA
- **VI. ADOPTION OF MINUTES**
 - 1. June 28, 2023 Minutes
- VII. PUBLIC COMMENTS FOR ITEMS NOT ON THE AGENDA*
- **VIII. OLD BUSINESS**
- **IX. NEW BUSINESS**
 - 1. Parcel B-1 (Initial Master Plan): A request by Brian Witmer of Witmer Jones Keefer, Ltd, on behalf of Millstone Ventures, LLC, and with the approval of the property owner, Parcel 8A, LLC, for approval of an initial master plan application. The project proposes 16.02 acres of residential development and 5.9 acres of commercial development. The property is zoned Buckwalter PUD and consists of 21.92 acres identified by tax map number R610 028 000 0921

- 0000 and located at the northeast corner of the intersection of SC Highway 170 and Gibbet Road. (MP-06-23-018137) (Staff Dan Frazier)
- CarVillage Bluffton (Development Plan Application): A request by Dan Keefer of Witmer Jones Keefer, Ltd, on behalf of the property owner, Charlie and Brown, LLC for approval of a preliminary development plan. The project consists of the construction of a +/-20,000 sq. ft. two-story Clubhouse and 5 buildings divided into +/- 31 high-end garage condominium units. The property is zoned Village at Verdier PUD and consists of approximately 5.00 acres, identified by tax map number R610-021-000-0808-0000 and located on Highway 170 approximately 1,200 feet south of Seagrass Station Road. (DP-08-22-017076) (Staff Dan Frazier)
- X. DISCUSSION
- XI. ADJOURNMENT

"FOIA Compliance – Public notification of this meeting has been published and posted in compliance with the Freedom of Information Act and the Town of Bluffton policies."

In accordance with the requirements of Title II of the Americans with Disabilities Act of 1990 ("ADA"), the Town of Bluffton will not discriminate against qualified individuals with disabilities on the basis of disability in its services, programs, or activities. The Town of Bluffton Council Chambers are ADA compatible. Auditory accommodations are available. Any person requiring further accommodation should contact the Town of Bluffton ADA Coordinator at 843.706.4500 or adacoordinator@townofbluffton.com as soon as possible but no later than 48 hours before the scheduled event.

*Please note that each member of the public may speak at one public comment session and a form must be filled out and given to the Town Clerk. Public comment is limited to 3 minutes per speaker.

Executive Session - The public body may vote to go into executive session for any item identified for action on the agenda.

Planning Commission

Theodore D. Washington Municipal Building, 20 Bridge Street, Henry "Emmett" McCracken Jr. Council Chambers

June 28, 2023

I. CALL TO ORDER

Chairwoman Denmark called the meeting to order at 6pm.

II. ROLL CALL

PRESENT

Chairwoman Amanda Jackson Denmark Vice Chairman Charlie Wetmore Commissioner Kathleen Duncan Commissioner Rich Delcore Commissioner Jason Stewart

Commissioner Jim Flynn
Commissioner Lydia DePauw

III. ADOPTION OF THE AGENDA

Vice Chairman Wetmore made a motion to adopt the agenda as written.

Seconded by Commissioner Flynn.

Voting Yea: Chairwoman Jackson Denmark, Vice Chairman Wetmore, Commissioner Duncan, Commissioner Delcore, Commissioner Stewart, Commissioner Flynn, Commissioner DePauw

All were in favor and the motion passed.

IV. ADOPTION OF MINUTES

1. May 24, 2023 Minutes

Commissioner Delcore made a motion to adopt the minutes as written.

Seconded by Commissioner Flynn.

Voting Yea: Chairwoman Jackson Denmark, Vice Chairman Wetmore, Commissioner Duncan, Commissioner Delcore, Commissioner Stewart, Commissioner Flynn, Commissioner DePauw

All were in favor and the motion passed.

V. PUBLIC COMMENTS FOR ITEMS NOT ON THE AGENDA*

VI. OLD BUSINESS

VII. NEW BUSINESS

1. Lakes at New Riverside Phases 5 and 6 (Street Naming): A request by John Paul Moore of Thomas & Hutton, on behalf of Pritchard Farms, LLC for approval of a street naming application. The project consists of 144 single family lots and associated infrastructure. The property is identified by tax map number R610 044 000 0443 0000 and consists of 48.9 acres within the New Riverside Planned Unit Development Zoning District. (STR-05-23-018020) (Staff - Dan Frazier)

June 28, 2023

Staff presented. Applicant was in attendance.

Vice Chairman Wetmore made a motion to approve the application as submitted.

Seconded by Commissioner Delcore.

Voting Yea: Chairwoman Jackson Denmark, Vice Chairman Wetmore, Commissioner Duncan, Commissioner Delcore, Commissioner Stewart, Commissioner Flynn, Commissioner DePauw

All were in favor and the motion passed.

Midpoint (Street Naming): A request by Pulte Homes Company on behalf of Walcam Land Group, LLC for approval of a street naming application. The project consists of seven additional streets for the Midpoint neighborhood with associated single-family home lots. The property is identified by tax map number R610 044 000 0126 0000 and R614 045 000 0019 0000 and is located within the New Riverside PUD. (STR-05-23-018057) (Staff - Dan Frazier)

Staff presented. The applicant was in attendance. There was discussion about repetitive street names.

Commissioner Delcore made a motion to approve the street names as presented by staff with the exception of number 13, Coral Cove Court.

Seconded by Commissioner Duncan.

Voting Yea: Chairwoman Jackson Denmark, Vice Chairman Wetmore, Commissioner Duncan, Commissioner Delcore, Commissioner Stewart, Commissioner Flynn, Commissioner DePauw

All were in favor and the motion passed.

3. Wetland Impact for Parcels 12A, 12B and 12C (Development Plan): A request by Nathan Long of Thomas & Hutton on behalf of Jake Reed of University Investments, LLC for approval of a preliminary development plan. The project proposes partial wetland filling of approximately 0.56 acres to allow crossings for future road alignments. The properties are zoned Buckwalter Planned Unit Development and consists of approximately 58.0 acres identified by tax map numbers R610 029 000 0611 0000, R610 029 000 2343 0000, R610 029 000 2344 0000, and R610 029 000 1721 0000 located south and adjacent to Bluffton Parkway. (DP-03-23-017841) (Staff – Dan Frazier)

Staff presented. The applicant was in attendance. There was discussion about the access management plan, the intent of the future use of the property and the dry ponds.

Vice Chairman Wetmore made a motion to approve the plan as submitted with the condition that an approved encroachment permit allowing the applicant to perform work within the Town-owned Innovation Drive Extension property will be required prior to final development plan approval.

Seconded by Commissioner Stewart.

Voting Yea: Chairwoman Jackson Denmark, Vice Chairman Wetmore, Commissioner Duncan, Commissioner Delcore, Commissioner Stewart, Commissioner Flynn, Commissioner DePauw

All were in favor and the motion passed.

4. Public Hearing: Certain Amendments to the Town of Bluffton's Municipal Code of Ordinances, Chapter 23, Unified Development Ordinance (UDO), Sec. 3.2.3, Public Hearing Notice; Sec.

June 28, 2023

5.13, Signs, Exempt and Prohibited; and, Sec. 5.15, Old Town Bluffton Historic District, Cupolas, Setbacks in the NCE-HD and NG-HD Districts, and Establishing a Medium House Building Type with Related Building Requirements (Staff - Charlotte Moore)

Chairman Denmark opened the Public Hearing. There was a first call for public comment, then a second call and a final call for public comment. There was no public comment. The public hearing was closed.

Staff presented the proposed changes.

Commissioner Flynn made a motion to approve the amendments to the Town of Bluffton Code of Ordinances Chapter 23 - Unified Development Ordinance, as recommended by Town Staff with the following additional amendments:

- 1. Section 5.3.7: Eliminate the Sign Permit requirement for the following Temporary Signage: property sales/leases, construction projects and campaign signs; and
- 2. Section 3.2.4: Eliminate the public notice requirement for Street Naming and for a Minor Subdivision associated within an active Development Plan.

Seconded by Commissioner Delcore.

Voting Yea: Chairwoman Jackson Denmark, Vice Chairman Wetmore, Commissioner Duncan, Commissioner Delcore, Commissioner Stewart, Commissioner Flynn, Commissioner DePauw

All were in favor and the motion passed.

5. Big Blue Marble Academy (Certificate of Appropriateness- Highway Corridor Overlay): A request by Samantha Kozlowski, Development Manager, on behalf of the parcel owners EIG14T BBMA SC BLUFFFTON, LLC, for approval of a Certificate of Appropriates — Highway Corridor Overlay. The project consists of the landscape, lighting and architecture for Big Blue Marble Academy, a 11,293 SF one-story square foot childcare facility including an outdoor child play area and associated parking, located at the intersection of Mill Creek Boulevard and Okatie Highway (SC HWY 170) off Slater Street in the Jones Estate PUD, within the Cypress Ridge Master Plan. (COFA-03-23-017836) (Staff - Katie Peterson)

Staff presented. The applicant was in attendance. The applicant responded to the staff conditions. There was discussion about the conditions listed in the staff report, planting species, buffer near the sidewalk, the floor plan layout, safety concerns, fencing, door types, and when sign permits are required. Planning Commission Attorney LaBruce reviewed the options for the Planning Commission to act. The applicant requested to table the application. Staff reviewed the items discussed to ensure clear direction for the applicant to resubmit materials.

Vice Chairman Wetmore made a motion to table the application with the consideration that the applicant work with Staff to address the concerns the Commission had prior to returning to Planning Commission.

Seconded by Commissioner Delcore.

Voting Yea: Chairwoman Jackson Denmark, Vice Chairman Wetmore, Commissioner Duncan, Commissioner Delcore, Commissioner Stewart, Commissioner Flynn, Commissioner DePauw

All were in favor and the motion to table the application passed.

June 28, 2023

6. Refuel (Certificate of Appropriateness - Highway Corridor Overlay): A Certificate of Appropriateness to permit the landscape, lighting and architecture for Refuel convenience store and gas station, located along SC Highway 46 across from the May River Xing intersection. It is zoned PUD within the New Riverside PUD and New Riverside Village Master Plan. (COFA-04-23-017905)(Staff - Katie Peterson)

Staff presented. The applicant was in attendance. There was discussion about landscaping, parking, ceiling height, roof lines, plant selection, the canopy over the fuel section, the horizontal windows and mass and scale. The applicant requested to table the application. Staff reviewed the Commission's concerns.

Commissioner Duncan made a motion to table the application.

Seconded by Commissioner Delcore.

Voting Yea: Chairwoman Jackson Denmark, Vice Chairman Wetmore, Commissioner Duncan, Commissioner Delcore, Commissioner Stewart, Commissioner Flynn, Commissioner DePauw

All were in favor and the motion to table the application passed.

VIII. DISCUSSION

Staff introduced the Commission to the Growth Management Department Summer Intern, Angie Castrillon.

Staff thanked Commissioner Duncan for her years of service as this was her last meeting.

IX. ADJOURNMENT

Commissioner Duncan made a motion to adjourn.

Seconded by Vice Chairman Wetmore.

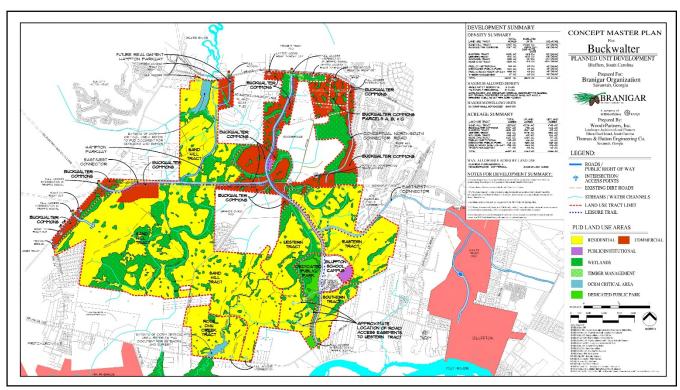
Voting Yea: Chairwoman Jackson Denmark, Vice Chairman Wetmore, Commissioner Delcore, Commissioner Stewart, Commissioner Flynn, Commissioner DePauw, Commissioner Duncan

All were in favor and the motion passed. The meeting was adjourned at 8:28pm.

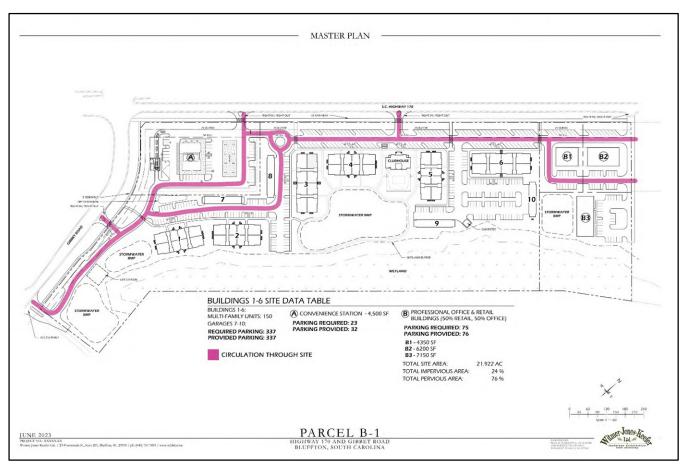
PLANNING COMMISSION

STAFF REPORT Department of Growth Management

MEETING DATE:	July 26, 2023
PROJECT:	Consideration of approval of an Initial Master Plan for property referred to as Parcel B-1 within the Buckwalter Planned Unit Development consisting of 21.92 acres that will include 16.02 acres of residential development and 5.9 acres of commercial development.
PROJECT MANAGER:	Dan Frazier, AICP Principal Planner Department of Growth Management


REQUEST: A request for approval of an Initial Master Plan application for Parcel B-1 within the Buckwalter Planned Unit Development (Attachments 1 and 2).

<u>INTRODUCTION:</u> The Applicant, Brian Witmer of Witmer Jones Keefer, Ltd, on behalf of Millstone Ventures, LLC, and with the approval of the property owner, Parcel 8A, LLC, is requesting approval for an Initial Master Plan for Parcel B-1. The subject parcel is identified as a commercial land use area within the Buckwalter Commons Tract of Buckwalter PUD Concept Master Plan (Attachment 3).


BACKGROUND: This initial master plan application request was previously submitted as a master plan amendment application requesting to amend the Buckwalter Crossroads Master Plan. On May 24, 2023, the planning commission recommended approval of the request subject to conditions. The request was subsequently withdrawn prior to proceeding to town council for consideration.

The Initial Master Plan consists of 21.92 acres that will include 16.02 acres of residential development and 5.9 acres of commercial development (Attachment 4). More specifically, the applicant proposes a conceptual site layout that includes a 150-unit multi-family development and two outparcels. Outparcel A proposes a 4,500 s.f. gas station/convenience store located at the northeast corner of Gibbet Road and SC Highway 170. Outparcel B proposes three professional office and retail buildings totaling 17,700 s.f north of the proposed multi-family development. The conceptual site layout provides interconnectivity between the uses and northward into the adjacent properties located within the Buckwalter Crossroads Master Plan.

Site layouts shown on the proposed master plan are conceptual in nature and are subject to review and approval in accordance with the Town of Bluffton Unified Development Ordinance at time of development plan submittal. As the subject properties are located within the Highway Corridor Overlay District, a Certificate of Appropriateness-HCOD is required. The marginal access road providing interconnectivity between developments is recognized as a requirement of the master plan.

Buckwalter PUD Concept Master Plan

Proposed Master Plan

The Applicant's complete submittal booklet provides a master plan narrative and master plan exhibits including existing and proposed conditions, wetlands, and a tree survey (Attachment 5). The Applicant has also provided a traffic impact analysis that has been reviewed and approved by the South Carolina Department of Transportation (SCDOT) (Attachment 6). The five site access locations and movements shown on the conceptual site layout are consistent with the conclusions of the traffic impact analysis.

The Beaufort County CONNECTS 2021 Bicycle and Pedestrian Plan, adopted by resolution by the Town of Bluffton on September 14, 2021, identifies a bicycle and pedestrian facility to be installed on the "Northbound side of SC-170 from SC-46 to Bluffton Parkway". The location of the 10-foot path is to be determined at the time of development plan submittal, and long-term maintenance of the path will be provided by Beaufort County if SCDOT does not assume this responsibility. Whether located on or off-site, the path is to be included in development plan applications and installed in conjunction with individual developments as they are constructed. A statement shall be placed on the amended master plan declaring that all development within the Buckwalter Crossroads Master Plan shall conform to the requirements and recommendations of the Beaufort County CONNECTS 2021 Bicycle and Pedestrian Plan.

Comments on the current master plan amendment were reviewed at the June 28, 2023, meeting of the Development Review Committee (Attachment 7). The Applicant satisfactorily addressed the DRC comments in a July 7, 2023, resubmittal.

<u>REVIEW CRITERIA & ANALYSIS:</u> The Planning Commission is required to consider the criteria set forth in Section 3.9.3 of the Unified Development Ordinance in assessing an application for a Master Plan. These criteria are provided below followed by a Staff Finding(s).

1. <u>Section 3.9.3.B.</u> Promotion of and consistency with the land use goals, environmental objectives and overall intent of the policies within the Comprehensive Plan.

Finding. The application is consistent with the Comprehensive Plan.

The Land Use Element within the Comprehensive Plan provides a vision that suggests a balance of land uses to ensure a high quality of life, business opportunity, environmentally protected areas, and proper placement of commercial uses. The Parcel B-1 Initial Master Plan proposes a mix of residential and commercial uses that will stimulate economic growth and contribute to the Town's goal of being a sustainable community with a diversified tax base to support Town facilities and services.

2. <u>Section 3.9.3.C.</u> Consistency with the intent of the Planned Unit Development Zoning District as prescribed in this Ordinance.

Finding. The application is consistent with the Town of Bluffton Zoning and Development Standards Ordinance that applies to the Buckwalter PUD Concept Plan.

The Buckwalter PUD Concept Plan was designed to be a mixed-use development, which includes residential and commercial uses. The initial master plan application proposes a mixed-use development that is consistent with the Buckwalter PUD Concept Plan.

3. <u>Section 3.9.3.D.</u> As applicable, consistency with the provisions of the associated Development Agreement and/or PUD Concept Plan.

Finding. The application is consistent with the provisions of the Buckwalter PUD Concept Plan.

The initial master plan application is consistent with the Buckwalter PUD Concept Plan, which identifies the subject properties as being within the Buckwalter Commons Land Use Tract, which allows for General Commercial and Multi-family Residential land uses.

4. <u>Section 3.9.3.E.</u> Compatibility of proposed land uses, densities, traffic circulation and design with adjacent land uses and environmental features, as well as the character of the surrounding area.

Finding. The application is compatible with the surrounding area.

The proposed land uses and densities are compatible with existing development in the surrounding area. The traffic impact analysis provided with the application was prepared in April 2023, and has been reviewed and approved by SCDOT. The five site access locations and movements shown on the conceptual site layout are consistent with the conclusions of the traffic impact analysis.

5. <u>Section 3.9.3.F.</u> Ability to be served by adequate public services, including, but not limited to, water, sanitary sewer, roads, police, fire, and school services. For developments that have the potential for significant impact on infrastructure and services the applicant shall be required to provide an analysis and mitigation of the impact on transportation, utilities, and community services.

Finding. The property can be served by adequate public services.

Existing water mains, located along both Gibbet Road and SC170, will serve the parcels. The water supply system will be designed to provide flow and pressure for fire protection. The wastewater will be collected and pumped to an existing wastewater facility owned and operated by BJWSA. As previously stated, the traffic impact analysis provided with the application was prepared in April 2023, and has been reviewed and approved by SCDOT.

6. <u>Section 3.9.3.G.</u> Demonstration of innovative site planning techniques that improve upon the standards in other allowable Town of Bluffton zoning districts with the purpose of enhancing the Town of Bluffton's health, safety and welfare.

Finding. The Master Plan includes innovative site planning techniques that enhance the Town's health, safety, and welfare.

The site will be required to use best practices in stormwater management and is subject to the requirements of the Town of Bluffton Unified Development Ordinance and Stormwater Design Manual (SWDM), to include the Southern Lowcountry Stormwater Ordinance & Design Manual.

The site will also be required to meet the requirements and recommendations of the Beaufort County CONNECTS 2021 Bicycle and Pedestrian Plan, to include installing a bicycle and pedestrian path along SC 170 frontage.

7. <u>Section 3.9.3.H.</u> Ability of the site to sufficiently accommodate the densities and land use intensities of the proposed development.

Finding. The property can sufficiently accommodate the proposed development.

The site is consistent with the approved Buckwalter PUD Concept Plan.

8. <u>Section 3.9.3.I.</u> Conformance with adopted or accepted plans, policies, and practices of the Town of Bluffton.

Finding. The requested initial master plan is in conformance with adopted or accepted plans, policies, and practices of the Town.

TOWN STAFF RECOMMENDATION: Town Staff finds that the requirements of Section 3.9.3 of the Unified Development Ordinance can be met with the following conditions and recommends that the Planning Commission provide a recommendation of conditional approval to Town Council for the Parcel B-1 Initial Master Plan

- 1. A statement shall be placed on the initial master plan declaring that all development within the master plan shall conform to the requirements and recommendations of the Beaufort County CONNECTS 2021 Bicycle and Pedestrian Plan.
- 2. Whether located on- or off-site, it shall be the responsibility of developers to install a 10-foot-wide bicycle and pedestrian path along SC Highway 170 frontage consistent with the requirements and recommendations of the Beaufort County CONNECTS 2021 Bicycle and Pedestrian Plan in conjunction with individual site development within the Parcel B-1 Initial Master plan.
- 3. Site layouts for all parcels are subject to full Town review and approval at time of development plan submittal.

<u>PLANNING COMMISSION ACTIONS:</u> The Planning Commission has the authority to take the following actions with respect to the recommendation of the application to Town Council:

- 1. Recommend approval to Town Council of the application as submitted by the Applicant;
- 2. Recommend approval to Town Council of the application with conditions; or
- 3. Recommend denial to Town Council of the application as submitted by the Applicant.

July 26, 2023

NEXT STEPS: Forward recommendation to Town Council:

Master Plan Procedure	Step Completed	Date Completed
Step 1. Pre-Application Meeting	✓	December 1, 2022
Step 2. Application Check-In Meeting	✓	January 24, 2023
Step 3. Review by DRC	✓	June 28, 2023
Step 4. Planning Commission Recommendation	√	July 26, 2023
Step 5. Town Council Consideration for Approval of Majority Vote		TBD

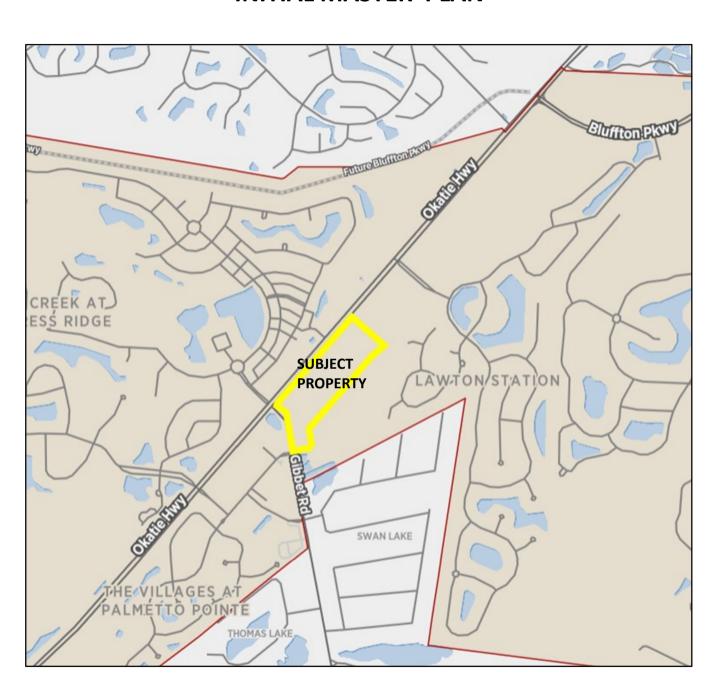
ATTACHMENTS:

- 1. Application
- 2. Location Map
- 3. Buckwalter PUD Concept Master Plan
- 4. Initial Master Plan
- 5. Complete Submittal Booklet
- 6. Traffic Impact Analysis (April 18, 2023)
- 7. DRC Comments (June 28, 2023)

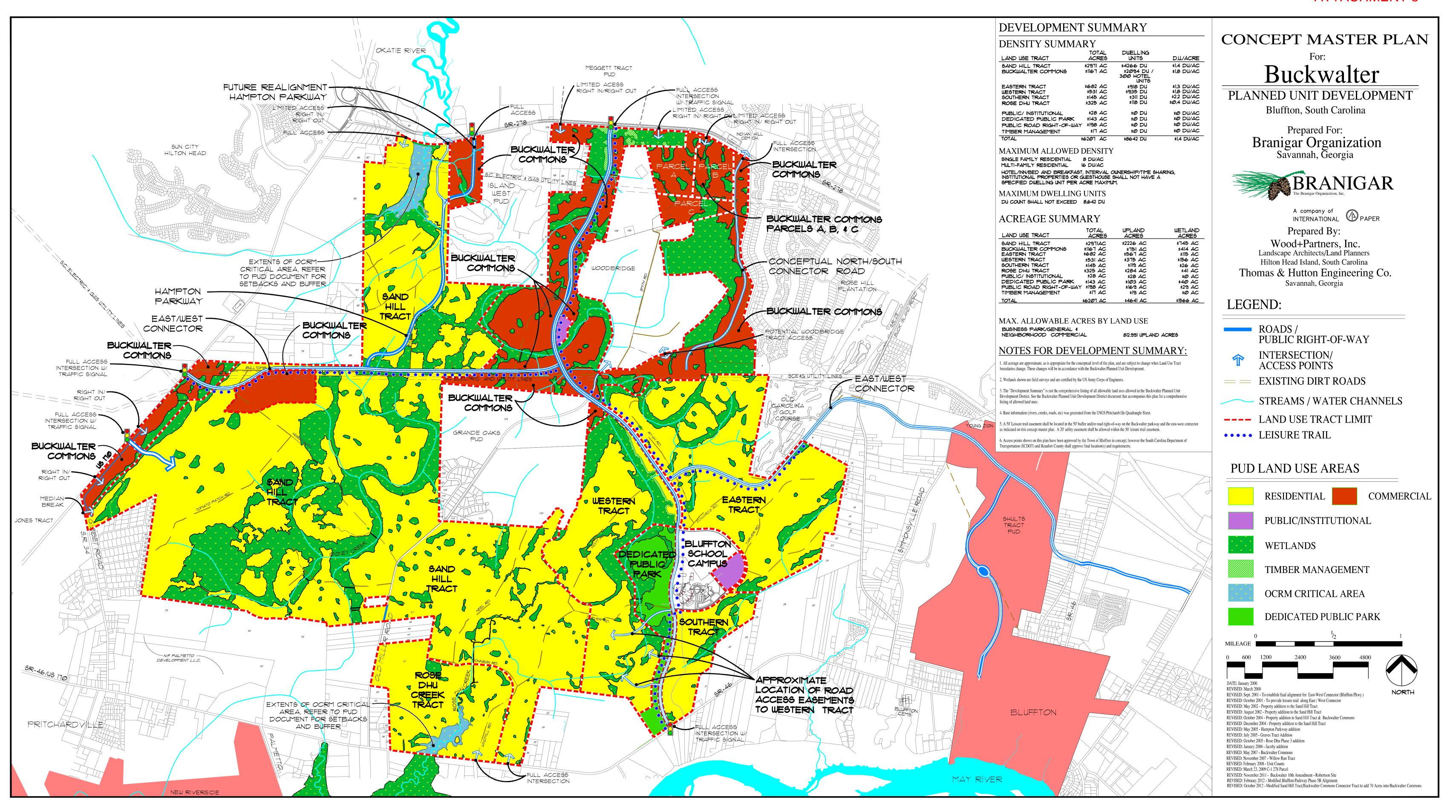
TOWN OF BLUFFTON PLANNED UNIT DEVELOPMENT (PUD) MASTER PLAN APPLICATION

Growth Management Custom

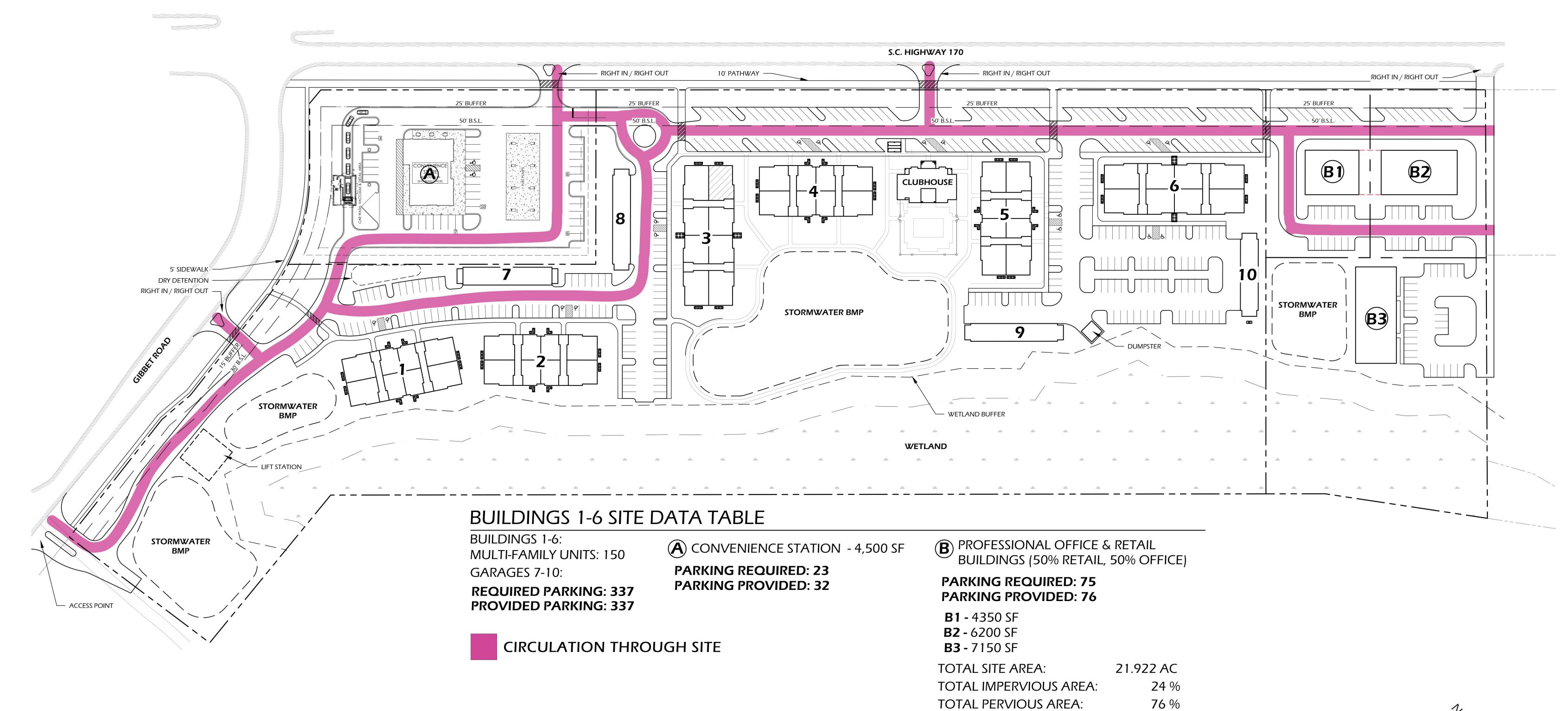
Section IX. Item #1.

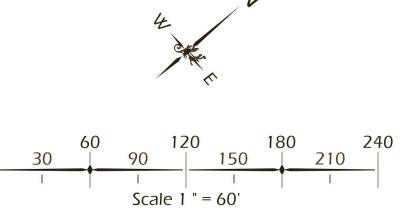

20 Bridge Street Bluffton, SC 29910 (843)706-4522

www.townofbluffton.sc.gov applicationfeedback@townofbluffton.com


Applicant	Property Owner					
Name: WHMER Jones Keefer	Name: Millstone Ventures LLC					
Phone: 843-757-7411	Phone: 317 - 694 - 5114					
Mailing Address:	Mailing Address:					
23 Promenade Street						
E-mail: Brian @wik Hd. com	E-mail: Owen@ Millstone mgmt.co					
Town Business License # (if applicable):						
Project In	formation					
Project Name: Parcel B-1	New					
Project Location: HWY 170 & GIBBETRD.	Acreage: 21.922					
PUD Name: Buckwater						
Tax Map Number(s): RG10 028 000	0921 0000					
Project Description:	re, Proffessional, Retail Uses					
Minimum Requirements for Submittal						
 Two (2) full sized copies and digital files of the Master Plan. Recorded deed and plat showing proof of property ownership. Project Narrative describing reason for application and compliance with the criteria in Article 3 of the UDO. An Application Review Fee as determined by the Town of Bluffton Master Fee Schedule. Checks made payable to the Town of Bluffton. 						
Note: A Pre-Application Meeting is require	ed prior to Application submittal.					
	egal or financial liability to the applicant or any ng the plans associated with this permit.					
I hereby acknowledge by my signature below that the fore the owner of the subject property. As applicable, I authorize						
Property Owner Signature: Adien January	Date: 6/1/23					
Applicant Signature:	Date: 6/5/23					
For Off	ice Use					
Application Number:	Date Received:					
Received By:	Date Approved:					

Effective Date: 11/10/2011


VICINITY MAP PARCEL B-1 INITIAL MASTER PLAN



ATTACHMENT 3

MASTER PLAN FOR:

PARCEL B1

TOWN OF BLUFFTON,
SOUTH CAROLINA

Prepared For:
MILLSTONE VENTURES LLC

JUNE 2023

Prepared By: Witmer Jones Keefer, Ltd.

Table of Contents

Title	9		Page
I.	Pı	roject Introduction and Overview	5
II.	Ex	xisting Conditions	5
	A. B. C. D. E.	Survey Wetlands Topography Land Cover Conceptual Wastewater Collection Master Plan Conceptual Water Distribution Master Plan	5 6 6 6 6
III.		evelopment Master Plan	6
	A. B. C. D. E. F.	Site Design and Development Standards Stormwater Management Utility Services 1. Potable Water Distribution 2. Wastewater Collection 3. Power Supply and Service 4. Telecommunication Service 5. Bluffton Fire District Proposed Streets Open space and pedestrian connections Ownership and Maintenance of Common Areas & Utilities 1. Common Areas 2. Utilities	7 7 7 7 7 7 8 8 8 8
V.	Deve	elopment Rights and Assignments	9

List of Exhibits

<u>Title</u>		<u>Exhibit</u>
1.	Vicinity Map/ Survey————————————————————————————————————	——А
2.	Master Plan —	——В
3.	Water Master Plan	——С
4.	Sewer Master Plan	D
5.	Stormwater Master Plan————————————————————————————————————	——Е
6.	Topographic Data	F
7.	Wetlands—	<u></u> G
8.	Buckwalter Concept Master Plan (dated February 2020)—	——Н
9.	Property Deed———————————————————————————————————	
10.	Tree Survey————————————————————————————————————	J
11.	Traffic Impact Analysis—	——К

Project Team

Owner:	Millstone Ventures LLC
Land Planning & Architecture:	
Witmer Jones Keefer, Ltd	Brian Witmer Ashleigh Keaney
Engineering:	
Ward Edwards	Willy Powell
Legal:	
Burr & Forman	Walter Nestor

Master Plan Narrative

I. Project Introduction and Overview

This application is for a Master Plan for Parcel B-1, a 21.92 Acre property (Exhibit A), located within the Buckwalter Planned Unit Development. This application is submitted under Section 5.8.8 of the Town of Bluffton Planned Development Ordinance, and the Buckwalter PUD adopted by the Town in January 2000. The Master Plan includes the addition of 16.02 residential and 5.9 acres of commercial uses.

The Town of Bluffton approved the Concept Plan and a Development Agreement for the Buckwalter PUD in January 2000. The Concept Plan defines the allowed land uses in the various areas of the Buckwalter PUD. The documents also define the development standards, which govern all development activity within the Buckwalter Crossroads Master Plan, including Parcel B1.

This written narrative, together with all exhibits attached hereto, constitutes the full application, and upon approval, shall constitute the official Buckwalter Crossroads Master Plan.

II. Existing Conditions

The applicant, Witmer Jones Keefer, Ltd. submits the application herein as an agent of the property owner, Millstone Ventures LLC.

This applicant seeks final approval of the Master Plan based on the conditions approved under the Buckwalter PUD, and the matters contained in this application. The attached Exhibits provide detailed information regarding the existing conditions of the property. These items include:

A. Survey

The boundary survey plat (Exhibit A) of the property contains the following information:

1. Vicinity Map

- 2. Boundary and Dimensions
- 3. Existing Easements
- 4. Existing Roads
- 5. Existing Drainage Ways
- 6. Property Owners of Adjacent Properties

B. Wetlands Verification

A wetland impacts determination was issued on April 29, 2022. (Exhibit G)

C. Topography

1. Topographic Data is shown on (Exhibit F).

D. Land Cover

Parcel B1 is comprised of planted pine and delineated wetland areas. The preserved wetland areas are predominantly pines, mixed hardwoods, maple, and bay trees.

E. Conceptual Wastewater Collection Master Plan

 The existing Sanitary Sewer Collection System is provided by BJWSA. (Exhibit D)

F. Conceptual Water Distribution Master Plan

Existing Water Distribution System is provided by BJWSA. (Exhibit C)

III. Development Master Plan

The project will be developed in accordance with the Buckwalter PUD, dated February 2020 (Exhibit H). The final location of roads, lagoons, open spaces, buildings, parking, and other elements may vary at the time of Development Permit Applications. The plan demonstrates a potential arrangement of land uses, road corridors and uses. The pink line also demonstrates a potential arrangement of interconnected roads and drives through the property. Like the adjacent Buckwalter Crossroads Master Plan, the connectivity is shown through streetscapes with angled parking, drives with 90 degree parking, coming to stop movements, turns, traffic circles, and multiple connections to SC Highway 170 and Gibbet Road. This arrangement would slow designs speeds providing safer interconnectivity for pedestrians and vehicles alike. The final layout will vary

based on market conditions and environmental constraints. The property will be accessed from two existing locations: SC Highway 170 (Okatie Highway) and Gibbet Road.

A. Site Design and Development Standards

Site design standards shall be as set forth under the Buckwalter PUD and Development Agreement. The applicant intends to responsibly exercise the design functions entrusted to the applicant as the private developer under the PUD and Development Agreement.

B. Stormwater Management

Development areas will be designed to meet the requirements of the Town of Bluffton Unified Development Ordinance and Stormwater Design Manual (SWDM), to include the Southern Lowcountry Stormwater Ordinance & Design Manual.

C. Utility Services

1. Potable Water Distribution

Potable Water will be provided by Beaufort–Jasper Water & Sewer Authority (BJWSA). Existing water mains, located along both Gibbet Road and SC170, will serve the parcels. This water main will provide adequate flow to support this project. (Exhibit C)

2. Wastewater Collection

Wastewater Collection will be provided by a combination of gravity sewers and a pumping station within the development area. The wastewater will be collected and pumped to an existing wastewater facility owned and operated by BJWSA. Development outparcels will tie into the existing system as determined at time of future development plan submittal. (Exhibit D)

3. Power Supply and Service

This tract is serviced by Palmetto Electric. Service will be extended as development progresses. PUD Master Plan approval does not amend any rights provided to a landowner by the Public Service Commission or South Carolina.

4. Telecommunication Service

This tract is serviced by Hargray. The telecommunications infrastructure will include voice, data, and video facilities. Service will be extended and activated as development progresses. Master Plan approval does not amend any rights provided to a landowner or telecommunications provider as granted by the Public Service Commission.

5. Fire Protection

The community is in the Bluffton Township Fire District (BTFD) jurisdiction. The water supply system will be designed to provide flow and pressure for fire protection.

D. Proposed Streets

Access points will be coordinated with Beaufort County and South Carolina Department of Transportation (SCDOT) at time of Development Plan review.

Roads and Right of Ways outside of the Beaufort County Frontage roads may be privately owned and maintained by the Property Owner's Association, or other entity assigned with the legal responsibility. Roadways, upon mutual agreement between the Town of Bluffton and the Owner, Property Owners Association, or other entity assigned with the legal responsibility, may be transferred to the Town of Bluffton upon completion. Acceptance of these roads will be based on Town of Bluffton requirements.

E. Open Space and Pedestrian connections

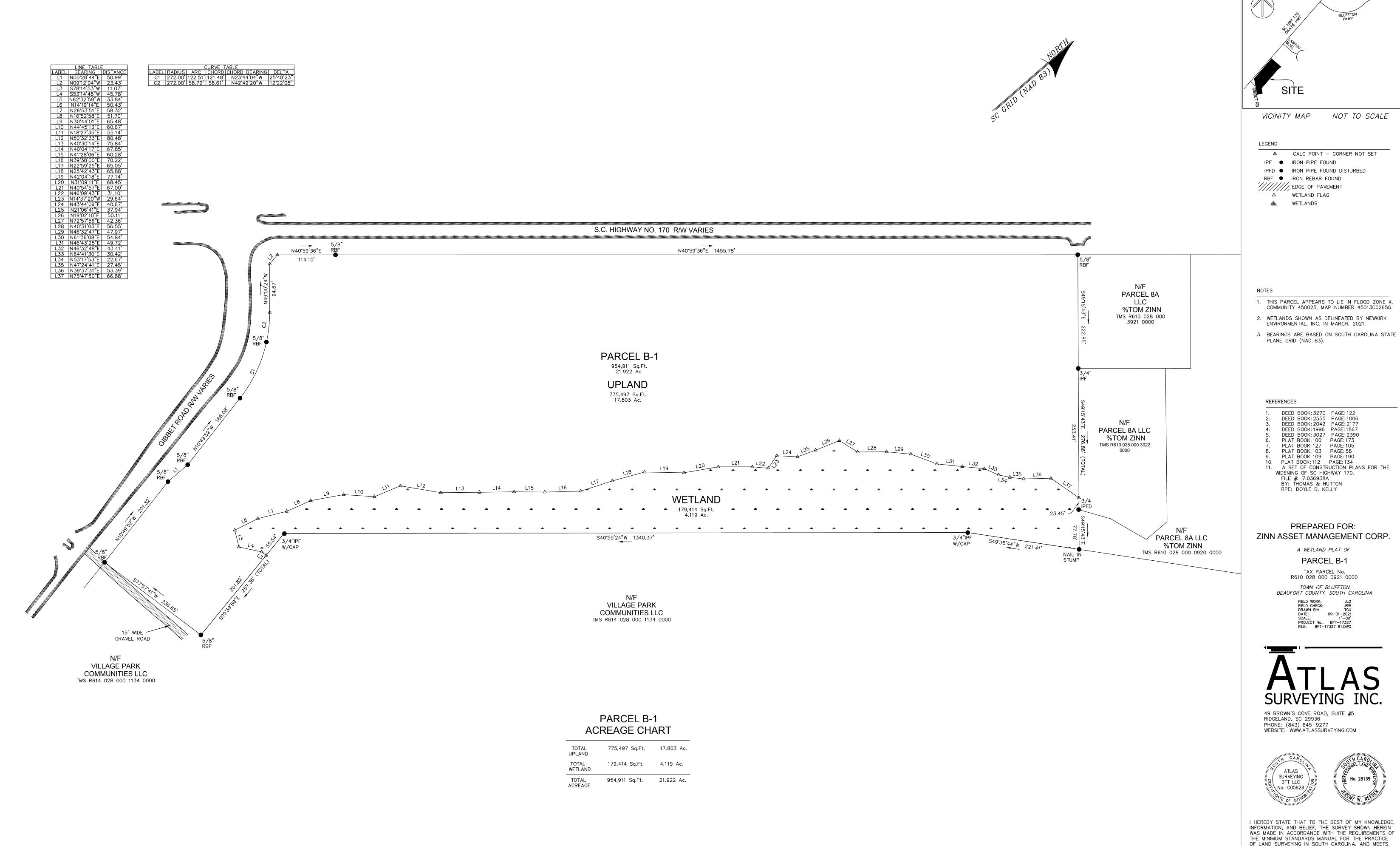
The proposed parcels will connect internal sidewalks to public walkways.

F. Ownership and Maintenance of Common Areas and Utilities

1. Common Areas

The Common Areas, which include easements, open space, sidewalks, etc., will be owned by the Property Owners Association or some other legal entity, established in the Covenants and Restrictions. This ownership will include the maintenance of facilities, lagoons and drainage on the property. Lagoon access and maintenance easements may be provided to allow lagoon maintenance. Fees will be assessed from all property owners to provide funding for operation and maintenance of common areas. In some cases, individual elements of the overall stormwater retention and drainage

system may be constructed on individually owned development sites, but all functioning elements will be subject to master covenants, including easements and maintenance rights, which will assure the ability and means to maintain the system in perpetuity.


No public lands or methods of dedication and access are proposed.

2. Utilities

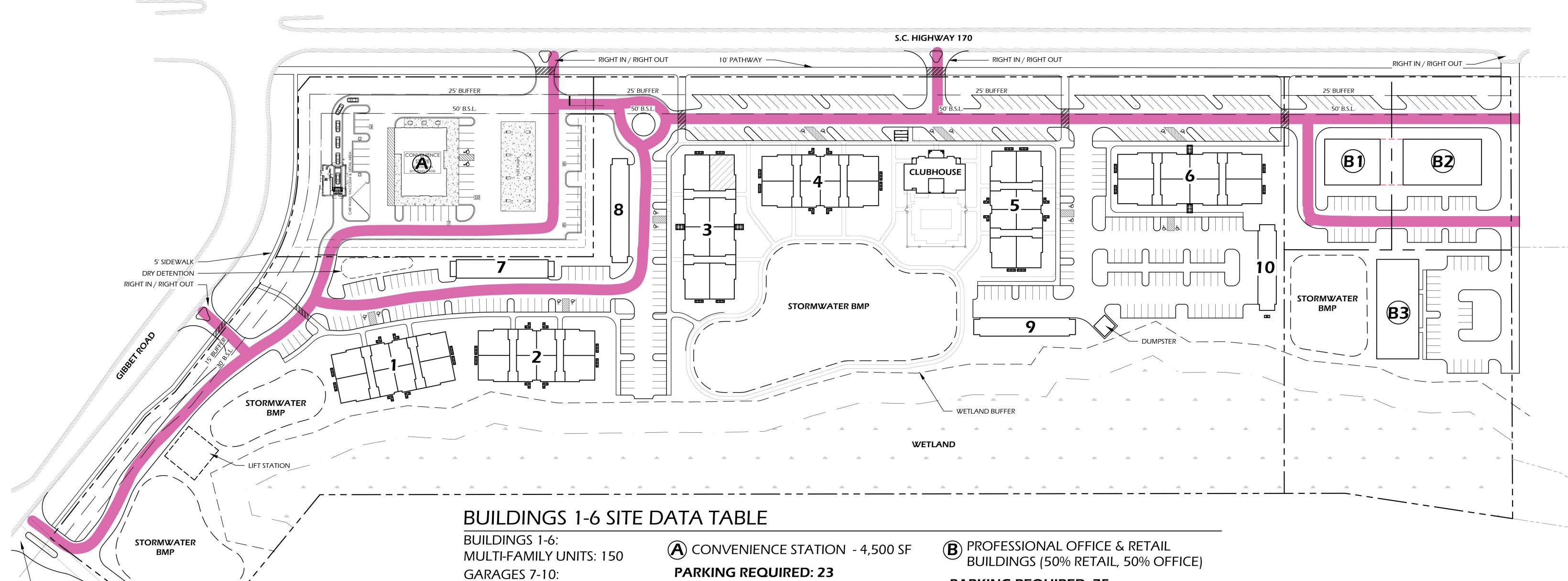
Beaufort-Jasper Water & Sewer Authority will own and operate the water and sewer facilities necessary for this project. Electrical power facilities will be owned and operated by Palmetto Electric, or other provider as approved by the Public Service Commission.

IV. Development Rights and Assignment

The Development Agreement states the Owner is required to notify the Town when Development Rights are transferred to a Developer, including the name and address of such Developer, the location and number of acres transferred, the residential density transferred, the commercial acreage transferred, and other relevant information.

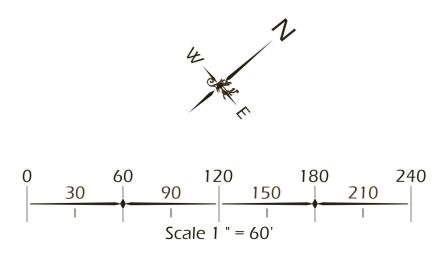
NOT TO SCALE

△ CALC POINT — CORNER NOT SET


SURVEYING INC.

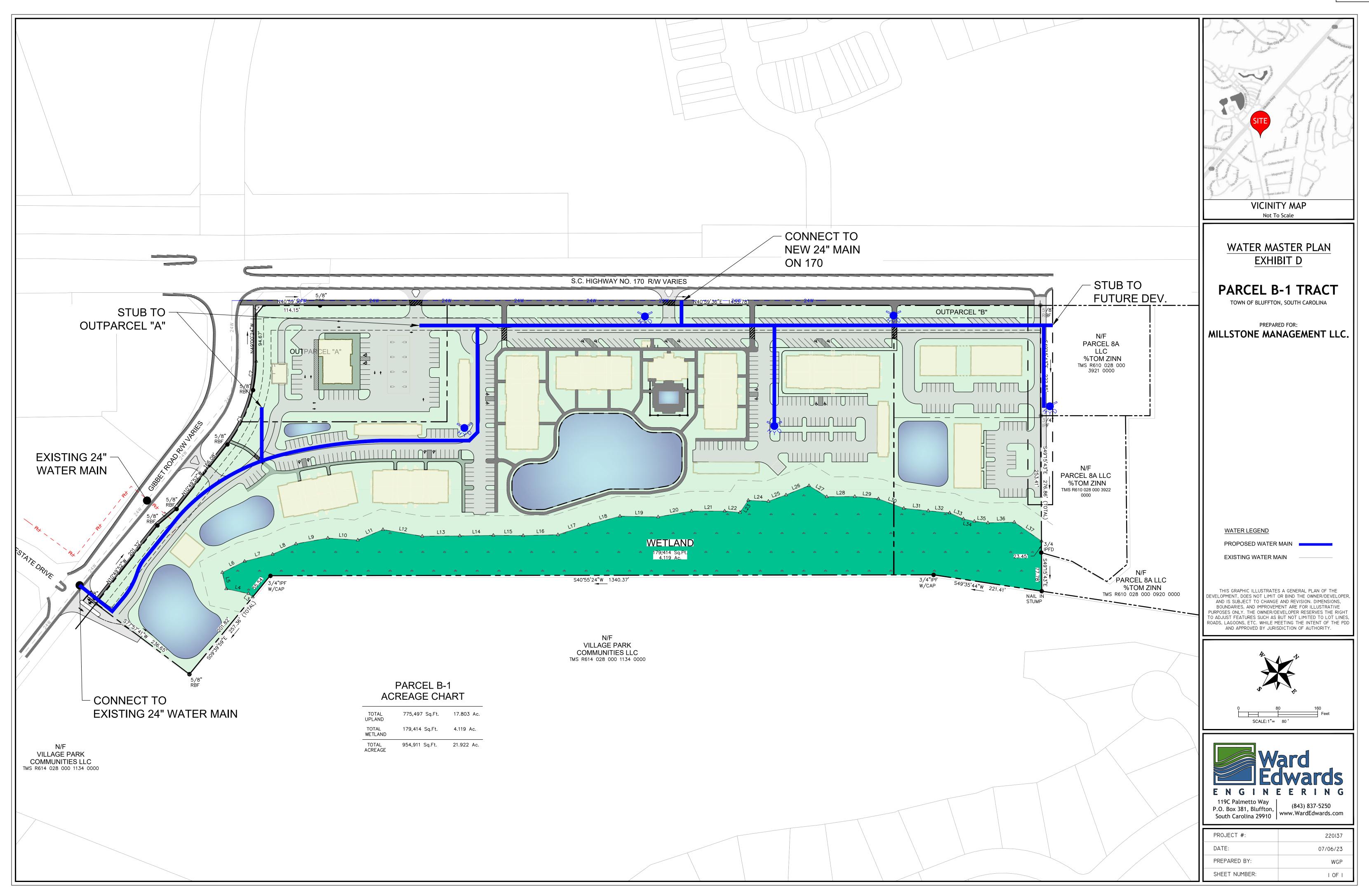
OF LAND SURVEYING IN SOUTH CAROLINA, AND MEETS OR EXCEEDS THE REQUIREMENTS FOR A CLASS "A" SURVEY AS SPECIFIED THEREIN.

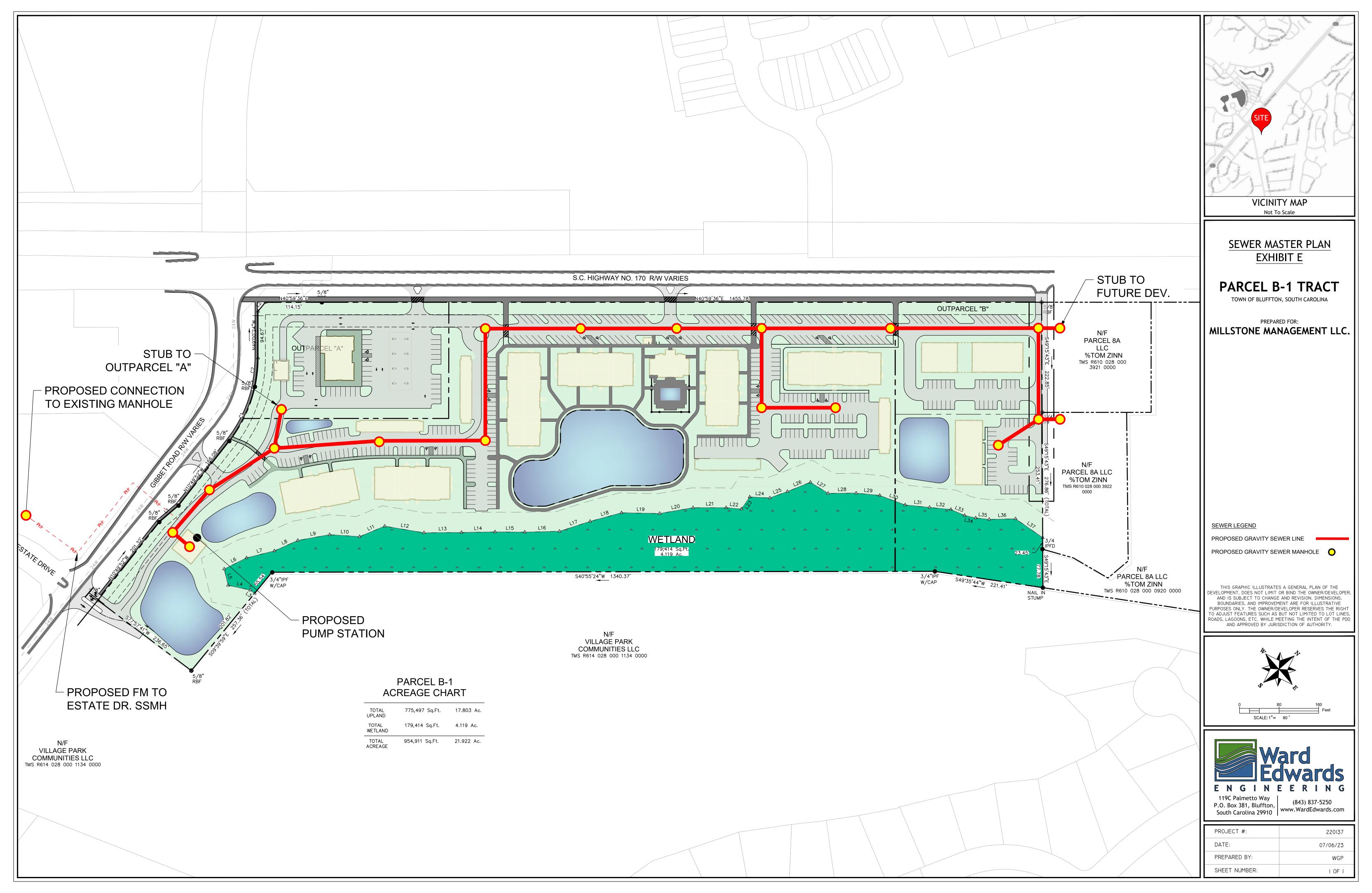
JEREMY W. REEDER S.C.P.L.S. No. 28139

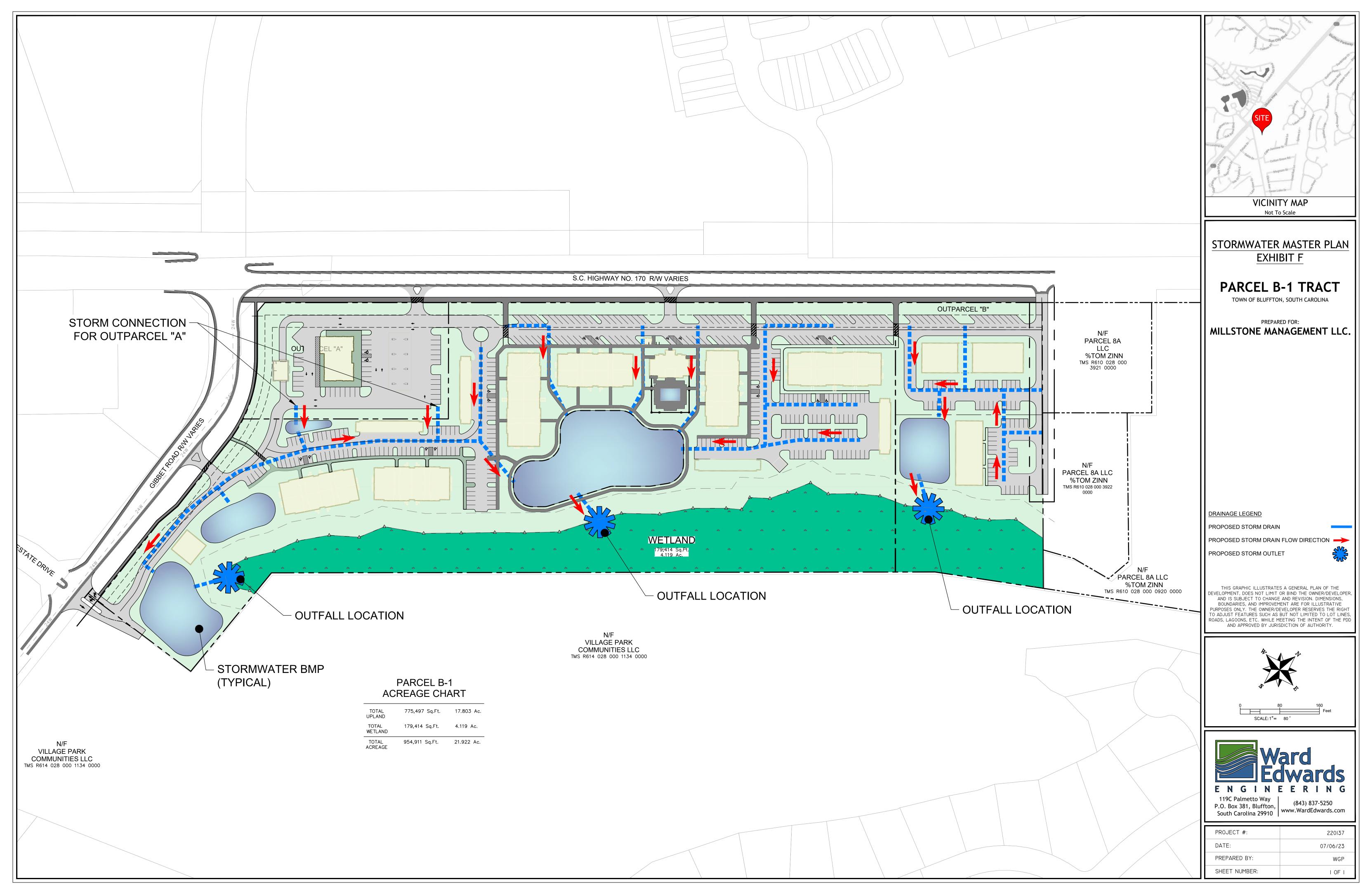

REQUIRED PARKING: 337 PROVIDED PARKING: 337 **PARKING REQUIRED: 23 PARKING PROVIDED: 32**

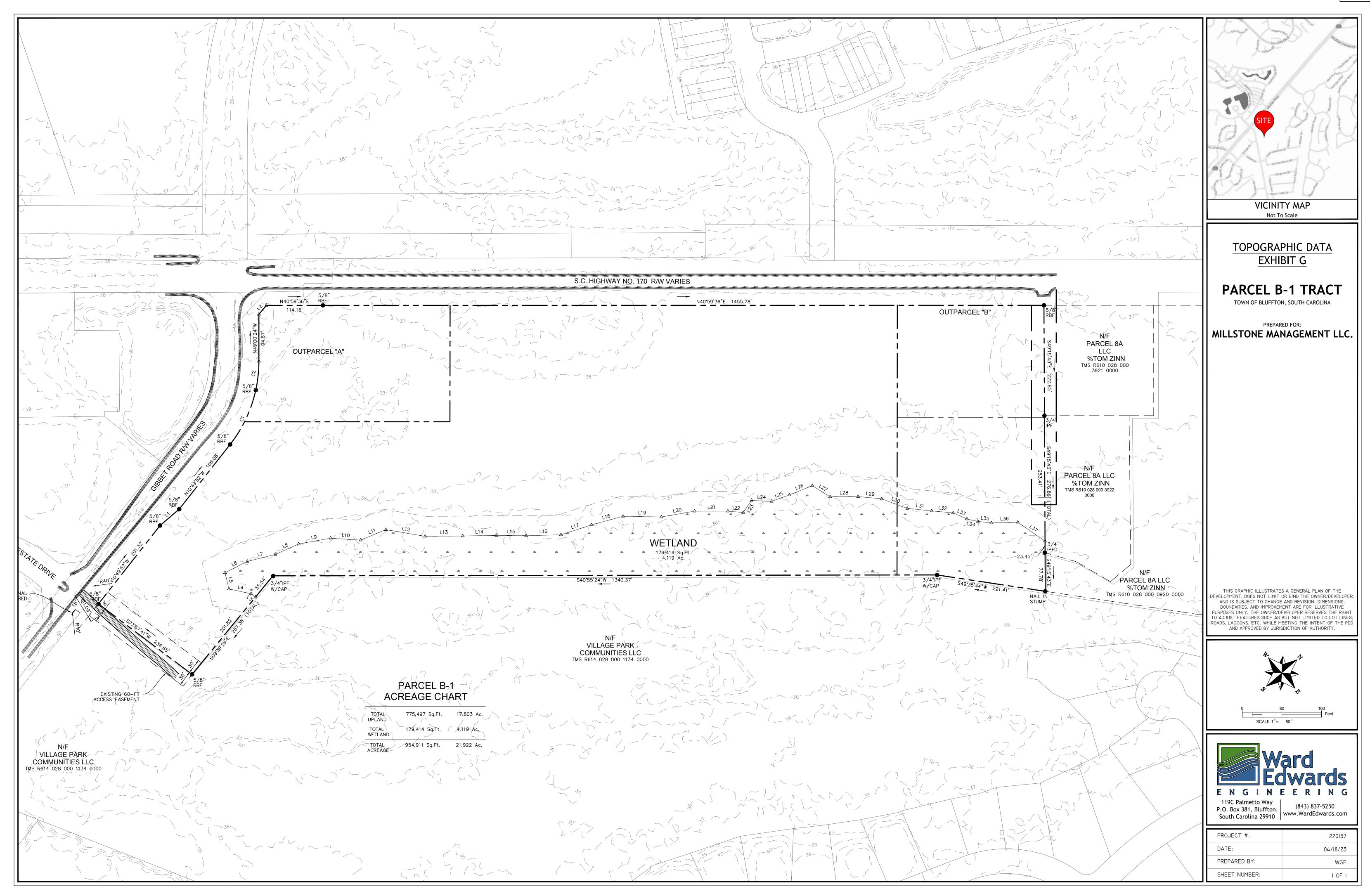
CIRCULATION THROUGH SITE

PARKING REQUIRED: 75 PARKING PROVIDED: 76


B1 - 4350 SF **B2** - 6200 SF **B3** - 7150 SF


TOTAL SITE AREA: 21.922 AC TOTAL IMPERVIOUS AREA: 24 % **76** % TOTAL PERVIOUS AREA:




landscape architecture land planning

DEPARTMENT OF THE ARMY U.S. ARMY CORPS OF ENGINEERS, CHARLESTON DISTRICT 69A HAGOOD AVENUE CHARLESTON, SC 29403-5107

April 29, 2022

Regulatory Division

Mr. Asher Howell Newkirk Environmental, Inc. 73 Sea Island Parkway, Ste 20 Beaufort, South Carolina 29907 asher@newkirkenv.com

Dear Mr. Howell:

This is in response to your request for a preliminary jurisdictional determination (PJD) that is part of an overall project known as Zinn - Gibbet Road Project. Based on information submitted to the U.S. Army Corps of Engineers (Corps) we have determined there may be waters of the United States, including wetlands on your parcel located at the following:

Project Number: SAC-2021-00635 County: Beaufort County

Project/Site Size: 22 Acres

Latitude: 32.2568441523638° Longitude: -80.9651686824472°

Project/Site Location: Highway 170 and Gibbet Road, Bluffton, SC

29909

Waters (Acreage/Linear Feet): 4.2 Acres

A copy of the PJD form and the plat dated September 1, 2021, and titled A WETLAND PLAT OF PARCEL B-1, is enclosed. Please carefully read this form, then sign and return a copy to the project manager at the following Sean.M.Dillard@usace.army.mil within 30 days from the date of this notification.

Please be advised a Department of the Army permit will be required for regulated work in all areas which may be waters of the United States, as indicated in this PJD. For purposes of computation of impacts, compensatory mitigation requirements, and other resource protection measures, a permit decision made on the basis of a PJD will treat all waters and wetlands, which would be affected in any way by the permitted activity on the site, as if they are jurisdictional waters of the United States. Should you desire an approved Corps determination, one will be issued upon request.

You are cautioned that work performed in areas which may be waters of the United States, as indicated in the PJD, without a Department of the Army permit could subject you to enforcement action.

The delineation included herein has been conducted to identify the location and extent of the aquatic resource boundaries and/or the jurisdictional status of aquatic resources for purposes of the Clean Water Act for the particular site identified in this request. This delineation and/or jurisdictional determination may not be valid for the Wetland Conservation Provisions of the Food Security Act of 1985, as amended. If you or your tenant are USDA program participants, or anticipate participation in USDA programs, you should discuss the applicability of a certified wetland determination with the local USDA service center, prior to starting work.

If you submit a permit application as a result of this PJD, include a copy of this letter and the depiction as part of the application. Not submitting the letter and depiction will cause a delay while we confirm a PJD was performed for the proposed permit project area. Note that some or all of these areas may be regulated by other state or local government entities, and you should contact the South Carolina Department of Health and Environmental Control, Bureau of Water and/or Office of Ocean and Coastal Resource Management, to determine the limits of their jurisdiction.

In all future correspondence, please refer to file number SAC-2021-00635. A copy of this letter is forwarded to State and/or Federal agencies for their information. If you have any questions, please contact Sean M. Dillard, Project Manager, at (843) 329-8046, or by email at Sean.M.Dillard@usace.army.mil.

Sincerely,

Jeremy Kinney Project Manager

Jeremy Kinney

Enclosures:
Preliminary Jurisdictional Determination Form
Notification of Appeal Options

A WETLAND PLAT OF PARCEL B-1

Copies Furnished:

Mr. Tom Zinn
Parcel BA LLC
PO Box 1726
Bluffton, South Carolina 29910

Attachment 5

Section IX. Item #1.

SC DHEC - Bureau of Water 2600 Bull Street Columbia, South Carolina 29201 WQCWetlands@dhec.sc.gov

SC DHEC - OCRM 1362 McMillan Avenue, Suite 400 North Charleston, South Carolina 29405 OCRMPermitting@dhec.sc.gov

Appendix 2 - PRELIMINARY JURISDICTIONAL DETERMINATION (PJD) FORM

BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR PJD: April 28, 2022

B. NAME AND ADDRESS OF PERSON REQUESTING PJD:

Applicant:
Mr. Tom Zinn
Parcel BA LLC
PO Box 1726
Bluffton, South Carolina 29910

Consultant:
Mr. Asher Howell
Newkirk Environmental, Inc.
73 Sea Island Parkway, Ste 20
Beaufort, South Carolina 29907
asher@newkirkenv.com

- C. DISTRICT OFFICE, FILE NAME, AND NUMBER: SAC-2021-00635 Zinn Gibbet Road Project
- **D. PROJECT LOCATION(S) AND BACKGROUND INFORMATION:** The project is located on Highway 170 and Gibbet Road, Bluffton, SC 29909

(USE THE TABLE BELOW TO DOCUMENT MULTIPLE AQUATIC RESOURCES AND/OR AQUATIC RESOURCES AT DIFFERENT SITES)

State: South Carolina County/parish/borough: Beaufort County City: Bluffton

Center coordinates of site (lat/long in degree decimal format):

Lat.: 32.2568441523638 ° Long.: -80.9651686824472 °

Universal Transverse Mercator: 17

Name of nearest waterbody: Okatee River

E. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

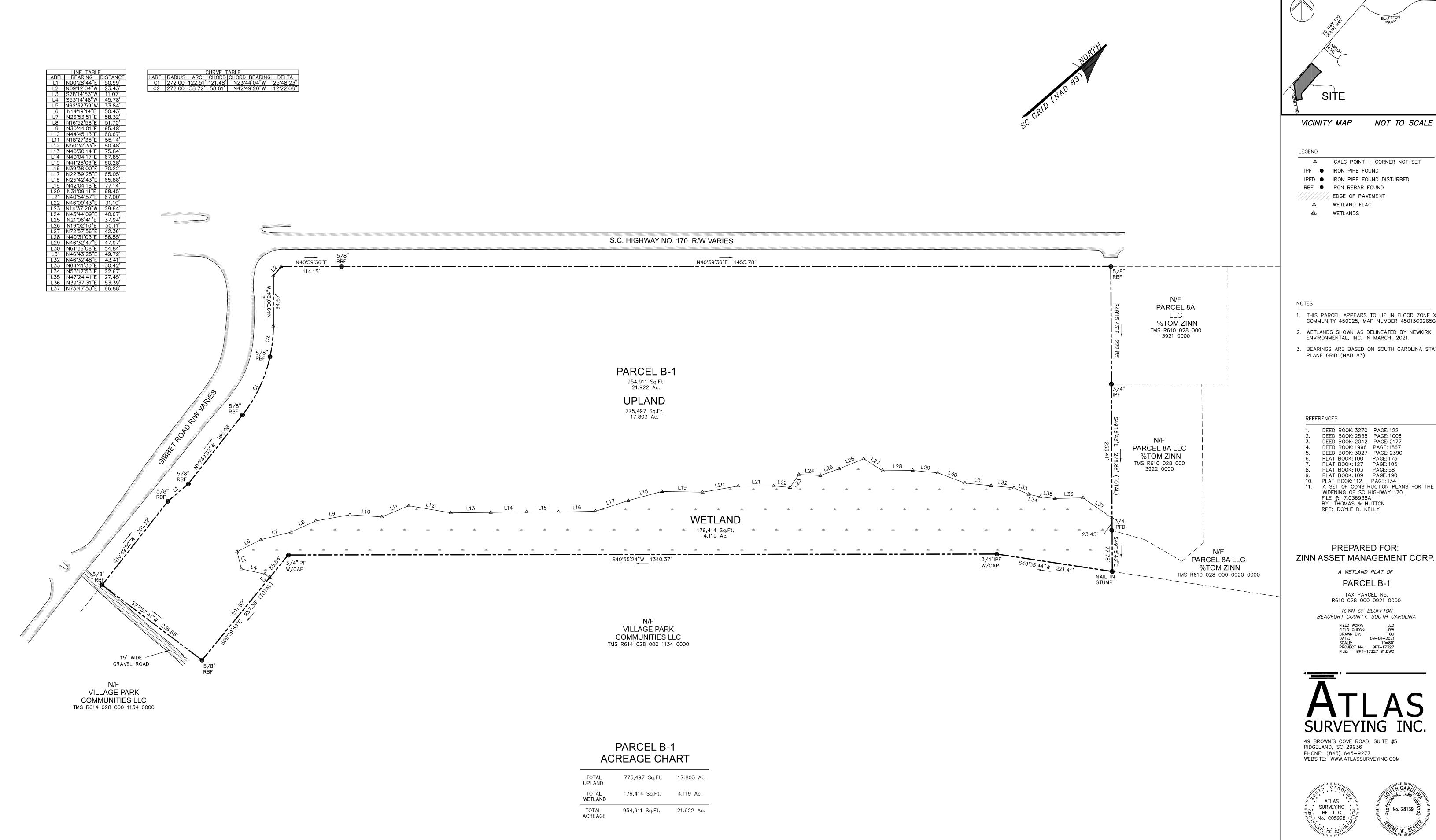
\boxtimes	Office ((Desk) Determination.	Date: A	pril 28,	2022
-------------	----------	-------	------------------	---------	----------	------

Field Determination. Date(s):

TABLE OF AQUATIC RESOURCES IN REVIEW AREA WHICH "MAY BE" SUBJECT TO REGULATORY JURISDICTION.

Site number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resource in review area (acreage and linear feet, if applicable)	Type of aquatic resource (i.e., wetland vs. non- wetland waters)	Geographic authority to which the aquatic resource "may be" subject (i.e., Section 404 or Section 10/404)
Wetland 1	32.256298	-80.964911	4.12 acres	Wetland	Section 404

- 1) The Corps of Engineers believes that there may be jurisdictional aquatic resources in the review area, and the requestor of this PJD is hereby advised of his or her option to request and obtain an approved JD (AJD) for that review area based on an informed decision after having discussed the various types of JDs and their characteristics and circumstances when they may be appropriate.
- 2) In any circumstance where a permit applicant obtains an individual permit, or a Nationwide General Permit (NWP) or other general permit verification requiring "pre-construction notification" (PCN), or requests verification for a non-reporting NWP or other general permit, and the permit applicant has not requested an AJD for the activity, the permit applicant is hereby made aware that: (1) the permit applicant has elected to seek a permit authorization based on a PJD, which does not make an official determination of jurisdictional aquatic resources; (2) the applicant has the option to request an AJD before accepting the terms and conditions of the permit authorization, and that basing a permit authorization on an AJD could possibly result in less compensatory mitigation being required or different special conditions; (3) the applicant has the right to request an individual permit rather than accepting the terms and conditions of the NWP or other general permit authorization; (4) the applicant can accept a permit authorization and thereby agree to comply with all the terms and conditions of that permit, including whatever mitigation requirements the Corps has determined to be necessary; (5) undertaking any activity in reliance upon the subject permit authorization without requesting an AJD constitutes the applicant's acceptance of the use of the PJD; (6) accepting a permit authorization (e.g., signing a proffered individual permit) or undertaking any activity in reliance on any form of Corps permit authorization based on a PJD constitutes agreement that all aquatic resources in the review area affected in any way by that activity will be treated as jurisdictional, and waives any challenge to such jurisdiction in any administrative or judicial compliance or enforcement action, or in any administrative appeal or in any Federal court; and (7) whether the applicant elects to use either an AJD or a PJD, the JD will be processed as soon as practicable. Further, an AJD, a proffered individual permit (and all terms and conditions contained therein), or individual permit denial can be administratively appealed pursuant to 33 C.F.R. Part 331. If, during an administrative appeal, it becomes appropriate to make an official determination whether geographic jurisdiction exists over aquatic resources in the review area, or to provide an official delineation of jurisdictional aquatic resources in the review area, the Corps will provide an AJD to accomplish that result, as soon as is practicable. This PJD finds that there "may


be" waters of the U.S. and/or that there "may be" navigable waters of the U.S. on the subject review area, and identifies all aquatic features in the review area that could be affected by the proposed activity, based on the following information:

SUPPORTING DATA. Data reviewed for PJD (check all that apply)

Checked items should be included in subject file. Appropriately reference sources below where indicated for all checked items:

 ☑ Maps, plans, plots or plat submitted b Map: A WETLAND PLAT OF PARCEL ☑ Data sheets prepared/submitted by or ☑ Office concurs with data sheets/de 	B-1 dated 09/21 r on behalf of the PJD requestor.
Office does not concur with data s	sheets/delineation report. Rationale:
Data sheets prepared by the Corps:	
☐ Corps navigable waters' study:☐ U.S. Geological Survey Hydro	ologic Atlas:
☑ USGS NHD data. USGS 8 an	d 12 digit HUC maps.
∪.S. Geological Survey map(s). Cite s dated 4/22	scale & quad name: USGS Topographic
☐ Natural Resources Conservation Serv	vice Soil Survey. Citation:
National wetlands inventory map(s).	Cite name: NWI dated 4/22
☐ State/local wetland inventory map(s):☐ FEMA/FIRM maps:	
☐ 100-year Floodplain Elevation is:☐ Photographs: ☐ Aerial (Name & Date	(National Geodetic Vertical Datum of 1929) e): Location dated 4/22
☐ Other (Name & Dat☐ Previous determination(s). File no. at☐ Other information (please specify): Lic	nd date of response letter:
IMPORTANT NOTE: The information record	
verified by the Corps and should not be re	lied upon for later jurisdictional determinations
Jeremy Kinney	
Signature and date of	Signature and date of
Regulatory staff member	person requesting PJD
completing PJD	(REQUIRED, unless obtaining the signature is impracticable) ¹

¹ Districts may establish timeframes for requestor to return signed PJD forms. If the requestor does not respond within the established time frame, the district may presume concurrence and no additional follow up is necessary prior to finalizing an action.

VICINITY MAP NOT TO SCALE

△ CALC POINT - CORNER NOT SET IPF ● IRON PIPE FOUND

IPFD ● IRON PIPE FOUND DISTURBED

RBF ● IRON REBAR FOUND

EDGE OF PAVEMENT △ WETLAND FLAG

业 WETLANDS

- THIS PARCEL APPEARS TO LIE IN FLOOD ZONE X. COMMUNITY 450025, MAP NUMBER 45013C0265G.
- 2. WETLANDS SHOWN AS DELINEATED BY NEWKIRK ENVIRONMENTAL, INC. IN MARCH, 2021.
- 3. BEARINGS ARE BASED ON SOUTH CAROLINA STATE

REFERENCES

DEED BOOK: 3270 PAGE: 122 DEED BOOK: 2555 PAGE: 1006 DEED BOOK: 2042 PAGE: 2177 DEED BOOK: 1996 PAGE: 1867 DEED BOOK: 3027 PAGE: 2390 PLAT BOOK: 100 PAGE: 173 PLAT BOOK: 127 PAGE: 105 PLAT BOOK: 103 PAGE: 58 PLAT BOOK: 103 PAGE: 38
PLAT BOOK: 109 PAGE: 190
PLAT BOOK: 112 PAGE: 134
A SET OF CONSTRUCTION PLANS FOR THE WIDENING OF SC HIGHWAY 170. FILE #: 7.036938A
BY: THOMAS & HUTTON
RPE: DOYLE D. KELLY

PREPARED FOR:

A WETLAND PLAT OF

PARCEL B-1

TAX PARCEL No. R610 028 000 0921 0000

TOWN OF BLUFFTON BEAUFORT COUNTY, SOUTH CAROLINA

FIELD WORK: JLG
FIELD CHECK: JRW
DRAWN BY: TGU
DATE: 09-01-2021
SCALE: 1"=80'
PROJECT No.: BFT-17327
FILE: BFT-17327 B1.DWG

ATLAS SURVEYING INC.

49 BROWN'S COVE ROAD, SUITE #5 RIDGELAND, SC 29936 PHONE: (843) 645-9277 WEBSITE: WWW.ATLASSURVEYING.COM

I HEREBY STATE THAT TO THE BEST OF MY KNOWLEDGE, INFORMATION, AND BELIEF, THE SURVEY SHOWN HEREIN WAS MADE IN ACCORDANCE WITH THE REQUIREMENTS OF THE MINIMUM STANDARDS MANUAL FOR THE PRACTICE OF LAND SURVEYING IN SOUTH CAROLINA, AND MEETS OR EXCEEDS THE REQUIREMENTS FOR A CLASS "A" SURVEY AS SPECIFIED THEREIN.

JEREMY W. REEDER

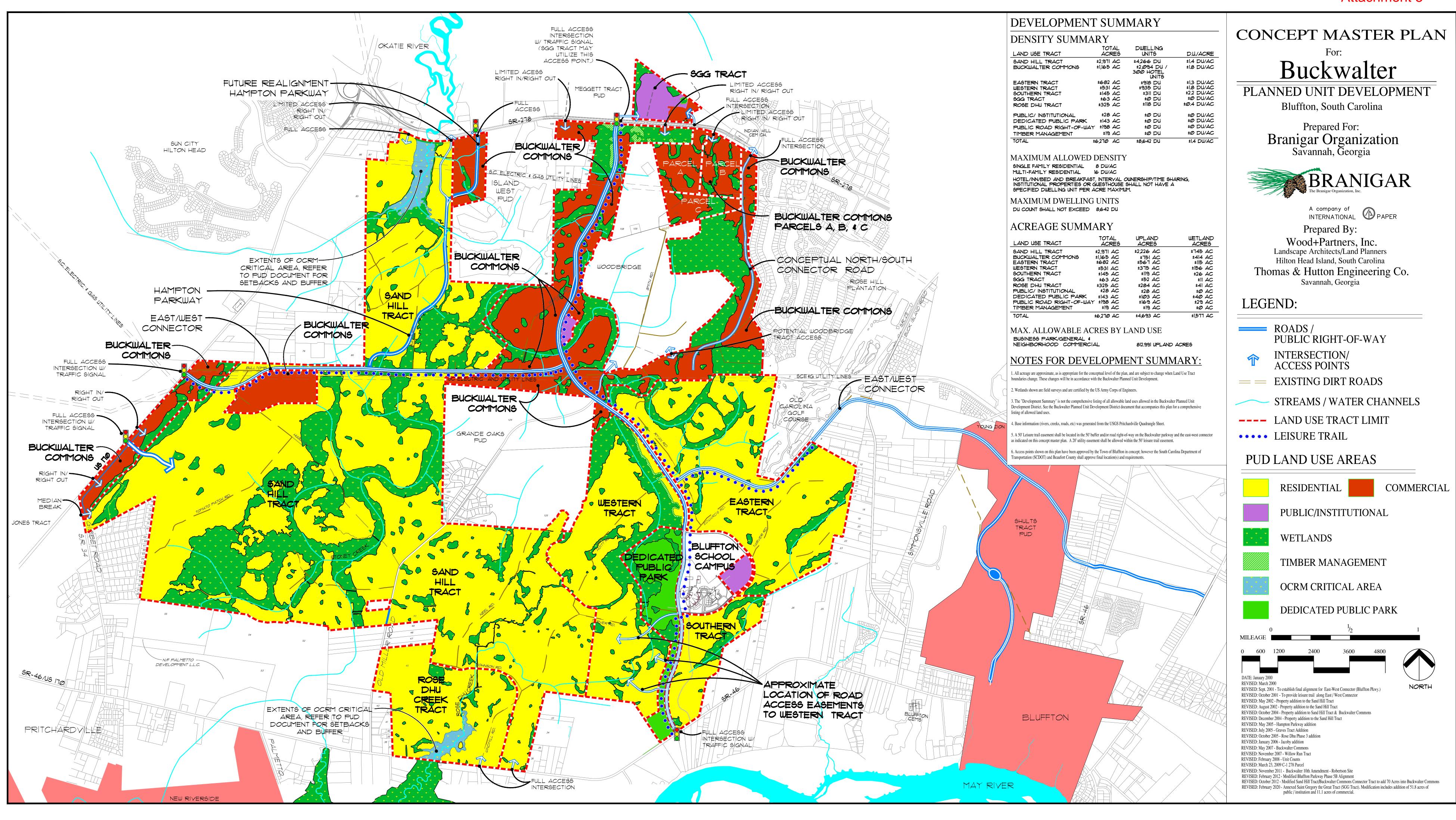
GRAPHIC SCALE

S.C.P.L.S. No. 28139

NOTIFICATION OF ADMINISTRATIVE APPEAL OPTIONS AND PROCESS AND REQUEST FOR APPEAL

Applicant: Asher Howell / Newkirk Environmental File Number: SAC-2022-00635 Date: April 28					
Attached is:	See Section below				
INITIAL PROFFERED PERMIT (Standard Permit or Letter of permission)	A				
PROFFERED PERMIT (Standard Permit or Letter of permission)	В				
PERMIT DENIAL	С				
APPROVED JURISDICTIONAL DETERMINATION	D				
PRELIMINARY JURISDICTIONAL DETERMINATION	Е				

SECTION I - The following identifies your rights and options regarding an administrative appeal of the above decision. Additional information may be found at http://usace.army.mil/inet/functions/cw/cecwo/reg or Corps regulations at 33 CFR Part 331.


A: INITIAL PROFFERED PERMIT: You may accept or object to the permit.

- ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final
 authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your
 signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights
 to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.
- OBJECT: If you object to the permit (Standard or LOP) because of certain terms and conditions therein, you may request that the permit be modified accordingly. You must complete Section II of this form and return the form to the district engineer. Your objections must be received by the district engineer within 60 days of the date of this notice, or you will forfeit your right to appeal the permit in the future. Upon receipt of your letter, the district engineer will evaluate your objections and may: (a) modify the permit to address all of your concerns, (b) modify the permit to address some of your objections, or (c) not modify the permit having determined that the permit should be issued as previously written. After evaluating your objections, the district engineer will send you a proffered permit for your reconsideration, as indicated in Section B below.

B: PROFFERED PERMIT: You may accept or appeal the permit

- ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.
- APPEAL: If you choose to decline the proffered permit (Standard or LOP) because of certain terms and conditions therein, you may appeal the declined permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.
- C: PERMIT DENIAL: You may appeal the denial of a permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.
- D: APPROVED JURISDICTIONAL DETERMINATION: You may accept or appeal the approved JD or provide new information.
- ACCEPT: You do not need to notify the Corps to accept an approved JD. Failure to notify the Corps within 60 days of the date of this notice, means that you accept the approved JD in its entirety, and waive all rights to appeal the approved JD.
- APPEAL: If you disagree with the approved JD, you may appeal the approved JD under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the Division Engineer, South Atlantic Division, 60 Forsyth St, SW, Atlanta, GA 30308-8801. This form must be received by the Division Engineer within 60 days of the date of this notice.
- E: PRELIMINARY JURISDICTIONAL DETERMINATION: You do not need to respond to the Corps regarding the preliminary JD. The Preliminary JD is not appealable. If you wish, you may request an approved JD (which may be appealed), by contacting the Corps district for further instruction. Also you may provide new information for further consideration by the Corps to reevaluate the JD.

SECTION II - REQUEST FOR APPEAL or OBJECTION	ONS TO AN INITIAL PRO	FFERED PI
REASONS FOR APPEAL OR OBJECTIONS: (Describe		
initial proffered permit in clear concise statements. You may attact	h additional information to this fo	rm to clarify where your reasons
or objections are addressed in the administrative record.)		
ADDITIONAL INFORMATION: The appeal is limited to a review		-
record of the appeal conference or meeting, and any supplemental is clarify the administrative record. Neither the appellant nor the Cor		
you may provide additional information to clarify the location of ir		
POINT OF CONTACT FOR QUESTIONS OR INFOR	·	
If you have questions regarding this decision and/or the appeal	If you only have questions regard	ling the appeal process you may
process you may contact the Corps biologist who signed the	also contact: Mr. Philip A. S	
letter to which this notification is attached. The name and		Appeal Review Officer
telephone number of this person is given at the end of the letter.	CESAD-PDS- 60 Forsyth Str	eet Southwest, Floor M9
	Atlanta, Georg	
RIGHT OF ENTRY: Your signature below grants the right of entr		
consultants, to conduct investigations of the project site during the notice of any site investigation, and will have the opportunity to pa		i will be provided a 15 day
notice of any site investigation, and win have the opportunity to pa	Date:	Telephone number:
	Duit.	relephone number.
Signature of appellant or agent.		

10 Bill

Attachment	
Section IX. Item #	1.
BEAUFORT COUNTY SC - KUD	
BK 3644 Pss 1951-1954 FILE NUM 2018008497	
02/15/2018 10:53:45 AM	
REC'D BY rbins RCPT # 880521	
WEG A DI UNIUN MONTE SSRONT	

State Tax \$2,990.00

RECORDING FEES \$10.00
TITLE TO REAL ESTANTE TOX \$1,265.00

STATE OF SOUTH CAROLINA)
)
COUNTY OF BEAUFORT)

WHEREAS, at a duly authorized meeting of the Charleston-Atlantic Presbytery held on September 16, 2017, a properly constituted quorum being present and acting in accordance with the Book of Order of the Presbyterian Church (U.S.A.), it was resolved that Jesse C. Dove, Baxter Norris, E. M. Seabrook, III and Beulah Washington, or any three of them, as Trustees of Charleston-Atlantic Presbytery, successor in title in interest to Charleston Presbytery, a corporate body organized and existing by Sovereign Charter, were authorized to execute and deliver the within deed upon the terms and conditions stated herein pursuant to Section 6.0100 of the Manual of Administrative Operations, Charleston-Atlantic Presbytery, Presbyterian Church (U.S.A.), as revised from time to time;

NOW, THEREFORE, KNOW ALL PERSONS BY THESE PRESENTS that the undersigned Jesse C. Dove, Baxter Norris and E. M. Seabrook, III, as Trustees of Charleston-Atlantic Presbytery, a South Carolina eleemosynary corporation, in the County and State aforesaid, in consideration of the sum of One Million One Hundred Fifty Thousand and No/Hundreds Dollars (\$1,150,000.00) in hand paid at and before the sealing of these Presents by Parcel 8A, LLC, a South Carolina limited liability company, the receipt whereof is hereby acknowledged, and subject to zoning ordinances, restrictions, easements and/or rights-of-way affecting the following described Premises and appearing of record in the Office of the Register of Deeds for Beaufort County, South Carolina, have granted, bargained, sold and released, and by these Presents do hereby grant, bargain, sell and release unto the said Parcel 8A, LLC, a South Carolina limited liability company, its successors and assigns, the following described Premises:

SEE EXHIBIT A ATTACHED HERETO

AND INCORPORATED HEREIN BY REFERENCE

GRANTEE'S ADDRESS: P. O. Box 1726, Bluffton SC 29910

TOGETHER with all and singular, the Rights, Members, Hereditaments and Appurtenances to the said Premises belonging, or in anywise incident or appertaining.

TO HAVE AND TO HOLD, all and singular, the said Premises before mentioned unto the said Parcel 8A, LLC, a South Carolina limited liability company, its successors and assigns, in fee simple forever.

AND Charleston-Atlantic Presbytery, a South Carolina eleemosynary corporation, by its undersigned Trustees, does hereby bind itself and its successors and assigns to warrant and forever defend, all and singular, the said Premises unto the said Parcel 8A, LLC, a South Carolina limited liability company, its successors and assigns against every person whomsoever lawfully claiming, or to claim the same or any part thereof.

IN WITNESS WHEREOF, Charleston-Atlantic Presbytery, by its undersigned Trustees, has caused these presents to be executed this

day of February, 2018, in the Two Hundred Forty-Second Year of the Sovereignty and Independence of the United States of America.

Signed, Sealed and Delivered In the Presence of:		Charleston-Atlantic Presbytery
Dinnie Rules First Witness		By: Jesse C. Dove, Trustee
Second Witness A. Durga		By: Barxter Narris, Trustee
		E. M Seabrook, III, Trustee
STATE OF SOUTH CAROLINA)	A CYMONU PINCEMENT
COUNTY OF CHARLESTON)	ACKNOWLEDGEMENT

BEFORE ME, the undersigned Notary Public for said County and State, personally appeared Jesse C. Dove, Baxter Norris and E. M. Seabrook, III, as Trustees of Charleston-Atlantic Presbytery, each of whom acknowledged his execution of the within instrument for the purposes and uses set forth therein.

ACKNOWLEDGED this 9th day of February, 2018.

Barbara A. Burger Notary Public State of South Carolina My Commission Expires November 24, 2024

Print Name: Barhara A. Burge Notary Public for South Carolina My commission expires: 11/24/2024

Exhibit "A"

All that tract or parcel of land lying, being and situate in Bluffton Township, Beaufort County, South Carolina, containing 21.681 acres, more or less, and being shown as Parcel B-1 on the plat entitled "A Boundary Survey of Parcel B-1, Tax Parcel Nos. R:600:028:000:0921:0000, Town of Bluffton, Beaufort County, South Carolina," prepared for Zinn Asset Management Corp. by Atlas Surveying, Inc. by Mark E. Lamb, S.C.P.L.S No. 23200 and recorded in Plat Book 132 in the Beaufort County Register of Deeds.

Subject to all easements shown on the above-referenced plat.

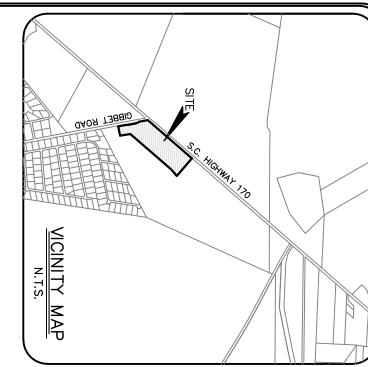
Being a portion of the same property conveyed to Charleston-Atlantic Presbytery by deed of Jerome K. Jones, Jacquita J. Jenkins, Wm. Jarrell Jones, Jeffrey H. Jones, Holly Branch Farms, LLLP, a Georgia limited partnership, Jones and Associates Limited Partnership, a South Carolina limited partnership, Dorothy R. Zetterower, Lillian R. Stephenson and Christopher C. Ryals dated October 25, 2004 and recorded October 27, 2004 in Book 21402 at Page 2177, Beaufort County Records.

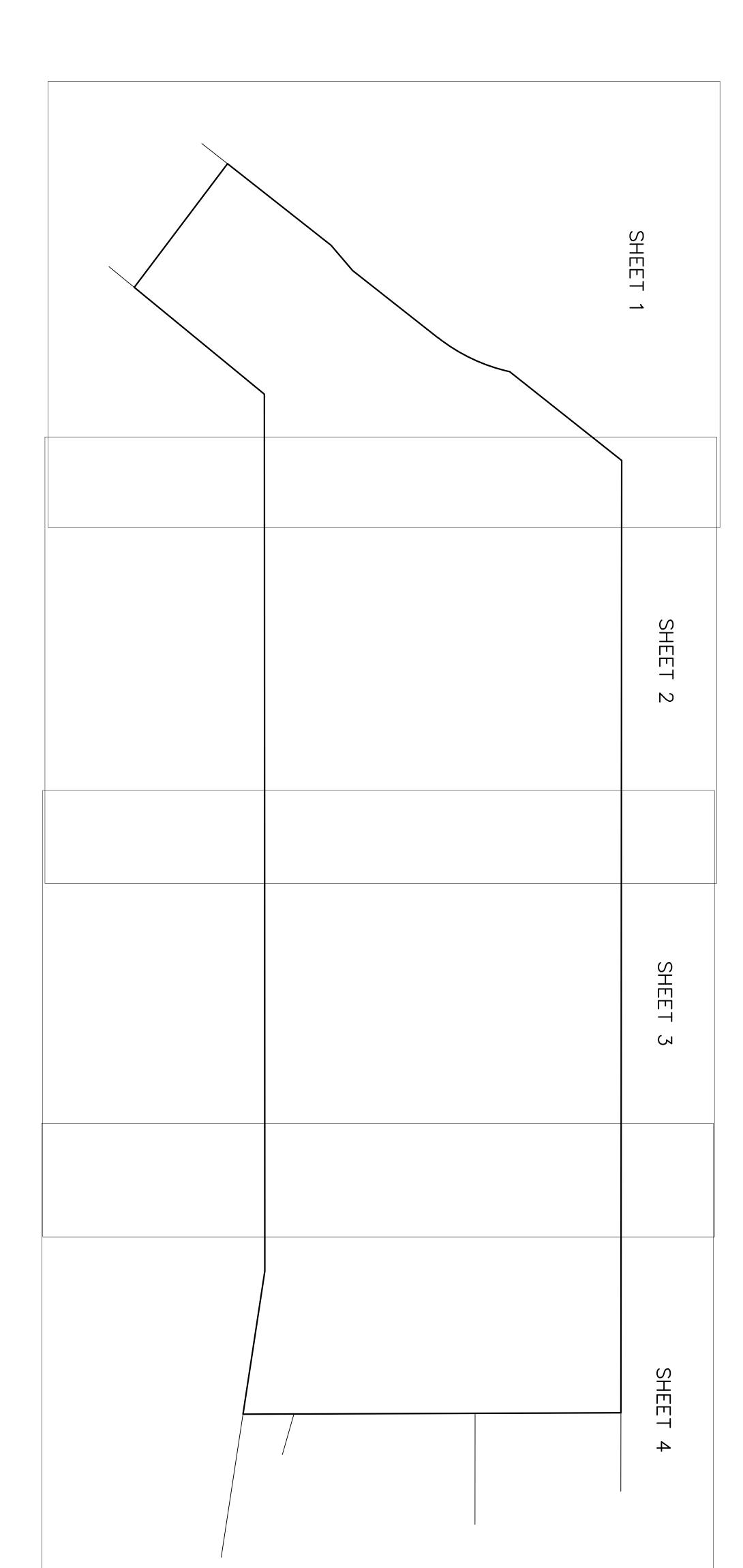
This Deed was prepared in the Law Office of Stephen S. Bird, LLC, P.O. Box 2474, Bluffton, SC 299910.

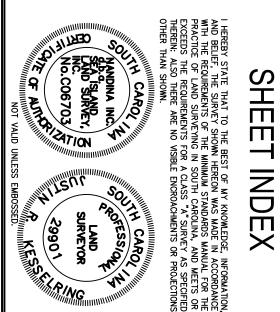
R: 610:028:000:0921:0000

File No.: 1255-009-00

The Land referred to herein below is situated in the County of Beaufort, State of South Carolina, and is described as follows:


Exhibit "A"


All that tract or parcel of land lying, being and situate in Bluffton Township, Beaufort County, South Carolina, containing 21.681 acres, more or less, and being shown as Parcel B-1 on the plat entitled "A Boundary Survey of Parcel B-1, Tax Parcel Nos. R:600:028:000:0921:0000, Town of Bluffton, Beaufort County, South Carolina," prepared for Zinn Asset Management Corp. by Atlas Surveying, Inc. by Mark E. Lamb, S.C.P.L.S No. 23200 and recorded in Plat Book 148 at Page 133 in the Beaufort County Register of Deeds.


Subject to all easements shown on the above-referenced plat.

Being a portion of the same property conveyed to Charleston-Atlantic Presbytery by deed of Jerome K. Jones, Jacquita J. Jenkins, Wm. Jarrell Jones, Jeffrey H. Jones, Holly Branch Farms, LLLP, a Georgia limited partnership, Jones and Associates Limited Partnership, a South Carolina limited partnership, Dorothy R. Zetterower, Lillian R. Stephenson and Christopher C. Ryals dated October 25, 2004 and recorded October 27, 2004 in Book 21402 at Page 2177, Beaufort County Records.

R: 610:028:000:0921:0000

d.b.a. Sea Island Land Survey, Inc. 10 Oak Park Drive, Unit C1, Hilton Head Island, SC 29926 E-mail: admi

Tel (843) 681-3248
Fax (843) 689-3871
E-mail: admin@nandinainc.com

DWG No. : 9-22311

CAD: CG. FLD: MW

NONDINO

FILE No : 22311

PREPARED FOR:
MILLSTONE MANAGEMENT DATE: 2/21/2023 SCALE: 1" = 100'

REFERENCE PLAT

1) A BOUNDARY SURVEY OF: PARCEL B-1,
TAX PARCEL NOS. R610 028 000 0921 0000,
TOWN OF BUFFTON, BEAUFORT COUNTY, SOUTH CAROLINA
DRAWN: 12/1/2017
RECORDED IN BOOK 148, PAGE 133, DATED 2/15/2018
ROD. BEAUFORT COUNTY, SC
BY: MARK ELLIS LAMB, SR. S.C.R.L.S. # 23200

2) A SUBDIVISION OF PARCEL 8A, TMS: R610 028 000 0920 0000
A PORTION OF PARCEL 8, LLC PROPERTY,
TOWN OF BLUFFTON, BEAUFORT COUNTY, SOUTH CAROLINA
DRAWN: 1/21/08
RECORDED IN BOOK 127, PAGE 105
ROD. BEAUFORT COUNTY, SC
BY: BOYCE L YOUNG S.C.R.L.S. # 11079

3) A BOUNDARY AND SUBDIVISION PLAT OF 37.89 ACRES KNOWN AS,
"PALMETTO POINT COMMERCIAL SUBDIVISION", BEING A PORTION OF THE CHURCH POINT TRACT,
OFF GIBBET ROAD, TOWN OF BLUFFTON, BEAUFORT COUNTY, SOUTH CAROLINA
DRAWN: 1/21/08
RECORDED IN BOOK 112, PAGE 134, DATED: 3/31/06
BY: FORREST F. BAUGHMAN S.C.R.L.S. # 4922

PROPERTY AREA = 21.7 Ac. 944,430 Sq. Ft. ADDRESS: NO STREET ADDRESS DISTRICT: 610, MAP: 28, PARCEL: 921

THIS PROPERTY LIES IN F.E.M.A. ZONE X
BASE FLOOD ELEVATION = N/A
COMMUNITY NO. 450025, PANEL 0265G, DATED: 3/23/2021

BOUNDARY, TREE AND TOPOGRAPHIC SURVEY OF: PARCEL B-1, CYPRESS TRACT, GIBBET ROAD, S.C. HIGHWAY 170, TOWN OF BLUFFTON, BEAUFORT COUNTY, SOUTH CAROLINA

WATER OAK

GUM

TUPELO HOLLY

HICKORY

GUM

TUP HOL

BASE FLOOD ELEVATION = N/A

COMMUNITY NO. 450025, PANEL 0265G, DATED: 3/23/2021

No.C06703

NOT VALID UNLESS EMBOSSED

*₹*990<u>^</u>

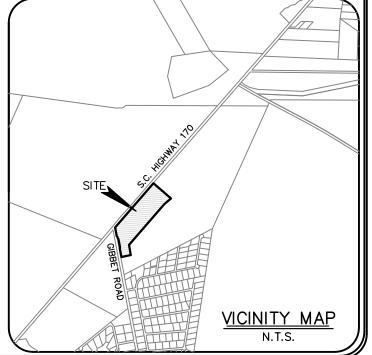
VICINITY MAP

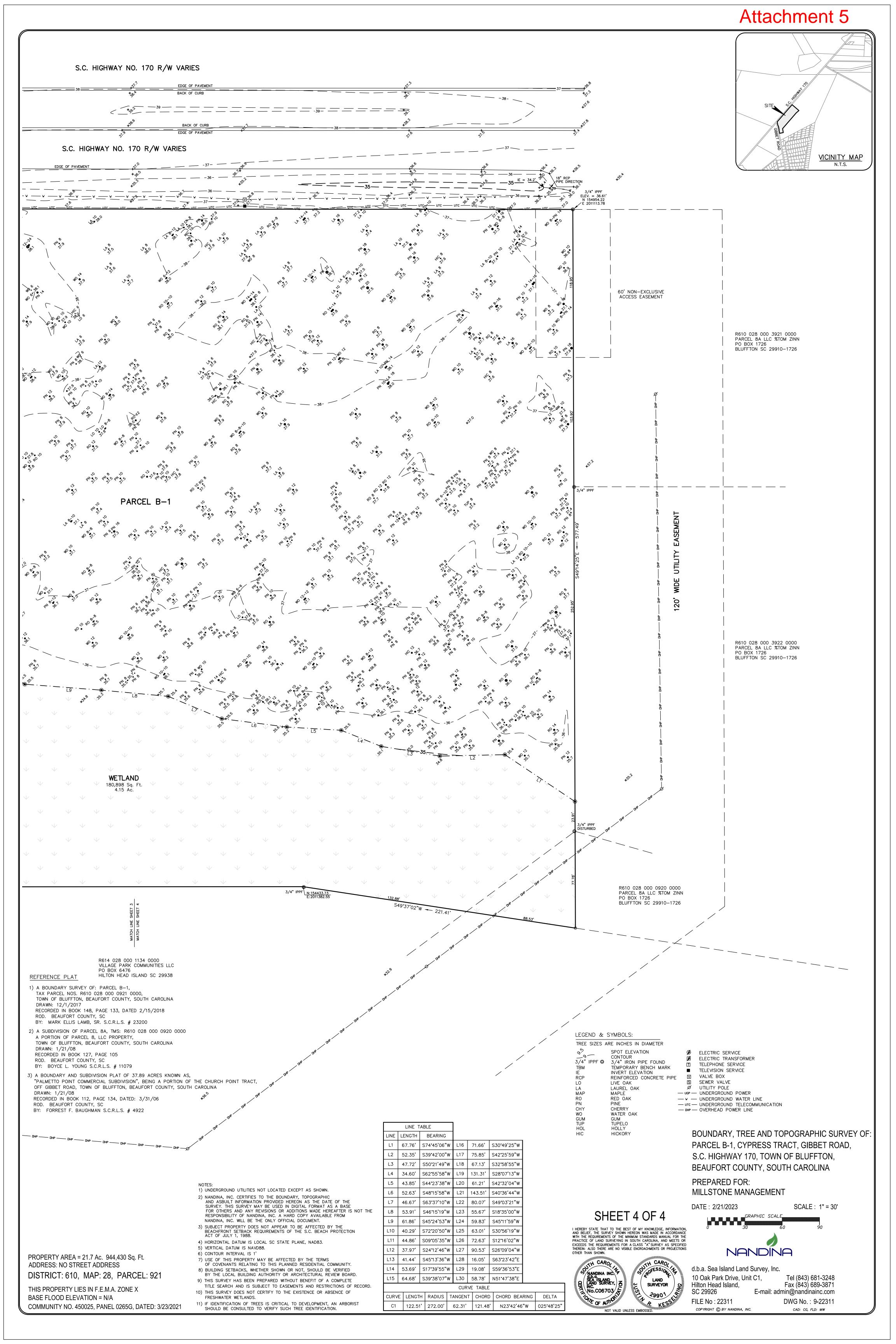
N.T.S.

THIS PROPERTY LIES IN F.E.M.A. ZONE X

BASE FLOOD ELEVATION = N/A COMMUNITY NO. 450025, PANEL 0265G, DATED: 3/23/2021

OFF GIBBET ROAD, TOWN OF BLUFFTON, BEAUFORT COUNTY, SOUTH CAROLINA DRAWN: 1/21/08 RECORDED IN BOOK 112, PAGE 134, DATED: 3/31/06


ROD. BEAUFORT COUNTY, SC


BY: FORREST F. BAUGHMAN S.C.R.L.S. # 4922

TITLE SEARCH AND IS SUBJECT TO EASEMENTS AND RESTRICTIONS OF RECORD. 10) THIS SURVEY DOES NOT CERTIFY TO THE EXISTENCE OR ABSENCE OF

FRESHWATER WETLANDS. 11) IF IDENTIFICATION OF TREES IS CRITICAL TO DEVELOPMENT, AN ARBORIST SHOULD BE CONSULTED TO VERIFY SUCH TREE IDENTIFICATION.

Gibbet Road Residential Development

Traffic Impact Analysis

Bluffton, South Carolina

Prepared for

Milestone Management, LLC

Prepared by

Kimley » Horn

April 2023 © Kimley-Horn and Associates, Inc.

Gibbet Road Residential Development

Traffic Impact Analysis

Bluffton, South Carolina

Prepared for

Milestone Management, LLC

Prepared by

Kimley » Horn

April 2023 © Kimley-Horn and Associates, Inc. 115 Fairchild Street, Suite 250 Charleston, South Carolina, 29492

Gibbet Road Residential Development Traffic Impact Analysis

Table of Contents

1 E	Executive Summary	iv
1 l	Introduction	1
1.	1.1 Existing Conditions	1
2 F	Project Traffic	4
2.	2.1 Trip Generation	4
2.	2.2 Trip Distribution & Assignment	8
3 E	Existing and Future Traffic Volume Development	15
3.	3.1 2022 Existing Traffic	15
3.	3.2 Future-Year No-Build Traffic Development	15
3.	3.3 Future-Year Build Traffic Development	15
4 (Capacity Analysis	24
4.	I.1 SC 170 (Okatie Highway) at Lawton Boulevard	25
4.	SC 170 (Okatie Highway) at Gibbet Road/Mill Creek Boulevard	27
4.	Gibbet Road at Estate Drive/Site Access #3	29
4.	I.4 SC 170 (Okatie Highway) at Site Access #1	31
4.	I.5 Gibbet Road at Site Access #2	33
4.	I.6 SC 170 (Okatie Hwy) at Site Access #4	34
4.	I.7 SC 170 (Okatie Hwy) at Site Access #5	35
6 (Conclusion	36

Gibbet Road Residential Development Traffic Impact Analysis

List of Figures

Figure 1 – Recommended Improvements	V
Figure 2 – Site Location and Study Area Map	2
Figure 3 - Existing Laneage	3
Figure 4 – Phase 2 Project Pass-By Trips	6
Figure 5 – Phase 3 Project Pass-By Trips	7
Figure 6 – Phase 1 Trip Distribution and Assignment	9
Figure 7 – Phase 2 Trip Distribution and Assignment	10
Figure 8 – Phase 3 Trip Distribution and Assignment	11
Figure 9 - 2025 Phase 1 Project Trips	12
Figure 10 – 2027 Phase 2 Project Trips	13
Figure 11 – 2029 Phase 3 Project Trips	14
Figure 12– 2022 Existing Peak Hour Traffic Volumes	16
Figure 13– Approved Development Traffic Volumes	17
Figure 14– 2025 No-Build Peak Hour Traffic Volumes	18
Figure 15– 2027 No-Build Peak Hour Traffic Volumes	19
Figure 16– 2029 No-Build Peak Hour Traffic Volumes	20
Figure 17– 2025 Build Phase 1 Peak Hour Traffic Volumes	21
Figure 18– 2027 Build Phase 2 Peak-Hour Traffic Volumes	22
Figure 19– 2029 Build Phase 3 Peak Hour Traffic Volumes	23
Figure 20 – Recommended Improvements	39
List of Tables	
Table 1 – Phase 1 Trip Generation Summary	4
Table 2 - Phase 2 Trip Generation Summary	5
Table 3 - Phase 3 Trip Generation Summary	5
Table 4 – <i>HCM</i> Level of Service Criteria	24
Table 5 – SC 170 (Okatie Highway) at Lawton Boulevard Analysis Results	25
Table 6 –SC 170 (Okatie Highway) at Gibbet Road/Mill Creek Boulevard Analysis Results	28
Table 7 – Gibbet Road at Estate Drive/Site Access #3 Analysis Results	29
Table 8 - SC 170 (Okatie Hwy) at Site Access #1 Analysis Results	31
Table 9 - Gibbet Road at Site Access #2 Analysis Results	33
Table 10 - SC 170 (Okatie Hwy) at Site Access #4 Analysis Results	34
Table 11 - SC 170 (Okatie Hwy) at Site Access #5 Analysis Results	35

Gibbet Road Residential Development Traffic Impact Analysis

List of Appendices

- A Site Plan
- B Trip Generation Calculations
- C Traffic Volume Development Worksheets
- D Raw Turning Movement Counts
- E Historical Growth Rate Data
- F Capacity Analysis Worksheets
- G Turn Lane Warrant Analysis

Gibbet Road Residential Development Traffic Impact Analysis

1 Executive Summary

The proposed Gibbet Road Residential Development is in the northeast quadrant of the SC 170 (Okatie Highway) and Gibbet Road intersection in Bluffton, South Carolina. This development is planned to consist of the following phases and land uses:

- 2025 Build Phase 1 150 multi-family housing units.
- 2027 Build Phase 2 6,300 square-foot convenience store and gas station with 12 fueling positions.
- 2029 Build Phase 3 8,850 square feet office space and 8,850 square feet retail space.

It was assumed that the project will access the roadway network via the following five unsignalized driveways:

- Site Access #1 Planned to be constructed under Phase 1 and is located approximately 850' north of Gibbet Road along SC 170 (Okatie Highway). This access is proposed to be restricted to right-in, right-out movements only.
- Site Access #2 Planned to be constructed under Phase 1 and is located approximately 350' east of SC 170 (Okatie Highway) along Gibbet Road. This access is proposed to be restricted to right-in, right-out movements only.
- Site Access #3 Planned to be constructed under Phase 1 and is proposed to be full-movement and align with Estate Drive.
- Site Access #4 Planned to be constructed under Phase 2 and is located approximately 350' feet north of Gibbet Road along SC 170 (Okatie Highway). This access is proposed to be restricted to right-in, right-out movements only.
- Site Access #5 Planned to be constructed under Phase 3 and is located approximately 875' feet south of Lawton Boulevard along SC 170 (Okatie Highway). This access is proposed to be restricted to right-in, right-out movements only.

This study summarizes the results of the traffic analyses at the following study intersections:

- 1) SC 170 (Okatie Highway) at Lawton Boulevard
- SC 170 (Okatie Highway) at Gibbet Road/Mill Creek Boulevard
- Gibbet Road at Estate Drive/Site Access #3
- 4) SC 170 (Okatie Highway) at Site Access #1
- 5) Gibbet Road at Site Access #2
- 6) SC 170 (Okatie Highway) at Site Access #4
- 7) SC 170 (Okatie Highway) at Site Access #5

Page iv April 2023

Gibbet Road Residential Development Traffic Impact Analysis

Improvements Considered by Others

In the surrounding area, the approved development of the Palmetto Point Pickleball and Commercial Site, Kimley-Horn 2021, was accounted for in the analysis of 2025, 2027, and 2029 conditions. Based on this report, an eastbound right-turn lane along Gibbet Road at the intersection of Estate Drive will be constructed.

Based on the results of the traffic analyses, the following improvements are recommended to mitigate the impact of the proposed development's traffic on the study area intersections:

2025 Build Phase 1

Gibbet Road at Estate Drive/ Site Access #3

• Construct Site Access #3 to align with Estate Drive. Site Access #3 should consist of one ingress lane and two egress lanes. The egress lanes should consist of a left-turn lane and shared through/right-turn lane.

SC 170 (Okatie Highway) at Site Access #1

- Construct a northbound right-turn lane along SC 170 (Okatie Highway) in accordance with the SCDOT Roadway Design Manual.
- Construct Site Access #1 to be a right-in, right-out access only with one ingress lane and one egress lane.

Gibbet Road at Site Access #2

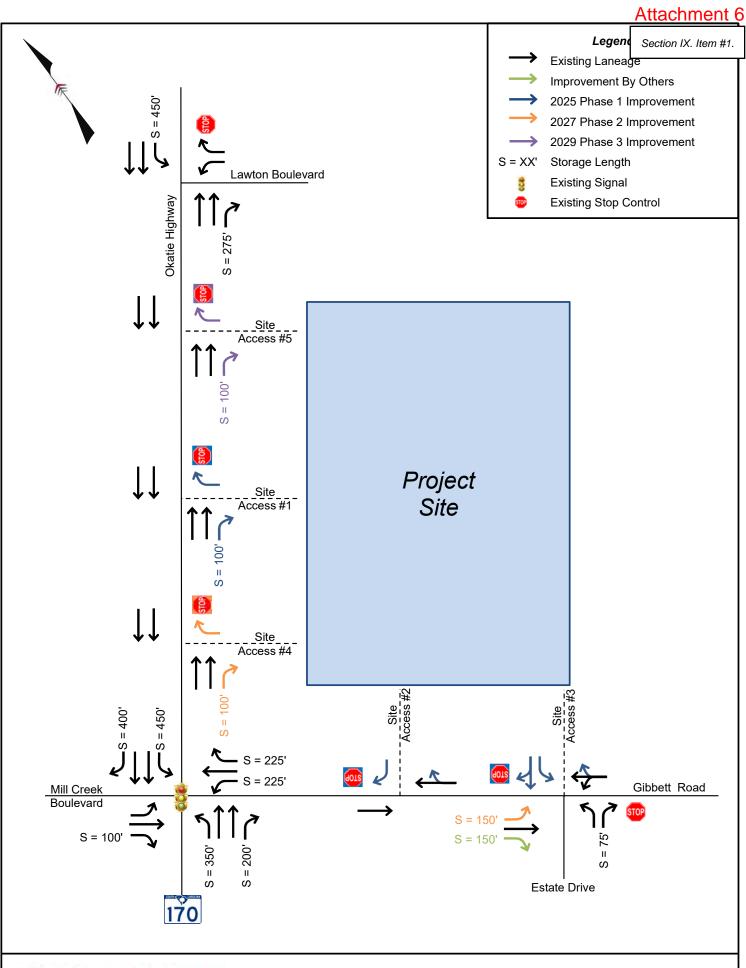
 Construct Site Access #2 to be a right-in, right-out access only with one ingress lane and one egress lane.

2027 Build Phase 2

Gibbet Road at Estate Drive/ Site Access #3

 Construct an eastbound left-turn lane along Gibbet Road in accordance with the SCDOT Roadway Design Manual.

SC 170 (Okatie Highway) at Site Access #4


- Construct a northbound right-turn lane along SC 170 (Okatie Highway) in accordance with the SCDOT *Roadway Design Manual*.
- Construct Site Access #4 to be a right-in, right-out access only with one ingress lane and one egress lane.

2029 Build Phase 3

SC 170 (Okatie Highway) at Site Access #5

- Construct a northbound right-turn lane along SC 170 (Okatie Highway) in accordance with the SCDOT *Roadway Design Manual*.
- Construct Site Access #5 to be a right-in, right-out access only with one ingress lane and one egress lane.

Recommended improvements are illustrated in Figure 1.

Gibbet Road Residential Development Traffic Impact Analysis

1 Introduction

The proposed Gibbet Road Residential Development is in the northeast quadrant of the SC 170 (Okatie Highway) and Gibbet Road intersection in Beaufort County, South Carolina. This development is planned to consist of the following phases and land uses:

- 2025 Build Phase 1 150 multi-family housing units.
- 2027 Build Phase 2 6,300 square-foot convenience store and gas station with 12 fueling positions.
- 2029 Build Phase 3 8,850 square feet office space and 8,850 square feet retail space.

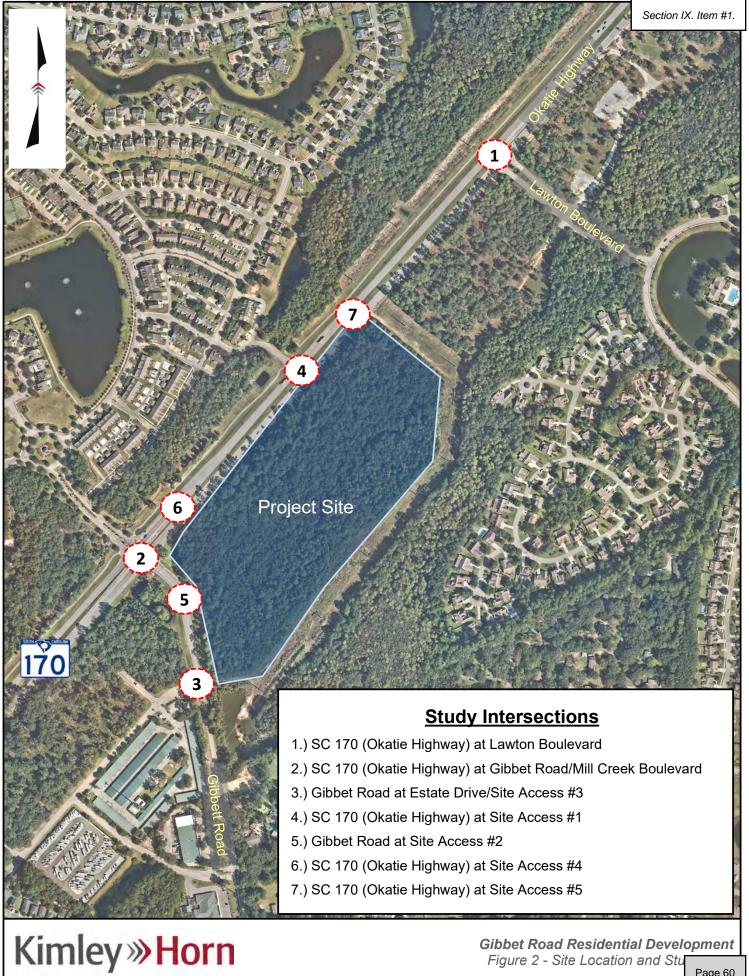
The location of the proposed development is illustrated in **Figure 2**, and the conceptual site plans are attached in **Appendix A**.

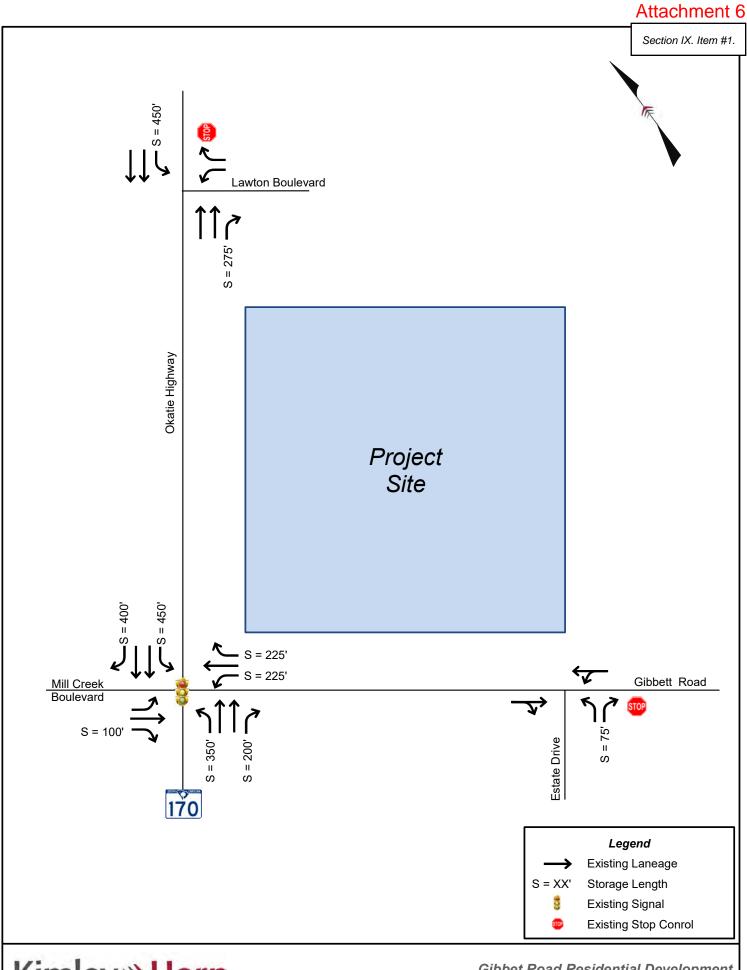
It is assumed that Phase 1 of the development will be built and fully occupied by 2025, Phase 2 by 2027, and Phase 3 by 2029. Therefore, this study summarizes the results of the traffic analyses under 2022 Existing conditions, future 2025 conditions, future 2027 conditions, and future 2029 conditions.

The study area consists of the following study intersections:

- 1) SC 170 (Okatie Highway) at Lawton Boulevard
- 2) SC 170 (Okatie Highway) at Gibbet Road/Mill Creek Boulevard
- 3) Gibbet Road at Estate Drive/Site Access #3 (proposed full-movement)
- 4) SC 170 (Okatie Highway) at Site Access #1 (proposed right-in, right-out access)
- 5) Gibbet Road at Site Access #2 (proposed right-in, right-out access)
- 6) SC 170 (Okatie Highway) at Site Access #4 (proposed right-in, right-out access)
- 7) SC 170 (Okatie Highway) at Site Access #5 (proposed right-in, right-out access)

1.1 Existing Conditions


SC 170 (Okatie Highway) is a four-lane divided, urban minor arterial with a posted speed limit of 50 miles per hour (mph) in the study area. Based upon SCDOT data, 25,100 vehicles per day travelled along Okatie Highway in 2021 at count station 07-0165. Count station 07-0165 is good from SC 46 to US 278/W Fording Island Road.


Gibbet Road is a two-lane, urban major collector with a posted speed limit of 45 mph in the study area. Based upon SCDOT data, 3,500 vehicles per day travelled along Gibbet Road in 2021 at count station 07-0325. Count station 07-0325 is good from SC 170 (Okatie Highway) to May River Road.

Estate Drive and Lawton Boulevard are local roads. SCDOT does not provide daily traffic data for Estate Drive and Lawton Boulevard.

The existing geometry and traffic control for the study area intersections is illustrated in Figure 3.

Attachment 6

Gibbet Road Residential Development

Figure 3 - Existing L

Page 61

Gibbet Road Residential Development Traffic Impact Analysis

2 Project Traffic

2.1 Trip Generation

The trip generation rates and equations published in the *Institute of Transportation Engineers* (*ITE*) *Trip Generation Manual;* 11th Edition were used to estimate the trip generation potential for the development. The analysis was performed using the information provided for the following land use codes (LUCs):

- LUC 220 Multifamily Housing (Low-Rise) 150 Dwelling Units
- LUC 712 Small Office Building 8,850 SF
- LUC 822 Strip Retail Plaza (<40K) 8,850 SF
- LUC 945 Convenience Store/Gas Station (9-15 Fueling Positions) 6,300 SF

Pass-by trip reductions were estimated based on the methodologies in the *ITE Trip Generation Manual*, 11th Edition. Furthermore, because Phase 1 only includes a multifamily scenario, pass-by trips were only estimated for Phase 2 and Phase 3 of the development. Since the development includes retail, residential, and office land uses internal capture reductions were calculated. As shown in **Table 1**, Phase 1 of the development is anticipated to generate 69 (17 In/52 Out) new AM peak hour trips and 85 (54 In/31Out) new PM peak hour net new external trips.

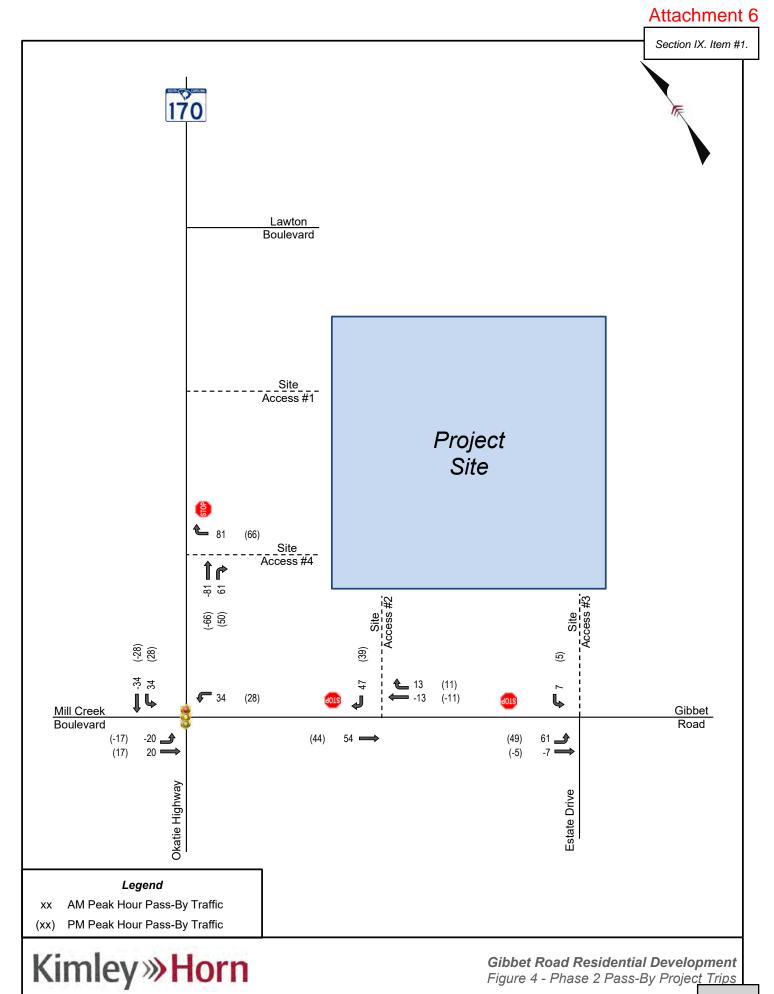
Table 2 shows that Phase 2 of the development is anticipated to generate 153 (59 in/94 out) new AM peak hour trips and 138 (81 in/57 out) new PM peak hour trips. The estimated trip generation is summarized in **Table 2**.

Table 3 shows that Phase 3 of the development is anticipated to generate 193 (86 in/107 out) new AM peak hour trips and 214 (116 in/98 out) new PM peak hour trips. The estimated trip generation is summarized in **Table 3**. Trip generation calculations can be found in **Appendix B**.

Table 1 – Phase 1 Trip Generation Summary

Land Use	Intensity Units	Unito	Inits Daily	AM Peak Hour			PM Peak Hour		
		Units		Total	ln	Out	Total	ln	Out
220 – Multifamily Housing (Low-Rise)	150	DU	1,037	69	17	52	85	54	31
Subtotal		1,037	69	17	52	85	54	31	
Total Net New External Trips			1,037	69	17	52	85	54	31

Gibbet Road Residential Development Traffic Impact Analysis


Table 2 - Phase 2 Trip Generation Summary

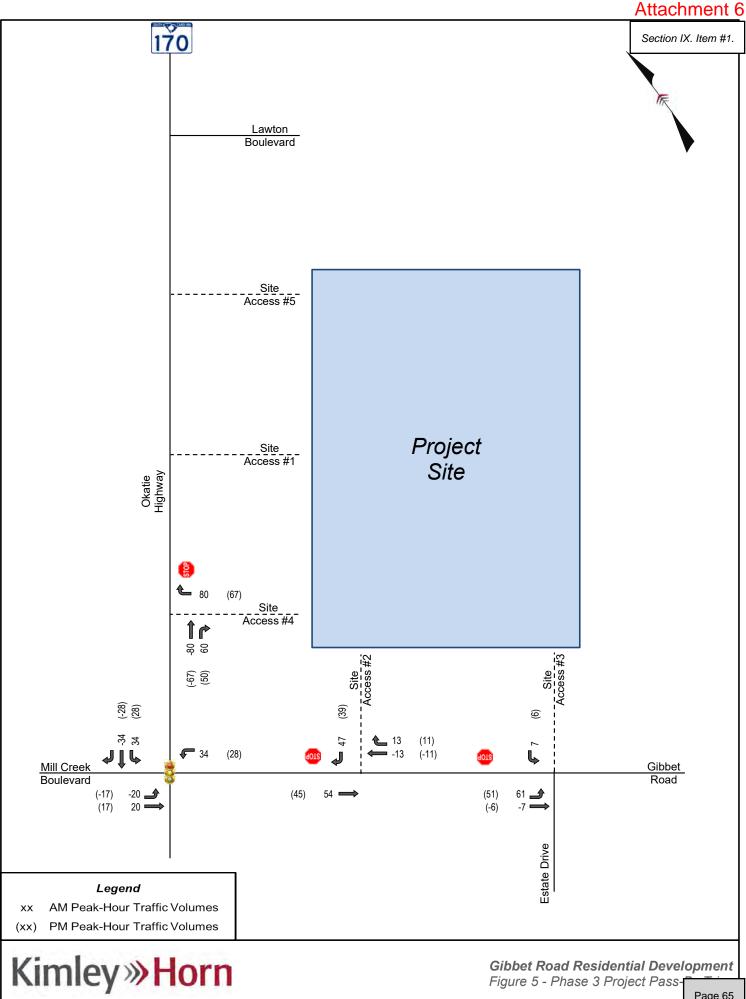

Localita	1	Units	Daily	AM Peak Hour			PM Peak Hour		
Land Use	Intensity			Total	ln	Out	Total	ln	Out
220 – Multifamily Housing (Low-Rise)	150	DU	1,037	69	17	52	85	54	31
945 – Convenience Store/Gas Station (9-15 Fueling Positions)	6.3	KSF	4,082	356	178	178	343	172	171
Subtotal			5,119	425	195	230	428	226	202
Internal Capture			-470	-2	-1	-1	-70	-35	-35
Pass-By			-3,000	-270	-135	-135	-220	-110	-110
Total Net New External Trips			1,649	153	59	94	138	81	57

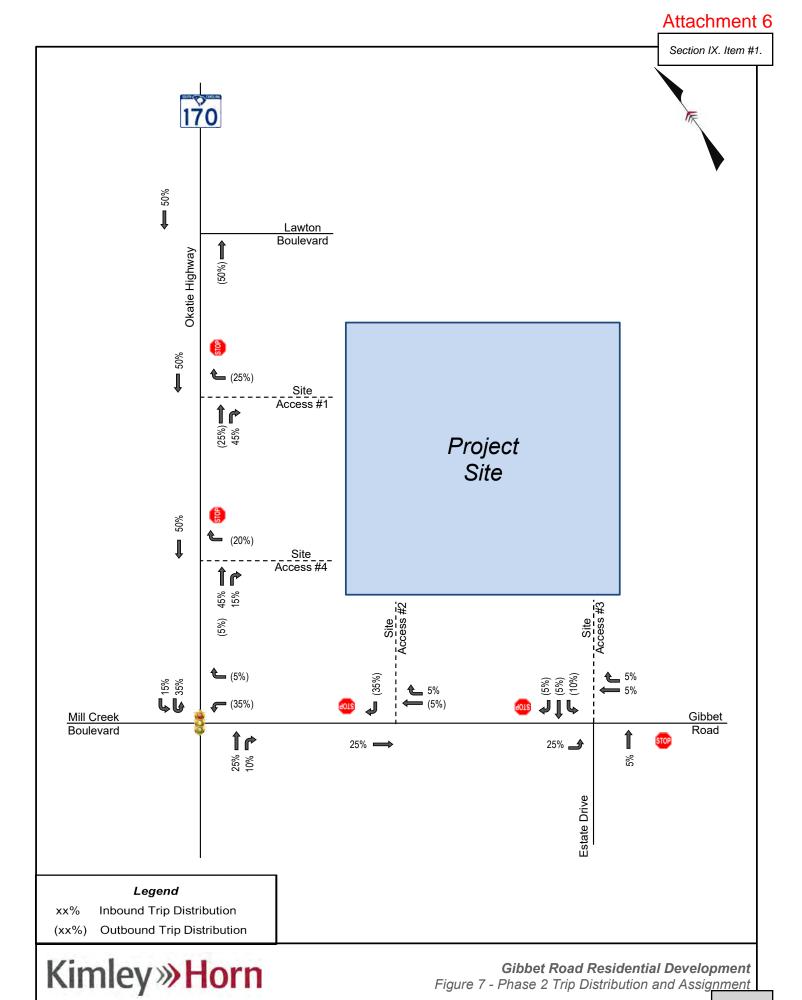
Table 3 - Phase 3 Trip Generation Summary

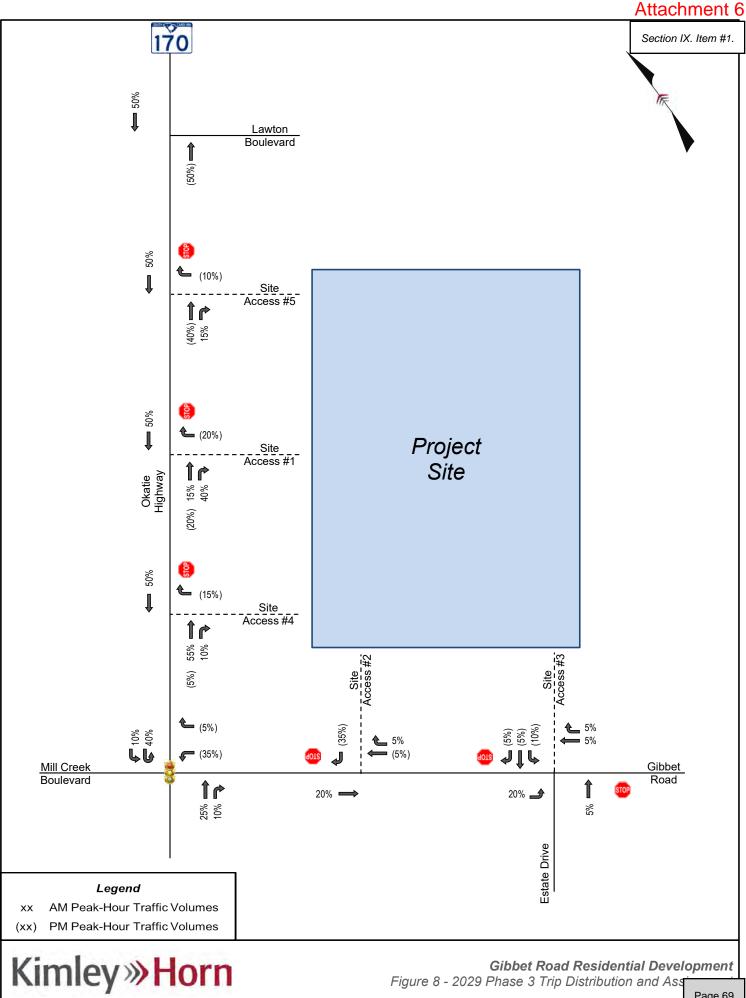
Londilles	Interested	Units	Unito	Heite	Heita Daile	AM Peak Hour			PM Peak Hour		
Land Use	Intensity	Units	Daily	Total	ln	Out	Total	ln	Out		
220 – Multifamily Housing (Low-Rise)	150	DU	1,037	69	17	52	85	54	31		
712 – Small Office Building	8.85	KSF	127	15	12	3	19	6	13		
822 – Strip Retail Plaza (<40K)	8.85	KSF	603	27	16	11	71	36	35		
945 – Convenience Store/Gas Station (9-15 Fueling Positions)	6.3	KSF	4,082	356	178	178	343	172	171		
Subtotal			5,849	467	223	244	518	268	250		
Internal Capture			-556	-6	-3	-3	-80	-40	-40		
Pass-By			-3,000	-268	-134	-134	-224	-112	-112		
Total Net New External Trips			2,293	193	86	107	214	116	98		

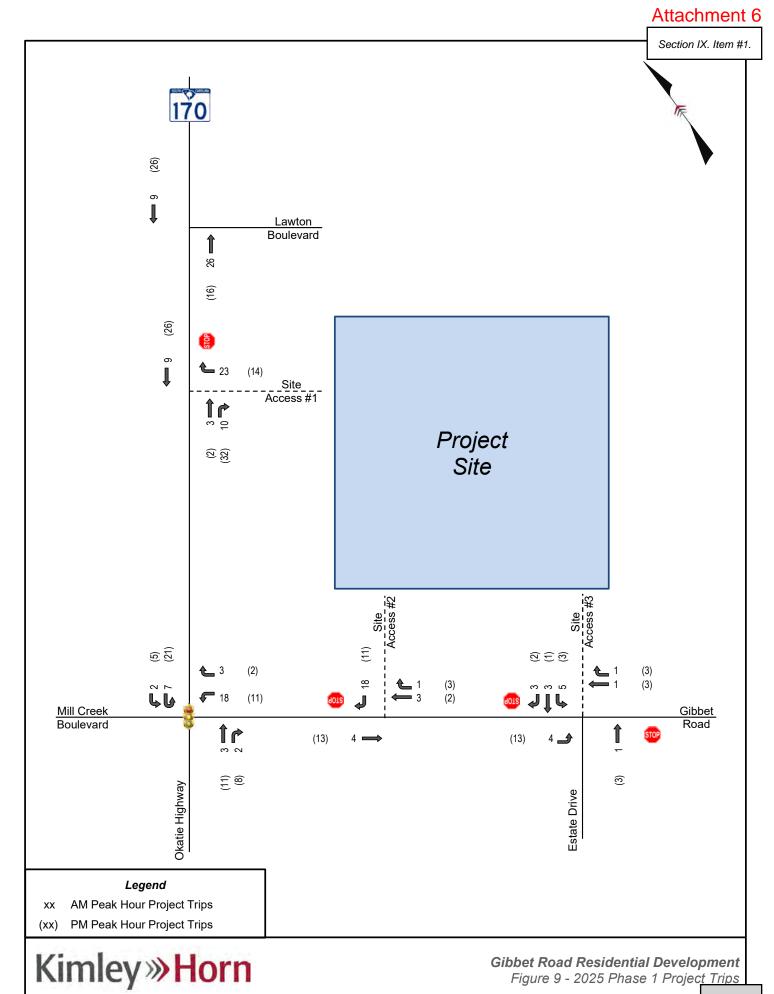
The project pass-by project trips for phase 2 and phase 3 of the development is illustrated in **Figure 4** and **Figure 5**, respectively.

Gibbet Road Residential Development Traffic Impact Analysis

2.2 Trip Distribution & Assignment


New external trips generated by the proposed development were distributed and assigned to the surrounding roadway network based on existing travel patterns, surrounding land uses, and the proposed site layout. The trip distribution percentages used in this analysis are as follows.


- 50% to/from the North via SC 170 (Okatie Highway)
- 35% to/from the South via SC 170 (Okatie Highway)
- 5% to/from the South via Estate Drive
- 10% to/from the East via Gibbet Road


The site trip distributions and assignments for Phase 1, Phase 2, and Phase 3 are illustrated in **Figure 6**, **Figure 7**, and **Figure 8**, respectively. 2025 Phase 1 Project Trips, 2027 Phase 2 Project Trips, and 2029 Phase 3 Project Trips are illustrated in **Figure 9**, **Figure 10**, and **Figure 11**, respectively.

Page 8 April 2023

Page 70

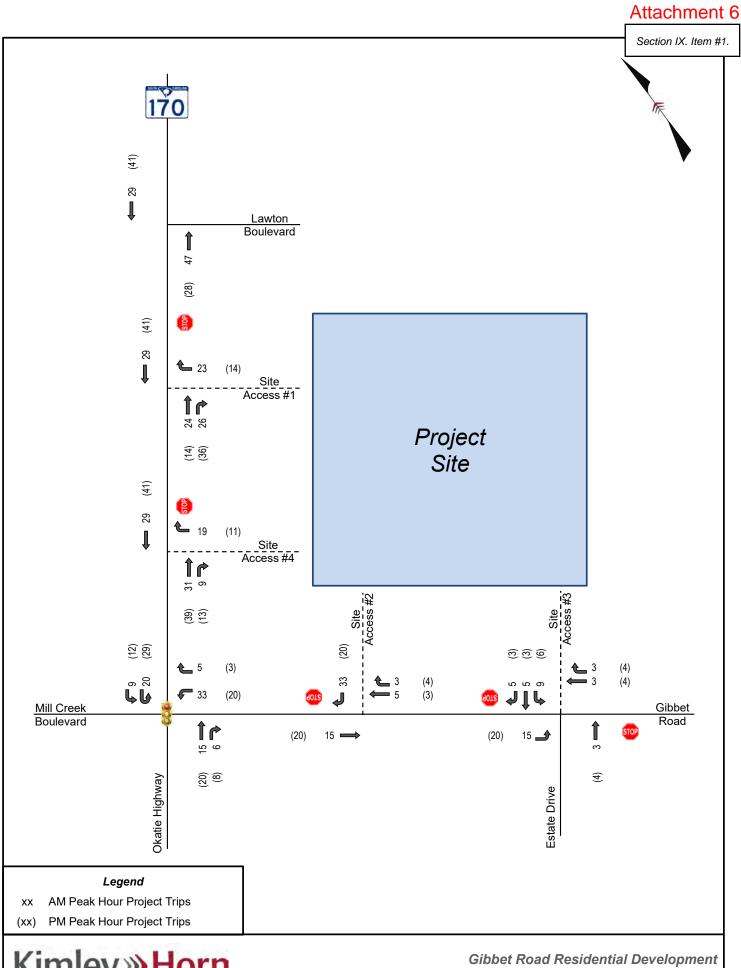
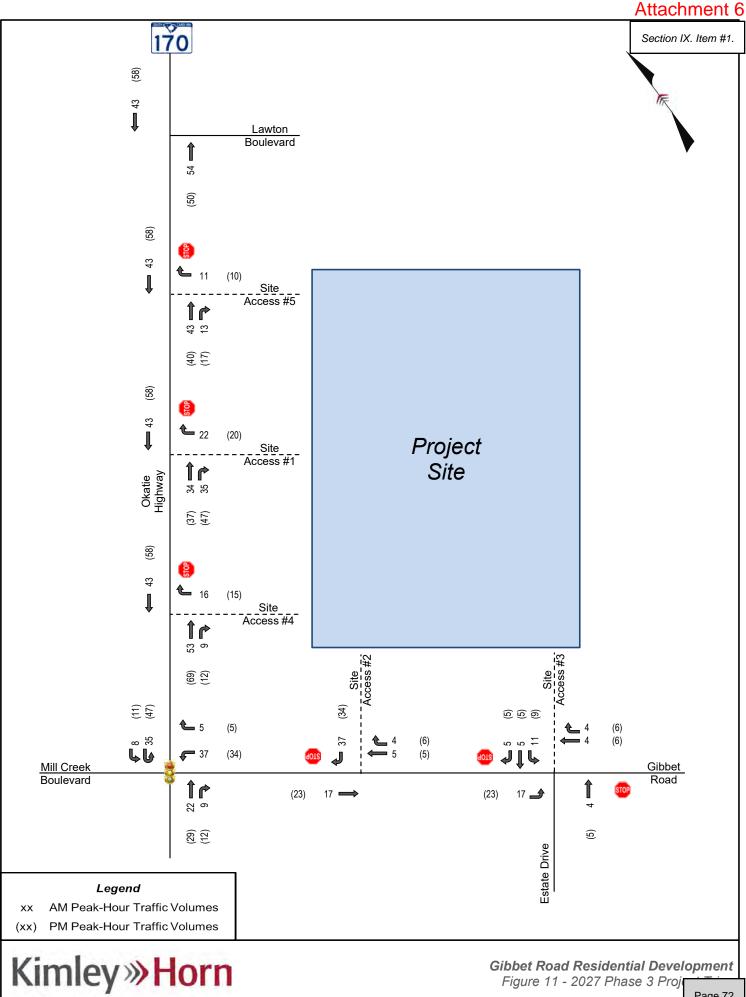



Figure 10 - Phase 2 Project Trips

3 Existing and Future Traffic Volume Development

Existing 2022 traffic volumes were utilized in the analysis and future-year traffic volumes were developed for projected 2025, 2027, and 2029 traffic conditions. The future-year volumes consisted of the existing traffic volumes adjusted by an annual growth rate and the projected traffic volumes of the Gibbet Road Residential development. Worksheets documenting the traffic volume development are provided in **Appendix C**.

3.1 2022 Existing Traffic

Peak-hour intersection turning movement counts were conducted in the AM peak period (7:00 AM to 9:00 AM) and PM peak period (4:00 PM to 6:00 PM) on Thursday, November 10th, 2022, at the following intersections:

- SC 170 (Okatie Highway) at Gibbet Road
- SC 170 (Okatie Highway) at Lawton Boulevard
- Gibbet Road at Estate Drive

Figure 12 illustrates the 2022 Existing peak-hour traffic volumes for the AM and PM peak hours. The raw-turning movement count data is included in **Appendix D**.

3.2 Future-Year No-Build Traffic Development

It was assumed that Phase 1 of the development will be built and fully occupied by 2025, Phase 2 by 2027, and Phase 3 by 2029. The future-year traffic volumes consist of the 2022 existing traffic volumes adjusted by a growth rate for the no-build scenarios.

To determine the historical growth rate in the area, traffic count data was obtained from SCDOT for the count stations along Okatie Hwy and Gibbet Road. Over the past ten years, these roadways have experienced an annual growth rate of 6.5%. Therefore, a 7.0% growth rate was used to develop the no-build traffic volumes for the 2025, 2027, and 2029 conditions. A worksheet documenting the growth rate determination is included in **Appendix E**.

In the surrounding area, the approved background development of the *Palmetto Point Pickleball and Commercial Site*, Kimley-Horn 2021, was accounted for in developing 2025 No-Build, 2027 No-Build, and 2029 No-Build traffic volumes. Volumes associated with this development are illustrated in **Figure 13**.

Figure 14 illustrates the 2025 No-Build traffic volumes, **Figure 15** illustrates the 2027 No-Build traffic volumes, and **Figure 16** illustrates the 2029 No-Build traffic volumes for the AM and PM peak hours.

3.3 Future-Year Build Traffic Development

The Gibbet Road Residential project traffic volumes were added to the no-build traffic volumes to develop build traffic volumes for the 2025, 2027, and 2029 build-out scenarios. **Figure 17** illustrates the 2025 build traffic volumes, **Figure 18** illustrates the 2027 build traffic volumes, and **Figure 19** illustrates the 2029 build traffic volumes for the AM and PM peak hours.

Page 15 April 2023

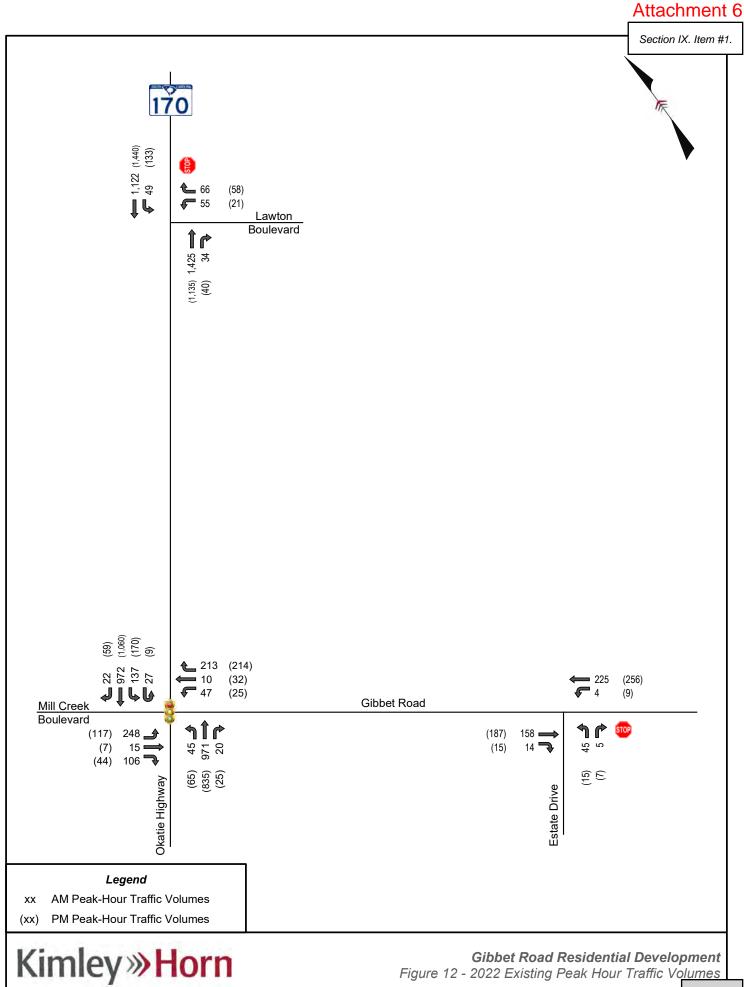
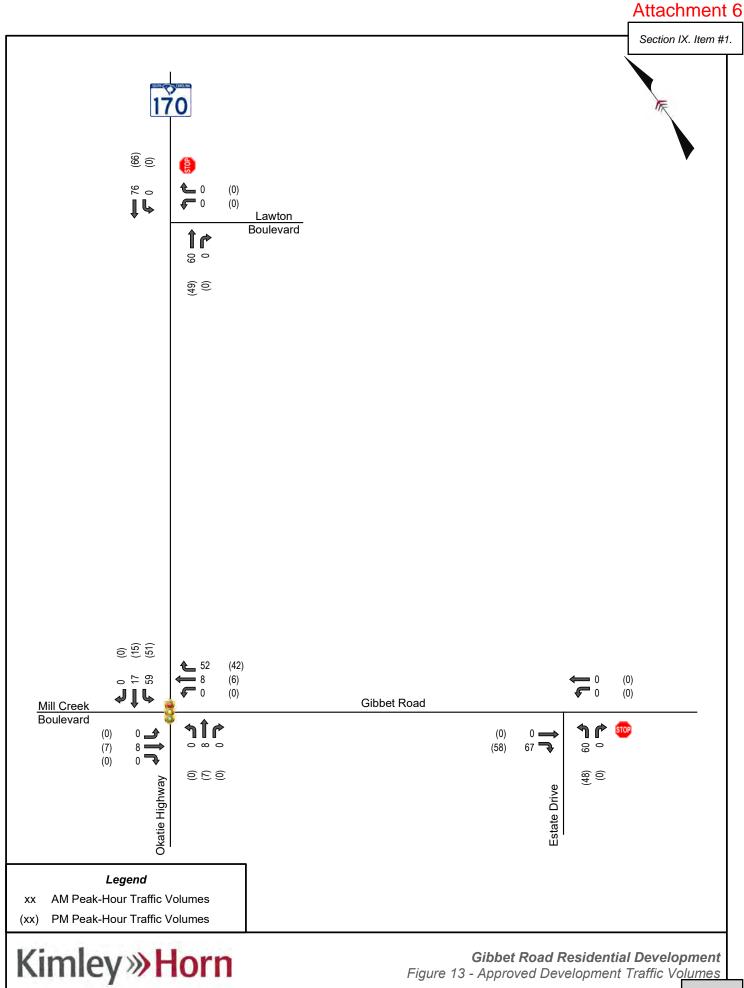



Figure 12 - 2022 Existing Peak Hour Traffic Volumes

- xx AM Peak-Hour Traffic Volumes
- (xx) PM Peak-Hour Traffic Volumes

xx AM Peak Hour Traffic Volumes

(xx) PM Peak Hour Traffic Volumes

- xx AM Peak Hour Traffic Volumes
- (xx) PM Peak Hour Traffic Volumes

L 27 (72) **L** 1,208 (1,314) **L** 229 (264) **L** 40 (32)

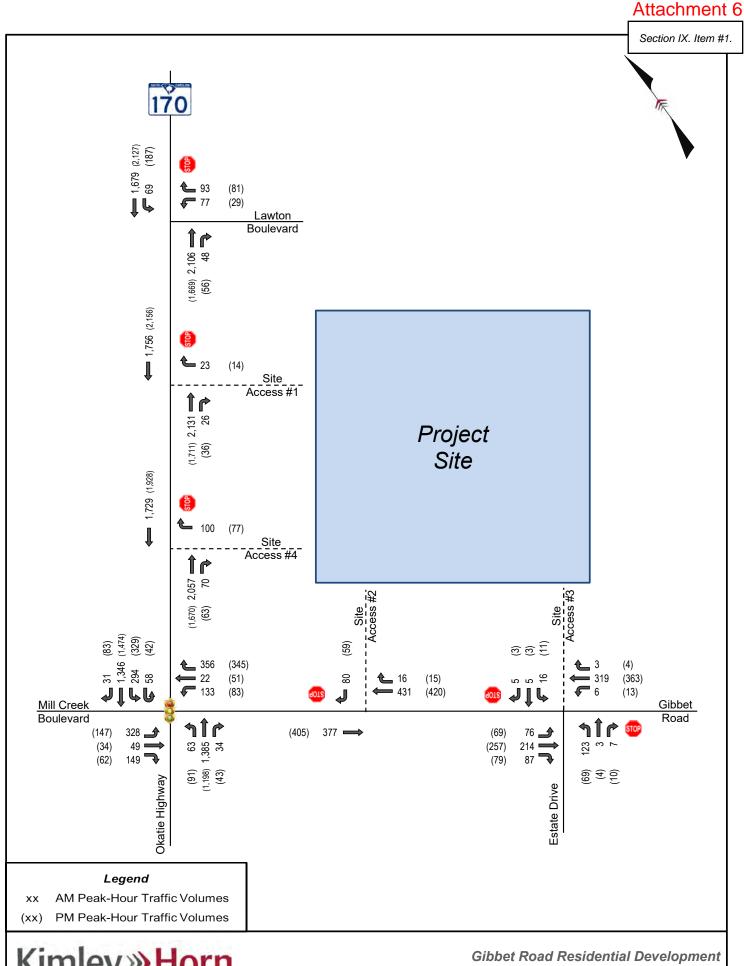
(143) 304

(54) 130

(16)

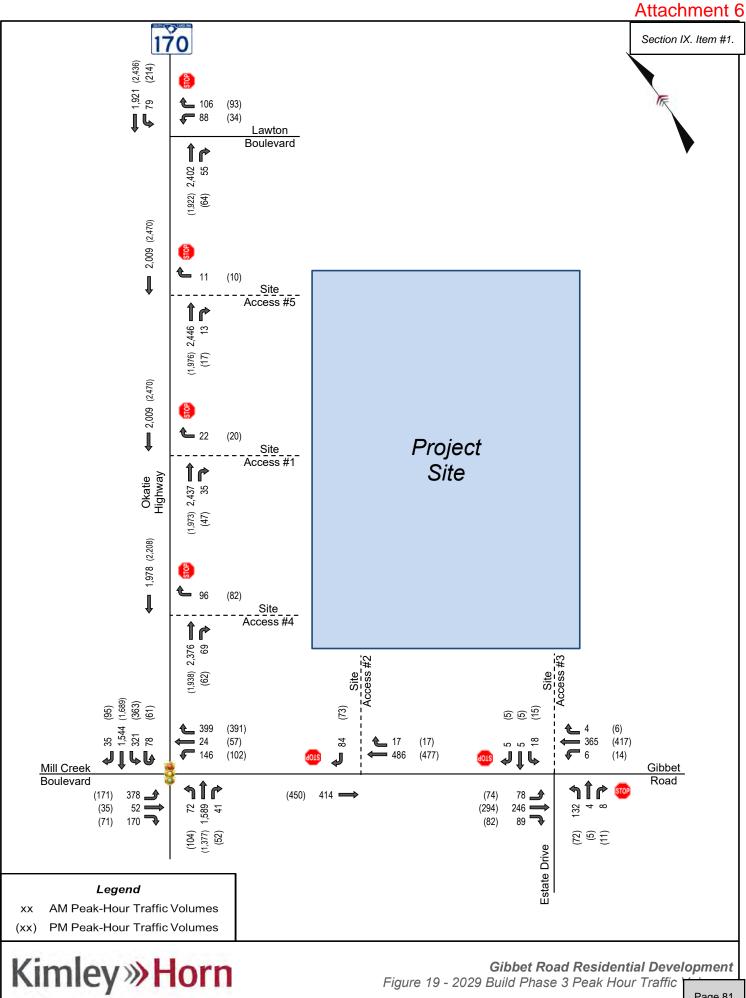
26

Okatie Highway


Mill Creek Boulevard 1,459 (1,856) 60 (163)

1,526 (1,882)

xx AM Peak-Hour Traffic Volumes


xx) PM Peak-Hour Traffic Volumes

Kimley » Horn

Figure 18 - 2027 Phase 2 Build Peak Hour Volumes

4 Capacity Analysis

Capacity/level-of-Service (LOS) analyses were conducted using the *Highway Capacity Manual (HCM)*, 6th Edition, methodologies of the *Synchro*, Version 11, traffic analysis software. Capacity analyses were conducted for the AM and PM peak hours of the 2022 Existing conditions, 2025 No-Build conditions, 2025 Build conditions, 2027 No-Build conditions, 2027 Build conditions, 2029 No-Build conditions, and 2029 Build conditions analysis scenarios.

Intersection level of service (LOS) grades range from LOS A to LOS F, which are directly related to the level of control delay at the intersection and characterize the operational conditions of the intersection traffic flow. LOS A operations typically represent ideal, free-flow conditions where vehicles experience little to no delays, and LOS F operations typically represent poor, gridlocked conditions with high vehicular delays, and are generally considered undesirable. **Table 4** lists the LOS control delay thresholds published in the *HCM* for signalized and unsignalized intersections.

Control Delay per Vehicle (sec/veh) LOS Signalized Intersections **Unsignalized Intersections** Α ≤ 10 ≤ 10 В > 10 - 20> 10 - 15 C > 20 - 35> 15 - 25 D > 25 – 35 > 35 – 55 Ε > 55 – 80 > 35 – 50 F > 80 > 50

Table 4 - HCM Level of Service Criteria

As part of the intersection analysis, SCDOT's default Synchro parameters were utilized. Existing peak-hour factors (PHF) were utilized for the existing scenarios and the PHFs for the future-year scenarios were adjusted to a minimum of 0.90 and maximum of 0.95. Existing heavy vehicle percentages were utilized for all scenarios, with a minimum of 2% considered.

Please note, U-turns located at the intersection of SC 170 (Okatie Highway) with Gibbet Road were accounted for in the left-turn volume due to the phasing conflict with the right-turn overlap along Gibbet Road. In addition, the 2027 and 2029 No-Build conditions do not account for the previous phases of the development.

The following sections outline the results of the capacity analysis for each of the study intersections. The capacity analysis worksheets are included in **Appendix F.**

4.1 SC 170 (Okatie Highway) at Lawton Boulevard

The capacity analysis results for the SC 170 (Okatie Highway) at Lawton Boulevard intersection are summarized in **Table 5**.

Table 5 - SC 170 (Okatie Highway) at Lawton Boulevard Analysis Results

Condition	Manageman	WB (Lawto	n Boulevard)	NB (SC 170	Okatie Hwy)	SB (SC 170	Okatie Hwy)	
Condition	Measure	WBL	WBR	NBT	NBR	SBL	SBT	
AM Peak Hour								
0000 F 1.11	LOS (Delay)	D (:	27.2)	Α (0.0)	B (1:	3.8)*	
2022 Existing	Synchro 95th Q	38'	18'	0'	0'	10'	0'	
	LOS (Delay)	F (6	69.1)	Α (0.0)	C (1	9.6)*	
2025 No-Build	Synchro 95th Q	100'	35'	0'	0'	20'	0'	
2025 Phase 1	LOS (Delay)	F (72.0)	Α(0.0)	C (2	0.0)*	
Build	Synchro 95th Q	103'	35'	0'	0'	20'	0'	
000711 B 111	LOS (Delay)	F (1	26.7)	Α(0.0)	C (24	4.1)*	
2027 No-Build	Synchro 95th Q	148'	50'	0'	0'	28'	0'	
2027 Phase 2	LOS (Delay)	F (1	41.2)	Α(0.0)	D (2	5.3)*	
Build	Synchro 95th Q	155'	53'	0'	0'	28'	0'	
0000 N= D.:III	LOS (Delay)	F (2	98.3)	Α (0.0)	E (3	5.4)*	
2029 No-Build	Synchro 95th Q	225'	85'	0'	0'	45'	0'	
2029 Phase 3	LOS (Delay)	F	(\$)	Α(0.0)	E (3	7.8)*	
Build	Synchro 95th Q	230'	90'	0'	0'	50'	0'	
PM Peak Hour								
0000 E 111	LOS (Delay)	C (18.8)	Α (0.0)	B (1	3.2)*	
2022 Existing	Synchro 95th Q	13'	13'	0'	0'	23'	0'	
2005 N. B. II.	LOS (Delay)	D (28.5)	Α (0.0)	C (1	8.5)*	
2025 No-Build	Synchro 95th Q	28'	20'	0'	0'	45'	0'	
2025 Phase 1	LOS (Delay)	D (29.2)	Α(0.0)	C (1	8.8)*	
Build	Synchro 95th Q	28'	20'	0'	0'	48'	0'	
202711 5 111	LOS (Delay)	E (4	45.1)	Α(0.0)	D (2	6.2)*	
2027 No-Build	Synchro 95th Q	48'	30'	0'	0'	78'	0'	
2027 Phase 2	LOS (Delay)	E (4	48.6)	Α(0.0)	D (2	7.4)*	
Build	Synchro 95th Q	53'	30'	0'	0'	83'	0'	
0000 N. D. III	LOS (Delay)	F (1	55.8)	Α (0.0)	F (50	0.0)*	
2029 No-Build	Synchro 95th Q	108'	45'	0'	0'	150'	0'	
2029 Phase 3	LOS (Delay)	F (2	(05.3)	Α (0.0)	F (56.7)*		
Build	Synchro 95th Q	115'	48'	0'	0'	163'	0'	

^{*} LOS and Delay shown for the southbound left-turn movement

^{\$ -} Delay Exceeds 300 sec/veh

Gibbet Road Residential Development Traffic Impact Analysis

2022 Existing, 2025 No-Build, and 2025 Phase 1 Build

Under 2022 Existing conditions the westbound approach along Lawton Boulevard operates at LOS D during the AM peak hour and LOS C during the PM peak hour. Under 2025 No-Build conditions, the westbound approach is expected to operate at LOS F during the AM peak hour and LOS D during the PM peak hour. This westbound approach is expected to operate similarly under the 2025 Build conditions with the consideration of the proposed development. Therefore, based on the expected Build operations being similar to No-Build operations, no improvements are recommended to mitigate the impact of Phase 1 of this proposed development.

2027 No-Build and 2027 Phase 2 Build

Under 2027 No-Build conditions, the westbound approach is expected to operate at LOS F during the AM peak hour and LOS E during the PM peak hour. This westbound approach is expected to operate similarly under the 2027 Build conditions with the consideration of the proposed development. Therefore, based on the expected Build operations being similar to No-Build operations, no improvements are recommended to mitigate the impact of Phase 2 of this proposed development.

2029 No-Build and 2029 Phase 3 Build

Under 2029 No-Build conditions, the westbound approach is expected to operate at LOS F during the AM and PM peak hour. The large increase in delay is primarily due to the large background growth of 7% per year over the seven-year period from 2022 to 2029. Additionally, volumes grown along Lawton Boulevard are conservative due to a majority of the neighborhood being built and occupied at the time turning movement counts were conducted. In addition, queues are not only anticipated to increase by one to two vehicles. Based on this, it is recommended that this intersection be monitored for the potential of installation of a traffic signal. It should be noted that Lawton Boulevard will operate at LOS F with or without phase 3 of this development, and if a traffic signal is warranted in the future, the Gibbet Road Residential Development is not responsible for installation.

Page 26 April 2023

4.2 SC 170 (Okatie Highway) at Gibbet Road/Mill Creek Boulevard

The capacity analysis results for the SC 170 (Okatie Highway) at Gibbet Road/Mill Creek intersection is summarized in **Table 6** on the following page.

2022 Existing, 2025 No-Build, and 2025 Phase 1 Build

Under 2022 Existing conditions the signalized intersection of SC 170 (Okatie Highway) and Gibbet Road/Mill Creek Boulevard operates at LOS C during the AM peak hour and LOS B during the PM peak hour. Under 2025 No-Build conditions this intersection is expected to operate at LOS C during the AM and PM peak hours. However, the eastbound approach is expected to operate at LOS F during the AM peak hour. With the consideration of development traffic, this intersection is expected to operate at LOS D and LOS C under the 2025 Build conditions during the AM and PM peak hours, respectively.

2027 No-Build and 2027 Phase 2 Build

Under 2027 No-Build conditions this intersection is expected to operate at LOS D during the AM Peak hour and LOS C during the PM peak hour. With the consideration of development traffic, the intersection is expected to continue to operate at LOS D during the AM peak hour and LOS C during the PM peak hour. Therefore, based on the expected Build operations being similar to No-Build operations, no improvements are recommended to mitigate the impact of the proposed development at this intersection

2029 No-Build and 2029 Phase 3 Build

Under 2029 No-Build conditions this intersection is expected to operate at LOS F during the AM Peak hour and LOS D during the PM peak hour. With the consideration of development traffic, the intersection is expected to continue to operate at LOS F during the AM peak hour and LOS D during the PM peak hour. Although this intersection is expected to operate at LOS F during the PM peak hour, the addition of traffic associate with the development is only anticipated to increase the control delay of the intersection by 72 sec/veh and queues are anticipated to be similar to the No-Build condition. Therefore, based on the expected Build operations being similar to No-Build operations, no improvements are recommended to mitigate the impact of the proposed development at this intersection

Page 27 April 2023

Table 6 –SC 170 (Okatie Highway) at Gibbet Road/Mill Creek Boulevard Analysis Results

One differen	Maraum	EB (Mill	Creek Bou	levard)	W	B (Gibbet Ro	ad)	NB (SC	170/Okatie H	lighway)	SB (SC	170/Okatie H	ighway)	1.4
Condition	Measure	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Intersection
AM Peak Hour														
0000 = : /:	LOS (Delay)		D (41.2)			C (26.9)			C (21.2)			B (18.4)		0 (00 0)
2022 Existing	Synchro 95th Q	#283'	26'	3'	59'	19'	128'	26'	371'	0'	80'	316'	0'	C (22.6)
2025 No Doild	LOS (Delay)		F (92.8)			C (29.6)			C (30.2)			C (26.0)		0 (24.2)
2025 No-Build	Synchro 95th Q	#401'	38'	21'	72'	32'	207'	31'	523'	0'	#285'	440'	0'	C (34.3)
2025 Phase 1	LOS (Delay)		F (93.6)			C (29.3)			C (31.6)			C (26.7)		D (25.4)
Build	Synchro 95th Q	#401'	38'	21'	90'	32'	210'	31'	524'	0'	#301'	440'	0'	D (35.1)
2027 No-Build	LOS (Delay)		F (164.3)			C (29.8)			D (50.2)			C (32.2)		D (E1.0)
2027 NO-Bulla	Synchro 95th Q	#474'	42'	34'	79'	34'	237'	34'	#685'	0'	#338'	537'	0'	D (51.2)
2027 Phase 2	LOS (Delay)		F (135.6)			C (31.5)			D (52.7)			D (46.7)		D (E3 0)
Build	Synchro 95th Q	#439'	61'	34'	147'	34'	241'	34'	#697'	0'	#449'	513'	0'	D (53.0)
2029 No-Build	LOS (Delay)		F (254.3)			C (31.6)			F (94.2)			D (44.8)		F (81.8)
2029 NO-Bulla	Synchro 95th Q	#560'	44'	50'	88'	37'	276'	#55'	#845'	0'	#395'	#738'	0'	T (01.0)
2029 Phase 3	LOS (Delay)		F (217.8)			C (33.3)			F (99.8)			D (54.0)		F (88.0)
Build	Synchro 95th Q	#526'	64'	50'	159'	37'	281'	#55'	#863'	0'	#532'	#711'	0'	F (00.0)
PM Peak Hour														
2022 Existing	LOS (Delay)		D (36.9)			C (31.6)			B (14.5)			B (14.0)		B (17.2)
2022 Existing	Synchro 95th Q	#130'	16'	0'	35'	42'	118'	24'	249'	0'	58'	288'	0'	D (11.2)
2025 No-Build	LOS (Delay)		D (51.3)			D (40.0)			B (18.0)			B (17.4)		C (21.9)
2023 NO-Build	Synchro 95th Q	#190'	28'	0'	45'	58'	188'	31'	364'	0'	176'	395'	3'	0 (21.9)
2025 Phase 1	LOS (Delay)		D (51.4)			D (37.6)			B (18.8)			B (18.2)		C (22.3)
Build	Synchro 95th Q	#190'	28'	0'	56'	58'	189'	31'	370'	0'	#236'	395'	3'	0 (22.3)
2027 No-Build	LOS (Delay)		E (76.9)			D (43.9)			C (21.9)			C (23.0)		C (27.7)
2027 NO-Dulid	Synchro 95th Q	#227'	29'	0'	48'	64'	219'	52'	#485'	0'	#266'	502'	7'	0 (21.1)
2027 Phase 2	LOS (Delay)		E (59.9)			C (32.9)			C (30.3)			C (26.8)		C (28.7)
Build	Synchro 95th Q	#199'	46'	0'	96'	64'	222'	#57'	#499'	0'	#374'	485'	7'	0 (20.1)
2029 No-Build	LOS (Delay)		F (131.4)	,		D (37.0)			D (48.1)			D (35.8)		D (45.0)
ZUZJ NU-DUIIU	Synchro 95th Q	#267'	31'	0'	54'	69'	259'	#80'	#605'	0'	#322'	#715'	12'	D (40.0)
2029 Phase 3	LOS (Delay)		F (98.3)			D (38.1)			D (53.2)			D (48.8)		D (51.3)
Build	Synchro 95th Q	#239'	48'	0'	115'	69'	264'	#80'	#626'	0'	#453'	#696'	12'	D (31.3)

4.3 Gibbet Road at Estate Drive/Site Access #3

The capacity analysis results for the Gibbet Road at Estate Drive/Site Access #3 intersection are summarized in **Table 7**. The southbound Site Access #3 approach is proposed to be constructed under Phase 1 of the development and is planned to consist of one ingress lane and two egress lanes.

Table 7 - Gibbet Road at Estate Drive/Site Access #3 Analysis Results

0	M	EB (Gibbet F	Road)	WB ((Gibbet	Road)	NB (Estate D	Orive)	SB (S	ite Acce	ss #3)
Condition	Measure	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
AM Peak Hour													
2022 Existing	LOS (Delay)		A (0.0)			A (7.6)	ŧ		B (11.9))			
2022 Existing	Synchro 95th Q	1	()'		0'		8'	-	0'			
2025 No-Build	LOS (Delay)		A (0.0)			A (7.9)	ł		B (14.4)			-	
2025 NO-Build	Synchro 95th Q	1	0'	0'		0'		25'	-	0'			
2025 Phase 1	LOS (Delay)		A (7.9)*	!		A (7.9)	ŧ		C (16.3))		B (13.0))
Build	Synchro 95th Q	(0'	0'		0'		30'	()'	0'	()'
2027 No-Build	LOS (Delay)		A (0.0)			A (8.0)	ł		C (17.0))			
2027 NO-Build	Synchro 95th Q	-	0'	0'		0'		35'	-	0'		-	
2027 Phase 2	LOS (Delay)		A (8.3)*			A (8.0)	ł		D (32.5))		C (18.7))
Build	Synchro 95th Q	;	5'	0'		0'		75'	3	}'	5'	3	}'
2020 No Build	LOS (Delay)		A (0.0)			A (8.1)*		C (19.9)					
2029 No-Build	Synchro 95th Q	-	0'	0'	0'			48'	-	0'		-	
2029 Phase 3	LOS (Delay)		A (8.5)*			A (8.1)	ł		E (45.8)			C (21.2))
Build	Synchro 95th Q	;	8'	0'		0'		108'	' 3'		8'	3	3'
PM Peak Hour													
2022 Eviating	LOS (Delay)		A (0.0)			A (7.7)	ł		B (11.5)				
2022 Existing	Synchro 95th Q	-	()'		0'		5'	-	0'			
2025 No-Build	LOS (Delay)		A (0.0)			A (8.8)	ŧ		B (14.2)			-	
2025 NO-Build	Synchro 95th Q	-	0'	0'		0'		15'	-	0'			
2025 Phase 1	LOS (Delay)		A (8.0)*			A (8.0)	ł		C (16.3)			B (14.0)	
Build	Synchro 95th Q		0'	0'		0'		18'	3	}'	0'	()'
2027 No-Build	LOS (Delay)		A (0.0)			A (8.1)	ł		C (16.2))			
2027 NO-Build	Synchro 95th Q	-	0'	0'		0'		20'	-	0'		-	
2027 Phase 2	LOS (Delay)		A (8.4)*		A (8.1)*			D (25.8))		C (20.7))	
Build	Synchro 95th Q	,	5'	0'		0'		35'	3	3'	5'	3	3'
2020 Na D.::!-!	LOS (Delay)		A (0.0)		A (8.3)*		C (18.5)						
2029 No-Build	Synchro 95th Q	-	0'	0'	0'			25' - 0'		· -			
2029 Phase 3	LOS (Delay)		A (8.6)*		A (8.2)*		D (33.5)			C (24.0)			
Build	Synchro 95th Q	,	8'	0'		0'		50'	3	3'	8'	3	3'

^{*} LOS and Delay shown for the southbound left-turn movement

2022 Existing, 2025 No-Build, and 2025 Phase 1 Build

Under 2022 Existing conditions the northbound approach along Estate Drive operates at LOS B during both the AM peak hour and PM peak hours. Under the 2025 No-Build conditions, a eastbound right-turn lane is planned to be constructed as part of the Palmetto Point Pickleball and Commercial Site. The northbound approach is expected to continue to operate at LOS B under 2025 No-Build conditions during both the AM and PM peak hour. With the addition of traffic associated with the proposed development, the northbound approach is expected to increase to LOS C during the AM and PM peak hour. The new southbound approach of Site Access #3 is expected to operate at LOS B during the AM and PM peak hours of the 2025 Build Phase 1 conditions.

Additional turn lane improvements for this unsignalized intersection beyond those necessary for capacity were determined based on guidelines in the 2021 SCDOT Roadway Design Manual. The results of the warrant indicate that under 2025 Build Phase 1 conditions an eastbound left-turn lane and westbound right-turn lane are not necessary along Gibbet Road. Therefore, based on the expected Build operations being a LOS C or better, no improvements are recommended to mitigate the impact of Phase 1 of this proposed development.

2027 No-Build and 2027 Phase 2 Build

Under 2027 No-Build conditions the northbound approach along Estate Drive is expected to operate at LOS C during the AM and PM peak hour. Under 2027 Build Phase 2 conditions the northbound approach is expected to operate at LOS D during the AM and PM peak hour. The southbound approach of Site Access #3 is expected to operate at LOS C during the AM and PM peak hour.

Additional turn lane improvements for this unsignalized intersection beyond those necessary for capacity were determined based on guidelines in the 2021 SCDOT *Roadway Design Manual*. The results of the warrant indicate that under 2027 Build Phase 2 conditions the eastbound left-turn lane along Gibbet Road should be considered. Therefore, it is recommended to construct an eastbound left-turn lane along Gibbet Road in accordance with the SCDOT *Roadway Design Manual*. Turn lane warrant worksheets can be seen in **Appendix G**.

2029 No-Build and 2029 Phase 3 Build

Under 2029 No-Build conditions the northbound approach along Estate Drive is expected to operate at LOS C during the AM and PM peak hour. Under 2029 Build conditions, it was assumed that the eastbound left-turn lane would be constructed with phase 2 of the development. Under 2029 Build Phase 2 conditions the northbound approach is expected to operate at LOS E during the AM peak hour and LOS D under the PM peak hour. The southbound approach of Site Access #3 is expected to operate at LOS C during the AM and PM peak hour.

Although there is an increase in LOS along the northbound approach with the consideration of project traffic, it is not uncommon for minor street approaches to operate at LOS E, or LOS F, during peak hours of travel. Therefore, no improvements are recommended to mitigate the impact of Phase 3 of this proposed development.

Page 30 April 2023

4.4 SC 170 (Okatie Highway) at Site Access #1

The capacity analysis results for the SC 170 (Okatie Highway) at Site Access #1 intersection are summarized in **Table 8**. Site Access #1 is proposed to be constructed as part of Phase 1 and is planned to consist of one ingress lane and one egress lanes that will be restricted to right-in, right-out access only. Site Access #1 is planned to be located approximately 850 feet north of the intersection of SC 170 (Okatie Highway) with Gibbet Road.

WB (Site Access #1) NB (SC 170/Okatie Highway) SB (SC 170/Okatie Highway) Condition Measure **WBR NBT NBR SBT AM Peak Hour** LOS (Delay) C (22.7) A(0.0)A(0.0)2025 Phase 1 Build Synchro 95th Q 10' 0' 0' LOS (Delay) D (28.6) A(0.0)A(0.0)2027 Phase 2 Build 13' 0' 0' Synchro 95th Q LOS (Delay) E (36.1) A(0.0)A(0.0)2029 Phase 3 Build Synchro 95th Q 15' 0' 0' **PM Peak Hour** LOS (Delay) C (17.4) A(0.0)A(0.0)2025 Phase 1 Build Synchro 95th Q 5' 0' 0' LOS (Delay) C (20.2) A(0.0)A(0.0)2027 Phase 2 Build Synchro 95th Q 5' 0' 0' LOS (Delay) C (24.4) A(0.0)A(0.0)2029 Phase 3 Build Synchro 95th Q 10' 0' 0'

Table 8 - SC 170 (Okatie Hwy) at Site Access #1 Analysis Results

2025 Phase 1 Build

Under 2025 Build Phase 1 conditions the westbound approach along Site Access #1 is expected to operate at LOS C during the AM and PM peak hours. Additional turn lane improvements for this unsignalized intersection beyond those necessary for capacity were determined based on guidelines in the 2021 SCDOT *Roadway Design Manual*. The results of the warrant indicate that under 2025 Build Phase 1 conditions and 2027 Build Phase 2 conditions, a northbound right-turn lane is not necessary along SC 170 (Okatie Highway). However, based on coordination with the SCDOT, all driveways located along SC 170 (Okatie Highway) will be required to construct turn lanes for ingress movements. Turn lane warrant worksheets can be seen in **Appendix G**. Based on the capacity analysis, Site Access #1 is recommended to be constructed as a right-in, right-out only driveway with one ingress lane and one egress lane.

2027 Phase 2 Build

Under 2027 Build Phase 2 the westbound approach is anticipated to increase to LOS D during the AM peak hour and remain at LOS C during the PM peak hour. Therefore, no improvements are recommended to mitigate the impact of Phase 2 of this proposed development.

Gibbet Road Residential Development Traffic Impact Analysis

2029 Phase 3 Build

Under 2029 Build Phase 3 the westbound approach is anticipated to increase to LOS E during the AM peak hour and remain at LOS C during the PM peak hour. Please note that although the westbound approach along Site Access #1 is anticipated to operate at LOS E, it is not uncommon for unsignalized driveways to operate at LOS E, or LOS F, during peak hours of travel. In addition, queues are not anticipated to be more than two vehicles along the westbound approach. Based on this, no improvements are recommended to mitigate the impact of Phase 3 of this proposed development.

Page 32 April 2023

Build

Gibbet Road Residential Development Traffic Impact Analysis

13'

4.5 Gibbet Road at Site Access #2

The capacity analysis results for the Gibbet Road at Site Access #2 intersection are summarized in **Table 9.** Site Access #2 is proposed to be constructed as part of Phase 1 and is planned to consist of one ingress lane and one egress lanes that will be restricted to a right-in, right-out access only. Site Access #2 is planned to be located approximately 350' east of the intersection of SC 170 (Okatie Highway) at Gibbet Road.

EB (Gibbet Road) WB (Gibbet Road) SB (Site Access #2) Condition Measure **EBT WBTR SBR AM Peak Hour** LOS (Delay) A(0.0)A(0.0)B (11.0) 2025 Phase 1 Build 0' 3' Synchro 95th Q 0' B (12.3) LOS (Delay) A(0.0)A(0.0)2027 Phase 2 Build 0' 0' Synchro 95th Q 13' LOS (Delay) A(0.0)A(0.0)B (13.1) 2029 Phase 3 Build 0' 0' 13' Synchro 95th Q **PM Peak Hour** B (10.8) LOS (Delay) A(0.0)A(0.0)2025 Phase 1 Build 0' 0' 0' Synchro 95th Q LOS (Delay) A(0.0)A(0.0)B (11.9) 2027 Phase 2 Build Synchro 95th Q 0' 0' 10' B (12.8) LOS (Delay) A(0.0)A(0.0)2029 Phase 3

Table 9 - Gibbet Road at Site Access #2 Analysis Results

All approaches at this intersection are anticipated to operate with short delays during the AM and PM peak hours. Additional turn lane improvements for this unsignalized intersection beyond those necessary for capacity were determined based on guidelines in the 2021 SCDOT *Roadway Design Manual*. The results of the warrant indicate that under 2025 Build Phase 1 conditions, 2027 Phase 2 Build conditions, and 2029 Phase 3 Build conditions a westbound right-turn lane is not necessary along Gibbet Road. Turn lane warrant worksheets can be seen in **Appendix G**.

0'

Synchro 95th Q

Based on all approaches anticipated to operate with short delays, and turn lane warrants not being met, no improvements are recommended for this intersection. Site Access #2 should be constructed as a right-in, right-out only driveway with one ingress lane and one egress lane.

4.6 SC 170 (Okatie Hwy) at Site Access #4

The capacity analysis results for the SC 170 (Okatie Highway)/ Site Access #4 intersection is summarized in **Table 10**. Site Access #4 is proposed to be constructed as part of Phase 2 and is planned to consist of one ingress lane and one egress lanes that will be restricted to a right-in, right-out access only. Site Access #4 is planned to be located approximately 350' north of the intersection of SC 170 (Okatie Highway) at Gibbet Road.

WB (Site Access #4) NB (SC 170/Okatie Highway) SB (SC 170/Okatie Highway) Condition Measure **WBR NBT NBR SBT AM Peak Hour** LOS (Delay) F (51.7) A(0.0)A(0.0)2027 Phase 2 Build Synchro 95th Q 0' 0' 85' LOS (Delay) F (76.4) A (0.0) A(0.0)2029 Phase 3 Build 0' 0' Synchro 95th Q 108' **PM Peak Hour** LOS (Delay) D (26.0) A(0.0)A(0.0)2027 Phase 2 Build 0' Synchro 95th Q 35' LOS (Delay) D (33.5) A (0.0) A(0.0)2029 Phase 3 Build Synchro 95th Q 50' 0'

Table 10 - SC 170 (Okatie Hwy) at Site Access #4 Analysis Results

The westbound approach at this proposed intersection is anticipated to operate at LOS F during the AM peak hour and LOS D during the PM peak hour. Additional turn lane improvements for this unsignalized intersection beyond those necessary for capacity were determined based on guidelines in the 2021 SCDOT *Roadway Design Manual*. The results of the warrant indicate that under 2027 Build conditions, a northbound right-turn lane should be considered along SC 170 (Okatie Highway). Turn lane warrant worksheets can be seen in **Appendix G**.

Based on the capacity and turn lane warrant analysis, it is recommended to construct Site Access #4 as a right-in, right-out only driveway with one ingress and one egress lane, and construct a northbound right turn lane in accordance with the SCDOT *Roadway Design Manual*.

4.7 SC 170 (Okatie Hwy) at Site Access #5

The capacity analysis results for the SC 170 (Okatie Highway)/ Site Access #5 intersection is summarized in **Table 11**. Site Access #5 is proposed to be constructed as part of Phase 3 and is planned to consist of one ingress lane and one egress lanes that will be restricted to a right-in, right-out access only. Site Access #5 is planned to be located approximately 875' south of the intersection of SC 170 (Okatie Highway) at Lawton Boulevard.

WB (Site Access #5) NB (SC 170/Okatie Highway) SB (SC 170/Okatie Highway) Condition Measure **WBR NBT NBR SBT AM Peak Hour** LOS (Delay) D (33.8) A(0.0)A(0.0)2029 Phase 3 Build 8' 0' Synchro 95th Q 0' **PM Peak Hour** LOS (Delay) C (23.7) A(0.0)A(0.0)2029 Phase 3 Build Synchro 95th Q 5' 0' 0'

Table 11 - SC 170 (Okatie Hwy) at Site Access #5 Analysis Results

The westbound approach at this proposed intersection is anticipated to operate at LOS D during the AM peak hour and LOS C during the PM peak hour. Additional turn lane improvements for this unsignalized intersection beyond those necessary for capacity were determined based on guidelines in the 2021 SCDOT *Roadway Design Manual*. The results of the warrant indicate that under 2029 Build Phase 3 conditions a northbound right-turn lane is not necessary along SC 170 (Okatie Highway). However, based on coordination with the SCDOT, all driveways located along SC 170 (Okatie Highway) will be required to construct turn lanes for ingress movements. Turn lane warrant worksheets can be seen in **Appendix G**.

Based on the capacity and turn lane warrant analysis, it is recommended to construct Site Access #5 as a right-in, right-out only driveway with one ingress and one egress lane, and construct a northbound right turn lane in accordance with the SCDOT *Roadway Design Manual*.

Kimley » Horn

Gibbet Road Residential Development Traffic Impact Analysis

6 Conclusion

The proposed Gibbet Road Residential Development is in the northeast quadrant of the SC 170 (Okatie Highway) and Gibbet Road intersection in Bluffton, South Carolina. This development is planned to consist of the following phases and land uses:

- 2025 Build Phase 1 150 multi-family housing units.
- 2027 Build Phase 2 6,300 square-foot convenience store and gas station with 12 fueling positions.
- 2029 Build Phase 3 8,850 square feet office space and 8,850 square feet retail space.

It was assumed that the project will access the roadway network via the following five unsignalized driveways:

- Site Access #1 Planned to be constructed under Phase 1 and is located approximately 850' north of Gibbet Road along SC 170 (Okatie Highway). This access is proposed to be restricted to right-in, right-out movements only.
- Site Access #2 Planned to be constructed under Phase 1 and is located approximately 350' east of SC 170 (Okatie Highway) along Gibbet Road. This access is proposed to be restricted to right-in, right-out movements only.
- Site Access #3 Planned to be constructed under Phase 1, and is proposed to be full-movement and align with Estate Drive.
- Site Access #4 Planned to be constructed under Phase 2 and is located approximately 350' feet north of Gibbet Road along SC 170 (Okatie Highway). This access is proposed to be restricted to right-in, right-out movements only.
- Site Access #5 Planned to be constructed under Phase 3 and is located approximately 875' feet south of Lawton Boulevard along SC 170 (Okatie Highway). This access is proposed to be restricted to right-in, right-out movements only.

This study summarizes the results of the traffic analyses at the following study intersections:

- 1) SC 170 (Okatie Highway) at Lawton Boulevard
- SC 170 (Okatie Highway) at Gibbet Road/Mill Creek Boulevard
- 3) Gibbet Road at Estate Drive/Site Access #3
- 4) SC 170 (Okatie Highway) at Site Access #1
- 5) Gibbet Road at Site Access #2
- 6) SC 170 (Okatie Highway) at Site Access #4
- 7) SC 170 (Okatie Highway) at Site Access #5

Gibbet Road Residential Development Traffic Impact Analysis

Improvements Considered by Others

In the surrounding area, the approved development of the Palmetto Point Pickleball and Commercial Site, Kimley-Horn 2021, was accounted for in the analysis of 2025, 2027, and 2029 conditions. Based on this report, an eastbound right-turn lane along Gibbet Road at the intersection of Estate Drive will be constructed.

Based on the results of the traffic analyses, the following improvements are recommended to mitigate the impact of the proposed development's traffic on the study area intersections:

2025 Build Phase 1

Gibbet Road at Estate Drive/ Site Access #3

 Construct Site Access #3 to align with Estate Drive. Site Access #3 should consist of one ingress lane and two egress lanes. The egress lanes should consist of a left-turn lane and shared through/right-turn lane.

SC 170 (Okatie Highway) at Site Access #1

- Construct a northbound right-turn lane along SC 170 (Okatie Highway) in accordance with the SCDOT Roadway Design Manual.
- Construct Site Access #1 to be a right-in, right-out access only with one ingress lane and one egress lane.

Gibbet Road at Site Access #2

• Construct Site Access #2 to be a right-in, right-out access only with one ingress lane and one egress lane.

2027 Build Phase 2

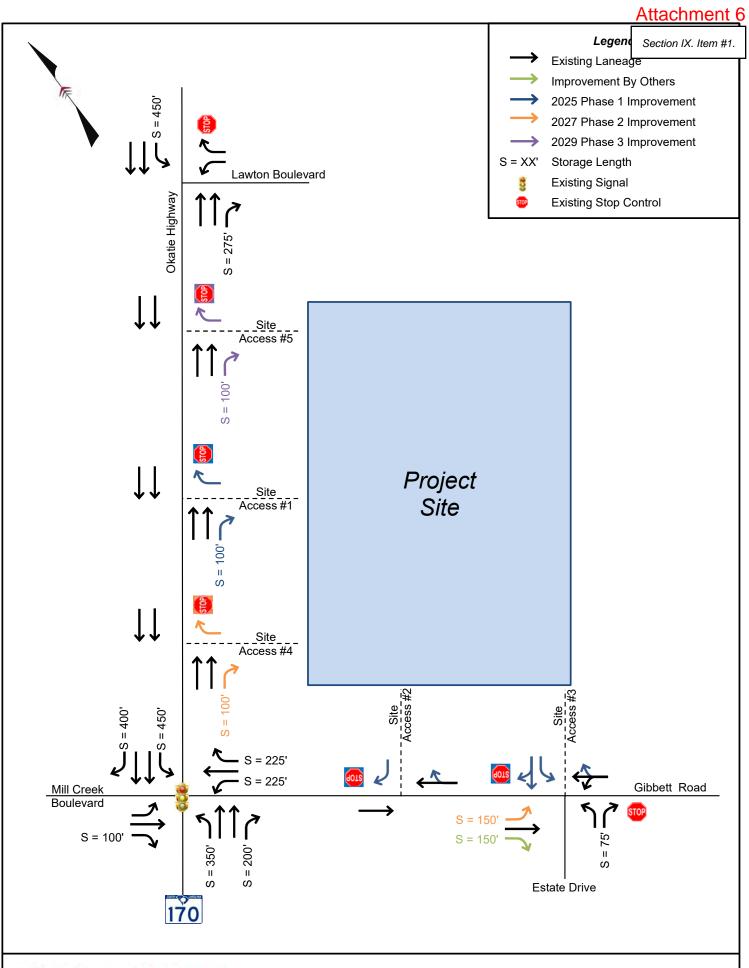
Gibbet Road at Estate Drive/ Site Access #3

 Construct an eastbound left-turn lane along Gibbet Road in accordance with the SCDOT Roadway Design Manual.

SC 170 (Okatie Highway) at Site Access #4

- Construct a northbound right-turn lane along SC 170 (Okatie Highway) in accordance with the SCDOT Roadway Design Manual.
- Construct Site Access #4 to be a right-in, right-out access only with one ingress lane and one egress lane.

Gibbet Road Residential Development Traffic Impact Analysis

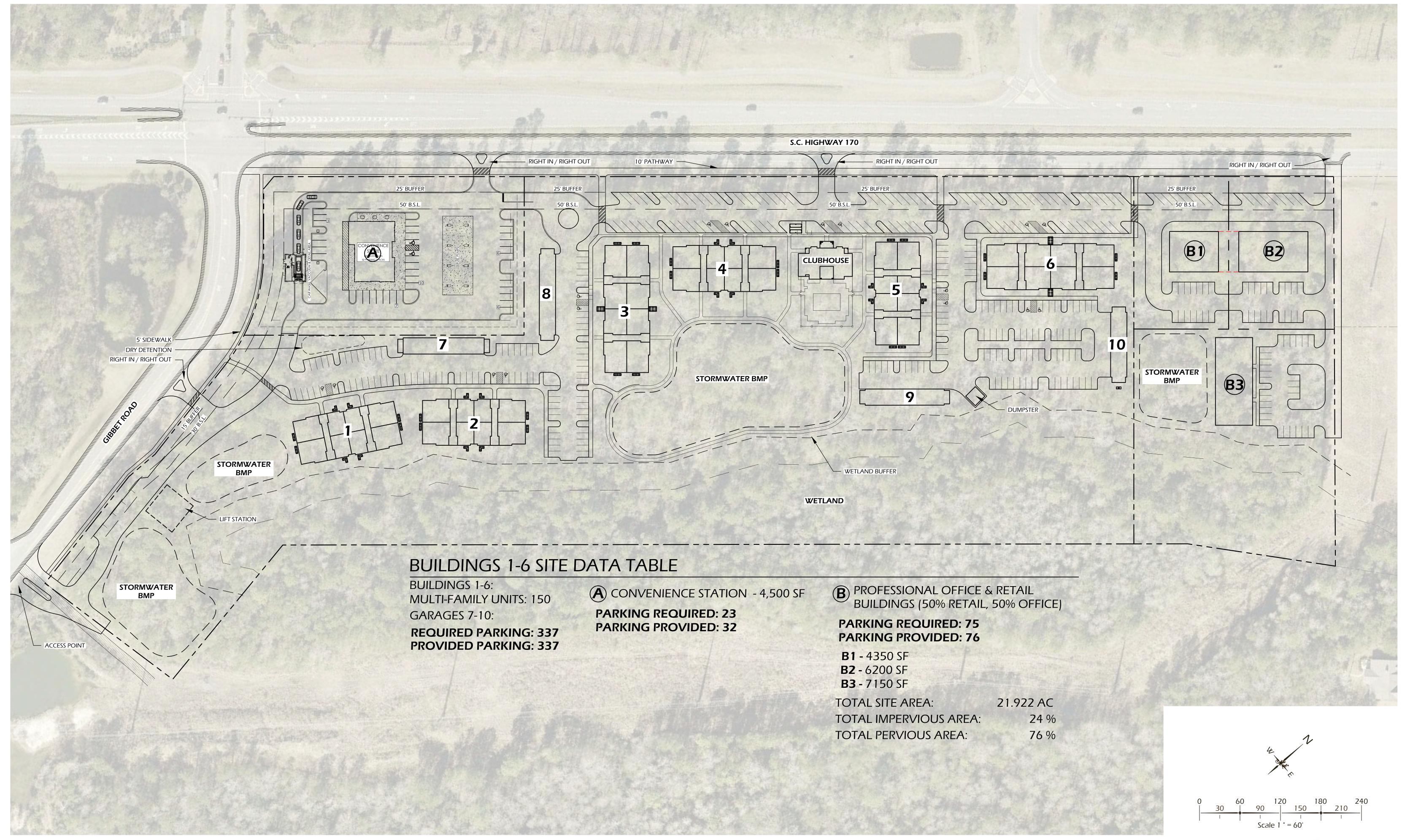

2029 Build Phase 3

SC 170 (Okatie Highway) at Site Access #5

- Construct a northbound right-turn lane along SC 170 (Okatie Highway) in accordance with the SCDOT *Roadway Design Manual*.
- Construct Site Access #5 to be a right-in, right-out access only with one ingress lane and one egress lane.

Figure 20 illustrates the recommended improvements for the study area.

Page 38 April 2023



Gibbet Road Residential Development Traffic Impact Analysis

Appendix A – Site Plan

Attachment 6

MASTER PLAN

JUNE 2023 PROJECT NO.: XXXXX.XX

Witmer Jones Keefer Ltd. / 23 Promenade St., Suite 201, Bluffton, SC. 29910 / ph: (843) 757.7411 / www.wjkltd.com

PARCEL B-1 HIGHWAY 170 AND GIBBET ROAD

Appendix B – Trip Generation Calculations

Gibbet Road Multifamily Phase 1 Trip Generation										
1-411-			Daily	Α	M Peak Ho	ur	P	PM Peak Hour		
Land Use	Intensity	Units	Dally	Total	ln	Out	Total	In	Out	
Residential Land Uses			1,037	69	17	52	85	54	31	
220 - Multifamily Housing (Low-Rise)	150	DU	1,037	69	17	52	85	54	31	
Subtotal			1,037	69	17	52	85	54	31	
Total Not New Cutewal Trine			4.027	60	47	F2	0.5	E4	24	
Total Net New External Trips			1,037	69	17	52	85	54	31	

Note: Trip generation was calculated using the following data:

Daily Traffic Generation

Residential Land Uses

220 - Multifamily Housing (Low-Rise) ITE 220 = T = 6.41 * (X) + (75.31); (50 % In; 50 % Out)

AM Peak-Hour Traffic Generation

Residential Land Uses

220 - Multifamily Housing (Low-Rise) ITE 220 = T = 0.31 * (X) + (22.85); (24 % In; 76 % Out)

PM Peak-Hour Traffic Generation

Residential Land Uses

220 - Multifamily Housing (Low-Rise) ITE 220 = T = 0.43 * (X) + (20.55); (63 % In; 37 % Out)

Gibbet Ro	ad Resid	ential P	hase 2 Tri	p Genera	tion				
Land Use	Intensity	Units	Daily	,	AM Peak Hou	ır	P	M Peak Ho	ur
Land Ose	intensity	UIIIIS	Daily	Total	In	Out	Total	ln	Out
Retail Land Uses			4,082	356	178	178	343	172	171
945 - Convenience Store/Gas Station (9-15 Fueling Positions)	6.3	KSF	4,082	356	178	178	343	172	171
Residential Land Uses			1,037	69	17	52	85	54	31
220 - Multifamily Housing (Low-Rise)	150	DU	1,037	69	17	52	85	54	31
Subtotal	•		5,119	425	195	230	428	226	202
Internal Capture			470	2	1	1	70	35	35
ITE Pass-By			3,510	270	135	135	220	110	110
Adjacent Street Traffic			30,000	3,000			3,000		
10% Adjacent Street Traffic			3,000	300	150	150	300	150	150
Pass-By			3,000	270	135	135	220	110	110
Total Net New External Trips			1,649	153	59	94	138	81	57
Note: Trip generation was calculated using the following data:									
Daily Traffic Generation									
Retail Land Uses									
945 - Convenience Store/Gas Station (9-15 Fueling Positions)			ITE 945	=	T = 560.88	* (X) + (548.	79); (50 % Ir	n; 50 % Out)	
Residential Land Uses									
220 - Multifamily Housing (Low-Rise)			ITE 220	=	T = 6.41 * ()	K) + (75.31);	(50 % In; 50	0 % Out)	
AM Peak-Hour Traffic Generation									
Retail Land Uses									
945 - Convenience Store/Gas Station (9-15 Fueling Positions)			ITE 945	=	T = 56.52 (X	<); (50 % In;	50 % Out)		
Residential Land Uses									
220 - Multifamily Housing (Low-Rise)			ITE 220	=	T = 0.31 * ()	K) + (22.85);	(24 % In; 76	6 % Out)	
PM Peak-Hour Traffic Generation									
Retail Land Uses									
945 - Convenience Store/Gas Station (9-15 Fueling Positions)	ITE 945	=	T = 54.52 ()	K); (50 % In;	50 % Out)				
Residential Land Uses			,	-	,				
220 - Multifamily Housing (Low-Rise)			ITE 220	=	T = 0.43 * (2	K) + (20.55);	(63 % In; 37	7 % Out)	

	NCHRP 684 Internal Trip Capture Estimation Tool									
Project Name:	Gibbet Road Residential Phase 2		Organization:	Kimley-Horn						
Project Location:	Okatie, SC		Performed By:							
Scenario Description:			Date:							
Analysis Year:			Checked By:							
Analysis Period:	AM Street Peak Hour		Date:							

	Table 1	-A: Base Vehicle	e-Trip Generation	Esti	mates (Single-Use Sit	e Estimate)				
Land Use	Developme	ent Data (For Info	ormation Only)		Estimated Vehicle-Trips ³					
Land Ose	ITE LUCs1	Quantity	Units		Total	Entering	Exiting			
Office					0	0	0			
Retail					356	178	178			
Restaurant					0	0	0			
Cinema/Entertainment					0	0	0			
Residential					69	17	52			
Hotel					0	0	0			
All Other Land Uses ²					0	0	0			
					425	195	230			

	Table 2-A: Mode Split and Vehicle Occupancy Estimates								
Land Use		Entering Trip	os			Exiting Trips			
Land Ose	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.4	% Transit	% Non-Motorized		
Office	1.10	0%	0%		1.10	0%	0%		
Retail	1.10	0%	0%		1.10	0%	0%		
Restaurant	1.10	0%	0%		1.10	0%	0%		
Cinema/Entertainment	1.10	0%	0%		1.10	0%	0%		
Residential	1.10	0%	0%		1.10	0%	0%		
Hotel	1.10	0%	0%		1.10	0%	0%		
All Other Land Uses ²	1.10	0%	0%		1.10	0%	0%		

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)									
Origin (From)	Ocidio (Tourn) Destination (To)								
Origin (Fiolin)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office									
Retail									
Restaurant									
Cinema/Entertainment									
Residential									
Hotel									

Table 4-A: Internal Person-Trip Origin-Destination Matrix*										
Origin (From)		Destination (To)								
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office		0	0	0	0	0				
Retail	0		0	0	0	0				
Restaurant	0	0		0	0	0				
Cinema/Entertainment	0	0	0		0	0				
Residential	0	1	0	0		0				
Hotel	0	0	0	0	0					

Table 5-A: Computations Summary									
Total Entering Exiting									
All Person-Trips	468	215	253						
Internal Capture Percentage	0%	0%	0%						
	•								
External Vehicle-Trips ⁵	423	194	229						
External Transit-Trips ⁶	0	0	0						
External Non-Motorized Trips ⁶	0	0	0						

Table 6-A: Internal Trip Capture Percentages by Land Use									
Land Use	Entering Trips	Exiting Trips							
Office	N/A	N/A							
Retail	1%	0%							
Restaurant	N/A	N/A							
Cinema/Entertainment	N/A	N/A							
Residential	0%	2%							
Hotel	N/A	N/A							

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.

⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

	NCHRP 684 Internal Trip Capture Estimation Tool									
Project Name:	Kimley-Horn									
Project Location:	Okatie, SC		Performed By:							
Scenario Description:			Date:							
Analysis Year:			Checked By:							
Analysis Period:	PM Street Peak Hour		Date:							

	Table 1	-P: Base Vehicle	e-Trip Generation	Estin	nates (Single-Use Site	e Estimate)			
Land Use	Developm	Development Data (For Information Only)				Estimated Vehicle-Trips ³			
	ITE LUCs1	Quantity	Units		Total	Entering	Exiting		
Office					0	0	0		
Retail					343	172	171		
Restaurant					0	0	0		
Cinema/Entertainment					0	0	0		
Residential					85	54	31		
Hotel					0	0	0		
All Other Land Uses ²					0	0	0		
					428	226	202		

	Table 2-P: Mode Split and Vehicle Occupancy Estimates										
Land Use		Entering Trip	os		Exiting Trips						
Land Ose	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.4	% Transit	% Non-Motorized				
Office	1.10	0%	0%		1.10	0%	0%				
Retail	1.10	0%	0%		1.10	0%	0%				
Restaurant	1.10	0%	0%		1.10	0%	0%				
Cinema/Entertainment	1.10	0%	0%		1.10	0%	0%				
Residential	1.10	0%	0%		1.10	0%	0%				
Hotel	1.10	0%	0%		1.10	0%	0%				
All Other Land Uses ²	1.10	0%	0%		1.10	0%	0%				

	Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)										
Origin (From)		Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		1000	1000		1000						
Retail					1000						
Restaurant					1000						
Cinema/Entertainment					1000						
Residential		1000	1000								
Hotel					1000						

	Table 4-P: Internal Person-Trip Origin-Destination Matrix*											
Origin (From)		Destination (To)										
Origin (From)	Office	Office Retail Restaurant Cinema/Entertainment		Cinema/Entertainment	Residential	Hotel						
Office		0	0	0	0	0						
Retail	0		0	0	27	0						
Restaurant	0	0		0	0	0						
Cinema/Entertainment	0	0	0		0	0						
Residential	0	11	0	0		0						
Hotel	0	0	0	0	0							

Table 5-P: Computations Summary									
	Total	Entering	Exiting						
All Person-Trips	470	248	222						
Internal Capture Percentage	16%	15%	17%						
External Vehicle-Trips ⁵	358	191	167						
External Transit-Trips ⁶	0	0	0						
External Non-Motorized Trips ⁶	0	0	0						

Table 6-P: Interna	al Trip Capture Percentag	jes by Land Use
Land Use	Entering Trips	Exiting Trips
Office	N/A	N/A
Retail	6%	14%
Restaurant	N/A	N/A
Cinema/Entertainment	N/A	N/A
Residential	46%	32%
Hotel	N/A	N/A

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE Trip Generation Manual).

⁴Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made ⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Gibbet Ro	oad Resid	ential P	hase 3 Tri	p Generat	tion				
					AM Peak Ho	ur	PM Peak Hour		
Land Use	Intensity	Units	Daily	Total	In	Out	Total	In	Out
Office Land Uses			127	15	12	3	19	6	13
712 - Small Office Building	8.85	KSF	127	15	12	3	19	6	13
Retail Land Uses			4,685	383	194	189	414	208	206
945 - Convenience Store/Gas Station (9-15 Fueling Positions)	6.30	KSF	4,082	356	178	178	343	172	171
822 - Strip Retail Plaza (<40k)	8.85	KSF	603	27	16	11	71	36	35
Residential Land Uses			1,037	69	17	52	85	54	31
220 - Multifamily Housing (Low-Rise)	150	DU	1,037	69	17	52	85	54	31
Subtotal	•		5,849	467	223	244	518	268	250
Internal Capture			556	6	3	3	80	40	40
ITE Pass-By			3,996	268	134	134	224	112	112
Adjacent Street Traffic			30,000	3,000			3,000		
10% Adjacent Street Traffic			3,000	300	150	150	300	150	150
Pass-By			3,000	268	134	134	224	112	112
Total Net New External Trips			2,293	193	86	107	214	116	98
Daily Traffic Generation Office Land Uses 712 - Small Office Building Retail Land Uses 945 - Convenience Store/Gas Station (9-15 Fueling Positions) 822 - Strip Retail Plaza (<40k) Residential Land Uses 220 - Multifamily Housing (Low-Rise) AM Peak-Hour Traffic Generation Office Land Uses 712 - Small Office Building Retail Land Uses 945 - Convenience Store/Gas Station (9-15 Fueling Positions) 822 - Strip Retail Plaza (<40k) Residential Land Uses 220 - Multifamily Housing (Low-Rise)	ITE 712 = T = 14.39 (X); (50 % ln; 50 % Out) ITE 945 = T = 560.88 * (X) + (548.79); (50 % ln; 50 % Out) ITE 822 = T = 42.2 * (X) + (229.68); (50 % ln; 50 % Out) ITE 220 = T = 6.41 * (X) + (75.31); (50 % ln; 50 % Out) ITE 712 = T = 1.67 (X); (82 % ln; 18 % Out) ITE 945 = T = 56.52 (X); (50 % ln; 50 % Out) ITE 822 = LN (T) = 0.66 * LN (X) + (1.84); (60 % ln; 40 % Out) ITE 220 = T = 0.31 * (X) + (22.85); (24 % ln; 76 % Out)						ut)		
712 - Small Office Building Retail Land Uses 945 - Convenience Store/Gas Station (9-15 Fueling Positions) 822 - Strip Retail Plaza (<40k) Residential Land Uses 220 - Multifamily Housing (Low-Rise)			ITE 712 ITE 945 ITE 822 ITE 220	= = =		(); (50 % ln; '1 * LN (X) +	·		ut)

	NCHRP 684 Internal Trip Capture Estimation Tool									
Project Name:	Gibbet Road Residential Phase 3	Organization:	Kimley-Horn							
Project Location:	Okatie, SC		Performed By:							
Scenario Description:			Date:							
Analysis Year:			Checked By:							
Analysis Period:	AM Street Peak Hour		Date:							

	Table 1	-A: Base Vehicle	e-Trip Generation	Esti	mates (Single-Use Sit	e Estimate)			
Land Use	Developme	Development Data (For Information Only)				Estimated Vehicle-Trips ³			
	ITE LUCs1	Quantity	Units		Total	Entering	Exiting		
Office					15	12	3		
Retail					383	194	189		
Restaurant					0	0	0		
Cinema/Entertainment					0	0	0		
Residential					69	17	52		
Hotel					0	0	0		
All Other Land Uses ²					0	0	0		
					467	223	244		

Table 2-A: Mode Split and Vehicle Occupancy Estimates									
Land Use		Entering Trip	os		Exiting Trips				
Land Ose	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.4	% Transit	% Non-Motorized		
Office	1.10	0%	0%		1.10	0%	0%		
Retail	1.10	0%	0%		1.10	0%	0%		
Restaurant	1.10	0%	0%		1.10	0%	0%		
Cinema/Entertainment	1.10	0%	0%		1.10	0%	0%		
Residential	1.10	0%	0%		1.10	0%	0%		
Hotel	1.10	0%	0%		1.10	0%	0%		
All Other Land Uses ²	1.10	0%	0%		1.10	0%	0%		

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)											
Origin (From)		Destination (To)									
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office											
Retail											
Restaurant											
Cinema/Entertainment											
Residential											
Hotel											

Table 4-A: Internal Person-Trip Origin-Destination Matrix*								
Origin (From)		Destination (To)						
Origin (From)	Office Retail Restaurant Cinema/Entertainment Residential					Hotel		
Office		1	0	0	0	0		
Retail	1		0	0	0	0		
Restaurant	0	0		0	0	0		
Cinema/Entertainment	0	0	0		0	0		
Residential	0	1	0	0		0		
Hotel	0	0	0	0	0			

Table 5-A: Computations Summary							
	Total	Entering	Exiting				
All Person-Trips	513	245	268				
Internal Capture Percentage	1%	1%	1%				
External Vehicle-Trips ⁵	461	220	241				
External Transit-Trips ⁶	0	0	0				
External Non-Motorized Trips ⁶	0	0	0				

Table 6-A: Internal Trip Capture Percentages by Land Use							
Land Use	Entering Trips	Exiting Trips					
Office	8%	33%					
Retail	1%	0%					
Restaurant	N/A	N/A					
Cinema/Entertainment	N/A	N/A					
Residential	0%	2%					
Hotel	N/A	N/A					

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.

 $^{ar{5}}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

	NCHRP 684 Internal Trip Capture Estimation Tool							
Project Name:	Gibbet Road Residential Phase 3		Organization:	Kimley-Horn				
Project Location:	Okatie, SC		Performed By:					
Scenario Description:			Date:					
Analysis Year:			Checked By:					
Analysis Period:	PM Street Peak Hour		Date:					

Table 1-P: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)							
Land Use	Developm	ent Data (<i>For Info</i>	ormation Only)		Estimated Vehicle-Trips ³		
Land USE	ITE LUCs1	Quantity	Units		Total	Entering	Exiting
Office					19	6	13
Retail					414	208	206
Restaurant					0	0	0
Cinema/Entertainment					0	0	0
Residential					85	54	31
Hotel					0	0	0
All Other Land Uses ²					0	0	0
					518	268	250

Table 2-P: Mode Split and Vehicle Occupancy Estimates							
Land Use		Entering Trips			Exiting Trips		
Land Ose	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.4	% Transit	% Non-Motorized
Office	1.10	0%	0%		1.10	0%	0%
Retail	1.10	0%	0%		1.10	0%	0%
Restaurant	1.10	0%	0%		1.10	0%	0%
Cinema/Entertainment	1.10	0%	0%		1.10	0%	0%
Residential	1.10	0%	0%		1.10	0%	0%
Hotel	1.10	0%	0%		1.10	0%	0%
All Other Land Uses ²	1.10	0%	0%		1.10	0%	0%

Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)							
Destination (To)							
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel	
Office		1000	1000		1000		
Retail					1000		
Restaurant					1000		
Cinema/Entertainment					1000		
Residential		1000	1000				
Hotel					1000		

Table 4-P: Internal Person-Trip Origin-Destination Matrix*							
Origin (Fram)	Destination (To)						
Origin (From)	Office Retail Restaurant Cinema/Entertainment Residential						
Office		2	0	0	0	0	
Retail	2		0	0	27	0	
Restaurant	0	0		0	0	0	
Cinema/Entertainment	0	0	0		0	0	
Residential	1	11	0	0		0	
Hotel	0	0	0	0	0		

Table 5-P: Computations Summary							
	Total	Entering	Exiting				
All Person-Trips	570	295	275				
Internal Capture Percentage	15%	15%	16%				
		•					
External Vehicle-Trips ⁵	440	229	211				
External Transit-Trips ⁶	0	0	0				
External Non-Motorized Trips ⁶	0	0	0				

Table 6-P: Internal Trip Capture Percentages by Land Use							
Land Use	Entering Trips	Exiting Trips					
Office	43%	14%					
Retail	6%	13%					
Restaurant	N/A	N/A					
Cinema/Entertainment	N/A	N/A					
Residential	46%	35%					
Hotel	N/A	N/A					

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE Trip Generation Manual).

⁴Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made ⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Appendix C – Traffic Volume Development Worksheets

Gibbet Road Residential Development Traffic Impact Analysis

PHASE 1 VOLUME DEVELOPMENT

INTERSECTION TRAFFIC VOLUME DEVELOPMENT - PHASE 1

INTERSECTION: SC 170/Okatie Highway at Lawton Boulevard

November 10, 2022

					AM I	Peak I	<u>lour</u>										
AM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
AM Adjusted Turnir	ng Movement Counts ¹	0	0	0	0	0	55	0	66	0	0	1.425	34	0	49	1.122	0
	ne Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXIS	STING TRAFFIC	0	0	0	0	0	55	0	66	0	0	1,425	34	0	49	1,122	0
AM Heavy Vel	hicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	3%	2%	2%	6%	29
		'												•			
	BUILD TRAFFIC Frowth Rate	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
	TRAFFIC GROWTH	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0% 15	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0
									-								
AM 2025 NO-BUIL	D TRAFFIC (No AD)	0	0	0	0	0	67	0	81	0	0	1,746	42	0	60	1,374	C
proved Davidonment 1. I	Palmetto Point Pickleball and	41	1				ı			1						70	
	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	0	0	0	60	0	0	0	76 76	(
OTAL ANI AFFROVED	DEVELOPMENT TRAITIC	1 0										- 00				70	
AM 2025 NO-	BUILD TRAFFIC	0	0	0	0	0	67	0	81	0	0	1,806	42	0	60	1,450	0
	DISTRUBUTION"		L 501	FDT		LANDII	LACOL	WDT	WDD	NBU	LNDI	NDT	NDD	0011	SBL	0.0.7	٥-
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
Net New Distribution	Entering Exiting											50%				50%	
Distribution	LAiting											30 /6					
"AM PROJ	ECT TRIPS"										_						
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
Project Trip	Net New	0	0	0	0	0	0	0	0	0	0	26	0	0	0	9	(
AM TOTAL P	ROJECT TRIPS	0	0	0	0	0	0	0	0	0	0	26	0	0	0	9	0
AM 2025 BUIL	D-OUT TRAFFIC	0	0	0	0	0	67	0	81	0	0	1.832	42	0	60	1.459	0
AM 2020 DOIL	D-OOT TRAITIO						07		- 01			1,002	72		- 00	1,433	<u> </u>
					<u>PM I</u>	Peak I	<u>lour</u>										
PM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
PM Adjusted Turnir	ng Movement Counts ¹	0	0	0	0	0	21	0	58	0	0	1,134	40	0	133	1,440	(
	ne Balancing	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	(
B			1														
PM 2022 EXIS	STING TRAFFIC	0	0	0	0	0	21	0	58	0	0	1,135	40	0	133	1,440	

					РМ Е	Peak H	lour										
PM 2022 EXI	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
	ng Movement Counts ¹	0	0	0	0	0	21	0	58	0	0	1,134	40	0	133	1,440	(
PM Volur	ne Balancing	0	0	0	0	0	0	0	0	0	0	11	0	0	0	0	(
PM 2022 EXI	STING TRAFFIC	0	0	0	0	0	21	0	58	0	0	1,135	40	0	133	1,440	
PM Heavy Ve	hicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	3%	2%	2%	2%	1%	2
DM 2025 NO	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	
	Growth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	
	D TRAFFIC GROWTH	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	13	7.0%	7.0%	255	7.0%	7.0%	30	324	7.
FWI ZUZU NO-DUIL	D TRAITIC GROWTH			- 0	- 0	0	3		13	U		200			30	324	
PM 2025 NO-BUII	LD TRAFFIC (No AD)	0	0	0	0	0	26	0	71	0	0	1,390	49	0	163	1,764	
proved Development 1.																	
	Palmetto Point Pickleball and											49				66	
	Palmetto Point Pickleball and DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	0	0	0	49 49	0	0	0	66 66	
OTAL PM APPROVED	DEVELOPMENT TRAFFIC	0				1						49				66	
OTAL PM APPROVED			0	0	0	0	0 26	0	71	0	0		0	0	0		
OTAL PM APPROVED PM 2025 NO	DEVELOPMENT TRAFFIC	0				1						49				66	
OTAL PM APPROVED PM 2025 NO	DEVELOPMENT TRAFFIC BUILD TRAFFIC	0				1						49				66	
OTAL PM APPROVED PM 2025 NO- "SITE TRAFFIC	DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION"	0 0	0	0	0	0	26	0	71	0	0	1,439	49	0	163	66 1,830	
OTAL PM APPROVED PM 2025 NO- "SITE TRAFFIC LAND USE	BUILD TRAFFIC DISTRUBUTION" TYPE	0 0	0	0	0	0	26	0	71	0	0	1,439	49	0	163	1,830 SBT	
PM 2025 NO- "SITE TRAFFIC LAND USE Net New Distribution	BUILD TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting	0 0	0	0	0	0	26	0	71	0	0	1,439 NBT	49	0	163	1,830 SBT	
PM 2025 NO- "SITE TRAFFIC LAND USE Net New Distribution "PM PRO	BUILD TRAFFIC BUILD TRAFFIC C DISTRUBUTION" TYPE Entering Exiting JECT TRIPS"	0 0 EBU	0 EBL	0 EBT	0 EBR	0 WBU	26 WBL	0 WBT	71 WBR	0 NBU	0 NBL	1,439 NBT	49 NBR	SBU	163 SBL	66 1,830 SBT 50%	s
PM 2025 NO- "SITE TRAFFIC LAND USE Net New Distribution "PM PROLAND USE	BUILD TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting JECT TRIPS" TYPE	0 0 EBU	EBL	0 EBT	0 EBR	WBU	26 WBL	0 WBT	71 WBR	NBU NBU	0 NBL	1,439 NBT 50%	NBR	SBU SBU	163 SBL	50%	S
PM 2025 NO- "SITE TRAFFIC LAND USE Net New Distribution "PM PROLAND USE Project Trip	BUILD TRAFFIC BUILD TRAFFIC DISTRUBUTION"	0	EBL 0	EBT 0	EBR EBR	WBU	26 WBL WBL	WBT 0	71 WBR WBR	NBU 0	NBL NBL	1,439 NBT 50% NBT 16	NBR NBR	SBU 0	163 SBL SBL 0	50% SBT 50%	
PM 2025 NO- "SITE TRAFFIC LAND USE Net New Distribution "PM PROL LAND USE Project Trip	BUILD TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting JECT TRIPS" TYPE	0 0 EBU	EBL	0 EBT	0 EBR	WBU	26 WBL	0 WBT	71 WBR	NBU NBU	0 NBL	1,439 NBT 50%	NBR	SBU SBU	163 SBL	50%	

INTERSECTION TRAFFIC VOLUME DEVELOPMENT - PHASE 1

INTERSECTION: SC 170/Okatie Highway at Gibbet Road

November 10, 2022

COUNT DATE:
AM PEAK HOUR FACTOR:
PM PEAK HOUR FACTOR: AM FUTURE PEAK HOUR FACTOR: 0.95 PM FUTURE PEAK HOUR FACTOR: 0.91 0.96 0.91

1					AM I	Peak I	lour										
					<u> ZIVI I</u>		<u></u>										
	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	g Movement Counts ¹ e Balancing	0	248 0	12 3	106 0	0	47 0	10 0	213 0	0	45 0	961 10	16 4	27 0	123 14	972 0	22 0
				<u> </u>	- 0			- 0	U	U		10	4		14	- 0	<u> </u>
AM 2022 EXIS	TING TRAFFIC	0	248	15	106	0	47	10	213	0	45	971	20	27	137	972	22
AM Heavy Veh	icle Percentage	2%	1%	8%	3%	2%	4%	10%	1%	2%	9%	3%	2%	2%	6%	6%	2%
AM 2025 NO 5	BUILD TRAFFIC	EBU	EBL	EDT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	rowth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
	TRAFFIC GROWTH	0	56	3	24	0	11	2	48	0	10	219	5	6	31	219	5
AM 2025 NO-BUIL	D TRAFFIC (No AD)	0	304	18	130	0	58	12	261	0	55	1,190	25	33	168	1,191	27
ANI 2023 NO-BOIL	D TRAFFIO (NO AD)	U	304	10	130		30	12	201	0	- 55	1,130	20	- 55	100	1,101	- 21
7.1	Palmetto Point Pickleball and	_		8				8	52			8			59	17	
TOTAL AM APPROVED I	DEVELOPMENT TRAFFIC	0	0	8	0	0	0	8	52	0	0	8	0	0	59	17	0
AM 2025 NO-E	BUILD TRAFFIC	0	304	26	130	0	58	20	313	0	55	1,198	25	33	227	1,208	27
HOLTE TRAFFIC	DICTRUDUTION																
LAND USE	DISTRUBUTION" TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Net New	Entering											20%	15%	40%	10%		
Distribution	Exiting						35%		5%								
"AM PROJ	ECT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	_	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Net New ROJECT TRIPS	0	0	0	0	0	18 18	0	3	0	0 0	3	2	7	2	0	0
AMITOTALTI							10										
AM 2025 BUILI	D-OUT TRAFFIC	0	304	26	130	0	76	20	316	0	55	1,201	27	40	229	1,208	27
					РМ І	Peak I	lour										
	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turnin	g Movement Counts ¹	0	117	6	EBR 44	WBU	WBL 25	32	214	0	65	835	23	9	153	1,060	59
PM Adjusted Turnin PM Volum	g Movement Counts ¹ e Balancing	0	117 0	6	EBR 44 0	0 0	WBL 25 0	32 0	214 0	0	65 0	835 0	23 2	9	153 17	1,060	59 0
PM Adjusted Turnin PM Volum	g Movement Counts ¹	0	117	6	EBR 44	WBU	WBL 25	32	214	0	65	835	23	9	153	1,060	59
PM Adjusted Turnin PM Volum PM 2022 EXIS	g Movement Counts ¹ e Balancing	0	117 0	6	EBR 44 0	0 0	WBL 25 0	32 0	214 0	0	65 0	835 0	23 2	9	153 17	1,060	59 0
PM Adjusted Turnin PM Volum PM 2022 EXIS PM Heavy Veh	g Movement Counts ¹ e Balancing TING TRAFFIC icle Percentage	0 0 0	117 0 117	6 1 7 2%	44 0 44 2%	0 0 0 0 2%	25 0 25 25	32 0 32 2%	214 0 214	0 0	65 0 65	835 0 835 5%	23 2 25 2%	9 0 9	153 17 170	1,060 0 1,060	59 0 59 2%
PM Adjusted Turnin PM Volum PM 2022 EXIS PM Heavy Veh PM 2025 NO-E	g Movement Counts ¹ e Balancing TING TRAFFIC	0 0	117 0	6 1 7	44 0	0 0	25 0	32 0 32	214 0 214	0 0	65 0 65	835 0 835	23 2 25	9 0	153 17 170	1,060 0 1,060	59 0 59
PM Adjusted Turnin PM Volum PM 2022 EXIS PM Heavy Veh PM 2025 NO-E Annual Gr	g Movement Counts ¹ e Balancing TING TRAFFIC icle Percentage BUILD TRAFFIC	0 0 0	117 0 117 2% EBL	6 1 7 2% EBT	44 0 44 2% EBR	0 0 0 0 2% WBU	25 0 25 25 2% WBL	32 0 32 2% WBT	214 0 214 1% WBR	0 0 0	65 0 65 2% NBL	835 0 835 5% NBT	23 2 25 2% NBR	9 0 9 11% SBU	153 17 170 170 1%	1,060 0 1,060 2% SBT	59 0 59 2% SBR
PM Adjusted Turnin PM Volum PM 2022 EXIS PM Heavy Veh PM 2025 NO-E Annual G PM 2025 NO-BUILD	g Movement Counts ¹ e Balancing TING TRAFFIC sicle Percentage BUILD TRAFFIC rowth Rate	0 0 0 2% EBU 7.0%	117 0 117 2% EBL 7.0%	6 1 7 2% EBT 7.0%	EBR 44 0 44 2% EBR 7.0%	WBU 0 0 0 2% WBU 7.0%	25 0 25 25 2% WBL 7.0%	32 0 32 2% WBT 7.0%	214 0 214 1% WBR 7.0%	0 0 0 2% NBU 7.0%	65 0 65 2% NBL 7.0%	835 0 835 5% NBT 7.0%	23 2 25 2% NBR 7.0%	9 0 9 11% SBU 7.0%	153 17 170 1% SBL 7.0%	1,060 0 1,060 2% SBT 7.0%	59 0 59 2% SBR 7.0%
PM Adjusted Turnin PM Volum PM 2022 EXIS PM Heavy Veh PM 2025 NO-E Annual G PM 2025 NO-BUILD PM 2025 NO-BUIL	g Movement Counts ¹ e Balancing TING TRAFFIC sicle Percentage BUILD TRAFFIC rowth Rate TRAFFIC GROWTH D TRAFFIC (No AD)	0 0 0 2% EBU 7.0% 0	117 0 117 2% EBL 7.0% 26	6 1 7 2% EBT 7.0% 2	EBR 44 0 44 2% EBR 7.0%	WBU 0 0 0 2% WBU 7.0% 0 0	25 0 25 2% WBL 7.0%	32 0 32 2% WBT 7.0% 7	214 0 214 1% WBR 7.0% 48	0 0 2% NBU 7.0%	65 0 65 2% NBL 7.0%	835 0 835 5% NBT 7.0% 188	23 2 25 2% NBR 7.0% 6	9 0 9 11% SBU 7.0% 2	153 17 170 1% SBL 7.0% 38	1,060 0 1,060 2% SBT 7.0% 239	59 0 59 2% SBR 7.0%
PM Adjusted Turnin PM Volum PM 2022 EXIS PM Heavy Veh PM 2025 NO-E Annual G PM 2025 NO-BUILD PM 2025 NO-BUILL Approved Development 1: F	g Movement Counts ¹ e Balancing TING TRAFFIC icle Percentage BUILD TRAFFIC rowth Rate D TRAFFIC GROWTH	0 0 0 2% EBU 7.0% 0	117 0 117 2% EBL 7.0% 26	6 1 7 2% EBT 7.0% 2	EBR 44 0 44 2% EBR 7.0%	WBU 0 0 0 2% WBU 7.0% 0 0	25 0 25 2% WBL 7.0%	32 0 32 2% WBT 7.0%	214 0 214 1% WBR 7.0% 48	0 0 2% NBU 7.0%	65 0 65 2% NBL 7.0%	835 0 835 5% NBT 7.0%	23 2 25 2% NBR 7.0% 6	9 0 9 11% SBU 7.0% 2	153 17 170 1% SBL 7.0%	1,060 0 1,060 2% SBT 7.0% 239	59 0 59 2% SBR 7.0%
PM Adjusted Turnin PM Volum PM 2022 EXIS PM Heavy Veh PM 2025 NO-E Annual G PM 2025 NO-BUILD PM 2025 NO-BUILD Approved Development 1: F TOTAL PM APPROVED 1	g Movement Counts ¹ e Balancing TING TRAFFIC icle Percentage BUILD TRAFFIC rowth Rate D TRAFFIC GROWTH D TRAFFIC (No AD) Palmetto Point Pickleball and DEVELOPMENT TRAFFIC	0 0 2% EBU 7.0% 0	117 0 117 2% EBL 7.0% 26 143	6 1 7 2% EBT 7.0% 2 9	EBR 44 0 44 2% EBR 7.0% 10 54	WBU	25 0 25 2% WBL 7.0% 6	32 0 32 2% WBT 7.0% 7	214 0 214 1% WBR 7.0% 48 262	0 0 2% NBU 7.0% 0	65 0 65 2% NBL 7.0% 15 80	835 0 835 5% NBT 7.0% 188 1,023	23 2 25 2% NBR 7.0% 6	9 0 9 111% SBU 7.0% 2	153 17 170 1% SBL 7.0% 38 208	1,060 0 1,060 2% SBT 7.0% 239 1,299	59 0 59 2% SBR 7.0% 13
PM Adjusted Turnin PM Volum PM 2022 EXIS PM Heavy Veh PM 2025 NO-E Annual G PM 2025 NO-BUILD PM 2025 NO-BUILD Approved Development 1: F TOTAL PM APPROVED 1	g Movement Counts ¹ e Balancing TING TRAFFIC sicle Percentage BUILD TRAFFIC rowth Rate TRAFFIC GROWTH D TRAFFIC (No AD) Palmetto Point Pickleball and	0 0 0 2% EBU 7.0% 0	117 0 117 2% EBL 7.0% 26	6 1 7 2% EBT 7.0% 2	EBR 44 0 44 2% EBR 7.0% 10	WBU	25 0 25 2% WBL 7.0% 6	32 0 32 2% WBT 7.0% 7	214 0 214 1% WBR 7.0% 48	0 0 0 2% NBU 7.0% 0	65 0 65 2% NBL 7.0% 15	835 0 835 5% NBT 7.0% 188	23 2 25 2% NBR 7.0% 6	9 0 9 11% SBU 7.0% 2	153 17 170 1% SBL 7.0% 38 208	1,060 0 1,060 2% SBT 7.0% 239	59 0 59 2% SBR 7.0% 13
PM Adjusted Turnin PM Volum PM 2022 EXIS PM Heavy Veh PM 2025 NO-E Annual G PM 2025 NO-BUILD PM 2025 NO-BUILD PM 2025 NO-BUILD Approved Development 1: F TOTAL PM APPROVED I PM 2025 NO-E "SITE TRAFFIC LAND USE	g Movement Counts ¹ e Balancing TING TRAFFIC sicle Percentage BUILD TRAFFIC TOWN Rate D TRAFFIC GROWTH D TRAFFIC (No AD) Palmetto Point Pickleball and DEVELOPMENT TRAFFIC BUILD TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE	0 0 2% EBU 7.0% 0	117 0 117 2% EBL 7.0% 26 143	6 1 7 2% EBT 7.0% 2 9	EBR 44 0 44 2% EBR 7.0% 10 54	WBU	25 0 25 2% WBL 7.0% 6	32 0 32 2% WBT 7.0% 7 39 6 6	214 0 214 1% WBR 7.0% 48 262	0 0 0 2% NBU 7.0% 0	65 0 65 2% NBL 7.0% 15 80	835 0 835 5% NBT 7.0% 188 1,023 7 7	23 2 25 2% NBR 7.0% 6 31 0	9 0 9 11% SBU 7.0% 2 11 1 0 0 SBU SBU	153 17 170 1% SBL 7.0% 38 208 51 51 259	1,060 0 1,060 2% SBT 7.0% 239 1,299	59 0 59 2% SBR 7.0% 13
PM Adjusted Turnin PM Volum PM 2022 EXIS PM Heavy Veh PM 2025 NO-E Annual G PM 2025 NO-BUILD PM 2025 NO-BUILD Approved Development 1: F TOTAL PM APPROVED I "SITE TRAFFIC LAND USE Net New	g Movement Counts 1 e Balancing TING TRAFFIC icle Percentage BUILD TRAFFIC TRAFFIC GROWTH D TRAFFIC (No AD) Palmetto Point Pickleball and DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering	0 0 0 2% EBU 7.0% 0	117 0 117 2% EBL 7.0% 26 143	6 1 7 2% EBT 7.0% 2 9 7 7	EBR 44 0 44 2% EBR 7.0% 10 54	WBU	WBL 25 0 25 2% WBL 7.0% 6 31	32 0 32 2% WBT 7.0% 7 39 6 6	214 0 214 1% WBR 7.0% 48 262 42 42 42 304	0 0 0 2% NBU 7.0% 0	65 0 65 2% NBL 7.0% 15 80	835 0 835 5% NBT 7.0% 188 1,023 7 7	23 2 25 2% NBR 7.0% 6 31	9 0 9 11% SBU 7.0% 2 11	153 17 170 1% SBL 7.0% 38 208 51 51	1,060 0 1,060 2% SBT 7.0% 239 1,299 15 15	59 0 59 2% SBR 7.0% 13 72
PM Adjusted Turnin PM Volum PM 2022 EXIS PM Heavy Veh PM 2025 NO-E Annual G PM 2025 NO-BUILD PM 2025 NO-BUILD PM 2025 NO-BUILD Approved Development 1: F TOTAL PM APPROVED I PM 2025 NO-E "SITE TRAFFIC LAND USE	g Movement Counts ¹ e Balancing TING TRAFFIC sicle Percentage BUILD TRAFFIC TOWN Rate D TRAFFIC GROWTH D TRAFFIC (No AD) Palmetto Point Pickleball and DEVELOPMENT TRAFFIC BUILD TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE	0 0 0 2% EBU 7.0% 0	117 0 117 2% EBL 7.0% 26 143	6 1 7 2% EBT 7.0% 2 9 7 7	EBR 44 0 44 2% EBR 7.0% 10 54	WBU	25 0 25 25 2% WBL 7.0% 6 31	32 0 32 2% WBT 7.0% 7 39 6 6	214 0 214 1% WBR 7.0% 48 262 42 42 304	0 0 0 2% NBU 7.0% 0	65 0 65 2% NBL 7.0% 15 80	835 0 835 5% NBT 7.0% 188 1,023 7 7	23 2 25 2% NBR 7.0% 6 31 0	9 0 9 11% SBU 7.0% 2 11 1 0 0 SBU SBU	153 17 170 1% SBL 7.0% 38 208 51 51 259	1,060 0 1,060 2% SBT 7.0% 239 1,299 15 15	59 0 59 2% SBR 7.0% 13 72
PM Adjusted Turnin PM Volum PM 2022 EXIS PM Heavy Veh PM 2025 NO-E Annual G PM 2025 NO-BUILD PM 2025 NO-BUILD PM 2025 NO-BUILD Approved Development 1: F TOTAL PM APPROVED I "SITE TRAFFIC LAND USE Net New Distribution "PM PROJI	g Movement Counts ¹ e Balancing TING TRAFFIC icicle Percentage BUILD TRAFFIC TRAFFIC GROWTH D TRAFFIC (No AD) Palmetto Point Pickleball and DEVELOPMENT TRAFFIC BUILD TRAFFIC BUILD TRAFFIC BUILD TRAFFIC BUILD TRAFFIC ESTRUBUTION" TYPE Entering Exiting	0 0 0 2% EBU 7.0% 0 0	117 0 117 2% EBL 7.0% 26 143	6 1 7 2% EBT 7.0% 2 9 7 7 16	EBR 44 0 44 2% EBR 7.0% 10 54 EBR	WBU	25 0 25 25 2% WBL 7.0% 6 31 0 31 WBL 35%	32 0 32 2% WBT 7.0% 7 39 6 6 6	214 0 214 1% WBR 7.0% 48 262 42 42 304 WBR	0 0 0 2% NBU 7.0% 0 0	65 0 65 2% NBL 7.0% 15 80 0 NBL	835 0 835 5% NBT 7.0% 188 1,023 7 7 1,030 NBT 20%	23 2 25 2% NBR 7.0% 6 31 0 31 NBR 15%	9 0 9 11% SBU 7.0% 2 111	153 17 170 1% SBL 7.0% 38 208 51 51 259 SBL 10%	1,060 0 1,060 2% SBT 7.0% 239 1,299 15 15 1,314 SBT	59 0 59 2% SBR 7.0% 13 72 0 72
PM Adjusted Turnin PM Volum PM 2022 EXIS PM Heavy Veh PM 2025 NO-E Annual G PM 2025 NO-BUILD PM 2025 NO-BUILD PM 2025 NO-BUILD Approved Development 1: F TOTAL PM APPROVED I "SITE TRAFFIC LAND USE Net New Distribution	g Movement Counts 1 e Balancing TING TRAFFIC sicle Percentage BUILD TRAFFIC TOWN Rate TRAFFIC GROWTH D TRAFFIC (No AD) Palmetto Point Pickleball and DEVELOPMENT TRAFFIC BUILD TRAFFIC SUILD TRAFFIC SUILD TRAFFIC Entering Exiting ECT TRIPS" TYPE	0 0 0 2% EBU 7.0% 0 0 0	117 0 117 2% EBL 7.0% 26 143 0 143 EBL	6 1 7 2% EBT 7.0% 2 9 7 7 16 EBT	EBR 44 0 44 2% EBR 7.0% 10 54 EBR	WBU	25 0 25 25 2% WBL 7.0% 6 31 0 31 WBL 35%	32 0 32 2% WBT 7.0% 7 39 6 6 6 WBT	214 0 214 1% WBR 7.0% 48 262 42 42 304 WBR	0 0 0 2% NBU 7.0% 0 0 0	65 0 65 2% NBL 7.0% 15 80 0 NBL	835 0 835 5% NBT 7.0% 188 1,023 7 7 1,030 NBT 20%	23 2 25 2% NBR 7.0% 6 31 0 31 NBR 15%	9 0 9 11% SBU 7.0% 2 111 SBU 40% SBU	153 17 170 1% SBL 7.0% 38 208 51 51 259 SBL 10%	1,060 0 1,060 2% SBT 7.0% 239 1,299 15 15 1,314 SBT	59 0 59 2% SBR 7.0% 13 72 0 72 SBR
PM Adjusted Turnin PM Volum PM 2022 EXIS PM Heavy Veh PM 2025 NO-E Annual G PM 2025 NO-BUILD PM 2025 NO-BUILD Approved Development 1: F TOTAL PM APPROVED I PM 2025 NO-E "SITE TRAFFIC LAND USE Net New Distribution "PM PROJI LAND USE Project Trip	g Movement Counts ¹ e Balancing TING TRAFFIC icicle Percentage BUILD TRAFFIC TRAFFIC GROWTH D TRAFFIC (No AD) Palmetto Point Pickleball and DEVELOPMENT TRAFFIC BUILD TRAFFIC BUILD TRAFFIC BUILD TRAFFIC BUILD TRAFFIC ESTRUBUTION" TYPE Entering Exiting	0 0 0 2% EBU 7.0% 0 0	117 0 117 2% EBL 7.0% 26 143	6 1 7 2% EBT 7.0% 2 9 7 7 16	EBR 44 0 44 2% EBR 7.0% 10 54 EBR	WBU	25 0 25 25 2% WBL 7.0% 6 31 0 31 WBL 35%	32 0 32 2% WBT 7.0% 7 39 6 6 6	214 0 214 1% WBR 7.0% 48 262 42 42 304 WBR	0 0 0 2% NBU 7.0% 0 0	65 0 65 2% NBL 7.0% 15 80 0 NBL	835 0 835 5% NBT 7.0% 188 1,023 7 7 1,030 NBT 20%	23 2 25 2% NBR 7.0% 6 31 0 31 NBR 15%	9 0 9 11% SBU 7.0% 2 111	153 17 170 1% SBL 7.0% 38 208 51 51 259 SBL 10%	1,060 0 1,060 2% SBT 7.0% 239 1,299 15 15 1,314 SBT	59 0 59 2% SBR 7.0% 13 72 0 72
PM Adjusted Turnin PM Volum PM 2022 EXIS PM Heavy Veh PM 2025 NO-E Annual G PM 2025 NO-BUILD PM 2025 NO-BUILD PM 2025 NO-BUILD Approved Development 1: F TOTAL PM APPROVED I "SITE TRAFFIC LAND USE Net New Distribution "PM PROJI LAND USE Project Trip PM TOTAL PF	g Movement Counts 1 e Balancing TING TRAFFIC sicle Percentage BUILD TRAFFIC TRAFFIC GROWTH D TRAFFIC (No AD) Palmetto Point Pickleball and DEVELOPMENT TRAFFIC SUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting ECT TRIPS" TYPE Net New	0 0 0 2% EBU 7.0% 0 0 0 EBU	117 0 117 2% EBL 7.0% 26 143 0 143 EBL	6 1 7 2% EBT 7.0% 2 9 7 7 16 EBT	EBR 44 0 44 2% EBR 7.0% 10 54 EBR EBR 0	WBU	WBL 25 0 25 2% WBL 7.0% 6 31 WBL 35% WBL	32 0 32 2% WBT 7.0% 7 39 6 6 6 WBT	214 0 214 1% WBR 7.0% 48 262 42 42 42 304 WBR 5%	0 0 0 2% NBU 7.0% 0 0 0 NBU NBU	65 0 65 2% NBL 7.0% 15 80 0 NBL NBL	835 0 835 5% NBT 7.0% 188 1,023 7 7 1,030 NBT 20%	23 2 25 2% NBR 7.0% 6 31 0 31 NBR 15%	9 0 9 11% SBU 7.0% 2 11 1 SBU 40% SBU 21	153 17 170 1% SBL 7.0% 38 208 51 51 259 SBL 10%	1,060 0 1,060 2% SBT 7.0% 239 1,299 15 15 1,314 SBT	59 0 59 2% SBR 7.0% 13 72 0 72 SBR

INTERSECTION TRAFFIC VOLUME DEVELOPMENT - PHASE 1

INTERSECTION: Gibbet Road at Estate Drive/Site Access #3

November 10, 2022

					AM I	Peak I	<u>lour</u>										
AM 2022 EXISTI	ING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turning	Movement Counts ¹	0	0	158	14	0	4	212	0	0	42	0	5	0	0	0	0
AM Volume	Balancing	0	0	0	0	0	0	13	0	0	3	0	0	0	0	0	0
AM 2022 EXISTI	ING TRAFFIC	0	0	158	14	0	4	225	0	0	45	0	5	0	0	0	0
AM Heavy Vehic	le Percentage	2%	2%	4%	21%	2%	2%	2%	2%	2%	5%	2%	20%	2%	2%	2%	2%
AM 2025 NO-BU		EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual Gro		7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
AM 2025 NO-BUILD T		0	0	36	3	0	1	51	0	0	10	0	1	0	0	0	0
							· · · · · · · · · · · · · · · · · · ·										
AM 2025 NO-BUILD	TRAFFIC (No AD)	0	0	194	17	0	5	276	0	0	55	0	6	0	0	0	0
Approved Development 1: Pa	Imetto Point Pickleball and				67						60						
TOTAL AM APPROVED DE	VELOPMENT TRAFFIC	0	0	0	67	0	0	0	0	0	60	0	0	0	0	0	0
AM 2025 NO-BU	III D TRAFFIC	0	0	194	84	0	5	276	0	0	115	0	6	0	0	0	0
74W 2020 NO BO	ILD TRAITIO			104				210			110						
"SITE TRAFFIC DI	ISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Net New	Entering		25%					5%	5%			5%					
Distribution	Exiting														10%	5%	5%
"AM PROJEC	CT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Net New	0	4	0	0	0	0	1	1	0	0	1	0	0	5	3	3
AM TOTAL PRO	DJECT TRIPS	0	4	0	0	0	0	1	1	0	0	1	0	0	5	3	3
AM 2025 BUILD-	OUT TRAFFIC	0	4	194	84	0	5	277	1	0	115	1	6	0	5	3	3
					РМ Г	Peak H	lour										

-cor marric			134	04		, s	211		- 0	113				<u> </u>		
				PM I	Peak I	<u>lour</u>										
TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
g Movement Counts ¹	0	0	187	15	0	9	254	0	0	15	0	7	0	0	0	0
Balancing	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0
TING TRAFFIC	0	0	187	15	0	9	256	0	0	15	0	7	0	0	0	0
icle Percentage	2%	2%	2%	2%	2%	2%	0%	2%	2%	2%	2%	2%	2%	2%	2%	2%
UILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
owth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
TRAFFIC GROWTH	0	0	43	3	0	2	58	0	0	3	0	2	0	0	0	0
		1			1									1		
D TRAFFIC (No AD)	0	0	230	18	0	11	314	0	0	18	0	9	0	0	0	0
almetto Point Pickleball and				58						48			Ι			
	0	0	0	58	0	0	0	0	0	48	0	0	0	0	0	0
		1			1									1		
UILD TRAFFIC	0	0	230	76	0	11	314	0	0	66	0	9	0	0	0	0
OISTRUBUTION"																
TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Entering		25%			İ	İ	5%	5%		İ	5%			İ		
Exiting														10%	5%	5%
ECT TRIRE"																
	FRII	FRI	FRT	FRR	WBII	WRI	WRT	WRR	NRII	NBI	NRT	NRR	SBU	SBI	SBT	SBR
					_	_				 						2
	U	1 10	U	U												
OJECT TRIPS	0	13	0	0	0	0	3	3	0	0	3	0	0	3	1	2
ROJECT TRIPS	0	13	0	0	0	0	3	3	0	0	3	0	0	3	1	2
	DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering	TING TRAFFIC EBU g Movement Counts¹ 0 e Balancing 0 TING TRAFFIC 0 sicle Percentage 2% BUILD TRAFFIC EBU rowth Rate 7.0% D TRAFFIC GROWTH 0 D TRAFFIC (No AD) 0 Palmetto Point Pickleball and DEVELOPMENT TRAFFIC 0 BUILD TRAFFIC 0 DISTRUBUTION" TYPE EBU Entering Exiting ECT TRIPS" TYPE EBU	TING TRAFFIC	TING TRAFFIC	PM ITING TRAFFIC EBU EBL EBT EBR	PM Peak Peak	PM Peak Hour	PM Peak Hour	PM Peak Hour	PM Peak Hour	PM Peak Hour	PM Peak Hour	PM Peak Hour PM P	PM Peak Hour	PM Peak Hour PM P	PM Peak Hour PM P

INTERSECTION TRAFFIC VOLUME DEVELOPMENT - PHASE 1

INTERSECTION: SC 170/Okatie Highway at Site Access #1

November 11, 2022

					AM I	Peak H	<u>lour</u>										
AM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	S
AM Adjusted Turnir	ng Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	1,459	0	0	0	1,177	
AM Volum	ne Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
AM 2022 EXIS	STING TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,459	0	0	0	1,177	
AM Heavy Vel	hicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	6%	2
AM 2025 NO-I	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	S
	Frowth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.
	TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	329	0	0	0	264	
AM 2025 NO DUIL	.D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	1,788	0	0	0	1,441	
					U			U	U		U	1,700	- 0			1,441	
AW 2025 NO-BUIL	D TRAFFIC (NO AD)	U															
	Palmetto Point Pickleball and											60				76	
oved Development 1:			0	0	0	0	0	0	0	0	0	60 60	0	0	0	76 76	
oved Development 1:	Palmetto Point Pickleball and		0	0	0	0	0	0	0	0	0		0	0	0		
oved Development 1: TAL AM APPROVED AM 2025 NO-	Palmetto Point Pickleball and DEVELOPMENT TRAFFIC	0										60				76	
oved Development 1: TAL AM APPROVED AM 2025 NO-	Palmetto Point Pickleball and	0				0						60				76	
oved Development 1: ITAL AM APPROVED AM 2025 NO-	Palmetto Point Pickleball and DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION"	0	0	0	0	0	0	0	0	0	0	60 1,848	0	0	0	76 1,517	
oved Development 1: ITAL AM APPROVED AM 2025 NO- "SITE TRAFFIC LAND USE	Palmetto Point Pickleball and DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE	0	0	0	0	0	0	0	0	0	0	60 1,848	0 NBR	0	0	76 1,517 SBT	
OVED DEVELOPMENT 1: OTAL AM APPROVED AM 2025 NO- "SITE TRAFFIC LAND USE Net New Distribution	Palmetto Point Pickleball and DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering	0	0	0	0	0	0	0	0 WBR	0	0	1,848 NBT	0 NBR	0	0	76 1,517 SBT	
OVED DEVELOPMENT 1: OTAL AM APPROVED AM 2025 NO- "SITE TRAFFIC LAND USE Net New Distribution	Palmetto Point Pickleball and DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting	0	0	0	0	0 WBU	0	0	0 WBR	0	0	1,848 NBT	0 NBR	0	0	76 1,517 SBT	Si
OVED DEVELOPMENT 1: OTAL AM APPROVED AM 2025 NO- "SITE TRAFFIC LAND USE Net New Distribution "AM PROJ	Palmetto Point Pickleball and DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting	0 0 EBU	0 EBL	0 EBT	0 EBR	0 WBU	0 WBL	0 WBT	0 WBR 45%	0 NBU	0 NBL	1,848 NBT	0 NBR 60%	SBU	0 SBL	76 1,517 SBT 50%	
OVED DEVELOPMENT 1: OTAL AM APPROVED AM 2025 NO- "SITE TRAFFIC LAND USE Net New Distribution "AM PROJLAND USE Project Trip	Palmetto Point Pickleball and DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting DECT TRIPS" TYPE	0 0 EBU	0 EBL	0 EBT	0 EBR	0 WBU	0 WBL	0 WBT	0 WBR 45%	0 NBU	0 NBL	1,848 NBT 5%	0 NBR 60%	SBU SBU	0 SBL	76 1,517 SBT 50%	s

AW 2025 BUIL	D-OUT TRAFFIC	0	0	0	0	0	0	0	23	0	0	1,851	10	0	0	1,526	0
					DM I	Daak I											
					PIVI	Peak I	<u> 10ur</u>										
PM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turnir	ng Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	1,174	0	0	0	1,461	0
PM Volum	ne Balancing	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
PM 2022 EYIS	STING TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,175	0	0	0	1,461	0
FIVI ZUZZ EXIC	TING TRAFFIC	U	U									1,175				1,461	
PM Heavy Vel	hicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	3%	2%	2%	2%	1%	2%
D14 0005 NO 1	N.III D TD 45510	-				l wou	LWDI	WDT	WDD	NBU	L	NDT	NDD	0011	0.01	0.0.T	000
	BUILD TRAFFIC Frowth Rate	EBU 7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	NBU 7.0%	7.0%	7.0%	7.0%	SBU 7.0%	7.0%	7.0%	7.0%
	TRAFFIC GROWTH	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	264	7.0%	7.0%	7.0%	329	7.0%
1 W 2020 NO-DOILE	TRAITIO OROWIII	0										204		0		323	- 0
PM 2025 NO-BUIL	D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	1,439	0	0	0	1,790	0
	Palmetto Point Pickleball and											49				66	
TOTAL PM APPROVED	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	0	0	0	49	0	0	0	66	0
PM 2025 NO-	BUILD TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,488	0	0	0	1,856	0
														<u> </u>			
	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Net New	Entering												60%			50%	
Distribution	Exiting								45%			5%					
"PM PROJ	IECT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Net New	0	0	0	0	0	0	0	14	0	0	2	32	0	0	26	0
PM TOTAL P	ROJECT TRIPS	0	0	0	0	0	0	0	14	0	0	2	32	0	0	26	0
DM 2025 DUIL	D OUT TRAFFIC	•										4 400				4.000	
PM 2025 BUIL	D-OUT TRAFFIC	0	0	0	0	0	0	0	14	0	0	1,490	32	0	0	1,882	0

INTERSECTION TRAFFIC VOLUME DEVELOPMENT - PHASE 1

INTERSECTION: Gibbet Road at Site Access #2

COUNT DATE: November 12, 2022

"SITE TRAFFIC DISTRUBUTION"

"PM PROJECT TRIPS"

PM TOTAL PROJECT TRIPS

PM 2025 BUILD-OUT TRAFFIC

TYPE

Entering

Exiting

TYPE

Net New

LAND USE

Net New

Distribution

LAND USE

Project Trip

AM PEAK HOUR FACTOR: 0.90 AM FUTURE PEAK HOUR FACTOR: 0.90 PM PEAK HOUR FACTOR: 0.90 PM FUTURE PEAK HOUR FACTOR: 0.90

					AM I	Peak H	<u>lour</u>										
AM 2022 EXISTIN	IG TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
AM Adjusted Turning N	Novement Counts ¹	0	0	151	0	0	0	270	0	0	0	0	0	0	0	0	0
AM Volume B	alancing	0	0	21	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXISTIN	IG TRAFFIC	0	0	172	0	0	0	270	0	0	0	0	0	0	0	0	0
AW 2022 EXIOTI	TO TRAIT TO			172			_ •	210									
AM Heavy Vehicle	e Percentage	2%	2%	5%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	29
444 0005 NO DUU	D TDAFFIO			FDT		l wou	l wo	WDT	WDD	NEU	NBI	NDT	NDD	0011	0.01	0.0.7	٥-
AM 2025 NO-BUI Annual Grow		EBU	7.0%	7.0%	7.0%	7.0%	WBL 7.0%	7.0%	7.0%	NBU 7.0%	NBL 7.0%	7.0%	7.0%	SBU 7.0%	7.0%	7.0%	7.0
AM 2025 NO-BUILD TR		0	0	39	0	0	0	61	0	0	0	0	0	0	0	0	7.0
PAW 2020 NO BOILD II	tra i i o oktovi i i			- 00				01			-						
AM 2025 NO-BUILD T	RAFFIC (No AD)	0	0	211	0	0	0	331	0	0	0	0	0	0	0	0	(
proved Development 1: Palr	motto Doint Diaklahall and	1	ı	67				60						I	I		
OTAL AM APPROVED DE		0	0	67	0	0	0	60	0	0	0	0	0	0	0	0	(
OTAL ANI AI TROVED DE	VEEDI MIENT TOATTO			- 07	0			00	- 0	0	0	- 0	- 0		<u> </u>		
AM 2025 NO-BUI	LD TRAFFIC	0	0	278	0	0	0	391	0	0	0	0	0	0	0	0	(
"SITE TRAFFIC DIS	TYPE	EBU	EBL	ЕВТ	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
Net New	Entering	LBU	EBL	25%	EBK	WBU	WDL	WDI	5%	NBO	NDL	NDI	NDK	360	JDL	361	31
Distribution	Exiting			25 /6				5%	3 /6								35
		•	•				•							•			
"AM PROJEC						l wou		WDT	WDD	NEU	NDI	NDT	NDD	0011		0.0.7	٥.
Project Trip	TYPE Net New	EBU 0	EBL 0	EBT 4	EBR	WBU 0	WBL 0	WBT 3	WBR 1	NBU 0	NBL 0	NBT	NBR 0	SBU	SBL 0	SBT 0	SE 1
AM TOTAL PRO		0	0	4	0	0	0	3	1	0	0	0	0	0	0	0	1
7 1017.21110	201 11411 0			•					-								
AM 2025 BUILD-C	OUT TRAFFIC	0	0	282	0	0	0	394	1	0	0	0	0	0	0	0	1
					PM I	Peak H	<u>lour</u>										
PM 2022 EXISTIN																	
		EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
PM Adjusted Turning M	Novement Counts ¹	0	0	182	0	0	0	271	0	0	0	0	0	0	0	0	(
	Novement Counts ¹		<u> </u>														SE
PM Adjusted Turning M	Novement Counts ¹ alancing	0	0	182	0	0	0	271	0	0	0	0	0	0	0	0	(
PM Adjusted Turning M PM Volume B PM 2022 EXISTIN	Movement Counts ¹ alancing IG TRAFFIC	0 0	0 0	182 20 202	0 0	0 0	0 0	271 0 271	0 0	0 0	0	0	0	0 0	0 0	0 0	(
PM Adjusted Turning M PM Volume B	Movement Counts ¹ alancing IG TRAFFIC	0	0	182 20	0	0	0	271 0	0	0	0	0	0	0	0	0	(
PM Adjusted Turning N PM Volume B PM 2022 EXISTIN PM Heavy Vehicle	lovement Counts ¹ alancing IG TRAFFIC Percentage	0 0 0	0 0	182 20 202 1%	0 0 0	0 0	0 0	271 0 271 1%	0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0	0 0 0	0 0 0	2
PM Adjusted Turning M PM Volume B PM 2022 EXISTIN	fovement Counts ¹ alancing IG TRAFFIC Percentage LD TRAFFIC	0 0	0 0	182 20 202	0 0	0 0	0 0	271 0 271	0 0	0 0	0	0	0	0 0	0 0	0 0	(
PM Adjusted Turning N PM Volume B PM 2022 EXISTIN PM Heavy Vehicle PM 2025 NO-BUI	fovement Counts ¹ alancing IG TRAFFIC e Percentage LD TRAFFIC th Rate	0 0 0	0 0 0	182 20 202 1% EBT	0 0 0 2% EBR	0 0 0 2% WBU	0 0 0	271 0 271 1% WBT	0 0 0 2% WBR	0 0 0	0 0 0	0 0 0 2% NBT	0 0 0 2% NBR	0 0 0	0 0 0	0 0 0 2% SBT	2 SI 7.0
PM Adjusted Turning M PM Volume B PM 2022 EXISTIN PM Heavy Vehicle PM 2025 NO-BUIL Annual Grow PM 2025 NO-BUILD TR	lovement Counts ¹ alancing IG TRAFFIC Percentage LD TRAFFIC th Rate RAFFIC GROWTH	0 0 2% EBU 7.0%	0 0 0 2% EBL 7.0%	182 20 202 1% EBT 7.0% 46	0 0 0 2% EBR 7.0%	0 0 0 2% WBU 7.0%	0 0 0 2% WBL 7.0%	271 0 271 1% WBT 7.0%	0 0 0 2% WBR 7.0%	0 0 2% NBU 7.0%	0 0 0 2% NBL 7.0%	0 0 0 2% NBT 7.0%	0 0 0 2% NBR 7.0%	0 0 0 2% SBU 7.0%	0 0 0 2% SBL 7.0%	0 0 0 2% SBT 7.0%	2 Si 7.
PM Adjusted Turning M PM Volume B PM 2022 EXISTIN PM Heavy Vehicle PM 2025 NO-BUI Annual Grow	lovement Counts ¹ alancing IG TRAFFIC Percentage LD TRAFFIC th Rate RAFFIC GROWTH	0 0 0 2% EBU 7.0%	0 0 0 2% EBL 7.0%	182 20 202 1% EBT 7.0%	0 0 0 2% EBR 7.0%	0 0 0 2% WBU 7.0%	0 0 0 2% WBL 7.0%	271 0 271 1% WBT 7.0%	0 0 0 2% WBR 7.0%	0 0 0 2% NBU 7.0%	0 0 0 2% NBL 7.0%	0 0 0 2% NBT 7.0%	0 0 0 2% NBR 7.0%	0 0 0 2% SBU 7.0%	0 0 0 2% SBL 7.0%	0 0 0 2% SBT 7.0%	2 SE 7.0
PM Adjusted Turning M PM Volume B PM 2022 EXISTIN PM Heavy Vehicle PM 2025 NO-BUIL Annual Grow PM 2025 NO-BUILD TO PM 2025 NO-BUILD TO	Iovement Counts¹ alancing IG TRAFFIC Percentage LD TRAFFIC th Rate RAFFIC GROWTH RAFFIC (No AD)	0 0 0 2% EBU 7.0% 0	0 0 0 2% EBL 7.0%	182 20 202 1% EBT 7.0% 46	0 0 0 2% EBR 7.0%	0 0 0 2% WBU 7.0%	0 0 0 2% WBL 7.0%	271 0 271 1% WBT 7.0%	0 0 0 2% WBR 7.0%	0 0 2% NBU 7.0%	0 0 0 2% NBL 7.0%	0 0 0 2% NBT 7.0%	0 0 0 2% NBR 7.0%	0 0 0 2% SBU 7.0%	0 0 0 2% SBL 7.0%	0 0 0 2% SBT 7.0%	2 SE 7.0
PM Adjusted Turning M PM Volume B PM 2022 EXISTIN PM Heavy Vehicle PM 2025 NO-BUIL Annual Grow PM 2025 NO-BUILD TR	fovement Counts ¹ alancing IG TRAFFIC Percentage LD TRAFFIC th Rate RAFFIC GROWTH RAFFIC (No AD) metto Point Pickleball and	0 0 0 2% EBU 7.0% 0	0 0 0 2% EBL 7.0%	182 20 202 1% EBT 7.0% 46	0 0 0 2% EBR 7.0%	0 0 0 2% WBU 7.0%	0 0 0 2% WBL 7.0%	271 0 271 1% WBT 7.0% 61	0 0 0 2% WBR 7.0%	0 0 0 2% NBU 7.0%	0 0 0 2% NBL 7.0%	0 0 0 2% NBT 7.0%	0 0 0 2% NBR 7.0%	0 0 0 2% SBU 7.0%	0 0 0 2% SBL 7.0%	0 0 0 2% SBT 7.0%	22 SBB 7.0
PM Adjusted Turning N PM Volume B PM 2022 EXISTIN PM Heavy Vehicle PM 2025 NO-BUIL Annual Grow PM 2025 NO-BUILD TF PM 2025 NO-BUILD T	lovement Counts 1 alancing IG TRAFFIC Percentage LD TRAFFIC th Rate RAFFIC GROWTH RAFFIC (No AD) metto Point Pickleball and VELOPMENT TRAFFIC	0 0 0 2% EBU 7.0% 0	0 0 2% EBL 7.0% 0	182 20 202 1% EBT 7.0% 46 248	0 0 2% EBR 7.0% 0	0 0 2% WBU 7.0% 0	0 0 0 2% WBL 7.0% 0	271 0 271 1% WBT 7.0% 61	0 0 2% WBR 7.0% 0	0 0 0 2% NBU 7.0% 0	0 0 0 2% NBL 7.0% 0	0 0 0 2% NBT 7.0% 0	0 0 2% NBR 7.0% 0	0 0 0 2% SBU 7.0% 0	0 0 0 2% SBL 7.0% 0	0 0 0 2% SBT 7.0% 0	2

EBR | WBU | WBL WBT WBR NBU | NBL

5%

2

382

WBT WBR

EBR | WBU | WBL

0

0 0 0

0

5%

3

3

NBU | NBL

0 0

0

0

0

0

NBT NBR

NBT NBR

0

0

0

0

0

0

SBU | SBL

SBU | SBL

0 0

0

0

0

0

EBT

25%

EBT

13

13

319

0

0

EBU | EBL

0 0

0

0

0

SBR

35%

SBR

11

11

11

SBT

0

0

Gibbet Road Residential Development Traffic Impact Analysis

PHASE 2 VOLUME DEVELOPMENT

INTERSECTION TRAFFIC VOLUME DEVELOPMENT - PHASE 2

SC 170/Okatie Highway at Lawton Boulevard November 10, 2022

					AM I	Peak F	lour										
AM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turnir	ng Movement Counts ¹	0	0	0	0	0	55	0	66	0	0	1,425	34	0	49	1,122	0
	ne Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXIS	STING TRAFFIC	0	0	0	0	0	55	0	66	0	0	1,425	34	0	49	1,122	0
AM Heavy Vel	hicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	3%	2%	2%	6%	2%
AM 2027 NO-I	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual G	rowth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
AM 2027 NO-BUILD	TRAFFIC GROWTH	0	0	0	0	0	22	0	27	0	0	574	14	0	20	452	0
	D TRAFFIC (No AD)	0	0	0	0	0	77	0	93	0	0	1,999	48	0	69	1,574	0
	Palmetto Point Pickleball and											60				76	
TOTAL AM APPROVED	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	0	0	0	60	0	0	0	76	0
AM 2027 NO-	BUILD TRAFFIC	0	0	0	0	0	77	0	93	0	0	2,059	48	0	69	1,650	0
"SITE TRAFFIC LAND USE	DISTRUBUTION"	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering				LDIX	11100			WEI(IIDO	NDL	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NEN				
Distribution	Exiting																
Net New	Entering															50%	
Distribution	Exiting											50%					
	ECT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By	_	_				_		_	_	_			_	_		
	Net New ROJECT TRIPS	0	0	0	0	0	0	0	0	0	0	47	0	0	0	29	0
AM IUIAL P	RUJEUT TRIPS	0	0	0	0	0	0	0	0	0	0	47	0	0	0	29	0

					PM F	Peak F	<u>lour</u>										
PM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turnin	g Movement Counts ¹	0	0	0	0	0	21	0	58	0	0	1.134	40	0	133	1.440	0
	e Balancing	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	<u> </u>													•	•		
PM 2022 EXIS	TING TRAFFIC	0	0	0	0	0	21	0	58	0	0	1,135	40	0	133	1,440	0
PM Heavy Veh	icle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	3%	2%	2%	2%	1%	2%
PM 2027 NO-E	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual G	rowth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
PM 2027 NO-BUILD	TRAFFIC GROWTH	0	0	0	0	0	8	0	23	0	0	457	16	0	54	580	0
PM 2027 NO-BUIL	D TRAFFIC (No AD)	0	0	0	0	0	29	0	81	0	0	1,592	56	0	187	2,020	0
Approved Development 1: F	Palmetto Point Pickleball and											49				66	
TOTAL PM APPROVED	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	0	0	0	49	0	0	0	66	0
	BUILD TRAFFIC	0	0	0	0	0	29	0	81	0	0	1,641	56	0	187	2,086	0
****	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT													
			LUL	EDI	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering		LUL	CDI	EBK	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Distribution	Exiting		LUL	EDI	EBK	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL		SBR
Distribution Net New	Exiting Entering		LUL	ЕВІ	EBK	WBU	WBL	WBT	WBR	NBU	NBL		NBR	SBU	SBL	SBT 50%	SBR
Distribution	Exiting			CDI	EBK	WBU	WBL	WBT	WBR	NBU	NBL	NBT 50%	NBR	SBU	SBL		SBR
Distribution Net New Distribution	Exiting Entering Exiting			EDI	EBK	WBU	WBL	WBT	WBR	NBU	NBL		NBR	SBU	SBL		SBR
Distribution Net New Distribution	Exiting Entering	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL		NBR	SBU	SBL		SBR
Distribution Net New Distribution "PM PROJ LAND USE	Exiting Entering Exiting ECT TRIPS" TYPE	EBU										50%				50%	
Distribution Net New Distribution "PM PROJ	Exiting Entering Exiting EXITING	EBU										50%				50%	
Distribution Net New Distribution "PM PROJ LAND USE Project Trip	Exiting Entering Exiting ECT TRIPS" TYPE Pass - By		EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	50% NBT	NBR	SBU	SBL	50% SBT	SBR
Distribution Net New Distribution "PM PROJ LAND USE Project Trip	Exiting Entering Exiting ECT TRIPS" TYPE Pass - By Net New	0	EBL	EBT	EBR	WBU	WBL	WBT	WBR 0	NBU	NBL	50% NBT	NBR	SBU 0	SBL 0	50% SBT	SBR 0

INTERSECTION TRAFFIC VOLUME DEVELOPMENT - PHASE 2

SC 170/Okatie Highway at Gibbet Road November 10, 2022

AM 2022 EXIST AM Adjusted Turning AM Volume	ING TRAFFIC																
		EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	Movement Counts ¹	0	248	12	106	0	47	10	213	0	45	961	16	27	123	972	22
7 7 0.0		0	0	3	0	0	0	0	0	0	0	10	4	0	14	0	0
AM 2022 EXIST	ING TRAFFIC	0	248	15	106	0	47	10	213	0	45	971	20	27	137	972	22
AM Heavy Vehic	ele Percentage	2%	1%	8%	3%	2%	4%	10%	1%	2%	9%	3%	2%	2%	6%	6%	2%
AWI Fleavy Verilo	ole i ercentage			0 /0					1 /0		370				0 /0	0 /0	
AM 2027 NO-BL		EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual Gro		7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
AM 2027 NO-BUILD	TRAFFIC GROWTH	0	100	6	43	0	19	4	86	0	18	391	8	11	55	391	9
AM 2027 NO-BUILD	TRAFFIC (No AD)	0	348	21	149	0	66	14	299	0	63	1,362	28	38	192	1,363	31
Approved Development 1: Pa	Ilmetto Point Pickleball and			8				8	52			8			59	17	
TOTAL AM APPROVED DI	EVELOPMENT TRAFFIC	0	0	8	0	0	0	8	52	0	0	8	0	0	59	17	0
AM 2027 NO-BL	JILD TRAFFIC	0	348	29	149	0	66	22	351	0	63	1,370	28	38	251	1,380	31
"SITE TRAFFIC D	ISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering		-15%	15%											25%	-25%	
Distribution	Exiting						25%										
Net New	Entering											25%	10%	35%	15%		
Distribution	Exiting						35%		5%								
"AM PROJE	CT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By		-20	20			34								34	-34	
· · ·	Net New	0	0	0	0	0	33	0	5	0	0	15	6	20	9	0	0
AM TOTAL PRO	OJECT TRIPS	0	-20	20	0	0	67	0	5	0	0	15	6	20	43	-34	0
AM 2027 BUILD-	OUT TRAFFIC	0	328	49	149	0	133	22	356	0	63	1.385	34	58	294	1.346	31

					PM F	Peak H	<u>lour</u>										
PM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBI
PM Adjusted Turning	Movement Counts ¹	0	117	6	44	0	25	32	214	0	65	835	23	9	153	1.060	59
	Balancing	0	0	1	0	0	0	0	0	0	0	0	2	0	17	0	0
PM 2022 EXIS	TING TRAFFIC	0	117	7	44	0	25	32	214	0	65	835	25	9	170	1,060	59
PM Heavy Veh	icle Percentage	2%	2%	2%	2%	2%	2%	2%	1%	2%	2%	5%	2%	11%	1%	2%	29
DM 0007 NO D	IIII D TDAFFIO	EBU	. .	EBT	EBR	LANDII		MOT	WDD	NBII		NBT	NDD	SBU	0.01	0.0.T	٥-
	UILD TRAFFIC		EBL			WBU	WBL	WBT	WBR	NBU	NBL		NBR		SBL	SBT	SE
Annual Gr		7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0
PM 2027 NO-BUILD	TRAFFIC GROWTH	0	47	3	18	0	10	13	86	0	26	336	10	4	68	427	2
PM 2027 NO-BUILI	TRAFFIC (No AD)	0	164	10	62	0	35	45	300	0	91	1,171	35	13	238	1.487	8
FW ZUZI NO-DUILI	TRAITIE (NO AB)	U	104	10	02	1 0	33	40	300	U	91	1,171	33	13	230	1,407	- 0
nroved Develonment 1: P	almetto Point Pickleball and	1		7				6	42			7		l	51	15	
	DEVELOPMENT TRAFFIC	0	0	7	0	0	0	6	42	0	0	7	0	0	51	15	(
TOTAL THE ATTROVED L	DEVELOR MICHT THAT THE								42	0					31	10	
PM 2027 NO-B	UILD TRAFFIC	0	164	17	62	0	35	51	342	0	91	1,178	35	13	289	1,502	8
"SITE TRAFFIC	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
Pass-By	Entering		-15%	15%											25%	-25%	
Distribution	Exiting						25%										
Net New	Entering											25%	10%	35%	15%		
Distribution	Exiting						35%		5%								
"PM PROJI																	
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
Project Trip	Pass - By		-17	17			28								28	-28	
· ·	Net New	0	0	0	0	0	20	0	3	0	0	20	8	29	12	0	(
	OJECT TRIPS	0	-17	17	0	0	48	0	3	0	0	20	8	29	40	-28	- (
FWITOTALFI																	
	O-OUT TRAFFIC	0	147	34	62	0	83	51	345	0	91	1.198	43	42	329	1,474	

INTERSECTION TRAFFIC VOLUME DEVELOPMENT - PHASE 2

Gibbet Road at Estate Drive/Site Access #3

November 10, 2022

					AM I	Peak H	lour										
AM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turnin	g Movement Counts ¹	0	0	158	14	0	4	212	0	0	42	0	5	0	0	0	0
	e Balancing	0	0	0	0	0	0	13	0	0	3	0	0	0	0	0	0
AM 2022 EXIS	TING TRAFFIC	0	0	158	14	0	4	225	0	0	45	0	5	0	0	0	0
AM Heavy Veh	nicle Percentage	2%	2%	4%	21%	2%	2%	2%	2%	2%	5%	2%	20%	2%	2%	2%	2%
AM 2027 NO-E	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual G	rowth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
AM 2027 NO-BUILD	TRAFFIC GROWTH	0	0	63	6	0	2	91	0	0	18	0	2	0	0	0	0
	D TRAFFIC (No AD)	0	0	221	20	0	6	316	0	0	63	0	7	0	0	0	0
	Palmetto Point Pickleball and				67						60						
TOTAL AM APPROVED	DEVELOPMENT TRAFFIC	0	0	0	67	0	0	0	0	0	60	0	0	0	0	0	0
AM 2027 NO-E	BUILD TRAFFIC	0	0	221	87	0	6	316	0	0	123	0	7	0	0	0	0
	DISTRUBUTION"	EBU	EBL		EBR	WBU	WBL	WBT	WBR	NBU	l ND.	NDT	NDD	SBU	SBL	0.0.7	200
LAND USE	TYPE	EBU		EBT	EBR	WBU	WBL	WBI	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By Distribution	Entering Exiting		45%	-5%											5%		
Net New	Entering		25%					5%	5%			5%			378		
Distribution	Exiting														10%	5%	5%
	ECT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By		61	-7											7		
	Net New	0	15	0	0	0	0	3	3	0	0	3	0	0	9	5	5
AM TOTAL PI	ROJECT TRIPS	0	76	-7	0	0	0	3	3	0	0	3	0	0	16	5	5
AM 2027 BUIL	D-OLIT TRAFFIC	0	76	214	87	0	6	319	3	0	123	3	7	0	16	5	5

					PM F	Peak H	lour										
PM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turnin	g Movement Counts ¹	0	0	187	15	0	9	254	0	0	15	0	7	0	0	0	0
	e Balancing	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0
	· · · · · · · · · · · · · · · · · · ·													•	•		
PM 2022 EXIS	TING TRAFFIC	0	0	187	15	0	9	256	0	0	15	0	7	0	0	0	0
PM Heavy Veh	icle Percentage	2%	2%	2%	2%	2%	2%	0%	2%	2%	2%	2%	2%	2%	2%	2%	2%
PM 2027 NO-F	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	rowth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
	TRAFFIC GROWTH	0	0	75	6	0	4	103	0	0	6	0	3	0	0	0	0
2021 110 20122							•	100		Ū							
PM 2027 NO-BUIL	D TRAFFIC (No AD)	0	0	262	21	0	13	359	0	0	21	0	10	0	0	0	0
														•	•		
Approved Development 1: F	Palmetto Point Pickleball and				58						48						
TOTAL PM APPROVED I	DEVELOPMENT TRAFFIC	0	0	0	58	0	0	0	0	0	48	0	0	0	0	0	0
	BUILD TRAFFIC	0	0	262	79	0	13	359	0	0	69	0	10	0	0	0	_
	DISTRUBUTION"																0
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering	EBU	EBL 45%	EBT -5%	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU		SBT	
Pass-By Distribution	Entering Exiting	EBU	45%		EBR	WBU	WBL			NBU	NBL		NBR	SBU	SBL 5%	SBT	
Pass-By Distribution Net New	Entering Exiting Entering	EBU			EBR	WBU	WBL	WBT 5%	WBR	NBU	NBL	NBT 5%	NBR	SBU	5%		SBR
Pass-By Distribution	Entering Exiting	EBU	45%		EBR	WBU	WBL			NBU	NBL		NBR	SBU		SBT	
Pass-By Distribution Net New Distribution	Entering Exiting Entering Exiting	EBU	45%		EBR	WBU	WBL			NBU	NBL		NBR	SBU	5%		SBR
Pass-By Distribution Net New Distribution "PM PROJI	Entering Exiting Entering Exiting Exiting		45% 25%	-5%				5%	5%			5%			5%	5%	SBR 5%
Pass-By Distribution Net New Distribution "PM PROJILAND USE	Entering Exiting Entering Exiting Exiting EXITING EXITING	EBU	45% 25% EBL	-5% EBT	EBR	WBU	WBL			NBU	NBL		NBR	SBU	5% 10% SBL		SBR
Pass-By Distribution Net New Distribution "PM PROJI	Entering Exiting Entering Exiting Exiting EXITING EXITING EXITING EXITING TYPE Pass - By	EBU	45% 25% EBL 49	-5% EBT -5	EBR	WBU		5% WBT	5% WBR	NBU	NBL	5%	NBR	SBU	5% 10% SBL 5	5% SBT	SBR 5% SBR
Pass-By Distribution Net New Distribution "PM PROJI LAND USE Project Trip	Entering Exiting Entering Exiting Exiting ECT TRIPS" TYPE Pass - By Net New	EBU 0	45% 25% EBL 49 20	-5% EBT -5 0	EBR		WBL	5% WBT	5%			5% NBT			5% 10% SBL 5 6	5% SBT	SBR 5% SBR
Pass-By Distribution Net New Distribution "PM PROJI LAND USE Project Trip	Entering Exiting Entering Exiting Exiting EXITING EXITING EXITING EXITING TYPE Pass - By	EBU	45% 25% EBL 49	-5% EBT -5	EBR	WBU 0	WBL	5% WBT	5% WBR	NBU	NBL	5% NBT	NBR	SBU 0	5% 10% SBL 5	5% SBT	SBR 5% SBR

INTERSECTION TRAFFIC VOLUME DEVELOPMENT - PHASE 2

SC 170/Okatie Highway at Site Access #1 November 11, 2022

					<u>AM F</u>	Peak H	<u>lour</u>										
AM 2022 EX	ISTING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBI
AM Adjusted Turni	ing Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	1,459	0	0	0	1,177	0
AM Volur	me Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EX	ISTING TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,459	0	0	0	1,177	0
AM Heavy Ve	ehicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	6%	29
											1						
	-BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
	Growth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0
AM 2027 NO-BUIL	D TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	588	0	0	0	474	C
AM 2027 NO DIII	LD TRAFFIC (No AD)		١ ۵			١ ،						0.047				1.051	
AM 2027 NO-BUI	LD TRAFFIC (NO AD)	0	0	0	0	0	0	0	0	0	0	2,047	0	0	0	1,651	(
oved Development 1:	Palmetto Point Pickleball and											60				76	
<u>'</u>	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	0	0	0	60	0	0	0	76	(
TAL AW AT TROVEL	DEVELOT MENT TRAITIO															70	
AM 2027 NO	-BUILD TRAFFIC	0	0	0	0	0	0	0	0	0	0	2,107	0	0	0	1,727	0
"SITE TRAFFIC	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
Pass-By	Entering																
Distribution	Exiting																
Net New	Entering												45%			50%	
Distribution	Exiting								25%			25%					
"AM DDO	JECT TRIPS"																
LAND USE	T	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	
LAND USE	TYPE	EBU	EBL	EBI	EBK	WBU	WBL	WBI	WBR	NBU	NBL	NBI	NBK	280	SBL	201	SE
	Pass - By	-	0	0	0	0	0	0	23	0	0	24	26	0	0	29	C
Project Trip	Not Now				U	l U	U	U	23	U	l U	24	26	l U	l U	29	(
	Net New	0	_		•	•	•	•	22	^	•	24	26	•	_	20	
	Net New PROJECT TRIPS	0	0	0	0	0	0	0	23	0	0	24	26	0	0	29	(
AM TOTAL F			_		0	0	0	0	23	0	0	24	26	0	0	29 1.756	

					PM F	Peak H	<u>lour</u>										
PM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turnin	ng Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	1,174	0	0	0	1,461	0
PM Volum	e Balancing	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
D11 0000 EV/																	
PM 2022 EXIS	TING TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,175	0	0	0	1,461	0
PM Heavy Veh	nicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	3%	2%	2%	2%	1%	2%
DM 2027 NO 5	BUILD TRAFFIC	EBU	EBL	EBT	EBR	wbu	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	rowth Rate									_							
	TRAFFIC GROWTH	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0% 473	7.0%	7.0%	7.0%	7.0% 588	7.0%
PIWI 2027 NO-BUILL	TRAFFIC GROWTH	0		- 0	- 0	1 0	0	- 0	- 0	U	U	4/3	- 0	0	0	588	
PM 2027 NO-BUIL	D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	1,648	0	0	0	2,049	0
Annroved Develonment 1: F	Palmetto Point Pickleball and											49		l		66	
	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	0	0	0	49	0	0	0	66	0
																	<u> </u>
PM 2027 NO-E	BUILD TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,697	0	0	0	2,115	0
"SITE TRAFFIC	DISTRUBUTION"					•	•				•			•			
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering																
Distribution	Exiting																
Net New	Entering												45%			50%	
Distribution	Exiting								25%			25%					
"DM DDO I	ECT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	Pass - Bv					1.20											
Project Trip	Net New	0	0	0	0	0	0	0	14	0	0	14	36	0	0	41	0
PM TOTAL PI	ROJECT TRIPS	0	0	0	0	0	0	0	14	0	0	14	36	0	0	41	0
PM 2027 BUIL	PM 2027 BUILD-OUT TRAFFIC		0	0	0	0	0	0	14	0	0	1,711	36	0	0	2,156	0

INTERSECTION TRAFFIC VOLUME DEVELOPMENT - PHASE 2

Gibbet Road at Site Access #2

November 12, 2022

					AM I	Peak H	<u>lour</u>										
AM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turning	g Movement Counts ¹	0	0	151	0	0	0	270	0	0	0	0	0	0	0	0	0
	e Balancing	0	0	21	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXIS	TING TRAFFIC	0	0	172	0	0	0	270	0	0	0	0	0	0	0	0	0
							1				ı						
AM Heavy Veh	icle Percentage	2%	2%	5%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
AM 2027 NO-B	UILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	owth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
AM 2027 NO-BUILD	TRAFFIC GROWTH	0	0	69	0	0	0	109	0	0	0	0	0	0	0	0	0
AM 2027 NO-BUILI	O TRAFFIC (No AD)	0	0	241	0	0	0	379	0	0	0	0	0	0	0	0	0
Approved Development 1: P	almetto Point Pickleball and			67				60									
TOTAL AM APPROVED D	DEVELOPMENT TRAFFIC	0	0	67	0	0	0	60	0	0	0	0	0	0	0	0	0
AM 2027 NO-B	UILD TRAFFIC	0	0	308	0	0	0	439	0	0	0	0	0	0	0	0	0
"SITE TRAFFIC	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering			40%				-10%	10%								
Distribution	Exiting																35%
Net New	Entering			25%					5%								
Distribution	Exiting							5%									35%
	ECT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By			54				-13	13								47
	Net New	0	0	15	0	0	0	5	3	0	0	0	0	0	0	0	33
AM TOTAL PR	OJECT TRIPS	0	0	69	0	0	0	-8	16	0	0	0	0	0	0	0	80
AM 2027 PLUL	O-OUT TRAFFIC	0		277		_	0	424	46	_	0			0	•	0	80
AWI 2027 BUILL		U	0	377	0	0	U	431	16	0	U	0	0	U	0	U	80

					PM F	Peak H	<u>lour</u>										
PM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turnin	g Movement Counts ¹	0	0	182	0	0	0	271	0	0	0	0	0	0	0	0	0
PM Volum	e Balancing	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0
DM 0000 EVIC	TING TRAFFIC						1 -				_						
PM 2022 EXIS	TING TRAFFIC	0	0	202	0	0	0	271	0	0	0	0	0	0	0	0	0
PM Heavy Veh	nicle Percentage	2%	2%	1%	2%	2%	2%	1%	2%	2%	2%	2%	2%	2%	2%	2%	2%
PM 2027 NO-E	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual G	rowth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
PM 2027 NO-BUILD	TRAFFIC GROWTH	0	0	81	0	0	0	109	0	0	0	0	0	0	0	0	0
PM 2027 NO-BUIL	D TRAFFIC (No AD)	0	0	283	0	0	0	380	0	0	0	0	0	0	0	0	0
	Palmetto Point Pickleball and DEVELOPMENT TRAFFIC			58				48									
TOTAL PM APPROVED	DEVELOPMENT TRAFFIC	0	0	58	0	0	0	48	0	0	0	0	0	0	0	0	0
PM 2027 NO-F	BUILD TRAFFIC	0	0	341	0	0	0	428	0	0	0	0	0	0	0	0	0
	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering		İ	40%		İ		-10%	10%								
Distribution	Exiting																35%
Net New	Entering			25%					5%								
Distribution	Exiting							5%									35%
UDM DDG I	FOT TRIPO!!																
"PM PROJ LAND USE	ECT TRIPS" TYPE	EBU	EBL	EBT	EBR	wBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
LAND USE	Pass - Bv	EDU	EDL		EDK	VVDU	VVDL			NDU	NDL	NDI	NDK	300	JDL	301	
Project Trip	Net New	0	0	20	0	0	0	-11 3	11 4	0	0	0	0	0	0	0	39 20
ΡΜ ΤΩΤΔΙ ΡΙ	ROJECT TRIPS	0	0	64	0	0	0		15	0	0	0	0	0	0	0	59
- INTOTALT	100201 11111 0			34					- 13		<u> </u>						
PM 2027 BUIL	PM 2027 BUILD-OUT TRAFFIC		0	405	0	0	0	420	15	0	0	0	0	0	0	0	59

INTERSECTION TRAFFIC VOLUME DEVELOPMENT - PHASE 2

SC 170/Okatie Highway at Site Access #4 November 13, 2022

					AM I	Peak F	lour										
AM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turnin	ng Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	1,459	0	0	0	1,144	0
	e Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14	0
AM 2022 EXIS	STING TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,459	0	0	0	1,158	0
AM Heavy Veh	nicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	6%	2%
AM 2027 NO-E	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual G	rowth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
AM 2027 NO-BUILD	TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	588	0	0	0	466	0
AM 2027 NO-BUIL	D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	2,047	0	0	0	1,624	0
proved Development 1: F	Palmetto Point Pickleball and											60				76	
TOTAL AM APPROVED	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	0	0	0	60	0	0	0	76	0
AM 2027 NO-E	BUILD TRAFFIC	0	0	0	0	0	0	0	0	0	0	2,107	0	0	0	1,700	0
"SITE TRAFFIC LAND USE	DISTRUBUTION"	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering	EBU	EBL	EDI	EDK	WBU	WDL	WDI	WDK	NDU	NDL	-60%	45%	360	SDL	301	SDK
Distribution	Exiting								60%			-60%	45%				
Net New	Entering								00 /0			45%	15%			50%	
Distribution	Exiting								20%			5%					
	ECT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By	_					_		81		_	-81	61	_			
AM TOTAL DI	Net New ROJECT TRIPS	0	0	0	0	0	0	0	19	0	0	31	9	0	0	29	0
AM TOTAL PI	KUJECT TRIPS	0	0	0	0	0	0	0	100	0	0	-50	70	0	0	29	0

					PM F	Peak H	<u>lour</u>										
PM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turnin	g Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	1,174	0	0	0	1,281	0
PM Volum	e Balancing	0	0	0	0	0	0	0	0	0	0	1	0	0	0	17	0
D11 0000 EV/0	TIMO TO A FELO																
PM 2022 EXIS	TING TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,175	0	0	0	1,298	0
PM Heavy Veh	nicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	3%	2%	2%	2%	2%	2%
PM 2027 NO-E	BUILD TRAFFIC	EBU	EBL	EBT	EBR	wbu	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	rowth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
	TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	473	0	0	0	523	0
T IN ZUZT ING-BUILD	TRAITIO GROWIII											473				323	
PM 2027 NO-BUIL	D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	1,648	0	0	0	1,821	0
	Palmetto Point Pickleball and											49				66	
TOTAL PM APPROVED I	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	0	0	0	49	0	0	0	66	0
		1					1				1			1	1		
	BUILD TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,697	0	0	0	1,887	0
****	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering											-60%	45%				
Distribution Net New	Exiting								60%			45%	15%			500/	
Distribution	Entering Exiting								20%			45% 5%	15%			50%	
ווסנווטענוטוו	Laturiy						ļ		20 /0			3 /0		ļ			
"PM PROJ	ECT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By								66			-66	50				
Froject mp	Net New	0	0	0	0	0	0	0	11	0	0	39	13	0	0	41	0
PM TOTAL PF	ROJECT TRIPS	0	0	0	0	0	0	0	77	0	0	-27	63	0	0	41	0
											1						
PM 2027 BUILI	D-OUT TRAFFIC	0	0	0	0	0	0	0	77	0	0	1,670	63	0	0	1,928	0

Gibbet Road Residential Development Traffic Impact Analysis

PHASE 3 VOLUME DEVELOPMENT

INTERSECTION TRAFFIC VOLUME DEVELOPMENT - PHASE 3

SC 170/Okatie Highway at Lawton Boulevard November 10, 2022

					AM I	Peak F	lour										
AM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turnin	ng Movement Counts ¹	0	0	0	0	0	55	0	66	0	0	1,425	34	0	49	1,122	0
	e Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXIS	STING TRAFFIC	0	0	0	0	0	55	0	66	0	0	1,425	34	0	49	1,122	0
AM Heavy Veh	nicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	3%	2%	2%	6%	2%
AM 2029 NO-E	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	rowth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
AM 2029 NO-BUILD	TRAFFIC GROWTH	0	0	0	0	0	33	0	40	0	0	863	21	0	30	680	0
AM 2029 NO-BUIL	D TRAFFIC (No AD)	0	0	0	0	0	88	0	106	0	0	2,288	55	0	79	1,802	0
proved Development 1: F	Palmetto Point Pickleball and											60				76	
TOTAL AM APPROVED	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	0	0	0	60	0	0	0	76	0
AM 2029 NO-E	BUILD TRAFFIC	0	0	0	0	0	88	0	106	0	0	2,348	55	0	79	1,878	0
"SITE TRAFFIC	DISTRUBUTION"	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering	EBU	EBL	EDI	EBK	VVBU	VVDL	WDI	WOK	NBU	NDL	NDI	NDK	360	JDL	301	SDR
Distribution	Exiting																
Net New	Entering															50%	
Distribution	Exiting											50%					
	ECT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By		_				_				_			_			
	Net New	0	0	0	0	0	0	0	0	0	0	54	0	0	0	43	0
AM IOTAL PI	ROJECT TRIPS	0	0	0	0	0	0	0	0	0	0	54	0	0	0	43	0
AM 2020 BIIII	D-OUT TRAFFIC	0	0	0	0	0	88	0	106	0	0	2.402	55	0	79	1.921	0

PM Peak Hour									
PM 2022 EXISTING TRAFFIC EBU EBL EBT EBR WBU WBL	WBT WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turning Movement Counts ¹ 0 0 0 0 0 21	0 58	0	0	1.134	40	0	133	1.440	0
PM Volume Balancing 0 0 0 0 0 0	0 0	0	0	1	0	0	0	0	0
PM 2022 EXISTING TRAFFIC 0 0 0 0 0 21	0 58	0	0	1,135	40	0	133	1,440	0
PM Heavy Vehicle Percentage 2% 2% 2% 2% 2% 2%	2% 2%	2%	2%	3%	2%	2%	2%	1%	2%
PM 2029 NO-BUILD TRAFFIC EBU EBL EBT EBR WBU WBL	WBT WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual Growth Rate 7.0% 7.0% 7.0% 7.0% 7.0% 7.0%	7.0% 7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
PM 2029 NO-BUILD TRAFFIC GROWTH 0 0 0 0 13	0 35	0	0	688	24	0	81	872	0
	1					-			
PM 2029 NO-BUILD TRAFFIC (No AD) 0 0 0 34	0 93	0	0	1,823	64	0	214	2,312	0
ed Development 1: Palmetto Point Pickleball and				49				66	
AL PM APPROVED DEVELOPMENT TRAFFIC 0 0 0 0 0 0	0 0	0	0	49	0	0	0	66	0
PM 2029 NO-BUILD TRAFFIC 0 0 0 0 0 34	0 93	0	0	1,872	64	0	214	2,378	0
"SITE TRAFFIC DISTRUBUTION"								·	-
"SITE TRAFFIC DISTRUBUTION"	0 93 WBT WBR		0 NBL	1,872 NBT	64 NBR	0 SBU	214 SBL	2,378 SBT	0 SBR
"SITE TRAFFIC DISTRUBUTION" LAND USE TYPE EBU EBL EBT EBR WBU WBL Pass-By Entering Image: Control of the c								·	
"SITE TRAFFIC DISTRUBUTION" LAND USE TYPE EBU EBL EBT EBR WBU WBL Pass-By Entering Image: Company of the c								SBT	-
"SITE TRAFFIC DISTRUBUTION" LAND USE TYPE EBU EBL EBT EBR WBU WBL Pass-By Entering Image: Comparison of the comp				NBT				·	-
"SITE TRAFFIC DISTRUBUTION" LAND USE TYPE EBU EBL EBT EBR WBU WBL Pass-By Entering Image: Company of the c								SBT	-
"SITE TRAFFIC DISTRUBUTION" LAND USE TYPE EBU EBL EBT EBR WBU WBL Pass-By Entering Image: Comparison of the comp				NBT				SBT	-
"SITE TRAFFIC DISTRUBUTION" LAND USE TYPE EBU EBL EBT EBR WBU WBL Pass-By Entering Image: Comparison of the comp	WBT WBR	NBU	NBL	NBT 50%	NBR	SBU	SBL	SBT 50%	SBR
"SITE TRAFFIC DISTRUBUTION" LAND USE TYPE EBU EBL EBT EBR WBU WBL Pass-By Entering Image: Comparity of the comparity of		NBU		NBT 50%				SBT	
"SITE TRAFFIC DISTRUBUTION" LAND USE TYPE EBU EBL EBT EBR WBU WBL Pass-By Entering Image: Comparison of the comp	WBT WBR	NBU NBU	NBL NBL	NBT 50% NBT	NBR	SBU	SBL	SBT 50% SBT	SBR
"SITE TRAFFIC DISTRUBUTION" LAND USE TYPE EBU EBL EBT EBR WBU WBL Pass-By Entering Image: Common of the co	WBT WBR	NBU NBU	NBL 0	50% NBT	NBR NBR	SBU SBU	SBL SBL	50% SBT	SBR SBR
"SITE TRAFFIC DISTRUBUTION" LAND USE TYPE EBU EBL EBT EBR WBU WBL Pass-By Entering Image: Comparison of the comp	WBT WBR	NBU NBU	NBL NBL	NBT 50% NBT	NBR	SBU	SBL	SBT 50% SBT	SBR
"SITE TRAFFIC DISTRUBUTION" LAND USE TYPE EBU EBL EBT EBR WBU Pass-By Entering Image: Comparity of the comparity of the	WBL 0	WBL WBT WBR WBL WBT WBR	WBL WBT WBR NBU	WBL WBT WBR NBU NBL WBL WBT WBR NBU NBL WBL WBT WBR NBU NBL 0 0 0 0 0	WBL WBT WBR NBU NBL NBT WBL WBT WBR NBU NBL NBT WBL WBT WBR NBU NBL NBT 0 0 0 0 50	WBL WBT WBR NBU NBL NBT NBR WBL WBT WBR NBU NBL NBT NBR 0 0 0 0 50 0	WBL WBT WBR NBU NBL NBT NBR SBU WBL WBT WBR NBU NBL NBT NBR SBU 0 0 0 0 50 0 0	WBL WBT WBR NBU NBL NBT NBR SBU SBL WBL WBT WBR NBU NBL NBT NBR SBU SBL 0 0 0 0 50 0 0 0 0	WBL WBT WBR NBU NBL NBT NBR SBU SBL SBT 50%

INTERSECTION TRAFFIC VOLUME DEVELOPMENT - PHASE 3

SC 170/Okatie Highway at Gibbet Road November 10, 2022

					AM I	Peak F	lour										
AM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turnin	g Movement Counts ¹	0	248	12	106	0	47	10	213	0	45	961	16	27	123	972	22
	e Balancing	0	0	3	0	0	0	0	0	0	0	10	4	0	14	0	0
AM 2022 EXIS	TING TRAFFIC	0	248	15	106	0	47	10	213	0	45	971	20	27	137	972	22
AM Heavy Veh	nicle Percentage	2%	1%	8%	3%	2%	4%	10%	1%	2%	9%	3%	2%	2%	6%	6%	2%
AM 2029 NO-E	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual G	rowth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
AM 2029 NO-BUILD	TRAFFIC GROWTH	0	150	9	64	0	28	6	129	0	27	588	12	16	83	589	13
AM 2029 NO-BUIL	D TRAFFIC (No AD)	0	398	24	170	0	75	16	342	0	72	1,559	32	43	220	1,561	35
pproved Development 1: F	Palmetto Point Pickleball and			8				8	52			8			59	17	
TOTAL AM APPROVED I	DEVELOPMENT TRAFFIC	0	0	8	0	0	0	8	52	0	0	8	0	0	59	17	0
AM 2029 NO-E	BUILD TRAFFIC	0	398	32	170	0	75	24	394	0	72	1,567	32	43	279	1,578	35
"SITE TRAFFIC	DISTRUBUTION"	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering	LBU	-15%	15%	LDIX	VVDC	VVDL	VVDI	WDIX	NDO	NDL	NDI	NDIX	300	25%	-25%	JUIN
Distribution	Exiting		-15/6	15/6			25%								25/6	-25 /6	
Net New	Entering											25%	10%	40%	10%		
Distribution	Exiting						35%		5%								
	ECT TRIPS"														1		
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By		-20	20			34								34	-34	
AM TOTAL DE	Net New ROJECT TRIPS	0	0	0	0	0	37	0	5	0	0	22	9	35	8	0	0
AM TOTAL PI	KUJECT TRIPS	0	-20	20	0	0	71	0	5	0	0	22	9	35	42	-34	0
AM 2029 BUILI	D-OUT TRAFFIC	0	378	52	170	0	146	24	399	0	72	1,589	41	78	321	1,544	35

					PM F	Peak H	<u>lour</u>										
PM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turning	Movement Counts ¹	0	117	6	44	0	25	32	214	0	65	835	23	9	153	1.060	59
PM Volume		0	0	1	0	0	0	0	0	0	0	0	2	0	17	0	0
						•									•		
PM 2022 EXIS	TING TRAFFIC	0	117	7	44	0	25	32	214	0	65	835	25	9	170	1,060	59
PM Heavy Vehi	icle Percentage	2%	2%	2%	2%	2%	2%	2%	1%	2%	2%	5%	2%	11%	1%	2%	2%
PM 2029 NO-B	IIII D TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual Gr		7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
PM 2029 NO-BUILD		7.0%	7.0%	7.0%	27	7.0%	15	19	130	7.0%	39	506	15	7.0%	103	642	36
FINI ZUZU NO-DUILD	INAFFIC GROWIN	U	/1	4	21	1 0	15	19	130	U	39	506	15] 5	103	042	30
PM 2029 NO-BUILD	TRAFFIC (No AD)	0	188	11	71	0	40	51	344	0	104	1.341	40	14	273	1.702	95
1 III 2020 110 DOILE	o marino (no ab)		100				1 40		044		104	1,041		1 14	270	1,702	- 00
Approved Development 1: Pa	almetto Point Pickleball and			7				6	42			7			51	15	
TOTAL PM APPROVED D		0	0	7	0	0	0	6	42	0	0	7	0	0	51	15	0
						-											
PM 2029 NO-B	UILD TRAFFIC	0	188	18	71	0	40	57	386	0	104	1,348	40	14	324	1,717	95
"SITE TRAFFIC I	DISTRUBUTION"					•	•										
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering		-15%	15%											25%	-25%	
Distribution	Exiting						25%										
Net New	Entering											25%	10%	40%	10%		
Distribution	Exiting						35%		5%								
"PM PROJE																	
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By		-17	17			28								28	-28	
	Net New	0	0	0	0	0	34	0	5	0	0	29	12	47	11	0	0
PM TOTAL PR	OJECT TRIPS	0	-17	17	0	0	62	0	5	0	0	29	12	47	39	-28	0
PM 2029 BUILD	OUT TRAFFIC	_	474		74		400		204		404	4.075			202	4.000	
PM 2029 BUILD	-OUT TRAFFIC	0	171	35	71	0	102	57	391	0	104	1,377	52	61	363	1,689	95

INTERSECTION TRAFFIC VOLUME DEVELOPMENT - PHASE 3

Gibbet Road at Estate Drive/Site Access #3

November 10, 2022

					<u>AM F</u>	Peak H	<u>lour</u>										
AM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBI
AM Adjusted Turnir	ng Movement Counts ¹	0	0	158	14	0	4	212	0	0	42	0	5	0	0	0	0
AM Volum	e Balancing	0	0	0	0	0	0	13	0	0	3	0	0	0	0	0	0
AM 2022 EXIS	STING TRAFFIC	0	0	158	14	0	4	225	0	0	45	0	5	0	0	0	0
AM Heavy Vel	nicle Percentage	2%	2%	4%	21%	2%	2%	2%	2%	2%	5%	2%	20%	2%	2%	2%	2%
	-	•															
	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
	rowth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.09
AM 2029 NO-BUILI	TRAFFIC GROWTH	0	0	95	8	0	2	136	0	0	27	0	3	0	0	0	0
AM 2020 NO BUIL	D TRAFFIC (No AD)	_		050		I 0		361	0		72		0	0			
AW 2029 NO-BUIL	D TRAFFIC (NO AD)	0	0	253	22	0	6	301	0	0	12	0	8	0	0	0	0
proved Development 1: I	Palmetto Point Pickleball and	1			67	1					60						
	DEVELOPMENT TRAFFIC	0	0	0	67	0	0	0	0	0	60	0	0	0	0	0	0
						-											
AM 2029 NO-I	BUILD TRAFFIC	0	0	253	89	0	6	361	0	0	132	0	8	0	0	0	0
	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBI
Pass-By	Entering		45%	-5%													
Distribution	Exiting														5%		
Net New Distribution	Entering Exiting		20%					5%	5%			5%			400/	=0/	=0/
	Exiting					l									10%	5%	5%
Distribution	-																
	ECT TRIPS"																
	ECT TRIPS"	EBU	EBL	ЕВТ	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBI
"AM PROJ LAND USE	1	EBU	EBL 61	EBT -7	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL 7	SBT	SBI
"AM PROJ	TYPE	EBU			EBR	WBU	WBL	WBT 4	WBR 4	NBU	NBL	NBT 4	NBR	SBU 0		SBT 5	SBI 5
"AM PROJ LAND USE Project Trip	TYPE Pass - By		61	-7											7		
"AM PROJ LAND USE Project Trip	Pass - By Net New	0	61 17	-7 0	0	0	0	4	4	0	0	4	0	0	7 11	5	5

					PM F	Peak H	<u>lour</u>										
PM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turnin	g Movement Counts ¹	0	0	187	15	0	9	254	0	0	15	0	7	0	0	0	0
	e Balancing	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0
PM 2022 EXIS	TING TRAFFIC	0	0	187	15	0	9	256	0	0	15	0	7	0	0	0	0
							,										
PM Heavy Veh	icle Percentage	2%	2%	2%	2%	2%	2%	0%	2%	2%	2%	2%	2%	2%	2%	2%	2%
PM 2029 NO-E	UILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual G	rowth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
PM 2029 NO-BUILD	TRAFFIC GROWTH	0	0	113	9	0	5	155	0	0	9	0	4	0	0	0	0
							1				-			1			
PM 2029 NO-BUIL	D TRAFFIC (No AD)	0	0	300	24	0	14	411	0	0	24	0	11	0	0	0	0
	almetto Point Pickleball and				58						48						
TOTAL PM APPROVED I	DEVELOPMENT TRAFFIC	0	0	0	58	0	0	0	0	0	48	0	0	0	0	0	0
DM 0000 NO F	NULL DE TRAFFIC									_							
	BUILD TRAFFIC DISTRUBUTION"	0	0	300	82	0	14	411	0	0	72	0	11	0	0	0	0
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-Bv	Entering		45%	-5%													
Distribution	Exiting		10,0												5%		
Net New	Entering		20%					5%	5%			5%					
Distribution	Exiting														10%	5%	5%
	ECT TDIDS"																
"DM DDA II	LUITINES			EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
"PM PROJI		FRII	FRI				TANDE	4401	MDI/	1400	MDL	MDI	HDI	300	JUL	301	SDI
LAND USE	TYPE	EBU	EBL												-		
	TYPE Pass - By		51	-6			0	6	6	0	0	5	0	0	6	5	5
LAND USE Project Trip	TYPE Pass - By Net New	0	51 23	-6	0	0	0	6	6	0	0	5	0	0	9	5	5
LAND USE Project Trip	TYPE Pass - By		51	-6			0	6	6	0	0	5 5	0	0		5	5

INTERSECTION TRAFFIC VOLUME DEVELOPMENT - PHASE 3

SC 170/Okatie Highway at Site Access #1 November 11, 2022

					AM I	Peak I	<u>lour</u>										
AM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turning	g Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	1.459	0	0	0	1.177	0
	e Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXIS	TING TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,459	0	0	0	1,177	0
ļ																	
AM Heavy Veh	icle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	6%	2%
AM 2029 NO-B	UILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	owth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
AM 2029 NO-BUILD	TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	884	0	0	0	713	0
AM 2029 NO-BUILI	D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	2,343	0	0	0	1,890	0
Approved Development 1: P	almetto Point Pickleball and											60				76	
	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	0	0	0	60	0	0	0	76	0
							•										
AM 2029 NO-B	UILD TRAFFIC	0	0	0	0	0	0	0	0	0	0	2,403	0	0	0	1,966	0
"SITE TRAFFIC I LAND USE	DISTRUBUTION"	EBU	BBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
		EBU	EDL	EDI	EDK	WDU	WDL	WDI	WDR	NDU	NDL	NDI	NDK	360	SDL	301	SDK
Pass-By Distribution	Entering Exiting																
Net New	Enterina											15%	40%			50%	
Distribution	Exiting								20%			20%	1070			0070	
"AM PROJI	ECT TRIPS"	•	•			•											
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By																
	Net New	0	0	0	0	0	0	0	22	0	0	34	35	0	0	43	0
AM TOTAL PR	OJECT TRIPS	0	0	0	0	0	0	0	22	0	0	34	35	0	0	43	0
AM 2029 BUILD	O-OUT TRAFFIC	0	0	0	0	0	0	0	22	0	0	2,437	35	0	0	2,009	0

					РМ Е	Peak H	lour										
						I					l						
PM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turning		0	0	0	0	0	0	0	0	0	0	1,174	0	0	0	1,461	0
PM Volume	e Balancing	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
D11 0000 EVIO																	
PM 2022 EXIS	TING TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,175	0	0	0	1,461	0
DM III	. I. D																
PM Heavy Ven	icle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	3%	2%	2%	2%	1%	2%
PM 2029 NO-B	UILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	owth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
	TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	7.076	0	0	0	885	0
FINI 2029 NO-BUILD	TRAFFIC GROWTH			- 0		J 0	U	- 0	- 0		U	/ 12	- 0	<u> </u>	<u> </u>	000	
PM 2029 NO-BUILI	D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	1.887	0	0	0	2.346	0
	,											.,				_,-,-	
Approved Development 1: P	almetto Point Pickleball and											49				66	
TOTAL PM APPROVED I	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	0	0	0	49	0	0	0	66	0
PM 2029 NO-B	UILD TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,936	0	0	0	2,412	0
"SITE TRAFFIC	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering																
Distribution	Exiting																
Net New	Entering											15%	40%			50%	
Distribution	Exiting								20%			20%					
UD44 77 0 11	FOT TRIBOU																
	ECT TRIPS"	EBU	EBL	FDT		WBU	WBL	WBT	WBR	NDI	NBL	NBT	NDC	SBU	SBL	CDT	000
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBI	WBR	NBU	NBL	NBI	NBR	280	SBL	SBT	SBR
Project Trip	Pass - By Net New	_					_				_	07	47				
DM TOTAL DE	ROJECT TRIPS	0	0	0	0	0	0	0	20	0	0	37	47	0	0	58	0
PWITOTALPR	OJECT IKIPS	0	0	0	0	0	0	0	20	0	0	37	47	0	0	58	0
DM 2020 DIIII F	D-OUT TRAFFIC	0	0	0	0	0	0	0	20	0	0	4.072	47	0	0	2.470	0
PW 2029 BUILL	J-UUT TRAFFIC	U	U	U	0	0		0	20	U U	0	1,973	47	0	0	2,470	U

INTERSECTION TRAFFIC VOLUME DEVELOPMENT - PHASE 3

Gibbet Road at Site Access #2

November 12, 2022

					AM I	Peak H	<u>lour</u>										
AM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turnin	g Movement Counts ¹	0	0	151	0	0	0	270	0	0	0	0	0	0	0	0	0
	e Balancing	0	0	21	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXIS	TING TRAFFIC	0	0	172	0	0	0	270	0	0	0	0	0	0	0	0	0
							ı				ı						
AM Heavy Veh	icle Percentage	2%	2%	5%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
AM 2029 NO-E	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	rowth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
AM 2029 NO-BUILD	TRAFFIC GROWTH	0	0	104	0	0	0	164	0	0	0	0	0	0	0	0	0
AM 2029 NO-BUIL	D TRAFFIC (No AD)	0	0	276	0	0	0	434	0	0	0	0	0	0	0	0	0
Approved Development 1: F	Palmetto Point Pickleball and			67				60									
TOTAL AM APPROVED I	DEVELOPMENT TRAFFIC	0	0	67	0	0	0	60	0	0	0	0	0	0	0	0	0
AM 2029 NO-E	BUILD TRAFFIC	0	0	343	0	0	0	494	0	0	0	0	0	0	0	0	0
"SITE TRAFFIC	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering			40%				-10%	10%								
Distribution	Exiting																35%
Net New	Entering			20%					5%								
Distribution	Exiting							5%									35%
	ECT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By			54				-13	13								47
<u> </u>	Net New	0	0	17	0	0	0	5	4	0	0	0	0	0	0	0	37
AM TOTAL PF	ROJECT TRIPS	0	0	71	0	0	0	-8	17	0	0	0	0	0	0	0	84
AM 2020 BUILT	D-OUT TRAFFIC	0	•	44.4		_	0	400	47	_	0			0	•	0	84
AW 2029 BUILI	J-OUT TRAFFIC	U	0	414	0	0	U	486	17	0	U	0	0	U	0	U	84

					РМ Е	Peak H	lour										
PM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turning	Movement Counts ¹	0	0	182	0	0	0	271	0	0	0	0	0	0	0	0	0
PM Volume		0	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0
PM 2022 EXIS	TING TRAFFIC	0	0	202	0	0	0	271	0	0	0	0	0	0	0	0	0
PM Heavy Vehi	cle Percentage	2%	2%	1%	2%	2%	2%	1%	2%	2%	2%	2%	2%	2%	2%	2%	2%
PM 2029 NO-B	IIII D TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual Gr		7.0%	7.0%	7.0%	7.0%	7.0%	7.0%		7.0%	7.0%				7.0%	7.0%	7.0%	
PM 2029 NO-BUILD								7.0%			7.0%	7.0%	7.0%				7.0%
PWI 2029 NO-BUILD	TRAFFIC GROWTH	0	0	122	0	0	0	164	0	0	0	0	0	0	0	0	0
PM 2029 NO-BUILD	TRAFFIC (No AD)	0	0	324	0	0	0	435	0	0	0	0	0	0	0	0	0
	1100110 (110712)			02.				100		Ū							
Approved Development 1: Pa	almetto Point Pickleball and			58				48									
TOTAL PM APPROVED D	EVELOPMENT TRAFFIC	0	0	58	0	0	0	48	0	0	0	0	0	0	0	0	0
PM 2029 NO-B	UILD TRAFFIC	0	0	382	0	0	0	483	0	0	0	0	0	0	0	0	0
"SITE TRAFFIC I	DISTRUBUTION"					_											
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering			40%				-10%	10%								
Distribution	Exiting																35%
Net New	Entering			20%					5%								
Distribution	Exiting							5%									35%
"PM PROJE	CT TDIDO"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	wBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	Pass - By		LDL	45	בטול	1100	TTDL	-11	11	1450	HDL	1451	1451	550	ODL	001	39
Project Trip	Net New	0	0	23	0	0	0	5	6	0	0	0	0	0	0	0	34
PM TOTAL PR		0	0	68	0	0	0	-6	17	0	0	0	0	0	0	0	73
· ····································	-																
PM 2029 BUILD	-OUT TRAFFIC	0	0	450	0	0	0	477	17	0	0	0	0	0	0	0	73

INTERSECTION TRAFFIC VOLUME DEVELOPMENT - PHASE 3

SC 170/Okatie Highway at Site Access #4 November 13, 2022

					AM F	Peak H	<u>lour</u>										
AM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turnin	g Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	1,459	0	0	0	1,144	0
	e Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14	0
AM 2022 EXIS	TING TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,459	0	0	0	1,158	0
		1									1						
AM Heavy Veh	nicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	6%	2%
AM 2029 NO-E	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	rowth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
AM 2029 NO-BUILD	TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	884	0	0	0	701	0
AM 2029 NO-BUIL	D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	2,343	0	0	0	1,859	0
Approved Development 1: F	Palmetto Point Pickleball and											60				76	
	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	0	0	0	60	0	0	0	76	0
AM 2029 NO-E	BUILD TRAFFIC	0	0	0	0	0	0	0	0	0	0	2,403	0	0	0	1,935	0
	DISTRUBUTION"										1						
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering											-60%	45%				
Distribution Net New	Exiting								60%				400/			=00/	
Distribution	Entering Exiting								15%			55% 5%	10%			50%	
Distribution	Extung								15%			3%		<u> </u>			
"AM PROJ	ECT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By								80			-80	60				
i ioject ilip	Net New	0	0	0	0	0	0	0	16	0	0	53	9	0	0	43	0
AM TOTAL PI	ROJECT TRIPS	0	0	0	0	0	0	0	96	0	0	-27	69	0	0	43	0
AM 2029 BUIL	D-OUT TRAFFIC	0	0	0	0	0	0	0	96	0	0	2,376	69	0	0	1,978	0

					PM F	Peak F	<u>lour</u>										
PM 2022 EXI	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
PM Adjusted Turni	ng Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	1,174	0	0	0	1,281	
	ne Balancing	0	0	0	0	0	0	0	0	0	0	1	0	0	0	17	
	· ·																
PM 2022 EXI	STING TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,175	0	0	0	1,298	
PM Heavy Ve	hicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	3%	2%	2%	2%	2%	2
DM 2020 NO	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	s
	Growth Rate															7.0%	_
	D TRAFFIC GROWTH	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%		7.
PINI 2029 NO-BUIL	D TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	712	0	0	0	786	
PM 2029 NO-BIII	_D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	1.887	0	0	0	2.084	
1 III 2020 110 Doil	TOTAL TIE (NO AD)	Ů							0	Ū	0	1,007				2,004	
roved Development 1:	Palmetto Point Pickleball and	1										49				66	
	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	0	0	0	49	0	0	0	66	
			_			_	-			-							
PM 2029 NO-	BUILD TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,936	0	0	0	2,150	
"SITE TRAFFIC	DISTRUBUTION"																
	DICTRODUCTION																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	s
	1	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	-60%	NBR 45%	SBU	SBL	SBT	s
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL			SBU	SBL	SBT	S
Pass-By Distribution Net New	Entering Exiting Entering	EBU	EBL	EBT	EBR	WBU	WBL	WBT	60%	NBU	NBL	-60% 55%		SBU	SBL	SBT 50%	s
Pass-By Distribution	TYPE Entering Exiting	EBU	EBL	EBT	EBR	WBU	WBL	WBT		NBU	NBL	-60%	45%	SBU	SBL		S
Pass-By Distribution Net New Distribution	TYPE Entering Exiting Entering Exiting	EBU	EBL	EBT	EBR	WBU	WBL	WBT	60%	NBU	NBL	-60% 55%	45%	SBU	SBL		S
Pass-By Distribution Net New Distribution "PM PRO	TYPE Entering Exiting Entering Extering Exiting Exiting								60%			-60% 55% 5%	45% 10%			50%	
Pass-By Distribution Net New Distribution	TYPE Entering Exiting Entering Exiting Exiting Exiting EXITING EXITING EXITING EXITING	EBU	EBL	EBT	EBR	WBU	WBL	WBT	60% 15% WBR	NBU	NBL	-60% 55% 5% NBT	45% 10% NBR	SBU	SBL		s
Pass-By Distribution Net New Distribution "PM PRO	Entering Exiting Entering Exiting Exiting Exiting EXITING EXITING JECT TRIPS'' TYPE Pass - By	EBU	EBL	EBT	EBR	WBU	WBL	WBT	60% 15% WBR	NBU	NBL	-60% 55% 5% NBT	45% 10% NBR 50	SBU	SBL	50% SBT	
Pass-By Distribution Net New Distribution "PM PROLAND USE Project Trip	Entering Exiting Entering Exiting Exiting Exiting EXITING EXITING EXITING FASS - BY Net New	EBU 0	EBL	EBT	EBR	WBU	WBL	WBT	60% 15% WBR 67 15	NBU	NBL 0	-60% 55% 5% NBT -67 69	45% 10% NBR 50 12	SBU 0	SBL 0	50% SBT 58	s
Pass-By Distribution Net New Distribution "PM PROLAND USE Project Trip	Entering Exiting Entering Exiting Exiting Exiting EXITING EXITING JECT TRIPS'' TYPE Pass - By	EBU	EBL	EBT	EBR	WBU	WBL	WBT	60% 15% WBR	NBU	NBL	-60% 55% 5% NBT	45% 10% NBR 50	SBU	SBL	50% SBT	

INTERSECTION TRAFFIC VOLUME DEVELOPMENT - PHASE 3

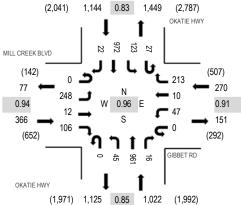
SC 170/Okatie Highway at Site Access #5 November 13, 2022

					AM I	Peak H	<u>lour</u>										
AM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turnin	g Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	1,459	0	0	0	1,177	0
	e Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXIS	TING TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,459	0	0	0	1,177	0
		1									1						
AM Heavy Veh	nicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	6%	2%
AM 2029 NO-E	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	rowth Rate	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
AM 2029 NO-BUILD	TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	884	0	0	0	713	0
AM 2029 NO-BUIL	D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	2,343	0	0	0	1,890	0
Approved Development 1: F	Palmetto Point Pickleball and											60				76	
	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	0	0	0	60	0	0	0	76	0
AM 2029 NO-E	BUILD TRAFFIC	0	0	0	0	0	0	0	0	0	0	2,403	0	0	0	1,966	0
												_,				1,000	
"SITE TRAFFIC	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering																
Distribution	Exiting																
Net New	Entering												15%			50%	
Distribution	Exiting								10%			40%					
"AM PROJ	ECT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By																
<u> </u>	Net New	0	0	0	0	0	0	0	11	0	0	43	13	0	0	43	0
AM TOTAL PR	ROJECT TRIPS	0	0	0	0	0	0	0	11	0	0	43	13	0	0	43	0
444 0000 PUW																	
AM 2029 BUILI	D-OUT TRAFFIC	0	0	0	0	0	0	0	11	0	0	2,446	13	0	0	2,009	0

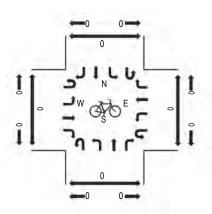
•																	
					РМ Б	Peak H	lour										
PM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turning	g Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	1,174	0	0	0	1,461	0
PM Volume	e Balancing	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
			1				1			1	ı			1			
PM 2022 EXIS	TING TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,175	0	0	0	1,461	0
51411																	
PM Heavy Veh	icle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	3%	2%	2%	2%	1%	2%
PM 2029 NO-B	UILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual Gr	*	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%
	TRAFFIC GROWTH					_									_		
PWI 2029 NO-BUILD	TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	712	0	0	0	885	0
PM 2029 NO-BUILI	TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	1.887	0	0	0	2.346	0
												1,001				2,010	
Approved Development 1: P	almetto Point Pickleball and											49				66	
	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	0	0	0	49	0	0	0	66	0
PM 2029 NO-B	UILD TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,936	0	0	0	2,412	0
"SITE TRAFFIC	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering																
Distribution	Exiting																
Net New	Entering												15%			50%	
Distribution	Exiting								10%			40%					
"D14 33 0 "	-ot tripou																
"PM PROJI		EBU	EBL	FDT		WBU	WBL	WBT	WBR	NDII	NBL	NBT	NDD	SBU	SBL	CDT	CDD
LAND USE	TYPE	FRU	FBL	EBT	EBR	MRO	WBL	WBI	WBK	NBU	NRL	NRI	NBR	280	SBL	SBT	SBR
Project Trip	Pass - By Net New	_							40		_	40	47				
PM TOTAL PR		0	0	0	0	0	0	0	10	0	0	40	17	0	0	58	0
PWITOTALPR	OJECT IKIPS	0	0	0	0	0	0	0	10	0	0	40	17	0	0	58	0
DM 2020 PHH F	O-OUT TRAFFIC	0	0	0	0	0	0	0	10	0	0	1 076	17	0	0	2 470	0
PIWI 2029 BUILL	-OUT TRAFFIC	U	U	U	U	U	U	U	10	U	U	1,976	17	U	U	2,470	U

Gibbet Road Residential Development Traffic Impact Analysis

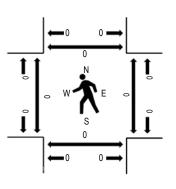
Appendix D – Raw Turning Movement Counts



Location: 1 OKATIE HWY & GIBBET RD AM Date: Thursday, November 10, 2022


Peak Hour: 07:30 AM - 08:30 AM

Peak 15-Minutes: 07:30 AM - 07:45 AM


Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

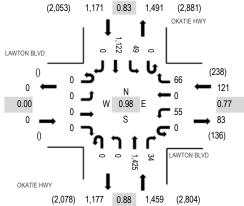
Traffic Counts - Motorized Vehicles

	MIL	L CRE	EK BL	VD	(GIBBE	TRD		(OKATIE	HWY		(OKATI	E HWY							
Interval		Eastb	ound			Westb	ound			Northb	ound			Southl	oound			Rolling	Ped	lestriar	n Crossi	ngs
 Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
7:00 AM	0	63	1	21	0	11	0	58	0	2	211	3	10	20	164	0	564	2,631	0	0	0	0
7:15 AM	0	66	3	30	1	7	3	58	1	10	258	8	6	17	175	2	645	2,723	0	0	0	0
7:30 AM	0	59	2	30	0	9	1	64	0	16	300	4	6	23	207	6	727	2,802	0	0	0	0
7:45 AM	0	67	3	17	0	14	6	60	0	11	258	4	8	34	210	3	695	2,710	0	0	0	0
8:00 AM	0	78	5	17	0	8	1	49	0	9	191	6	6	32	249	5	656	2,561	0	0	0	0
8:15 AM	0	44	2	42	0	16	2	40	0	9	212	2	7	34	306	8	724		0	0	0	0
8:30 AM	0	43	4	16	0	7	1	48	0	16	216	3	7	43	220	11	635		1	0	0	0
8:45 AM	0	29	0	10	0	6	2	35	0	13	226	3	4	35	178	5	546		0	0	0	0

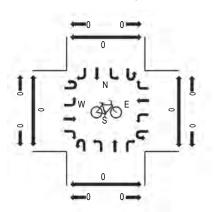
Peak Rolling Hour Flow Rates

		East	bound			West	oound			Northb	ound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	1	0	0	0	0	6	0	0	1	14	0	22
Lights	0	246	11	103	0	45	9	210	0	41	933	16	27	116	911	22	2,690
Mediums	0	2	1	3	0	1	1	3	0	4	22	0	0	6	47	0	90
Total	0	248	12	106	0	47	10	213	0	45	961	16	27	123	972	22	2,802

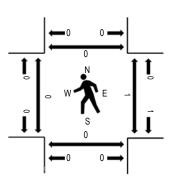
		Eastb	ound			Westb	ound			Northb	ound			South	oound		
	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Heavy Vehicle %		0.0)%			0.49	%			0.6	%			1.3	%		0.8%
Heavy Vehicle %	0.0%	0.0%	0.0%	0.0%	0.0%	2.1%	0.0%	0.0%	0.0%	0.0%	0.6%	0.0%	0.0%	0.8%	1.4%	0.0%	0.8%
Peak Hour Factor		0.94				0.9	1			0.8	5			3.0	33		0.96
Peak Hour Factor	0.00	0.87	0.70	0.63	0.25	0.73	0.46	0.94	0.25	0.73	0.86	0.69	0.75	0.84	0.80	0.66	0.96



Location: 2 OKATIE HWY & LAWTON BLVD AM


Date: Thursday, November 10, 2022 Peak Hour: 07:30 AM - 08:30 AM

Peak 15-Minutes: 07:30 AM - 07:45 AM


Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

Traffic Counts - Motorized Vehicles

	L/	AWTO	N BLV)	LA	MTON	I BLVD	1	(OKATIE	HWY		(OKATI	E HWY							
Interval		Eastb	ound			Westb	ound			Northb	ound			Southl	oound			Rolling	Ped	destriar	n Crossi	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
7:00 AM	0	0	0	0	0	13	0	16	0	0	337	3	0	2	172	0	543	2,565	0	0	0	0
7:15 AM	0	0	0	0	0	19	0	23	0	0	375	7	0	6	186	0	616	2,670	0	0	0	0
7:30 AM	0	0	0	0	0	7	0	15	0	0	431	16	0	11	225	0	705	2,751	0	0	0	0
7:45 AM	0	0	0	0	0	13	0	17	0	0	389	7	0	13	262	0	701	2,684	0	0	0	0
8:00 AM	0	0	0	0	0	10	0	17	0	0	320	7	0	13	281	0	648	2,530	0	1	0	0
8:15 AM	0	0	0	0	0	25	0	17	0	0	285	4	0	12	354	0	697		0	0	0	0
8:30 AM	0	0	0	0	0	14	0	16	0	0	324	6	0	9	269	0	638		0	0	0	0
8:45 AM	0	0	0	0	0	6	0	10	0	0	289	4	0	16	222	0	547		0	0	0	0

Peak Rolling Hour Flow Rates

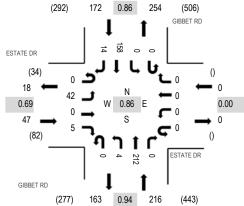
		East	bound			West	oound			North	oound			Sout	hbound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	6	0	0	0	15	0	21
Lights	0	0	0	0	0	55	0	65	0	0	1,394	33	0	48	1,053	0	2,648
Mediums	0	0	0	0	0	0	0	1	0	0	25	1	0	1	54	0	82
Total	0	0	0	0	0	55	0	66	0	0	1,425	34	0	49	1,122	0	2,751

		Eastb	ound			Westb	ound			Northb	ound			South	bound		
	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Heavy Vehicle %		0.0%				0.09	%			0.4	%			1.3	3%		0.8%
Heavy Vehicle %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.0%	0.0%	0.0%	1.3%	0.0%	0.8%
Peak Hour Factor		0.0% 0.0% 0.0% 0.0%				0.7	7			0.8	8			8.0	33		0.98
Peak Hour Factor	0.00	0.00	0.00	0.00	0.00	0.62	0.00	0.78	0.00	0.00	0.89	0.58	0.00	0.78	0.82	0.00	0.98

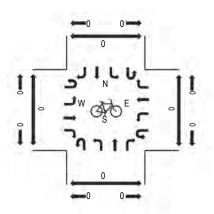
Location: 3 GIBBET RD & ESTATE DR AM

Date: Thursday, November 10, 2022

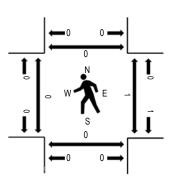
Peak Hour: 07:45 AM - 08:45 AM


Peak 15 Minutes: 07:45 AM - 08:00 AM

(303) 216-2439
www.alltrafficdata.net


Peak Hour: 07:45 AM - 08:45 AM

Peak 15-Minutes: 07:45 AM - 08:00 AM


Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

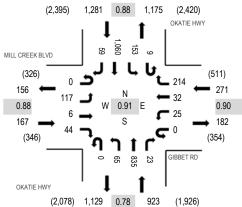
Traffic Counts - Motorized Vehicles

		ESTA7	TE DR		E	STAT	E DR			GIBBE	TRD			GIBBE	TRD							
Interval		Eastb	ound			Westb	ound			Northb	ound			South	oound			Rolling	Ped	lestriar	n Cross	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
7:00 AM	0	13	0	0	0	0	0	0	0	0	59	0	0	0	22	2	96	428	0	0	0	0
7:15 AM	0	6	0	1	0	0	0	0	0	2	63	0	0	0	25	3	100	430	0	0	0	0
7:30 AM	0	8	0	2	0	0	0	0	0	1	64	0	0	0	27	3	105	431	0	0	0	0
7:45 AM	0	17	0	1	0	0	0	0	0	3	65	0	0	0	37	4	127	435	0	0	0	0
8:00 AM	0	9	0	2	0	0	0	0	0	0	46	0	0	0	38	3	98	389	0	0	0	0
8:15 AM	0	10	0	1	0	0	0	0	0	1	49	0	0	0	38	2	101		0	1	0	0
8:30 AM	0	6	0	1	0	0	0	0	0	0	52	0	0	0	45	5	109		0	0	0	0
8:45 AM	0	4	0	1	0	0	0	0	0	3	35	0	0	0	36	2	81		0	0	0	0

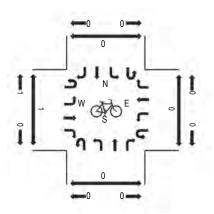
Peak Rolling Hour Flow Rates

		East	bound			West	oound			North	oound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Lights	0	40	0	4	0	0	0	0	0	4	208	0	0	0	152	11	419
Mediums	0	1	0	1	0	0	0	0	0	0	4	0	0	0	6	3	15
Total	0	42	0	5	0	0	0	0	0	4	212	0	0	0	158	14	435

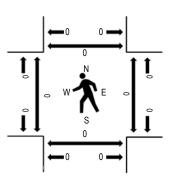
		Eastb	ound			Westb	ound			Northb	ound			South	oound		
	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Heavy Vehicle %		2.1%				0.0	%			0.0	%			0.0	%		0.2%
Heavy Vehicle %	0.0%	2.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%
Peak Hour Factor		0.69				0.0	0			0.9	4			3.0	36		0.86
Peak Hour Factor	0.00	0.65	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.50	0.97	0.00	0.00	0.00	0.88	0.70	0.86



Location: 1 OKATIE HWY & GIBBET RD PM


Date: Thursday, November 10, 2022 Peak Hour: 04:30 PM - 05:30 PM

Peak 15-Minutes: 05:15 PM - 05:30 PM


Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

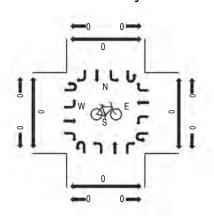
Traffic Counts - Motorized Vehicles

	MIL	L CRE	EK BL	VD	(GIBBE	TRD		(OKATIE	HWY		(OKATIE	E HWY							
Interval		Eastb	ound			Westb	ound			Northb	ound			Southl	oound			Rolling	Ped	destriar	n Crossi	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
4:00 PM	0	35	2	10	0	5	9	53	0	15	314	3	3	35	207	18	709	2,578	0	0	0	0
4:15 PM	0	25	0	9	0	6	7	37	0	19	219	5	5	36	209	23	600	2,520	0	0	0	0
4:30 PM	0	32	2	10	0	3	7	51	0	13	216	5	3	29	265	9	645	2,642	0	0	0	0
4:45 PM	0	29	2	14	0	5	3	50	0	18	199	7	1	38	237	21	624	2,617	0	0	0	0
5:00 PM	0	32	2	8	0	8	14	54	0	17	197	5	2	37	269	6	651	2,600	0	0	0	0
5:15 PM	0	24	0	12	0	9	8	59	0	17	223	6	3	49	289	23	722		0	0	0	0
5:30 PM	0	40	2	8	0	4	9	46	0	17	191	11	5	46	224	17	620		0	0	0	0
5:45 PM	0	30	4	14	0	7	5	52	0	19	188	2	2	26	246	12	607		0	0	0	0

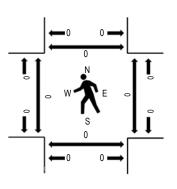
Peak Rolling Hour Flow Rates

		East	bound			West	oound			Northb	ound			South	hbound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	0	0	1	0	0	6	0	0	1	2	0	10
Lights	0	115	6	43	0	25	32	212	0	65	796	23	8	152	1,036	59	2,572
Mediums	0	2	0	1	0	0	0	1	0	0	33	0	1	0	22	0	60
Total	0	117	6	44	0	25	32	214	0	65	835	23	9	153	1,060	59	2,642

		Eastb	ound			Westb	ound			Northb	ound			South	oound		
	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Heavy Vehicle %		0.0%				0.49	6			0.79	%			0.2	1%		0.4%
Heavy Vehicle %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.5%	0.0%	0.0%	0.7%	0.0%	0.0%	0.7%	0.2%	0.0%	0.4%
Peak Hour Factor		0.88				0.9	0			0.7	8			3.0	38		0.91
Peak Hour Factor	0.00	0.79	0.50	0.79	0.00	0.78	0.64	0.91	0.00	0.92	0.75	0.66	0.60	0.87	0.92	0.77	0.91


Location: 2 OKATIE HWY & LAWTON BLVD PM

Date: Thursday, November 10, 2022 **Peak Hour:** 04:45 PM - 05:45 PM **Peak 15-Minutes:** 05:15 PM - 05:30 PM


Peak Hour - Motorized Vehicles

1,573 0.95 1,193 (2,452)OKATIE HWY 1,440 132 LAWTON BLVD (139) () 0 0.00 0.95 E 0.86 (342)OKATIE HWY (2,729) 1,461 0.80 1,174 (2,445)

Peak Hour - Bicycles

Peak Hour - Pedestrians

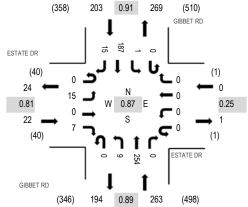
Note: Total study counts contained in parentheses.

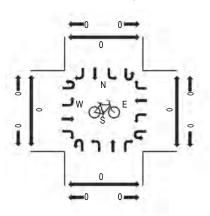
Traffic Counts - Motorized Vehicles

	L	AWTO	N BLV[)	LA	MTON	I BLVD		(OKATIE	HWY		(OKATII	E HWY							
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestriar	n Crossi	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
4:00 PM	0	0	0	0	0	7	0	8	0	0	380	22	0	30	290	0	737	2,729	0	0	0	0
4:15 PM	0	0	0	0	0	2	0	13	1	0	301	7	0	28	314	0	666	2,707	0	0	0	0
4:30 PM	0	0	0	0	0	5	0	11	0	0	286	15	0	31	322	0	670	2,786	0	0	0	0
4:45 PM	0	0	0	0	0	3	0	12	0	0	268	10	0	26	337	0	656	2,826	0	0	0	0
5:00 PM	0	0	0	0	0	7	0	13	0	0	279	15	0	36	365	0	715	2,794	0	0	0	0
5:15 PM	0	0	0	0	0	9	0	14	0	0	298	10	1	34	379	0	745		0	0	0	0
5:30 PM	0	0	0	0	0	2	0	19	0	0	289	5	0	36	359	0	710		0	0	0	0
5:45 PM	0	0	0	0	0	8	0	6	0	0	254	5	0	32	319	0	624		0	0	0	0

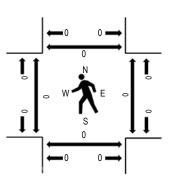
Peak Rolling Hour Flow Rates

		East	bound			West	oound			Northl	oound			South	hbound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	8	0	0	0	1	0	9
Lights	0	0	0	0	0	21	0	58	0	0	1,102	40	1	132	1,420	0	2,774
Mediums	0	0	0	0	0	0	0	0	0	0	24	0	0	0	19	0	43
Total	0	0	0	0	0	21	0	58	0	0	1,134	40	1	132	1,440	0	2,826


		Eastb	ound			Westb	ound			Northb	ound			South	bound		
	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Heavy Vehicle %		0.0)%			0.0	%			0.7	%			0.1	%		0.3%
Heavy Vehicle %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.7%	0.0%	0.0%	0.0%	0.1%	0.0%	0.3%
Peak Hour Factor		0.0	00			0.8	6			0.8	0			0.9	95		0.95
Peak Hour Factor	0.00	0.00	0.00	0.00	0.00	0.72	0.00	0.76	0.25	0.00	0.81	0.61	0.25	0.96	0.95	0.00	0.95


Location: 3 GIBBET RD & ESTATE DR PM Date: Thursday, November 10, 2022 Peak Hour: 04:45 PM - 05:45 PM

Peak 15-Minutes: 05:15 PM - 05:30 PM


Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

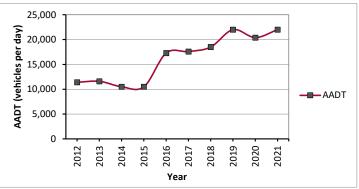
Traffic Counts - Motorized Vehicles

		ESTAT	ΓE DR			ESTAT	E DR			GIBBE	TRD			GIBBE	ET RD							
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestriar	n Crossi	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
4:00 PM	0	2	0	2	0	0	0	0	0	1	63	0	0	0	39	2	109	415	0	0	0	0
4:15 PM	0	4	0	0	0	0	0	0	0	4	45	0	0	0	40	2	95	427	0	0	0	0
4:30 PM	0	5	0	3	0	0	0	0	0	0	54	0	0	0	33	3	98	472	0	0	0	0
4:45 PM	0	4	0	2	0	0	0	0	0	3	57	0	0	0	42	5	113	488	0	0	0	0
5:00 PM	0	4	0	0	0	0	0	0	0	4	69	0	0	0	40	4	121	482	0	0	0	0
5:15 PM	0	6	0	2	0	0	0	0	0	0	76	0	0	0	51	5	140		0	0	0	0
5:30 PM	0	1	0	3	0	0	0	0	0	2	52	0	0	1	54	1	114		0	0	0	0
5:45 PM	0	1	0	1	0	0	0	1	0	2	66	0	0	0	34	2	107		0	0	0	0

Peak Rolling Hour Flow Rates

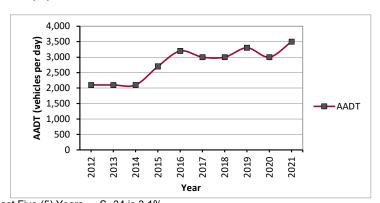
		East	bound			West	oound			North	oound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
Lights	0	15	0	7	0	0	0	0	0	9	253	0	0	1	187	15	487
Mediums	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	15	0	7	0	0	0	0	0	9	254	0	0	1	187	15	488

		Eastb	ound			Westb	ound			Northb	ound			South	oound		
	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Heavy Vehicle %		0.0)%			0.0	%			0.4	%			0.0	%		0.2%
Heavy Vehicle %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%
Peak Hour Factor		0.0	81			0.2	5			0.8	9			0.9	91		0.87
Peak Hour Factor	0.00	0.79	0.00	0.58	0.00	0.00	0.00	0.25	0.00	0.69	0.87	0.00	0.00	0.25	0.87	0.85	0.87



Gibbet Road Residential Development Traffic Impact Analysis

Appendix E – Historical Growth Rate Data


<u>Annual Average Daily Traffic (AADT) from the</u> South Carolina Department of Transportation (SCDOT)

Station	070165
Route	SC 170
Location	SC 46 (OKATIE HWY) TO US 278 (W
Location	FORDING ISLAND RD)
2012	11,400
2013	11,600
2014	10,500
2015	10,500
2016	17,300
2017	17,600
2018	18,500
2019	22,000
2020	20,400
2021	22,000

Annual Growth for Last Five (5) Years --- SC 170 is 4.6% Annual Growth for Last Ten (10) Years --- SC 170 is 6.8%

Station	070325
Route	S- 34
Location	SC 170 (OKATIE HWY) TO SC 46 (MAY RIVER RD)
2012	2,100
2013	2,100
2014	2,100
2015	2,700
2016	3,200
2017	3,000
2018	3,000
2019	3,300
2020	3,000
2021	3,500

Annual Growth for Last Five (5) Years --- S- 34 is 3.1% Annual Growth for Last Ten (10) Years --- S- 34 is 5.2%

Gibbet Road Residential Development Traffic Impact Analysis

Appendix F - Capacity Analysis Worksheets

Gibbet Road Residential Development Traffic Impact Analysis

2022 EXISTING CONDITIONS

Section IX. Item #1. Gibbet Road Multifamily De 2022 Existing AM

Intersection								
Int Delay, s/veh	1.5							
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	7	7	^	7	*	^		
Traffic Vol, veh/h	55	66	1425	34	49	1122		
Future Vol, veh/h	55	66	1425	34	49	1122		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	Stop	-			None		
Storage Length	0	0	-	275	450	-		
Veh in Median Storage		-	0	-	-	0		
Grade, %	0	-	0	-	-	0		
Peak Hour Factor	98	98	98	98	98	98		
Heavy Vehicles, %	2	2	2	3	2	6		
M mtFlow	56	67	1454	35	50	1145		
	Mnor1		√ajor1		√ajor2			
Conflicting FlowAll	2127	727	0	0	1454	0		
Stage 1	1454	-	-	-	-	-		
Stage 2	673	-	-	-	-	-		
Critical Holwy	684	694	-	-	4.14	-		
Critical Holwy Stg 1	5.84	-	-	-	-	-		
Critical Holwy Stg 2	5.84	-	-	-	-	-		
Follow-up Hdwy	3.52	332	-	-	222	-		
ot Cap-1 Maneuver	~ 43	366	-	-	461	-		
Stage 1	181	-	-	-	-	-		
Stage 2	468	-	-	-	-	-		
Platoon blocked, %			-	-		-		
Mov Cap-1 Maneuver	~ 38	366	-	-	461	-		
Vov Cap-2 Maneuver	159	-	-	-	-	-		
Stage 1	181	-	-	-	-	-		
Stage 2	417	-	-	-	-	-		
ipproach	WB		NB		SB			
HCMControl Delay, s	27.2		0		0.6			
HCMLOS	D							
VInor Lane/Wajor M/n	nt	NBT	NBRV	VBLn1V	VBLn2	SBL	SBT	
Capacity (veh/h)		-	-		366	461	-	
HCMLane V.C Ratio		-	-	0.353			-	
HCMControl Delay (s))	-	-		17	138	-	
HCMLane LOS		_	-	E	С	В	-	
HCM95th %tile Q(veh))	-	-	1.5	0.7	04	-	
Notes								
ioles ∹ Volume exceeds ca	nacity	\$ Do	lav ovo	eeds 30	Ϋ́c	T. Com	outation Not Defined	*: All major volume in platoon
Volume exceeds (a)	pauty	⊅. DE	ay exu	ccus 3	10	T. CUIT	ualu mol Delinea	. Ali major volume impiatoon

Kimley-Hom Synchro 11 Report

2022 Existing AM

2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

	•	-	•	1	•	•	1	†	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow(vph)	258	16	110	49	10	222	47	1011	21	171	1013	23
v/c Ratio	0.76	0.04	0.21	Q15	0.02	0.30	Q17	0.79	QCC	0.55	060	0.03
Control Delay	47.2	285	1.2	29.6	285	135	100	29.4	Q1	17.1	19.0	QO
Queue Delay	QO	QO	QO	QO	QO	QO	QO	QO	QO	QO	QO	QO
Total Delay	47.2	285	1.2	29.6	285	13.5	100	29.4	Q1	17.1	19.0	QO
Queue Length 50th (ft)	129	7	0	21	4	56	10	251	0	41	230	0
Queue Length 95th (ft)	#283	26	3	59	19	128	26	371	0	80	316	0
Internal Link Dist (ft)		776			677			1441			2596	
Turn Bay Length (ft)			100	225		225	350		200	450		400
Base Capacity (vph)	449	560	624	434	549	873	272	1925	952	442	2326	1117
Starvation Cap Reductn	0	Ο	0	Ο	0	0	0	0	0	0	Ο	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	057	003	018	011	0.02	0.25	Q17	053	0.02	0.39	0.44	0.02

Intersection Summary

Queue shown is maximum after two cycles.

Kimley-Horn Synchro 11 Report

^{# 95}th percentile volume exceeds capacity, queue may be longer.

2022 Existing AM

	۶	→	•	•	←	•	4	†	-	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	†	7	*	↑	7	7	^	7	7	^	7
Traffic Volume (veh/h)	248	15	106	47	10	213	45	971	20	164	972	22
Future Volume (veh/h)	248	15	106	47	10	213	45	971	20	164	972	22
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj SatFlow, veh/h/in	1885	1781	1856	1841	1752	1885	1767	1856	1870	1811	1811	1870
Adj FlowRate, veh/h	258	16	0	49	10	222	47	1011	21	171	1012	0
Peak Hour Factor	0.96	0%	0%	0.96	0.96	0%	0.96	0.96	0,96	0.96	0%	0.96
Percent Heavy Veh, %	1	8	3	4	10	1	9	3	2	6	6	2
Cap, veh/h	354	438		403	431	514	278	1569	706	323	1664	
Arrive On Green	0.25	0.25	ω	0.25	0.25	0.25	Q04	0.45	0.45	008	0.48	0∞
Sat Flow, veh/h	1158	1781	1572	1375	1752	1598	1682	3526	1585	1725	3441	1585
Grp Volume(v), veh/h	258	16	0	49	10	222	47	1011	21	171	1012	Ο
Grp Sat Flow(s), veh/h/ln	1158	1781	1572	1375	1752	1598	1682	1763	1585	1725	1721	1585
Q Serve(g_s), s	21.0	Ω7	QO	27	04	106	1.3	21.5	Ω7	51	20.7	QO
Cyde Q Clear(g_c), s	21.4	Ω7	QO	34	0.4	106	1.3	21.5	0.7	51	20.7	QO
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	354	438		403	431	514	278	1569	706	323	1664	
V/C Ratio(X)	073	0.04		012	0.02	0.43	Q17	0.64	0	053	0.61	
Avail Cap(c_a), veh/h	384	484		439	476	555	305	1652	743	480	2005	
HCMPlatoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0∞	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0∞
Uniform Delay (d), s/veh	35.7	27.7	QO	29.0	27.6	25.8	138	20.8	15.0	15.8	182	QO
Incr Delay (d2), s/veh	63	QO	QO	01	0.0	06	03	09	0.0	1.3	04	QO
Initial Q Delay(d3), s/veh	QO	QO	QO	QO	0.0	QO	QO	QO	QO	QO	QO	QO
%ile BackOfQ(50%),veh/in	65	03	QO	09	0.2	38	Ω5	80	0.2	1.8	7.3	QO
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	420	27.7	QO	29.1	27.6	264	14.1	21.7	15.1	17.2	187	QO
LnGrp LOS	D	С		С	С	С	В	С	В	В	В	
Approach Vol, veh/h		274	Α		281			1079			1183	Α
Approach Delay, s/veh		41.2			269			21.2			184	
Approach LOS		D			С			С			В	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	14.2	50.7		31.5	10.5	54.5		31.5				
Change Period (Y+Rc), s	69	7.8		7.8	69	7.8		7.8				
Max Green Setting (Gmax), s	161	45.2		262	51	562		262				
Max Q Clear Time (q_c+l1), s	7.1	23.5		23.4	33	227		126				
Green Ext Time (p_c), s	03	168		03	00	239		08				
Intersection Summary												
HCM6th Ctrl Delay			226									
HCM6th LOS			С									
Notes												

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Kimley-Horn Synchro 11 Report

2022 Existing AM

Intersection						
Int Delay, s/veh	1.4					
			145			N IEEE
<u>Movement</u>	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1→			र्स	ሻ	7
Traffic Vol, veh/h	158	14	4	225	45	5
Future Vol, veh/h	158	14	4	225	45	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	75
Veh in Median Storage,	# O	-	-	0	0	-
Grade, %	0	_	-	0	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehides, %	4	21	2	2	5	20
MmtFlow	184	16	5	262	52	6
IVWITILI IOVV	104	10	J	202	<i>J</i> Z	U
Major/Mnor N	/ajor1	1	Vajor2	1	VInor1	
Conflicting FlowAll	0	0	200	0	464	192
Stage 1	-	-	-	-	192	-
Stage 2	_	_	_	_	272	_
Critical Holwy	_	_	4.12	_	645	64
Critical Holwy Stg 1	_	_	7.12	_	5.45	- -
Critical Holwy Stg 2			_	_	5.45	_
	-	-	2210			
Follow-up Hawy	-		2218		3545	348
Pot Cap-1 Maneuver	-	-	1372	-	551	806
Stage 1	-	-	-	-	833	-
Stage 2	-	-	-	-	767	-
Platoon blocked, %	-	-		-		
Mbv Cap-1 Maneuver	-	-	1372	-	549	806
Mbv Cap-2 Maneuver	-	-	-	-	549	-
Stage 1	-	-	-	-	833	-
Stage 2	_	_	-	_	764	-
g- =						
Approach	EB		WB		NB	
HCMControl Delay, s	0		Q1		11.9	
HCMLOS					В	
Manual and A Adam N	<u> </u>	JDI4 N	UDL O	EDT	EDD	\A.D.I
Mnor Lane/Wajor M/m	t 1	VBLn1 N		EBT	EBR	WBL
Capacity (veh/h)		549	806	-		1372
HCMLane V/C Ratio		0.095		-	-	003
HCMControl Delay (s)		122	9.5	-	-	7.6
HCMLane LOS		В	Α	-	-	Α
HCM95th %tile Q(veh)		03	0	-	-	0

Kimley-Hom Synchro 11 Report

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	7	^	7	*	^
Traffic Vol., veh/h	21	58	1135	40	133	1440
Future Vol, veh/h	21	58	1135	40	133	1440
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	3 LUP -	Stop	-	Yield	-	None
Storage Length	0	3 u p		275	450	NOIE -
			0			0
Veh in Median Storage	•	-		-	-	
Grade, %	0	- OF	0	-	- ~	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	3	2	2	1
MmtFlow	22	61	1195	42	140	1516
Major/Mnor	Mnor1	N	√ajor1	1	√ajor2	
Conflicting FlowAll	2233	598	0		1195	0
				U	1170	
Stage 1	1195	-	-	-	-	-
Stage 2	1038	-	-	-	-	-
Critical Holwy	684	694	-	-	4.14	-
Critical Holwy Stg 1	5.84	-	-	-	-	-
Critical Holwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	222	-
Pot Cap-1 Maneuver	36	445	-	-	580	-
Stage 1	250	-	-	-	-	-
Stage 2	302	-	-	-	-	-
Platoon blocked, %			-	-		-
Mbv Cap-1 Maneuver	27	445	-	-	580	-
Mbv Cap-2 Maneuver	160	-	_	_	-	_
Stage 1	250	-	_	_	_	_
Stage 2	229	_	_	_	_	_
Juge 2						
Approach	WB		NB		SB	
HCMControl Delay, s	188		0		1.1	
HCMLOS	С					
N.A.		NET	NIDDI	VDI 4:	NDL 6	ODI
Mnor Lane/Wajor M/n	nt	NBT	NBRV	VBLn1V		SBL
Capacity (veh/h)		-	-	160	445	580
HCMLane V/C Ratio		-	-		Q137	
HCMControl Delay (s)		-	-	31.1	14.4	132
HCMLane LOS		-	-	D	В	В
HCM95th %tile Q(veh))	-	-	0.5	0.5	0.9

Queues

2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

2022 Existing PM

	۶	→	•	1	←	•	4	†	-	1	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow(vph)	129	8	48	27	35	235	71	918	27	197	1165	65
v/c Ratio	0.53	002	010	011	0.10	0.39	0.23	064	003	0.45	058	0.07
Control Delay	38.8	284	0.4	29.4	289	14.1	7.4	19.4	Q1	9.6	15.6	Q1
Queue Delay	QO	QO	QO	QO	QO	QO	QO	QO	QO	QO	QO	QO
Total Delay	388	284	04	29.4	289	14.1	7.4	19.4	Q1	9.6	15.6	Q1
Queue Length 50th (ft)	53	3	0	10	13	50	11	172	0	32	215	0
Queue Length 95th (ft)	#130	16	0	35	42	118	24	249	0	58	288	0
Internal Link Dist (ft)		776			677			1441			2596	
Turn Bay Length (ft)			100	225		225	350		200	450		400
Base Capacity (vph)	283	387	507	290	387	783	309	2066	1041	639	2607	1203
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	Ο	Ο	0	0	Ο	Ο	0	0	0	0
Reduced v/c Ratio	046	002	0.09	009	0.09	0.30	0.23	0.44	0	031	0.45	0.05

Intersection Summary

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

HCM 6th Signalized Intersection Summary
2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

2022 Existing PM

	۶	-	*	•	•	•	4	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	7	^	7	7	^	7	*	^	7
Traffic Volume (veh/h)	117	7	44	25	32	214	65	835	25	179	1060	59
Future Volume (veh/h)	117	7	44	25	32	214	65	835	25	179	1060	59
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj SatFlow, veh/h/ln	1870	1870	1870	1870	1870	1885	1870	1826	1870	1885	1870	1870
Adj FlowRate, veh/h	129	8	0	27	35	235	71	918	27	197	1165	0
Peak Hour Factor	0.91	0.91	091	0.91	091	091	0.91	091	091	0.91	091	091
Percent Heavy Veh, %	2	2	2	2	2	1	2	5	2	1	2	2
Cap, veh/h	241	292		300	292	377	315	1719	785	417	1873	
Arrive On Green	016	016	$\alpha \infty$	016	016	016	0.05	0.50	0.50	008	053	ω
Sat Flow, veh/h	1109	1870	1585	1407	1870	1598	1781	3469	1585	1795	3554	1585
Grp Valume(v), veh/h	129	8	Ο	27	35	235	71	918	27	197	1165	0
Grp Sat Flow(s), veh/h/in	1109	1870	1585	1407	1870	1598	1781	1735	1585	1795	1777	1585
Q Serve(g_s), s	9.5	Ω3	QO	1.4	1.3	11.0	1.5	15.2	Ω7	4.4	19.3	QO
Cyde Q Clear(g_c), s	108	Q3	QO	1.7	1.3	11.0	1.5	152	0.7	4.4	19.3	QO
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	241	292		300	292	377	315	1719	785	417	1873	
V/C Ratio(X)	053	$\alpha\alpha$		0.09	0.12	0.62	0.23	0.53	$\alpha\alpha$	Q47	0.62	
Avail Cap(c_a), veh/h	243	295		303	295	380	337	1719	785	619	2089	
HCMPlatoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	αω	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0∞
Uniform Delay (d), s/veh	35.0	29.9	QO	30.7	30.4	287	105	14.5	10.8	105	139	QO
Incr Delay (d2), s/veh	22	QO	QO	0.1	02	31	04	Q4	0.0	80	Ω5	QO
Initial Q Delay(d3),s/veh	QO	QO	QO	QO	QO	QO	QO	Q.O	QO	QO	QO	QO
%ile BackOfQ(50%),veh/in	27	Q1	QO	Ω5	0.6	4.2	Ω5	51	0.2	1.4	64	QO
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	37.3	300	QO	308	30.6	31.8	108	14.9	109	11.4	14.5	QO
LnGrp LOS	D	С		С	С	С	В	В	В	В	В	
Approach Vol, veh/h		137	Α		297			1016			1362	Α
Approach Delay, s/veh		369			31.6			14.5			14.0	
Approach LOS		D			С			В			В	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	136	49.3		20.9	10.9	51.9		20.9				
Change Period (Y+Rc), s	69	7.8		7.8	69	7.8		7.8				
Max Green Setting (Gmax), s	161	38.2		132	51	49.2		132				
Max Q Clear Time (q_c+l1), s	64	17.2		128	35	21.3		130				
Green ExtTime (p_c), s	04	153		QO	QO	228		00				
Intersection Summary												
HCM6th Ctrl Delay			17.2									
HCM6th LOS			В									
Notes												

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

2022 Existing PM

Intersection							
Int Delay, s/veh	Ω7						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
		LDK	VVDL				
Lane Configurations	107	15	0	€	1 5	7	
Traffic Vol., veh/h	187	15	9	256	15	7	
Future Vol, veh/h	187	15	9	256	15	7	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-		-	None	
Storage Length	-	-	-	-	0	75	
Veh in Median Storage		-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	87	87	87	87	87	87	
Heavy Vehides, %	2	2	2	0	2	2	
MmtFlow	215	17	10	294	17	8	
	2.0		10				
Major/Mnor 1	√ajor1	N	√ajor2	<u> </u>	VInor1		
Conflicting FlowAll	0	0	232	0	538	224	
Stage 1	-	-	-	-	224	-	
Stage 2	-	-	-	-	314	-	
Critical Hdvvy	-	-	4.12	-	642	622	
Critical Holwy Stg 1	_	_	-	_	5.42	_	
Critical Holwy Stg 2	_	_	_	_	5.42	_	
Follow-up Halwy	_	_	2218		3518		
Pot Cap-1 Maneuver			1336		504	815	
•		-			813		
Stage 1	-	-	-	-		-	
Stage 2	-	-	-	-	741	-	
Platoon blocked, %	-	-		-			
Mbv Cap-1 Maneuver	-	-	1336	-	499	815	
Mbv Cap-2 Maneuver	-	-	-	-	499	-	
Stage 1	-	-	-	-	813	-	
Stage 2	-	-	-	-	734	-	
Ammonde	ED		\AD		ND		
Approach	EB		WB		NB		
HCMControl Delay, s	0		03		11.5		
HCMLOS					В		
Mnor Lane/Major M/m	nt N	NBLn1 N	VIRI n2	EBT	EBR	WBL	
	it l'						
Capacity (veh/h)		499	815	-	-	1336	
HCMLane V/C Ratio		0.035	0.01	-	-	0.008	
HCMControl Delay (s)		125	9.5	-	-	7.7	
HCMLane LOS		В	Α	-	-	Α	
HCM95th %tile Q(veh)		Q1	0	-	-	0	

Gibbet Road Residential Development Traffic Impact Analysis

2025 NO BUILD CONDITIONS

~: Volume exceeds capacity

amily De Section IX. Item #1. 2025 Phase 1 No-Build AM

							_
Interportion							,
Intersection	2.2						
Int Delay, s/veh	33						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	I
Lane Configurations	1	7	^	7	7	^	
Traffic Vol, veh/h	67	81	1806	42	60	1450	
Future Vol., veh/h	67	81	1806	42	60	1450	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	Stop	-	Yield	-	None	
Storage Length	0	0	-	275	450	-	
Veh in Median Storag		-	0	-	-	0	
Grade, %	0	-	0	-	_	0	
Peak Hour Factor	95	95	95	95	95	95	
Heavy Vehicles, %	2	2	2	3	2	6	
M/mtFlow	71	85	1901	44	63	1526	
TV WITHET TOVV	71	ω	1701		ω	1320	
	Mnor1		√ajor1		√ajor2		
Conflicting FlowAll	2790	951	0	0	1901	0	
Stage 1	1901	-	-	-	-	-	
Stage 2	889	-	-	-	-	-	
Critical Hdvvy	684	694	-	-	4.14	-	
Critical Hdvvy Stg 1	5.84	_	-	-	-	-	
Critical Holwy Stg 2	5.84	-	-	-	-	-	
Follow-up Hdwy	3.52	3.32	_	-	222	-	
Pot Cap-1 Maneuver	~ 15	260	-	-	309	-	
Stage 1	103	-	_	_	_	-	
Stage 2	362	-	-	-	-	-	
Platoon blocked, %			_	_		_	
Mbv Cap-1 Maneuver	~12	260	_	_	309		
Mbv Cap-2 Maneuver		200	_		307	_	
Stage 1	103		<u>-</u>	<u>-</u>	_	_	
Ğ			-	-	-	-	
Stage 2	288	-	-	-	-	-	
Approach	WB		NB		SB		
HCMControl Delay, s			0		08		
HCMLOS	F						
Moort and Adjor Ma	mt .	NIDT	NIDDV	\DI ∽1\/	MDI 22	CDI	
Mnor Lane/Vajor Mr	TIL	NBT	NBKV	VBLn1V		SBL	
Capacity (veh/h)		-	-	91	260	309	
HCMLane V/C Ratio	,	-		0.775			
HCMControl Delay (s	5)	-	-	121.8	25.5	19.6	
HCMLane LOS	,	-	-	F	D	С	
HCM95th %tile Q(vel	٦)	-	-	4	1.4	80	
Notes							

Kimley-Horn Synchro 11 Report

\$: Delay exceeds 300s

+: Computation Not Defined

*: All major volume in platoon

Gibbet Road Multifamily De Section IX. Item 2025 Phase 1 No-Build AM

Section IX. Item #1.

2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

	•	-	*	1	←	*	1	†	1	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow(vph)	320	27	137	61	21	329	58	1261	26	274	1272	28
v/c Ratio	0.94	0.06	0.26	019	0.05	0.43	0.30	090	0.04	088	072	003
Control Delay	77.0	329	31	35.1	328	187	123	40.3	Q1	55.8	23.0	Q1
Queue Delay	QO	QO	QO	QO	QO	QO	QO	QO	QO	QO	QO	QO
Total Delay	77.0	329	31	35.1	328	187	123	40.3	Q1	55.8	230	Q1
Queue Length 50th (ft)	224	15	0	34	12	130	15	423	0	136	354	0
Queue Length 95th (ft)	#401	38	21	72	32	207	31	523	0	#285	440	0
Internal Link Dist (ft)		776			677			1441			2596	
Turn Bay Length (ft)			100	225		225	350		200	450		400
Base Capacity (vph)	348	437	528	336	429	777	194	1505	784	327	1818	899
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	092	0.06	0.26	018	0.05	0.42	0.30	0.84	αœ	0.84	0.70	ΟŒ

Intersection Summary

Queue shown is maximum after two cycles.

Synchro 11 Report Kimley-Hom

⁹⁵th percentile volume exceeds capacity, queue may be longer.

HCM 6th Signalized Intersection Summary
2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

2025 Phase 1 No-Build AM

_	۶	→	•	•	—	•	1	†	~	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	1	^	7	7	^	7	7	^	7
Traffic Volume (veh/h)	304	26	130	58	20	313	55	1198	25	260	1208	27
Future Volume (veh/h)	304	26	130	58	20	313	55	1198	25	260	1208	27
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1781	1856	1841	1752	1885	1767	1856	1870	1811	1811	1870
Adj FlowRate, veh/h	320	27	0	61	21	329	58	1261	26	274	1272	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	1	8	3	4	10	1	9	3	2	6	6	2
Cap, veh/h	315	440	0.00	388	433	572	219	1516	682	306	1729	0.00
Arrive On Green	0.25	0.25	000	0.25	0.25	0.25	004	0.43	0.43	011	0.50	000
Sat Flow, veh/h	1039	1781	1572	1361	1752	1598	1682	3526	1585	1725	3441	1585
Grp Volume(v), veh/h	320	27	0	61	21	329	58	1261	26	274	1272	0
Grp Sat Flow(s), veh/h/ln	1039	1781	1572	1361	1752	1598	1682	1763	1585	1725	1721	1585
Q Serve(g_s), s	25.2	1.2	0.0	38	1.0	17.7	1.7	33.7	1.0	9.4	31.0	0.0
Cyde Q Clear(g_c), s	262	1.2	0.0	50	1.0	17.7	1.7	33.7	1.0	9.4	31.0	00
Prop In Lane	1.00	4.40	1.00	1.00	100	1.00	1.00	4547	1.00	1.00	1700	1.00
Lane Grp Cap(c), veh/h	315	440		388	433	572	219	1516	682	306	1729	
V/C Ratio(X)	1.02	006		016	0.05	0.58	0.26	0.83	0.04	089	0.74	
Avail Cap(c_a), veh/h	315	440	1 00	388	433	572	235	1516	682	376	1822	1 00
HCMPlatoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	000	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	000
Uniform Delay (d), s/veh	43.2	30.6	0.0	325	30.5	27.5	168	268	17.5	227	20.8	0.0
Incr Delay (d2), s/veh	54.9	01	00	0.2	00	1.4	0.6	4.2	00	201	1.6	0.0
Initial Q Delay(d3), s/veh	00 132	0.0	00 00	00	0.0	00	00	0.0	00	0.0 5.0	0.0	0.0
%ile BackOfQ(50%), veh/in		Q5	uu	1.2	04	66	06	136	03	20	11.3	QO
Unsig. Movement Delay, s/veh	981	30.6	0.0	327	30.5	29.0	17.5	31.0	17.6	429	224	QO
LnGrp Delay(d),s/veh LnGrp LOS	90.1 F	C C	uu	327 C	C	29.U C	17.5 B	31.0 C	17.0 B	429 D	224 C	uo
	Г	347	А	C	411		Ь		Ь	D		A
Approach Vol, veh/h		928	А		29.6			1345 302			1546 260	A
Approach Delay, s/veh Approach LOS		920 F			29.0 C			C C			200 C	
•											C	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	187	534		34.0	11.0	61.1		34.0				
Change Period (Y+Rc), s	69	7.8		7.8	69	7.8		7.8				
Max Green Setting (Gmax), s	161	45.2		26.2	51	562		262				
Max Q Clear Time (g_c+l1), s	11.4	35.7		28.2	37	330		19.7				
Green ExtTime (p_c), s	04	88		QO	QO	20.4		08				
Intersection Summary												
HCM6th Ctrl Delay			34.3									
HCM6th LOS			С									
Notes												

Notes

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection							
Int Delay, s/veh	26						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	^	7		4	ሻ	7	
Traffic Vol, veh/h	194	84	5	276	115	6	
Future Vol, veh/h	194	84	5	276	115	6	
Conflicting Peds, #/hr	0	0	0	0	0	0	
	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	150	-	-	0	75	
Veh in Median Storage,		-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehides, %	4	21	2	2	5	20	
MmtFlow	216	93	6	307	128	7	
Major/Mnor M	′ajor1	N	Vajor2	1	VInor1		
Conflicting FlowAll	0	0	309	0	535	216	
Stage 1	-	-	-	-	216	-	
Stage 2	-	-	-	-	319	-	
Critical Howy	-	-	4.12	-	645	64	
Critical Hdvvy Stg 1	-	-	-	-	5.45	-	
Critical Holwy Stg 2	-	-	-	-	5.45	-	
Follow-up Hdwy	-	-	2218	-	3545	348	
Pot Cap-1 Maneuver	-	-	1252	-	501	781	
Stage 1	-	-	-	-	813	-	
Stage 2	-	-	-	-	730	-	
Platoon blocked, %	-	-		-			
Mbv Cap-1 Maneuver	-	-	1252	-	498	781	
Mbv Cap-2 Maneuver	-	-	-	-	498	-	
Stage 1	-	-	-	-	813	-	
Stage 2	-	-	-	-	726	-	
Approach	EB		WB		NB		
HCMControl Delay, s	0		01		14.4		
HCMLOS			.		В		
		IDI 4.	UDI O	СОТ	EDD	1151	
Mnor Lane/Wajor M/mt	ľ	VBLn1 N		EBT	EBR	WBL	
Capacity (veh/h)		498	781	-		1252	
HCMLane V/C Ratio		0.257		-		0.004	
HCMControl Delay (s)		14.7	9.6	-	-	7.9	
		В	Α	-	-	Α	
HCMLane LOS HCM95th %tile Q(veh)		1	0	_	_	0	

HCM 6th TWSC 1: SC 170 (Okatie Hvvy) & Lawton Boulevard Section IX. Item #1.

Movement	Intersection									
Well with Well		16								
Traffic Vol, vehrh			MOD	NDT	NIDD	CDI	CDT			
Traffic Vol. veh.hr										
Future Vol veh h										
Conflicting Peaks #hr	· ·									
Sign Control Stop of S										
Stope Stope Stope Stope Stope Stope Stope Storage Angle Storage Angle Storage Angle Stope Storage Angle Stop		0								
Strage Length		Stop		Free		Free				
Vehin Nedan Strage, # 2		-		-			None			
Grade, % 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	Storage Length		0		275	450	-			
Peak Hour Factor 95 95 95 95 95 95 95 95 95	Veh in Median Storag	e, # 2	-	0	-	-	0			
Heavy Vehides, % 2 2 3 2 2 1 WmtFlow 27 75 1515 52 172 1926 Wigor/Mnor Mnorl Mjor1 Nejor2 Conflicting FlowAll 2822 758 0 0 1515 0 Stage 1 1515 Stage 2 1307 Cirtical Hdwy 684 694 414 - Cirtical Hdwy Stg 1 584 Cirtical Hdwy Stg 2 584 Cirtical Hdwy Stg 2 584 222 - Cirtical Hdwy Stg 2 584 252 - Cirtical Hdwy Base 1 168 Cirtical Hdwy Base 1 168 Stage 1 168	Grade, %	0	-	0	-	-	0			
WhitFlow 27 75 1515 52 172 1926 Valjor/Mnor Mnor1 Major1 Major2 Valjor/Mnor Valjor/Mnor </td <td>Peak Hour Factor</td> <td>95</td> <td>95</td> <td>95</td> <td>95</td> <td>95</td> <td>95</td> <td></td> <td></td> <td></td>	Peak Hour Factor	95	95	95	95	95	95			
WhitFlow 27 75 1515 52 172 1926 Valjor/Mnor Mnor1 Major1 Major2	Heavy Vehides, %	2	2	3	2	2	1			
Valjor/Mnor Mnor1 Major1 Major2 Conflicting FlowAll 2822 758 0 0 1515 0 Stage 1 1515 - - - - - Stage 2 1307 - - - - - Critical Hotwy 684 694 - 414 - - Critical Hotwy Stg 1 584 - - - - - Critical Hotwy Stg 2 584 - - - - - Collowup Hotwy 352 332 - - 222 - PotCap-1 Maneuver -14 350 - - - - - Stage 1 168 - <td>MvmtFlow</td> <td></td> <td></td> <td></td> <td>52</td> <td></td> <td>1926</td> <td></td> <td></td> <td></td>	MvmtFlow				52		1926			
Conflicting FlowAll 2822 758 0 0 1515 0 Stage 1 1515										
Conflicting FlowAll 2822 758 0 0 1515 0 Stage 1 1515	Naior Maga	Mort	N	/bior1	, n	hior				
Stage 1						_				
Stage 2					U					
Critical Holwy Stg 1 5.84 4.14 - Critical Holwy Stg 1 5.84 4.14 - Critical Holwy Stg 1 5.84 4.14 - Critical Holwy Stg 2 5.84					-					
Critical Hokyy Stg 1 5.84					-					
Critical Hotwy Stg 2 5.84				-	-	4.14	-			
Followup Holwy 3.52 3.32 - 2.22 - Pot Cap-1 Maneuver ~14 350 - 437 - Stage 1 168 Stage 2 217 Platon blocked, % Wbv Cap-1 Maneuver ~8 350 - 437 - Stage 1 168 Wbv Cap-2 Maneuver ~8 350 - 437 - Stage 1 168 Stage 1 168 Stage 1 168 Stage 2 132 Napproach WB NB SB HCMControl Delay, s 285 0 1.5 HCMLOS D Winor Lane/Major Mymt NBT NBRWBLn1WBLn2 SBL SBT Capacity (veh/h) 96 350 437 - HCMLane V/C Ratio - 0.285 0.214 0.393 - HCMControl Delay (s) - 568 181 185 - HCMControl Delay (s) - 568 181 185 - HCMControl Delay (s) - 1.1 0.8 1.8 - Notes				-	-	-	-			
Pot Cap-1 Maneuver - 14 350 - 437 - Stage 1 168 Stage 2 217 Platon blocked, % 437 - Wov Cap-1 Maneuver - 8 350 - 437 - Wov Cap-2 Maneuver - 8 350 437 - Stage 1 168 Stage 1 168 Stage 1 168 Stage 2 132 Stage 2 132 Approach WB NB SB HCMControl Delay, s 285 0 1.5 HCMLOS D Minor Lane/Wejor Mumt NBT NBRWBLn1WBLn2 SBL SBT Capacity (veh/h) 96 350 437 - HCMLane VC Ratio 0.225 0.214 0.393 - HCMControl Delay (s) - 568 181 185 - HCMLane LOS - F C C - HCMControl Delay (s) - 1.1 0.8 1.8 - Notes				-	-		-			
Stage 1 168 Stage 2 217 Stage 2 217 Stage 2 217				-	-		-			
Stage 2	•		350	-	-	437	-			
Platoon blocked, %			-	-	-	-	-			
Wov Cap-1 Maneuver ~8 350 - 437 - Wov Cap-2 Maneuver 96 -		217	-	-	-	-	-			
Mov Caip-2 Maneuver 96 -	Platoon blocked, %			-	-		-			
Stage 1 168 -	Mbv Cap-1 Maneuver	~8	350	-	-	437	-			
Stage 2 132	Mov Cap-2 Maneuver	96	-	-	-	-	-			
Approach WB NB SB	Stage 1	168	-	-	-	-	-			
Approach WB NB SB	Stage 2	132	-	-	-	-	-			
	Annmach	\MR		NR		SB				
Minor Lane/Vajor M/mt NBT NBRWBLn1WBLn2 SBL SBT Capacity (veh/h) - - 96 350 437 - HCMLane V/C Ratio - 0.285 0.214 0.393 - HCMControl Delay (s) - 56.8 18.1 18.5 - HCMLane LOS - F C C - HCM95th %tile Q(veh) - 1.1 0.8 1.8 - Notes										
Minor Lane/Major M/mit NBT NBRWBLn1WBLn2 SBL SBT Capacity (veh/h) 96 350 437 - HCMLane V/C Ratio - 0.285 0.214 0.393 - HCMControl Delay (s) - 56.8 18.1 18.5 - HCMLane LOS - F C C - HCM95th %tile Q(veh) - 1.1 0.8 1.8 - Notes				U		1.3				
Capacity (veh/h) 96 350 437 - HCMLane V/C Ratio 0.285 0.214 0.393 - HCMControl Delay (s) 56.8 18.1 18.5 - HCMLane LOS - F C C - HCM95th %tile Q(veh) - 1.1 0.8 1.8 - Notes	I ICIVILUS	D								
Capacity (veh/h) 96 350 437 - HCMLane V/C Ratio 0.285 0.214 0.393 - HCMControl Delay (s) 56.8 18.1 18.5 - HCMLane LOS - F C C - HCM95th %tile Q(veh) - 1.1 0.8 1.8 - Notes										
HCMLane V/C Ratio 0.285 0.214 0.393 - HCMControl Delay (s) 56.8 18.1 18.5 - HCMLane LOS F C C - HCM95th %tile Q(veh) - 1.1 0.8 1.8 - Notes	Mnor Lane/Wajor Mr	mt	NBT	NBRV	VBLn1V	BLn2	SBL	SBT		
HCMControl Delay (s) 56.8 18.1 18.5 - HCMLane LOS F C C - HCM95th %tile Q(veh) 1.1 0.8 1.8 - Notes	Capacity (veh/h)		-	-	96	350	437	-		
HCMLane LOS F C C - HCM95th %tile Q(veh) 1.1 Q8 1.8 - Notes	HCMLane V/C Ratio		-	-	0.285	0214	0.393	-		
HCMLane LOS F C C - HCM95th %tile Q(veh) 1.1 Q8 1.8 - Notes	HCMControl Delay (s	s)	-	-	568	181	185	-		
HCM95th %tile Q(veh) 1.1 Q.8 1.8 - Notes	HCMLane LOS		-	-		С		-		
Notes Control of the		1)	-	-				-		
	·									
 volume exceeds capacity — \$: Delay exceeds 300s — +: Computation Not Defined — ^: All major volume in platoon 		nna alt	ф. D-	lov 4 =		m	C	u dodine Not Deferre	* All madions roll man in the train	
	~: volume exceeds ca	apacity	#: De	iay exo	eeas 3.	LS .	+: Comp	Duiation Not Defined	: All major volume in platoon	

2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

2025 Phase 1 No-Build PM

	•	-	*	1	←	*	1	†	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	157	18	59	34	49	334	88	1132	34	297	1444	79
v/c Ratio	0.74	0.06	0.14	0.16	0.17	0.48	0.42	0.82	0.04	0.77	0.76	0.09
Control Delay	58.5	33.3	0.6	34.9	34.4	17.8	12.7	27.6	0.1	30.3	18.7	0.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	58.5	33.3	0.6	34.9	34.4	17.8	12.7	27.6	0.1	30.3	18.7	0.4
Queue Length 50th (ft)	81	8	0	16	23	104	14	270	0	85	310	0
Queue Length 95th (ft)	#190	28	0	45	58	188	31	364	0	176	395	3
Internal Link Dist (ft)		776			677			1441			2596	
Turn Bay Length (ft)			100	225		225	350		200	450		400
Base Capacity (vph)	225	310	451	231	310	763	208	1659	880	466	2199	1037
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.70	0.06	0.13	0.15	0.16	0.44	0.42	0.68	0.04	0.64	0.66	0.08

Intersection Summary

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

HCM 6th Signalized Intersection Summary 2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

amily De Section IX. Item #1. 2025 Phase 1 No-Build PM

1 t 4 **EBL EBR WBL WBT NBT** Movement **EBT WBR NBL NBR** SBL **SBT SBR** Lane Configurations ሻ ٨ 7 ሽ 7 ሽ 44 7 ሻ 44 7 ٠ Traffic Volume (veh/h) 143 16 54 31 45 304 80 1030 1314 72 270 31 Future Volume (veh/h) 143 54 31 45 304 80 1030 31 270 1314 72 16 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No No 1870 1885 1870 Adi Sat Flow, veh/h/ln 1870 1870 1870 1870 1826 1870 1885 1870 1870 Adj Flow Rate, veh/h 157 18 0 34 49 334 88 1132 34 297 1444 0 0.91 0.91 Peak Hour Factor 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 Percent Heavy Veh, % 2 2 2 2 2 1 2 5 2 1 2 2 209 280 414 392 Cap, veh/h 281 281 257 1682 769 1932 0.00 0.00 Arrive On Green 0.15 0.15 0.15 0.15 0.15 0.05 0.48 0.48 0.11 0.54 Sat Flow, veh/h 1000 1870 1585 1395 1870 1598 1781 3469 1585 1795 3554 1585 Grp Volume(v), veh/h 157 18 0 34 49 334 88 1132 34 297 1444 0 Grp Sat Flow(s), veh/h/ln 1000 1870 1585 1395 1870 1585 1585 1598 1781 1735 1795 1777 Q Serve(g s), s 11.2 0.7 0.0 1.9 2.0 13.2 1.9 21.9 1.0 7.1 27.5 0.0 Cycle Q Clear(g_c), s 0.7 0.0 2.6 13.2 2.0 13.2 1.9 21.9 1.0 7.1 27.5 0.0 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 209 281 280 281 414 257 1682 769 392 1932 V/C Ratio(X) 0.75 0.06 0.12 0.17 0.34 0.04 0.76 0.75 0.81 0.67 Avail Cap(c a), veh/h 209 281 280 281 414 271 1682 769 525 1988 1.00 **HCM Platoon Ratio** 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 Uniform Delay (d), s/veh 39.4 32.1 0.0 33.2 32.6 30.5 13.3 17.3 11.9 15.0 15.4 0.0 Incr Delay (d2), s/veh 14.0 0.1 0.0 0.2 0.3 4.4 0.0 11.2 0.8 1.1 0.0 1.6 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 %ile BackOfQ(50%),veh/ln 4.2 0.0 0.6 0.9 7.4 0.6 7.6 0.3 2.6 9.4 0.0 Unsig. Movement Delay, s/veh 32.2 0.0 33.4 32.9 41.7 14.0 0.0 LnGrp Delay(d),s/veh 53.5 18.4 11.9 19.4 17.0 LnGrp LOS D С С D В В В В С 417 1254 1741 Approach Vol., veh/h 175 Α Approach Delay, s/veh 51.3 40.0 18.0 17.4 Approach LOS D D В В Timer - Assigned Phs 5 8 6 Phs Duration (G+Y+Rc), s 16.5 50.4 21.0 11.3 55.6 21.0 Change Period (Y+Rc), s 6.9 7.8 7.8 6.9 7.8 7.8 Max Green Setting (Gmax), s 16.1 38.2 13.2 5.1 49.2 13.2 Max Q Clear Time (g_c+I1), s 9.1 23.9 15.2 3.9 29.5 15.2 12.3 Green Ext Time (p_c), s 0.5 0.0 0.0 18.4 0.0 Intersection Summary 21.9 HCM 6th Ctrl Delay HCM 6th LOS С Notes

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection						
Int Delay, s/veh	1.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u> </u>	7	1102	4	ኘ	7
Traffic Vol, veh/h	230	76	11	314	66	9
Future Vol, veh/h	230	76	11	314	66	9
•						
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	150	-	-	0	75
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	0	2	2
Mvmt Flow	256	84	12	349	73	10
		_	_	_		
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	340	0	629	256
Stage 1	-	-	-	-	256	-
Stage 2	-	-	-	-	373	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	_	_	-	_	5.42	-
Critical Hdwy Stg 2	_	_	_	_	5.42	_
Follow-up Hdwy	_	_	2.218	_		
Pot Cap-1 Maneuver			1219		446	783
	-	-	1219	-		
Stage 1	-	-	-	-	787	-
Stage 2	-	-	-	-	696	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1219	-	441	783
Mov Cap-2 Maneuver	-	-	-	-	441	-
Stage 1	-	-	-	-	787	-
Stage 2	-	-	-	-	688	-
ŭ						
Annyasah	ED		WD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.3		14.2	
HCM LOS					В	
Minor Lane/Major Mvn	nt N	NBLn11	NRI n2	EBT	EBR	WBL
	it i					
Capacity (veh/h)		441	783	-	-	1219
HCM Lane V/C Ratio			0.013	-	-	0.01
HCM Control Delay (s)		14.8	9.7	-	-	8
HCM Lane LOS		В	Α	-	-	Α
HCM 95th %tile Q(veh)	0.6	0	-	-	0

HCM 6th TWSC

3: Estate Drive & Gibbet Road

Gibbet Road Residential Development Traffic Impact Analysis

2025 BUILD PHASE 1 CONDITIONS

Intersection								
Int Delay, s/veh	34							
3		MADD	NDT	NIDD	CDI	CDT		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	7	7	^	7	ሻ	^		
Traffic Vol., veh/h	67	81	1832	42	60			
Future Vol, veh/h	67	81	1832	42	60	1459		
Conflicting Peds, #/hr		0	0	0	0	_ 0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	Stop	-	Yield	-	None		
Storage Length	0	0	-	275	450	-		
'eh in Median Storag		-	0	-	-	0		
rade, %	0	-	0	-	-	0		
eak Hour Factor	95	95	95	95	95	95		
leavy Vehides, %	2	2	2	3	2	6		
1/mtFlow	71	85	1928	44	63	1536		
/ajor/Mnor	Mnor1	N	√ajor1	N	/ajor2			
conflicting FlowAll	2822	964	0		1928	0		
Stage 1	1928	-	-	-	-	-		
Stage 2	894	-	-	-	-	-		
itical Hdvvy	684	694	-	-	4.14	-		
itical Hdwy Stg 1	5.84	-	-	-	-	-		
itical Hdwy Stg 2	5.84	-	-	-	_	-		
llovvup Hdvvy	3.52	332	-	-	222	-		
ot Cap-1 Maneuver	~ 14	255	-	-	302	-		
Stage 1	100	-	-	-	-	-		
Stage 2	360	-	-	-	-	-		
latoon blocked, %			-	-		-		
/bv Cap-1 Maneuver	~ 11	255	-	-	302	-		
/bv Cap-2 Maneuver		-	-	-	-	-		
Stage 1	100	-	-	-	-	-		
Stage 2	285	-	-	-	-	-		
pproach	WB		NB		SB			
ICMControl Delay, s			0		08			
CMLOS	F		- 3		40			
	•							
/Inor Lane/Vajor M/r	nt	NBT	NIDDV	VBLn1V	ARI no	SBL	SBT	
	T IL		INDIN	<u>VBLITIV</u> 89		302		
apacity (veh/h) CMLane V/C Ratio		-	-	0.792	255		-	
	1	-			26		-	
CMControl Delay (s	7	-	-	127.6		20 C	-	
ICMLane LOS	,)	-	-	F 41	D		-	
HCM95th %tile Q(veh	y	-	_	4.1	1.4	08	-	
lotes								
Volume exceeds ca	pacity	\$: De	lay exc	eeds 30	Os ·	+: Comp	utation Not Defined	*: All major volume in platoon

Kimley-Hom Synchro 11 Report

Gibbet Road Multifamily De

Section IX. Item #1.

2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

2025 P	hase 1 E	Build AM
/	ļ	4

	•	-	*	1	•	•	1	Ť	~	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	320	27	137	80	21	333	58	1264	28	283	1272	28
v/c Ratio	0.94	0.06	0.26	0.24	0.05	0.43	0.30	091	0.04	0.90	072	003
Control Delay	77.8	33.0	31	361	328	188	123	40.7	Q1	59.9	229	Q1
Queue Delay	QO	QO	QO	0.0	QO	QO	QO	QO	QO	QO	QO	QO
Total Delay	77.8	33.0	31	361	328	188	123	40.7	Q1	59.9	229	Q1
Queue Length 50th (ft)	224	15	0	46	12	132	15	424	0	145	354	0
Queue Length 95th (ft)	#401	38	21	90	32	210	31	524	Ο	#301	440	0
Internal Link Dist (ft)		776			302			1441			1136	
Turn Bay Length (ft)			100	225		225	350		200	450		400
Base Capacity (vph)	346	435	526	335	427	775	194	1497	781	325	1809	895
Starvation Cap Reductn	0	0	Ο	Ο	0	0	Ο	Ο	Ο	Ο	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	Ο	Ο	0	0	Ο	Ο	Ο	Ο	0	0
Reduced v/c Ratio	092	0.06	0.26	024	0.05	0.43	0.30	0.84	0.04	0.87	0.70	ОŒ

Intersection Summary

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

2025 Phase 1 Build AM

	۶	→	*	•	←	*	1	†	~	1	Ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	*	↑	7	7	^	7	7	^	7
Traffic Volume (veh/h)	304	26	130	76	20	316	55	1201	27	269	1208	27
Future Volume (veh/h)	304	26	130	76	20	316	55	1201	27	269	1208	27
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj SatFlovy veh/h/ln	1885	1781	1856	1841	1752	1885	1767	1856	1870	1811	1811	1870
Adj FlowRate, veh/h	320	27	0	80	21	333	58	1264	28	283	1272	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	1	8	3	4	10	1	9	3	2	6	6	2
Cap, veh/h	314	440		388	433	585	219	1487	669	314	1729	
Arrive On Green	0.25	0.25	αω	0.25	0.25	0.25	004	0.42	0.42	012	0.50	$\alpha \infty$
Sat Flow, veh/h	1035	1781	1572	1361	1752	1598	1682	3526	1585	1725	3441	1585
Grp Volume(v), veh/h	320	27	0	80	21	333	58	1264	28	283	1272	0
Grp Sat Flow(s), veh/h/in	1035	1781	1572	1361	1752	1598	1682	1763	1585	1725	1721	1585
Q Serve(g_s), s	25.2	1.2	QO	51	1.0	17.7	1.7	34.3	1.1	10.3	31.0	QO
Cycle Q Clear(g_c), s	262	1.2	0.0	63	1.0	17.7	1.7	34.3	1.1	10.3	31.0	QO
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	314	440		388	433	585	219	1487	669	314	1729	
V/C Ratio(X)	1.02	006		0.21	0.05	0.57	0.26	0.85	0.04	090	Q74	
Avail Cap(c_a), veh/h	314	440		388	433	585	235	1502	675	370	1822	
HCMPlatoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	000	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	ω
Uniform Delay (d), s/veh	43.2	306	QO	330	30.5	269	168	27.7	181	24.3	208	QO
Incr Delay (d2), s/veh	55.7	Q1	QO	03	QO	1.3	06	49	QO	21.9	1.6	QO
Initial Q Delay(d3),s/veh	QO	QO	QO	QO	QO	QO	QO	QO	QO	QO	QO	QO
%ile BackOfQ(50%),veh/in	133	Ω5	QO	1.6	04	66	06	14.1	04	5.6	11.3	QO
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	989	30.6	QO	33.2	305	282	17.5	326	181	462	224	QO
LnGrp LOS	F	С		С	С	С	В	С	В	D	С	
Approach Vol, veh/h		347			434			1350			1555	
Approach Delay, s/veh		93.6			29.3			31.6			267	
Approach LOS		F			С			С			С	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	19.6	526		34.0	11.0	61.1		34.0				
Change Period (Y+Rc), s	69	7.8		7.8	69	7.8		7.8				
Max Green Setting (Gmax), s	161	45.2		26.2	51	562		262				
Max Q Clear Time (q_c+l1), s	123	363		282	37	330		19.7				
Green ExtTime (p_c), s	03	83		QO	QO	204		09				
Intersection Summary												
HCM6th Ctrl Delay			35.1									
HCM6th LOS			D									
Notes												

Notes

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th TWSC 3: Estate Drive/SIte Access #3 & Gibbet Road Gibbet Road Multifamily De Section IX. Item 2025 Phase 1 Build AM Section IX. Item #1.

Intersection												
Int Delay, s/veh	31											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	↑	7	VVDL	4	VVDIX	T	4	INDIX	<u> </u>	<u>381</u>	JUIN
Traffic Vol, veh/h	4	194	84	5	277	1	115	1	6	5	3	3
Future Vol, veh/h	4	194	84	5	277	1	115	1	6	5	3	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	_	_	None	_	_	None	-	-	None	-	-	None
Storage Length	_	_	150	-	_	_	0	_	75	0	-	-
Veh in Median Storage	.,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehides, %	2	4	21	2	2	2	5	2	20	2	2	2
MmtFlow	4	216	93	6	308	1	128	1	7	6	3	3
Major/Mnor 1	Vajor1		1	Vajor2		[VInor1		1	VInor2		
Conflicting FlowAll	309	0	0	309	0	0	548	545	216	596	638	309
Stage 1	-	-	-	-	-	-	224	224	-	321	321	-
Stage 2	-	-	-	-	-	-	324	321	-	275	317	-
Critical Hdvvy	4.12	-	-	4.12	-	-	7.15	652	64	7.12	652	622
Critical Hdwy Stg 1	-	-	-	-	-	-	615	5.52	-	612	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	615	5.52	-	612	5.52	-
Follow-up Hdwy	2218	-	-	2218	-	-	3545	4.018	3.48		4.018	3318
Pot Cap-1 Maneuver	1252	-	-	1252	-	-	443	446	781	415	394	731
Stage 1	-	-	-	-	-	-	772	718	-	691	652	-
Stage 2	-	-	-	-	-	-	682	652	-	731	654	-
Platoon blocked, %		-	-		-	-						
Mbv Cap-1 Maneuver	1252	-	-	1252	-	-	435	442	781	408	390	731
Mbv Cap-2 Maneuver	-	-	-	-	-	-	435	442	-	408	390	-
Stage 1	-	-	-	-	-	-	769	715	-	688	648	-
Stage 2	-	-	-	-	-	-	671	648	-	721	651	-
Approach	EB			WB			NB			SB		
HCMControl Delay, s	Q1			0.1			163			13		
HCMLOS							С			В		
Mnor Lane/Wajor M/m	nt l	NBLn1 N	VBLn2	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1 S	SBLn2	
Capacity (veh/h)		435	704	1252	-	-	1252	-	-	408	509	
HCMLane V/C Ratio		0.294	0011		-		0.004	-	-	0014	0013	
HCMControl Delay (s)		167	10.2	7.9	-	-	7.9	0	-	139	122	
HCMLane LOS		С	В	Α	-	-	Α	Α	-	В	В	
HCM95th %tile Q(veh)		1.2	0	0	-	-	0	-	-	0	0	

HCM 6th TWSC 4: SC 170 (Okatie Hwy) & Site Access #1 Gibbet Road Multifamily De Section IX. Item 2025 Phase 1 Build AM Section IX. Item #1.

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	* 1>			^
Traffic Vol, veh/h	0	23	1851	10		1526
Future Vol, veh/h	0	23	1851	10	0	1526
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage,	# 2	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	6
M/mtFlow	0	26	2057	11	0	1696
TV WITHET TOVV	- 0	20	2001		U	10/0
Major/Mnor N	√Inor1	N	√ajor1	Λ	/ajor2	
Conflicting FlowAll	-	1034	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	_	_	_	_	_	_
Critical Hdvvy	_	694	_	_	_	_
Critical Holwy Stg 1	_		_	_	_	_
Critical Holwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	332	_	_	_	_
Pot Cap-1 Maneuver	0	229		_	0	
•						
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mbv Cap-1 Maneuver	-	229	-	-	-	-
Mbv Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Annmach	\AD		ND		CD	
Approach	WB		NB		SB	
HCMControl Delay, s	227		0		0	
HCMLOS	С					
Mnor Lane/Wajor M/m	t	NBT	NRR\/	VBLn1	SBT	
	ı.	וטוו	ואטויו		וטכ	
Capacity (veh/h)		-	-	229	-	
		-	-	0.112	-	
HCMLane V/C Ratio				\sim 7		
HCMControl Delay (s)		-	-	227	-	
		-	-	22.7 C 0.4	-	

Kimley-Hom Synchro 11 Report

Gibbet Road Multifamily De Section IX. Item 2025 Phase 1 Build AM Section IX. Item #1.

Intersection						
Int Delay, s/veh	03					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	↑	7€	VVDIX	JDL	JDK *
Traffic Vol, veh/h	0	282	394	1	0	18
Future Vol, veh/h	0	282	394	1	0	18
Conflicting Peds, #/h		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None		None		None
Storage Length	-	NOIE -		NOIE -		0
Veh in Median Stora		0	0	_	0	-
Grade, %	ge,# - -	0	0	_	0	-
Peak Hour Factor	90	90	90	90	90	90
	90	5	90	90	2	90
Heavy Vehicles, %	0	313	438	1	0	20
MmtFlow	U	313	458		U	20
Major/Mnor	Major1	<u> </u>	√ajor2	<u> </u>	/Inor2	
Conflicting FlowAll	-	0	_	0	-	439
Stage 1	_	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdvvy	-	-	-	-	-	6.22
Critical Holwy Stg 1	_	-	-	-	-	-
Critical Holwy Stg 2	-	-	-	_	-	-
Follow-up Hdwy	-	_	_	_	_	3318
Pot Cap-1 Maneuver		-	-	_	0	618
Stage 1	0	_	_	_	0	-
Stage 2	0	_	_	_	0	_
Platoon blocked, %	- 0	_	_	_		
Mbv Cap-1 Maneuve	er -		_	_	_	618
Mbv Cap-1 Maneuve		-	_	_	_	-
Stage 1	;ı - -			_	_	
	-				-	-
C than 1	_	-	-		-	-
Stage 2						
Stage 2						
Stage 2 Approach	EB		WB		SB	
Approach	EB		WB O		SB 11	
	EB					
Approach HCMControl Delay,	EB				11	
Approach HCMControl Delay, HCMLOS	EB s O	EDT.	0	MAD	11 B	
Approach HCMControl Delay, HCMLOS Mnor Lane/Major M	EB s O	EBT		WBR S	11 B SBLn1	
Approach HCMControl Delay, HCMLOS Mnor Lane/Wajor M. Capacity (veh/h)	EB s 0	EBT_	O WBT	-	11 B BBLn1 618	
Approach HCMControl Delay, HCMLOS Mnor Lane/Major M Capacity (veh/h) HCMLane V/C Ratio	EB S O	EBT -	0 WBT - -	-	11 B SBLn1 618 0.032	
Approach HCMControl Delay, HCMLOS Mnor Lane/Major M Capacity (veh/h) HCMLane V/C Ratio HCMControl Delay (EB S O	EBT	O WBT	-	11 B 6BLn1 618 0.032 11	
Approach HCMControl Delay, HCMLOS Mnor Lane/Major M Capacity (veh/h) HCMLane V/C Ratio	EB s O	- -	0 WBT - -	-	11 B SBLn1 618 0.032	

Kimley-Hom Synchro 11 Report

Gibbet Road Multifamily De Section IX. Item 2025 Phase 1 Build PM Section IX. Item #1.

Intersection								
IntDelay, s/veh	1.6							
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	*	7	^	7	*	^		
Traffic Vol, veh/h	26	71	1455	49	163	1856		
Future Vol, veh/h	26	71	1455	49	163	1856		
Conflicting Peds, #/hr		0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	Stop	_	Yield	-	None		
Storage Length	0	0	_	275	450	_		
Veh in Median Storag		_	0		_	0		
Grade, %	0	_	0	_	_	0		
Peak Hour Factor	95	95	95	95	95	95		
Heavy Vehides, %	2	2	3	2	2	1		
M/mtFlow	27	75	1532	52	172	1954		
Naior Maor	Moort	N	/bior1		hior			
Vajor/Mnor	Mnor1		√ajor1		√ajor2	^		
Conflicting FlowAll	2853 1532	766	0	U	1532	0		
Stage 1				-				
Stage 2	1321	- (04	-	-	111	-		
Critical Holy	684	694	-	-	4.14	-		
Critical Holwy Stg 1	5.84	-	-	_	-	-		
Critical Holwy Stg 2	5.84	- 222	-	-	-	-		
Followup Hdwy	3.52	3.32	-	-	222	-		
Pot Cap-1 Maneuver	~13	345	-	-	430	-		
Stage 1	164	-	-	-	-	-		
Stage 2	214	-	-	-	-	-		
Platoon blocked, %	~ 8	345	-	-	430	-		
Mbv Cap-1 Maneuver		<i>3</i> 45 -	-	-	430	-		
Vbv Cap-2 Maneuver	164	-	-	-	-	-		
Stage 1	128	-	-	-	-	-		
Stage 2	120	-	-	-	-	-		
	\				65			
Approach	WB		NB		SB			
HCMControl Delay, s			0		1.5			
HCMLOS	D							
Mnor Lane/Major Mv	mt	NBT	NBRV	VBLn1V		SBL	SBT	
Capacity (veh/h)		-	-	93	345	430	-	
HCMLane V/C Ratio		-	-	0.294			-	
HCMControl Delay (s	5)	-	-	59.1	183	188	-	
HCMLane LOS		-	-	F	С	С	-	
HCM95th %tile Q(vel	1)	-	-	1.1	08	1.9	-	
Notes								
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 30	00s -	+: Com	outation Not Defined	*: All major volume in platoon
			<i>J</i>					,

Kimley-Hom Synchro 11 Report

Lane Group

v/c Ratio Control Delay Queue Delay Total Delay

Lane Group Flow(vph)

Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft)

Turn Bay Length (ft)

Base Capacity (vph)

Starvation Cap Reductn

Spillback Cap Reductn

Storage Cap Reductn

Reduced v/c Ratio

Gibbet Road Multifamily De

0.70

0.42

Section IX. Item #1.

2025 Phase 1 Build PM

0.66

Q71

0.05

2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

÷	,,	•	0 O D .	1 0.7 0 1.0		- C. C.						
	۶	-	•	•	•	•	4	†	-	-	ţ	1
	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	157	18	59	46	49	336	88	1144	43	325	1444	79
	0.75	0.06	014	0.21	0.17	0.47	0.42	084	0.06	081	076	0.09
	59.7	33.5	06	361	34.7	17.5	125	29.3	0.2	36.1	184	04
	QO	QO	0.0	0.0	QO	QO	QO	QO	QO	QO	QO	QO
	59.7	33.5	06	361	34.7	17.5	125	29.3	0.2	36.1	184	04
	84	9	0	23	24	105	14	286	0	107	310	O
	#190	28	0	56	58	189	31	370	0	#236	395	3

Q44

Intersection Summary

Q71

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

HCM 6th Signalized Intersection Summary
2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

2025 Phase 1 Build PM

	۶	→	*	•	←	•	1	†	~	-		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	*	↑	7	*	^	7	7	^	7
Traffic Volume (veh/h)	143	16	54	42	45	306	80	1041	39	296	1314	72
Future Volume (veh/h)	143	16	54	42	45	306	80	1041	39	296	1314	72
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh <i>hl</i> in	1870	1870	1870	1870	1870	1885	1870	1826	1870	1885	1870	1870
Adj FlowRate, veh/h	157	18	0	46	49	336	88	1144	43	325	1444	0
Peak Hour Factor	0.91	091	091	0.91	091	0.91	0.91	091	0.91	0.91	091	091
Percent Heavy Veh, %	2	2	2	2	2	1	2	5	2	1	2	2
Cap, veh/h	209	281		280	281	429	257	1649	753	398	1932	
Arrive On Green	015	015	αω	015	015	015	005	0.48	0.48	012	0.54	αω
Sat Flow, veh/h	998	1870	1585	1395	1870	1598	1781	3469	1585	1795	3554	1585
Grp Volume(v), veh/h	157	18	0	46	49	336	88	1144	43	325	1444	0
Grp Sat Flow(s), veh/h/ln	998	1870	1585	1395	1870	1598	1781	1735	1585	1795	1777	1585
Q Serve(g_s), s	11.2	Ω7	QO	26	20	132	1.9	227	1.3	7.9	27.5	QO
Cyde Q Clear(g_c), s	132	Ω7	QO	33	20	132	1.9	227	1.3	7.9	27.5	QO
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	209	281		280	281	429	257	1649	753	398	1932	
V/C Ratio(X)	0.75	006		016	017	0.78	0.34	0.69	0.06	082	0.75	
Avail Cap(c_a), veh/h	209	281		280	281	429	271	1649	753	514	1988	
HCMPlatoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	000	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	000
Uniform Delay (d), s/veh	39.4	321	QO	33.5	326	29.8	13.3	181	124	15.7	15.4	0.0
Incr Delay (d2), s/veh	14.1	0.1	00	03	03	9.1	08	1.3	00	7.8	1.6	0.0
Initial Q Delay(d3), s/veh	0.0	00	00	00	0.0	00	00	0.0	0.0	00	0.0	0.0
%ile BackOfQ(50%), veh/ln	4.2	03	00	80	0.9	7.2	06	80	0.4	34	9.4	QO
Unsig. Movement Delay, s/veh		20.0	00	22.0	20.0	20.0	140	10.4	105	00 F	17.0	0.0
LnGrp Delay(d),s/veh	53.6	322	00	33.8	329	389	14.0	19.4	125	235	17.0	QO
LnGrp LOS	D	C		С	С	D	В	В	В	С	B	
Approach Vol, veh/h		175			431			1275			1769	
Approach Delay, s/veh		51.4			37.6			188			182	
Approach LOS		D			D			В			В	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	17.3	49.6		21.0	11.3	55.6		21.0				
Change Period (Y+Rc), s	69	7.8		7.8	69	7.8		7.8				
Max Green Setting (Gmax), s	161	38.2		132	51	49.2		132				
Max Q Clear Time (g_c+l1), s	9.9	24.7		15.2	39	29.5		15.2				
Green ExtTime (p_c), s	Q5	11.8		00	QO	184		00				
Intersection Summary												
HCM6th Ctrl Delay			223									
HCM6th LOS			С									
Notos												

Notes

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection												
Int Delay, s/veh	21											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7		ની		٦	ĵ.		*	f)	
Traffic Vol, veh/h	13	230	76	11	317	3	66	3	9	3	1	2
Future Vol., veh/h	13	230	76	11	317	3	66	3	9	3	1	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	·-	None
Storage Length	-	-	150	-	-	-	0	-	75	0	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	_	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehides, %	2	2	2	2	0	2	2	2	2	2	2	2
MmtFlow	14	256	84	12	352	3	73	3	10	3	1	2
Major/Mnor N	Vajor1		N	√ajor2		ſ	VInor1		N	√Inor2		
Conflicting FlowAll	355	0	0	340	0	0	663	663	256	711	746	354
Stage 1	- -	-	-	J40 -	-	-	284	284	-	378	378	-
Stage 2	_	_	_	_	_	_	379	379	_	333	368	_
Critical Holwy	4.12	_	_	4.12	_	_	7.12	652	6.22	7.12	652	6.22
Critical Holwy Stg 1	-T. 12	_	_	7.12	_	_	612	5.52	-	612	5.52	-
Critical Holwy Stg 2	_	_	_	_	_	_	612	5.52	_	612	5.52	_
Follow-up Hdwy	2218	_	_	2218	_	_	3518	4.018		3518		3318
Pot Cap-1 Maneuver	1204	_	_	1219	_	_	375	382	783	348	342	690
Stage 1	-	_	_	-	_	_	723	676	-	644	615	-
Stage 2	-	-	-	-	-	-	643	615	-	681	621	_
Platoon blocked, %		_	_		_	_	0.0	0.0		55.	<u></u>	
Mbv Cap-1 Maneuver	1204	_	_	1219	_	_	365	372	783	334	333	690
Mbv Cap-2 Maneuver	-	_	_	_	_	_	365	372	-	334	333	-
Stage 1	-	-	-	-	-	-	712	666	-	634	608	-
Stage 2	_	_	-	_	_	_	632	608	-	659	612	-
g- =												
Approach	EB			WB			NB			SB		
HCMControl Delay, s	03			0.3			163			14		
HCMLOS	30			40			C			В		
Mnor Lane/Wajor M/m	nt N	VIRI n1 I	VBLn2	EBL	EBT	EBR	WBL	WBT	WBR S	SRI n1	SRI n2	
Capacity (veh/h)	ic I	365		1204	LDI		1219	-	VVDIX C	334		
HCMLane V/C Ratio			0022		-	-	001	-	-		0.007	
		17.3	11	8	-	-	8	0	-	15.9		
HCMControl Delay (s) HCMLane LOS		17.3 C	В	A	-	-	A		_	159 C	IZ I B	
HCM95th %tile Q(veh)		Q7	01	0	-	-	0	A -	-	0		
HOMPOUT WITE Q(VEH)		u/	U.I	U	-	-	U	-	-	U	U	

Intersection						
Int Delay, s/veh	Q1					
		14.00	NET	NIDD	ODI	OPT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	1			^
Traffic Vol, veh/h	0	14	1490	32		1882
Future Vol, veh/h	0	14	1490	32	0	1882
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage,	, # 2	-	0	-	-	0
Grade, %	0	-	0	_	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	3	2	2	1
MmtFlow	0	16	1656	36	0	2091
TV WITHET TOVV		10	1000			2071
Major/Mnor N	VInor1	N	√ajor1	N	√ajor2	
Conflicting FlowAll	-	846	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdvvy	-	694	-	-	_	_
Critical Holwy Stg 1	_	-	_	_	_	_
Critical Holwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	332	_	_	_	_
Pot Cap-1 Maneuver	0	306	_	_	0	_
Stage 1	0		_	_	0	_
	()		-	-	U	-
		-			0	
Stage 2	0	-	-	-	0	-
Stage 2 Platoon blocked, %	0	-	-	-		-
Stage 2 Platoon blocked, % Mbv Cap-1 Maneuver	0	306	-	-	-	-
Stage 2 Platoon blocked, % Mbv Cap-1 Maneuver Mbv Cap-2 Maneuver	- -	-	-	-	- -	-
Stage 2 Platoon blocked, % Mbv Cap-1 Maneuver Mbv Cap-2 Maneuver Stage 1	0	306	-	-	-	-
Stage 2 Platoon blocked, % Mbv Cap-1 Maneuver Mbv Cap-2 Maneuver	- -	- 306 -	- - -	- - -	- -	- - -
Stage 2 Platoon blocked, % Mbv Cap-1 Maneuver Mbv Cap-2 Maneuver Stage 1	- - -	306	- - -	- - -	-	- - -
Stage 2 Platoon blocked, % Mbv Cap-1 Maneuver Mbv Cap-2 Maneuver Stage 1 Stage 2	- - - -	306	- - - -	- - -	-	- - -
Stage 2 Platoon blocked, % Mbv Cap-1 Maneuver Mbv Cap-2 Maneuver Stage 1 Stage 2 Approach	O - - - - -	306	- - - - NB	- - -	- - - - SB	- - -
Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCMControl Delay, s	0 - - - - - WB	306	- - - -	- - -	-	- - -
Stage 2 Platoon blocked, % Mbv Cap-1 Maneuver Mbv Cap-2 Maneuver Stage 1 Stage 2 Approach	O - - - - -	306	- - - - NB	- - -	- - - - SB	- - -
Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCMControl Delay, s	0 - - - - - WB	306	- - - - NB	- - -	- - - - SB	- - -
Stage 2 Platoon blocked, % Mbv Cap-1 Maneuver Mbv Cap-2 Maneuver Stage 1 Stage 2 Approach HCMControl Delay, s HCMLOS	0 - - - - - WB 17.4 C	306	- - - - - NB O	-	- - - - SB 0	- - -
Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCMControl Delay, s HCMLOS	0 - - - - - WB 17.4 C	306	- - - - - NB O	- - - - -	- - - - SB	- - -
Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCMControl Delay, s HCMLOS Mnor Lane/Major M/m Capacity (veh/h)	0 - - - - - WB 17.4 C	- 306 NBT	- - - - - NB O	- - - - - - 306	- - - - SB 0	- - -
Stage 2 Platoon blocked, % Mbv Cap-1 Maneuver Mbv Cap-2 Maneuver Stage 1 Stage 2 Approach HCMControl Delay, s HCMLOS Mnor Lane/Major M/m Capacity (veh/h) HCMLane V/C Ratio	0 - - - - - WB 17.4 C	- 306 - - - NBT	- - - - - NB O	- - - - - - - - - 306 0.051	- - - - SB O	- - -
Stage 2 Platoon blocked, % Mbv Cap-1 Maneuver Mbv Cap-2 Maneuver Stage 1 Stage 2 Approach HCMControl Delay, s HCMLOS Mnor Lane/Major M/m Capacity (veh/h) HCMLane V/C Ratio HCMControl Delay (s)	0 - - - - - WB 17.4 C	- 306 - - - - NBT - -	- - - - - NB O	- - - - - - 306 0.051 17.4	- - - - SB O	- - -
Stage 2 Platoon blocked, % Mbv Cap-1 Maneuver Mbv Cap-2 Maneuver Stage 1 Stage 2 Approach HCMControl Delay, s HCMLOS Mnor Lane/Major M/m Capacity (veh/h) HCMLane V/C Ratio	O	- 306 - - - NBT	- - - - - NB O	- - - - - - - - - 306 0.051	- - - - SB O	- - -

Gibbet Road Multifamily De Section IX. Item 2025 Phase 1 Build PM Section IX. Item #1.

Intersection						
Int Delay, s/veh	02					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	P			7
Traffic Vol, veh/h	0	319	382	3	0	11
Future Vol, veh/h	0	319	382	3	Ο	11
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None		None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	_	0	0	_	0	_
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	1	1	2	2	2
M/mtFlow	0	354	424	3	0	12
IVWITICI IOVV	U	₩.	727	J	O	12
	bjor1	N	√ajor2		VInor2	
Conflicting FlowAll	-	0	-	0	-	426
Stage 1	-	-	-	-	-	-
Stage 2	-	_	-	_	-	_
Critical Hdvvy	-	-	_	_	_	6.22
Critical Holwy Stg 1	_	_	_	_	_	-
Critical Holwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	_	_	_	_	3318
Pot Cap-1 Maneuver	0		_	_	0	628
Stage 1	0	_	_		0	020
	0				0	
Stage 2	U	-	-	-	U	-
Platoon blocked, %		-	-	-		(22)
Mbv Cap-1 Maneuver	-	-	-	-	-	628
Mbv Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCMControl Delay, s	0		0		10.8	
HCMLOS					В	
Mnor Lane/Wajor M/mt		EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)				-	628	
HCMLane V.C Ratio		_	_		0019	
HCMControl Delay (s)		_	_	_		
HCMLane LOS		-				
		-	-	-	B	
HCM95th %tile Q(veh)		-	-	-	Q1	

Gibbet Road Residential Development Traffic Impact Analysis

2027 NO-BUILD CONDITIONS

HCM 6th TWSC 1: SC 170 (Okatie Hvvy) & Lawton Boulevard Gibbet Road Multifamily De Section IX. Item 2027 Phase 2 No-Build AM Section IX. Item #1.

Intersection								
Int Delay, s/veh	58							
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	1	7	^	7	7	^		
Traffic Vol, veh/h	77	93	2059	48	69	1650		
Future Vol, veh/h	77	93	2059	48	69	1650		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	<u> </u>	Stop	-		_	None		
Storage Length	0	0	_	275	450	_		
Veh in Median Storage		_	0		_	0		
Grade, %	0	_	0	_	_	0		
Peak Hour Factor	98	98	98	98	98	98		
Heavy Vehides, %	2	2	2	3	2	6		
M/mtFlow	79	95	2101	49	70	1684		
TVVITILI IOVV	17	7.5	2101	47	70	1004		
N 4-: A 4	N 41		/h:1		/h:			
	Mnor1		√ajor1		/ajor2			
Conflicting FlowAll	3083	1051	0	0	2101	0		
Stage 1	2101	-	-	-	-	-		
Stage 2	982	-	-	-	-	-		
Critical Hdvvy	684	694	-	-	4.14	-		
Critical Holwy Stg 1	5.84	-	-	-	-	-		
Critical Hdvy Stg 2	5.84	-	-	-	-	-		
Follow-up Hdwy	3.52	332	-	-	222	-		
Pot Cap-1 Maneuver	~9	223	-	-	258	-		
Stage 1	80	-	-	-	-	-		
Stage 2	323	-	-	-	-	-		
Platoon blocked, %			-	-		-		
Mbv Cap-1 Maneuver	~ 7	223	-	_	258	-		
Mbv Cap-2 Maneuver	~ 71	_	_	_	_	_		
Stage 1	80	_	_	_	-	_		
Stage 2	235	_	_	_	_	_		
o ago _								
Approach	WB		NB		SB			
HCMControl Delay, s			0		1			
HCMLOS	120 7 F		U					
IONILOS	ı							
Mnor Lane/Wajor M/m	nt	NBT	NBRV	<u>VBLn1V</u>		SBL	SBT	
Capacity (veh/h)		-	-	71	223	258	-	
HCMLane V/C Ratio		-		1.107			-	
HCMControl Delay (s)		-	-	240.4	326	24.1	-	
HCMLane LOS		-	-	F	D	С	-	
HCM95th %tile Q(veh))	-	-	59	2	1.1	-	
Notes								
~: Volume exceeds cap	pacity	\$: De	lav exo	eeds 30	Ωs .	+: Com	outation Not Defined	*: All major volume in platoon
. Form to oncoods an	pacity "	ψ, DC	ay cho					

Queues

2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

2027 Phase 2 No-Build AM

	۶	→	•	•	←	•	4	†	-	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow(vph)	363	30	155	69	23	366	66	1427	29	301	1438	32
v/c Ratio	1.09	0.07	0.30	0.21	0.06	0.49	0.42	099	0.04	0.96	079	0.04
Control Delay	117.1	33.2	4.5	35.8	33.0	20.6	166	54.4	Q1	74.2	25.6	Q1
Queue Delay	QO	QO	QO	QO	QO	QO	QO	QO	QO	QO	QO	QO
Total Delay	117.1	33.2	4.5	35.8	33.0	20.6	166	54.4	Q1	74.2	25.6	Q1
Queue Length 50th (ft)	~290	16	0	39	13	152	17	517	0	163	435	0
Queue Length 95th (ft)	#474	42	34	79	34	237	34	#685	0	#338	537	0
Internal Link Dist (ft)		776			677			1441			2596	
Turn Bay Length (ft)			100	225		225	350		200	450		400
Base Capacity (vph)	332	418	513	321	411	754	159	1440	758	313	1814	897
Starvation Cap Reductn	0	Ο	0	0	0	0	0	0	0	Ο	Ο	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	Ο	0	0	0	0	0	0	0	Ο	Ο	0
Reduced v/c Ratio	1.09	0.07	0.30	021	0.06	0.49	0.42	099	004	0.96	079	Q04

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM 6th Signalized Intersection Summary
2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

2027 Phase 2 No-Build AM

	۶	→	*	•	←	•	4	†	~	-	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	*	↑	7	7	^	7	7	^	7
Traffic Volume (veh/h)	348	29	149	66	22	351	63	1370	28	289	1380	31
Future Volume (veh/h)	348	29	149	66	22	351	63	1370	28	289	1380	31
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj (A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4005	No	1051	1011	No	4005	47/7	No	1070	1011	No	1070
Adj Sat Flow, veh/h/in	1885	1781	1856	1841	1752	1885	1767	1856	1870	1811	1811	1870
Adj FlowRate, veh/h	362	30	0	69	23	366	66	1427	29	301	1438	0
Peak Hour Factor	0.96	0.96	0%	0.96	0%	0.96	0.96	0%	0%	0.96	0%	0%
Percent Heavy Veh, %	1	8	3	4	10	1	9	3	2	6	6	2
Cap, veh/h	294	424	0.000	371	417	614	192	1449	651	322	1782	000
Arrive On Green	0.24	0.24	000	0.24	0.24	0.24	004	0.41	0.41	015	0.52	0.00
Sat Flow, veh/h	1003	1781	1572	1358	1752	1598	1682	3526	1585	1725	3441	1585
Grp Volume(v), veh/h	362	30	0	69	23	366	66	1427	29	301	1438	0
Grp Sat Flow(s), veh/h/ln	1003	1781	1572	1358	1752	1598	1682	1763	1585	1725	1721	1585
Q Serve(g_s), s	25.1	1.4	0.0	4.6	1.1	201	20	44.1	1.2	14.5	381	0.0
Cyde Q Clear(g_c), s	262	1.4	0.0	60	1.1	201	20	44.1	1.2	14.5	381	0.0
Prop In Lane	1.00	101	1.00	1.00	417	1.00	1.00	1.440	1.00	1.00	1700	1.00
Lane Grp Cap(c), veh/h	294	424		371	417	614	192	1449	651	322	1782	
V.C Ratio(X)	1.23 294	0.07 424		019	0.06 417	0.60	0.34	0.99	0.04 651	0.94 322	0.81 1782	
Avail Cap(c_a), veh/h HCMPlatoon Ratio	1.00	1.00	1.00	371 1.00	1.00	614 1.00	204 1.00	1449 1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	45.2	325	00	34.8	323	27.0	19.3	321	19.4	33.4	220	0.0
Incr Delay (d2), s/veh	130.0	01	0.0	0.2	01	1.6	19.3	201	0.0	339	29	00
Initial Q Delay(d3), s/veh	0.0	00	00	00	0.0	00	00	0.0	00	00	0.0	00
%ile BackOfQ(50%), veh/in	188	06	00	1.5	Q5	7.5	07	21.1	0.4	66	14.2	0.0
Unsig. Movement Delay, s/veh		uo	uo	1.0	u.J	7.5	u,	۷۱، ۱	U4	uo	14.2	uo
LnGrp Delay(d),s/veh	175.2	325	QO	35.0	324	286	204	521	19.5	67.3	24.9	QO
LnGrp LOS	173.Z	C	ao	D	C	C	C	D	В	E	C	Q.O
Approach Vol, veh/h	<u> </u>	392	А		458	<u> </u>	<u> </u>	1522			1739	A
Approach Delay, s/veh		164.3	7.		29.8			50.2			32.2	
Approach LOS		F			C			D			C	
	1			1		4		8				
Timer - Assigned Phs Phs Duration (G+Y+Rc), s	230	<u>2</u> 530		34.0	5 11.2	64.8		34.0				
Change Period (Y+Rc), s	69	7.8		7.8	69	7.8		7.8				
Max Green Setting (Gmax), s	161	45.2		26.2	51	562		262				
Max Q Clear Time (q_c+l1), s	165	46.1		282	4.0	40.1		202				
Green ExtTime (p_c), s	00	00		00	00	15.1		07				
•	40	40		40	40	13.1		u.,				
Intersection Summary			F4 0									
HCM6th Ctrl Delay			51.2									
HCM6th LOS			D									

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection							
Int Delay, s/veh	3						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
			VVBL				
Lane Configurations	†	*	,	4	100	7	
Traffic Vol., veh/h	221	87	6	316	123	7	
Future Vol, veh/h	221	87	6	316	123	7	
Conflicting Peds, #/hr		0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-		
Storage Length	-	150	-	-	0	75	
Veh in Median Storag	ye, # O	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	86	86	86	86	86	86	
Heavy Vehicles, %	4	21	2	2	5	20	
M/mtFlow	257	101	7	367	143	8	
TV WITHET TOVV	201	101	,	<i>ω</i>	1-10	U	
Major/Mnor	Major1	1	√ajor2	1	√Inor1		Į
Conflicting FlowAll	0	0	358	0	638	257	
Stage 1	_	-	-	-	257	-	
Stage 2	_	_	_	_	381	_	
Critical Holwy	_	_	4.12	_	645	64	
Critical Holwy Stg 1	_	_	-T. 12	_	5.45	u -	
Critical Holwy Stg 2	_		_	_	5.45	_	
		-					
Follow-up Hdwy	-	-	2218	-	3545	3.48	
Pot Cap-1 Maneuver	-	-	1201	-	436	740	
Stage 1	-	-	-	-	779	-	
Stage 2	-	-	-	-	684	-	
Platoon blocked, %	-	-		-			
Mbv Cap-1 Maneuver	_	-	1201	-	433	740	
Mbv Cap-2 Maneuve		-	-	-	433	-	
Stage 1	-	-	-	-	779	-	
Stage 2	_	_	_	_	679	_	
o ago z					5, 7		
Approach	EB		WB		NB		
HCMControl Delay, s	0		01		17		
HCMLOS					С		
			IDI -			145	
Mnor Lane/Wajor Mv	mt N	VBLn1 N		EBT	EBR	WBL	
Capacity (veh/h)		433	740	-	-	1201	
HCMLane V/C Ratio		0.33	Q011	-	_	0.006	
HCMControl Delay (s	5)	17.4	9.9	-	-	8	
HCMLane LOS	,	С	Α	-	_	A	
HCM95th %tile Q(ve	h)	1.4	0	_	_	0	
131V1 /311 /011C Q(VC	7	1.7	U			U	

Intersection								
Int Delay, s/veh	24							
	\ADI	MOD	NIDT	NDD	CDI	CDT		
Movement Configurations	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	<u>ነ</u>	**************************************	^	7	107	*		
Traffic Vol, veh/h	29	81	1641	56	187	2086		
Future Vol, veh/h	29	81	1641	56	187	2086		
Conflicting Peds, #/hr		0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	Stop	-		-	None		
Storage Length	0	0	-	275	450	-		
Veh in Median Storag		-	0	-	-	0		
Grade, %	0	-	0	-	-	0		
Peak Hour Factor	95	95	95	95	95	95		
Heavy Vehides, %	2	2	3	2	2	1		
MmtFlow	31	85	1727	59	197	2196		
Major/Mnor	Mnor1		√ajor1	<u> </u>	√ajor2			
Conflicting FlowAll	3219	864	0	0	1727	0		
Stage 1	1727	-	-	-	-	-		
Stage 2	1492	_	_	_	_	_		
Critical Holwy	684	694	_	_	4.14	_		
Critical Holwy Stg 1	5.84	_	_	_		_		
Critical Holwy Stg 2	5.84	_	_	_	_	_		
Follow-up Hdwy	3.52	3.32	_	_	222	_		
Pot Cap-1 Maneuver	~7	297	_	_	362	_		
Stage 1	129		_	_	-	_		
Stage 2	173	_	_	_	_	_		
Platoon blocked, %	175		_	_		_		
Mbv Cap-1 Maneuver	~ ~ 3	297	_	_	362	_		
Mbv Cap-2 Maneuver		<u> </u>	_	_	JUZ -			
Stage 1	129	_	_	_				
Stage 2	79	-	_	_		-		
3 kayt 2	19	_	_	-	_	-		
A	14.5		ND		65			
Approach	WB		NB		SB			
HCMControl Delay, s			0		22			
HCMLOS	E							
Mnor Lane/Major Mv	mt	NBT	NBRV	VBLn1V	VBLn2	SBL	SBT	
Capacity (veh/h)		-	_	62	297	362	-	
HCMLane V/C Ratio		_	_	0.492			-	
HCMControl Delay (s	s)	_		109.8		262	-	
HCMLane LOS	•	_	_	F	С	D	-	
HCM95th %tile Q(vel	n)	_	_	1.9	1.2	31	-	
·	,			.,,				
Notes				, .				
~: Volume exceeds ca	apacity	\$: De	elay exc	eeds 30	J.S	+: Comp	outation Not Defined	*: All major volume in platoon

Gibbet Road Multifamily De

Section IX. Item #1.

2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

2027 Phase 2 No-Build PM

	٠	-	*	1	←	*	1	†	-	1	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow(vph)	180	19	68	38	56	376	100	1295	38	332	1651	91
v/c Ratio	0.88	Q07	016	018	0.20	054	053	091	0.05	0.85	084	Q10
Control Delay	781	33.9	80	361	35.7	19.8	19.5	34.4	Q1	43.0	21.4	Ω7
Queue Delay	QO	QO	QO	0.0	QO	0.0	QO	QO	QO	QO	QO	QO
Total Delay	781	33.9	80	361	35.7	19.8	19.5	34.4	Q1	43.0	21.4	Ω7
Queue Length 50th (ft)	102	9	0	19	28	132	16	347	0	125	393	O
Queue Length 95th (ft)	#227	29	0	48	64	219	52	#485	0	#266	502	7
Internal Link Dist (ft)		776			677			1441			2596	
Turn Bay Length (ft)			100	225		225	350		200	450		400
Base Capacity (vph)	205	286	433	212	286	721	190	1526	828	419	2024	966
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	O
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	088	0.07	016	018	0.20	0.52	053	0.85	0.05	0.79	0.82	0.09

Intersection Summary

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

HCM 6th Signalized Intersection Summary 2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

Section IX. Item #1.

2027 Phase 2 No-Build PM

1 t 4 EBR **WBL NBT** Movement **EBL EBT WBT** WBR **NBL NBR SBL SBT SBR** Lane Configurations ٦ ٨ 7 ሽ ٠ ٦ 44 7 ٦ 44 7 Traffic Volume (veh/h) 164 62 342 91 17 35 51 1178 302 1502 35 83 1178 Future Volume (veh/h) 164 17 62 35 342 91 35 302 1502 83 51 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No No Adj Sat Flow, veh/h/n 1870 1870 1870 1870 1870 1885 1870 1826 1870 1870 1870 1885 Adj FlowRate, veh/h 180 19 100 1295 38 332 1651 0 38 56 376 0 091 091 Peak Hour Factor 0.91 091 0.91 0.91 091 0.91 0.91 0.91 091 091 Percent Heavy Veh, % 2 2 2 2 2 1 2 5 2 1 2 2 Cap, veh/h 197 277 275 277 438 219 1643 751 373 1948 Arrive On Green 015 00015 015 015 0.47 00Q15 QC5Q47 Q13 055 Sat Flow, veh/h 956 1870 1585 1393 1870 1781 3469 1585 1795 3554 1585 1598 Grp Volume(v), veh/h 180 19 0 38 56 376 1295 332 100 38 1651 0 Grp Sat Flow(s), veh/h/n 1870 956 1585 1393 1870 1598 1735 1585 1795 1585 1781 1777 Q Serve(q_s), s 109 8.0 QO 22 23 132 21 280 1.2 87 35.0 QO Cycle Q Clear(q_c), s 132 08 0.0 29 23 132 21 280 1.2 87 35.0 0.0 1.00 1.00 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 197 277 275 277 438 219 1643 751 373 1948 0.07 0.20 V/C Ratio(X) 091 Q14 0.86 046 0.79 0.050.89 0.85 Avail Cap(c_a), veh/h 197 277 275 438 230 1643 471 1961 277 751 **HCMPlatoon Ratio** 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 0001.00 1.00 1.00 001.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 41.1 327 QO 339 333 30.7 17.7 19.7 127 187 17.0 0.0 Incr Delay (d2), s/veh 405 0.1 QO 02 0.4 15.6 1.5 27 QO 158 37 QO Initial Q Delay(d3), s/veh QO QO QO 0.0 QO QO QO QO QO QO QO QO %ile BackOfQ(50%), veh/in 62 **Q4** QO **Q7** 1.0 9.0 1.0 102 04 4.4 124 QO Unsig. Movement Delay, s/veh QO 34.2 33.7 19.2 LnGrp Delay(d),s/veh 81.6 328 464 224 127 34.5 20.7 QO LnGrp LOS C С D С В С F С В 199 Approach Vol, veh/h Α 470 1433 1983 769 439 21.9 230 Approach Delay, s/veh Approach LOS Ε D C C Timer - Assigned Phs 8 5 6 Phs Duration (G+Y+Rc), s 181 500 21.0 21.0 11.5 567 Change Period (Y+Rc), s 69 7.8 7.8 69 7.8 7.8 Max Green Setting (Gmax), s 161 382 51 132 13.2 49.2 Max Q Clear Time (q_c+l1), s 107 300 15.2 4.1 37.0 15.2 Green Ext Time (p_c), s 0.5 7.7 QO QO 11.9 QO Intersection Summary 27.7 HCM6th Ctrl Delay HCM6th LOS С

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Notes

Intersection							
Int Delay, s/veh	1.8						
		- CDD	140	MOT	ND	NDD	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	†	7	4.5	4	<u>ነ</u>	7	
Traffic Vol, veh/h	262	79	13	359	69	10	
Future Vol, veh/h	262	79	13	359	69	10	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None		None	
Storage Length	-	150	-	-	0	75	
Veh in Median Storage,	# O	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	87	87	87	87	87	87	
Heavy Vehides, %	2	2	2	0	2	2	
MmtFlow	301	91	15	413	79	11	
							ľ
	/ajor1		√ajor2		VInor1		
Conflicting FlowAll	0	0	392	0	744	301	
Stage 1	-	-	-	-	301	-	
Stage 2	-	-	-	-	443	-	
Critical Hdvvy	-	-	4.12	-	642	622	
Critical Holwy Stg 1	-	-	-	-	5.42	-	
Critical Holwy Stg 2	-	-	-	-	542	-	
Follow-up Hdvvy	_	_	2218	-	3518	3.318	
Pot Cap-1 Maneuver	-	_	1167	-	382	739	
Stage 1	_	_	-	_	751	-	
Stage 2	_	_	_	_	647	_	
Platoon blocked, %	_	_		_	04/		
Mbv Cap-1 Maneuver	_	_	1167		376	739	
Mbv Cap-2 Maneuver	-	-			376	139	
	-	_	-	-			
Stage 1	-	-	-	-	751 424	-	
Stage 2	-	-	-	-	636	-	
Approach	EB		WB		NB		
HCMControl Delay, s	0		03		162		
HCMLOS			43		C		
TIOIVILOS					C		
Mnor Lane/Major M/mi	t N	VBLn1 N	VBLn2	EBT	EBR	WBL	
Capacity (veh/h)		376	739	-	_	1167	
HCMLane V/C Ratio		0.211	0016	-		0013	
HCMControl Delay (s)		17.1	9.9	-	-	81	
HCMLane LOS		С	Α	_	_	A	
HCM95th %tile Q(veh)		08	0	_	_	0	
		40	- 3			- 0	

Gibbet Road Residential Development Traffic Impact Analysis

2027 BUILD PHASE 2 CONDITIONS

HCM 6th TWSC 1: SC 170 (Okatie Hvvy) & Lawton Boulevard Section IX. Item #1.

Intersection								
Int Delay, s/veh	63							
irit Delay, Sweri	as							
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	7	7	^	7	7	^		
Traffic Vol, veh/h	77	93	2106	48	69	1679		
Future Vol., veh/h	77	93	2106	48	69	1679		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	_	Stop		Yield		None		
Storage Length	0	0	_	275	450	-		
Veh in Median Storage		-	0		-	0		
Grade, %	0	_	0	_	_	0		
Peak Hour Factor	98	98	98	98	98	98		
Heavy Vehicles, %	2	2	2	3	2	6		
M/mtFlow	79	95	2149	49		1713		
IVWITILFIOVV	19	70	2149	49	70	1/13		
Major/Mnor	Mnor1	N	√ajor1		√ajor2			
Conflicting FlowAll	3146	1075	0	0	2149	Ο		
Stage 1	2149	-	-	-	-	-		
Stage 2	997	-	-	-	-	-		
Critical Holwy	684	694	-	-	4.14	-		
Critical Hdvvy Stg 1	5.84	_	_	_	_	-		
Critical Holwy Stg 2	5.84	-	_	_	_	-		
Follow-up Hdwy	3.52	3.32	_	_	222	_		
Pot Cap-1 Maneuver	~8	215	_	_	247	_		
Stage 1	~ 75		_	_		_		
Stage 2	318	_	_	_	_	_		
Platoon blocked, %	310		_	_		_		
Mbv Cap-1 Maneuver	~6	215			247	_		
•			_	-	241			
Mbv Cap-2 Maneuver	~ 75	-	-	_	-	-		
Stage 1		-	-		-	-		
Stage 2	228	-	-	-	-	-		
Approach	WB		NB		SB			
HCMControl Delay, s	141.2		0		1			
HCMLOS	F							
N 4 1 A 4 1		NIDT	NIDD	VDI 47.4	DI C	CDI	CDT	
Mnor Lane/Major Mvr	nt	NBT	NBRV	VBLn1V		SBL	SBT	
Capacity (veh/h)		-	-	67	215	247	-	
HCMLane V/C Ratio		-		1.173		0.285	-	
HCMControl Delay (s)	-	-	270.4	34.3	25.3	-	
HCMLane LOS		-	-	F	D	D	-	
LION ACER COME OF L	1)	-	-	62	21	1.1	-	
HCM95th %tile Q(veh	7							
`	<i>y</i>							
Notes -: Volume exceeds ca		ф. D	lov.	eeds 30	<u>~</u>	C	outation Not Defined	*: All major volume in platoon

Queues

2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

2027 Phase 2 Build AM

	•	-	*	1	•	•	1	†	-	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	342	51	155	139	23	371	66	1443	35	367	1402	32
v/c Ratio	1.03	0.12	0.30	0.44	0.06	0.49	0.40	1.00	0.05	1.17	0.77	0.04
Control Delay	99.5	33.9	4.5	40.9	33.0	20.8	15.6	57.1	0.1	137.4	24.8	0.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	99.5	33.9	4.5	40.9	33.0	20.8	15.6	57.1	0.1	137.4	24.8	0.1
Queue Length 50th (ft)	~259	28	0	84	13	155	17	~529	0	~262	416	0
Queue Length 95th (ft)	#439	61	34	147	34	241	34	#697	0	#449	513	0
Internal Link Dist (ft)		776			302			1441			236	
Turn Bay Length (ft)			100	225		225	350		200	450		400
Base Capacity (vph)	332	418	513	315	411	754	166	1440	758	313	1814	897
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.03	0.12	0.30	0.44	0.06	0.49	0.40	1.00	0.05	1.17	0.77	0.04

Intersection Summary

Synchro 11 Report Kimley-Horn

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM 6th Signalized Intersection Summary 2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

2027 Phase 2 Build AM

	۶	→	•	•	•	•	4	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	×	^	7	7	^	7	×	^	7
Traffic Volume (veh/h)	328	49	149	133	22	356	63	1385	34	352	1346	31
Future Volume (veh/h)	328	49	149	133	22	356	63	1385	34	352	1346	31
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1781	1856	1841	1752	1885	1767	1856	1870	1811	1811	1870
Adj Flow Rate, veh/h	342	51	0	139	23	371	66	1443	35	367	1402	0
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	1	8	3	4	10	1	9	3	2	6	6	2
Cap, veh/h	293	424		353	417	614	199	1449	651	319	1782	
Arrive On Green	0.24	0.24	0.00	0.24	0.24	0.24	0.04	0.41	0.41	0.15	0.52	0.00
Sat Flow, veh/h	998	1781	1572	1332	1752	1598	1682	3526	1585	1725	3441	1585
Grp Volume(v), veh/h	342	51	0	139	23	371	66	1443	35	367	1402	0
Grp Sat Flow(s), veh/h/ln	998	1781	1572	1332	1752	1598	1682	1763	1585	1725	1721	1585
Q Serve(g_s), s	25.1	2.5	0.0	10.0	1.1	20.5	2.0	44.9	1.5	16.1	36.5	0.0
	26.2	2.5	0.0	12.5	1.1	20.5	2.0	44.9	1.5	16.1	36.5	0.0
Cycle Q Clear(g_c), s	1.00	2.5	1.00	1.00	1.1	1.00	1.00	44.9	1.00	1.00	30.3	1.00
Prop In Lane		404	1.00		447			1110			1700	1.00
Lane Grp Cap(c), veh/h	293	424		353	417	614	199	1449	651	319	1782	
V/C Ratio(X)	1.17	0.12		0.39	0.06	0.60	0.33	1.00	0.05	1.15	0.79	
Avail Cap(c_a), veh/h	293	424	4.00	353	417	614	211	1449	651	319	1782	4.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	45.3	32.9	0.0	37.8	32.3	27.1	18.6	32.3	19.5	35.1	21.6	0.0
Incr Delay (d2), s/veh	105.7	0.1	0.0	0.7	0.1	1.7	1.0	22.7	0.0	97.8	2.5	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	16.8	1.1	0.0	3.2	0.5	7.7	0.7	21.9	0.5	12.5	13.6	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	151.0	33.0	0.0	38.5	32.4	28.8	19.6	55.0	19.6	133.0	24.1	0.0
LnGrp LOS	F	С		D	С	С	В	D	В	F	С	
Approach Vol, veh/h		393			533			1544			1769	
Approach Delay, s/veh		135.6			31.5			52.7			46.7	
Approach LOS		F			С			D			D	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	23.0	53.0		34.0	11.2	64.8		34.0				
Change Period (Y+Rc), s	6.9	7.8		7.8	6.9	7.8		7.8				
Max Green Setting (Gmax), s	16.1	45.2		26.2	5.1	56.2		26.2				
Max Q Clear Time (g_c+I1), s	18.1	46.9		28.2	4.0	38.5		22.5				
Green Ext Time (p_c), s	0.0	0.0		0.0	0.0	16.4		0.8				
Intersection Summary												
HCM 6th Ctrl Delay			55.2									
HCM 6th LOS			55.2 E									
Notes												

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Section IX. Item #1. 2027 Phase 2 Build AM

Intersection												
Int Delay, s/veh	6.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7		4		ħ	ĵ.		٦	f ₃	
Traffic Vol, veh/h	76	214	87	6	319	3	123	3	7	16	5	5
Future Vol, veh/h	76	214	87	6	319	3	123	3	7	16	5	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	150	-	-	-	0	-	75	0	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	_	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	86	86	86	86	86	86	86	86	86	86	86	86
Heavy Vehicles, %	2	4	21	2	2	2	5	2	20	2	2	2
Mvmt Flow	88	249	101	7	371	3	143	3	8	19	6	6
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	374	0	0	350	0	0	818	813	249	868	913	373
Stage 1	-	-	-	-	-	-	425	425		387	387	-
Stage 2	-	-	_	-	-	-	393	388	-	481	526	-
Critical Hdwy	4.12	_	_	4.12	-	-	7.15	6.52	6.4	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.15	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	_	-	-	-	6.15	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.545	4.018	3.48	3.518	4.018	3.318
Pot Cap-1 Maneuver	1184	-	-	1209	-	-	291	313	748	273	273	673
Stage 1	_	-	-	-	-	-	601	586	-	637	610	-
Stage 2	-	_	_	-	-	-	626	609	-	566	529	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1184	-	-	1209	-	-	262	282	748	247	246	673
Mov Cap-2 Maneuver	-	-	-	-	-	-	262	282	-	247	246	-
Stage 1	-	-	-	-	-	-	545	531	-	577	606	-
Stage 2	-	-	-	-	-	-	610	605	-	504	479	-
-												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.7			0.1			32.5			18.7		
HCM LOS	1.1			J. 1			02.0 D			C		
Minor Lane/Major Mvm	nt 1	NBLn1 I	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR :	SBLn1	SBLn2	
Capacity (veh/h)		262	500	1184		-	1209	-	-	247	360	
HCM Lane V/C Ratio			0.023		_	_	0.006	_		0.075		
HCM Control Delay (s)		34.1	12.4	8.3	_	_	8	0	-	20.8	15.3	
HCM Lane LOS		D	В	A	_	_	A	A	_	C	C	
HOMOSII OVII OVII		2	0.4	0.0			^ ^	, \		0.0	0.4	

Kimley-Horn Synchro 11 Report

0.2

0.1

0.1

0.2

HCM 95th %tile Q(veh)

HCM 6th TWSC 4: SC 170 (Okatie Hwy) & Site Access #1 Gibbet Road Multifamily De Section IX. ITEM 2027 Phase 2 Build AM Section IX. Item #1.

Intersection						
Int Delay, s/veh	0.2					
		WDD	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	<u>`</u>	7	↑ ↑	00	7	^
Traffic Vol, veh/h	0	23	2131	26	0	1756
Future Vol, veh/h	0	23	2131	26	0	1756
Conflicting Peds, #/hr	0	0	0	_ 0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	
Storage Length	0	0	-	-	200	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	6
Mvmt Flow	0	26	2368	29	0	1951
Major/Miner	Mine =1		Anic 1		Ania-O	
	Minor1		Major1		Major2	
Conflicting Flow All	3359	1199	0	0	2397	0
Stage 1	2383	-	-	-	-	-
Stage 2	976	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	6	178	-	-	197	-
Stage 1	55	-	-	-	-	-
Stage 2	326	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	6	178	_	-	197	-
Mov Cap-2 Maneuver	51		_	_	-	_
Stage 1	55	_	_	_	_	_
Stage 2	326		_		_	
Olaye Z	520			_		
Approach	WB		NB		SB	
HCM Control Delay, s	28.6		0		0	
HCM LOS	D					
Minor Long/Major M.	.4	NDT	MDDV	VDL ~ 414	VDL =2	CDI
Minor Lane/Major Mvn	Ιζ	NBT	NRKA	VBLn1V		SBL
Capacity (veh/h)		-	-	-	178	197
HCM Lane V/C Ratio		-	-		0.144	-
HCM Control Delay (s)		-	-	0	28.6	0
HCM Lane LOS		-	-	Α	D	Α
HCM 95th %tile Q(veh)	-	-	-	0.5	0

2027 Phase 2 Build AM

HCM 95th %tile Q(veh)

Section IX. Item #1.

Intersection Int Delay, s/veh 1.1 **EBL** EBT **WBR** Movement **WBT** SBL **SBR** Lane Configurations ٠ Þ 7 377 Traffic Vol, veh/h 431 80 16 Future Vol, veh/h 0 377 431 16 0 80 Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Free Stop Stop Free Free Free RT Channelized None None None Storage Length 0 Veh in Median Storage, # 0 0 0 Grade, % 0 0 0 Peak Hour Factor 90 90 90 90 90 90 Heavy Vehicles, % 2 5 2 2 2 2 Mvmt Flow 0 419 479 18 0 89 Major/Minor Major1 Minor2 Major2 Conflicting Flow All 0 0 488 Stage 1 Stage 2 Critical Hdwy 6.22 Critical Hdwy Stg 1 -Critical Hdwy Stg 2 Follow-up Hdwy - 3.318 Pot Cap-1 Maneuver 0 580 0 Stage 1 0 0 _ Stage 2 0 Platoon blocked, % 580 Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 **WB** Approach EB SB HCM Control Delay, s 0 0 12.3 **HCM LOS** В WBT WBR SBLn1 Minor Lane/Major Mvmt EBT Capacity (veh/h) 580 HCM Lane V/C Ratio - 0.153 HCM Control Delay (s) 12.3 **HCM Lane LOS** В

Synchro 11 Report Kimley-Horn

0.5

Page 186

HCM 6th TWSC 6: SC 170 (Okatie Hwy) & SIte Access #4 Gibbet Road Multifamily De Section IX. ITEM 2027 Phase 2 Build AM Section IX. Item #1.

Intersection						
Int Delay, s/veh	1.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	VVDL	VVDIX	↑ ↑	NDI	ODL	1
Traffic Vol, veh/h	0	100	2057	70	0	1729
Future Vol, veh/h	0	100	2057	70	0	1729
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	riee -	None	riee -	
	_					
Storage Length		0	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	6
Mvmt Flow	0	111	2286	78	0	1921
Major/Minor	Minor1	_	Major1	Λ	//ajor2	
Conflicting Flow All	-	1182	0	0	-	_
Stage 1	_	-	-	-	_	_
Stage 2	_	_	_	_	_	-
Critical Hdwy	-	6.94	-	-		
					-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	2 22	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	182	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	-	182	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	_	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Annroach	WB		NB		SB	
Approach						
HCM Control Delay, s			0		0	
HCM LOS	F					
Minor Lane/Major Mvr	nt	NBT	NBRV	VBLn1	SBT	
Capacity (veh/h)			-		-	
HCM Lane V/C Ratio		_		0.611	_	
HCM Control Delay (s)			51.7	_	
HCM Lane LOS)	_		51.7 F		
		-	-		-	
HCM 95th %tile Q(veh	1)	-	-	3.4	-	

Intersection								
Int Delay, s/veh	25							
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	*	7	^	7	*	^		
Traffic Vol, veh/h	29	81	1669	56	187	2127		
Future Vol., veh/h	29	81	1669	56	187	2127		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	Stop	_		-	None		
Storage Length	0	0	_	275	450	-		
Veh in Median Storage		_	0		_	0		
Grade, %	0	_	0	_	_	0		
Peak Hour Factor	95	95	95	95	95	95		
Heavy Vehides, %	2	2	3	2	2	1		
M/mtFlow	31	85	1757	59	197	2239		
IVWITILI IOVV	JI	ω	1731	37	171	2237		
Major/Mnor 1	VInor1	ı	√ajor1	N	√ajor2			
Conflicting FlowAll	3271	879	0		1757	0		
Stage 1	1757	0/9	-	U	1/3/	-		
Stage 2	1514	-	_	_	-	_		
Critical Holwy	684	694			4.14			
				-				
Critical Holwy Stg 1	5.84	-	-	-	-	-		
Critical Holwy Stg 2	5.84	-	-	-	-	-		
Follow-up Hdwy	3.52	332	-	-	222	-		
Pot Cap-1 Maneuver	~7	291	-	-	352	-		
Stage 1	124	-	-	-	-	-		
Stage 2	168	-	-	-	-	-		
Platoon blocked, %			-	-		-		
Mbv Cap-1 Maneuver	~ 3	291	-	-	352	-		
Mbv Cap-2 Maneuver	58	-	-	-	-	-		
Stage 1	124	-	-	-	-	-		
Stage 2	74	-	-	-	-	-		
Approach	WB		NB		SB			
HCMControl Delay, s	486		0		22			
HCMLOS	Ε							
Mnor Lane/Wajor M/m	nt_	NBT	NBRV	VBLn1V	VBLn2	SBL	SBT	
Capacity (veh/h)		_	-	58	291	352	-	
HCMLane V/C Ratio		-	-	0.526			-	
HCMControl Delay (s)		-		121.9	224	27.4	-	
HCMLane LOS		_	_	F	С	D	-	
HCM95th %tile Q(veh))	-	-	21	1.2	33	-	
Notes								
~: Volume exceeds cap	pacity	\$: De	lav exc	eeds 30))s	+: Com	outation Not Defined	*: All major volume in platoon
2.2 300003 00		,, 20	, 0, 10					

Gibbet Road Multifamily De

Section IX. Item #1.

2027 Phase 2 Build PM

2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

	•	→	•	•	—	•	1	†	1	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	162	37	68	91	56	379	100	1316	47	408	1620	91
v/c Ratio	0.84	0.14	0.16	0.46	0.21	0.54	0.54	0.92	0.06	1.00	0.80	0.09
Control Delay	73.3	35.0	0.8	43.7	36.1	20.0	21.0	35.9	0.1	70.4	19.8	0.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	73.3	35.0	0.8	43.7	36.1	20.0	21.0	35.9	0.1	70.4	19.8	0.7
Queue Length 50th (ft)	91	19	0	48	28	134	16	357	0	~183	380	0
Queue Length 95th (ft)	#199	46	0	96	64	222	#57	#499	0	#374	485	7
Internal Link Dist (ft)		776			302			1441			236	
Turn Bay Length (ft)			100	225		225	350		200	450		400
Base Capacity (vph)	201	280	429	205	280	698	186	1494	815	410	2024	966
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.81	0.13	0.16	0.44	0.20	0.54	0.54	0.88	0.06	1.00	0.80	0.09

Intersection Summary

Queue shown is maximum after two cycles.

Queue shown is maximum after two cycles.

Synchro 11 Report Kimley-Horn

Page 189

Volume exceeds capacity, queue is theoretically infinite.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

HCM 6th Signalized Intersection Summary 2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

2027 Phase 2 Build PM

	۶	→	*	•	+	•	4	†	-	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	7	↑	7	*	^	7	*	^	7
Traffic Volume (veh/h)	147	34	62	83	51	345	91	1198	43	371	1474	83
Future Volume (veh/h)	147	34	62	83	51	345	91	1198	43	371	1474	83
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1885	1870	1826	1870	1885	1870	1870
Adj Flow Rate, veh/h	162	37	0	91	56	379	100	1316	47	408	1620	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	2	2	2	2	2	1	2	5	2	1	2	2
Cap, veh/h	195	275		258	275	521	226	1468	671	430	1959	
Arrive On Green	0.15	0.15	0.00	0.15	0.15	0.15	0.05	0.42	0.42	0.18	0.55	0.00
Sat Flow, veh/h	954	1870	1585	1371	1870	1598	1781	3469	1585	1795	3554	1585
Grp Volume(v), veh/h	162	37	0	91	56	379	100	1316	47	408	1620	0
Grp Sat Flow(s), veh/h/ln	954	1870	1585	1371	1870	1598	1781	1735	1585	1795	1777	1585
Q Serve(g_s), s	10.8	1.5	0.0	5.6	2.4	13.2	2.1	31.7	1.6	14.6	33.8	0.0
Cycle Q Clear(g_c), s	13.2	1.5	0.0	7.1	2.4	13.2	2.1	31.7	1.6	14.6	33.8	0.0
Prop In Lane	1.00	1.0	1.00	1.00		1.00	1.00	01	1.00	1.00	00.0	1.00
Lane Grp Cap(c), veh/h	195	275	1.00	258	275	521	226	1468	671	430	1959	1.00
V/C Ratio(X)	0.83	0.13		0.35	0.20	0.73	0.44	0.90	0.07	0.95	0.83	
Avail Cap(c_a), veh/h	195	275		258	275	521	236	1476	674	430	1959	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	41.0	33.3	0.0	36.4	33.7	26.7	16.9	24.1	15.4	24.6	16.6	0.0
Incr Delay (d2), s/veh	24.8	0.2	0.0	0.8	0.4	5.0	1.4	7.7	0.1	30.4	3.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	5.0	0.7	0.0	1.8	1.0	7.3	0.9	12.8	0.5	11.6	11.9	0.0
Unsig. Movement Delay, s/veh	0.0	0.7	0.0	1.0	1.0	1.0	0.5	12.0	0.0	11.0	11.5	0.0
LnGrp Delay(d),s/veh	65.9	33.5	0.0	37.2	34.0	31.8	18.2	31.7	15.5	55.0	19.8	0.0
LnGrp LOS	05.5 E	33.3 C	0.0	57.2 D	34.0 C	C C	10.2 B	C C	13.3 B	55.0 D	19.0 B	0.0
Approach Vol, veh/h	<u> </u>	199			526		<u> </u>	1463	<u> </u>	U	2028	
								30.3			26.8	
Approach Delay, s/veh		59.9			32.9							
Approach LOS		Е			С			С			С	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	23.0	45.8		21.0	11.5	57.3		21.0				
Change Period (Y+Rc), s	6.9	7.8		7.8	6.9	7.8		7.8				
Max Green Setting (Gmax), s	16.1	38.2		13.2	5.1	49.2		13.2				
Max Q Clear Time (g_c+I1), s	16.6	33.7		15.2	4.1	35.8		15.2				
Green Ext Time (p_c), s	0.0	4.3		0.0	0.0	13.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			30.4									
HCM 6th LOS			С									
Notes												

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Synchro 11 Report Kimley-Horn

Intersection												
Int Delay, s/veh	3.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†	7		ર્ન		*	1		*	1	
Traffic Vol, veh/h	69	257	79	13	363	4	69	4	10	11	3	3
Future Vol, veh/h	69	257	79	13	363	4	69	4	10	11	3	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	150	-	-	-	0	-	75	0	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87
Heavy Vehicles, %	2	2	2	2	0	2	2	2	2	2	2	2
Mvmt Flow	79	295	91	15	417	5	79	5	11	13	3	3
Major/Minor I	Major1		ı	Major2			Minor1		1	Minor2		
Conflicting Flow All	422	0	0	386	0	0	906	905	295	957	994	420
Stage 1		-	-	-	_	-	453	453	-	450	450	-
Stage 2	_	_	_	_	_	_	453	452	_	507	544	_
Critical Hdwy	4.12	-	_	4.12	_	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1		_	_	-	_	_	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	_	-	_	_	_	-	6.12	5.52	_	6.12	5.52	_
Follow-up Hdwy	2.218	_	_	2.218	_	_	3.518	4.018	3.318	3.518		3.318
Pot Cap-1 Maneuver	1137	-	_	1172	_	-	257	276	744	237	245	633
Stage 1	-	_	_	-	_	-	586	570	-	589	572	-
Stage 2	-	-	_	-	-	-	586	570	-	548	519	-
Platoon blocked, %		-	_		-	-						
Mov Cap-1 Maneuver	1137	-	_	1172	-	-	232	247	744	211	219	633
Mov Cap-2 Maneuver	-	-	_	-	-	-	232	247	-	211	219	
Stage 1	-	_	-	_	-	-	533	519	_	536	562	_
Stage 2	-	-	-	_	-	-	569	560	-	487	472	_
								,,,,				
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.4			0.3			25.8			20.7		
HCM LOS	1.7			0.0			23.0 D			20.7 C		
HOW LOO							<u>ل</u>			J		
Minor Lane/Major Mvm	nt I	NBLn1	NRI n2	EBL	EBT	EBR	WBL	WBT	WRR	SRI n1	SBLn2	
Capacity (veh/h)	it .	232	472	1137	LDI		1172	וטיי	-	0.1.1	325	
HCM Lane V/C Ratio			0.034	0.07			0.013	_	-		0.021	
HCM Control Delay (s)		28.4	12.9	8.4	-	-	8.1	0	-		16.3	
HCM Lane LOS		20.4 D	12.9 B	0.4 A	<u>-</u>	-	Α	A	-	23.1 C	10.3 C	
HCM 95th %tile Q(veh)		1.4	0.1	0.2	-		0	- -	-	0.2	0.1	
HOW JOHN /OHIE Q(VEH)		1.4	0.1	0.2		-	U		_	0.2	0.1	

HCM 6th TWSC 4: SC 170 (Okatie Hwy) & Site Access #1

Section IX. Item #1. Gibbet Road Multifamily De

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	† 1>	HUIT)	† †
Traffic Vol, veh/h	0	14	1711	36	0	2156
Future Vol, veh/h	0	14	1711	36	0	2156
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	_	-	200	-
Veh in Median Storag		-	0		-	0
Grade, %	0,# 2	_	0	<u>-</u>	_	0
Peak Hour Factor	90	90	90	90	90	90
	2	2	3			90
Heavy Vehicles, %				2	2	•
Mvmt Flow	0	16	1901	40	0	2396
Major/Minor	Minor1	N	Major1	N	//ajor2	
Conflicting Flow All	3119	971	0	0	1941	0
Stage 1	1921	_	-	_	-	_
Stage 2	1198	_	_	_	_	_
Critical Hdwy	6.84	6.94	_	_	4.14	_
Critical Hdwy Stg 1	5.84	-	_	_		_
Critical Hdwy Stg 2	5.84	_	_	_	_	_
Follow-up Hdwy	3.52	3.32	<u>-</u>	<u>-</u>	2.22	<u>-</u>
Pot Cap-1 Maneuver	9	252	_	_	298	_
Stage 1	101	- 202	_	_	230	_
	249			-		
Stage 2	249	-		-	-	-
Platoon blocked, %	^	050	-	-	000	-
Mov Cap-1 Maneuver		252	-	-	298	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	101	-	-	-	-	-
Stage 2	249	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0		0	
HCM LOS	C C		U		U	
1 TOIVI LOO	J					
Minor Lane/Major Mvi	nt	NBT	NBRV	VBLn1V	VBLn2	SBL
Capacity (veh/h)		-	-	-	252	298
HCM Lane V/C Ratio		-	-	-	0.062	-
HCM Control Delay (s	s)	-	-	0	20.2	0
HCM Lane LOS		-	_	A	С	A
HCM 95th %tile Q(veh	1)	-	-	-	0.2	0
2000 2000	1					

Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		<u> </u>	1>			7
Traffic Vol, veh/h	0	405	420	15	0	59
Future Vol, veh/h	0	405	420	15	0	59
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	1	1	2	2	2
Mvmt Flow	0	450	467	17	0	66
	lajor1		Major2		Minor2	
Conflicting Flow All	-	0	-	0	-	476
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.318
Pot Cap-1 Maneuver	0	-	-	-	0	589
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	-	-	_	_	-	589
Mov Cap-2 Maneuver	-	_	-	-	-	-
Stage 1	_	_	_	-	_	_
Stage 2	_	_	_	_	_	_
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		11.9	
HCM LOS					В	
Minor Lane/Major Mvmt		EBT	WBT	WBR S	SRI n1	
		LDI	VVDI	יומיי	589	
		-	-	-		
Capacity (veh/h)						
Capacity (veh/h) HCM Lane V/C Ratio		-	-		0.111	
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		-	-	-	11.9	
Capacity (veh/h) HCM Lane V/C Ratio		- - -				

HCM 6th TWSC 6: SC 170 (Okatie Hwy) & SIte Access #4 Gibbet Road Multifamily De Section IX. ITEM 2027 Phase 2 Build PM Section IX. Item #1.

Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1106	₩ M	11	ווטוו	ODL	^
Traffic Vol, veh/h	0	77	1670	63	0	1928
Future Vol, veh/h	0	77	1670	63	0	1928
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	
Storage Length	_	0	_	-	_	-
Veh in Median Storage,		-	0	_	_	0
Grade, %	0	<u>-</u>	0	_	_	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	3	2	2	2
Mvmt Flow	0	86	1856	70	0	2142
	- 0	- 00	1000	10		L 17L
	/linor1		Major1		//ajor2	
Conflicting Flow All	-	963	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	256	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	-	256	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Annroach	WB		NB		SB	
Approach						
HCM Control Delay, s	26		0		0	
HCM LOS	D					
Minor Lane/Major Mvmt	t	NBT	NBRV	VBLn1	SBT	
Capacity (veh/h)		-	-	256	-	
HCM Lane V/C Ratio		-	-	0.334	-	
HCM Control Delay (s)		-	-	26	-	
HCM Lane LOS		-	-	D	-	
HCM 95th %tile Q(veh)		-	-	1.4	-	

Gibbet Road Residential Development Traffic Impact Analysis

2029 NO-BUILD CONDITIONS

HCM 6th TWSC 1: SC 170 (Okatie Hvvy) & Lawton Boulevard Gibbet Road Multifamily De Section IX. Item 2029 Phase 3 No-Build AM Section IX. Item #1.

Intersection								
Int Delay, s/veh	133							
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	*	7	^	7	7	^		
Traffic Vol, veh/h	88	106	2348	55	79	1878		
Future Vol, veh/h	88	106	2348	55	79	1878		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	·-	Stop	-	Yield	-	None		
Storage Length	0	Ö	-	275	450	-		
Veh in Median Storage	e, # 2	-	0	-	-	0		
Grade, %	0	_	0	-	-	0		
Peak Hour Factor	98	98	98	98	98	98		
Heavy Vehicles, %	2	2	2	3	2	6		
MmtFlow	90	108	2396	56	81	1916		
	, ,		2070		0.	.,,,		
Maior Mar	Mnor1	N	/bior1	N	/bior?			
			√ajor1		√ajor2	^		
Conflicting FlowAll		1198	0	U	2396	0		
Stage 1	2396	-	-	-	-	-		
Stage 2	1120	-	-	-	-	-		
Critical Holwy	684	694	-	-	4.14	-		
Critical Holwy Stg 1	5.84	-	-	-	-	-		
Critical Holwy Stg 2	5.84	-	-	-	-	-		
Follow-up Hdwy	3.52	332	-	-	222	-		
Pot Cap-1 Maneuver	~5	178	-	-	197	-		
Stage 1	~ 54	-	-	-	-	-		
Stage 2	274	-	-	-	-	-		
Platoon blocked, %			-	-		-		
Mbv Cap-1 Maneuver	~ 3	178	-	-	197	-		
Mbv Cap-2 Maneuver	~ 48	-	-	-	-	-		
Stage 1	~ 54	-	-	-	-	-		
Stage 2	161	-	-	-	-	-		
Approach	WB		NB		SB			
HCMControl Delay, s			0		1.4			
HCMLOS	F							
0111200	'							
N. Amerika and A. A. S. A.		NDT	NIDDY	VDI -414	DI - C	CDI	CDT	
Mnor Lane/Vajor M/n	TIC .	NBT	NRKV	VBLn1V		SBL	SBT	
Capacity (veh/h)		-	-	48	178	197	-	
HCMLane V/C Ratio		-		1.871			-	
HCMControl Delay (s)		-		594.5	524	35.4	-	
HCMLane LOS		-	-	F	F	E	-	
HCM95th %tile Q(veh))	-	-	9	34	1.8	-	
Notes								
~: Volume exceeds car	pacity	\$: De	lay exo	eeds 30	Os .	+: Como	outation Not Defined	*: All major volume in platoon
	, ,		,					,

Kimley-Hom Synchro 11 Report

Page 196

Queues

2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

2029 Phase 3 No-Build AM

	•	→	*	1	←	*	1	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	415	33	177	78	25	410	75	1632	33	335	1644	36
v/c Ratio	1.25	0.08	0.35	0.24	0.06	0.54	0.54	1.13	0.04	1.07	0.91	0.04
Control Delay	171.7	33.3	6.6	36.4	33.0	22.2	27.2	100.7	0.1	103.1	32.7	0.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	171.7	33.3	6.6	36.4	33.0	22.2	27.2	100.7	0.1	103.1	32.7	0.1
Queue Length 50th (ft)	~367	18	0	45	14	179	19	~706	0	~214	555	0
Queue Length 95th (ft)	#560	44	50	88	37	276	#55	#845	0	#395	#738	0
Internal Link Dist (ft)		776			677			1441			2596	
Turn Bay Length (ft)			100	225		225	350		200	450		400
Base Capacity (vph)	332	418	513	320	411	754	140	1440	758	313	1814	897
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.25	0.08	0.35	0.24	0.06	0.54	0.54	1.13	0.04	1.07	0.91	0.04

Intersection Summary

Synchro 11 Report Kimley-Horn

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM 6th Signalized Intersection Summary 2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

2029 Phase 3 No-Build AM

	۶	→	•	•	←	•	4	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	7	↑	7	7	^	7	7	^	7
Traffic Volume (veh/h)	398	32	170	75	24	394	72	1567	32	322	1578	35
Future Volume (veh/h)	398	32	170	75	24	394	72	1567	32	322	1578	35
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1781	1856	1841	1752	1885	1767	1856	1870	1811	1811	1870
Adj Flow Rate, veh/h	415	33	0	78	25	410	75	1632	33	335	1644	0
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	1	8	3	4	10	1	9	3	2	6	6	2
Cap, veh/h	284	424		369	417	614	155	1449	651	318	1777	
Arrive On Green	0.24	0.24	0.00	0.24	0.24	0.24	0.04	0.41	0.41	0.15	0.52	0.00
Sat Flow, veh/h	961	1781	1572	1354	1752	1598	1682	3526	1585	1725	3441	1585
Grp Volume(v), veh/h	415	33	0	78	25	410	75	1632	33	335	1644	0
Grp Sat Flow(s), veh/h/ln	961	1781	1572	1354	1752	1598	1682	1763	1585	1725	1721	1585
Q Serve(g_s), s	25.0	1.6	0.0	5.2	1.2	23.4	2.3	45.2	1.4	16.1	48.7	0.0
Cycle Q Clear(g_c), s	26.2	1.6	0.0	6.8	1.2	23.4	2.3	45.2	1.4	16.1	48.7	0.0
Prop In Lane	1.00	1.0	1.00	1.00	1.2	1.00	1.00	45.2	1.00	1.00	40.7	1.00
•	284	424	1.00	369	417	614	155	1449	651	318	1777	1.00
Lane Grp Cap(c), veh/h	1.46			0.21		0.67					0.93	
V/C Ratio(X)		0.08			0.06		0.48	1.13	0.05	1.05		
Avail Cap(c_a), veh/h	284	424	4.00	369	417	614	165	1449	651	318	1777	4.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	45.4	32.5	0.0	35.2	32.4	28.0	24.8	32.4	19.5	35.3	24.6	0.0
Incr Delay (d2), s/veh	226.5	0.1	0.0	0.3	0.1	2.8	2.3	66.4	0.0	65.3	8.8	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	25.8	0.7	0.0	1.7	0.5	8.9	1.0	30.9	0.5	9.6	19.5	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	271.9	32.6	0.0	35.4	32.4	30.8	27.1	98.8	19.5	100.6	33.5	0.0
LnGrp LOS	F	С		D	С	С	С	F	В	F	<u> </u>	
Approach Vol, veh/h		448	Α		513			1740			1979	Α
Approach Delay, s/veh		254.3			31.6			94.2			44.8	
Approach LOS		F			С			F			D	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	23.0	53.0		34.0	11.4	64.6		34.0				
Change Period (Y+Rc), s	6.9	7.8		7.8	6.9	7.8		7.8				
Max Green Setting (Gmax), s	16.1	45.2		26.2	5.1	56.2		26.2				
Max Q Clear Time (g_c+l1), s	18.1	47.2		28.2	4.3	50.7		25.4				
Green Ext Time (p_c), s	0.0	0.0		0.0	0.0	5.4		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			81.8									
HCM 6th LOS			F									
Notos												

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Synchro 11 Report Kimley-Horn

HCM 6th TWSC 3: Estate Drive & Gibbet Road

Intersection							
Int Delay, s/veh	3.3						-
Movement	EBT	EBR	WBL	WBT	NBL	NBR	j
Lane Configurations	^	7		ન	*	7	۰
Traffic Vol, veh/h	253	89	6	361	132	8	
Future Vol, veh/h	253	89	6	361	132	8	
Conflicting Peds, #/h		0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-		- Olop		
Storage Length	-	150	_	-	0	75	
Veh in Median Storag		-	_	0	0	-	
	•						
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	86	86	86	86	86	86	
Heavy Vehicles, %	4	21	2	2	5	20	
Mvmt Flow	294	103	7	420	153	9	
Major/Minor	Major1	ľ	Major2	1	Minor1		ĺ
Conflicting Flow All	0	0	397	0	728	294	
Stage 1	_		-	-	294	-	
Stage 2	<u>-</u>	_	<u>-</u>	<u>-</u>	434	<u>-</u>	
Critical Hdwy	_	_	4.12		6.45	6.4	
	-	-		-			
Critical Hdwy Stg 1	-		-	-	5.45	-	
Critical Hdwy Stg 2	-	-	-	-	5.45	-	
Follow-up Hdwy	-		2.218		3.545	3.48	
Pot Cap-1 Maneuver	-	-	1162	-	386	705	
Stage 1	-	-	-	-	749	-	
Stage 2	-	-	-	-	647	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuve	er -	-	1162	-	383	705	
Mov Cap-2 Maneuve		-	-	-	383	-	
Stage 1	_	_	_	_	749	_	
Stage 2	_	_	_	_	642	_	
Olage 2					072		
Approach	EB		WB		NB		
HCM Control Delay,	s 0		0.1		19.9		i
HCM LOS					С		
N. 1. (2.1. 2.1.		NIDL (NDL C	FOT	EDD	VA/DI	
Minor Lane/Major My	/mt [NBLn1 N		EBT	EBR		
Capacity (veh/h)		383	705	-	-	1162	
HCM Lane V/C Ratio		0.401		-	-	0.006	
HCM Control Delay (s)	20.5	10.2	-	-	8.1	
HCM Lane LOS		С	В	-	-	Α	
	1.	1.9	0			0	
HCM 95th %tile Q(ve	an)	1.9	U	_		U	

Intersection									
Int Delay, s/veh	65								
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	7	7	^	7	7	^			
Traffic Vol, veh/h	34	93	1872	64	214	2378			
Future Vol, veh/h	34	93	1872	64	214	2378			
Conflicting Peds, #/hr	0	0	0	0	0	0			
Sign Control	Stop	Stop	Free	Free	Free	Free			
RT Channelized	_	Stop	-	Yield	-	None			
Storage Length	0	Ö	-	275	450	-			
Veh in Median Storage	e, # 2	_	0	_	-	0			
Grade, %	0	_	0	_	_	0			
Peak Hour Factor	95	95	95	95	95	95			
Heavy Vehides, %	2	2	3	2	2	1			
M/mtFlow	36	98	1971	67	225	2503			
TVWITICI IOVV	ω	70	1771	O/	220	200			
N 4-1 N 4	N 41		/h:1		/ -:				
	Mnor1		√ajor1		/ajor2				
Conflicting FlowAll	3673	986	0	0	1971	0			
Stage 1	1971	-	-	-	-	-			
Stage 2	1702	-	-	-	-	-			
Critical Hdvvy	684	694	-	-	4.14	-			
Critical Hdvvy Stg 1	5.84	-	-	-	-	-			
Critical Holwy Stg 2	5.84	-	-	-	-	-			
Followup Hdwy	3.52	332	-	-	222	-			
Pot Cap-1 Maneuver	~ 4	247	-	-	290	-			
Stage 1	94	-	-	_	-	-			
Stage 2	133	-	_	_	_	-			
Platoon blocked, %			_	_		-			
Mbv Cap-1 Maneuver	~ 1	247	_	_	290	_			
Mbv Cap-2 Maneuver			_	_		_			
Stage 1	94	_	_	_	_	_			
Stage 2	~ 30	_	_	_	_	_			
o ago z	ω								
A a ala	145		ND		CD				
Approach LD L	WB		NB		SB				
HCMControl Delay, s			0		4.1				
HCMLOS	F								
Mnor Lane/Major M/r	nt	NBT	NBRV	VBLn1V	BLn2	SBL	SBT		
Capacity (veh/h)		-	-	27	247	290	-		
HCMLane V/C Ratio		-	_	1.326	0.396	Q777	-		
HCMControl Delay (s)	-	-	\$503	288	50	-		
HCMLane LOS		-	-	F	D	F	-		
HCM95th %tile Q(veh	1)	-	-	4.3	1.8	6	-		
· ·									
Notes		φ. D.	la	- ~	n-	0	u de Bara Ned Dagara	* All read are rate and the state of the stat	
~: Volume exceeds ca	pacity	\$: De	lay exc	eeds 30	LS ·	+: Comp	outation Not Defined	*: All major volume in platoon	

Queues

2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

2029 Phase 3 No-Build PM

	۶	→	*	1	←	*	1	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	207	20	78	44	63	424	114	1481	44	371	1887	104
v/c Ratio	1.06	0.07	0.18	0.22	0.23	0.62	0.62	1.01	0.05	0.93	0.98	0.11
Control Delay	121.3	34.0	1.0	37.0	36.5	22.5	26.9	52.0	0.1	56.4	36.4	1.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	121.3	34.0	1.0	37.0	36.5	22.5	26.9	52.0	0.1	56.4	36.4	1.1
Queue Length 50th (ft)	~130	10	0	22	32	159	19	~447	0	154	514	0
Queue Length 95th (ft)	#267	31	0	54	69	259	#80	#605	0	#322	#715	12
Internal Link Dist (ft)		776			677			1441			2596	
Turn Bay Length (ft)			100	225		225	350		200	450		400
Base Capacity (vph)	195	273	424	203	273	693	184	1472	806	405	1934	929
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.06	0.07	0.18	0.22	0.23	0.61	0.62	1.01	0.05	0.92	0.98	0.11

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM 6th Signalized Intersection Summary 2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

2029 Phase 3 No-Build PM

	۶	→	•	1	•	•	1	†	~	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	7	↑	7	*	^	7	7	^	7
Traffic Volume (veh/h)	188	18	71	40	57	386	104	1348	40	338	1717	95
Future Volume (veh/h)	188	18	71	40	57	386	104	1348	40	338	1717	95
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1885	1870	1826	1870	1885	1870	1870
Adj Flow Rate, veh/h	207	20	0	44	63	424	114	1481	44	371	1887	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	2	2	2	2	2	1	2	5	2	1	2	2
Cap, veh/h	186	274		271	274	520	183	1472	673	401	1958	
Arrive On Green	0.15	0.15	0.00	0.15	0.15	0.15	0.05	0.42	0.42	0.18	0.55	0.00
Sat Flow, veh/h	909	1870	1585	1392	1870	1598	1781	3469	1585	1795	3554	1585
Grp Volume(v), veh/h	207	20	0	44	63	424	114	1481	44	371	1887	0
Grp Sat Flow(s), veh/h/ln	909	1870	1585	1392	1870	1598	1781	1735	1585	1795	1777	1585
Q Serve(g_s), s	10.5	0.8	0.0	2.5	2.7	13.2	2.4	38.2	1.5	14.2	45.8	0.0
Cycle Q Clear(g_c), s	13.2	0.8	0.0	3.4	2.7	13.2	2.4	38.2	1.5	14.2	45.8	0.0
(0)	1.00	0.0	1.00	1.00	2.1	1.00	1.00	30.2	1.00	1.00	45.0	1.00
Prop In Lane	186	274	1.00	271	274	520	183	1472	673	401	1958	1.00
Lane Grp Cap(c), veh/h												
V/C Ratio(X)	1.11	0.07		0.16	0.23	0.82	0.62	1.01	0.07	0.92	0.96	
Avail Cap(c_a), veh/h	186	274	4.00	271	274	520	191	1472	673	401	1958	4.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	42.0	33.1	0.0	34.6	33.9	27.9	21.1	25.9	15.3	26.9	19.3	0.0
Incr Delay (d2), s/veh	98.9	0.1	0.0	0.3	0.4	9.7	5.7	24.9	0.0	27.0	12.9	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	9.3	0.4	0.0	8.0	1.2	9.1	1.4	18.6	0.5	5.9	18.5	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	140.9	33.2	0.0	34.9	34.3	37.6	26.8	50.8	15.4	54.0	32.2	0.0
LnGrp LOS	F	С		С	С	D	С	F	В	D	С	
Approach Vol, veh/h		227	Α		531			1639			2258	Α
Approach Delay, s/veh		131.4			37.0			48.1			35.8	
Approach LOS		F			D			D			D	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	23.0	46.0		21.0	11.6	57.4		21.0				
Change Period (Y+Rc), s	6.9	7.8		7.8	6.9	7.8		7.8				
Max Green Setting (Gmax), s	16.1	38.2		13.2	5.1	49.2		13.2				
Max Q Clear Time (g_c+I1), s	16.2	40.2		15.2	4.4	47.8		15.2				
Green Ext Time (p_c), s	0.0	0.0		0.0	0.0	1.4		0.0				
Intersection Summary	,,,							,,,				
			45.0									
HCM 6th Ctrl Delay HCM 6th LOS			45.0 D									
			U									
Notes												

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Synchro 11 Report Kimley-Horn

HCM 6th TWSC 3: Estate Drive & Gibbet Road

Intersection						
Int Delay, s/veh	1.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^	7		4	ሻ	7
Traffic Vol, veh/h	300	82	14	411	72	11
Future Vol, veh/h	300	82	14	411	72	11
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	
Storage Length	-	150	-	-	0	75
Veh in Median Storage	e,# 0	-	_	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, %	2	2	2	0	2	2
Mymt Flow	345	94	16	472	83	13
IVIVIII I IOW	J4J	34	10	712	00	10
Major/Minor	Major1	<u> </u>	Major2	N	Minor1	
Conflicting Flow All	0	0	439	0	849	345
Stage 1	-	-	-	-	345	-
Stage 2	-	-	-	_	504	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	_		_	5.42	-
Critical Hdwy Stg 2	_	_	_	-	5.42	_
Follow-up Hdwy	_	_	2.218	_	3.518	
Pot Cap-1 Maneuver	_	_	1121	-	331	698
Stage 1	_	_	- 1 1 2 1	<u>-</u>	717	-
Stage 2	_	_	_	_	607	_
Platoon blocked, %	_			<u> </u>	001	
Mov Cap-1 Maneuver		-	1121		325	698
		-	1121	-		
Mov Cap-2 Maneuver	-	-	-	-	325	-
Stage 1	-	-	-	-	717	-
Stage 2	-	-	-	-	595	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.3		18.5	
	U		0.3			
HCM LOS					С	
Minor Lane/Major Mvr	nt l	NBLn11	VBLn2	EBT	EBR	WBL
Capacity (veh/h)		325	698	-	_	1121
HCM Lane V/C Ratio		0.255		_		0.014
HCM Control Delay (s)	19.8	10.3	_	_	8.3
HCM Lane LOS	,	C	В	_	_	A
HCM 95th %tile Q(veh	1)	1	0.1	_	_	0
TION JOHN JOHN Q(VEI	'/		J. 1			U

Gibbet Road Residential Development Traffic Impact Analysis

2029 BUILD PHASE 3 CONDITIONS

Jultifamily De Section IX. Item #1.

2029 Phase 3 Bui	M	AN/	1
------------------	---	-----	---

Intersection								
Int Delay, s/veh	14.4							
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	ኘ	7	^	7	7	^		
Traffic Vol, veh/h	88	106		55		1921		
Future Vol., veh/h	88	106	2402	55	79	1921		
Conflicting Peds, #/hr		0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	Stop	_		-			
Storage Length	0	0	_	275	450	-		
Veh in Median Storage	e,# 2	-	0	_	-	0		
Grade, %	0	-	0	-	-	0		
Peak Hour Factor	98	98	98	98	98	98		
Heavy Vehides, %	2	2	2	3	2	6		
MmtFlow	90	108	2451	56	81	1960		
Major/Mnor	Mnor1	1	Vajor1	N	√ajor2			
Conflicting FlowAll	3593		0	0	2451	0		
Stage 1	2451	-	-	-	-	-		
Stage 2	1142	-	-	_	_	-		
Critical Hdvvy	684	694	-	-	4.14	-		
Critical Hdwy Stg 1	5.84	-	-	-	-	-		
Critical Holvy Stg 2	5.84	-	-	-	-	-		
Follow-up Hdwy	3.52	3.32	-	-	222	-		
Pot Cap-1 Maneuver	~ 4	170	-	-	188	-		
Stage 1	~ 51	-	-	-	-	-		
Stage 2	266	-	-	-	-	-		
Platoon blocked, %			-	-		-		
Mbv Cap-1 Maneuver		170	-	-	188	-		
Mbv Cap-2 Maneuver		-	-	-	-	-		
Stage 1	~ 51	-	-	-	-	-		
Stage 2	151	-	-	-	-	-		
Approach	WB		NB		SB			
HCMControl Delay, st	\$ 329.9		0		1.5			
HCMLOS	F							
Mnor Lane/Major Mvr	nt	NBT	NBRV	VBLn1V	WBLn2	SBL	SBT	
		-	-	45	170	188	-	
Capacity (venin)						0.429	_	
Capacity (veh/h) HCMLane V/C Ratio		_	_		<i></i>	J /		
HCMLane V/C Ratio)	-			57.3	37.8	_	
HCMLane V.C Ratio HCMControl Delay (s)			6583	57.3 F	37.8 E	-	
HCMLane V/C Ratio		-			57.3 F 3.6	37.8 E 2		
HCMLane V.C Ratio HCMControl Delay (s) HCMLane LOS HCM95th %tile Q(veh		-		6583 F	F	Ε	-	
HCMLane V.C Ratio HCMControl Delay (s HCMLane LOS	1)	-	-\$ - -	6583 F	F 36	E 2	-	*: All major volume in platoon

Gibbet Road Multifamily De

nily De Section IX. Item #1. 2029 Phase 3 Build AM

2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

	٠	→	*	1	←	1	4	1	-	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	394	54	177	152	25	416	75	1655	43	416	1608	36
v/c Ratio	1.19	0.13	0.35	0.48	0.06	0.55	0.54	1.15	0.06	1.33	0.89	0.04
Control Delay	148.3	34.0	6.6	42.2	33.0	22.4	27.2	107.1	0.1	197.9	31.0	0.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	148.3	34.0	6.6	42.2	33.0	22.4	27.2	107.1	0.1	197.9	31.0	0.1
Queue Length 50th (ft)	~336	30	0	93	14	184	19	~724	0	~335	532	0
Queue Length 95th (ft)	#526	64	50	159	37	281	#55	#863	0	#532	#711	0
Internal Link Dist (ft)		776			302			1441			236	
Turn Bay Length (ft)			100	225		225	350		200	450		400
Base Capacity (vph)	332	418	513	314	411	754	140	1440	758	313	1814	897
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.19	0.13	0.35	0.48	0.06	0.55	0.54	1.15	0.06	1.33	0.89	0.04

Intersection Summary

Queue shown is maximum after two cycles.

Queue shown is maximum after two cycles.

Volume exceeds capacity, queue is theoretically infinite.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

HCM 6th Signalized Intersection Summary 2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

2029 Phase 3 Build AM

	۶	→	•	1	•	•	4	1	/	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	7	†	7	7	^	7	*	^	7
Traffic Volume (veh/h)	378	52	170	146	24	399	72	1589	41	399	1544	35
Future Volume (veh/h)	378	52	170	146	24	399	72	1589	41	399	1544	35
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1781	1856	1841	1752	1885	1767	1856	1870	1811	1811	1870
Adj Flow Rate, veh/h	394	54	0	152	25	416	75	1655	43	416	1608	0
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	1	8	3	4	10	1	9	3	2	6	6	2
Cap, veh/h	283	424		350	417	614	162	1449	651	318	1777	
Arrive On Green	0.24	0.24	0.00	0.24	0.24	0.24	0.04	0.41	0.41	0.15	0.52	0.00
Sat Flow, veh/h	956	1781	1572	1329	1752	1598	1682	3526	1585	1725	3441	1585
Grp Volume(v), veh/h	394	54	0	152	25	416	75	1655	43	416	1608	0
Grp Sat Flow(s), veh/h/ln	956	1781	1572	1329	1752	1598	1682	1763	1585	1725	1721	1585
Q Serve(g_s), s	25.0	2.6	0.0	11.2	1.2	23.8	2.3	45.2	1.8	16.1	46.7	0.0
Cycle Q Clear(g_c), s	26.2	2.6	0.0	13.8	1.2	23.8	2.3	45.2	1.8	16.1	46.7	0.0
Prop In Lane	1.00	2.0	1.00	1.00	1.2	1.00	1.00	40.2	1.00	1.00	40.7	1.00
Lane Grp Cap(c), veh/h	283	424	1.00	350	417	614	162	1449	651	318	1777	1.00
V/C Ratio(X)	1.39	0.13		0.43	0.06	0.68	0.46	1.14	0.07	1.31	0.90	
		424		350	417	614		1449	651	318	1777	
Avail Cap(c_a), veh/h HCM Platoon Ratio	283		1.00				171				1.00	1.00
	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	45.4	32.9	0.0	38.3	32.4	28.2	24.1	32.4	19.6	35.3	24.1	0.0
Incr Delay (d2), s/veh	197.7	0.1	0.0	8.0	0.1	3.0	2.1	72.9	0.1	159.7	7.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	23.4	1.2	0.0	3.6	0.5	9.1	1.0	32.1	0.6	17.9	18.3	0.0
Unsig. Movement Delay, s/veh		20.4	0.0	00.0	00.4	04.4	00.0	405.0	40.7	105.0	04.0	0.0
LnGrp Delay(d),s/veh	243.1	33.1	0.0	39.2	32.4	31.1	26.2	105.3	19.7	195.0	31.2	0.0
LnGrp LOS	F	С		D	С	С	С	F	В	F	С	
Approach Vol, veh/h		448			593			1773			2024	
Approach Delay, s/veh		217.8			33.3			99.8			64.9	
Approach LOS		F			С			F			Е	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	23.0	53.0		34.0	11.4	64.6		34.0				
Change Period (Y+Rc), s	6.9	7.8		7.8	6.9	7.8		7.8				
Max Green Setting (Gmax), s	16.1	45.2		26.2	5.1	56.2		26.2				
Max Q Clear Time (g c+I1), s	18.1	47.2		28.2	4.3	48.7		25.8				
Green Ext Time (p_c), s	0.0	0.0		0.0	0.0	7.4		0.1				
`` ′												
Intersection Summary			88.0									
HCM 6th Ctrl Delay HCM 6th LOS			00.U F									
			Г									
Notes												

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection												
Int Delay, s/veh	8.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑	7		ન		*	1		7	1	
Traffic Vol, veh/h	78	246	89	6	365	4	132	4	8	18	5	5
Future Vol, veh/h	78	246	89	6	365	4	132	4	8	18	5	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	_	None	-	<u>-</u>	None
Storage Length	150	-	150	-	-	-	0	-	75	0	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	86	86	86	86	86	86	86	86	86	86	86	86
Heavy Vehicles, %	2	4	21	2	2	2	5	2	20	2	2	2
Mvmt Flow	91	286	103	7	424	5	153	5	9	21	6	6
Major/Minor I	Major1			Major2			Minor1		N	Minor2		
Conflicting Flow All	429	0	0	389	0	0	915	911	286	968	1012	427
Stage 1	-	_	_	_	-	-	468	468	_	441	441	_
Stage 2	-	-	_	_	-	-	447	443	_	527	571	-
Critical Hdwy	4.12	-	-	4.12	_	_	7.15	6.52	6.4	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	_	_	-	-	6.15	5.52	_	6.12	5.52	-
Critical Hdwy Stg 2	_	-	-	-	_	-	6.15	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	_	2.218	-	-	0 = 4 =	4.018	3.48	3.518	4.018	3.318
Pot Cap-1 Maneuver	1130	-	-	1170	-	-	250	274	712	233	239	628
Stage 1	-	-	-	-	-	-	570	561	-	595	577	-
Stage 2	-	-	-	-	-	-	585	576	-	535	505	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1130	-	-	1170	-	-	227	250	712	212	218	628
Mov Cap-2 Maneuver	-	-	-	-	-	-	227	250	-	212	218	-
Stage 1	-	-	-	-	-	-	524	516	-	547	572	-
Stage 2	-	-	-	-	-	-	569	571	-	481	464	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.6			0.1			45.8			21.2		
HCM LOS	1.0			0.1			+5.0 E			C		
										<u> </u>		
Minor Lane/Major Mvm	t I	NBLn1	NRI n2	EBL	EBT	EBR	WBL	WBT	WRR	SBLn1	SRI n2	
Capacity (veh/h)		227	441	1130	<u> </u>	- EBN		-	- VVDIC	212	324	
HCM Lane V/C Ratio			0.032	0.08			0.006	_		0.099		
HCM Control Delay (s)		48.7	13.4	8.5	-		8.1	0	-	23.8	16.5	
HCM Lane LOS		40.7 E	13.4 B	6.5 A	<u>-</u>	-	Α	A	-	23.6 C	10.5 C	
HCM 95th %tile Q(veh)		4.3	0.1	0.3	-	-	0	- A	-	0.3	0.1	
How som toute Q(Ven)		4.3	0.1	0.5	_	-	U	-	-	0.5	0.1	

HCM 6th TWSC 4: SC 170 (Okatie Hwy) & Site Access #1 Gibbet Road Multifamily De Section IX. ITEM 2029 Phase 3 Build AM Section IX. Item #1.

W	0.2 /BL 0	WBR	NBT	NBR		
			NBT	NDD		
				אסעו	SBL	SBT
	Λ		^	7	- 052	^
		22	2437	35	0	2009
	0	22	2437	35	0	2009
	0	0	2437	0	0	2009
C:			Free			Free
5	top	Stop		Free	Free	
	-	None	-	None	-	
11	-	0	-	150	-	-
je, #		-	0	-	-	0
	0	-	0	-	-	0
	90	90	90	90	90	90
						6
	0	24	2708	39	0	2232
Mino	or1	N	/lajor1	N	/lajor2	
	-		0	0	-	-
	-	-	_	-	_	_
	-	_	_	_	_	_
	-					_
		0.04				_
	-	-				<u>-</u>
	-		-			-
			-			-
		140	-			-
		-	-			-
	0	-	-	-	0	-
			-	-		-
Г	-	140	-	-	-	-
r	-	-	-	-	-	-
	-	-	-	-	-	-
	-	-	_	-	_	-
,	MD		ND		CD	
s 3			U		U	
	E					
mt		NBT	NBRV	VBLn1	SBT	
					-	
		-				
5)		-				
h\		-				
h)		-	-	0.6	-	
		2 0 Minor1 - - - 0 0 0 0 - - - - - WB 36.1 E	2 2 0 24 Minor1 N - 1354 6.94 3.32 0 140 0 - 0 140 140	2 2 2 0 24 2708 Minor1 Major1 - 1354 0 6.94 3.32 - 0 140 - 0 0 140 140 WB NB - 36.1 0 E	2 2 2 2 2 0 24 2708 39 Minor1 Major1 N - 1354 0 0	2 2 2 2 2 0 24 2708 39 0 Minor1 Major2 - 1354 0 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1.1 EBL	FDT				
EBL	EDT				
	EBT	WBT	WBR	SBL	SBR
	<u> </u>	1>			7
0	414	486	17	0	84
0	414	486	17	0	84
					0
					Stop
-					None
_	-	_	-	_	0
ne # -	0		_	0	-
					_
					90
					2
					93
U	400	340	19	U	93
Major1	N	Major2	N	/linor2	
_	0	-	0	-	550
-	-	-	-	_	-
-	_	-	_	-	_
_	_	_	_	_	6.22
_	_	_	_		-
_	_	_			_
_	_	_			3.318
0					535
					-
					_
U				U	_
-					E2E
					535
		-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
FB		WB		SB	
, 0		U			
				ь	
mt	EBT	WBT	WBR S	SBL _{n1}	
	-	-			
	-	_	_		
	_	_			
7	_	_	_	В	
h)		_	_	0.6	
	r 0 Free ge, # 90 2 0 Major1	r 0 0 Free Free - None - None - 0 90 90 2 5 0 460 Major1 N - 0	r 0 0 0 Free Free Free - None ge, # - 0 0 90 90 90 2 5 2 0 460 540 Major1 Major2 - 0	r 0 0 0 0 0 Free Free Free Free Free Fre	Free Free Free Free Stop - None - None - Ge, # - 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HCM 6th TWSC 6: SC 170 (Okatie Hwy) & SIte Access #4 Gibbet Road Multifamily De Section IX. Item 2029 Phase 3 Build AM Section IX. Item #1.

Intersection						
Int Delay, s/veh	1.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	^	7		^
Traffic Vol, veh/h	0	96	2376	69	0	1978
Future Vol, veh/h	0	96	2376	69	0	1978
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	_	0	_	150	_	-
Veh in Median Storage	,# 0	-	0	=	_	0
Grade, %	0	-	0	_	_	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	6
Mvmt Flow	0	107	2640	77	0	2198
	Minor1		Major1		/lajor2	
Conflicting Flow All	-	1320	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	147	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	-	147	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Annroach	WB		NB		SB	
Approach						
HCM Control Delay, s	76.4		0		0	
HCM LOS	F					
Minor Lane/Major Mvm	ıt	NBT	NBRV	VBLn1	SBT	
Capacity (veh/h)		-	-	147	-	
HCM Lane V/C Ratio		-	_	0.726	-	
HCM Control Delay (s)		-	-	76.4	-	
HCM Lane LOS		-	-	F	-	
HCM 95th %tile Q(veh)		-	-	4.3	-	

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	^ 1>			^
Traffic Vol, veh/h	0	11	2446	13	0	2009
Future Vol, veh/h	0	11	2446	13	0	2009
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	_	-	_	-
Veh in Median Storage,	# 0	-	0	-	_	0
Grade, %	0	-	0	_	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	6
Mvmt Flow	0	12	2718	14	0	2232
			10			
	1inor1		Major1		//ajor2	
Conflicting Flow All	-	1366	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	137	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	-	137	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	_	-	_	_	-	-
	14.5				0.5	
Approach	WB		NB		SB	
HCM Control Delay, s	33.8		0		0	
HCM LOS	D					
Minor Lane/Major Mvmt		NBT	NBRV	WBLn1	SBT	
Capacity (veh/h)		_		137	-	
HCM Lane V/C Ratio		_	_	0.089	-	
HCM Control Delay (s)		_	_	33.8	_	
HCM Lane LOS		_	_	D	_	
HCM 95th %tile Q(veh)		_	_	0.3	-	

Intersection								
IntDelay, s/veh	8							
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	*	7	^	7	٦	^		
Traffic Vol, veh/h	34	93	1922	64	214	2436		
Future Vol., veh/h	34	93	1922	64	214	2436		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	Stop	-	Yield	_	None		
Storage Length	0	0	_	275	450	_		
Veh in Median Storage		_	0	_	_	0		
Grade, %	0	_	0	_	_	0		
Peak Hour Factor	95	95	95	95	95	95		
Heavy Vehides, %	2	2	3	2	2	1		
M/mtFlow	36	98	2023	67	225	2564		
TVW.TICT TOVV	- W		2020	0,		2007		
Major/Mnor 1	VInor1		√ajor1	N	√ajor2			
Conflicting FlowAll	3755	1012	0		2023	0		
Stage 1	2023	-	-	_	-	-		
Stage 2	1732	_	_	_	_	_		
Critical Holwy	684	694	_		4.14	_		
Critical Holwy Stg 1	5.84	u 74	-	-	4.14	_		
Critical Holwy Stg 2	5.84	_	_		_	_		
Follow-up Hawy	3.52	332	-	_	222	_		
Pot Cap-1 Maneuver	~3	237		_	277			
•			-	-		-		
Stage 1	88	-	-	-	-	-		
Stage 2	128	-	-	-	-	-		
Platoon blocked, %	_	007	-		077	-		
Mbv Cap-1 Maneuver	~1	237	-	-	277	-		
Mbv Cap-2 Maneuver	~ 22	-	-	-	-	-		
Stage 1	88	-	-	-	-	-		
Stage 2	~ 24	-	-	-	-	-		
Approach	WB		NB		SB			
HCMControl Delay, s			0		4.6			
HCMLOS	F							
Mnor Lane/Wajor M/m	nt_	NBT	NBRV	VBLn1V	WBLn2	SBL	SBT	
Capacity (veh/h)		_	-	22	237	277	-	
HCMLane V/C Ratio		-	-	1.627			-	
HCMControl Delay (s)		-		6834	30.5	567	-	
HCMLane LOS		_	_	F	D	F	-	
HCM95th %tile Q(veh)		-	-	4.6	1.9	65	-	
Notes								
~: Volume exceeds cap	nacity	\$: De	lav exc	eeds 30	ns .	+ Com	outation Not Defined	*: All major volume in platoon
. Volume chaceas cap	acity	ψ. DC	idy CAC	ccus 3		conp	add mot bell ted	. All ridge voicine in plateer

Gibbet Road Multifamily De

Gibbet Road Mul

2: SC 170 (Okatie Hwy) & Mill Creek Blvd/Gibbet Road

2029 Phase 3 Build PM

	•	→	*	1	•	*	1	†	-	-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	188	38	78	112	63	430	114	1513	57	466	1856	104
v/c Ratio	0.96	0.14	0.18	0.56	0.23	0.62	0.62	1.04	0.07	1.15	0.96	0.11
Control Delay	96.8	35.0	1.0	47.5	36.5	22.6	26.9	60.7	0.2	119.3	33.4	1.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	96.8	35.0	1.0	47.5	36.5	22.6	26.9	60.7	0.2	119.3	33.4	1.1
Queue Length 50th (ft)	108	19	0	60	32	163	19	~492	0	~262	496	0
Queue Length 95th (ft)	#239	48	0	115	69	264	#80	#626	0	#453	#696	12
Internal Link Dist (ft)		776			302			1441			236	
Turn Bay Length (ft)			100	225		225	350		200	450		400
Base Capacity (vph)	195	273	424	200	273	693	184	1459	801	405	1934	929
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.96	0.14	0.18	0.56	0.23	0.62	0.62	1.04	0.07	1.15	0.96	0.11

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

2029 Phase 3 Build PM

	۶	→	*	•	•	•	1	†	-	-	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	^	7	7	^	7	*	^	7	T	^	7
Traffic Volume (veh/h)	171	35	71	102	57	391	104	1377	52	424	1689	95
Future Volume (veh/h)	171	35	71	102	57	391	104	1377	52	424	1689	95
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1885	1870	1826	1870	1885	1870	1870
Adj Flow Rate, veh/h	188	38	0	112	63	430	114	1513	57	466	1856	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	2	2	2	2	2	1	2	5	2	1	2	2
Cap, veh/h	186	274		257	274	520	188	1472	673	401	1958	
Arrive On Green	0.15	0.15	0.00	0.15	0.15	0.15	0.05	0.42	0.42	0.18	0.55	0.00
Sat Flow, veh/h	904	1870	1585	1370	1870	1598	1781	3469	1585	1795	3554	1585
Grp Volume(v), veh/h	188	38	0	112	63	430	114	1513	57	466	1856	0
Grp Sat Flow(s), veh/h/ln	904	1870	1585	1370	1870	1598	1781	1735	1585	1795	1777	1585
Q Serve(g_s), s	10.5	1.6	0.0	7.0	2.7	13.2	2.4	38.2	1.9	16.1	44.2	0.0
Cycle Q Clear(g_c), s	13.2	1.6	0.0	8.6	2.7	13.2	2.4	38.2	1.9	16.1	44.2	0.0
Prop In Lane	1.00	1.0	1.00	1.00	2.1	1.00	1.00	00.2	1.00	1.00	77.2	1.00
Lane Grp Cap(c), veh/h	186	274	1.00	257	274	520	188	1472	673	401	1958	1.00
V/C Ratio(X)	1.01	0.14		0.44	0.23	0.83	0.61	1.03	0.08	1.16	0.95	
Avail Cap(c_a), veh/h	186	274		257	274	520	196	1472	673	401	1958	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	42.0	33.4	0.0	37.2	33.9	28.0	20.9	25.9	15.5	28.2	19.0	0.0
Incr Delay (d2), s/veh	69.3	0.2	0.0	1.2	0.4	10.6	4.9	30.8	0.1	96.9	10.6	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	7.7	0.7	0.0	2.3	1.2	9.4	1.4	19.8	0.6	14.3	17.4	0.0
Unsig. Movement Delay, s/veh		0.7	0.0	2.0	1.2	3.4	1.7	19.0	0.0	14.5	17.4	0.0
LnGrp Delay(d),s/veh	111.3	33.7	0.0	38.3	34.3	38.6	25.8	56.7	15.5	125.1	29.6	0.0
LnGrp LOS	F	33.7 C	0.0	30.3 D	34.3 C	30.0 D	23.0 C	50.7 F	15.5 B	125.1 F	29.0 C	0.0
	Г			U		U			ь	Г		
Approach Vol, veh/h		226			605			1684			2322	
Approach Delay, s/veh		98.3			38.1			53.2			48.8	
Approach LOS		F			D			D			D	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	23.0	46.0		21.0	11.6	57.4		21.0				
Change Period (Y+Rc), s	6.9	7.8		7.8	6.9	7.8		7.8				
Max Green Setting (Gmax), s	16.1	38.2		13.2	5.1	49.2		13.2				
Max Q Clear Time (g_c+l1), s	18.1	40.2		15.2	4.4	46.2		15.2				
Green Ext Time (p_c), s	0.0	0.0		0.0	0.0	3.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			51.3									
HCM 6th LOS			D									
Notes			_									

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection												
Int Delay, s/veh	4.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7		4		ħ	f		Y	f ₃	
Traffic Vol, veh/h	74	294	82	14	417	6	72	5	11	15	5	5
Future Vol, veh/h	74	294	82	14	417	6	72	5	11	15	5	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	_	_	None	-	-	None	-	-	None		-	None
Storage Length	150	-	150	_	-	-	0	_	75	0	-	-
Veh in Median Storage		0		-	0	_	_	0		-	0	-
Grade, %	-	0	_	_	0	-	-	0	_	-	0	-
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87
Heavy Vehicles, %	2	2	2	2	0	2	2	2	2	2	2	2
Mvmt Flow	85	338	94	16	479	7	83	6	13	17	6	6
		300	- 0 1			•	- 55					
Major/Minor I	Major1			Major2			Minor1		ı	Minor2		
Conflicting Flow All	486	0	0	432	0	0	1029	1026	338	1080	1117	483
Stage 1	400	-	U	432	-	-	508	508	-	515	515	403
Stage 2	-		-	_	-	-	521	518	-	565	602	_
Critical Hdwy	4.12	-	-	4.12		-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	4.12	-	-	4.12	-	-	6.12	5.52	0.22	6.12	5.52	0.22
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52		6.12	5.52	-
•	2.218	-	-	2.218	-	-		4.018			4.018	3.318
Follow-up Hdwy Pot Cap-1 Maneuver	1077	-	-	1128	-	-	212	235	704	196	207	584
	1077	-	-	1120	-	-	547	539	704	543	535	J04 -
Stage 1	-	-	-	-	-		539	533	-	510	489	-
Stage 2		_		-	-	-	559	333		310	409	-
Platoon blocked, %	1077	-	-	1128	-	-	190	212	704	175	187	584
Mov Cap-1 Maneuver	1077	-	-		-	-		212		175	187	
Mov Cap-2 Maneuver	-	-	-	-	-	-	190		-			-
Stage 1	-	-	-	-	-	-	504	496	-	500	525	-
Stage 2	-	-	-	-	-	-	518	523	-	456	450	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.4			0.3			33.5			24		
HCM LOS							D			С		
Minor Lane/Major Mvm	nt	NBLn1 I	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1	SBLn2	
Capacity (veh/h)		190	408	1077	_	-	1128	-	_	175	283	
HCM Lane V/C Ratio			0.045		-	-	0.014	-	-	0.099		
HCM Control Delay (s)		37.8	14.2	8.6	-	-	8.2	0	-	27.8	18.3	
HCM Lane LOS		E	В	Α	-	-	Α	A	-	D	С	
HCM 95th %tile Q(veh)		2	0.1	0.3	-	-	0	-	-	0.3	0.1	

HCM 6th TWSC 4: SC 170 (Okatie Hwy) & Site Access #1 Gibbet Road Multifamily De Section IX. ITEM 2029 Phase 3 Build PM Section IX. Item #1.

lutava asti av						
Intersection	0.1					
Int Delay, s/veh						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	^	7		^
Traffic Vol, veh/h	0	20	1973	47	0	2470
Future Vol, veh/h	0	20	1973	47	0	2470
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	150	-	-
Veh in Median Storage,	, # 2	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	3	2	2	1
Mvmt Flow	0	22	2192	52	0	2744
				V_		
	/linor1		Major1		//ajor2	
Conflicting Flow All	-	1096	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	208	-	-	0	-
Stage 1	0	-	_	-	0	-
Stage 2	0	_	_	_	0	-
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	_	208	_		_	_
Mov Cap-1 Maneuver	_	200	_			_
·	-	<u>-</u>	-	-	-	<u>-</u>
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	24.4		0		0	
HCM LOS	С					
		NE	MEST	MDI 4	057	
			VIDD//	VBLn1	SBT	
Minor Lane/Major Mvmt	t	NBT	INDIA			
Capacity (veh/h)	t	- NBI	-	208	-	
Capacity (veh/h) HCM Lane V/C Ratio	t	- NB1	-	208 0.107	-	
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	t	-	-	208	-	
Capacity (veh/h) HCM Lane V/C Ratio	t	-	-	208 0.107	-	
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	t	- - -	-	208 0.107 24.4	- - -	

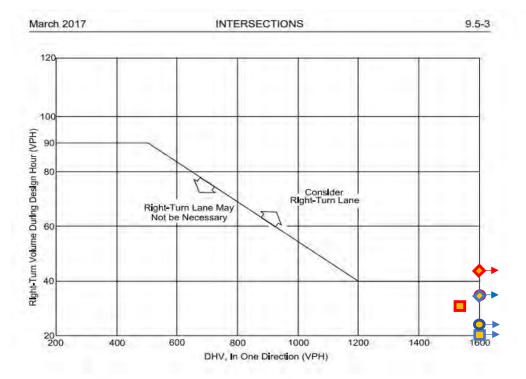
HCM 6th TWSC 5: Gibbet Road & Site Access #2

Gibbet Road Multifamily De Section IX. Item 2029 Phase 3 Build PM Section IX. Item #1.

Intersection						
Int Delay, s/veh	0.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		↑	1>			7
Traffic Vol, veh/h	0	450	477	17	0	73
Future Vol, veh/h	0	450	477	17	0	73
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	_	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	1	1	2	2	2
Mvmt Flow	0	500	530	19	0	81
	1ajor1		Major2		/linor2	
Conflicting Flow All	-	0	-	0	-	540
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.318
Pot Cap-1 Maneuver	0	-	-	-	0	542
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	-	-	-	-	-	542
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	_	-	-	-	_
Stage 2	-	-	_	-	-	_
			,,,,			
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		12.8	
HCM LOS					В	
Minor Lane/Major Mvmt		EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)				-	542	
HCM Lane V/C Ratio		-	_	_	0.15	
HCM Control Delay (s)		_	_	_	12.8	
HCM Lane LOS		-	_	_	12.0 B	
HCM 95th %tile Q(veh)		<u>-</u>	-	_	0.5	
HOW JOHN JOHN Q(VEII)				_	0.0	

HCM 6th TWSC 6: SC 170 (Okatie Hwy) & SIte Access #4 Gibbet Road Multifamily De Section IX. Item 2029 Phase 3 Build PM Section IX. Item #1.

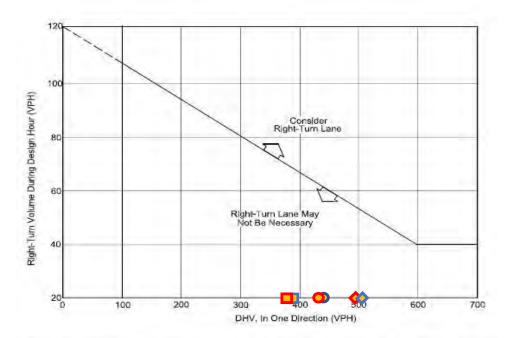
Intersection						
Int Delay, s/veh	0.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	VVDL	VVDIX	↑ ↑	NDIX 7	ODL	† †
Traffic Vol, veh/h	0	82	1938	62	٥	2208
Future Vol, veh/h	0	82	1938	62	0	2208
Conflicting Peds, #/hr	0	02	0	02	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- Olop		-			None
Storage Length	_	0	_	150	_	-
Veh in Median Storage,		-	0	-	_	0
Grade, %	0	<u>-</u>	0	_	_	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	3	2	2	2
	0	91	2153	69	0	
Mvmt Flow	U	91	2103	09	U	2403
Major/Minor N	Minor1	ľ	Major1	N	/lajor2	
Conflicting Flow All	-	1077	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	_	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	_	_	_	-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	215	_	-	0	_
Stage 1	0		_	-	0	-
Stage 2	0	_	_	_	0	-
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	_	215	_	_	_	_
Mov Cap-2 Maneuver	_		_	_	_	<u>-</u>
Stage 1	_		_			_
Stage 2	_	-	_	_	_	
Slaye Z	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	33.5		0		0	
HCM LOS	D					
N. 1 (N. 1 N. 1		NDT	NDD	MDL = 4	CDT	
	I	NBT	MRKA	VBLn1	SBT	
Minor Lane/Major Mvm				01-		
Capacity (veh/h)		-	-	=	-	
Capacity (veh/h) HCM Lane V/C Ratio		-	-	0.424	-	
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		-	-	0.424 33.5	-	
Capacity (veh/h) HCM Lane V/C Ratio		- - -	-	0.424	-	


HCM 6th TWSC 7: SC 170 (Okatie Hwy) & Site Access #5 Gibbet Road Multifamily De Section IX. Item 2029 Phase 3 Build PM Section IX. Item #1.

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	VVDIX	↑ ↑	TIDIX	ODL	† †
Traffic Vol, veh/h	0	10	1976	17	0	2470
Future Vol, veh/h	0	10	1976	17	0	2470
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	
Storage Length	_	0	_	-	_	-
Veh in Median Storage		-	0	_	_	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	3	2	2	1
Mymt Flow	0	11	2196	19	0	2744
WHITE IOW			2100	10	- 0	L177
	Minor1		Major1	N	//ajor2	
Conflicting Flow All	-	1108	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	204	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	-	204	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	_	_	_	-	-	_
Stage 2	_	_	_	_	_	_
2.550 2						
Approach	WB		NB		SB	
HCM Control Delay, s	23.7		0		0	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBT	NRRV	WBLn1	SBT	
Capacity (veh/h)			-		-	
				0.054	_	
				J.JJT	-	
HCM Lane V/C Ratio		-			_	
HCM Lane V/C Ratio HCM Control Delay (s)		-	-	23.7	-	
HCM Lane V/C Ratio		- - -			- -	

Gibbet Road Residential Development Traffic Impact Analysis

Appendix G – Turn Lane Warrant Analysis



Note: Figure is only applicable on highways with a design speed of 50 miles per hour or greater.

GUIDELINES FOR RIGHT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON FOUR-LANE HIGHWAYS Figure 9.5-B

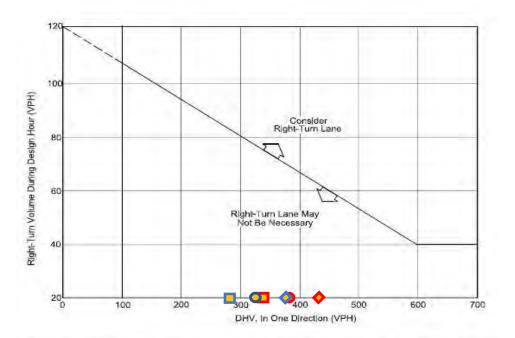
Northbound	Right	DHV	RTs
	2025 Phase 1 Build AM	1861	10
	2025 Phase 1 Build PM	1522	32
•	2027 Phase 2 Build AM	2157	26
0	2027 Phase 2 Build PM	1747	36
•	2029 Phase 3 Build AM	2382	35
♦	2029 Phase 3 Build PM	2020	47

9.5-2 INTERSECTIONS March 2017

Note: For highways with a design speed below 50 miles per hour with a DHV < 300 and where right turns > 40, an adjustment should be used. To read the vertical axis of the chart, subtract 20 from the actual number of right turns.

Example

Given:	Design Speed	=	35 miles per hour
	DHV	=	250 vehicles per hour
	Right Turns	=	100 vehicles per hour
Problem:	Determine if a rigi	ht-turn la	ne is necessary.


To read the vertical axis, use 100 - 20 = 80 vehicles per hour. The figure Solution: indicates that a right-turn lane is not necessary, unless other factors (e.g., high

crash rate) indicate a lane is needed.

GUIDELINES FOR RIGHT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON TWO-LANE HIGHWAYS Figure 9.5-A

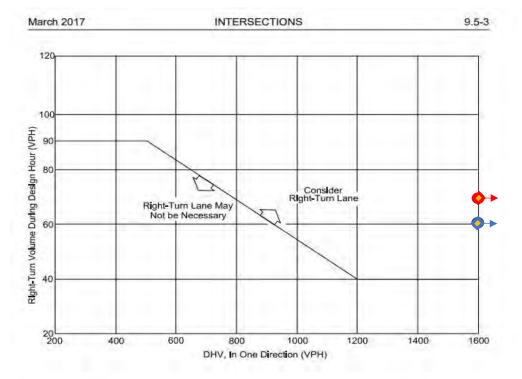
Southbound	Right	DHV	RTs
	2025 Phase 1 Build AM	395	1
	2025 Phase 1 Build PM	385	3
•	2027 Phase 2 Build AM	447	16
•	2027 Phase 2 Build PM	435	15
•	2029 Phase 3 Build AM	503	17
♦	2029 Phase 3 Build PM	494	17

9.5-2 INTERSECTIONS March 2017

Note: For highways with a design speed below 50 miles per hour with a DHV < 300 and where right turns > 40, an adjustment should be used. To read the vertical axis of the chart, subtract 20 from the actual number of right turns.

Example

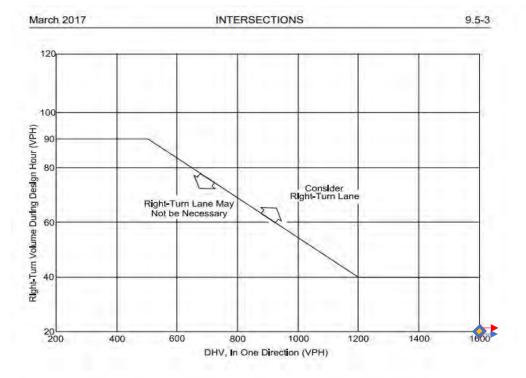
Given:	Design Speed	=	35 miles per hour
	DHV	=	250 vehicles per hour
	Right Turns	=	100 vehicles per hour


Problem: Determine if a right-turn lane is necessary.

Solution: To read the vertical axis, use 100 - 20 = 80 vehicles per hour. The figure indicates that a right-turn lane is not necessary, unless other factors (e.g., high

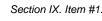
crash rate) indicate a lane is needed.

GUIDELINES FOR RIGHT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON TWO-LANE HIGHWAYS Figure 9.5-A


Westbound	Right	DHV	RTs
	2025 Phase 1 Build AM	283	1
-	2025 Phase 1 Build PM	331	3
•	2027 Phase 2 Build AM	328	3
•	2027 Phase 2 Build PM	380	4
•	2029 Phase 3 Build AM	375	4
♦	2029 Phase 3 Build PM	437	6

Note: Figure is only applicable on highways with a design speed of 50 miles per hour or greater.

GUIDELINES FOR RIGHT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON FOUR-LANE HIGHWAYS Figure 9.5-B


lorthbound	Right	DHV	RTs
•	2027 Phase 2 Build AM	2127	70
•	2027 Phase 2 Build PM	1733	63
•	2029 Phase 3 Build AM	2445	69
♦	2029 Phase 3 Build PM	2000	62

Note: Figure is only applicable on highways with a design speed of 50 miles per hour or greater.

GUIDELINES FOR RIGHT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON FOUR-LANE HIGHWAYS Figure 9.5-B

Northbound	Right	DHV	RTs
•	2029 Phase 3 Build AM	2459	13
♦	2029 Phase 3 Build PM	1993	17

PLAN REVIEW COMMENTS FOR MP-06-23-018137

Town of Bluffton

Department of Growth Management 20 Bridge Street P.O. Box 386 Bluffton, South Carolina 29910 Telephone 843-706-4522

NA 06/06/2023 Plan Type: **Apply Date:**

Plan Status: Hold Plan Address:

Dan Frazier R610 028 000 0921 0000 Case Manager: Plan PIN #:

A request by Brian Witmer of Witmer Jones Keefer, Ltd, on behalf of Millstone Ventures, LLC, and with the **Plan Description:**

> approval of the property owner, Parcel 8A, LLC, for approval of an initial master plan application. The project proposes 16.02 acres of residential development and 5.9 acres of commercial development. The property is zoned Buckwalter PUD and consists of 21.92 acres identified by tax map number R610 028 000 0921 0000 and

located at the northeast corner of the intersection of SC Highway 170 and Gibbet Road.

STATUS: Staff comments on the initial master plan will be heard at the June 28, 2023 meeting of the DRC.

Development Review Committee

Submission #: 1 Received: 06/06/2023 Completed: 06/23/2023

Reviewing Dept. Complete Date Reviewer Status 06/15/2023 Samantha Crotty Revisions Required Watershed Management Review

DRC

Comments:

- 1. Re-label stormwater lagoon (typical) as Stormwater BMP on the Stormwater Master Plan Exhibit F to allow for Low Impact Development practices.
- 2. Revise flow patterns for the BMP at Gibbet Rd right-in right-out to verify inflow/outflow locations.

Building Safety Review 06/14/2023 Not Required Richard Spruce

06/20/2023 Approved with Conditions Beaufort Jasper Water and Sewer James Clardy

Review

Comments:

Pending formal submittal of preliminary water and sewer plans to BJWSA in accordance with the 2023 Development Policy and Procedures Manual.

Fire Department Review 06/23/2023 Dan Wiltse Approved with Conditions

Comments:

1. Additional fire hydrants will be required at time of development plan submittal.

Planning Commission Review 06/23/2023 Dan Frazier Approved with Conditions

Comments:

- 1. Site layouts for all parcels are subject to full Town review and approval at time of development plan submittal.
- 2. The parking requirements for the multi-family development totals 338 spaces. The five parallel parking spaces adjacent to Gibbet Road cannot count towards the multi-family development parking requirements.
- 3. A statement shall be placed on the master plan declaring that all development within the Parcel B-1 Master Plan shall conform to the requirements and recommendations of the Beaufort County CONNECTS 2021 Bicycle and Pedestrian Plan.
- 4. Whether located on- or off-site, it shall be the responsibility of developers to install a 10-foot-wide bicycle and pedestrian path along SC Highway 170 frontage consistent with the requirements and recommendations of the Beaufort County CONNECTS 2021 Bicycle and Pedestrian Plan. The required path shall be installed at time of individual site development.

Planning Review - SR 06/23/2023 Approved with Conditions Jordan Holloway

Comments:

See Planning Commission Review c	See Planning Commission Review comments.							
Police Department Review	06/23/2023	Bill Bonhag	Approved	Section IX. Item #1.				
Planning Review - Address	06/12/2023	Diego Farias	Approved					
Comments: The propose addresses are: Building A: 3381 Okatie Hwy. Building 1: 3379 Okatie Hwy. Building 2: 3371 Okatie Hwy. Building 3: 3353 Okatie Hwy. Building 4: 3349 Okatie Hwy. Building 5: 3341 Okatie Hwy. Building 6: 3323 Okatie Hwy. Building 7: 3375 Okatie Hwy. Building 8: 3357 Okatie Hwy. Building 9: 3337 Okatie Hwy. Building 9: 3337 Okatie Hwy. Building 10: 3329 Okatie Hwy. Club House: 3345 Okatie Hwy. Building B1: 3325 Okatie Hwy. Building B3: 3321 Okatie Hwy. Building B3: 3321 Okatie Hwy.								
Transportation Department Review Comments: No comments	06/07/2023	Megan James	Approved					

Plan Review Case Notes:

06/23/2023 Page 228

PLANNING COMMISSION

STAFF REPORT Department of Growth Management

MEETING DATE:	July 26, 2023
PROJECT:	CarVillage Preliminary Development Plan
APPLICANT:	Dan Keefer of Witmer Jones Keefer, Ltd
PROJECT NUMBER:	DP-08-22-017076
PROJECT MANAGER:	Dan Frazier Principal Planner Department of Growth Management

REQUEST: The Applicant, Dan Keefer of Witmer Jones Keefer, Ltd on behalf of the property owner, Charlie and Brown, LLC is requesting approval of a Preliminary Development Plan. The project proposes the construction of a \pm 0,000 sq. ft. two-story Clubhouse and 5 buildings divided into \pm 1 high-end garage condominium units (Attachment 1).

<u>INTRODUCTION:</u> The property is zoned Village at Verdier Planned Unit Development (PUD) and consists of approximately 5.00 acres, identified by tax map number R610-021-000-0808-0000 and located within the Village at Verdier Master Plan on Highway 170 approximately 1,200 feet south of Seagrass Station Road (Attachments 2 and 3).

BACKGROUND: On March 14, 2023, the Town of Bluffton Town Council tabled a request by the applicant and property owner to amend the Village at Verdier Master Plan to replace a previously approved residential road connection between Parcels Y and Z with a gated, emergency access road. Town Council asked that the applicant meet with the Seagrass Station Single-Family Property Owners Association to receive feedback from owners on the request to replace the residential road connection with a gated emergency access road.

On April 27, 2023, the applicant attended a regularly scheduled Seagrass Station Single-Family POA meeting. At the meeting, individual homeowners and POA board members unanimously expressed their approval of the amendment request, further requesting that a pedestrian connection not be made between the internal residential sidewalk and the existing asphalt multi-use trail that parallels SC 170. Town Staff attended this meeting.

On May 9, 2023, the Town of Bluffton Town Council voted to approve the request by the applicant and property owner. The replacement of the road connection with a gated entry aligns with the CarVillage business model of providing controlled access to the proposed clubhouse and high-end garage condominium units (Attachment 4).

A technical memorandum analyzing the traffic impacts of the proposed roadway changes was provided as part of the master plan amendment application (Attachment 5). The finding of the analysis was that "based on the capacity analysis, removing access to Hager

July 26, 2023 Section IX. Item #2.

Street will have a minimal impact on the surrounding roadway network".

Additional information provided by the applicant includes a tree and topographic land survey, existing conditions site photos, a fence plan, and by request from Town Staff, a rear buffer cross section (Attachment 6).

Staff comments on the Preliminary Development Plan were reviewed at the June 21, 2023, Development Review Committee meeting (Attachment 7). The Applicant provided a response to comments on June 28, 2023 (Attachments 8).

<u>REVIEW CRITERIA & ANALYSIS:</u> The Planning Commission shall consider the criteria set forth in Section 3.10.3.A of the Unified Development Ordinance in assessing an application for a Preliminary Development Plan. The applicable criteria are provided below followed by Staff Finding(s) based upon review of the application submittals to date.

1. Section 3.10.3.A.1. Conformance with the applicable provisions provided in Article 5, Design Standards.

Finding. The property lies within the Village at Verdier PUD and therefore is not subject to the Design Standards set forth in Article 5 of the UDO.

2. Section 3.10.3.A.2. The proposed development shall be in conformance with any approved Development Agreement, PUD Concept Plan, PUD Master Plan, Subdivision Plan, or any other agreements or plans that are applicable.

Finding: The proposed development is in conformance with the Village at Verdier Development Agreement and the Village at Verdier Master Plan.

Finding: At the time of Final Development Plan submittal, the Applicant shall provide a letter from the Declarant or the Architectural Standards Committee, if such organization has been established, stating that the design meets the covenants and restrictions of this agreement.

3. Section 3.10.3.A.3. If the proposed development is associated with a previously approved Master Plan, then the traffic and access plans shall adhere to the previously approved traffic impact analysis or assessment, where applicable. If an application is not associated with a previously approved PUD Master Plan, then a traffic impact analysis shall be required at final development plan submittal.

Finding: A technical memorandum analyzing the traffic impacts of the proposed roadway changes was provided as part of the master plan amendment application. The finding of the analysis was that "based on the capacity analysis, removing access to Hager Street will have a minimal impact on the surrounding roadway network".

4. Section 3.10.3.A.4. The proposed development must be able to be served by adequate public services, including, but not limited to, water, sanitary sewer, roads, police, fire, and school services. For developments that have the potential for significant impact on infrastructure and services, the applicant shall be required

July 26, 2023 Section IX. Item #2.

to provide an analysis and mitigation of the impact on transportation, utilities, and community services.

Finding. Letters from the agencies providing public services will be required at time of Final Development Plan submittal per the Applications Manual.

5. Section 3.10.3.A.5. The phasing plan, if applicable, is logical and is designed in a manner that allows each phase to fully function independently regarding services, utilities, circulation, facilities, and open space, irrespective of the completion of other proposed phases.

Finding. The project is proposed to be completed in a single phase of construction.

6. Section 3.10.3.A.6. The application must comply with applicable requirements in the Applications Manual.

Finding. The application has been reviewed by Town Staff and has been determined to be complete.

<u>PLANNING COMMISSION ACTIONS:</u> The Planning Commission has the authority to take the following actions with respect to the application as authorized by Section 2.2.6.C.5 of the UDO:

- 1. Approve the application as submitted;
- 2. Approve the application with conditions; or
- 3. Deny the application as submitted.

RECOMMENDATION: Town Staff finds that the requirements of Section 3.10.3.A of the Unified Development Ordinance are met and recommends that the Planning Commission approve the application as submitted.

ATTACHMENTS:

- 1. Application and Project Narrative
- 2. Vicinity Map
- 3. Village at Verdier Master Plan
- 4. Preliminary Site Plan
- 5. Technical Memorandum (Traffic Impacts)
- 6. Additional Submittal Items
- 7. DRC Comments 6-21-23
- 8. Response to DRC Comments

TOWN OF BLUFFTON DEVELOPMENT PLAN APPLICATION

Growth Management Customer Section IX. Item #2.

20 Bridge Street Bluffton, SC 29910 (843)706-4522 www.townofbluffton.sc.gov

www.townofbluffton.sc.gov applicationfeedback@townofbluffton.com

Applicant	Pro	perty Owner		
Name: Dan Keefer	Name: Charlie and Br	rown, LLC		
Phone: 843-757-7411	Phone:			
Mailing Address: 23 Promenade Street, Suite 201 Bluffton, SC 29910	Mailing Address:			
E-mail: Dan@wjkltd.com	E-mail:			
Town Business License # (if applicable):				
Project In	formation			
Project Name: CarVillage	□ Preliminary	☐ Final		
Project Location: Seagrass Station / Village of Verdier PU	☐ New	☐ Amendment		
Zoning District: PUD- mixed use	Acreage: 5.0	2		
Tax Map Number(s): R-610-021-000-0808-0000				
Project Description: Automotive Enthusiasts Club, inclumembers of the club. Individual un	ding buildings for privat its with the Club may b	e and common use by e sold to members.		
Minimum Requiren	nents for Submitt	al		
 Two (2) full sized copies and digital files of the Preliminary or Final Development Plans. Project Narrative and digital file describing reason for application and compliance with the criteria in Article 3 of the UDO. All information required on the attached Application Checklist. An Application Review Fee as determined by the Town of Bluffton Master Fee Schedule. Checks made payable 				
to the Town of Bluffton. Note: A Pre-Application Meeting is require	ed prior to Application	on submittal.		
Disclaimer: The Town of Bluffton assumes no legal or financial liability to the applicant or any third party whatsoever by approving the plans associated with this permit.				
I hereby acknowledge by my signature below that the fore the owner of the subject property. As applicable, I authori	· . · · · ·	·		
Property Owner Signature: Date: S(10(22				
Applicant Signature:	2.30019	Date: 8-10-22		
For Off	īce Use			
Application Number:		Date Received:		
Received By:		Date Approved:		

TOWN OF BLUFFTON DEVELOPMENT PLAN APPLICATION PROCESS NARRATIVE

The following Process Narrative is intended to provide Applicants with an understanding of the respective application process, procedures and Unified Development Ordinance (UDO) requirements for obtaining application approval in the Town of Bluffton. While intended to explain the process, it is not intended to repeal, eliminate or otherwise limit any requirements, regulations or provisions of the Town of Bluffton's UDO. Compliance with these procedures will minimize delays and assure expeditious application review.

	Applicant & Staff
Prior to the filing of a Preliminary Development Plan Application, the Applicant is required Pre-Application Meeting for comments and advice on the appropriate application process and applicable standards required by the UDO.	to consult with the UDO Administrator at a and the required procedures, specifications,
Step 2. Application Check-In Meeting - Preliminary Development Plan Submission	Applicant & Staff
Upon receiving input from Staff at the Pre-Application Meeting, the Applicant may submit and required submittal materials during a mandatory Application Check-In Meeting where submission for completeness.	a Preliminary Development Plan Application the UDO Administrator will review the
Step 3. Review by UDO Administrator & Development Review Committee	Staff
If the UDO Administrator determines that the Preliminary Development Plan Application i Development Review Committee (DRC). The DRC shall review the application and prepar Applicant.	
Step 4. Development Review Committee Meeting - Preliminary Development Plan Review	Applicant & Staff
Preliminary Development Plan Application for compliance with the criteria and provisions address comments, if any, and resubmit the application materials. If applicable, upon re reviewed for compliance with the DRC Staff Report. The UDO Administrator may approve	submittal, the application materials will be e, approve with conditions, or deny the
application based on whether or not the application is in compliance with the UDO and the Plan Application approval shall authorize the Applicant to prepare a Final Development Plapproval. Step 5. Application Check-In Meeting - Final Development Plan	an Application for administrative review and
Plan Application approval shall authorize the Applicant to prepare a Final Development Plapproval. Step 5. Application Check-In Meeting - Final Development Plan Submission	an Application for administrative review and Applicant & Staff
Plan Application approval shall authorize the Applicant to prepare a Final Development Plapproval. Step 5. Application Check-In Meeting - Final Development Plan Submission The Applicant shall submit the completed Final Development Plan Application and require Application Check-In Meeting where the UDO Administrator will review the submission for	Application for administrative review and Applicant & Staff ed submittal materials during a mandatory
Plan Application approval shall authorize the Applicant to prepare a Final Development Plapproval. Step 5. Application Check-In Meeting - Final Development Plan Submission The Applicant shall submit the completed Final Development Plan Application and require	Application for administrative review and Applicant & Staff ed submittal materials during a mandatory
Plan Application approval shall authorize the Applicant to prepare a Final Development Plan approval. Step 5. Application Check-In Meeting - Final Development Plan Submission The Applicant shall submit the completed Final Development Plan Application and require Application Check-In Meeting where the UDO Administrator will review the submission for Step 6. Review by UDO Administrator & Development Review	Application for administrative review and Applicant & Staff ed submittal materials during a mandatory r completeness. Staff blete, it shall be forwarded to the DRC. The
Plan Application approval shall authorize the Applicant to prepare a Final Development Plan Application Check-In Meeting - Final Development Plan Submission The Applicant shall submit the completed Final Development Plan Application and require Application Check-In Meeting where the UDO Administrator will review the submission for Step 6. Review by UDO Administrator & Development Review Committee If the UDO Administrator determines that the Final Development Plan application is comp	Application for administrative review and Applicant & Staff ed submittal materials during a mandatory r completeness. Staff blete, it shall be forwarded to the DRC. The
Plan Application approval shall authorize the Applicant to prepare a Final Development Plapproval. Step 5. Application Check-In Meeting - Final Development Plan Submission The Applicant shall submit the completed Final Development Plan Application and require Application Check-In Meeting where the UDO Administrator will review the submission for Step 6. Review by UDO Administrator & Development Review Committee If the UDO Administrator determines that the Final Development Plan application is composed shall review the application and prepare written comments for review with the Application 7. Development Review Committee Meeting — Final	Applicant & Staff Id submittal materials during a mandatory recompleteness. Staff Delete, it shall be forwarded to the DRC. The cant. Applicant & Staff Description of the DRC shall review the in the UDO. The Applicant will be directed to submittal, the application materials will be e, approve with conditions, or deny the
Plan Application approval shall authorize the Applicant to prepare a Final Development Plan approval. Step 5. Application Check-In Meeting - Final Development Plan Submission The Applicant shall submit the completed Final Development Plan Application and require Application Check-In Meeting where the UDO Administrator will review the submission for Step 6. Review by UDO Administrator & Development Review Committee If the UDO Administrator determines that the Final Development Plan application is compact of the UDO Administrator determines that the Final Development Plan application is compact. Step 7. Development Review Committee Meeting — Final Development Plan Review A public meeting shall be held with the Applicant to review the DRC Staff Report and discontinuity Development Plan Application for compliance with the criteria and provisions address comments, if any, and resubmit the application materials. If applicable, upon reviewed for compliance with the DRC Staff Report. The UDO Administrator may approverse in the provision of the provision of the provision of the UDO Administrator may approverse in the provision of the UDO Administrator may approverse in the provision of the UDO Administrator may approverse in the provision of the UDO Administrator may approverse in the provision of the UDO Administrator may approverse in the UDO Administrator may approverse in the UDO Administrator may approverse in the UDO Administrator may approverse in the UDO Administrator may approverse in the UDO Administrator may approverse in the UDO Administrator may approverse in the UDO Administrator may approverse in the UDO Administrator may approverse in the UDO Administrator may approverse in the UDO Administrator may approve in the UDO Administrator may approve in the UDO Administrator may approve in the UDO Administrator may approve in the UDO Administrator in the UDO Administrator may approve in the UDO Administrator in the UDO Administrator in the UDO Administrator in the UDO Administrator in the UDO Administrator	Applicant & Staff Id submittal materials during a mandatory recompleteness. Staff Delete, it shall be forwarded to the DRC. The cant. Applicant & Staff Description of the DRC shall review the in the UDO. The Applicant will be directed to submittal, the application materials will be e, approve with conditions, or deny the

TOWN OF BLUFFTON **DEVELOPMENT PLAN** APPLICATION CHECKLIST

Section IX. Item #2.

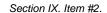
In accordance with the Town of Bluffton Unified Development Ordinance (UDO), the following information shall be included as part of a Development Plan application submitted for review. Depending on the proposal, the amount and type of documentation will vary. This checklist is intended to assist in the provision of the minimum documentation necessary to demonstrate compliance with the UDO. Upon review of the submitted application by Town Staff, additional information may be required. The use of this checklist by Town Staff or the Applicant shall not constitute a waiver of any requirement contained in the UDO. Applicants are encouraged to work closely with Town Staff in preparing any application prior to submittal.

Prelim Plan	Final Plan	NOTE: Depending on the activities proposed, Development Plan documentation will vary. At minimum, each plan mus contain the General Information and Site & Existing Conditions Documentation in addition to information required for the other specific activities listed below, as applicable. Please contact Town Staff for questions and additional information.			
General	Inform				
х	х	Name and address of property owner(s) and applicant.			
х	×	If the applicant is not the property owner, a letter of agency from the property owner authorizing the applicant to act on behalf of the property owner.			
x	x	3. A detailed narrative describing the existing site conditions and uses, proposed development proposed uses and activities that will be conducted on the site, statement of conformance with the UDO, description of any energy conservation or green technologies proposed on the site, the maintenance responsibility of any common or public areas, and publically dedicated improvements to be completed.			
x	x	4. A listing of any past development permit approval numbers associated with the site and existing conditions placed on the development property by the Town of Bluffton through past approvals including a detailed description of how the condition will be met.			
x	x	An explanation of why any items on this checklist are not included with the application materials.			
X	X	Project name and/or name of development.			
x	x	 All plans must include the following: name of county; municipality; project location; parcel identification number(s); date of original design; all dates of revisions; north arrow; graphic scale; and legend identifying all symbology. 			
х	х	8. Vicinity map.			
x	x	 Site data table to include; total acreage, pervious versus impervious cover, required and proposed open space calculations, number and area of proposed lots, residential density, number and area of each proposed structure, area of each use of the property and buildings, and required and proposed parking calculations. 			
x	x	 Signature over seal of registered engineer or landscape architect licensed to practice in South Carolina. 			
х	х	11. Phasing plan if the development is proposed to be developed in phases.			
	x	 12. Letters of approval, including any applicable permits, from the following agencies (as necessary for the project): a) United States Army Corp of Engineers; b) South Carolina Department of Health & Environmental Control; c) South Carolina Department of Transportation; d) Beaufort County Engineering; e) Beaufort County EMS; f) Beaufort County School District; g) Bluffton Township Fire District; h) Beaufort Jasper Water Sewer Authority; i) Town of Bluffton; j) Electric Provider; k) Natural Gas provider; and 			

WJKSIT PLAN

TOWN OF BLUFFTON DEVELOPMENT PLAN APPLICATION CHECKLIST

Prelim Plan	Final Plan	NOTE: Depending on the activities proposed, Development Plan documentation will vary. At minimum, each plan must contain the General Information and Site & Existing Conditions Documentation in addition to information required for the other specific activities listed below, as applicable. Please contact Town Staff for questions and additional information.				
		l) Cable, telephone, and data provider.				
Site and	Existin	g Conditions Documentation.				
x	x	 Comprehensive color photograph documentation of site and existing conditions. If digital images should be at a minimum of 300 dpi resolution. 				
x	ж	Names of the owners of contiguous parcels and an indication of adjacent existing and proposed (if known) land uses and zoning.				
x	x	3. Location of all property lines.				
x	x	4. Location of municipal limits or county lines, zoning, overlay or special district boundaries, they traverse the development property, form a part of the boundary of the development property, or are contiguous to such boundary.				
x	x	 Location of all existing access points and intersections along both sides of any frontage of access roadway(s) within a minimum of 1,000 feet of the site boundaries. 				
x	x	 Location, dimensions, name, and descriptions of all existing or recorded roadways, alleys reservations, railroads, easements, or other public rights-of-way on or within 200 feet of the development property. 				
x	x	7. Location, size, and type of all existing easements, rights-of-way, or utility infrastructure on o within a minimum of 200 feet of the development property.				
x	x	 Existing topography and land cover of project site and adjacent and nearby sites that are impacted. Contours shall be shown in intervals of 1 foot or less. 				
x	x	 Location, dimensions, area, descriptions, and flow line of existing watercourses, drainage structures, ditches, one-hundred (100) year flood elevation, OCRM critical line, wetlands or riparian corridors top of bank locations, and protected lands on the development property. 				
x	x	 Location of any existing buildings, structures, parking lots, impervious areas, public and private infrastructure, or other manmade objects located on the development property. 				
x	x	 Boundary survey with bearings and distances of all property lines, tract/lot acreage, location of property markers, and seal of a Registered Land Surveyor, as well as a legal description of the property. 				
	x	12. Location of benchmarks/primary control points or descriptions and ties to such control point to which all dimensions, angles, bearings, block numbers, and similar data shall be referred.				
	x	 Existing deed covenants, conditions, and restrictions, including any requirements from a PO or ARB. 				
	x	 Proposed deed covenants, conditions, and restrictions, including any design or architectura standards. 				
	X	15. Legal documents for proposed public dedications.				
Lot and	Building	Pattern.				
х		1. Schematic layout and design indicating overall site configuration; roadway design, building location(s), building size(s); general setbacks, and building orientation(s).				
	x	 Detailed layout and design indicating site layout, building location(s), building type(s)/ use(s) building orientation(s), conceptual building elevations, and setbacks. 				
	x	 If a PUD, subdivision, office complex, or shopping center, a Master Sign Plan providing unit in sign design and describing the location, types, materials, shapes, sizes, and compatibilit with the architecture of the development. 				
Parking.						
x		General location and ingress/egress of parking areas on the site.				
	x	Location, layout, number of spaces, bicycle parking, and ensuring design shows AD/ accessibility compliance.				
	x	 Location of proposed ingress/egress, circulation, loading, parking and pedestrian circulation elements, and ensuring design shows ADA accessibility compliance. 				


WJK SITE PLAN

WJK SITE PLAN

TOWN OF BLUFFTON DEVELOPMENT PLAN APPLICATION CHECKLIST

Prelim Plan	Final Plan	NOTE: Depending on the activities proposed, Development Plan documentation will vary. At minimum, each plan must contain the General Information and Site & Existing Conditions Documentation in addition to information required for the other specific activities listed below, as applicable. Please contact Town Staff for questions and additional information.
	х	4. A parking study documenting the reasons for any increase in the maximum amount of parking or a similar study documenting the ability of the site to accommodate a reduction of 20% or more to the maximum parking requirements.
	х	A parking study documenting the ability of a site(s) to accommodate a shared parking arrangement. A shared parking easement must also be provided.
	x	6. Detailed engineering information identifying the location of vehicular and bicycle parking facilities and the construction specifications, geometrics, arrangement, character, width, grade, circulation/maneuvering facilities and areas, landscape islands, loading areas, and including detailed dimensions as are necessary and appropriate to demonstrate compliance with all applicable standards and requirements.
Transpo	rtation	Networks.
ж		 General layout of transportation networks including access to the site, internal roadways, and access to adjacent properties.
x	x	 A map or sketch showing the general relationship of the development to the surrounding areas with existing and proposed access roadways referenced to the intersection of the nearest primary or secondary paved roadway.
	x	 Existing and proposed non-motorized vehicle lanes, paths, sidewalks, and other facilities, including transit facilities, on and within 200 feet of the development property including detailed dimensions as are necessary and appropriate to demonstrate compliance with all applicable standards and requirements.
	x	 Proposed roadway alignment plan showing right-of-way widths with specific reference to the roadway type and design assembly.
	×	Proposed access indicating any access management plans, connectivity, roadway extensions, proposed stub roads, dead-end roadways, and roadway names including detailed dimensions as are necessary and appropriate to demonstrate compliance with all applicable standards and requirements.
	х	Emergency access provisions.
	х	 A Traffic Assessment demonstrating adherence to MUTCD standards and/or other applicable requirements.
	х	8. A Traffic Impact Analysis (TIA), if warranted by the Traffic Assessment.
	×	9. Engineering plan of proposed traffic mitigation measures, including assessment of individual phase, or approved payments in-lieu of such that will be provided to the Town of Bluffton or applicable agency. Plan must ensure adequate transportation network is in place to support development at time of construction.
	X	10. Vehicular and pedestrian signage plan including crosswalk and pavement marking details.
	х	11. Shared access agreements.
	x	12. Detailed engineering information identifying the location, construction specifications, typical sections, geometrics, arrangement, character, width, and grade of existing and proposed roadways and non-motorized vehicle facilities including detailed dimensions and calculations as are necessary and appropriate to demonstrate compliance with all applicable standards and requirements.
Natural	Resour	ces, Tree Conservation, Planting, and Landscaping.
x	x	 Location of existing tree canopy coverage including table summarizing canopy lot coverage area, lot area not covered by tree canopy, and tree canopy expressed as percentage of lot coverage.
x	х	 Location and table summarizing trees listed on America's Historic Tree Register as maintained by American Forests.

TOWN OF BLUFFTON DEVELOPMENT PLAN APPLICATION CHECKLIST

APPLICATION CHECKLIST NOTE: Depending on the activities proposed, Development Plan documentation will vary. At minimum, each plan must Prelim Final contain the General Information and Site & Existing Conditions Documentation in addition to information required for the Plan Plan other specific activities listed below, as applicable. Please contact Town Staff for questions and additional information. Location of groups of trees that connect to other vegetated and/or treed areas on adjacent X sites helping to create or extend a wildlife or natural corridor. Location and table summarizing trees that have a significant characteristic such as, but not X limited to, allees and hedgerow trees, trees of unique character such as those with unique or unusual growth habitat, endangered species, or species rarely found in the area. 5. Location and table summarizing trees designated as protected to be removed. X 6. The location and description of existing and proposed landscaping, screening, buffering, and X tree preservation areas, including setbacks from natural resource areas. Graphic illustration of the existing tree canopy and mature tree canopy of the proposed tree 7. plantings including a table summarizing the mature canopy of each tree species planted, X canopy lot coverage area, lot area not covered by tree canopy, and tree canopy expressed as percentage of lot coverage (all calculations are excluding rooftop area). Detailed landscaping information containing the scientific and common names, quantity and X size of each plant species to be planted, typical installation and maintenance drawings/notes, and location and description of irrigation systems. Tree protection zones (TPZ) and tree protection fencing and signage locations and installation X specifications. Habitat management plan. 10. X X 11. Proposed topographic features, including basic contours at one foot or less intervals. 12. Bank stabilization and erosion control measures. X 13. If applicable, a Forest Management Plan. Open Space. 1. Proposed open space areas, habitat areas, types, and access trails both on and off-site. X 2. X Proposed public lands and methods of dedication and access. 3. Proposed ownership and method of transfer through deed restrictions, covenants, public X dedication, or other method acceptable to the UDO Administrator. X 4. Proposed use for all portions of dedicated open space. Stormwater Management. X X Acknowledgement of compliance with Bluffton Stormwater Design Manual. 2. Description of proposed methods and general layout of stormwater drainage. X X X X 3. Proposed drainage system layouts. 4. Proposed methods to remove pollutants. X X 5. Soil types and permeability characteristics from National Resource Conservation Service. X X 6. Stormwater Drainage Plan with drainage easements. X 7. Location and area of proposed impervious coverage. X Pre- and post-development runoff volumes, velocities, hydrographs, with Watershed Maps 8. X and Link Node Diagrams. X 9. Methods to record and report installation and maintenance activities. 10. Stormwater quality monitoring program and pre-development pollutant loading calculations. X Notarized Operation and Maintenance Agreement signed by responsible party. 11. X

Utili	ties	and	Serv	ices.
_	-		_	

x		 Statement by the Applicant/ Engineer/ Design Professional confirming that they believe the site can be supplied with adequate utilities.
	х	Proposed water system layout, or individual well locations.
	x	Proposed sewer system layout, or individual septic tank locations.

TOWN OF BLUFFTON **DEVELOPMENT PLAN** APPLICATION CHECKLIST

Section IX. Item #2.

Prelim Plan	Final Plan	NOTE: Depending on the activities proposed, Development Plan documentation will vary. At minimum, each plan must contain the General Information and Site & Existing Conditions Documentation in addition to information required for the other specific activities listed below, as applicable. Please contact Town Staff for questions and additional information.				
1	х	4. Location of solid waste/trash disposal units/dumpsters.				
	x	Location of proposed water, sewer, electric, telephone, cable, data, and gas service layouts, and proposed easements and connections.				
	x	6. Location of proposed fire lane, hydrant location(s), FDC(s), and apparatus access to the site and building(s).				
	x	7. Location of service and meter areas.				
	х	8. Location of mail delivery boxes.				
	x	Capacity and service studies and/or calculations.				
	x	 Detailed engineering information identifying the location, construction specifications, typical sections, service connections, meters, valves, manholes, inverts, transformers, service pedestals/boxes, and any other utility information. 				
Lighting	1.					
(X)		 Narrative or plan notes describing the proposed exterior lighting scheme for the property. 				
	×	 Location, specifications, and details for existing and proposed exterior site and building light fixtures including the total lumen output, type of lamp, method of shielding, pole and mounting height, and verification that there are no conflicts between lighting and landscaping. 				
	×	 Photometric grid overlaid on the proposed site plan indicating the overall light intensity throughout the site (in footcandles) including existing and proposed lighting. Photometric calculations must consider all exterior lighting including building lighting. 				
	х	4. Notes describing lighting limitations, prohibitions, and methods of enforcement.				

SIGN AND RETURN THIS CHECKLIST WITH THE APPLICATION SUBMITTAL ALL SUBMITTALS MUST BE COLLATED AND FOLDED TO 8-1/2" X 11"

By signature below I certify that I have reviewed and provided the minimum submittal requirements listed above, including any additional items requested by the Town of Bluffton Staff. Any items not provided have been listed in the project narrative with an explanation as to why the required submittal item has not been provided or is not applicable. Further, I understand that failure to provide a complete, quality application or erroneous information may result in the delay of processing my application(s).

MEMBER 8/10/22
red Agent Date Signature of Property Owner or Authorized Agent

June 27, 2023

Kevin P. Icard, AICP
Planning & Community Development Manager

RE: Preliminary Development plan submittal for CarVillage Bluffton

Dear Mr. Icard-

On behalf of the applicant, Charlie and Brown, LLC we are submitting the attached Updated *Preliminary Development Plan* for **CarVillage** Bluffton.

Project Narrative:

Site

CarVillage is located within the south-west portion of the Seagrass Station/Village of Verdier PUD along Highway 170. The proposed use is an *Automotive Enthusiasts Club*, including buildings for private and common use by members of the club. Individual units of the Club may be sold to members.

The CarVillage project involves the construction of a $\pm 20,000$ SF two-story Clubhouse and 5 buildings divided into ± -31 high-end garage condominium units. The garage units are accessory uses to the Club. The total proposed commercial square footage is 80,000 square feet.

The Clubhouse first floor will include a showroom, lounge area, offices, vehicle detailing, and light automotive maintenance. The second floor will include the common gathering spaces, lounging areas, offices, dining and kitchen facilities for Club members. The second floor areas are a shared space only open to Club Members.

The individually owned Garage Condominium's are approximately 1680 Square feet and will include storage for collector and/or classic motor vehicles. Each unit will have a front 'courtyard' for owner parking providing a village streetscape aesthetic.

Traffic and Access

Access to the site will be provided from Highway 170. A dedicated right-in / right-out turn lane is planned per the highway 170 access requirements. See attached 'Traffic Access Memo' provided by Kimley Horn. A second 'emergency access point' is planned to connect to the property line adjacent to Hager Road.

23 Promenade Street, Suite 201 Bluffton, SC 29910 Tel: 843-757-7411

Storm Drainage, Infrastructure, and Utilities

The proposed project is being development within the Seagrass Station Planned Unit Development. The PUD has an approved stormwater management plan and the existing drainage system to handle the post-development run-off from this development. All drainage will be routed to the existing stormwater pond located on the eastern side of the property. The existing pond is adequately constructed to attenuate the 2, 10, 25, 50- & 100-year 24-hour design storm events.

This site uses a mix of bio-retention areas, grassed swales, disconnected impervious runoff and pervious paving as Better Site Design Principals to reduce storm water runoff. The excess stormwater run off will also be directed towards an interconnected wet detention system for further treatment.

Beaufort-Jasper Water and Sewer Authority (BJWSA) will provide water and sewer service to the project.

Dominion Power will provide power and site lighting, and Hargray will provide telephone and cable service.

Parking

Parking for the Club guest will be located within the +/-11 spaces to the west of the clubhouse at the entrance adjacent to highway 170. All other parking for the Club Members/ Guest will be centrally located within the gated courtyard adjacent to the clubhouse and garage condominiums.

Following is the breakdown of required and proposed parking:

Clubhouse 1st floor: ±10,000 SF

(Calculated as 'commercial services' at 4 spaces per 1,000 SF)

Requires 40 spaces

Clubhouse 2nd floor: ±10,000 SF

(Calculated at one space per unit for shared club use)

Requires 31 spaces

Total Parking required: 71 Total Parking provided: 73

Each unit is located to allow for 1-2 additional owner spaces within the front courtyard of each unit. Parking in front of the unit is intended for short term day use.

Architectural

The architectural plans will be submitted for Highway Corridor overlay review.

Exterior Lighting

Exterior Lighting will be provided by Dominion Power and fixtures mounted on the building. The. Lighting specifications and locations will be included on the Corridor overlay submittal plans.

Landscaping

The site will be enhanced with native and indigenous plantings. Overstory trees meeting the minimum tree coverage will include Live Oaks, Shumard Oaks, Bald Cypress, and Southern Magnolias. Understory trees, shrubs, grasses, groundcovers and other accent plantings will be included on the final landscape plans. The buffer to the east adjacent will be enhanced to minimize visibility from the adjacent residential properties. Open space is provided within the site through the various landscape areas, plaza space and buffers. The open space exceeds the required 20% as indicated on the preliminary submittal site plan.

Signage

CarVillage Identification Signage will be located along the Highway 170. All signage will be submitted under separate application per Town of Bluffton ordinance.

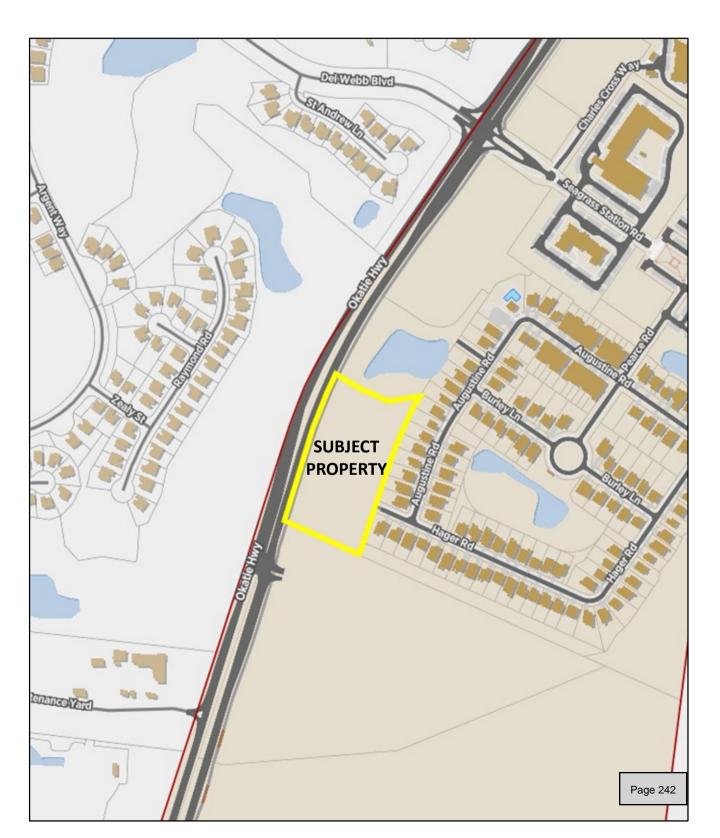
Submittal items attached:

- a. Project survey
- b. Existing Conditions Photo's
- c. Preliminary Site plan including site data

Durel P. Keefer.

d. Traffic – site access

If you require additional submittal documents, please contact our team.


Sincerely,

Witmer * Jones * Keefer, Ltd.

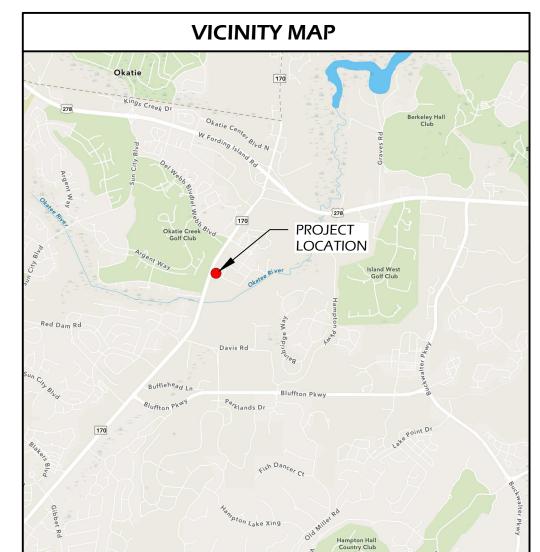

Daniel Keefer, ASLA Principal

Cc: Jeff Ackerman Kevin Biebel

VICINITY MAP CARVILLAGE BLUFFTON DEVELOPMENT PLAN

ACCESS TO OKATIE REGIONAL PARK FUTURE LOCATION OF THE 30,000 SF CIVIC SPACE TO BE DETERMINED. CIVIC SPACE TO BE LOCATED ON A MINIMUM OF 1.5 ACRES. N/F R6I0 02I 000 0288 0000 SITE * * * * VICINITY MAP N. T.S. LAND USE KEY MPA REVISION PROPOSED MPA APPROVED SYMBOL REVISION DESCRIPTION AUGUST 2015 ACREAGE ACREAGE TOWN HOME 2.9 2.9 36.0 36.0 RESIDENTIAL PRIVATE OPEN 6.4 6.4 SPACE MULTI- FAMILY 22.7 20.9 VILLAGE-HAMLET 5.1 5.1 EXISTING OFFICE 6.6 6.6 EXISTING POND HEALTH/HUMAN 0.0 6.8 SINGLE FAMILY 0.0 MIXED USE 5.0 RESIDENCE MIXED-USE 6.6 6.6 5.5 5.5 MIXED-USE B MIXED-USE 5.6 5.6 SINGLE FAMILY 7.1 7.1 MIXED-USE RESIDENTIAL LO MIXED-USE 1.9 1.9 WETLAND 12.8 12.8 EXISTING I. TOTAL ACRES = SINGLE FAMILY 124.2 124.2 RESIDENTIAL LOT REQUIRED OPEN SPACE 12.43 12.4 3. PARK AREA 3.49 3.49 ACCESS PEARCE ROAD 1. TOTAL SITE ACREAGE REDUCED FROM THE ORIGINAL MASTER PLAN BY DONATION OF 2. REQUIRED OPEN SPACE PER SECTION 2.D.2 OPEN SPACE (PRIVATE OR PUBLIC) OF THE DEVELOPMENT AGREEMENT. 3. PARK AREA IS INCLUDED IN ADJACENT LAND USE AREA AND HAS BEEN CALCULATED IN THE TOTAL AREA ABOVE. PARK 4. PSYCHIATRIC, DRUG AND ALCOHOL REHABILITATION SERVICES WOULD NOT BE ALLOWED UNDER THE LAND USE OF HOSPITAL IN LAND DESCRIPTION HEALTH/HUMAN CARE AS REFERENCED IN SECTION 2.B.7 OF THE PLANNED UNIT DEVELOPMENT AGREEMENT. R6IO 029 000 0483 0000 DENSITY REMAINS CONSISTENT WITH PREVIOUSLY APPROVED DEVELOPMENT AGREEMENT. THE FOLLOWING IS AN EXCERPT FROM THE В PROPERTY SHALL BE LIMITED TO THE FOLLOWING: 404,000 SQUARE FEET OF COMMERCIAL; 404 RESIDENTIAL DWELLING UNITS; AND 30,000 SQUARE FEET OF CIVIC DEVELOPMENT NOTWITHSTANDING ANY OTHER PROVISIONS CONTAINED WITHIN THE UNIFIED ORDINANCE, COMMERCIAL USES WITHIN THE PROPERTY SHALL BE LIMITED TO THOSE MORE FULLY DESCRIBED IN EXHIBIT "D" EXHIBIT D REFERS TO THE VILLAGE AT VERDIER PLANTATION PLANNED UNIT DEVELOPMENT AMENDED DECEMBER 29, 2010 THE "HEALTH/HUMAN CARE" LAND USE TO BE INCLUDED WITHIN THE CURRENTLY APPROVED 404,000 SQUARE FEET OF COMMERCIAL. MASTER PLAN EMERGENCY ACCESS VILLAGE AT N/F R600-02I-000-0I6A **VERDIER PLANTATION** BLUFFTON, SC CHARLES CROSS WAY PROPOSED ROAD PREPARED FOR: GATED ENTRY FOR HEALTHSOUTH REHABILITATION ACCESS TO PARCEL Y-Z HOSPITAL OF LOWCOUNTRY, LLC PREPARED BY: THOMAS & HUTTON
Engineering | Surveying | Planning | GIS | Consulting Approved 50 Park of Commerce Way Savannah, GA 31405 • 912.234.5300 www.thomasandhutton.com LAST REVISED 01-12-2017 S.C. HIGHWAY 170 REVISION 04-21-2023 S.C. HIGHWAY 170 SCALE: 1" = 100' SHEET: 1 OF 1

SITE COVERAGE			
IMPERVIOUS COVERAGE	ACTUAL COVERAGE (SF)		
BUILDING FOOTPRINT(S)	61,100		
IMPERVIOUS HARDSCAPE	20,094		
PERVIOUS HARDSCAPE (50%) (44,045 SF/2 = 22,023)	22,023		
TOTAL IMPERVIOUS	103,217		
TOTAL SITE AREA	217,800		
% SITE COVERAGE	47%		


OPEN SPACE SUMMARY				
DESCRIPTION	S.F.	ACTUAL %	REQUIRED %	
TOTAL SITE AREA	217,800			
OPEN SPACE	±92,561	42%		
TOTAL OPEN SPACE %		42%	20%	

REQUIRED PARKING					
DESCRIPTION		REQUIREMENTS	PARKING SPACES		
COMMERCIAL SERVICES	10,000 SF	4 SPACE/1,000 SF	40		
CLUBHOUSE SHARED	CLUBHOUSE SHARED 31 UNITS* 1 SPACES/UNIT				
TOTAL REQUIRED	71				

PARKING SPACES
73
3
76
0
76

NOTE:

*INCLUDES 8,900 SF SECOND FLOOR UNIT IN BUILDING A.
 TOTAL BUILDING SQUARE FOOTAGE NOT TO EXCEED 80,000

RELOCATED BIKE -PATH (±275 LF) EXISTING BERM AND VEGETATION TO REMAIN OUTSIDE OF PROPERTY LINE -SC HIGHWAY 170-ENHANCED BUFFER: LIVE OAK MAGNOLIA DECELERATION LANE RED CEDAR AMERICAN HOLLY CABBAGE PALMETTO **WAX MYRTLE BUILDING A** 10,080 SF (1ST FLOOR) - 8,900 SF (2ND FLOOR) **BUILDING B** ±700 SF 8,400 SF FOOTPRINT 22 PN FLAGPOLE -ACCESS 20,000 SF CLUBHOUSE - 10,000 SF COMMERCIAL (1ST FLOOR) - 10,000 SF CLUBHOUSE (2ND FLOOR) - APPROXIMATE LOCATION OF STREET LIGHTS, TYP. ALUMINUM FENCE, TYP. - PERVIOUS PAVERS, TYP. DUMPSTER EXISTING TREE TO REMAIN, TYP. POND WALLS, TYP. - GATED ACCESS (EMERGENCY ACCESS ONLY) **AUGUSTINE RD.**

PRELIMINARY SITE PLAN

OR

Car Village Bluffton TM BLUFFTON, SOUTH CAROLINA

Z 0 30 60 90 120 15 45 75 105 | Scale I" = 30'

Note: Plan is conceptual in nature and subject to change

Kimley » Horn

TECHNICAL MEMORANDUM

To: Dan Frazier, AICP

Principal Planner Town of Bluffton

From: Dillon Turner, PE, PTOE

Kimley-Horn

Date: January 10, 2022

Subject: Village at Verdier Plantation IMP Amendment, Bluffton, South Carolina

KIMLEY-HORN
AND ASSOCIATES, NO. COO166
No. COO166
AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF AUTHORITIAN
OF A

The purpose of this technical memorandum is to show traffic impacts of the proposed roadway changes compared to the initial Masterplan for the Village at Verdier Planation. The Village at Verdier Planation is located in the southeast quadrant of the SC 170 (Okatie Highway) at Seagrass Station intersection in Bluffton, South Carolina. The proposed roadway changes include:

- An emergency access gate at Hager Road, internal to the proposed DBA CarVillage
- A proposed full access road with a pedestrian connection to Parcel X, north of the DBA CarVillage
- Removal of the frontage road in the southeast quadrant of the SC 170 at Seagrass Station intersection

This technincal memorandum will compare the capacity analysis at the following study area intersections:

- SC 170 (Okatie Highway) at Seagrass Station Road/Del Webb Boulevard
- Seagrass Station at Charles Cross Way/7C Access 2
 - Please note 7C is the access to Parcel X
- Pearce Road at Augustine Road
- Augustine Road at Amanda Road
- Hager Road at Augustine Road
- SC 170 (Okatie Highway) at Hager Road
- SC 170 (Okatie Highway) at Amanda Road
- Amanda Road at 7C Access 1
 - Please note 7C is the access to Parcel X

This technical memorandum considers two scenarios in the AM and PM peak hours:

- Access to Hager Road is limited to CarVillage visitors and only allowed as an emergency exit for Seagrass Station, referred to as "No Access."
- Access to Hager Road is provided for the Seagrass Station neighborhood referred to as "Access."

Page 2

Existing Conditions

SC 170 (Okatie Highway) is a four-lane, divided principal arterial with a posted speed limit of 45 mph in the vicinity of the site. SC 170 (Okatie Highway) had an Annual Average Daily Traffic (AADT) of 25,100 vehicles per day in 2021. Seagrass Station Road provides access to the Seagrass Station residential development on the east side of SC 170 (Okatie Highway). Seagrass Station Road is a local roadway with a posted speed limit of 15 mph. Hager Road and Augustine Road are both local roadways that provide internal access to the Seagrass Station residential development and currently do not provide access to SC 170 (Okatie Highway).

Existing Traffic Volumes

Peak-period turning movement counts were collected at the following intersections on Thursday, November 10th, 2022 from 7:00 AM to 9:00 AM and 4:00 PM to 6:00PM:

- Seagrass Station Road and Charles Cross Way
- Hager Road and Augustine Road
- · Pearce Road and Augustine Road
- Pearce Road and Amanda Road
- SC 170 (Okatie Highway) and Seagrass Station

The raw turning-movement count data are included in **Attachment B** and the traffic volume development worksheets are included in **Attachment C**.

Seagrass Station homes are considered fully built-out and occupied, and trips from this residential development are captured in the turning-movement counts.

The counts were distributed throughout the network for proposed intersections in the Village at Verdier Masterplan.

Trip Generation

Two additional developments were considered as part of this comparison. The CarVillage site and the Parcel X site were considered, with their locations and site plans provided in **Attachment A**. As determined in the CarVillage Bluffton Traffic Memo (Kimley-Horn, August 2022), low intensities and unique land uses did not require a traffic impact study. To provide a conservative estimate for this site's trip generation, 20 total trips (10 in/10 out) in the AM peak hour and 20 trips (10 in/10 out) in the PM peak hour were considered. These trips utilize SC 170 (Okatie Highway) to access the right-in right-out Hager Road to access the CarVillage site.

The development at Parcel X is projected to include the following land uses and intensities, shown in **Table 1**. It is expected to produce 80 trips in the AM peak hour (47 in/33 out) and 106 trips in the PM peak hour (49 in/57 out). Full detail on the trip generation is provided in **Attachment C**.

Page 3

Table 1 – Parcel X Trip Generation Estimates

Land Use	ITE LUC	Intensity	AM Peak-Hour Trips	PM Peak-Hour Trips	
Small Office Building	712	10,000 square feet	17 (14 in/3 out)	22 (7 in/15 out)	
Furniture Store	890	18,000 square feet	5 (4 in/1 out)	10 (5 in/5 out)	
Convenience Store/Gas Station	945	3,800 square feet / 2-8 vehicle fueling positions	154 (77 in/77 out)	184 (92 in/92 out)	
Subtotal			176 (95 in/81 out)	216 (104 in/112 out)	
Internal Capture			-4 (2 in/2 out)	-4 (2 in/2 out)	
ITE Pass-By			-92 (46 in/46 out)	-106 (53 in/53 out)	
Total Net New External Trips			80 (47 in/33 out)	106 (49 in/57 out)	

Trip Distribution Comparison

For the existing masterplan, it was assumed that homes south of Burley Lane within the Seagrass Station neighborhood would utilize Hager Road off of SC 170 (Okatie Highway) and homes north of Burley Lane would utilize Amanda Road off of SC 170 (Okatie Highway).

Hager Road and Amanda Road are both anticipated to be right-in/right-out accesses off of SC 170 (Okatie Highway), therefore southbound trips accessing the Seagrass Station neighborhood would not be redistributed from their existing assignment.

The amended masterplan for the Village of Verdier removes the public access from Hager Road. Therefore, the inbound northbound trips which initially were planned to utilize Hager Road were redistributed to Amanda Road and Seagrass Station based on the exiting volume counts and existing travel patterns. The calculations are attached for this redistribution.

2027 Traffic Volumes

The analysis year for the comparison was 2027. Based upon available South Carolina Department of Transportation (SCDOT) Average Annual Daily Traffic (AADT) data for Beaufort County count stations #165, #554, and #325, an annual growth rate of 6% was assumed for this project and applied to the existing peak-hour traffic volumes for five years to develop 2027 horizon year volumes. The trip generation projections for CarVillage and Parcel X were applied to these grown traffic volumes to perform the capacity analysis comparison.

Page 4

Capacity Analysis Comparison

Level-of-service (LOS) analyses were conducted using the Synchro, Version 11, traffic analysis software for the AM and PM peak hours for the intersections of study. The program uses methodologies contained in the Highway Capacity Manual (HCM), 6th Edition, to determine the operating characteristics of an intersection. **Table 2** summarizes the LOS and longest control delay on the side street approaches for the study intersections of:

- SC 170 (Okatie Highway) at Seagrass Station Road/Del Webb Boulevard
- Seagrass Station at Charles Cross Way/7C Access 2
- Pearce Road at Augustine Road
- Augustine Road at Amanda Road
- Hager Road at Augustine Road
- SC 170 (Okatie Highway) at Hager Road
- SC 170 (Okatie Highway) at Amanda Road
- Amanda Road at 7C Access 1

Table 2 – Capacity Analysis Results (LOS/Delay)

	Scenario				
Intersection	2027 <i>A</i>	Access	2027 No Access		
	AM Peak Hour LOS (Delay)	PM Peak Hour LOS (Delay)	AM Peak Hour (LOS Delay)	PM Peak Hour LOS (Delay)	
Okatie Highway and Seagrass Station Road (TWSC)	F (\$)	F (\$)	F (\$)	F (\$)	
Okatie Highway and Seagrass Station Road (Signal)	A (6.5)*	A (5.9)*	A (6.5)*	A (6.2)*	
Seagrass Station Road at Charles Cross Way	A (9.1)	A (9.2)	A (9.1)	A (9.2)	
Pearce Road at Augustine Road	A (9.5)	A (9.5)	A (9.5)	A (9.5)	
Augustine Road at Amanda Road	A (8.7)	A (8.8)	A (8.8)	A (8.8)	
Hager Road at Augustine Road	A (8.5)	A (8.6)	A (8.6)	A (8.7)	
SC 170 (Okatie Highway) at Hager Road	C (18.9)	C (17.1)	C (17.2)	C (16.3)	
SC 170 (Okatie Highway) at Amanda Road	C (19.9)	C (18.0)	C (22.1)	C (19.1)	
Amanda Road at 7C Access 1	A (8.8)	A (8.7)	A (8.9)	A (8.8)	

^{\$-} Delay Exceeds 300 Seconds

The results of the analysis presented in **Table 2** indicate that under the No Access scenario, all intersections are expected to operate with similar if not the same LOS and delay under both AM and PM peak hours. The intersection of SC 170 (Okatie Highway) is projected to operate with significant delays (LOSF F). With these undesirable delays, a signalized intersection was analyzed as an alternative to the existing minor street stop control. With signalized control this intersection is expected to operate at LOS A during both the AM and PM peak hours with and without access to Hager.

^{*} Overall Intersection Reported

Page 5

The Town of Bluffton recently did a signal warrant analysis at the intersection of SC 170 (Okatie Highway) at Seagrass station and it was not warranted per a discussion with SCDOT. It is recommended to continue to monitor this intersection for signalization.

Summary

The purpose of this technical memorandum is to show traffic impacts of the proposed roadway changes compared to the initial Masterplan for the Village at Verdier. The proposed roadway changes include

- An emergency access gate at Hager Road, internal to the proposed DBA CarVillage
- A proposed full access road with a pedestrian connection to Parcel X, north of the DBA CarVillage
- Removal of the frontage road in the southeast quadrant of the SC 170 at Seagrass Station intersection

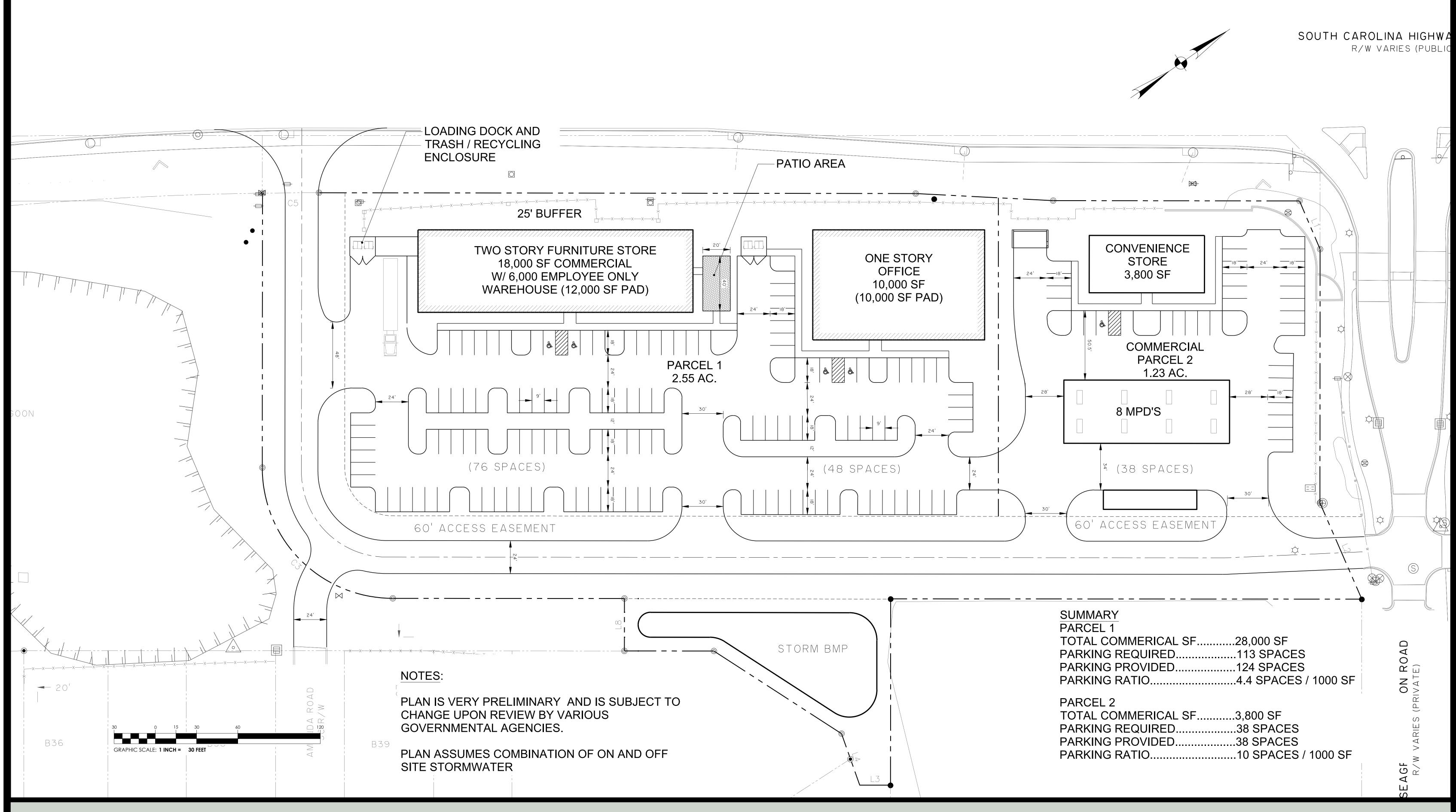
Based on the capacity analysis, removing access to Hager Street will have a minimal impact on the surrounding roadway network. The Town of Bluffton recently did a signal warrant analysis at the interseciton of SC 170 (Okatie Highway) at Seagrass station and it was not warranted per a discussion with SCDOT. It is recommended to continue to monitor this intersection for signalization.

Attachments

Attachment A - Site Plans

Attachment B – Existing Counts

Attachment C – Trip Generation and Traffic Volume Development Worksheets


Attachment D - HCM 6 Capacity Analysis Reports

Attachment 5

Section IX. Item #2.

Kimley » Horn

Attachment A - Site Plans

CONCEPTUAL LAYOUT EXHIBIT 2

VERDIER COMMERIAL STUDY

BLUFFTON, SOUTH CAROLINA

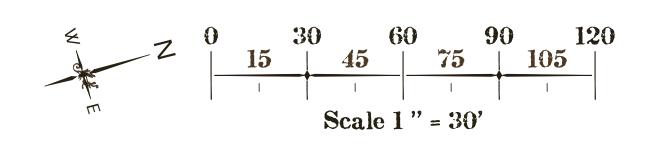
June 23, 2021

50 Park of Commerce Way Savannah, GA 31405 • 912.234.5300

www.thomasandhutton.com

This map illustrates a general plan of the development which is for discussion purposes only, does not limit or bind the owner/developer, and is subject to change and revision without prior written notice to the holder. Dimensions, boundaries and position locations are for illustrative purposes only and are subject to an accurate survey and property description.

COPYRIGHT © 2020 THOMAS & HUTTON


JULY 2022

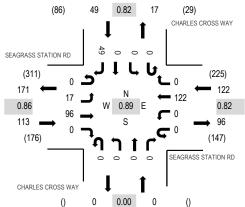
CONCEPTUAL PLAN

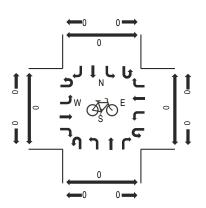
AUGUSTINE RD.

CAR VILLAGE - SEAGRASS

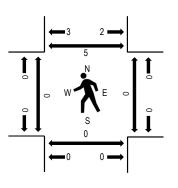
BLUFFTON, SOUTH CAROLINA

Kimley » Horn


Attachment B – Existing Counts


Location: 1 CHARLES CROSS WAY & SEAGRASS STATION RD AM

Date: Thursday, November 10, 2022 **Peak Hour:** 07:30 AM - 08:30 AM **Peak 15-Minutes:** 07:45 AM - 08:00 AM


Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

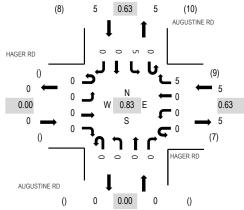
Traffic Counts - Motorized Vehicles

	SEAGE	RASS	STATIC	ON RD	SEAGR	ASS S	OITAT	N RD	CHAR	LES CF	ROSS \	NAY	CHAF	RLES C	ROSS	WAY						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	oound			Rolling	Ped	destria	n Cross	ings
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
7:00 AM	0	1	9	0	0	0	23	0	0	0	0	0	0	0	0	11	44	244	0	0	0	2
7:15 AM	0	2	9	0	0	0	30	0	0	0	0	0	0	0	0	11	52	278	0	0	0	1
7:30 AM	0	1	29	0	0	0	24	0	0	0	0	0	0	0	0	14	68	284	0	0	0	1
7:45 AM	0	7	26	0	0	0	37	0	0	0	0	0	0	0	0	10	80	270	0	0	0	3
8:00 AM	0	6	22	0	0	0	40	0	0	0	0	0	0	0	0	10	78	243	0	0	0	1
8:15 AM	0	3	19	0	0	0	21	0	0	0	0	0	0	0	0	15	58		0	0	0	0
8:30 AM	0	5	12	0	0	0	26	0	0	0	0	0	0	0	0	11	54		0	0	0	0
8:45 AM	0	4	21	0	0	0	24	0	0	0	0	0	0	0	0	4	53		0	0	0	0

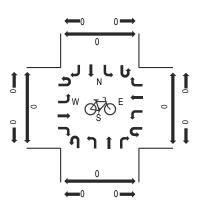
Peak Rolling Hour Flow Rates

		East	bound			West	oound			Northb	ound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lights	0	17	92	0	0	0	118	0	0	0	0	0	0	0	0	49	276
Mediums	0	0	4	0	0	0	4	0	0	0	0	0	0	0	0	0	8
Total	0	17	96	0	0	0	122	0	0	0	0	0	0	0	0	49	284

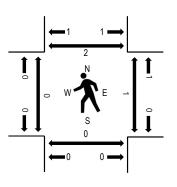
		Eastb	ound			Westb	ound			Northb	ound			South	oound		
	U-Turn	U-Turn Left Thru Right 3.5%				Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Heavy Vehicle %		3.5%				3.3	%			0.0	%			0.0	%		2.8%
Heavy Vehicle %	0.0%					0.0%	3.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.8%
Peak Hour Factor		0.86				0.8	2			0.0	0			3.0	32		0.89
Peak Hour Factor	0.00	0.00 0.75 0.83 0.00				0.00	0.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.82	0.89



Location: 2 AUGUSTINE RD & HAGER RD AM


Date: Thursday, November 10, 2022 Peak Hour: 07:15 AM - 08:15 AM

Peak 15-Minutes: 07:45 AM - 08:00 AM


Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Peak Hour - Pedestrians

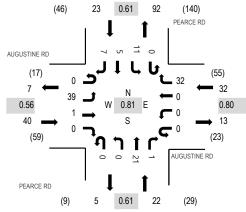
Note: Total study counts contained in parentheses.

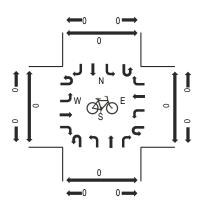
Traffic Counts - Motorized Vehicles

		HAGE	RRD			HAGE	RD		Αl	JGUST	INE RE)	Al	JGUS1	TINE RI)						
Interval		Eastb	ound			Westb	ound			Northb	ound			Southl	oound			Rolling	Ped	lestriar	n Crossi	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
7:00 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	8	0	0	0	1
7:15 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	2	10	0	1	0	1
7:30 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	2	8	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	2	0	0	3	9	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	2	0	0	0	0	0	1	0	0	3	9	0	0	0	1
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	1	0	0
8:30 AM	0	0	0	0	0	0	0	2	0	0	0	0	0	1	0	0	3		0	2	0	0
8:45 AM	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	3		0	0	0	0

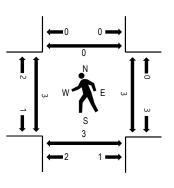
Peak Rolling Hour Flow Rates

		East	bound			West	oound			Northb	ound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lights	0	0	0	0	0	0	0	5	0	0	0	0	0	5	0	0	10
Mediums	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	5	0	0	0	0	0	5	0	0	10


		Eastb	ound			Westb	ound			Northb	ound			South	oound		
	U-Turn	Left	Thru	Right	U-Turr	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Heavy Vehicle %		0.0%				0.0	%			0.0	%			0.0	%		0.0%
Heavy Vehicle %	0.0%					0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Peak Hour Factor		0.00				0.6	3			0.0	0			0.6	3		0.83
Peak Hour Factor	0.00	0.00 0.00 0.00 0.00				0.00	0.00	0.63	0.00	0.00	0.00	0.00	0.25	0.63	0.00	0.00	0.83


Location: 3 PEARCE RD & AUGUSTINE RD AM

Date: Thursday, November 10, 2022 Peak Hour: 07:15 AM - 08:15 AM Peak 15-Minutes: 08:00 AM - 08:15 AM


Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

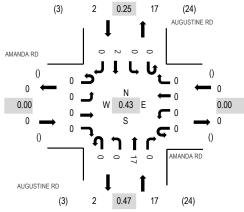
Traffic Counts - Motorized Vehicles

Interval	AL	JGUST Eastb	ΓINE R	D		IGUST Westb	INE RD)		PEARC Northb				PEAR(South				Rolling	Per	lestriar	n Crossi	inas
Start Time	U-Turn	Left		Right	U-Turn			Right	U-Turn	Left		Right	U-Turn	Left	Thru	Right	Total	Hour	West		South	
 7:00 AM	0	4	0	0	0	0	0	4	0	0	2	0	0	3	0	0	13	94	0	0	0	0
7:15 AM	0	6	0	0	0	0	0	10	0	0	2	0	0	3	0	1	22	117	2	1	2	0
7:30 AM	0	4	0	0	0	0	0	6	0	0	8	1	0	1	3	2	25	112	0	1	0	0
7:45 AM	0	18	0	0	0	0	0	6	0	0	4	0	0	3	1	2	34	107	0	0	1	0
8:00 AM	0	11	1	0	0	0	0	10	0	0	7	0	0	4	1	2	36	95	1	1	0	0
8:15 AM	0	2	0	0	0	0	0	7	0	1	1	0	0	2	2	2	17		0	0	0	0
8:30 AM	0	8	0	0	0	0	0	8	0	0	1	0	0	2	1	0	20		0	0	1	1
8:45 AM	0	5	0	0	0	0	0	4	0	0	2	0	0	3	1	7	22		0	0	0	0

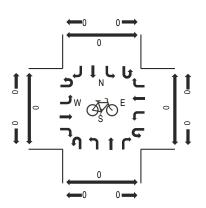
Peak Rolling Hour Flow Rates

		East	bound			Westh	oound			Northb	oound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lights	0	39	1	0	0	0	0	32	0	0	19	1	0	11	3	7	113
Mediums	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0	4
Total	0	39	1	0	0	0	0	32	0	0	21	1	0	11	5	7	117

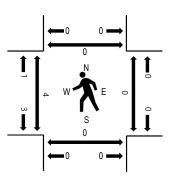
		Eastb	ound			Westb	ound			Northb	ound			South	bound		
	U-Turn	Left	Thru	Right	U-Turr	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Heavy Vehicle %		0.0)%			0.0	%			9.1	%			8.7	' %		3.4%
Heavy Vehicle %	0.0%	0.0% 0.0% 0.0% 0.0% 0.0%				0.0%	0.0%	0.0%	0.0%	0.0%	9.5%	0.0%	0.0%	0.0%	40.0%	0.0%	3.4%
Peak Hour Factor		0.56				0.8	0			0.6	1			0.6	61		0.81
Peak Hour Factor	0.00	0.00 0.54 0.25 0.00				0.00	0.00	0.80	0.00	0.25	0.66	0.25	0.00	0.69	0.58	0.39	0.81



Location: 4 AUGUSTINE RD & AMANDA RD AM


Date: Thursday, November 10, 2022 Peak Hour: 08:00 AM - 09:00 AM Peak 15-Minutes:

08:45 AM - 09:00 AM


Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

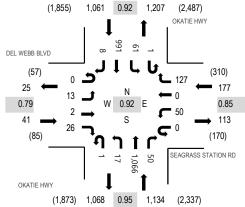
Traffic Counts - Motorized Vehicles

	1	AMANI	DA RD		P	AMAND	A RD		Αl	JGUST	INE R)	Α	UGUS ⁻	TINE RI	D						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestriar	n Cross	ings
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
7:00 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	8	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	4	9	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	9	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	2	10	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2	19	1	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	4		1	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2		1	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	9	0	0	0	2	0	11		1	0	0	0

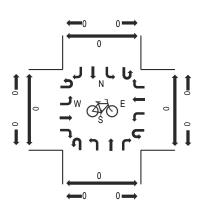
Peak Rolling Hour Flow Rates

		East	bound			West	oound			North	ound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lights	0	0	0	0	0	0	0	0	0	0	17	0	0	0	2	0	19
Mediums	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	17	0	0	0	2	0	19

		Eastb	ound			Westb	ound			Northb	ound			South	oound		
	U-Turn	Left	Thru	Right	U-Turr	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Heavy Vehicle %		0.0%				0.0	%			0.0	%			0.0	%		0.0%
Heavy Vehicle %	0.0%					0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Peak Hour Factor		0.00				0.0	0			0.4	7			0.2	25		0.43
Peak Hour Factor	0.00	0.00 0.00 0.00 0.00				0.00	0.00	0.00	0.00	0.00	0.47	0.00	0.00	0.00	0.25	0.00	0.43


Location: 5 OKATIE HWY & SEAGRASS STATION RD AM

Date: Thursday, November 10, 2022


Peak Hour: 07:30 AM - 08:30 AM

Peak 15-Minutes: 07:45 AM - 08:00 AM


Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

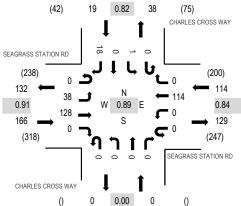
Traffic Counts - Motorized Vehicles

	DE	L WE	BB BLV	'D	SEAGF	RASS S	TATION	I RD	(OKATIE	HWY		(OKATII	E HWY							
Interval		Eastb	ound			Westb	ound			Northb	ound			South	oound			Rolling	Ped	lestriar	n Crossi	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
7:00 AM	0	1	0	8	0	6	0	26	0	2	267	7	0	3	169	2	491	2,298	0	0	0	0
7:15 AM	0	2	0	6	0	7	0	31	1	2	296	5	0	7	185	0	542	2,397	0	0	0	0
7:30 AM	0	1	1	5	0	12	0	29	0	5	296	11	1	17	225	3	606	2,413	0	0	0	0
7:45 AM	0	3	1	3	0	8	0	37	0	4	303	13	0	20	265	2	659	2,347	0	1	0	0
8:00 AM	0	1	0	11	0	18	0	34	0	4	243	10	0	18	249	2	590	2,289	0	0	0	0
8:15 AM	0	8	0	7	0	12	0	27	1	4	224	16	0	6	252	1	558		0	0	0	0
8:30 AM	0	5	0	5	0	6	0	26	0	7	275	7	1	9	197	2	540		0	0	0	0
8:45 AM	0	10	0	7	0	5	0	26	1	13	314	6	0	13	202	4	601		0	0	0	0

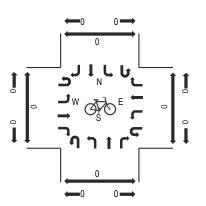
Peak Rolling Hour Flow Rates

		East	bound			West	oound			North	oound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	7	0	0	0	14	0	21
Lights	0	13	2	25	0	49	0	124	1	17	1,047	47	1	60	930	8	2,324
Mediums	0	0	0	1	0	1	0	3	0	0	12	3	0	1	47	0	68
Total	0	13	2	26	0	50	0	127	1	17	1,066	50	1	61	991	8	2,413

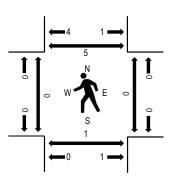
		Eastb	ound			Westb	ound			Northb	ound			South	oound		
	U-Turn	Left	Thru	Right	U-Turr	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Heavy Vehicle %		2.4	! %			2.3	%			1.9	%			5.8	%		3.7%
Heavy Vehicle %	0.0%	0.0%	0.0%	3.8%	0.0%	2.0%	0.0%	2.4%	0.0%	0.0%	1.8%	6.0%	0.0%	1.6%	6.2%	0.0%	3.7%
Peak Hour Factor		0.79				0.8	5			0.9	5			0.9	92		0.92
Peak Hour Factor	0.00	0.60	0.50	0.68	0.00	0.69	0.00	0.89	0.50	0.54	0.96	0.78	0.25	0.78	0.93	0.56	0.92



Location: 1 CHARLES CROSS WAY & SEAGRASS STATION RD PM


Date: Thursday, November 10, 2022 **Peak Hour:** 04:15 PM - 05:15 PM

Peak 15-Minutes: 04:15 PM - 04:30 PM


Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

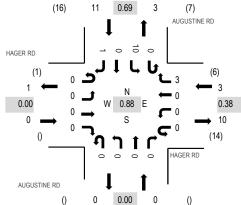
Traffic Counts - Motorized Vehicles

	SEAGE	RASS S	STATIO	ON RD	SEAGR	RASS S	OITAT	N RD	CHAR	LES C	ROSS \	NAY	CHAR	RLES C	ROSS	WAY						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	oound			Rolling	Ped	lestriar	n Crossi	ings
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
 4:00 PM	0	8	26	0	0	0	26	0	0	0	0	0	0	1	0	5	66	291	0	0	0	0
4:15 PM	0	6	38	0	0	0	34	0	0	0	0	0	0	0	0	6	84	299	0	0	0	0
4:30 PM	0	12	27	0	0	0	28	0	0	0	0	0	0	0	0	6	73	288	0	0	1	3
4:45 PM	0	11	31	0	0	0	25	0	0	0	0	0	0	0	0	1	68	268	0	0	0	0
5:00 PM	0	9	32	0	0	0	27	0	0	0	0	0	0	1	0	5	74	269	0	0	0	2
5:15 PM	0	10	36	0	0	0	21	1	0	0	0	0	0	0	0	5	73		0	0	0	1
5:30 PM	0	8	21	0	0	0	19	0	0	0	0	0	0	1	0	4	53		1	0	0	0
5:45 PM	0	10	33	0	0	0	19	0	0	0	0	0	0	0	0	7	69		0	0	0	0

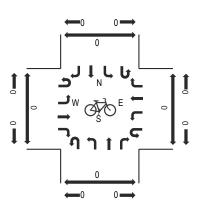
Peak Rolling Hour Flow Rates

		East	bound			West	oound			Northb	ound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lights	0	37	125	0	0	0	110	0	0	0	0	0	0	1	0	18	291
Mediums	0	1	3	0	0	0	4	0	0	0	0	0	0	0	0	0	8
Total	0	38	128	0	0	0	114	0	0	0	0	0	0	1	0	18	299

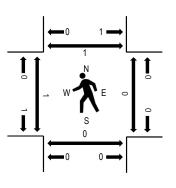
		Eastb	ound			Westb	ound			Northb	ound			South	oound		
	U-Turn	Left	Thru	Right	U-Turr	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Heavy Vehicle %		2.4	! %			3.5	%			0.0	%			0.0	%		2.7%
Heavy Vehicle %	0.0%	2.6%	2.3%	0.0%	0.0%	0.0%	3.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.7%
Peak Hour Factor		0.91				0.8	4			0.0	0			3.0	32		0.89
Peak Hour Factor	0.00	0.88	0.84	0.00	0.00	0.00	0.84	0.25	0.00	0.00	0.00	0.00	0.00	0.50	0.00	0.75	0.89



Location: 2 AUGUSTINE RD & HAGER RD PM


Date: Thursday, November 10, 2022 Peak Hour: 04:00 PM - 05:00 PM

Peak 15-Minutes: 04:00 PM - 04:15 PM


Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Peak Hour - Pedestrians

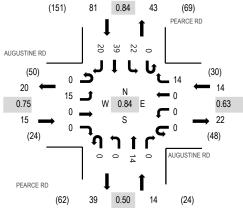
Note: Total study counts contained in parentheses.

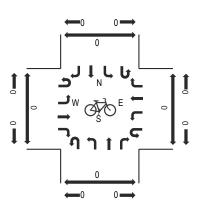
Traffic Counts - Motorized Vehicles

		HAGE	RRD			HAGE	RD		Αl	JGUST	INE RE)	Al	JGUS ⁷	TINE RI)						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestriar	Crossi	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
4:00 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	3	0	0	4	14	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	2	12	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	3	0	0	4	11	1	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	1	4	9	0	0	0	1
5:00 PM	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	2	8	0	1	0	1
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1		0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2		0	0	0	0
5:45 PM	0	0	0	0	0	0	0	2	0	0	0	0	0	1	0	0	3		0	0	0	0

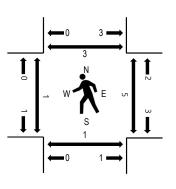
Peak Rolling Hour Flow Rates

		East	bound			West	oound			Northb	ound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lights	0	0	0	0	0	0	0	2	0	0	0	0	0	10	0	1	13
Mediums	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
Total	0	0	0	0	0	0	0	3	0	0	0	0	0	10	0	1	14


		Eastb	ound			Westb	ound			Northb	ound			South	oound		
	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Heavy Vehicle %		0.0)%			33.3	3%			0.0	%			0.0	%		7.1%
Heavy Vehicle %	0.0%	0.0% 0.0% 0.0% 0.0% 0.0%				0.0%	0.0%	33.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	7.1%
Peak Hour Factor		0.00				0.3	8			0.0	0			0.6	69		0.88
Peak Hour Factor	0.00	0.00 0.00 0.00 0.00				0.00	0.00	0.38	0.00	0.00	0.00	0.00	0.25	0.83	0.00	0.25	0.88


Location: 3 PEARCE RD & AUGUSTINE RD PM

Date: Thursday, November 10, 2022 Peak Hour: 04:15 PM - 05:15 PM **Peak 15-Minutes:** 04:15 PM - 04:30 PM


Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

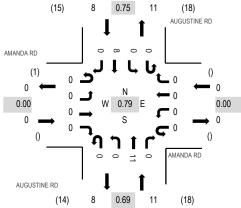
Traffic Counts - Motorized Vehicles

Interval	Al	JGUST Eastb	TINE Round	D		GUST Westb	INE RD ound			PEARC Northb				PEAR(South	CE RD bound			Rolling	Ped	lestriar	n Crossi	ngs
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru F	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
4:00 PM	0	2	0	0	0	1	0	2	0	0	0	1	0	4	3	8	21	112	0	0	0	0
4:15 PM	0	4	0	0	0	0	0	3	0	0	7	0	0	5	12	6	37	124	0	4	0	3
4:30 PM	0	4	0	0	0	0	0	4	0	0	1	0	0	6	6	6	27	117	1	0	0	0
4:45 PM	0	2	0	0	0	0	0	5	0	0	4	0	0	3	9	4	27	112	0	1	1	0
5:00 PM	0	5	0	0	0	0	0	2	0	0	2	0	0	8	12	4	33	117	0	0	0	0
5:15 PM	0	1	0	0	0	0	0	2	0	1	1	2	0	5	11	7	30		0	5	1	0
5:30 PM	0	2	0	1	0	1	0	4	0	0	1	0	0	6	2	5	22		0	4	1	1
5:45 PM	0	2	0	1	0	0	0	6	0	1	3	0	0	8	3	8	32		0	0	2	0

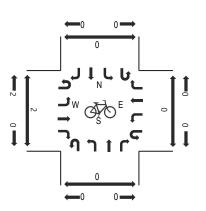
Peak Rolling Hour Flow Rates

		East	bound			West	oound			Northb	ound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lights	0	14	0	0	0	0	0	14	0	0	12	0	0	22	37	20	119
Mediums	0	1	0	0	0	0	0	0	0	0	2	0	0	0	2	0	5
Total	0	15	0	0	0	0	0	14	0	0	14	0	0	22	39	20	124

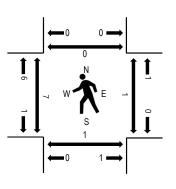
		Eastb	ound			Westb	ound			Northb	ound			South	oound		
	U-Turn	Left	Thru	Right	U-Turr	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Heavy Vehicle %		6.7	7%			0.0	%			14.3	3%			2.5	%		4.0%
Heavy Vehicle %	0.0%	6.7%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	14.3%	0.0%	0.0%	0.0%	5.1%	0.0%	4.0%
Peak Hour Factor		0.75				0.6	3			0.5	0			3.0	34		0.84
Peak Hour Factor	0.00	0.75	0.00	0.50	0.00	0.25	0.00	0.58	0.00	0.50	0.50	0.25	0.00	0.84	0.81	0.75	0.84


Location: 4 AUGUSTINE RD & AMANDA RD PM

Date: Thursday, November 10, 2022


Peak Hour: 04:45 PM - 05:45 PM

Peak 15-Minutes: 04:45 PM - 05:00 PM


Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

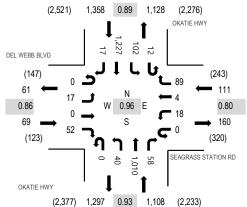
Traffic Counts - Motorized Vehicles

		AMANI	DA RD		Α	MAND	A RD		Αl	JGUST	INE RE)	Al	JGUS	ΓINE R	D						
Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	destria	n Crossi	ings
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru I	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
4:00 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	1	0	4	15	1	1	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	16	1	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2	0	3	18	1	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	4	0	0	0	2	0	6	19	1	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	3	0	5	18	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	1	0	4		4	1	1	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0	4		2	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	1	1	5		0	0	0	0

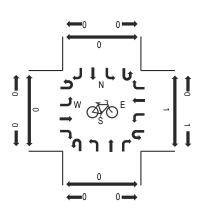
Peak Rolling Hour Flow Rates

		East	bound			West	oound			North	ound			South	bound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lights	0	0	0	0	0	0	0	0	0	0	10	0	0	0	8	0	18
Mediums	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
Total	0	0	0	0	0	0	0	0	0	0	11	0	0	0	8	0	19

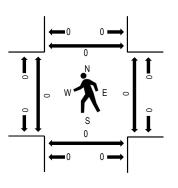
		Eastb	ound			Westb	ound			Northb	ound			South	oound		
	U-Turn	Left	Thru	Right	U-Turr	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Heavy Vehicle %		0.0)%			0.0	%			9.1	%			0.0	%		5.3%
Heavy Vehicle %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	9.1%	0.0%	0.0%	0.0%	0.0%	0.0%	5.3%
Peak Hour Factor		0.0	00			0.0	0			0.6	9			0.7	75		0.79
Peak Hour Factor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.69	0.00	0.00	0.00	0.75	0.25	0.79



Location: 5 OKATIE HWY & SEAGRASS STATION RD PM


Date: Thursday, November 10, 2022 Peak Hour: 04:45 PM - 05:45 PM

Peak 15-Minutes: 05:00 PM - 05:15 PM


Peak Hour - Motorized Vehicles

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

Traffic Counts - Motorized Vehicles

		DE	L WE	BB BLV	/D	SEAGR	ASS S	TATION	N RD	(OKATIE	HWY		(OKATII	E HWY							
	Interval		Eastb	ound			Westb	ound			Northb	ound			South	bound			Rolling	Ped	lestriar	n Cross	ings
	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total	Hour	West	East	South	North
_	4:00 PM	0	4	0	11	0	5	0	26	0	16	280	21	5	12	266	9	655	2,533	0	0	0	0
	4:15 PM	0	6	0	6	0	7	0	36	0	22	250	15	2	30	241	12	627	2,570	0	0	0	0
	4:30 PM	0	1	0	11	0	8	1	25	0	2	246	14	0	25	261	9	603	2,634	0	0	0	0
	4:45 PM	0	2	0	15	0	5	1	18	0	16	282	14	1	27	265	2	648	2,646	0	0	0	0
	5:00 PM	0	3	0	13	0	6	1	29	0	7	235	18	8	26	339	7	692	2,587	0	0	0	0
	5:15 PM	0	7	0	13	0	3	1	23	0	7	249	16	1	30	336	5	691		0	0	0	0
	5:30 PM	0	5	0	11	0	4	1	19	0	10	244	10	2	19	287	3	615		0	0	0	0
	5:45 PM	0	6	0	9	0	4	0	20	0	11	240	8	1	35	251	4	589		0	0	0	0

Peak Rolling Hour Flow Rates

		East	bound			West	oound			North	oound			Sout	hbound		
Vehicle Type	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Articulated Trucks	0	0	0	0	0	0	0	0	0	0	7	0	0	0	1	0	8
Lights	0	17	0	51	0	18	4	88	0	40	974	58	12	100	1,212	17	2,591
Mediums	0	0	0	1	0	0	0	1	0	0	29	0	0	2	14	0	47
Total	0	17	0	52	0	18	4	89	0	40	1,010	58	12	102	1,227	17	2,646

		Eastb	ound			Westb	ound			Northb	ound			South	oound		
	U-Turn	Left	Thru	Right	U-Turr	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Total
Heavy Vehicle %		1.4	! %			0.9	%			3.2	%			1.3	%		2.1%
Heavy Vehicle %	0.0%	0.0%	0.0%	1.9%	0.0%	0.0%	0.0%	1.1%	0.0%	0.0%	3.6%	0.0%	0.0%	2.0%	1.2%	0.0%	2.1%
Peak Hour Factor		0.0	36			0.8	0			0.9	3			3.0	39		0.96
Peak Hour Factor	0.00	0.75	0.00	0.87	0.00	0.81	1.00	0.75	0.00	0.64	0.94	0.76	0.38	0.79	0.90	0.67	0.96

Kimley»Horn

Attachment C – Traffic Volume Development Worksheet

Villag	e at Veride	r Parcel	X Trip Ge	eneration					
					AM Peak Ho	ur	F	PM Peak Ho	ur
Land Use	Intensity	Units	Daily	Total	In	Out	Total	In	Out
Office Land Uses			144	17	14	3	22	7	15
712 - Small Office Building	10.0	KSF	144	17	14	3	22	7	15
Retail Land Uses			2,512	159	81	78	194	97	97
890 - Furniture Store	18.0	KSF	140	5	4	1	10	5	5
945 - Convenience Store/Gas Station (2-8 Fueling Positions)	3.8	KSF	2,372	154	77	77	184	92	92
Subtotal			2,656	176	95	81	216	104	112
Internal Capture			60	4	2	2	4	2	2
ITE Pass-By			2,194	92	46	46	106	53	53
Adjacent Street Traffic			25,100	1,930			2,407		
10% Adjacent Street Traffic			2,510	194	97	97	242	121	121
Pass-By			2,194	92	46	46	106	53	53
Multimodal Reduction			0	0	0	0	0	0	0
Total Net New External Trips			402	80	47	33	106	49	57
Note: Trip generation was calculated using the following data:					•				•
Daily Traffic Generation									
Office Land Uses									
712 - Small Office Building			ITE 712	=	T = 14.39 (X); (50 % In	; 50 % Out)		
Retail Land Uses									
890 - Furniture Store			ITE 890	=	T = 5.17 * (X) + (46.56)	; (50 % In; 5	0 % Out)	
945 - Convenience Store/Gas Station (2-8 Fueling Positions)			ITE 945	=	T= 624.2 *	(X) (50 % In	n; 50 % Out)		
AM Peak-Hour Traffic Generation									
Office Land Uses									
712 - Small Office Building			ITE 712	=	T = 1.67 (X); (82 % In;	18 % Out)		
Retail Land Uses									
890 - Furniture Store			ITE 890	=	T = 0.24 * (X) + (0.94);	(71 % In; 29	% Out)	
945 - Convenience Store/Gas Station (2-8 Fueling Positions)			ITE 945	=	T= 40.59 *	(X) (50 % In	n; 50 % Out)		
PM Peak-Hour Traffic Generation									
Office Land Uses									
712 - Small Office Building			ITE 712	=	T = 2.16 (X); (34 % In:	68 % Out)		
Retail Land Uses					\	,	,		
890 - Furniture Store			ITE 890	=	LN (T) = 0.8	85 * LN (X) -	+ (-0.18); (47	′ % In; 53 %	Out)
945 - Convenience Store/Gas Station (2-8 Fueling Positions)			ITE 945	=			; 50 % Out)	, -	,

INTERSECTION TRAFFIC VOLUME DEVELOPMENT

INTERSECTION: COUNT DATE: AM PEAK HOUR FACTOR: PM PEAK HOUR FACTOR: Intersection 1 - Okatie Highway and Seagrass Station Road November 10, 2022 0.92 AM FUTURE PEAK HOUR FACTOR: 0.92 AM FUTURE PEAK HOUR FACTOR: 0.92 PM FUTURE PEAK HOUR FACTOR: 0.95 0.96

					AM	Peak	<u>Hour</u>										
AM 2022 EXISTIN	G TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBF
AM Adjusted Turning M	ovement Counts ¹	0	13	2	26	0	50	0	127	1	17	1,066	50	1	61	991	8
AM Volume B	alancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXISTIN	G TRAFFIC	0	13	2	26	0	50	0	127	1	17	1,066	50	1	61	991	8
AM Heavy Vehicle	Doraentage	2%	2%	2%	4%	2%	2%	20/	2%	2%	2%	2%	6%	2%	20/	6%	201
Aivi neavy verticle	rercentage	2%	2%	2%	4%	2%	2%	2%	2%	2%	2%	2%	6%	Z%	2%	6%	2%
AM 2027 NO-BUII		EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Annual Grow		6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.09
AM 2027 NO-BUILD TR	AFFIC GROWTH	0	4	1	9	0	17	0	43	0	6	361	17	0	21	335	3
AM 2027 NO-BUILD T	RAFFIC (No AD)	0	17	3	35	0	67	0	170	1	23	1,427	67	1	82	1,326	11
oproved Development 1: Ca	r Village											10					
proved Development 2: Am									-37			37	-6				
oproved Development 3: Ha									-29			29	-5				
OTAL AM APPROVED DE\	ELOPMENT TRAFFIC	0	0	0	0	0	0	0	-66	0	0	76	-11	0	0	0	0
AM 2027 NO-BUII	LD TRAFFIC	0	17	3	35	0	67	0	104	1	23	1,503	56	1	82	1,326	11
"SITE TRAFFIC DIS	TDUDUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Pass-By	Entering											-10%	10%		50%	-50%	
Distribution	Exiting						50%		20%								
Net New	Entering												10%		50%		
Distribution	Exiting						50%		20%			30%					
"AM PROJEC	r TDIDe"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Droject Trip	Pass - By						23		9			-5	5		23	-23	
Project Trip	Net New	0	0	0	0	0	17	0	6	0	0	10	5	0	23	0	0
AM TOTAL PROJ	ECT TRIPS	0	0	0	0	0	40	0	15	0	0	5	10	0	46	-23	0
AM 2027 BUILD-O	UT TRAFFIC	0	17	3	35	0	107	0	119	1	23	1.508	66	1	128	1,303	11

					PM	Peak	<u>Hour</u>										
PM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBF
PM Adjusted Turnin	ng Movement Counts ¹	0	17	0	52	0	18	4	89	0	40	1.010	58	12	102	1,227	17
PM Volum	ne Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM 2022 EXIS	STING TRAFFIC	0	17	0	52	0	18	4	89	0	40	1,010	58	12	102	1,227	17
PM Heavy Vel	hicle Percentage	2%	2%	2%	2%	2%	2%	2%	1%	2%	2%	4%	2%	2%	2%	1%	2%
PM 2027 NO-I	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBF
	Growth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
PM 2027 NO-BUILE	D TRAFFIC GROWTH	0	6	0	18	0	6	1	30	0	14	342	20	4	34	415	6
PM 2027 NO-BUIL	D TRAFFIC (No AD)	0	23	0	70	0	24	5	119	0	54	1,352	78	16	136	1,642	23
15	01/21	_															
pproved Development 1 pproved Development 2									-21			10 21	-17				
pproved Development 3									-15			15	-17				
	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	-36	0	0	46	-30	0	0	0	0
PM 2027 NO-1	BUILD TRAFFIC	0	23	0	70	0	24	5	83	0	54	1,398	48	16	136	1,642	23
PM 2027 NO-	BUILD TRAFFIC	0	23	0	70	0	24	5	83	0	54	1,398	48	16	136	1,642	23
"SITE TRAFFIC	DISTRUBUTION" TYPE	EBU	l EBL	EBT	EBR	l wbu	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBF
Pass-By	Entering											-10%	10%		50%	-50%	
Distribution	Exiting						50%		20%								
Net New	Entering												10%		50%		
Distribution	Exiting						50%		20%			30%					
"PM PPO	JECT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBF
Project Trip	Pass - By						27		11			-5	5		27	-27	
	Net New	0	0	0	0	0	29	0	11	0	0	17	5	0	24	0	0
PM TOTAL P	ROJECT TRIPS	0	0	0	0	0	56	0	22	0	0	12	10	0	51	-27	0
PM 2027 BUIL	D-OUT TRAFFIC	0	23	0	70	0	80	5	105	0	54	1,410	58	16	187	1,615	23
		_		-				-				.,				.,	

INTERSECTION TRAFFIC VOLUME DEVELOPMENT

Intersection 2 - Seagrass Station Road and Charles Cross Way
November 10, 2022
0.89 AM FUTURE PEAK HOUR FACTOR: 2020 INTERSECTION: COUNT DATE: AM PEAK HOUR FACTOR: PM PEAK HOUR FACTOR: AM FUTURE PEAK HOUR FACTOR: 0.90 PM FUTURE PEAK HOUR FACTOR: 0.90 0.89

					AM	Peak	Hour										
AM 2022 EXIST	NG TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turning	Movement Counts ¹	0	17	96	0	0	0	122	0	0	0	0	0	0	0	0	49
AM Volume	Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXIST	NG TRAFFIC	0	17	96	0	0	0	122	0	0	0	0	0	0	0	0	49
AIN LULE EXIOTI	NO TIVATIO	Ů		- 30				122			·						
AM Heavy Vehic	le Percentage	2%	2%	4%	2%	2%	2%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%
AM 2027 NO-BU	ILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual Gro	wth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
AM 2027 NO-BUILD T	RAFFIC GROWTH	0	6	32	0	0	0	41	0	0	0	0	0	0	0	0	17
AM 2027 NO-BUILD	TRAFFIC (No. AD)	0	23	128	0	0	0	163	0	0	0	0	0	_	0	0	66
AWI 2027 NO-BUILD	TRAFFIC (NO AD)	0	23	128	0	0	0	163	0	0	0	0	0	0	0	0	66
Approved Development 1: C	ar Village																
Approved Development 2: A				-6				-37									
Approved Development 3: H				-5				-29									
TOTAL AM APPROVED DE	VELOPMENT TRAFFIC	0	0	-11	0	0	0	-66	0	0	0	0	0	0	0	0	0
AM 2027 NO-BU	ILD TRAFFIC	0	23	117	0	0	0	97	0	0	0	0	0	0	0	0	66
"SITE TRAFFIC DI LAND USE	STRUBUTION" TYPE	EBU	l EBL	EBT	EBR	l wbu	I W/DI	WBT	WDD	NBU	NBL	NBT	NBR	SBU	l SBL	SBT	SBR
Pass-Bv	Entering	EBU	EBL	EDI	60%	WDU	WDL	WDI	WDK	NDU	NDL	NDI	NDK	360	SBL	301	JDK
Distribution	Exiting				60%						70%						
Net New	Entering				60%						1070						
Distribution	Exiting										70%						
										•				•	•		
"AM PROJEC																	
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By Net New	0	_		28						32						
AM TOTAL PRO		0	0	0	28 56	0	0	0	0	0	23 55	0	0	0	0	0	0
AWITOTALFRO	JULUI INIFO	U	U	U	36	U		0	- 0	U	99	- 0	- 0	U	. 0	U	
AM 2027 BUILD-	OUT TRAFFIC	0	23	117	56	0	0	97	0	0	55	0	0	0	0	0	66
		-					<u> </u>					_					

PM 2022 EXISTII PM Adjusted Turning N PM Volume E																	
PM Adjusted Turning N					PM	Peak	Hour										
PM Adjusted Turning N		EBU	LEDI	EBT		WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	Leni	SBT	SBR
, ,			EBL		EBR										SBL		
		0	38	128	0	0	0	114	0	0	0	0	0	0	0	0	18
FIVI VOIUITIE E	balancing	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
PM 2022 EXISTI	NG TRAFFIC	0	38	128	0	0	0	114	0	0	0	0	0	0	1	0	18
PM Heavy Vehicle	e Percentage	2%	3%	2%	2%	2%	2%	4%	2%	2%	2%	2%	2%	2%	2%	2%	2%
PM 2027 NO-BU	LD TRAFFIC	EBU	l EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBF
Annual Grov	vth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
PM 2027 NO-BUILD T	RAFFIC GROWTH	0	13	43	0	0	0	39	0	0	0	0	0	0	0	0	6
PM 2027 NO-BUILD	TRAFFIC (No AD)	0	51	171	0	0	0	153	0	0	0	0	0	0	1	0	24
Approved Development 1: Ca	ar Village																
approved Development 2: Ar				-17				-21									
approved Development 3: H				-13				-15									
OTAL PM APPROVED DE	VELOPMENT TRAFFIC	0	0	-30	0	0	0	-36	0	0	0	0	0	0	0	0	0
PM 2027 NO-BU	I D TRAFFIC	0	51	141	0	0	0	117	0	0	0	0	0	0	1	0	24
2021 110 20	25 11	Ů				ŭ	ŭ				ŭ						
PM 2027 NO-BU	LD TRAFFIC	0	51	141	0	0	0	117	0	0	0	0	0	0	1	0	24
"SITE TRAFFIC DIS	STRUBUTION" TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering				60%									1			
Distribution	Exiting										70%						
Net New	Entering				60%												
Distribution	Exiting										70%						
"PM PROJEC		EBII	LEDI	FDT		I WDII	I MOI	WDT	WDD	NDII	LNDI	NDT	NDD	CDII	CDI	CDT	cnn
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By Net New	0	0	0	32 29	0	0	0	0	0	37 40	0	0	0	0	0	0
PM TOTAL PRO		0	0	0	61	0	0	0	0	0	77	0	0	0	0	0	0
· TOTALTRO																	<u> </u>
	OUT TRAFFIC	0	51	141	61	0	0	117	0	0	77	0	0	0	1	0	24

INTERSECTION TRAFFIC VOLUME DEVELOPMENT

Intersection 3 - Augustine Road and Pearce Road
November 10, 2022
0.81 AM FUTURE PEAK HOUR FACTOR-INTERSECTION: COUNT DATE: AM PEAK HOUR FACTOR: PM PEAK HOUR FACTOR: AM FUTURE PEAK HOUR FACTOR: 0.90 PM FUTURE PEAK HOUR FACTOR: 0.90 0.84

AM 2022 EXISTIN AM Adjusted Turning M AM Volume B AM 2022 EXISTIN AM Heavy Vehicle AM 2027 NO-BUIL Annual Grow	Novement Counts alancing NG TRAFFIC Percentage	0 0 0	39 0	1 0	0 0	0 0	0 0	WBT 0 0	WBR 32 0	NBU	NBL	NBT	NBR 1	SBU 0	SBL 11	SBT 5	SBR
AM Volume B AM 2022 EXISTIN AM Heavy Vehicle AM 2027 NO-BUII	alancing NG TRAFFIC Percentage	0	0 39	0	0	0					0	21	1	0	11	5	
AM 2022 EXISTIN AM Heavy Vehicle AM 2027 NO-BUII	NG TRAFFIC Percentage	0	39				0	0									7
AM Heavy Vehicle	e Percentage			1	0	١ ،			0	0	0	0	0	0	0	0	0
AM 2027 NO-BUII	•	2%				U	0	0	32	0	0	21	1	0	11	5	7
	I D TDAEEIC		2%	2%	2%	2%	2%	2%	2%	2%	2%	10%	2%	2%	2%	40%	2%
Appual Grow		EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBI
		6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
AM 2027 NO-BUILD TF	RAFFIC GROWTH	0	13	0	0	0	0	0	11	0	0	7	0	0	4	2	2
AM 2027 NO-BUILD T	RAFFIC (No AD)	0	52	1	0	0	0	0	43	0	0	28	1	0	15	7	9
oproved Development 1: Ca	- Villaga		1						1								
oproved Development 2: An			-16	3	1	-		13	-13		8	-8			-3	-1	-2
proved Development 3: Ha			-12	2	1			10	-10		7	-7			-2	-1	-2
OTAL AM APPROVED DEV		0	-28	5	2	0	0	23	-23	0	15	-15	0	0	-5	-2	-4
AM 2027 NO-BUII	LD TRAFFIC	0	24	6	2	0	0	23	20	0	15	13	1	0	10	5	5
"SITE TRAFFIC DIS	TYPE	EBU	l EBL	EBT	FRR	WBU	l WBL	WRT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Pass-By	Entering				LDIX	11100	11152		WEI	NEC	IIDL		NDIX	000	UDL	051	
Distribution	Exiting																
Net New	Entering																
Distribution	Exiting																
"AM PROJEC"	T TRIPS"	EBU	l EBL	EBT	EBR	l wbu	l WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
	Pass - By					1											
Project Trip	Net New	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AM TOTAL PROJ	JECT TRIPS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2027 BUILD-O	OUT TRAFFIC	0	24	6	2	0	0	23	20	0	15	13	1	0	10	5	5

					<u>PM</u>	Peak	Hour										
PM 2022 EXIST	ING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBI
PM Adjusted Turning	Movement Counts ¹	0	15	0	0	0	0	0	14	0	0	14	0	0	22	39	20
PM Volume	Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM 2022 EXIST	ING TRAFFIC	0	15	0	0	0	0	0	14	0	0	14	0	0	22	39	20
PM Heavy Vehic	le Percentage	2%	7%	2%	2%	2%	2%	2%	2%	2%	2%	14%	2%	2%	2%	5%	29
PM 2027 NO-BU	IILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Annual Gro	wth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0
PM 2027 NO-BUILD 1	TRAFFIC GROWTH	0	5	0	0	0	0	0	5	0	0	5	0	0	7	13	7
PM 2027 NO-BUILD	TRAFFIC (No AD)	0	20	0	0	0	0	0	19	0	0	19	0	0	29	52	27
TIM EDET TO BOILD	THAITIO (NO AD)	Ů	20			Ü	Ü		13	Ū	Ü	13		Ü	23	- UZ	21
pproved Development 1: C																	
pproved Development 2: A			-7	5	8			7	-7		7	-7			-5	-8	-4
pproved Development 3: H			-5	4	6			5	-5		5	-5			-4	-6	-3
OTAL PM APPROVED DE	EVELOPMENT TRAFFIC	0	-12	9	14	0	0	12	-12	0	12	-12	0	0	-9	-14	-7
PM 2027 NO-BU	IILD TRAFFIC	0	8	9	14	0	0	12	7	0	12	7	0	0	20	38	20
PM 2027 NO-BU	IILD TRAFFIC	0	8	9	14	0	0	12	7	0	12	7	0	0	20	38	20
"SITE TRAFFIC DI LAND USE	ISTRUBUTION" TYPE	EBU	l EBL	EBT	EBR	l wbu	l w _B L	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Pass-By	Entering	LDU							W Cont	1150	NOL	1101	TTDIX	1	UDL	05.	
Distribution	Exiting																
Net New	Entering																
Distribution	Exiting																
"DM DDO IE	OT TRIBO!																
"PM PROJE(LAND USE	TYPE	EBU	EBL	EBT	EBR	l wbu	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
	Pass - By									1				1			
Project Trip	Net New	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PM TOTAL PRO	DJECT TRIPS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM 2027 BUILD-	OUT TRAFFIC	0	8	9	14	0	0	12	7	0	12	7	0	0	20	38	20
PIWI 2027 BUILD-	OUTTRAFFIC	U	ŏ	9	14	U	U	12	1	U	12	1	U	U	20	38	20

INTERSECTION TRAFFIC VOLUME DEVELOPMENT

Hager Access
Intersection 4 - Augustine Road and Amanda Road
November 10, 2022
0.43
AM FUTURE PEAK HOUR FACTOR INTERSECTION: COUNT DATE: AM PEAK HOUR FACTOR: PM PEAK HOUR FACTOR: AM FUTURE PEAK HOUR FACTOR: 0.90 PM FUTURE PEAK HOUR FACTOR: 0.90 0.79

					<u>AM</u>	Peak	<u>Hour</u>										
AM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBI
AM Adjusted Turnin	g Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	17	0	0	0	2	0
AM Volum	e Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXIS	STING TRAFFIC	0	0	0	0	0	0	0	0	0	0	17	0	0	0	2	0
AM Heavy Veh	nicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
AM 2027 NO-E	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
	rowth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.09
AM 2027 NO-BUILD	TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	6	0	0	0	1	0
AM 2027 NO-BUIL	D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	23	0	0	0	3	0
proved Development 1																	
pproved Development 2 pproved Development 3	: Amanda Redistribution		4		2						16	-16 -9				-2 15	21
	DEVELOPMENT TRAFFIC	0	4	0	2	0	0	0	0	0	16	-25	0	0	0	13	21
AM 2027 NO-E	BUILD TRAFFIC	0	4	0	2	0	0	0	0	0	16	-2	0	0	0	16	21
	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBK	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Pass-By Distribution	Entering Exiting		-		10%						10%						
Net New	Entering				10%												
Distribution	Exiting																
Diotribution		l .															
"AM PROJ	ECT TRIPS"																
	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
LAND USE					5						5	•				•	
	Pass - By																
Project Trip	Net New	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-
Project Trip	, ,	-	- 0	- 0		- 0	- 0	- 0	- 0	- 0	5	- 0	- 0	- 0	- 0	- 0	- 0
Project Trip AM TOTAL PI	Net New				-												

					PM	Peak	<u>Hour</u>										
PM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turnin	ig Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	11	0	0	0	8	0
PM Volum	e Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DM 2022 EVIC	STING TRAFFIC	0	0	0	0	0	0	0	0	0	0	11	0	0	0	8	0
PIVI 2022 EXIS	TING TRAFFIC	U	U	U	U	U	U	U	U	U	U	- 11	U	U	U	8	U
PM Heavy Veh	nicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	9%	2%	2%	2%	2%	2%
PM 2027 NO-F	BUILD TRAFFIC	EBU	l EBL	EBT	EBR	l wbu	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	rowth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
	TRAFFIC GROWTH	0	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	4	0.070	0.070	0.070	3	0
PM 2027 NO-BUIL	D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	15	0	0	0	11	0
pproved Development 1	: Car Village																
pproved Development 2			13		4						7	-7				-4	14
pproved Development 3												2				7	
OTAL PM APPROVED	DEVELOPMENT TRAFFIC	0	13	0	4	0	0	0	0	0	7	-5	0	0	0	3	14
PM 2027 NO-	BUILD TRAFFIC	0	13	0	4	0	0	0	0	0	7	10	0	0	0	14	14
					-												
PM 2027 NO-E	BUILD TRAFFIC	0	13	0	4	0	0	0	0	0	7	10	0	0	0	14	14
HOLTE TO A FELO	DIGTRUDUTION																
LAND USE	DISTRUBUTION" TYPE	EBU	EBL	EBT	EBR	l wbu	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering										10%						
Distribution	Exiting				10%												
Net New	Entering																
Distribution	Exiting																
	ECT TRIPS"	EDI:		FDT		Lum	LANDI	WD=	WDF	NDI:	LND	ND=	NDE	0011		0.0.T	05-
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By Net New	1	ļ		5					ļ	5			ļ			
	ROJECT TRIPS	- 0	- 0	- 0	- 5	- 0	-	- 0	0	- 0	-	-	- 0	-	- 0	-	- 0
FINITUTAL PI	RUJEUI IRIPS	1 0		0	5	0	0	0	U		5	0	0	0	0	0	0
PM 2027 BUIL	D-OUT TRAFFIC	0	13	0	9	0	0	0	0	0	12	10	0	0	0	14	14
. III ZOZI. DOIL				·	·		,	•	٠				·				

INTERSECTION TRAFFIC VOLUME DEVELOPMENT

Hager Access
Intersection 5 - Augustine Road and Hager Road
November 10, 2022
0.83 AM FUTURE PEAK HOUR FACTOR INTERSECTION: COUNT DATE: AM PEAK HOUR FACTOR: PM PEAK HOUR FACTOR: AM FUTURE PEAK HOUR FACTOR: 0.90 PM FUTURE PEAK HOUR FACTOR: 0.90 0.88

					AM	Peak	Hour										
AM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turnin	g Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0
AM Volum	e Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EVIS	TING TRAFFIC	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0
AW 2022 EXIC	TINO TRAITIO	U	U	- 0	- 0	U				U	U	- 0	- 0		, J		
AM Heavy Veh	nicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
AM 2027 NO-E	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual G	rowth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
AM 2027 NO-BUILD	TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0
AM 2027 NO BUIL	D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0
AW 2027 NO-BUIL	D TRAFFIC (NO AD)	0	0	0	0	0	0	0	0	0	0	0	0	0	/	0	- 0
Approved Development 1:	Car Village																
Approved Development 2:																	
Approved Development 3:	: Hager Redistribution DEVELOPMENT TRAFFIC	0	3	2				12	-12		_				-2		17
TOTAL AWI APPROVED	DEVELOPMENT TRAFFIC	U	3	2	0	0	0	12	-12	0	0	0	0	0	-2	0	17
AM 2027 NO-E	BUILD TRAFFIC	0	3	2	0	0	0	12	-12	0	0	0	0	0	5	0	17
"CITE TO AEEIC	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering		10%														
Distribution	Exiting																10%
Net New	Entering																
Distribution	Exiting																
"AM DDO I	ECT TRIPS"																
LAND USE	TYPE	EBU	l EBL	EBT	EBR	l wbu	l WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	I SBL	SBT	SBR
	Pass - By		5											<u> </u>			5
Project Trip	Net New	-	-			-	-	-		-	-			-	-	-	-
AM TOTAL PI	ROJECT TRIPS	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	5
-	D-OUT TRAFFIC	0	8	2	0	0	0	12	-12	0	0	0	0	0	5	0	22

					PM	Peak	<u>Hour</u>										
PM 2022 EXIST	ING TRAFFIC	EBU	l EBL	EBT	EBR	l wbu	l WBL	WBT	WBR	NBU	l nbl	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turning		0	0	0	0	0	0	0	3	0	0	0	0	0	10	0	14
PM Volume		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM 2022 EXIST	ING TRAFFIC	0	0	0	0	0	0	0	3	0	0	0	0	0	10	0	14
T III ZOZZ ZXIOT	INO TRAITIO	Ů													10		
PM Heavy Vehic	cle Percentage	2%	2%	2%	2%	2%	2%	2%	33%	2%	2%	2%	2%	2%	2%	2%	2%
PM 2027 NO-BL	JILD TRAFFIC	EBU	l EBL	EBT	EBR	l wbu	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual Gro		6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
PM 2027 NO-BUILD	TRAFFIC GROWTH	0	0	0	0	0	0	0	1	0	0	0	0	0	3	0	5
PM 2027 NO-BUILD	TRAFFIC (No. AD)	0	0	0	0	0	0	0	4	0	0	0	0	0	13	0	19
PIVI 2027 NO-BUILD	TRAFFIC (NO AD)	U	U	0	0	U	U	U	4	U	U	0	U	U	13	U	19
Approved Development 1: 0																	
Approved Development 2: A																	
Approved Development 3: F			10	3				5	-5								
TOTAL PM APPROVED DI	EVELOPMENT TRAFFIC	0	10	3	0	0	0	5	-5	0	0	0	0	0	0	0	0
PM 2027 NO-BL	JILD TRAFFIC	0	10	3	0	0	0	5	-1	0	0	0	0	0	13	0	19
PM 2027 NO-BL	JILD TRAFFIC	0	10	3	0	0	0	5	-1	0	0	0	0	0	13	0	19
"SITE TRAFFIC D		EDII	LEDI	гот	EDD	Lwou	l wo	WDT	WDD	NDII	LNDI	NDT	NDD	CDII	l cni	CDT	con
Pass-By	TYPE Entering	EBU	10%	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Distribution	Exiting		10%														10%
Net New	Entering																1070
Distribution	Exiting																
•	-																
"PM PROJE																	
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By Net New	-	5			_	-			_	_			-			5
PM TOTAL PRO		0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	5
PM 2027 BUILD-	OUT TRAFFIC	0	15	3	0	0	0	5	-1	0	0	0	0	0	13	0	24

INTERSECTION TRAFFIC VOLUME DEVELOPMENT

Hager Access
Intersection 6 - Okatie Highway and Hager Road
November 10, 2022
0.92
AM FUTURE INTERSECTION: COUNT DATE: AM PEAK HOUR FACTOR: PM PEAK HOUR FACTOR: AM FUTURE PEAK HOUR FACTOR: 0.92 PM FUTURE PEAK HOUR FACTOR: 0.95 0.96

					AM	Peak	Hour	•		•	•			•			
AM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turnir	ng Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	1,133	0	0	0	1,067	0
AM Volum	ne Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXIS	STING TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,133	0	0	0	1,067	0
AM Hoavy Vo	hicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	6%	2%
,	<u> </u>																
	BUILD TRAFFIC Frowth Rate	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBF
	D TRAFFIC GROWTH	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
AWI 2027 NO-BUILI	I I KAFFIC GROWIN	0	0	0	0	0	0	0	0	U	0	383	0	0	Ü	361	0
AM 2027 NO-BUIL	D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	1,516	0	0	0	1,428	0
pproved Development 1 pproved Development 2 pproved Development 3	: Amanda Redistribution								10			-5	10				
	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	39	0	0	-5 -5	15	0	0	0	0
011121111111111111111111111111111111111	22122012111	Ů	Ů							-	Ü						
AM 2027 NO-	BUILD TRAFFIC	0	0	0	0	1 0	0	0	39	0	0	1,511	15	1 0	0	1,428	0
"SITE TRAFFIC	DISTRUBUTION"							-									
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBF
Pass-By	Entering											-10%	10%				
Distribution Net New	Exiting Entering								10%			50%					
Distribution	Exiting											50%				50%	
	JECT TRIPS" TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By								5			-5	5				
	Net New	0	0	0	0	0	0	0	0	0	0	24	0	0	0	17	0
AM TOTAL P	ROJECT TRIPS	0	0	0	0	0	0	0	5	0	0	19	5	0	0	17	0
AWITOTALT		•															
	D-OUT TRAFFIC	0	0	0	0	0	0	0	44	0	0	1,530	20	0	0	1,445	0

					<u>PM</u>	Peak	<u>Hour</u>										
PM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turning	Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	1.108	0	0	0	1,297	0
PM Volume	Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM 2022 EXIS	TING TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,108	0	0	0	1,297	0
DM Haarii Vah	iala Danasatana	2%	001	00/	001	00/	001	001	001	001	001	00/	001	001	001	401	00/
PM Heavy Vehi	icie Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	3%	2%	2%	2%	1%	2%
PM 2027 NO-B	UILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBF
Annual Gr	owth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
PM 2027 NO-BUILD	TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	375	0	0	0	439	0
DM 0007 NO DUM	TRAFFIC (AL. AD)																
PM 2027 NO-BUILE) TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	1,483	0	0	0	1,736	0
Approved Development 1:	Car Village		1						10	1	1		10				
Approved Development 2:																	
Approved Development 3:	Hager Redistribution								15			-13	13				
TOTAL PM APPROVED D	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	25	0	0	-13	23	0	0	0	0
DM 0007 NO D	IIII D TDAFFIO																
PM 2027 NO-B	UILD TRAFFIC	0	0	0	0	0	0	0	25	0	0	1,470	23	0	0	1,736	0
PM 2027 NO-B	UILD TRAFFIC	0	0	0	0	0	0	0	25	0	0	1,470	23	0	0	1,736	0
																-	
"SITE TRAFFIC I	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering											-10%	10%				
Distribution	Exiting								10%								
Net New	Entering											50%					
Distribution	Exiting															50%	
"DM DDO IE	CT TDIDC"																
"PM PROJE LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	Pass - By	<u> </u>							5	1		-5	5				
Project Trip	Net New	0	0	0	0	0	0	0	0	0	0	25	0	0	0	29	0
PM TOTAL PR	OJECT TRIPS	0	0	0	0	0	0	0	5	0	0	20	5	0	0	29	0
PM 2027 BUILD	-OUT TRAFFIC	0	0	0	0	0	0	0	30	0	0	1,490	28	0	0	1,765	0

INTERSECTION TRAFFIC VOLUME DEVELOPMENT

Intersection 7 - Okatie Highway and Amanda Road November 10, 2022 0.92 AM FITTING TO DO DE INTERSECTION: COUNT DATE: AM PEAK HOUR FACTOR: PM PEAK HOUR FACTOR: AM FUTURE PEAK HOUR FACTOR: 0.92 PM FUTURE PEAK HOUR FACTOR: 0.95 0.96

					<u>AM</u>	Peak	<u>Hour</u>										
AM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
AM Adjusted Turnin	g Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	1,133	0	0	0	1,067	0
AM Volum	e Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXIS	TING TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,133	0	0	0	1,067	0
AM Heavy Veh	icle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	6%	29
AM 2027 NO-E	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Annual G	rowth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0
AM 2027 NO-BUILD	TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	383	0	0	0	361	0
AM 2027 NO-BUIL	D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	1,516	0	0	0	1,428	0
proved Development 1:												10					
oproved Development 2: oproved Development 3:									37			-6 24	6				
	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	37	0	0	28	6	0	0	0	0
AM 2027 NO-E	BUILD TRAFFIC	0	0	0	0	0	0	0	37	0	0	1,544	6	0	0	1,428	0
"SITE TRAFFIC	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Pass-By	Entering											-30%	30%				
Distribution	Exiting								20%								
Net New	Entering											10%	40%				
Distribution	Exiting								30%							50%	
"AM PROJ	ECT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Project Trip	Pass - By								9			-14	14				
	Net New	0	0	0	0	0	0	0	10	0	0	5	19	0	0	17	0
AM TOTAL P	ROJECT TRIPS	0	0	0	0	0	0	0	19	0	0	-9	33	0	0	17	0
AM 2027 PUIL	D-OUT TRAFFIC	0	0	0	0	0	0	0	56	0	0	1.535	39	0	0	1.445	0

					PM	Peak	<u>Hour</u>										
PM 2022 EXISTIN	G TRAFFIC	EBU	l EBL	EBT	EBR	l wbu	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBF
PM Adjusted Turning Mo	ovement Counts ¹	0	0	0	0	0	0	0	0	0	0	1.108	0	0	0	1,297	0
PM Volume Ba	alancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM 2022 EXISTIN	G TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,108	0	0	0	1,297	0
PM Heavy Vehicle	Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	3%	2%	2%	2%	1%	2%
PM 2027 NO-BUIL	.D TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBF
Annual Growt	h Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
PM 2027 NO-BUILD TR	AFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	375	0	0	0	439	0
PM 2027 NO-BUILD TE	RAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	1,483	0	0	0	1,736	0
2021 110 20125 11		Ů	Ů			Ů	·			·		1,100		Ů	·	1,700	
pproved Development 1: Car												10					
pproved Development 2: Am									21			-17	17				
pproved Development 3: Hag												2					
OTAL PM APPROVED DEV	ELOPMENT TRAFFIC	0	0	0	0	0	0	0	21	0	0	-5	17	0	0	0	0
PM 2027 NO-BUIL	D TRAFFIC	0	0	0	0	0	0	0	21	0	0	1,478	17	0	0	1,736	0
PM 2027 NO-BUIL	.D TRAFFIC	0	0	0	0	0	0	0	21	0	0	1,478	17	0	0	1,736	0
			•			•					•			•			
"SITE TRAFFIC DIS"	TRUBUTION" TYPE	EBU	l EBL	EBT	EBR	l wbu	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering	TEBU	EBL	EDI	EBR	WBU	WDL	WDI	WDK	NBU	NDL	-30%	30%	360	SBL	361	SDN
Distribution	Exiting								20%			-30 /8	30 /8				
Net New	Entering								2070			10%	40%				
Distribution	Exiting								30%			1070	4070			50%	
J																	
"PM PROJECT																	
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBF
Project Trip	Pass - By Net New	0	0	0	0	0	0	0	11 17	0	0	-16 5	16 20	0	0	29	0
PM TOTAL PROJ		0	0	0	0	0	0	0	28	0	0	-11	36	0	0	29	0
PM 2027 BUILD-OI	UT TRAFFIC	0	0	0	0	0	0	0	49	0	0	1,467	53	0	0	1,765	0

INTERSECTION TRAFFIC VOLUME DEVELOPMENT

Intersection 8 - Amanda Road and 7C Access Driveway
November 10, 2022
0.89 AM FUTURE PEAK HOUR FACTOR: 0.00 INTERSECTION: COUNT DATE: AM PEAK HOUR FACTOR: PM PEAK HOUR FACTOR: AM FUTURE PEAK HOUR FACTOR: 0.90 PM FUTURE PEAK HOUR FACTOR: 0.90 0.89

					<u>AM</u>	Peak	<u>Hour</u>										
AM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
AM Adjusted Turnir	ng Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM Volum	ne Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXIS	STING TRAFFIC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM Heavy Vel	hicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	29
AM 2027 NO-	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
	Frowth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.09
AM 2027 NO-BUILI	TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2027 NO-BUIL	.D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
oproved Development 1	· Car Villago	1	1			1	1							1			
	: Amanda Redistribution			6				37									
proved Development 3																	
OTAL AM APPROVED	DEVELOPMENT TRAFFIC	0	0	6	0	0	0	37	0	0	0	0	0	0	0	0	0
AM 2027 NO-	BUILD TRAFFIC	0	0	6	0	0	0	37	0	0	0	0	0	0	0	0	0
	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Pass-By	Entering		30%						10%								
	*														10%		20
Distribution	Exiting														1070		
Net New	Entering		40%												1070		
	· ·		40%												1070		
Net New Distribution	Entering Exiting		40%												1070		
Net New Distribution	Entering	EBU	40% EBL	ЕВТ	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	30
Net New Distribution "AM PROJ LAND USE	Entering Exiting	EBU	1370	ЕВТ	EBR	WBU	WBL	WBT	WBR 5	NBU	NBL	NBT	NBR	SBU		SBT	30°
Net New Distribution	Entering Exiting EXITYPE	EBU 0	EBL	EBT	EBR 0	WBU	WBL	WBT		NBU 0	NBL 0	NBT	NBR 0	SBU 0	SBL	SBT 0	30 SB
Net New Distribution "AM PROJ LAND USE Project Trip	Entering Exiting ECT TRIPS" TYPE Pass - By		EBL						5						SBL 5		30 SB 9
Net New Distribution "AM PROL LAND USE Project Trip AM TOTAL P	Entering Exiting BECT TRIPS" TYPE Pass - By Net New	0	EBL 14 19	0	0	0	0	0	5	0	0	0	0	0	SBL 5 0	0	30°

					РМ	Peak	Hour										
PM 2022 EXIST		EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turning		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM Volume	Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM 2022 EXIST	ING TRAFFIC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM Heavy Vehic	cle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
PM 2027 NO-BU	JILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBF
Annual Gro		6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
PM 2027 NO-BUILD	TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DM 2027 NO BUILD	TRAFFIC (No. AD)	0		_	^		0	0	0		0	0	_		0	^	_
PM 2027 NO-BUILD	TRAFFIC (NO AD)	U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Approved Development 1: 0																	
Approved Development 2: Approv				17				21									
Approved Development 3: I		<u> </u>															
TOTAL PM APPROVED D	EVELOPMENT TRAFFIC	0	0	17	0	0	0	21	0	0	0	0	0	0	0	0	0
PM 2027 NO-BU	JILD TRAFFIC	0	0	17	0	0	0	21	0	0	0	0	0	0	0	0	0
PM 2027 NO-BI	JILD TRAFFIC	0	0	17	0	0	0	21	0	0	0	0	0	0	0	0	0
"SITE TRAFFIC D	NETDI IDI ITIONI"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering		30%						10%								
Distribution	Exiting														10%		20%
Net New	Entering		40%														
Distribution	Exiting																30%
"DM DDO IE	OT TRIBOU																
"PM PROJE LAND USE	CT TRIPS" TYPE	EBU	l EBL	EBT	EBR	l wbu	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	Pass - Bv	T	16			50			5					1	5		11
Project Trip	Net New	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	17
PM TOTAL PRO	OJECT TRIPS	0	36	0	0	0	0	0	5	0	0	0	0	0	5	0	28
PM 2027 BUILD	-OUT TRAFFIC	0	36	17	0	0	0	21	5	0	0	0	0	0	5	0	28

INTERSECTION TRAFFIC VOLUME DEVELOPMENT

No Hager Access
Intersection 1 - Okatie Highway and Seagrass Station Road
November 10, 2022
0.96
PM FUTURE 5.5. INTERSECTION: COUNT DATE: PM PEAK HOUR FACTOR:

		-			AM	Peak	<u>Hour</u>							-		-	
AM 2022 EXISTI	NG TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turning I	Movement Counts ¹	0	13	2	26	0	50	0	127	1	17	1,066	50	1	61	991	8
AM Volume I	Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXISTI	NO TRAFFIC																
AW 2022 EXIST	NG TRAFFIC	0	13	2	26	0	50	0	127	1	17	1,066	50	1	61	991	8
AM Heavy Vehicl	e Percentage	2%	2%	2%	4%	2%	2%	2%	2%	2%	2%	2%	6%	2%	2%	6%	2%
AM 2027 NO-BU	ILD TRAFFIC	EBU	EBL	EBT	EBR	l wbu	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual Grov	vth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
AM 2027 NO-BUILD T	RAFFIC GROWTH	0	4	1	9	0	17	0	43	0	6	361	17	0	21	335	3
AM 2027 NO-BUILD	TRAFFIC (No AD)	0	17	3	35	0	67	0	170	1	23	1,427	67	1	82	1,326	11
pproved Development 1: Ca	r Village											10					
pproved Development 2: An									-37			37	-6				
pproved Development 3: Ha									-29			29	-5				
TOTAL AM APPROVED DE	VELOPMENT TRAFFIC	0	0	0	0	0	0	0	-66	0	0	76	-11	0	0	0	0
AM 2027 NO-BU	ILD TRAFFIC	0	17	3	35	0	67	0	104	1	23	1,503	56	1	82	1,326	11
			•			•				•				•			
"SITE TRAFFIC DI																	
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By Distribution	Entering Exiting						F00/		200/			-10%	10%		50%	-50%	
Net New	Entering						50%		20%				10%		50%		
Distribution	Exiting						50%		20%			30%	10 /6		30 /6		
Distribution	Lating	l					3070		2070	l		3070		l			
"AM PROJEC	T TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBF
Project Trip	Pass - By						23		9			-5	5		23	-23	
, ,	Net New	0	0	0	0	0	17	0	6	0	0	10	5	0	23	0	0
AM TOTAL PRO	JECT TRIPS	0	0	0	0	0	40	0	15	0	0	5	10	0	46	-23	0
AM 2027 BUILD-0	OUT TRAFFIC	0	17	3	35	0	107	0	119	1	23	1.508	66	1	128	1.303	11
				•				•								.,000	

					PM	Peak	<u>Hour</u>										
PM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
PM Adjusted Turnir	ng Movement Counts ¹	0	17	0	52	0	18	4	89	0	40	1,010	58	12	102	1,227	1
PM Volum	ne Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
PM 2022 EXIS	STING TRAFFIC	0	17	0	52	0	18	4	89	0	40	1,010	58	12	102	1,227	1
PM Heavy Ve	hicle Percentage	2%	2%	2%	2%	2%	2%	2%	1%	2%	2%	4%	2%	2%	2%	1%	2
·	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	S
	Growth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.
	D TRAFFIC GROWTH	0	6	0	18	0	6	1	30	0	14	342	20	4	34	415	
PM 2027 NO-BUIL	_D TRAFFIC (No AD)	0	23	0	70	0	24	5	119	0	54	1,352	78	16	136	1,642	:
proved Development 1:									0.1			10					
proved Development 2: proved Development 3:	Amanda Redistribution								-21 -15			21 15	-17 -13				
		_		0	0							10					
OTAL PM APPROVED	DEVELOPMENT TRAFFIC	0	0	0	U	0	0	0	-36	0	0	46	-30	0	0	0	
	BUILD TRAFFIC C DISTRUBUTION"	0	23	0	70	0	24	5	-36 83	0	0 54	1,398	-30 48	16	136	1,642	
PM 2027 NO- "SITE TRAFFIC LAND USE	BUILD TRAFFIC																;
PM 2027 NO-I "SITE TRAFFIC LAND USE Pass-By	BUILD TRAFFIC DISTRUBUTION" TYPE Entering	0	23	0	70	0	24	5	83	0	54	1,398	48	16	136	1,642	3
PM 2027 NO- "SITE TRAFFIC LAND USE Pass-By Distribution	BUILD TRAFFIC C DISTRUBUTION" TYPE Entering Exiting	0	23	0	70	0	24	5	83	0	54	1,398 NBT	48 NBR 10%	16	136 SBL 50%	1,642 SBT	;
"SITE TRAFFIC LAND USE Pass-By Distribution Net New	BUILD TRAFFIC C DISTRUBUTION" TYPE Entering Exiting Entering	0	23	0	70	0	24 WBL 50%	5	83 WBR	0	54	1,398 NBT -10%	48 NBR	16	136	1,642 SBT	;
PM 2027 NO- "SITE TRAFFIC LAND USE Pass-By Distribution	BUILD TRAFFIC C DISTRUBUTION" TYPE Entering Exiting	0	23	0	70	0	24 WBL	5	83 WBR	0	54	1,398 NBT	48 NBR 10%	16	136 SBL 50%	1,642 SBT	
"SITE TRAFFIC LAND USE Pass-By Distribution Net New Distribution	BUILD TRAFFIC C DISTRUBUTION" TYPE Entering Exiting Entering	0	23	0	70	0	24 WBL 50%	5	83 WBR	0	54	1,398 NBT -10%	48 NBR 10%	16	136 SBL 50%	1,642 SBT	3
"SITE TRAFFIC LAND USE Pass-By Distribution Net New Distribution	BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting Entering Exiting	0	23	0	70	0	24 WBL 50%	5	83 WBR	0	54	1,398 NBT -10%	48 NBR 10%	16	136 SBL 50%	1,642 SBT	S
"SITE TRAFFIC LAND USE Pass-By Distribution Net New Distribution	BUILD TRAFFIC C DISTRUBUTION" TYPE Entering Exiting Entering Exiting UECT TRIPS" TYPE Pass - By	EBU	EBL	EBT	EBR	WBU	24 WBL 50% 50% WBL 27	S WBT	83 WBR 20% 20% WBR	NBU NBU	NBL NBL	1,398 NBT -10% 30% NBT -5	10% 10% NBR 5	SBU SBU	136 SBL 50% 50% SBL 27	1,642 SBT -50% SBT -27	s
"SITE TRAFFIC LAND USE Pass-By Distribution Net New Distribution "PM PROJ LAND USE Project Trip	BUILD TRAFFIC C DISTRUBUTION" TYPE Entering Exiting Entering Exiting Use Training Exiting Exiting Type	EBU	23 EBL	0 EBT	70 EBR	WBU	24 WBL 50% 50%	5 WBT	83 WBR 20% 20% WBR	NBU	NBL	1,398 NBT -10% 30%	10% NBR	SBU	136 SBL 50% 50% SBL	1,642 SBT -50%	SI

INTERSECTION TRAFFIC VOLUME DEVELOPMENT

No Hager Access
Intersection 2 - Seagrass Station Road and Charles Cross Way
November 10, 2022
0.89
PM FITTURE DEVICE DEVELOPMENT INTERSECTION: COUNT DATE: PM PEAK HOUR FACTOR:

					AM	Peak	<u>Hour</u>										
AM 2022 EXIST	ING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turning	Movement Counts ¹	0	17	96	0	0	0	122	0	0	0	0	0	0	0	0	49
AM Volume	Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXIST	INO TO A FEIG																
AW 2022 EXIST	ING TRAFFIC	0	17	96	0	0	0	122	0	0	0	0	0	0	0	0	49
AM Heavy Vehi	cle Percentage	2%	2%	4%	2%	2%	2%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%
AM 2027 NO-BI	JILD TRAFFIC	EBU	l ebl	EBT	EBR	l wbu	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual Gro	owth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
AM 2027 NO-BUILD	TRAFFIC GROWTH	0	6	32	0	0	0	41	0	0	0	0	0	0	0	0	17
AM 2027 NO-BUILD	TRAFFIC (No AD)	0	23	128	0	0	0	163	0	0	0	0	0	0	0	0	66
Approved Development 1: C	ar Village																
Approved Development 2: A				-6				-37									
Approved Development 3: H				-5				-29									
TOTAL AM APPROVED D	EVELOPMENT TRAFFIC	0	0	-11	0	0	0	-66	0	0	0	0	0	0	0	0	0
AM 2027 NO-BI	JILD TRAFFIC	0	23	117	0	0	0	97	0	0	0	0	0	0	0	0	66
"SITE TRAFFIC D	ISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering				60%												
Distribution	Exiting										70%						
Net New Distribution	Entering				60%						700/						
Distribution	Exiting					l .				l .	70%			l .			
"AM PROJE	CT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
5	Pass - By				28						32						
Project Trip	Net New	0	0	0	28	0	0	0	0	0	23	0	0	0	0	0	0
AM TOTAL PR	OJECT TRIPS	0	0	0	56	0	0	0	0	0	55	0	0	0	0	0	0
	OUT TRAFFIC					_											
AM 2027 BUILD		0	23	117	56	0	0	97	0	0	55	0	0	0	0	0	66

				<u>PM</u>	Peak	<u>Hour</u>										
PM 2022 EXISTING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBF
PM Adjusted Turning Movement Counts ¹	0	38	128	0	0	0	114	0	0	0	0	0	0	1	0	18
PM Volume Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM 2022 EXISTING TRAFFIC	0	38	128	0	0	0	114	0	0	0	0	0	0	1	0	18
PM Heavy Vehicle Percentage	2%	3%	2%	2%	2%	2%	4%	2%	2%	2%	2%	2%	2%	2%	2%	29
PM 2027 NO-BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Annual Growth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0
PM 2027 NO-BUILD TRAFFIC GROWTH	0	13	43	0	0	0	39	0	0	0	0	0	0	0	0	6
PM 2027 NO-BUILD TRAFFIC (No AD)	0	51	171	0	0	0	153	0	0	0	0	0	0	1	0	24
= =	-															
pproved Development 1: Car Village																
pproved Development 2: Amanda Redistribution			-17				-21									
pproved Development 3: Hager Redistribution			-13				-15									
TOTAL PM APPROVED DEVELOPMENT TRAFFIC	0	0	-30	0	0	0	-36	0	0	0	0	0	0	0	0	0
PM 2027 NO-BUILD TRAFFIC	0	51	141	0	0	0	117	0	0	0	0	0	0	1	0	24
"SITE TRAFFIC DISTRUBUTION"																
LAND USE TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Pass-By Entering				60%												
Distribution Exiting										70%						
Net New Entering				60%												
Distribution Exiting						l			l	70%						
"PM PROJECT TRIPS"																
LAND USE TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Pass - Rv	T			32						37						
Project Trip Net New	0	0	0	29	0	0	0	0	0	40	0	0	0	0	0	0
PM TOTAL PROJECT TRIPS	0	0	0	61	0	0	0	0	0	77	0	0	0	0	0	0
PM 2027 BUILD-OUT TRAFFIC	0	51	141	61	0	0	117	0	0	77	0	0	0	1	0	2

INTERSECTION TRAFFIC VOLUME DEVELOPMENT

No Hager Access

INTERSECTION: COUNT DATE: PM PEAK HOUR FACTOR: Intersection 3 - Augustine Road and Pearce Road November 10, 2022 0.84 PM FUTURE PEAK HOUR FACTOR:

PM FUTURE PEAK HOUR FACTOR: 0.90

					AM	Peak	<u>Hour</u>										
AM 2022 EXISTIN	G TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turning M	ovement Counts ¹	0	39	1	0	0	0	0	32	0	0	21	1	0	11	5	7
AM Volume Ba	alancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXISTIN	O TRAFFIO		T														
AWI 2022 EXISTIN	G TRAFFIC	0	39	1	0	0	0	0	32	0	0	21	1	0	11	5	7
AM Heavy Vehicle	Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	10%	2%	2%	2%	40%	2%
AM 2027 NO-BUIL	D TRAFFIC	EBU	EBL	EBT	EBR	l wbu	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual Grow	th Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
AM 2027 NO-BUILD TR	AFFIC GROWTH	0	13	0	0	0	0	0	11	0	0	7	0	0	4	2	2
AM 2027 NO-BUILD T	RAFFIC (No AD)	0	52	1	0	0	0	0	43	0	0	28	1	0	15	7	9
Approved Development 1: Car	Village																
Approved Development 2: Ama			-16	3	1			13	-13		8	-8			-3	-1	-2
Approved Development 3: Hag			-12	2	1			10	-10		7	-7			-2	-1	-2
TOTAL AM APPROVED DEV	ELOPMENT TRAFFIC	0	-28	5	2	0	0	23	-23	0	15	-15	0	0	-5	-2	-4
AM 2027 NO-BUIL	.D TRAFFIC	0	24	6	2	0	0	23	20	0	15	13	1	0	10	5	5
"SITE TRAFFIC DIS	TPUBLITION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering																
Distribution	Exiting																
Net New	Entering																
Distribution	Exiting																
"AM PROJECT	r TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Desired Trip	Pass - By																
Project Trip	Net New		•		-	•		•	-		-	•		-		-	-
AM TOTAL PROJ	ECT TRIPS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2027 BUILD-O	UT TRAFFIC	0	24	6	2	0	0	23	20	0	15	13	1	0	10	5	5
		_	L	-						1							

					<u>PM</u>	Peak	<u>Hour</u>										
PM 2022 EXISTIN	G TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBI
PM Adjusted Turning M	ovement Counts ¹	0	15	0	0	0	0	0	14	0	0	14	0	0	22	39	20
PM Volume B	alancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM 2022 EXISTIN	G TRAFFIC	0	15	0	0	0	0	0	14	0	0	14	0	0	22	39	20
		1	1														
PM Heavy Vehicle	Percentage	2%	7%	2%	2%	2%	2%	2%	2%	2%	2%	14%	2%	2%	2%	5%	29
PM 2027 NO-BUIL	D TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Annual Grow		6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0
PM 2027 NO-BUILD TR	AFFIC GROWTH	0	5	0	0	0	0	0	5	0	0	5	0	0	7	13	7
PM 2027 NO-BUILD T	RAFFIC (No AD)	0	20	0	0	0	0	0	19	0	0	19	0	0	29	52	2
pproved Development 1: Car	Village	1															
pproved Development 2: Ama			-7	5	8			7	-7		7	-7			-5	-8	-4
pproved Development 3: Hag			-5	4	6			5	-5		5	-5			-4	-6	-3
TOTAL PM APPROVED DEV	ELOPMENT TRAFFIC	0	-12	9	14	0	0	12	-12	0	12	-12	0	0	-9	-14	-7
PM 2027 NO-BUIL	D TRAFFIC	0	8	9	14	0	0	12	7	0	12	7	0	0	20	38	2
"OITE TO 4 EE 10 DIG	TRUBUTION"																
"SITE TRAFFIC DIS	IKUBUTION																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
		EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Pass-By Distribution	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
Pass-By	TYPE Entering Exiting Entering	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
Pass-By Distribution	TYPE Entering Exiting	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
Pass-By Distribution Net New Distribution	Entering Exiting Entering Exiting Exiting	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
Pass-By Distribution Net New	Entering Exiting Entering Exiting Exiting	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
Pass-By Distribution Net New Distribution "PM PROJECT	TYPE Entering Exiting Entering Exiting Exiting F TRIPS" TYPE Pass - By																SE
Pass-By Distribution Net New Distribution "PM PROJECT LAND USE	TYPE Entering Exiting Entering Exiting Exiting TTRIPS" TYPE Pass - By Net New	EBU	EBL	EBT	EBR	WBU	WBL		WBR	NBU	NBL	NBT	NBR	SBU	SBL		
Pass-By Distribution Net New Distribution "PM PROJEC" LAND USE Project Trip	TYPE Entering Exiting Entering Exiting Exiting TTRIPS" TYPE Pass - By Net New	EBU	EBL	EBT .	EBR -	WBU	WBL -	WBT -	WBR	NBU -	NBL -	NBT -	NBR -	SBU	SBL -	SBT -	S

					<u>AM</u>	Peak	<u>Hour</u>										
AM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
AM Adjusted Turnin	g Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	17	0	0	0	2	C
AM Volum	e Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
AM 2022 EXIS	TING TRAFFIC	0	0	0	0	0	0	0	0	0	0	17	0	0	0	2	(
AM Heavy Veh	icle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2
	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SI
	rowth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0
AM 2027 NO-BUILD	TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	6	0	0	0	1	- 1
AM 2027 NO-BUIL	D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	23	0	0	0	3	
proved Development 1:	Cor Villago					1	ı			ı				ı			
	Amanda Redistribution		4		2						16	-16				-2	2
proved Development 3:			3		2						12	-10				-2	
	DEVELOPMENT TRAFFIC	0	7	0	4	0	0	0	0	0	28	-28	0	0	0	-4	3
AM 2027 NO-E	BUILD TRAFFIC	0	7	0	4	0	0	0	0	0	28	0	0	0	0	0	-
	DISTRUBUTION"										_				_		
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	S
Pass-By	Entering																
Distribution Net New	Exiting																
Distribution	Entering Exiting		ļ														
			1														
	ECT TRIPS" TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	s
	Pass - Bv	EBU	EBL	EDI	EBK	WBU	WDL	WDI	WDK	NBU	NDL	NDI	NDK	360	JDL	361	3
LAND USE			1			1											
Project Trip	Net New	_	-	_	-	-	-	-	-	-	-	-	-	-	-	-	
Project Trip		- 0	- 0	- 0	- 0	- 0	0	0	0	0	0	0	0	0	0	0	

				<u>PM</u>	Peak	<u>Hour</u>										
PM 2022 EXISTING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBF
PM Adjusted Turning Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	11	0	0	0	8	0
PM Volume Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM 2022 EXISTING TRAFFIC	0	0	0	0	0	0	0	0	0	0	11	0	0	0	8	0
PM Heavy Vehicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	9%	2%	2%	2%	2%	29
PM 2027 NO-BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Annual Growth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0
PM 2027 NO-BUILD TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	4	0	0	0	3	0
PM 2027 NO-BUILD TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	15	0	0	0	11	0
proved Development 1: Car Village		1				I							l			
proved Development 2: Amanda Redistribution proved Development 3: Hager Redistribution		13 10		4 3						7 5	-7 -5				-4 -3	10
proved Development 2: Amanda Redistribution proved Development 3: Hager Redistribution DTAL PM APPROVED DEVELOPMENT TRAFFIC	0		0		0	0	0	0	0			0	0	0		10
proved Development 1: Car Village proved Development 2: Amanda Redistribution proved Development 3: Hager Redistribution OTAL PM APPROVED DEVELOPMENT TRAFFIC PM 2027 NO-BUILD TRAFFIC	0	10	0	3	0	0	0	0	0	5	-5	0	0	0	-3	1(24
proved Development 2: Amanda Redistribution proved Development 3: Hager Redistribution DTAL PM APPROVED DEVELOPMENT TRAFFIC PM 2027 NO-BUILD TRAFFIC		10 23		3 7						5 12	-5 -12			_	-3 -7	1(24
proved Development 2: Amanda Redistribution proved Development 3: Hager Redistribution DTAL PM APPROVED DEVELOPMENT TRAFFIC		10 23		3 7	0	0				5 12	-5 -12			_	-3 -7	24
proved Development 2: Amanda Redistribution proved Development 3: Hager Redistribution DTAL PM APPROVED DEVELOPMENT TRAFFIC PM 2027 NO-BUILD TRAFFIC "SITE TRAFFIC DISTRUBUTION"	0	10 23 23	0	3 7 7	0	0	0	0	0	5 12 12	-5 -12 3	0	0	0	-3 -7 4	24
proved Development 2: Amanda Redistribution proved Development 3: Hager Redistribution DTAL PM APPROVED DEVELOPMENT TRAFFIC PM 2027 NO-BUILD TRAFFIC "SITE TRAFFIC DISTRUBUTION" LAND USE TYPE	0	10 23 23	0	3 7 7	0	0	0	0	0	5 12 12	-5 -12 3	0	0	0	-3 -7 4	24
proved Development 2: Amanda Redistribution proved Development 3: Hager Redistribution DTAL PM APPROVED DEVELOPMENT TRAFFIC PM 2027 NO-BUILD TRAFFIC "SITE TRAFFIC DISTRUBUTION" LAND USE TYPE Pass-By Entering Distribution Exiting Net New Entering	0	10 23 23	0	3 7 7	0	0	0	0	0	5 12 12	-5 -12 3	0	0	0	-3 -7 4	14 10 24 24 SB
proved Development 2: Amanda Redistribution proved Development 3: Hager Redistribution DTAL PM APPROVED DEVELOPMENT TRAFFIC PM 2027 NO-BUILD TRAFFIC "SITE TRAFFIC DISTRUBUTION" LAND USE TYPE Pass-By Entering Distribution Exiting	0	10 23 23	0	3 7 7	0	0	0	0	0	5 12 12	-5 -12 3	0	0	0	-3 -7 4	2
proved Development 2: Amanda Redistribution proved Development 3: Hager Redistribution DTAL PM APPROVED DEVELOPMENT TRAFFIC PM 2027 NO-BUILD TRAFFIC "SITE TRAFFIC DISTRUBUTION" LAND USE TYPE Pass-By Entering Distribution Exiting Net New Entering Distribution Exiting Distribution Exiting	0	10 23 23	0	3 7 7	0	0	0	0	0	5 12 12	-5 -12 3	0	0	0	-3 -7 4	2
proved Development 2: Amanda Redistribution proved Development 3: Hager Redistribution DTAL PM APPROVED DEVELOPMENT TRAFFIC PM 2027 NO-BUILD TRAFFIC "SITE TRAFFIC DISTRUBUTION" LAND USE TYPE Pass-By Entering Distribution Exiting Net New Entering	0	10 23 23	0	3 7 7	WBU	0 WBL	0 WBT	0	0	5 12 12	-5 -12 3	0	0	0	-3 -7 4	2
proved Development 2: Amanda Redistribution proved Development 3: Hager Redistribution DTAL PM APPROVED DEVELOPMENT TRAFFIC PM 2027 NO-BUILD TRAFFIC "SITE TRAFFIC DISTRUBUTION" LAND USE TYPE Pass-By Entering Distribution Exiting Net New Entering Distribution Exiting "PM PROJECT TRIPS"	EBU	10 23 23 EBL	0 EBT	3 7 7 EBR	WBU	0 WBL	0 WBT	0 WBR	0 NBU	5 12 12 NBL	-5 -12 3 NBT	0 NBR	SBU	0 SBL	-3 -7 4 SBT	2: SE

INTERSECTION TRAFFIC VOLUME DEVELOPMENT

No Hager Access

Intersection 5 - Augustine Road and Hager Road

INTERSECTION: COUNT DATE: PM PEAK HOUR FACTOR: November 10, 2022 0.88 PM FUTURE PEAK HOUR FACTOR: 0.90

						Peak	Hou										
AM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
AM Adjusted Turnir	ng Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0
AM Volum	ne Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXIS	STING TRAFFIC	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0
AM Heavy Ve	hicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	29
AM 2027 NO-	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Annual C	rowth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0
AM 2027 NO-BUILI	TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0
AM 2027 NO-BUIL	D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0
proved Development 1:	Car Village																
proved Development 2:																	
proved Development 3:																	
OTAL AM APPROVED	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2027 NO-	BUILD TRAFFIC	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0
			•			•	•							•			
	DISTRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
Pass-By	Entering																
Distribution	Exiting																
Net New	Entering																
Distribution	Exiting																
"AM PRO	IECT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SE
Desired Tele	Pass - By																
Project Trip	Net New	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AM TOTAL P	ROJECT TRIPS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
AM 2027 PUII	D-OUT TRAFFIC	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	_

					PM	Peak	<u>Hour</u>										
PM 2022 EXISTING 1	TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	S
PM Adjusted Turning Move	ement Counts ¹	0	0	0	0	0	0	0	3	0	0	0	0	0	10	0	
PM Volume Balar	ncing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
PM 2022 EXISTING 1	TRAFFIC	0	0	0	0	0	0	0	3	0	0	0	0	0	10	0	
PM Heavy Vehicle Pe	rcentage	2%	2%	2%	2%	2%	2%	2%	33%	2%	2%	2%	2%	2%	2%	2%	
,	Ü																
PM 2027 NO-BUILD	_	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	S
Annual Growth F PM 2027 NO-BUILD TRAF		6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6
FINI 2021 NO-DUILD IRAF	FIG GROWIN	0	0	0	0	0	0	0	1	0	0	0	0	0	3	0	_
PM 2027 NO-BUILD TRAI	FFIC (No AD)	0	0	0	0	0	0	0	4	0	0	0	0	0	13	0	
roved Development 2: Amand roved Development 3: Hager I	a Redistribution Redistribution														19		
roved Development 2: Amand roved Development 3: Hager I	a Redistribution Redistribution	0	0	0	0	0	0	0	0	0	0	0	0	0	19 19	0	
proved Development 1: Car Vill proved Development 2: Amand proved Development 3: Hager I DTAL PM APPROVED DEVEL PM 2027 NO-BUILD	a Redistribution Redistribution OPMENT TRAFFIC	0	0	0	0	0	0	0	0	0	0	0	0	0		0	
roved Development 2: Amand roved Development 3: Hager I TAL PM APPROVED DEVEL PM 2027 NO-BUILD "SITE TRAFFIC DISTR LAND USE	a Redistribution Redistribution OPMENT TRAFFIC TRAFFIC UBUTION" TYPE								4						19		
roved Development 2: Amand roved Development 3: Hager I TAL PM APPROVED DEVEL PM 2027 NO-BUILD "SITE TRAFFIC DISTR LAND USE Pass-By	a Redistribution Redistribution OPMENT TRAFFIC TRAFFIC UBUTION" TYPE Entering	0	0	0	0	0	0	0	4	0	0	0	0	0	19 32	0	
roved Development 2: Amand roved Development 3: Hager I TAL PM APPROVED DEVEL PM 2027 NO-BUILD "SITE TRAFFIC DISTR LAND USE Pass-By Distribution	a Redistribution Redistribution OPMENT TRAFFIC IRAFFIC UBUTION" TYPE Entering Exiting	0	0	0	0	0	0	0	4	0	0	0	0	0	19 32	0	
roved Development 2: Amand roved Development 3: Hager I TAL PM APPROVED DEVEL PM 2027 NO-BUILD "SITE TRAFFIC DISTR LAND USE Pass-By	a Redistribution Redistribution OPMENT TRAFFIC TRAFFIC UBUTION" TYPE Entering Exiting Entering	0	0	0	0	0	0	0	4	0	0	0	0	0	19 32	0	
roved Development 2: Amand roved Development 3: Hager I TAL PM APPROVED DEVEL PM 2027 NO-BUILD "SITE TRAFFIC DISTR LAND USE Pass-By Distribution Net New Distribution	a Redistribution Redistribution OPMENT TRAFFIC IRAFFIC UBUTION" TYPE Entering Exiting Entering Exiting Exiting	0	0	0	0	0	0	0	4	0	0	0	0	0	19 32	0	
roved Development 2: Amand roved Development 3: Hager I TAL PM APPROVED DEVEL PM 2027 NO-BUILD "SITE TRAFFIC DISTR LAND USE Pass-By Distribution Net New	a Redistribution Redistribution OPMENT TRAFFIC IRAFFIC UBUTION" TYPE Entering Exiting Entering Exiting Exiting	0	0	0	0	0	0	0	4	0	0	0	0	0	19 32	0	
roved Development 2: Amand roved Development 3: Hager I TAL PM APPROVED DEVEL PM 2027 NO-BUILD "SITE TRAFFIC DISTR LAND USE Pass-By Distribution Net New Distribution "PM PROJECT TE	a Redistribution Redistribution Redistribution OPMENT TRAFFIC IRAFFIC UBUTION" TYPE Entering Exiting Entering Exiting Exiting Exiting RIPS"	0 EBU	EBL	0 EBT	0 EBR	WBU	WBL	0 WBT	4 WBR	NBU	NBL	0 NBT	0 NBR	SBU	19 32 SBL	SBT	

INTERSECTION TRAFFIC VOLUME DEVELOPMENT

No Hager Access
Intersection 6 - Okatie Highway and Hager Road
November 10, 2022
0.96
PM EUTUPE

INTERSECTION: COUNT DATE: PM PEAK HOUR FACTOR:

PM FUTURE PEAK HOUR FACTOR: 0.95

	_				AM	Peak	Hour	•	•								•
AM 2022 EXIS	TING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turning	Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	1,133	0	0	0	1,067	0
AM Volume	Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
444 0000 EVIO	TING TRAFFIC																
AW 2022 EXIS	TING TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,133	0	0	0	1,067	0
AM Heavy Veh	icle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	6%	2%
AM 2027 NO-B	UILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual Gr	owth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
AM 2027 NO-BUILD	TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	383	0	0	0	361	0
AM 2027 NO-BUILE	TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	1,516	0	0	0	1,428	0
pproved Development 1: 0	Car Village					1			10				10	1			
pproved Development 2: A																	
pproved Development 3: I																	
TOTAL AM APPROVED L	DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	10	0	0	0	10	0	0	0	0
AM 2027 NO-B	UILD TRAFFIC	0	0	0	0	0	0	0	10	0	0	1,516	10	0	0	1,428	0
"SITE TRAFFIC																	
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By Distribution	Entering Exiting																
Net New	Exiting											50%					
Distribution	Exiting											30 /8				50%	
Biotribution		1	1			I	1			1	l			I	l	0070	
"AM PROJE	CT TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Project Trip	Pass - By																
, ,	Net New	0	0	0	0	0	0	0	0	0	0	24	0	0	0	17	0
AM TOTAL PR	OJECT TRIPS	0	0	0	0	0	0	0	0	0	0	24	0	0	0	17	0
AM 2027 BUILD	OUT TRAFFIC	0	0	0	0	0	0	0	10	0	0	1.540	10	0	0	1.445	0
		ı v		•	•	ı -		•				.,00			ı -	.,	-

					PM	Peak	<u>Hour</u>										
PM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SB
PM Adjusted Turnir	ng Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	1,108	0	0	0	1,297	(
PM Volum	ne Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
PM 2022 EXIS	STING TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,108	0	0	0	1,297	-
PM Heavy Vel	hicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	3%	2%	2%	2%	1%	2
PM 2027 NO-	BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	s
	Frowth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6
PM 2027 NO-BUILI	TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	375	0	0	0	439	
PM 2027 NO-RUII	.D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	1.483	0	0	0	1,736	
roved Development 1:									10				10				
roved Development 2:	Amanda Redistribution								10				10				
roved Development 2: roved Development 3:	Amanda Redistribution	0	0	0	0	0	0	0	10	0	0	0	10	0	0	0	
roved Development 2: roved Development 3: TAL PM APPROVED	Amanda Redistribution Hager Redistribution	0	0	0	0	0	0	0		0	0	0		0	0	0	
roved Development 2: roved Development 3: TAL PM APPROVED PM 2027 NO-	Amanda Redistribution Hager Redistribution DEVELOPMENT TRAFFIC	0	0	0	0	0	0	0	10	0	0	1,483	10	0	0	1,736	
roved Development 2: roved Development 3: TAL PM APPROVED PM 2027 NO- "SITE TRAFFIC LAND USE	Amanda Redistribution Hager Redistribution DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE								10				10				s
roved Development 2: roved Development 3: TAL PM APPROVED PM 2027 NO- "SITE TRAFFIC LAND USE Pass-By	Amanda Redistribution Hager Redistribution DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering	0	0	0	0	0	0	0	10	0	0	1,483	10	0	0	1,736	s
roved Development 2: roved Development 3: TAL PM APPROVED PM 2027 NO- "SITE TRAFFIC LAND USE Pass-By Distribution	Amanda Redistribution Hager Redistribution DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting	0	0	0	0	0	0	0	10	0	0	1,483 NBT	10	0	0	1,736	S
roved Development 2: roved Development 3: TAL PM APPROVED PM 2027 NO- "SITE TRAFFIC LAND USE Pass-By Distribution Net New	Amanda Redistribution Hager Redistribution DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting Entering Entering	0	0	0	0	0	0	0	10	0	0	1,483	10	0	0	1,736 SBT	S
roved Development 2: roved Development 3: TAL PM APPROVED PM 2027 NO- "SITE TRAFFIC LAND USE Pass-By Distribution Net New Distribution "PM PROJ	Amanda Redistribution Hager Redistribution DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting	EBU	EBL	0 EBT	0 EBR	WBU	WBL	0 WBT	10 10 WBR	NBU	0 NBL	1,483 NBT	10 10 NBR	SBU	SBL	1,736 SBT 50%	S
roved Development 2: roved Development 3: TAL PM APPROVED PM 2027 NO- "SITE TRAFFIC LAND USE Pass-By Distribution Net New Distribution	Amanda Redistribution Hager Redistribution DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting Entering Exiting Exiting Exiting EXITING EXITING EXITING EXITING EXITING EXITING EXITING EXITING	0	0	0	0	0	0	0	10	0	0	1,483 NBT	10	0	0	1,736 SBT	s
roved Development 2: roved Development 3: TAL PM APPROVED PM 2027 NO- "SITE TRAFFIC LAND USE Pass-By Distribution Net New Distribution "PM PROJ	Amanda Redistribution Hager Redistribution DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting Entering Exiting Exiting Exiting EXITING EXI	EBU	EBL	EBT	EBR	WBU	WBL	0 WBT	10 10 WBR	NBU	NBL	1,483 NBT 50%	10 10 NBR	SBU	SBL	1,736 SBT 50% SBT	
roved Development 2: roved Development 3: TAL PM APPROVED PM 2027 NO- "SITE TRAFFIC LAND USE Pass-By Distribution Net New Distribution "PM PROJ LAND USE Project Trip	Amanda Redistribution Hager Redistribution DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting Entering Exiting Exiting Exiting EXITING EXITING EXITING EXITING EXITING EXITING EXITING EXITING	EBU	EBL	0 EBT	0 EBR	WBU	WBL	0 WBT	10 10 WBR	NBU	0 NBL	1,483 NBT	10 10 NBR	SBU	SBL	1,736 SBT 50%	

INTERSECTION TRAFFIC VOLUME DEVELOPMENT

No Hager Access
Intersection 7 - Okatie Highway and Amanda Road
November 10, 2022
0.96

INTERSECTION: COUNT DATE: PM PEAK HOUR FACTOR: PM FUTURE PEAK HOUR FACTOR: 0.95

		-			AM	Peak	Hour		-	-							
AM 2022 EXISTI	NG TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turning	Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	1,133	0	0	0	1,067	0
AM Volume I	Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2022 EXISTI	NO TRAFFIC									1 -							
AW 2022 EXIST	NG TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,133	0	0	0	1,067	0
AM Heavy Vehic	e Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	6%	2%
AM 2027 NO-BU	ILD TRAFFIC	EBU	EBL	EBT	EBR	l wbu	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual Grov	vth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
AM 2027 NO-BUILD T	RAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	383	0	0	0	361	0
AM 2027 NO-BUILD	TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	1.516	0	0	0	1,428	0
ANI 2027 NO-BOILD	TRAFFIC (NO AD)	U	U	U	U	U	U	0	0	U	U	1,516	U	U	U	1,420	
A	- \ PH																
Approved Development 1: Ca Approved Development 2: An									37			10 -6	6				
Approved Development 3: Ha									29			-5	5				
TOTAL AM APPROVED DE		0	0	0	0	0	0	0	66	0	0	-1	11	0	0	0	0
AM 2027 NO-BU	ILD TRAFFIC	0	0	0	0	0	0	0	66	0	0	1,515	11	0	0	1,428	0
"SITE TRAFFIC DI	CTDUDUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering											-40%	40%				
Distribution	Exiting								30%								
Net New	Entering											10%	40%				
Distribution	Exiting								30%							50%	
"AM DDO 150	T TRIPO!																
"AM PROJEC LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	Pass - By	1	LUL		LDIX			.,,,,	14	IIDO	INDL	-18	18	050	OBL	<u> </u>	- OBIR
Project Trip	Net New	0	0	0	0	0	0	0	10	0	0	5	19	0	0	17	0
AM TOTAL PRO	JECT TRIPS	0	0	0	0	0	0	0	24	0	0	-13	37	0	0	17	0
AM 2027 BUILD-		0	0	0	0	0	0	0	90	0	0	1.502	48	0	0	1.445	0

					PM	Peak	<u>Hour</u>										
PM 2022 EXIS	STING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SI
PM Adjusted Turnir	ng Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	1,108	0	0	0	1,297	
PM Volum	ne Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
PM 2022 EXIS	STING TRAFFIC	0	0	0	0	0	0	0	0	0	0	1,108	0	0	0	1,297	
PM Heavy Ve	hicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	3%	2%	2%	2%	1%	
·	·																
	BUILD TRAFFIC Frowth Rate	EBU 6.0%	EBL 6.0%	EBT 6.0%	EBR 6.0%	WBU 6.0%	WBL 6.0%	WBT 6.0%	WBR 6.0%	NBU 6.0%	NBL 6.0%	NBT 6.0%	NBR 6.0%	SBU 6.0%	SBL 6.0%	SBT 6.0%	6
	TRAFFIC GROWTH	0.078	0.078	0.078	0.078	0.078	0.078	0.078	0.076	0.078	0.078	375	0.078	0.078	0.078	439	-
PM 2027 NO-BUIL	.D TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	1,483	0	0	0	1,736	
roved Development 1:	Car Village	l									l	10					
roved Development 2:	Amanda Redistribution								21			10 -17	17				
roved Development 2: roved Development 3:	Amanda Redistribution	0	0	0	0	0	0	0	21 15 36	0	0		17 13 30	0	0	0	
roved Development 2: roved Development 3: TAL PM APPROVED	Amanda Redistribution Hager Redistribution DEVELOPMENT TRAFFIC								15 36			-17 -13 -20	13 30				
roved Development 3: TAL PM APPROVED	Amanda Redistribution Hager Redistribution	0	0	0	0	0	0	0	15	0	0	-17 -13	13	0	0	0	
roved Development 2: roved Development 3: TAL PM APPROVED PM 2027 NO- "SITE TRAFFIC	Amanda Redistribution Hager Redistribution DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION"	0	0	0	0	0	0	0	15 36 36	0	0	-17 -13 -20 1,463	13 30 30	0	0	1,736	
roved Development 2: roved Development 3: TAL PM APPROVED PM 2027 NO- "SITE TRAFFIC LAND USE	Amanda Redistribution Hager Redistribution DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE								15 36			-17 -13 -20 1,463	13 30 30 NBR				
roved Development 2: roved Development 3: TAL PM APPROVED PM 2027 NO- "SITE TRAFFIC LAND USE Pass-By	Amanda Redistribution Hager Redistribution DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering	0	0	0	0	0	0	0	15 36 36 WBR	0	0	-17 -13 -20 1,463	13 30 30	0	0	1,736	8
roved Development 2: roved Development 3: TAL PM APPROVED PM 2027 NO- "SITE TRAFFIC LAND USE	Amanda Redistribution Hager Redistribution DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE	0	0	0	0	0	0	0	15 36 36	0	0	-17 -13 -20 1,463	13 30 30 NBR	0	0	1,736	
roved Development 2: roved Development 3: TAL PM APPROVED PM 2027 NO- "SITE TRAFFIC LAND USE Pass-By Distribution	Amanda Redistribution Hager Redistribution DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting	0	0	0	0	0	0	0	15 36 36 WBR	0	0	-17 -13 -20 1,463 NBT	13 30 30 NBR 40%	0	0	1,736	\$
roved Development 2: roved Development 3: TAL PM APPROVED PM 2027 NO- "SITE TRAFFIC LAND USE Pass-By Distribution Net New Distribution	Amanda Redistribution Hager Redistribution DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting Entering	0	0	0	0	0	0	0	15 36 36 WBR	0	0	-17 -13 -20 1,463 NBT	13 30 30 NBR 40%	0	0	1,736 SBT	\$
roved Development 2: roved Development 3: TAL PM APPROVED PM 2027 NO- "SITE TRAFFIC LAND USE Pass-By Distribution Net New Distribution	Amanda Redistribution Hager Redistribution DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting Entering Exiting	0	0	0	0	0	0	0	15 36 36 WBR	0	0	-17 -13 -20 1,463 NBT	13 30 30 NBR 40%	0	0	1,736 SBT	
roved Development 2: roved Development 3: TAL PM APPROVED PM 2027 NO- "SITE TRAFFIC LAND USE Pass-By Distribution Net New Distribution "PM PROL LAND USE	Amanda Redistribution Hager Redistribution DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting Entering Exiting Exiting Exiting Exiting Fire Type Pass - By	EBU	EBL	EBT	EBR	WBU	WBL	0 WBT	15 36 36 WBR 30% WBR 16	NBU NBU	NBL NBL	-17 -13 -20 1,463 NBT -40% NBT	13 30 30 NBR 40% NBR 21	SBU	SBL	1,736 SBT 50% SBT	
roved Development 2: roved Development 3: TAL PM APPROVED PM 2027 NO- "SITE TRAFFIC LAND USE Pass-By Distribution Net New Distribution "PM PRO. LAND USE Project Trip	Amanda Redistribution Hager Redistribution Hager Redistribution DEVELOPMENT TRAFFIC BUILD TRAFFIC DISTRUBUTION" TYPE Entering Exiting Entering Exiting Exiting Exiting EXITING EXITING EXITING EXITING EXITING EXITING	EBU	EBL	0 EBT	0 EBR	WBU	WBL	0 WBT	15 36 36 WBR 30% 30% WBR	NBU	NBL	-17 -13 -20 1,463 NBT -40%	13 30 30 NBR 40%	SBU	SBL	1,736 SBT 50%	S

INTERSECTION TRAFFIC VOLUME DEVELOPMENT

No Hager Access
Intersection 8 - Amanda Road and 7C Access Driveway
November 10, 2022
0.89
PM FITTIPE 7-INTERSECTION: COUNT DATE: PM PEAK HOUR FACTOR:

PM FUTURE PEAK HOUR FACTOR: 0.90

					AM	Peak	Hour										
AM 2022 EXIST	NG TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
AM Adjusted Turning	Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM Volume	Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	NA TRAFFIA																
AM 2022 EXIST	NG TRAFFIC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM Heavy Vehic	le Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
AM 2027 NO-BU	II D TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual Gro		6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
AM 2027 NO-BUILD T	RAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM 2027 NO-BUILD	TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Approved Development 1: Ca	ar Village																
Approved Development 2: Ar				6				37									
Approved Development 3: Ha				5				29									
TOTAL AM APPROVED DE	VELOPMENT TRAFFIC	0	0	11	0	0	0	66	0	0	0	0	0	0	0	0	0
AM 2027 NO-BU	ILD TRAFFIC	0	0	11	0	0	0	66	0	0	0	0	0	0	0	0	0
"SITE TRAFFIC DI	STRUBUTION"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By	Entering		40%														
Distribution	Exiting														10%		30%
Net New	Entering		40%														
Distribution	Exiting																30%
"AM PROJEC	T TRIPS"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
+	Pass - By		18												5		14
Project Trip	Net New	0	19	0	0	0	0	0	0	0	0	0	0	0	0	0	10
AM TOTAL PRO	JECT TRIPS	0	37	0	0	0	0	0	0	0	0	0	0	0	5	0	24
AM 2027 BUILD	OUT TRAFFIC														_		
AM 2027 BUILD-	OUTTRAFFIC	0	37	11	0	0	0	66	0	0	0	0	0	0	5	0	24

				PM	Peak	<u>Hour</u>										
PM 2022 EXISTING TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
PM Adjusted Turning Movement Counts ¹	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM Volume Balancing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM 2022 EXISTING TRAFFIC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW 2022 EXISTING TRAFFIC	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
PM Heavy Vehicle Percentage	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
PM 2027 NO-BUILD TRAFFIC	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Annual Growth Rate	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
PM 2027 NO-BUILD TRAFFIC GROWTH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					_								_			
PM 2027 NO-BUILD TRAFFIC (No AD)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Approved Development 1: Car Village																
Approved Development 1: Cal Village Approved Development 2: Amanda Redistribution			17				21						l			
Approved Development 3: Hager Redistribution			13				15									
TOTAL PM APPROVED DEVELOPMENT TRAF	FIC 0	0	30	0	0	0	36	0	0	0	0	0	0	0	0	0
DM 2027 NO BUILD TRAFFIC		•	20	^			20	^	•		^	^		_	•	^
PM 2027 NO-BUILD TRAFFIC	0	0	30	0	0	0	36	0	0	0	0	0	0	0	0	0
"SITE TRAFFIC DISTRUBUTION"																
LAND USE TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass-By Entering		40%														
Distribution Exiting														10%		30%
Net New Entering		40%								ļ			ļ			
Distribution Exiting										l						30%
"PM PROJECT TRIPS"																
LAND USE TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Pass - Rv		21				<u> </u>							1	5		16
Project Trip Net New	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	17
PM TOTAL PROJECT TRIPS	0	41	0	0	0	0	0	0	0	0	0	0	0	5	0	33
					_											
PM 2027 BUILD-OUT TRAFFIC	0	41	30	0	0	0	36	0	0	0	0	0	0	5	0	22

Kimley»Horn

Attachment D – HCM6 Capacity Analysis Reports

Intersection															
Int Delay, s/veh	81.2														
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR	
Lane Configurations		4	7		र्स	7		*	^	7		*	^	7	
Traffic Vol, veh/h	17	3	35	107	0	119	1	23	1508	66	1	128	1303	11	
Future Vol, veh/h	17	3	35	107	0	119	1	23	1508	66	1	128	1303	11	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	Yield	-	-	Yield	_	-	_	Yield	-	-	_	Yield	
Storage Length		_	0	-		280	-	430	_	400	-	430	-	-	
Veh in Median Storage	2.# -	2	-	_	0	-	_	-	0	-	-	-	0	_	
Grade, %	-	0	_	_	0	_	_	_	0	_	_	_	0	_	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	4	2	2	2	2	2	2	6	2	2	6	2	
Mymt Flow	18	3	38	116	0	129	1	25	1639	72	1	139	1416	12	
WWITE I IOW	10	J	30	110	U	127		20	1007	12		107	1410	12	
Major/Minor I	Minor2		ľ	Minor1		N	/lajor1			N	Major2				
Conflicting Flow All	2568	3387	708	2681	3387	820	1416	1416	0	0	1639	1639	0	0	
Stage 1	1696	1696	700	1691	1691	020	1410	1410	-	U	1039	1039	-	U	
Stage 2	872	1691	-	990	1696	_	-	-		_	-	-	-	-	
Critical Hdwy	7.54	6.54	6.98	7.54	6.54	6.94	6.44	4.14	-	-	6.44	4.14		-	
		5.54	0.90	6.54	5.54	0.94	0.44	4.14	-	-		4.14	-	-	
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54		-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2			2 24			2 22	2.52	2.22	-	-	2.52	2.22	-	-	
Follow-up Hdwy	3.52	4.02	3.34	3.52	4.02	3.32	179		-	-	128	391	-	-	
Pot Cap-1 Maneuver	~ 13	7	373	~ 11	7	318	1/9	477	-	-		391	-	-	
Stage 1	96	147	-	~ 97	148	-	-	-	-	-	-	-	-	-	
Stage 2	312	148	-	264	147	-	-	-	-	-	-	-	-	-	
Platoon blocked, %	_	4	272	01		210	4.41	4.41	-	-	200	200	-	-	
Mov Cap-1 Maneuver	~ 5	4	373	~ 21	4	318	441	441	-	-	380	380	-	-	
Mov Cap-2 Maneuver	30	-	-	~ 21	4	-	-	-	-	-	-	-	-	-	
Stage 1	90	93	-	~ 91	139	-	-	-	-	-	-	-	-	-	
Stage 2	174	139	-	144	93	-	-	-	-	-	-	-	-	-	
Approach	EB			WB			NB				SB				
HCM Control Delay, s	108.3		\$ 1	1153.6			0.2				1.8				
HCM LOS	F			F											
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBLn1	EBLn2V	VBLn1V	VBLn2	SBL	SBT	SBR				
Capacity (veh/h)		441	_	-	30	373	21	318	380	-	_				
HCM Lane V/C Ratio		0.059	_		0.725	0.102		0.407	0.369	_	_				
HCM Control Delay (s)		13.7	-		270.3		3.330	23.9	19.9	_	-				
HCM Lane LOS		В	_	_	F	C	F	23.7 C	C	_	_				
HCM 95th %tile Q(veh)	0.2	-	-	2.4	0.3	14.8	1.9	1.7	_	-				
		J.2			۷. ۱	3.0	, 1.0	1.7	1.7						
Notes															
~: Volume exceeds cap	oacity	\$: De	elay ex	ceeds 3	00S	+: Con	nputatio	on Not [Defined	*: A	II major	volume	e in plat	oon	

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations Image: SBT start star
Lane Configurations 4 7 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 6 6 7 9 0 55 0 0 0 0 0 6 6 Future Vol, veh/h 23 117 56 0 97 0 55 0 0 0 0 0 66 Conflicting Peds, #/hr 0 </td
Traffic Vol, veh/h 23 117 56 0 97 0 55 0 0 0 0 66 Future Vol, veh/h 23 117 56 0 97 0 55 0 0 0 0 66 Conflicting Peds, #/hr 0 <t< td=""></t<>
Traffic Vol, veh/h 23 117 56 0 97 0 55 0 0 0 0 66 Future Vol, veh/h 23 117 56 0 97 0 55 0 0 0 0 66 Conflicting Peds, #/hr 0 <t< td=""></t<>
Conflicting Peds, #/hr 0
Sign Control Free Free Free Free Free Free Free Stop
RT Channelized - - None - - None - - None - 0 - - 0 - - 0 - - 0 - - 0
Storage Length - - 0 - 0 - -
Veh in Median Storage, # - 0 - </td
Grade, % - 0 - - 0 90 <t< td=""></t<>
Peak Hour Factor 90
Heavy Vehicles, % 2 4 2 2 3 2 2 2 2 2 2 2
J '
Mvmt Flow 26 130 62 0 108 0 61 0 0 0 73
Major/Minor Major1 Major2 Minor1 Minor2
Conflicting Flow All 108 0 0 192 0 0 327 290 - 321 352 108
Stage 1 182 182 - 108 108 -
Stage 2 145 108 - 213 244 -
Critical Hdwy 4.12 4.12 7.12 6.52 - 7.12 6.52 6.22
Critical Hdwy Stg 1 6.12 5.52 - 6.12 5.52 -
Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52 -
Follow-up Hdwy 2.218 2.218 3.518 4.018 - 3.518 4.018 3.318
Pot Cap-1 Maneuver 1483 1381 - 0 626 620 0 632 573 946
Stage 1 0 820 749 0 897 806 -
Stage 2 0 858 806 0 789 704 -
Platoon blocked, %
Mov Cap-1 Maneuver 1483 1381 568 608 - 623 562 946
Mov Cap-2 Maneuver 568 608 - 623 562 -
Stage 1 804 734 - 879 806 -
Stage 2 791 806 - 773 690 -
Approach EB WB NB SB
HCM Control Delay, s 0.9 0 0 9.1
HCM LOS A A
ncw Los
Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT SBLn1
Capacity (veh/h) - 1483 1381 - 946
HCM Lane V/C Ratio - 0.017 0.078
HCM Control Delay (s) 0 7.5 0 - 0 - 9.1
HCM Lane LOS A A A - A - A
HCM 95th %tile Q(veh) - 0.1 0 - 0.3

Intersection	
Int Delay, s/veh 7.1	
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SE	T SBR
)
Traffic Vol, veh/h 24 6 2 0 23 20 15 13 1 10	5 5
Future Vol, veh/h 24 6 2 0 23 20 15 13 1 10	5 5
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0	0 0
Sign Control Stop Stop Stop Stop Stop Free Free Free Free Free	
RT Channelized None None -	- None
Storage Length	
Veh in Median Storage, # - 0 0 0	0 -
Grade, % - 0 0	0 -
	0 90
	0 2
Mvmt Flow 27 7 2 0 26 22 17 14 1 11	6 6
Major/Minor Minor2 Minor1 Major1 Major2	
Conflicting Flow All 104 80 9 85 83 15 12 0 0 15	0 0
Stage 1 31 31 - 49 49	
Stage 2 73 49 - 36 34	
Critical Hdwy 7.12 6.52 6.22 7.12 6.52 6.22 4.12 - 4.12	
Critical Hdwy Stg 1 6.12 5.52 - 6.12 5.52	
Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52	
Follow-up Hdwy 3.518 4.018 3.318 3.518 4.018 3.318 2.218 2.218	
Pot Cap-1 Maneuver 876 810 1073 901 807 1065 1607 - 1603	
Stage 1 986 869 - 964 854	
Stage 2 937 854 - 980 867	
Platoon blocked, %	
Mov Cap-1 Maneuver 825 795 1073 881 792 1065 1607 1603	
Mov Cap-1 Maneuver 825 795 - 881 792	
Stage 1 975 863 - 953 845	
Stage 2 880 845 - 964 861	
Stage 2 000 040 - 704 001	-
Approach EB WB NB SB	
HCM Control Delay, s 9.5 9.2 3.8 3.6 HCM LOS A A	
HOWI LOS A A	
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR	
Capacity (veh/h) 1607 - 831 899 1603	
HCM Lane V/C Ratio 0.01 0.043 0.053 0.007	
HCM Control Delay (s) 7.3 0 - 9.5 9.2 7.3 0 -	
HCM Lane LOS A A - A A A - HCM 95th %tile Q(veh) 0 0.1 0.2 0	
HCM 95th %tile Q(veh) 0 0.1 0.2 0	

Intersection						
Int Delay, s/veh	3.6					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	-	0.4	4	ĵ.	0.1
Traffic Vol, veh/h	4	7	21	0	16	21
Future Vol, veh/h	4	7	21	0	16	21
Conflicting Peds, #/hr	0	0	0	0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	4	8	23	0	18	23
Major/Minor	Minora	n	Major1		laier?	
	Minor2		Major1		/lajor2	
Conflicting Flow All	76	30	41	0	-	0
Stage 1	30	-	-	-	-	-
Stage 2	46	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	927	1044	1568	-	-	-
Stage 1	993	-	-	-	-	-
Stage 2	976	_	-	-	-	-
Platoon blocked, %				-	-	_
Mov Cap-1 Maneuver	913	1044	1568	-	_	-
Mov Cap-2 Maneuver	913		-	_	_	_
Stage 1	978	_	-	_	-	_
Stage 2	976		_			
Jiayt Z	710	-	_		_	-
Approach	EB		NB		SB	
HCM Control Delay, s	8.7		7.3		0	
HCM LOS	Α					
		ND	NOT	EDL 1	OPT	000
Minor Lane/Major Mvm	<u>I</u> T	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1568	-	992	-	-
HCM Lane V/C Ratio		0.015	-	0.012	-	-
HCM Control Delay (s)		7.3	0	8.7	-	-
HCM Lane LOS		Α	Α	Α	-	-
HCM 95th %tile Q(veh)	0	-	0	-	-
·						

Intersection						
Int Delay, s/veh	5.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	\$		¥	
Traffic Vol, veh/h	8	2	12	0	5	22
Future Vol, veh/h	8	2	12	0	5	22
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	9	2	13	0	6	24
Major/Minor N	Major1	I.	Major2	N	Minor2	
Conflicting Flow All	13	0	viajuiz -	0	33	13
Stage 1	-	Ū	-	-	13	-
Stage 2	-	-	-	-	20	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	4.12	-	-	-	5.42	0.22
Critical Hdwy Stg 2	-	-	-	-	5.42	-
	2.218	-	-		3.518	
Follow-up Hdwy	1606	-	-		980	1067
Pot Cap-1 Maneuver		-	-	-		
Stage 1	-	-	-	-	1010 1003	-
Stage 2	-	-	-	-	1003	-
Platoon blocked, %	1/0/	-	-	-	07.4	10/7
Mov Cap 2 Manager		-	-	-	974	1067
Mov Cap-2 Maneuver	-	-	-	-	974	-
Stage 1	-	-	-	-	1004	-
Stage 2	-	-	-	-	1003	-
Approach	EB		WB		SB	
HCM Control Delay, s	5.8		0		8.5	
HCM LOS	0.0		- 0		Α	
					A	
NAL - L - AND L		EDI	EDT	1475-	MPP	CDL
Minor Lane/Major Mvm	it	EBL	EBT	WBT	WBR :	
Capacity (veh/h)		1606	-	-	-	1048
HCM Lane V/C Ratio		0.006	-	-		0.029
HCM Control Delay (s)		7.3	0	-	-	8.5
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh))	0	-	-	-	0.1

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	†			^
Traffic Vol, veh/h	0	44	1530	20	0	1445
Future Vol, veh/h	0	44	1530	20	0	1445
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	_	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	_	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	6
Mvmt Flow	0	48	1663	22	0	1571
Maiay/Minay	Nin au 1		10:01		1-:	
	Minor1		Major1		/lajor2	
Conflicting Flow All	-	843	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	307	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	-	307	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Annroach	WB		NB		SB	
Approach						
HCM Control Delay, s	18.9		0		0	
HCM LOS	С					
Minor Lane/Major Mvm	ıt	NBT	NBRV	VBLn1	SBT	
Capacity (veh/h)		-	-	307	-	
HCM Lane V/C Ratio		_	_	0.156	_	
HCM Control Delay (s)		-	-	18.9	_	
HCM Lane LOS		-	_	С	-	
HCM 95th %tile Q(veh))	-	-	0.5	-	
2(1011)						

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	Λħ			^
Traffic Vol, veh/h	0	56	1535	39	0	1445
Future Vol, veh/h	0	56	1535	39	0	1445
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	6
Mymt Flow	0	61	1668	42	0	1571
IVIVIII(I IOW	U	01	1000	72	U	1371
	/linor1		/lajor1	N	/lajor2	
Conflicting Flow All	-	855	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	_	-	-	_	_
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	_	-	-	-
Critical Hdwy Stg 2	_	_	_	-	_	_
Follow-up Hdwy	_	3.32	_	_	_	_
Pot Cap-1 Maneuver	0	302	_	-	0	_
Stage 1	0	302	_	-	0	-
	0	-	-	-	0	
Stage 2	U	-			U	-
Platoon blocked, %		202	-	-		-
Mov Cap-1 Maneuver	-	302	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	19.9		0		0	
HCM LOS	19.9 C		U		U	
HOW LUS	C					
Minor Lane/Major Mvm	t	NBT	NBRV	VBLn1	SBT	
Capacity (veh/h)		_	_	302	-	
HCM Lane V/C Ratio		_	_	0.202	-	
HCM Control Delay (s)		_	_	19.9	_	
HCM Lane LOS		_	_	C	_	
HCM 95th %tile Q(veh)				0.7	_	
HOW FOUT WITE Q(VeH)				0.7	-	

Hager Access

Intersection Int Delay, s/veh Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized	4.3 EBL 33	EBT सी	WBT	WBR		
Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control	EBL 33			\M/RD		
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control	33			WHU	CDI	CDD
Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control		નીં		NDK	SBL	SBR
Future Vol, veh/h Conflicting Peds, #/hr Sign Control			^	-	Y	10
Conflicting Peds, #/hr Sign Control		6	37	5	5	19
Sign Control	33	6	37	5	5	19
		0	0	0	0	0
RT Channelized	Free	Free	Free	Free	Stop	Stop
	-		-		-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storag	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	37	7	41	6	6	21
Major/Minor	Major1	_ N	Major2		Minor2	
						11
Conflicting Flow All	47	0	-	0	125	44
Stage 1	-	-	-	-	44	-
Stage 2	- 4.40	-	-	-	81	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-		3.318
Pot Cap-1 Maneuver	1560	-	-	-	870	1026
Stage 1	-	-	-	-	978	-
Stage 2	-	-	-	-	942	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1560	-	-	-	849	1026
Mov Cap-2 Maneuver		-	-	-	849	-
Stage 1	-	-	-	-	955	-
Stage 2	-	-	-	-	942	-
3 g -						
			14.5		0.5	
Approach	EB		WB		SB	
HCM Control Delay, s	6.2		0		8.8	
HCM LOS					Α	
Minor Lane/Major Mvi	nt	EBL	EBT	WBT	WBR	SBI n1
Capacity (veh/h)		1560		,,,,,	-	983
HCM Lane V/C Ratio		0.024		-		0.027
HCM Control Delay (s	.)	7.4	0	-		8.8
HCM Lane LOS	9)	7.4 A				0.0 A
HCM 95th %tile Q(vel	۵)	0.1	А	-	-	0.1
HOW YOU WINE Q(VE	1)	U. I	-	-	-	U. I

Intersection															
Int Delay, s/veh	-														
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT	SBR		
Lane Configurations		स	7		र्स	7	ች	^	7		*	^	7		
Traffic Vol, veh/h	23	0	70	80	5	105	54	1410	58	16	187	1615	23		
Future Vol, veh/h	23	0	70	80	5	105	54	1410	58	16	187	1615	23		
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0		
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	Free		
RT Channelized			Yield	-		Yield	-	-	Yield	-	-	-	Yield		
Storage Length	-	-	0	-	-	280	430	-	400	-	430	-	-		
Veh in Median Storage	:,# -	0	-	-	1	-	-	0	-	-	-	0	-		
Grade, %	-	0	-	-	0	-	-	0	-	-	-	0	-		
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	95		
Heavy Vehicles, %	2	2	2	2	2	1	2	4	2	2	2	1	2		
Mvmt Flow	24	0	74	84	5	111	57	1484	61	17	197	1700	24		
Major/Minor N	Minor2		ľ	Minor1			/lajor1		N	Major2					
Conflicting Flow All	2987	3726	850	2876	3726	742	1700	0	0	1484	1484	0	0		
Stage 1	2128	2128	-	1598	1598	-	-	-	-	-	-	-	-		
Stage 2	859	1598	-	1278	2128	-	-	-	-	-	-	-	-		
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.92	4.14	-	-	6.44	4.14	-	-		
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	-		
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.31	2.22	-	-	2.52	2.22	-	-		
Pot Cap-1 Maneuver	~ 6	4	304	~ 7	~ 4	360	371	-	-	162	449	-	-		
Stage 1	51	89	-	111	164	-	-	-	-	-	-	-	-		
Stage 2	317	164	-	176	89	-	-	-	-	-	-	-	-		
Platoon blocked, %								-	-			-	-		
Mov Cap-1 Maneuver	~ 2	1	304	~ 3	~ 1	360	371	-	-	365	365	-	-		
Mov Cap-2 Maneuver	~ 2	1	-	~	~ -22	-	-	-	-	-	-	-	-		
Stage 1	43	37	-	94	139	-	-	-	-	-	-	-	-		
Stage 2	179	139	-	~ 55	37	-	-	-	-	-	-	-	-		
Approach	EB			WB			NB			SB					
HCM Control Delay, \$2	2070.6			~			0.6			3.1					
HCM LOS	F			-											
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBLn1	EBLn2V	VBLn1V	VBLn2	SBL	SBT	SBR				
Capacity (veh/h)		371	_	-	2	304	~	~	365	-	-				
HCM Lane V/C Ratio		0.153	-	_ ^		0.242	~	~	0.585	-	_				
HCM Control Delay (s)		16.5	-		3309.8	20.6	~	~	27.8	-	-				
HCM Lane LOS		С	-	-	F	C	-	-	D	-	-				
HCM 95th %tile Q(veh))	0.5	-	-	4.7	0.9	~	~	3.6	-	-				
Notes	on oits :	¢. D.	olov ov	noodo 1	000	Co::	anutat'-	n Not F	Oofinad	*. A	ll maia	volum	o in plat		
~: Volume exceeds cap	Jacily	\$: D(elay ext	ceeds 3	UUS	+: Con	iputatio	n Not [Jeimed	: A	*: All major volume in platoon				

Intersection												
Int Delay, s/veh	1.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7		र्स			↑			44	
Traffic Vol, veh/h	51	141	61	0	117	0	77	0	0	1	0	24
Future Vol, veh/h	51	141	61	0	117	0	77	0	0	1	0	24
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	0	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	3	2	2	2	4	2	2	2	2	2	2	2
Mvmt Flow	57	157	68	0	130	0	86	0	0	1	0	27
Major/Minor N	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	130	0	0	225	0	0	415	401	-	435	469	130
Stage 1	-	-	-	-	-	-	271	271	-	130	130	-
Stage 2	-	-	-	-	-	-	144	130	-	305	339	-
Critical Hdwy	4.13	-	-	4.12	-	-	7.12	6.52	-	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.227	-	-	2.218	-	-	3.518	4.018	-	3.518	4.018	3.318
Pot Cap-1 Maneuver	1449	-	-	1344	-	0	548	538	0	531	492	920
Stage 1	-	-	-	-	-	0	735	685	0	874	789	-
Stage 2	-	-	-	-	-	0	859	789	0	705	640	-
Platoon blocked, %		-	-		-							
Mov Cap-1 Maneuver	1449	-	-	1344	-	-	514	514	-	513	470	920
Mov Cap-2 Maneuver	-	-	-	-	-	-	514	514	-	513	470	-
Stage 1	-	-	-	-	-	-	702	654	-	835	789	-
Stage 2	-	-	-	-	-	-	834	789	-	673	611	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.5			0			0			9.2		
HCM LOS							Α			Α		
Minor Lane/Major Mvm	nt [NBLn1	EBL	EBT	EBR	WBL	WBT S	SBLn1				
Capacity (veh/h)			1449	-	-	1344	-	892				
HCM Lane V/C Ratio			0.039	-	-	-	_	0.031				
HCM Control Delay (s)		0	7.6	0	-	0	-	9.2				
HCM Lane LOS		A	A	A	-	A	-	Α				
HCM 95th %tile Q(veh))	-	0.1	-	-	0	-	0.1				

Intersection												
Int Delay, s/veh	4.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	8	9	14	0	12	7	12	7	0	20	38	20
Future Vol, veh/h	8	9	14	0	12	7	12	7	0	20	38	20
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	7	2	2	2	2	2	2	14	2	2	5	2
Mvmt Flow	9	10	16	0	13	8	13	8	0	22	42	22
Major/Minor I	Winor2			Minor1			Major1		1	Major2		
Conflicting Flow All	142	131	53	144	142	8	64	0	0	8	0	0
Stage 1	97	97	-	34	34	-	-	-	-	-	-	-
Stage 2	45	34	-	110	108	-	-	-	-	-	-	-
Critical Hdwy	7.17	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.17	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.17	5.52	-	6.12	5.52	-	-	-	-	-	-	_
Follow-up Hdwy	3.563	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	816	760	1014	825	749	1074	1538	-	-	1612	-	_
Stage 1	897	815	-	982	867	-	-	-	-	-	-	-
Stage 2	956	867	-	895	806	-	-	-	-	-	-	_
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	786	743	1014	790	733	1074	1538	-	-	1612	-	-
Mov Cap-2 Maneuver	786	743	-	790	733	-	-	-	-	-	-	-
Stage 1	890	804	-	974	860	-	-	-	-	-	-	_
Stage 2	927	860	-	858	795	-	-	-	-	-	-	-
J.												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.4			9.5			4.6			1.9		
HCM LOS	Α			А								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1538	-	-	859	830	1612	_	-			
HCM Lane V/C Ratio		0.009	-	-		0.025		_	-			
HCM Control Delay (s)		7.4	0	-	9.4	9.5	7.3	0	-			
HCM Lane LOS		Α	A	-	Α	A	А	A	-			
HCM 95th %tile Q(veh)	0	-	-	0.1	0.1	0	-	-			

Intersection						
Int Delay, s/veh	3.9					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	**	0	40	4	f)	4.
Traffic Vol, veh/h	13	9	12	10	14	14
Future Vol, veh/h	13	9	12	10	14	14
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	9	2	2
Mvmt Flow	14	10	13	11	16	16
Major/Minor N	/linor2	N	Major1	N	/lajor2	
	61	24	32			0
Conflicting Flow All				0	-	0
Stage 1	24	-	-	-	-	-
Stage 2	37	- 4 22	4 10	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
	3.518	3.318		-	-	-
Pot Cap-1 Maneuver	945	1052	1580	-	-	-
Stage 1	999	-	-	-	-	-
Stage 2	985	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	937	1052	1580	-	-	-
Mov Cap-2 Maneuver	937	-	-	-	-	-
Stage 1	991	-	-	-	_	-
Stage 2	985	-	-	-	-	-
. g. =						
Amman			N.E.		0.5	
Approach	EB		NB		SB	
HCM Control Delay, s	8.8		4		0	
HCM LOS	Α					
Minor Lane/Major Mvm	t	NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)	•	1580	-		201	SDIC
HCM Lane V/C Ratio		0.008		0.025	-	-
		v.uuŏ	-		-	-
		7.0	^	0.0		
HCM Control Delay (s)		7.3	0	8.8	-	-
		7.3 A 0	0 A	8.8 A 0.1	-	-

Intersection						
Int Delay, s/veh	7.1					
		EDT	WBT	WPD	CDI	CDD
Movement Long Configurations	EBL	EBT		WBR	SBL	SBR
Lane Configurations	15	4	- î	0	12	24
Traffic Vol, veh/h	15	3	5	0	13	24
Future Vol, veh/h	15 0	3	5 0	0	13	24
Conflicting Peds, #/hr				0 Eroo	0 Stop	0 Stop
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	2,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	33	2	2
Mvmt Flow	17	3	6	0	14	27
Major/Minor N	Major1	N	Major2	_	Minor2	
Conflicting Flow All	6	0	-	0	43	6
Stage 1	-	-	-	-	6	-
Stage 2	_	_	_	_	37	_
Critical Hdwy	4.12	_	_	_	6.42	6.22
Critical Hdwy Stg 1		_	_	_	5.42	- 0.22
Critical Hdwy Stg 2	_	_	_	_	5.42	_
Follow-up Hdwy	2.218		_		3.518	
Pot Cap-1 Maneuver	1615		_	_	968	1077
Stage 1	1015		-	-	1017	1077
Stage 2	-	-	-	-	985	-
	-	-			900	
Platoon blocked, %	1/15	-	-	-	057	1077
Mov Cap-1 Maneuver		-	-	-	957	1077
Mov Cap-2 Maneuver	-	-	-	-	957	-
Stage 1	-	-	-	-	1006	-
Stage 2	-	-	-	-	985	-
Approach	EB		WB		SB	
HCM Control Delay, s	6		0		8.6	
HCM LOS	U		- 0		Α	
TIGIVI LOG					A	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		1615	-	-	-	1032
HCM Lane V/C Ratio		0.01	-	-	-	0.04
HCM Control Delay (s)		7.3	0	-	-	8.6
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh))	0	-	-	-	0.1

Intersection						
Int Delay, s/veh	0.2					
		MDD	NDT	NDD	CDI	CDT
	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	•	*	†	0.0		^
Traffic Vol, veh/h	0	30	1490	28	0	1765
Future Vol, veh/h	0	30	1490	28	0	1765
Conflicting Peds, #/hr	0	0	0	0	0	0
	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	3	2	2	1
Mvmt Flow	0	32	1568	29	0	1858
Major/Minor M	1inor1	ı	Najor1	Λ	/lajor2	
Conflicting Flow All	-	799	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	- (0 4	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	328	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	-	328	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Annroach	WD		ND		CD	
Approach	WB		NB		SB	
HCM Control Delay, s	17.1		0		0	
HCM LOS	С					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBT	
Capacity (veh/h)				328		
HCM Lane V/C Ratio		_	_	0.096	_	
HCM Control Delay (s)		_	_	17.1	_	
HCM Lane LOS		_	_	C	_	
HCM 95th %tile Q(veh)				0.3	_	
HOW JOHN JOHN QUENTY				0.5		

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
	WDL			NDK	SDL	
Lane Configurations	0	7	†	ГЭ	٥	^
Traffic Vol, veh/h	0	49	1467	53	0	1765
Future Vol, veh/h	0	49	1467	53	0	1765
Conflicting Peds, #/hr	0	0	0	0	0	0
	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage,	# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	3	2	2	1
Mvmt Flow	0	52	1544	56	0	1858
	- 0	02	1011			1000
Major/Minor M	inor1	N	Major1	N	1ajor2	
Conflicting Flow All	-	800	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	_			-	_	_
Critical Hdwy	_	6.94	_	_	_	_
Critical Hdwy Stg 1	_		_	_	_	_
Critical Hdwy Stg 2			-	_	_	-
Follow-up Hdwy	-	3.32		-	_	-
Pot Cap-1 Maneuver	0	328	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	-	328	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	_			-	_	_
Olugo Z						
Approach	WB		NB		SB	
HCM Control Delay, s	18		0		0	
HCM LOS	С					
110.111 200						
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBT	
Capacity (veh/h)		-	-	328	-	
HCM Lane V/C Ratio		-	-	0.157	-	
HCM Control Delay (s)		-	-	18	-	
HCM Lane LOS		_	_	С	_	
HCM 95th %tile Q(veh)				0.6		
HOW 75th 76the Q(Veh)			_	0.0		

Hager A

Section IX. Item #2.

Hager Access

Intersection						
Int Delay, s/veh	4.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	<u>- LB1</u>	WB1 }	אטוע	SDL W	JUK
Traffic Vol, veh/h	36	식 17	21	5	'T'	28
Future Vol, veh/h	36	17	21	5	5	28
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-	None	310p	•
Storage Length		NOTIC -	_	-	0	INUITE -
Veh in Median Storag	ie.# -	0	0	_	0	
Grade, %	JC, # -	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
	2	2	2	2	2	90
Heavy Vehicles, % Mvmt Flow	40	19	23	6	6	31
IVIVIIIL FIOW	40	19	23	0	0	31
Major/Minor	Major1	N	Major2	1	Minor2	
Conflicting Flow All	29	0	_	0	125	26
Stage 1	-	-	-	-	26	-
Stage 2	-	-	-	-	99	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	_	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1584	-	-	-	870	1050
Stage 1	-	-	-	-	997	-
Stage 2	-	-	-	-	925	-
Platoon blocked, %		_	_	_	,_5	
Mov Cap-1 Maneuver	1584	-	-	-	847	1050
Mov Cap-2 Maneuver		_	_	_	847	-
Stage 1	_	_	-	-	971	_
Stage 2	_	_	_	_	925	<u>-</u>
Jiago Z					723	
Approach	EB		WB		SB	
HCM Control Delay, s	5 5		0		8.7	
HCM LOS					Α	
Minor Lane/Major Mvi	mt	EBL	EBT	WBT	WBR	SRI n1
	iiit			VVDT		
Capacity (veh/h)		1584	-	-		1013
HCM Cantral Palace		0.025	-	-		0.036
HCM Long LOS)	7.3	0	-	-	8.7
HCM Lane LOS	1-1	A	Α	-	-	A
HCM 95th %tile Q(ve	n)	0.1	-	-	-	0.1

1: Okatie Highway & Del Webb Blvd/Seagrass Station Rd

Hager Access

	-	•	←	•		†	~	-	ļ	4	
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	21	38	116	129	26	1639	72	140	1416	12	
v/c Ratio	0.10	0.14	0.54	0.45	0.12	0.61	0.06	0.85	0.54	0.01	
Control Delay	34.5	12.2	46.8	26.9	5.2	6.8	1.1	56.0	6.1	0.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	34.5	12.2	46.8	26.9	5.2	6.8	1.1	56.0	6.1	0.4	
Queue Length 50th (ft)	11	0	65	42	3	192	0	48	153	0	
Queue Length 95th (ft)	32	27	120	97	14	306	11	#104	245	1	
Internal Link Dist (ft)	391		300			720			1168		
Turn Bay Length (ft)				280	430		400	430		500	
Base Capacity (vph)	286	347	283	363	224	2702	1180	164	2600	1216	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.07	0.11	0.41	0.36	0.12	0.61	0.06	0.85	0.54	0.01	

Intersection Summary

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

1: Okatie Highway & Del Webb Blvd/Seagrass Station Rd

Section IX. Item #2. Hager A **Hager Access**

	۶	→	•	•	•	•	₹I	•	†	/	L	>
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations		र्स	7		र्स	7		ሻ	^	7		ሻ
Traffic Volume (veh/h)	17	3	35	107	0	119	1	23	1508	66	1	128
Future Volume (veh/h)	17	3	35	107	0	119	1	23	1508	66	1	128
Initial Q (Qb), veh	0	0	0	0	0	0		0	0	0		0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00		1.00		1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00		1.00
Work Zone On Approach		No			No				No			
Adj Sat Flow, veh/h/ln	1870	1870	1841	1870	1870	1870		1870	1870	1811		1870
Adj Flow Rate, veh/h	18	3	0	116	0	0		25	1639	0		139
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		0.92	0.92	0.92		0.92
Percent Heavy Veh, %	2	2	4	2	2	2		2	2	6		2
Cap, veh/h	246	37		256	0			323	2809			266
Arrive On Green	0.10	0.12	0.00	0.10	0.00	0.00		0.79	0.79	0.00		0.79
Sat Flow, veh/h	1419	305	1560	1452	0	1585		379	3554	1535		306
Grp Volume(v), veh/h	21	0	0	116	0	0		25	1639	0		139
Grp Sat Flow(s), veh/h/ln	1724	0	1560	1452	0	1585		379	1777	1535		306
Q Serve(g_s), s	0.0	0.0	0.0	6.1	0.0	0.0		2.3	16.3	0.0		29.5
Cycle Q Clear(g_c), s	1.0	0.0	0.0	7.1	0.0	0.0		15.6	16.3	0.0		45.8
Prop In Lane	0.86	0.0	1.00	1.00	0.0	1.00		1.00	10.5	1.00		1.00
Lane Grp Cap(c), veh/h	245	0	1.00	224	0	1.00		323	2809	1.00		266
V/C Ratio(X)	0.09	0.00		0.52	0.00			0.08	0.58			0.52
Avail Cap(c_a), veh/h	389	0.00		362	0.00			323	2809			266
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00		1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00		1.00	1.00	0.00		1.00
	36.3	0.00	0.00	39.1	0.00	0.00		6.2	3.7	0.00		12.6
Uniform Delay (d), s/veh	0.1	0.0	0.0	1.8	0.0	0.0		0.2	0.9	0.0		7.2
Incr Delay (d2), s/veh	0.1					0.0		0.0		0.0		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0				0.0			0.0
%ile BackOfQ(50%),veh/ln		0.0	0.0	2.7	0.0	0.0		0.2	3.0	0.0		2.1
Unsig. Movement Delay, s/vel		0.0	0.0	40.0	0.0	0.0		, 7	4.7	0.0		10.0
LnGrp Delay(d),s/veh	36.5	0.0	0.0	40.9	0.0	0.0		6.7	4.6	0.0		19.8
LnGrp LOS	D	A		D	А			A	A			<u>B</u>
Approach Vol, veh/h		21	Α		116	Α			1664	Α		
Approach Delay, s/veh		36.5			40.9				4.6			
Approach LOS		D			D				А			
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		76.0		15.1		76.0		15.1				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		70.0		18.0		70.0		18.0				
Max Q Clear Time (q_c+l1), s		18.3		3.0		47.8		9.1				
Green Ext Time (p_c), s		19.3		0.0		13.6		0.3				
Intersection Summary												
HCM 6th Ctrl Delay			6.5									
HCM 6th LOS			Α									
Notes			, ,									

User approved ignoring U-Turning movement.
Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th Signalized Intersection Summary
1: Okatie Highway & Del Webb Blvd/Seagrass Station Rd

	↓	4
Movement	SBT	SBR
Lane configurations	^	7
Traffic Volume (veh/h)	1303	11
Future Volume (veh/h)	1303	11
Initial Q (Qb), veh	0	0
Ped-Bike Adj(A_pbT)	O .	1.00
Parking Bus, Adj	1.00	1.00
Work Zone On Approach	No	1.00
Adj Sat Flow, veh/h/ln	1811	1870
Adj Flow Rate, veh/h	1416	0
Peak Hour Factor	0.92	0.92
Percent Heavy Veh, %	6	2
Cap, veh/h	2720	
Arrive On Green	0.79	0.00
	3441	1585
Sat Flow, veh/h		
Grp Volume(v), veh/h	1416	0
Grp Sat Flow(s), veh/h/ln	1721	1585
Q Serve(g_s), s	13.4	0.0
Cycle Q Clear(g_c), s	13.4	0.0
Prop In Lane		1.00
Lane Grp Cap(c), veh/h	2720	
V/C Ratio(X)	0.52	
Avail Cap(c_a), veh/h	2720	
HCM Platoon Ratio	1.00	1.00
Upstream Filter(I)	1.00	0.00
Uniform Delay (d), s/veh	3.4	0.0
Incr Delay (d2), s/veh	0.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.4	0.0
Unsig. Movement Delay, s/v	eh	
LnGrp Delay(d),s/veh	4.1	0.0
LnGrp LOS	А	
Approach Vol, veh/h	1555	Α
Approach Delay, s/veh	5.5	
Approach LOS	А	
••		
Timer - Assigned Phs		

1: Okatie Highway & Del Webb Blvd/Seagrass Station Rd

Section IX. Item #2. Hager . **Hager Access**

	→	•	←	•	•	†	/	>	ļ	4	
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	24	74	89	111	57	1484	61	214	1700	24	
v/c Ratio	0.16	0.29	0.52	0.41	0.34	0.53	0.05	0.95	0.59	0.02	
Control Delay	46.3	19.5	57.9	20.0	10.1	5.1	0.9	64.4	5.7	1.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	46.3	19.5	57.9	20.0	10.1	5.1	0.9	64.4	5.7	1.0	
Queue Length 50th (ft)	16	12	62	20	9	161	0	106	200	0	
Queue Length 95th (ft)	42	56	116	73	37	252	9	#159	313	5	
Internal Link Dist (ft)	391		300			720			1168		
Turn Bay Length (ft)				280	430		400	430		500	
Base Capacity (vph)	203	317	229	340	168	2790	1284	225	2873	1277	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.12	0.23	0.39	0.33	0.34	0.53	0.05	0.95	0.59	0.02	

Intersection Summary

Queue shown is maximum after two cycles.

⁹⁵th percentile volume exceeds capacity, queue may be longer.

1: Okatie Highway & Del Webb Blvd/Seagrass Station Rd

Section IX. Item #2. Hager A **Hager Access**

	۶	→	•	•	•	•	4	†	/	L	/	Ţ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations		4	7		र्स	7	7	^	7		7	^
Traffic Volume (veh/h)	23	0	70	80	5	105	54	1410	58	16	187	1615
Future Volume (veh/h)	23	0	70	80	5	105	54	1410	58	16	187	1615
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0		0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Work Zone On Approach		No			No			No				No
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1885	1870	1841	1870		1870	1885
Adj Flow Rate, veh/h	24	0	0	84	5	0	57	1484	0		197	1700
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95		0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	1	2	4	2		2	1
Cap, veh/h	224	0		196	8		262	2916			318	2987
Arrive On Green	0.08	0.00	0.00	0.08	0.09	0.00	0.83	0.83	0.00		0.83	0.83
Sat Flow, veh/h	1690	0	1585	1412	84	1598	288	3497	1585		355	3582
Grp Volume(v), veh/h	24	0	0	89	0	0	57	1484	0		197	1700
Grp Sat Flow(s), veh/h/ln	1690	0	1585	1496	0	1598	288	1749	1585		355	1791
Q Serve(g_s), s	0.0	0.0	0.0	5.0	0.0	0.0	8.6	13.5	0.0		39.6	16.6
Cycle Q Clear(q_c), s	1.4	0.0	0.0	6.4	0.0	0.0	25.2	13.5	0.0		53.1	16.6
Prop In Lane	1.00	0.0	1.00	0.94	0.0	1.00	1.00	13.3	1.00		1.00	10.0
Lane Grp Cap(c), veh/h	193	0	1.00	176	0	1.00	262	2916	1.00		318	2987
V/C Ratio(X)	0.12	0.00		0.50	0.00		0.22	0.51			0.62	0.57
Avail Cap(c_a), veh/h	317	0.00		302	0.00		262	2916			318	2987
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	0.00		1.00	1.00
	46.9	0.00	0.00	49.0	0.00	0.00	6.9	2.6	0.00		10.3	2.9
Uniform Delay (d), s/veh	0.3	0.0	0.0	2.2	0.0	0.0	1.9	0.6	0.0		8.8	0.8
Incr Delay (d2), s/veh	0.0								0.0			
Initial Q Delay(d3),s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0 3.1			0.0	0.0
%ile BackOfQ(50%),veh/ln	0.6	0.0	0.0	2.6	0.0	0.0	0.6	3.1	0.0		3.1	2.8
Unsig. Movement Delay, s/veh		0.0	0.0	F1 2	0.0	0.0	0.0	2.2	0.0		10.1	2.7
LnGrp Delay(d),s/veh	47.2	0.0	0.0	51.2	0.0	0.0	8.8	3.3	0.0		19.1	3.7
LnGrp LOS	D	A		D	A		A	Α			В	A
Approach Vol, veh/h		24	А		89	Α		1541	Α			1897
Approach Delay, s/veh		47.2			51.2			3.5				5.3
Approach LOS		D			D			Α				Α
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		96.0		14.3		96.0		14.3				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		90.0		18.0		90.0		18.0				
Max Q Clear Time (q_c+l1), s		27.2		3.4		55.1		8.4				
Green Ext Time (p_c), s		22.3		0.0		22.3		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			5.9									
HCM 6th LOS			A									
Notes												

User approved ignoring U-Turning movement.
Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

	•
Movement	SBR
Lareconfigurations	7
Traffic Volume (veh/h)	23
Future Volume (veh/h)	23
Initial Q (Qb), veh	0
Ped-Bike Adj(A_pbT)	1.00
Parking Bus, Adj	1.00
Work Zone On Approach	
Adj Sat Flow, veh/h/ln	1870
Adj Flow Rate, veh/h	0
Peak Hour Factor	0.95
Percent Heavy Veh, %	2
Cap, veh/h	
Arrive On Green	0.00
Sat Flow, veh/h	1585
Grp Volume(v), veh/h	0
Grp Sat Flow(s), veh/h/ln	1585
Q Serve(g_s), s	0.0
Cycle Q Clear(g_c), s	0.0
Prop In Lane	1.00
Lane Grp Cap(c), veh/h	
V/C Ratio(X)	
Avail Cap(c_a), veh/h	
HCM Platoon Ratio	1.00
Upstream Filter(I)	0.00
Uniform Delay (d), s/veh	0.0
Incr Delay (d2), s/veh	0.0
Initial Q Delay(d3),s/veh	0.0
%ile BackOfQ(50%),veh/ln	0.0
Unsig. Movement Delay, s/ve	eh
LnGrp Delay(d),s/veh	0.0
LnGrp LOS	
Approach Vol, veh/h	А
Approach Delay, s/veh	
Approach LOS	
Timor Assigned Dhs	
Timer - Assigned Phs	

1: Okatie highway & Del Webb Blvd/Seagrass Station Rd

Section IX. Item #2. No Ha No Hager Access AM

Intersection															
Int Delay, s/veh	81.2														
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR	
Lane Configurations		ર્ન	7		- 4	- 7		- ሽ	^	- 7		<u>ነ</u>	^	7	
Traffic Vol, veh/h	17	3	35	107	0	119	1	23	1508	66	1	128	1303	11	
Future Vol, veh/h	17	3	35	107	0	119	1	23	1508	66	1	128	1303	11	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	Yield	-	-	Yield	-	-	-	Yield	-	-	-	Yield	
Storage Length	-	-	0	-	-	280	-	430	-	400	-	430	-	-	
Veh in Median Storage	,# -	2	-	-	0	-	-	-	0	-	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	-	0	-	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	4	2	2	2	2	2	2	6	2	2	6	2	
Mvmt Flow	18	3	38	116	0	129	1	25	1639	72	1	139	1416	12	
Major/Minor N	/linor2			linar1		N	Noior1				/oior?				
		2207		Minor1	2207		Major1	1 / 1 /			/lajor2	1/20			
Conflicting Flow All	2568	3387	708	2681	3387	820	1416	1416	0	0	1639	1639	0	0	
Stage 1	1696	1696	-	1691	1691	-	-	-	-	-	-	-	-	-	
Stage 2	872	1691	-	990	1696	-	-	-	-	-	-	-	-	-	
Critical Hdwy	7.54	6.54	6.98	7.54	6.54	6.94	6.44	4.14	-	-	6.44	4.14	-	-	
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	-	-	
Follow-up Hdwy	3.52	4.02	3.34	3.52	4.02	3.32	2.52	2.22	-	-	2.52	2.22	-	-	
Pot Cap-1 Maneuver	~ 13	7	373	~ 11	7	318	179	477	-	-	128	391	-	-	
Stage 1	96	147	-	~ 97	148	-	-	-	-	-	-	-	-	-	
Stage 2	312	148	-	264	147	-	-	-	-	-	-	-	-	-	
Platoon blocked, %	_								-	-			-	-	
Mov Cap-1 Maneuver	~ 5	4	373	~ 21	4	318	441	441	-	-	380	380	-	-	
Mov Cap-2 Maneuver	30	-	-	~ 21	4	-	-	-	-	-	-	-	-	-	
Stage 1	90	93	-	~ 91	139	-	-	-	-	-	-	-	-	-	
Stage 2	174	139	-	144	93	-	-	-	-	-	-	-	-	-	
Approach	EB			WB			NB				SB				
HCM Control Delay, s			¢ 1	153.6			0.2				1.8				
HCM LOS	F		ΨΙ	F			0.2				1.0				
HOW LOS	Į.			ļ											
Minor Lane/Major Mvm	ıt	NBL	NBT	NBR	EBLn1	EBLn2V	VBLn1V	VBLn2	SBL	SBT	SBR				
Capacity (veh/h)		441	-	-	30	373	21	318	380	-	-				
HCM Lane V/C Ratio		0.059	-	-	0.725	0.102	5.538	0.407	0.369	-	-				
HCM Control Delay (s)		13.7	-		270.3		3 2410	23.9	19.9	-	-				
HCM Lane LOS		В	-	_	F	С	F	С	С	-	-				
HCM 95th %tile Q(veh))	0.2	-	-	2.4	0.3	14.8	1.9	1.7	-	-				
ì															
Notes										di -			, ,		
~: Volume exceeds cap	pacity	\$: D	elay exc	ceeds 3	300s	+: Con	nputatio	n Not E	Defined	*: A	II major	volume	e in plat	oon	

Intersection												
Int Delay, s/veh	1.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	LDL	EDI	EDK	WDL	WDI 4	WDK	INDL	IND I	NDK	JDL		JUK
Lane Configurations Traffic Vol, veh/h	23	심 117	5 6	0	쉭 97	0	55	T	0	0	↔ 0	66
Future Vol, veh/h	23	117	56	0	97	0	55	0	0	0	0	66
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	00
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	riee -	-	None	Stop -	Siup -	None	Siup -	Stop -	None
Storage Length	-	_	0	-	-	INUITE -	-	-	NONE -	-		NONE
Veh in Median Storage	2.# -	0	-		0			0	_	_	0	
Grade, %	-, π	0	_	_	0	_	_	0	_	_	0	_
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	4	2	2	3	2	2	2	2	2	2	2
Mvmt Flow	26	130	62	0	108	0	61	0	0	0	0	73
IVIVIIII I IOW	20	130	UZ	U	100	U	UI	U	U	U	U	13
	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	108	0	0	192	0	0	327	290	-	321	352	108
Stage 1	-	-	-	-	-	-	182	182	-	108	108	-
Stage 2	-	-	-	-	-	-	145	108	-	213	244	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	-	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-		4.018		3.518		3.318
Pot Cap-1 Maneuver	1483	-	-	1381	-	0	626	620	0	632	573	946
Stage 1	-	-	-	-	-	0	820	749	0	897	806	-
Stage 2	-	-	-	-	-	0	858	806	0	789	704	-
Platoon blocked, %		-	-		-							
Mov Cap-1 Maneuver	1483	-	-	1381	-	-	568	608	-	623	562	946
Mov Cap-2 Maneuver	-	-	-	-	-	-	568	608	-	623	562	-
Stage 1	-	-	-	-	-	-	804	734	-	879	806	-
Stage 2	-	-	-	-	-	-	791	806	-	773	690	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.9			0			0			9.1		
HCM LOS							A			Α		
							,,			, ,		
Minor Lane/Major Mvm	nt N	NBLn1	EBL	EBT	EBR	WBL	WRT	SBLn1				
Capacity (veh/h)			1483			1381	,,,,,	946				
HCM Lane V/C Ratio		-	0.017	-	-	1301		0.078				
HCM Control Delay (s)		0	7.5	0	_	0	-	9.1				
HCM Lane LOS		A	7.5 A	A	-	A	-	9.1 A				
HCM 95th %tile Q(veh	١	А	0.1	- A	_	0	-	0.3				
HOW FOUT MINE Q(VEH)	-	U. I	-	_	U	-	0.3				

No Hager Access AM

3: Pearce Road & Augustine Road

Intersection												
Int Delay, s/veh	7.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	24	6	2	0	23	20	15	13	1	10	5	5
Future Vol, veh/h	24	6	2	0	23	20	15	13	1	10	5	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	10	2	2	40	2
Mvmt Flow	27	7	2	0	26	22	17	14	1	11	6	6
Major/Minor I	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	104	80	9	85	83	15	12	0	0	15	0	0
Stage 1	31	31	-	49	49	-	-	-	-	-	-	-
Stage 2	73	49	-	36	34	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018		3.518	4.018	3.318		-	-	2.218	-	-
Pot Cap-1 Maneuver	876	810	1073	901	807	1065	1607	-	-	1603	-	-
Stage 1	986	869	-	964	854	-	-	-	-	-	-	-
Stage 2	937	854	-	980	867	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	825	795	1073	881	792	1065	1607	-	-	1603	-	-
Mov Cap-2 Maneuver	825	795	-	881	792	-	-	-	-	-	-	-
Stage 1	975	863	-	953	845	-	-	-	-	-	-	-
Stage 2	880	845	-	964	861	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.5			9.2			3.8			3.6		
HCM LOS	Α			Α								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1607	-	-	831	899	1603	_	_			
HCM Lane V/C Ratio		0.01	-	-		0.053		-	-			
HCM Control Delay (s)		7.3	0	-	9.5	9.2	7.3	0	-			
HCM Lane LOS		Α	A	-	Α	Α	Α	A	-			
HCM 95th %tile Q(veh	1)	0	-	-	0.1	0.2	0	-	-			

Intersection						
Int Delay, s/veh	3.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	₩.	LDK	NDL	<u>₩</u>	3B1 }	אטכ
Traffic Vol, veh/h	'T '	4	28	4	0	38
Future Vol, veh/h	7	4	28	0	0	38
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control		~	Free	Free	Free	Free
RT Channelized	Stop	Stop				
	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	8	4	31	0	0	42
Major/Minor N	Vlinor2	ı	Major1	١	/lajor2	
Conflicting Flow All	83	21	42	0		0
Stage 1	21		-	-	_	-
Stage 2	62	_	_	_	_	_
Critical Hdwy	6.42	6.22	4.12	-	_	_
Critical Hdwy Stg 1	5.42	-		_	_	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518		2.218	_		_
Pot Cap-1 Maneuver	919	1056	1567	-	_	_
Stage 1	1002	1030	1507	-	-	-
Stage 2	961		-	-	-	-
	901	-	-	-	-	-
Platoon blocked, %	001	105/	15/7	-	-	-
Mov Cap-1 Maneuver	901	1056	1567	-	-	-
Mov Cap-2 Maneuver	901	-	-	-	-	-
Stage 1	982	-	-	-	-	-
Stage 2	961	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	8.8		7.3		0	
HCM LOS	А		7.0			
TIOM EGO	,,,					
		NDI	NDT	EDI 4	ODT	000
Minor Lane/Major Mvm	<u>it</u>	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1567	-	702	-	-
HCM Lane V/C Ratio		0.02	-	0.013	-	-
HCM Control Delay (s)		7.3	0	8.8	-	-
HCM Lane LOS		Α	Α	Α	-	-
HCM 95th %tile Q(veh))	0.1	-	0	-	-

7.5 EBL 0 0	EBT 4 0	WBT	WBR	SBL	
0	ની		WBR	SRI	
0	ની		אטוע		SBR
0		17		Y	אומכ
0	U	0	0	- 'T '	0
	0	0	0	7	0
U	0	0	0	0	0
Free	Free	Free	Free	Stop	Stop
-	None	-	None	Stop -	None
-	None -	_	None -	0	None -
					-
		~			
					90
					2
U	U	U	U	8	0
Major1	N	Major2	N	Minor2	
1	0	-	0	1	1
-	-	-	-	1	-
-	-	-	-	0	-
4.12	-	-	-	6.42	6.22
-	-	-	-	5.42	-
-	-	-	-	5.42	-
2.218	-	-	-		3.318
1622	-	-	-	1022	1084
-	-	-	-	1022	-
-	-	-	-	-	-
	-	-	-		
1622	-	-	-	1022	1084
	_	_	_		-
_	_	-	-		-
_	_	_	_	-	_
-					_
s 0		0		8.6	
				Α	
mt	FRI	FRT	WRT	WRR	SRI n1
1111		LDI	VVDI		1022
			-		0.008
		-			
)		-			8.6
h)		-			A
11)	U	-	-	-	0
	1 - 4.12 - 2.218 1622 EB	- 0 90 90 90 2 2 0 0 Major1 N 1 0 4.12 2.218 - 1622 5 1622 EB S 0 mt EBL 1622 - S) A	- 0 0 90 90 90 2 2 2 2 0 0 0 0 Major1	- 0 0 - 90 90 90 90 2 2 2 2 2 0 0 0 0 0 Major1 Major2 N 1 0 - 0 4.12 2.218 1622 EB WB S 0 0 0 mt EBL EBT WBT 1622 S) 0 S) 0	- 0 0 - 0 90 90 90 90 90 2 2 2 2 2 2 0 0 0 0 0 8 Major1

Intersection Int Delay, s/veh						
iiii Deiay, S/Ven	0.1					
	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	∱ }			^
Traffic Vol, veh/h	0	10	1540	10	0	1445
Future Vol, veh/h	0	10	1540	10	0	1445
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	6
Mymt Flow	0	11	1674	11	0	1571
			1077			1071
	/linor1		Major1		/lajor2	
Conflicting Flow All	-	843	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Flawy						
Critical Hdwy Stg 1	-	-	-	-	-	-
	-	-	-	-	-	-
Critical Hdwy Stg 1	- - -	3.32	- -	- - -	- -	- -
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy	- - - 0	-	-	-	-	-
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver	0	3.32	-	-	-	-
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1		3.32 307	-	-	- 0 0	-
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2	0	3.32 307	-	- - -	- - 0	- - -
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, %	0	3.32 307 -	- - -	- - - -	- 0 0	- - - -
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver	0 0 0	3.32 307	- - - -	- - - -	- 0 0	- - - -
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver	0	3.32 307 - - 307	- - -	- - - - -	- 0 0 0	- - - - -
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1	0 0 0	3.32 307 - - 307		- - - - -	- 0 0 0	-
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver	0 0 0	3.32 307 - - 307	- - - -	- - - - -	- 0 0 0	- - - - -
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1	0 0 0	3.32 307 - - 307		- - - - -	- 0 0 0	-
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1	0 0 0	3.32 307 - - 307		- - - - -	- 0 0 0	-
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach	0 0 0 - - - - WB	3.32 307 - - 307	-	- - - - -	- 0 0 0	-
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s	0 0 0	3.32 307 - - 307	- - - - - - - - - NB	- - - - -	- 0 0 0 - - - - SB	-
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach	0 0 0 - - - - - WB	3.32 307 - - 307	- - - - - - - - - NB	- - - - -	- 0 0 0 - - - - SB	-
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS	0 0 0 - - - - WB 17.2 C	3.32 307 - - 307 - -	- - - - - - - - NB		- 0 0 0 - - - - SB	-
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS	0 0 0 - - - - WB 17.2 C	3.32 307 - - 307	- - - - - - - - - NB	- - - - - - - -	- 0 0 0 - - - - SB	-
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	0 0 0 - - - - WB 17.2 C	3.32 307 - - 307 - -		- - - - - - - - - - - 307	- 0 0 0 - - - - SB	-
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	0 0 0 - - - - WB 17.2 C	3.32 307 - - 307 - -		- - - - - - - - - - - - - - - - - - -	- 0 0 0 - - - - SB	-
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	0 0 0 - - - - WB 17.2 C	3.32 307 - - 307 - - - NBT		- - - - - - - - - - - 307	- 0 0 0 0	-
Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	0 0 0 - - - - WB 17.2 C	3.32 307 - - 307 - - - NBT		- - - - - - - - - - - - - - - - - - -	- 0 0 0 0	-

Intersection						
Int Delay, s/veh	0.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	†			^
Traffic Vol, veh/h	0	90	1502	48	0	1445
Future Vol, veh/h	0	90	1502	48	0	1445
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	_	0	_	-	_	-
Veh in Median Storage	e,# 0	-	0	_	_	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	6
Mvmt Flow	0	98	1633	52	0	1571
IVIVIIIL I IOW	U	70	1000	JZ	U	13/1
Major/Minor	Minor1		Major1	Λ	/lajor2	
Conflicting Flow All	-	843	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	307	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			_	_	-	_
Mov Cap-1 Maneuver	_	307	_	_	_	_
Mov Cap-2 Maneuver	_	-	_	_	_	_
Stage 1	_	_	_	_	_	_
Stage 2	_	_	_	_	_	_
Stage 2						
Approach	WB		NB		SB	
HCM Control Delay, s			0		0	
HCM LOS	С					
Minor Lane/Major Mvn	nt	NBT	NRDV	VBLn1	SBT	
	iit	INDI	NDRV			
Capacity (veh/h)		-	-	307	-	
HCM Cantrol Dates (-		0.319	-	
HCM Control Delay (s)	-	-	22.1	-	
HCM Lane LOS	.\	-	-	C	-	
HCM 95th %tile Q(veh	1)	-	-	1.3	-	

Intersection						
Int Delay, s/veh	3.7					
		FDT.	MOT	MDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	07	4	ĵ.		Y	0.4
Traffic Vol, veh/h	37	11	66	0	5	24
Future Vol, veh/h	37	11	66	0	5	24
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	:,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	41	12	73	0	6	27
Major/Minor N	Major1	N	Major2	N	Minor2	
Conflicting Flow All	73	0	<u>viajui 2</u> -	0	167	73
Stage 1	-	-	-	-	73	-
Stage 2				-	94	
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	4.12	-	-	-	5.42	0.22
	-		-		5.42	
Critical Hdwy Stg 2	2 210	-	-	-		2 210
Follow-up Hdwy	2.218	-	-			3.318
Pot Cap-1 Maneuver	1527	-	-	-	823	989
Stage 1	-	-	-	-	950	-
Stage 2	-	-	-	-	930	-
Platoon blocked, %	4507	-	-	-	004	000
Mov Cap-1 Maneuver	1527	-	-	-	801	989
Mov Cap-2 Maneuver	-	-	-	-	801	-
Stage 1	-	-	-	-	924	-
Stage 2	-	-	-	-	930	-
Approach	EB		WB		SB	
HCM Control Delay, s	5.7		0		8.9	
HCM LOS	0.1		U		Α	
TIOWI LOO					А	
Minor Lane/Major Mvm	<u>it</u>	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		1527	-	-	-	951
HCM Lane V/C Ratio		0.027	-	-	-	0.034
HCM Control Delay (s)		7.4	0	-	-	8.9
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh)		0.1	-	-	-	0.1

359.5 EBL

Stop

Minor2

EBT

Stop

Intersection
Int Delay, s/veh

Movement

Lane Configurations

Conflicting Peds, #/hr

Veh in Median Storage, #

Traffic Vol, veh/h

Future Vol, veh/h

RT Channelized

Storage Length

Peak Hour Factor

Heavy Vehicles, %

Sign Control

Grade, %

Mvmt Flow

Major/Minor

1: Okatie highway & Del Webb Blvd/Seagrass Station Rd

EBR

Stop

Yield

WBL

Stop

Minor1

WBR

Stop

Yield

WBT

5

Stop

NBL

Free

Major1

57 1484

NBT

Free

No Ha

Conflicting Flow All	2987	3726	850	2876	3726	742	1700	0	0	1484	1484	0	0	
Stage 1	2128	2128	-	1598	1598	-	-	-	-	-	-	-	-	
Stage 2	859	1598	-	1278	2128	-	-	-	-	-	-	-	-	
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.92	4.14	-	-	6.44	4.14	-	-	
Critical Hdwy Stg 1	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	-	
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.31	2.22	-	-	2.52	2.22	-	-	
Pot Cap-1 Maneuver	~ 6	4	304	~ 7	~ 4	360	371	-	-	162	449	-	-	
Stage 1	51	89	-	111	164	-	-	-	-	-	-	-	-	
Stage 2	317	164	-	176	89	-	-	-	-	-	-	-	-	
Platoon blocked, %								-	-			-	-	
Mov Cap-1 Maneuver	-	1	304	~ 3	~ 1	360	371	-	-	365	365	-	-	
Mov Cap-2 Maneuver	-	1	-	~ 3	~ 1	-	-	-	-	-	-	-	-	
Stage 1	43	37	-	94	139	-	-	-	-	-	-	-	-	
Stage 2	179	139	-	~ 55	37	-	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s		\$ 6863.2	0.6	3.1	
HCM LOS	-	F			

Minor Lane/Major Mvmt	NBL	NBT	NBR E	BLn1 E	EBLn2W	/BLn1V	VBLn2	SBL	SBT	SBR
Capacity (veh/h)	371	-	-	-	304	3	360	365	-	-
HCM Lane V/C Ratio	0.153	-	-	-	0.2422	9.825	0.307	0.585	-	-
HCM Control Delay (s)	16.5	-	-	-	2 \$.615	317.3	19.4	27.8	-	-
HCM Lane LOS	С	-	-	-	С	F	С	D	-	-
HCM 95th %tile Q(veh)	0.5	-	-	-	0.9	13.3	1.3	3.6	-	-

N	n	t	Δ	ς
ľ	v	ι	C	•

~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

HCM 95th %tile Q(veh)

0.1

Interception												
Intersection	1 2											
Int Delay, s/veh	1.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ની	7		सी			↑			4	
Traffic Vol, veh/h	51	141	61	0	117	0	77	0	0	1	0	24
Future Vol, veh/h	51	141	61	0	117	0	77	0	0	1	0	24
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	0	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	3	2	2	2	4	2	2	2	2	2	2	2
Mvmt Flow	57	157	68	0	130	0	86	0	0	1	0	27
Major/Minor	laior1			Majora			Minor1			Minor		
	lajor1	^		Major2	^		Minor1	401		Minor2	4/0	120
Conflicting Flow All	130	0	0	225	0	0	415	401	-	435	469	130
Stage 1	-	-	-	-	-	-	271	271	-	130	130	-
Stage 2	112	-	-	112	-	-	144	130	-	305	339	- ())
Critical Hdwy	4.13	-	-	4.12	-	-	7.12	6.52	-	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	2 210	-	-	6.12	5.52	-	6.12	5.52	2 210
	2.227	-	-	2.218	-	-	3.518	4.018	-	3.518	4.018	3.318
Pot Cap-1 Maneuver	1449	-	-	1344	-	0	548	538	0	531	492	920
Stage 1	-	-	-	-	-	0	735	685	0	874	789	-
Stage 2	-	-	-	-	-	0	859	789	0	705	640	-
Platoon blocked, %	1//0	-	-	1244	-		[1 <i>1</i>	E11		[12	470	020
Mov Cap-1 Maneuver	1449	-	-	1344	-	-	514	514	-	513	470	920
Mov Cap-2 Maneuver	-	-	-	-	-	-	514	514	-	513	470	-
Stage 1	-	-	-	-	-	-	702	654	-	835	789	-
Stage 2	-	-	-	-	-	-	834	789	-	673	611	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.5			0			0			9.2		
HCM LOS							Α			Α		
Minor Long/Major Mund		VIDI n1	EDI	EDT	EDD	WDI	WDT	CDI _m 1				
Minor Lane/Major Mvmt	ı I	VBLn1	EBL	EBT	EBR	WBL	WBI	SBLn1				
Capacity (veh/h)			1449	-	-	1344	-	892				
HCM Lane V/C Ratio			0.039	-	-	-	-	0.031				
HCM Control Delay (s) HCM Lane LOS		0	7.6	0	-	0	-	9.2				
		Α	Α	Α	-	Α	-	Α				

0.1

Intersection												
Int Delay, s/veh	4.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	8	9	14	0	12	7	12	7	0	20	38	20
Future Vol., veh/h	8	9	14	0	12	7	12	7	0	20	38	20
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	7	2	2	2	2	2	2	14	2	2	5	2
Mvmt Flow	9	10	16	0	13	8	13	8	0	22	42	22
Major/Minor I	Minor2			Minor1			Major1		ľ	Major2		
Conflicting Flow All	142	131	53	144	142	8	64	0	0	8	0	0
Stage 1	97	97	-	34	34	-	-	-	-	-	-	-
Stage 2	45	34	-	110	108	-	-	-	-	-	-	-
Critical Hdwy	7.17	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.17	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.17	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.563	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	816	760	1014	825	749	1074	1538	-	-	1612	-	-
Stage 1	897	815	-	982	867	-	-	-	-	-	-	-
Stage 2	956	867	-	895	806	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	786	743	1014	790	733	1074	1538	-	-	1612	-	-
Mov Cap-2 Maneuver	786	743	-	790	733	-	-	-	-	-	-	-
Stage 1	890	804	-	974	860	-	-	-	-	-	-	-
Stage 2	927	860	-	858	795	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.4			9.5			4.6			1.9		
HCM LOS	Α			A								
Minor Lane/Major Mvm	nt	NBL	NBT	NIPD	EBLn1V	VRI n1	SBL	SBT	SBR			
	IC		INDI	NDK				SDI	SDR			
Capacity (veh/h) HCM Lane V/C Ratio		1538	-	-	859	830	1612	-	-			
	\	0.009 7.4	-	-	9.4	0.025 9.5	7.3	- 0	-			
HCM Control Delay (s) HCM Lane LOS			0	-		9.5 A		0	-			
HCM 95th %tile Q(veh	1)	A 0	A	-	0.1	0.1	A 0	A	-			
HOW FOUT WITH Q(VEH	IJ	U	-	-	0.1	0.1	U	-	-			

Intersection						
Int Delay, s/veh	4.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	, A			4	₽	
Traffic Vol, veh/h	23	7	12	3	4	24
Future Vol, veh/h	23	7	12	3	4	24
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	9	2	2
Mvmt Flow	26	8	13	3	4	27
Major/Minor I	Minor2		Major1	N	/lajor2	
Conflicting Flow All	47	18	31	0	<u>- ////////////////////////////////////</u>	0
Stage 1	18					
	29	-	-	-	-	-
Stage 2	6.42	6.22	412	-	-	-
Critical Hdwy			4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	2 210	2 210	-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	963	1061	1582	-	-	-
Stage 1	1005	-	-	-	-	-
Stage 2	994	-	-	-	-	-
Platoon blocked, %			4=00	-	-	-
Mov Cap-1 Maneuver	955	1061	1582	-	-	-
Mov Cap-2 Maneuver	955	-	-	-	-	-
Stage 1	997	-	-	-	-	-
Stage 2	994	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	8.8		5.8		0	
HCM LOS	Α		3.0		U	
TIOWI LOO						
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1582	-	978	-	-
HCM Lane V/C Ratio		800.0	-	0.034	-	-
HCM Control Delay (s)		7.3	0	8.8	-	-
HCM Lane LOS		Α	Α	Α	-	-
HCM 95th %tile Q(veh)	0	-	0.1	-	-

Intersection						
Int Delay, s/veh	7.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	₽		W	
Traffic Vol, veh/h	0	0	0	4	32	0
Future Vol, veh/h	0	0	0	4	32	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	33	2	2
Mvmt Flow	0	0	0	4	36	0
Major/Minor N	Major1	N	Major2	ı	Minor2	
Conflicting Flow All	4	0	<u>viajui 2</u> -	0	2	2
Stage 1	-	-	-	-	2	
Stage 2		-	-	-	0	-
	4.12	-	-		6.42	6.22
Critical Hdwy			-	-	5.42	0.22
Critical Hdwy Stg 1 Critical Hdwy Stg 2	-	-	-	-	5.42	-
	2.218	-	-	-	3.518	
Follow-up Hdwy Pot Cap-1 Maneuver	1618	-	-	-	1021	1082
		-	-	-	1021	1002
Stage 1	-	-	-	-	1021	-
Stage 2	-	-		-	-	-
Platoon blocked, %	1/10	-	-	-	1001	1000
Mov Cap-1 Maneuver	1618	-	-	-	1021	1082
Mov Cap-2 Maneuver	-	-	-	-	1021	-
Stage 1	-	-	-	-	1021	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		8.7	
HCM LOS					Α	
Minor Long/Major Mym		EDI	EDT	WDT	WDD	CDI _m 1
Minor Lane/Major Mvm	11	EBL	EBT	WBT	WBR :	
Capacity (veh/h)		1618	-	-		1021
LIONAL MACO D "		-	-	-	-	0.035
HCM Lane V/C Ratio		_				
HCM Control Delay (s)		0	-	-	-	8.7
		0 A 0	-	-	-	8.7 A 0.1

0					
WRI	WRR	NRT	NRR	SBI	SBT
VVDL			NDI	JDL	^
Ω			10	Λ	1765
					1765
					0
					Free
					None
					-
					0
					0
					95
					95 1
U	11	1587	- 11	U	1858
Minor1	N	Major1	Λ	Major2	
-	799	0	0	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	6.94	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	3.32	-	-	-	-
0		-	-	0	-
	-	-	-		-
	_	_	_		_
		_	_		_
_	328	_	_	_	_
_	-	_	_	_	_
_	_	-	_	_	_
_	_	_	_	_	_
16.3		0		0	
С					
nt	NRT	NRRV	WRI n1	SRT	
		_	10.5	-	
)	-	-	С	-	
	WBL 0 0 0 Stop 0 0 Minor1 0 0 0 WB 16.3 C	WBL WBR 0 10 0 10 0 0 10 0 0 Stop Stop - None - 0 - 95 95 2 2 2 0 11 Minor1	WBL WBR NBT	WBL WBR NBT NBR 0 10 1508 10 0 10 1508 10 0 0 0 0 Stop Stop Free Free - None - None - None - 0 - 0 0 95 95 95 95 2 2 3 2 0 11 1587 11 Minor1 Major1 Major1 Major1 - 799 0 0 0 - 799 0 0 0 - 6.94 - - 3.32 - - 3.32 - - 328 - - 328 - - - - - - -	WBL WBR NBT NBR SBL 0 10 1508 10 0 0 10 1508 10 0 0 0 0 0 0 Stop Stop Free Free Free - None - None - - None - 0 - - 9, # 0 - 0 - - 95 95 95 95 95 2 2 3 2 2 0 11 1587 11 0 Minor1 Major1 Major2 - 799 0 0 - - 799 0 0 - - 6.94 - - - - 0 328 - - 0 328 - - - 0 - - - - 0 - - </td

Intersection						
Int Delay, s/veh	0.4					
	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	WDK_	↑	NDK	SDL	1
Traffic Vol, veh/h	0	69	1447	71	0	
Future Vol, veh/h	0	69	1447	71	0	1765
Conflicting Peds, #/hr	0	09	0	0	0	0
	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	-	None	-	None
Storage Length	-	0		None -	-	NONE -
Veh in Median Storage,		-	0	-	-	0
Grade, %	0		0			0
	95	- 0E	95	- 0E	- 0E	95
Peak Hour Factor		95		95	95	
Heavy Vehicles, %	2	2	3	2	2	1000
Mvmt Flow	0	73	1523	75	0	1858
Major/Minor M	linor1	N	Major1	٨	/lajor2	
Conflicting Flow All	-	799	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-		_		_
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	3.32	_	_	_	_
Pot Cap-1 Maneuver	0	328	_	_	0	_
Stage 1	0	-		_	0	_
Stage 2	0	_	_	_	0	_
Platoon blocked, %	U		_	_	U	_
Mov Cap-1 Maneuver	-	328	_	_	_	-
Mov Cap-1 Maneuver	-	J20 -	_	_	_	
Stage 1	_	_			_	
ğ	-	-	-	-		-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	19.1		0		0	
HCM LOS	С					
Minor Lane/Major Mvmt		NBT	NIPDI	VBLn1	SBT	
		NDT				
Capacity (veh/h)		-	-	020	-	
HCM Control Dolor (a)		-		0.221	-	
HCM Long LOS		-	-	19.1 C	-	
		-	-	(,	-	
HCM Lane LOS HCM 95th %tile Q(veh)				0.8	-	

Intersection						
Int Delay, s/veh	4.4					
				=		05-
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	ĵ,		Y	
Traffic Vol, veh/h	41	30	36	0	5	33
Future Vol, veh/h	41	30	36	0	5	33
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	46	33	40	0	6	37
Major/Minor N	/lajor1	ı	/lajor2	ı	Minor2	
Conflicting Flow All	40	0	-	0	165	40
Stage 1	40	-	_	-	40	-
Stage 2	_	-	_	-	125	
Critical Hdwy	4.12	-	-	_	6.42	6.22
Critical Hdwy Stg 1	4.12	-	-	-	5.42	0.22
Critical Hdwy Stg 2		-	-	_	5.42	-
	2.218	-	-			3.318
Pot Cap-1 Maneuver	1570	-	-		826	1031
•	1370	-	-	-	982	
Stage 1 Stage 2	-	-	-	-	982	-
Platoon blocked, %	-	-		-	901	-
	1570		-		001	1021
Mov Cap-1 Maneuver	1570	-	-	-	801	1031
Mov Cap-2 Maneuver	-	-	-	-	801	-
Stage 1	-	-	-	-	953	-
Stage 2	-	-	-	-	901	-
Approach	EB		WB		SB	
HCM Control Delay, s	4.3		0		8.8	
HCM LOS					Α	
		EDI	EDT	MOT	MADD	`DI 4
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR :	
Minor Lane/Major Mvmi Capacity (veh/h)	t	1570	EBT -	WBT -	-	993
Minor Lane/Major Mvml Capacity (veh/h) HCM Lane V/C Ratio	t	1570 0.029	-	-	-	993 0.043
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	t	1570 0.029 7.4	- - 0	-	-	993 0.043 8.8
Minor Lane/Major Mvml Capacity (veh/h) HCM Lane V/C Ratio		1570 0.029	-	-	-	993 0.043

No Hager Access AM

1: Okatie highway & Del Webb Blvd/Seagrass Station Rd

	-	•	←	•	•	†	1	-	ļ	4	
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	21	38	116	129	26	1639	72	140	1416	12	
v/c Ratio	0.10	0.14	0.54	0.45	0.12	0.61	0.06	0.85	0.54	0.01	
Control Delay	34.5	12.2	46.8	26.6	5.2	6.8	1.1	56.0	6.1	0.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	34.5	12.2	46.8	26.6	5.2	6.8	1.1	56.0	6.1	0.4	
Queue Length 50th (ft)	11	0	65	42	3	192	0	48	153	0	
Queue Length 95th (ft)	32	27	120	96	14	306	11	#104	245	1	
Internal Link Dist (ft)	391		300			720			1168		
Turn Bay Length (ft)				280	430		400	430		500	
Base Capacity (vph)	286	347	283	364	224	2702	1180	164	2600	1216	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.07	0.11	0.41	0.35	0.12	0.61	0.06	0.85	0.54	0.01	

Intersection Summary
95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM 6th Signalized Intersection Summary
1: Okatie highway & Del Webb Blvd/Seagrass Station Rd

Section IX. Item #2. No Hag No Hager Access AM

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SB	SBR
Lane Configurations 4 7 4 7 4 7 4 7 7 4	. 7
Traffic Volume (veh/h) 17 3 35 107 0 119 24 1508 66 129 130	
Future Volume (veh/h) 17 3 35 107 0 119 24 1508 66 129 130	11
Initial Q (Qb), veh 0 0 0 0 0 0 0 0	0
Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00	1.00
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00
Work Zone On Approach No No No No	
Adj Sat Flow, veh/h/ln 1870 1870 1841 1870 1870 1870 1870 1870 1811 1870 181	
Adj Flow Rate, veh/h 18 3 0 116 0 0 26 1639 0 140 141	
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	
Percent Heavy Veh, % 2 2 4 2 2 2 2 6 2	
Cap, veh/h 246 37 256 0 323 2809 266 272	
Arrive On Green 0.10 0.12 0.00 0.10 0.00 0.79 0.79 0.00 0.79 0.79	
Sat Flow, veh/h 1419 305 1560 1452 0 1585 379 3554 1535 306 344	
Grp Volume(v), veh/h 21 0 0 116 0 0 26 1639 0 140 141	
Grp Sat Flow(s), veh/h/ln 1724 0 1560 1452 0 1585 379 1777 1535 306 172	
Q Serve(g_s), s 0.0 0.0 0.0 6.1 0.0 0.0 2.4 16.3 0.0 29.9 13.	
Cycle Q Clear(g_c), s 1.0 0.0 0.0 7.1 0.0 0.0 15.7 16.3 0.0 46.2 13.	
Prop In Lane 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00
Lane Grp Cap(c), veh/h 245 0 224 0 323 2809 266 272	
V/C Ratio(X) 0.09 0.00 0.52 0.00 0.08 0.58 0.53 0.5	
Avail Cap(c_a), veh/h 389 0 362 0 323 2809 266 272	
HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
Uniform Delay (d), s/veh 36.3 0.0 0.0 39.1 0.0 0.0 1.00 1.00 1.00 1.00 1.00 1.0	
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
%ile BackOfQ(50%),veh/ln 0.4 0.0 0.0 2.7 0.0 0.0 0.2 3.0 0.0 2.3 3.	0.0
Unsig. Movement Delay, s/veh	0.0
LnGrp Delay(d),s/veh 36.5 0.0 0.0 40.9 0.0 0.0 6.7 4.6 0.0 20.0 4.	
LnGrp LOS D A D A A B A	
Approach Vol, veh/h 21 A 116 A 1665 A 155	
Approach Delay, s/veh 36.5 40.9 4.6 5.	
Approach LOS D D A	
Timer - Assigned Phs 2 4 6 8	
Phs Duration (G+Y+Rc), s 76.0 15.1 76.0 15.1	
Change Period (Y+Rc), s 6.0 6.0 6.0 6.0	
Max Green Setting (Gmax), s 70.0 18.0 70.0 18.0	
Max Q Clear Time (g_c+l1), s 18.3 3.0 48.2 9.1	
Green Ext Time (p_c), s 19.4 0.0 14.4 0.3	
Intersection Summary	
HCM 6th Ctrl Delay 6.5	
HCM 6th LOS A	
Notes	

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.

No Ha Section IX. Item #2.

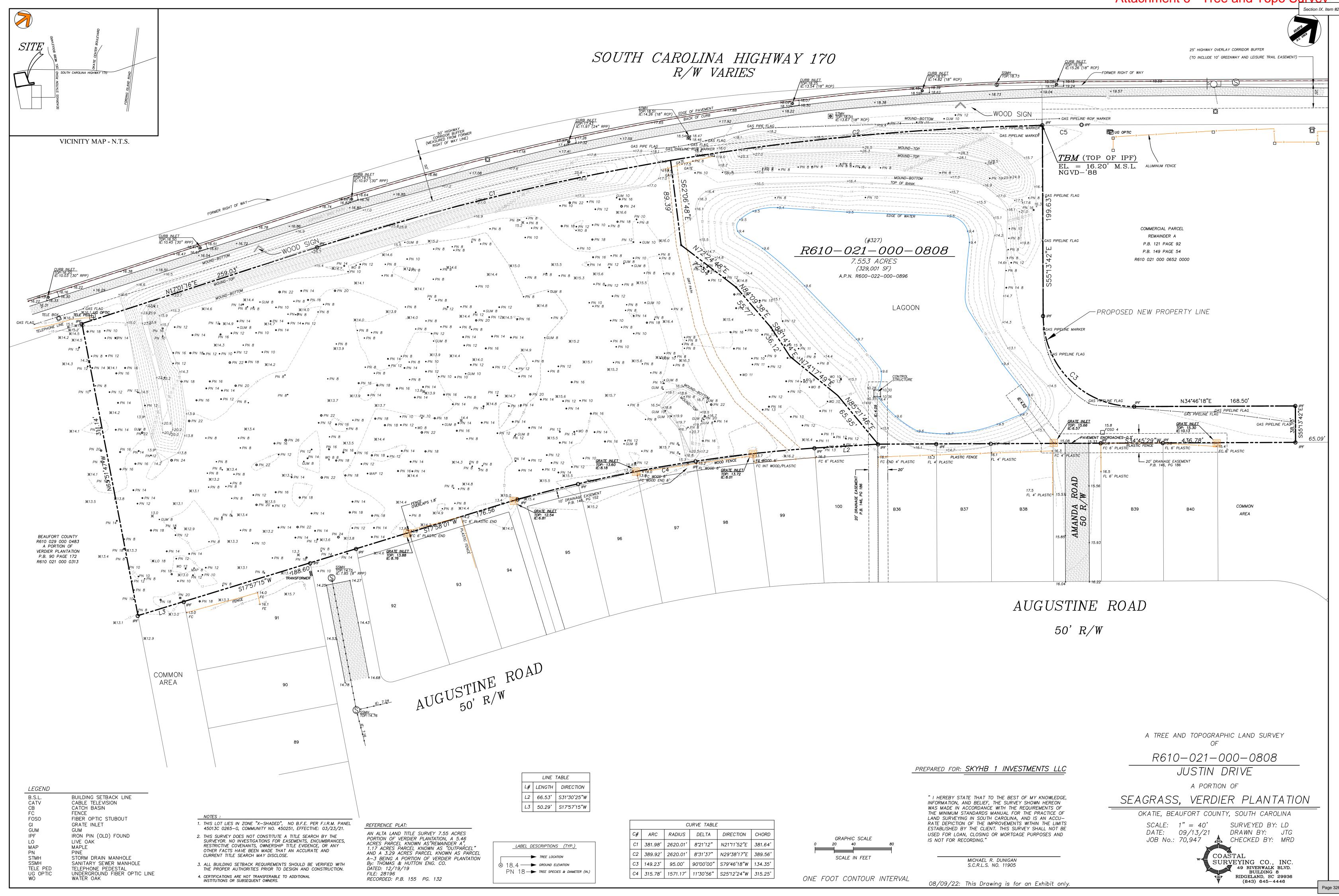
No Hager Access PM

1: Okatie highway & Del Webb Blvd/Seagrass Station Rd

	→	\rightarrow	←	•	1	†	/	-	ţ	4	
Lane Group	EBT	EBR	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	24	74	89	111	57	1484	61	214	1700	24	
v/c Ratio	0.16	0.29	0.52	0.40	0.34	0.53	0.05	0.95	0.59	0.02	
Control Delay	46.3	19.5	57.9	19.5	10.1	5.1	0.9	64.4	5.7	1.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	46.3	19.5	57.9	19.5	10.1	5.1	0.9	64.4	5.7	1.0	
Queue Length 50th (ft)	16	12	62	19	9	161	0	106	200	0	
Queue Length 95th (ft)	42	56	116	71	37	252	9	#159	313	5	
Internal Link Dist (ft)	391		300			720			1168		
Turn Bay Length (ft)				280	430		400	430		500	
Base Capacity (vph)	203	317	229	342	168	2790	1284	225	2873	1277	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.12	0.23	0.39	0.32	0.34	0.53	0.05	0.95	0.59	0.02	

Intersection Summary

Queue shown is maximum after two cycles.

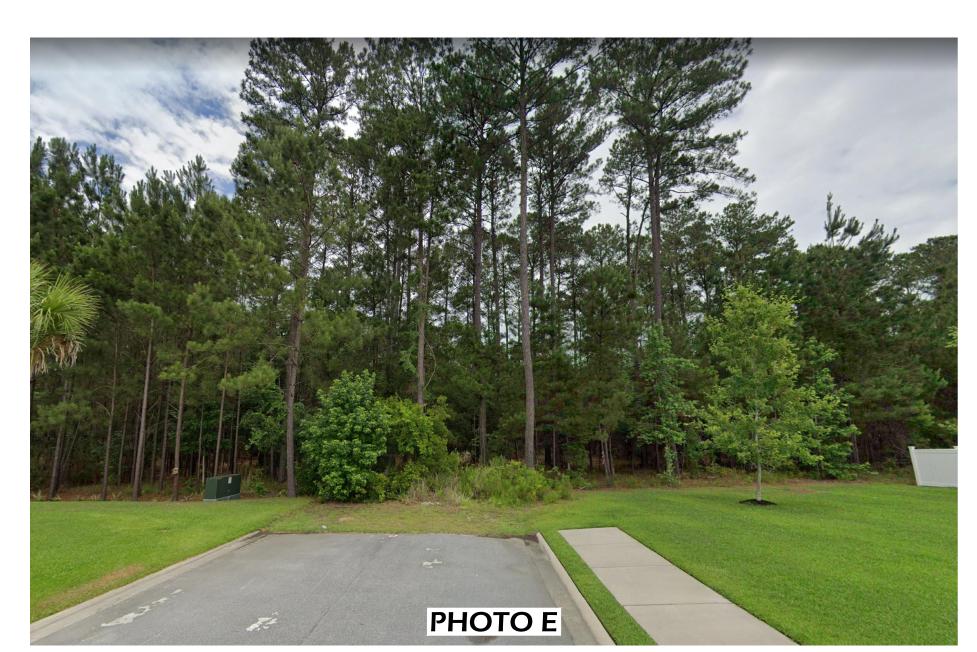

^{# 95}th percentile volume exceeds capacity, queue may be longer.

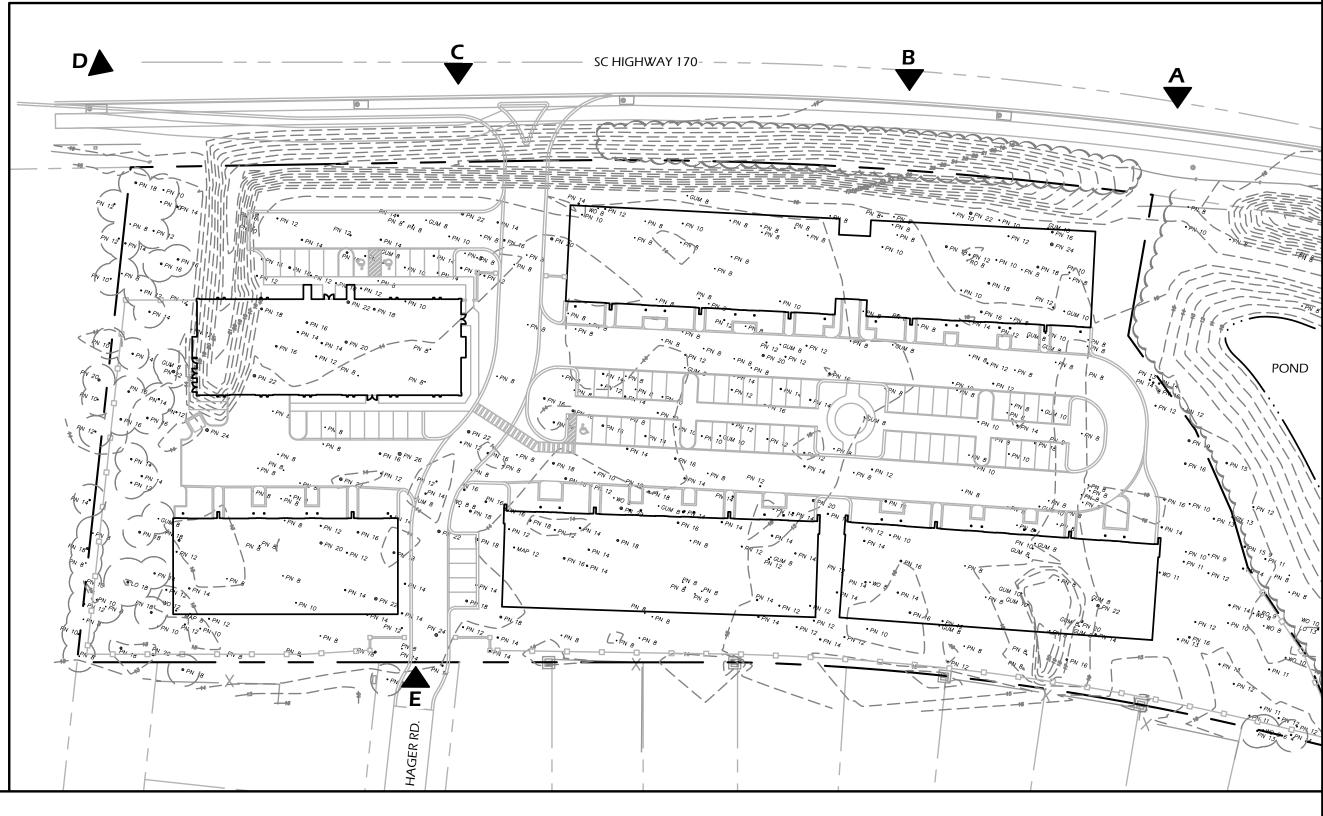
HCM 6th Signalized Intersection Summary
1: Okatie highway & Del Webb Blvd/Seagrass Station Rd

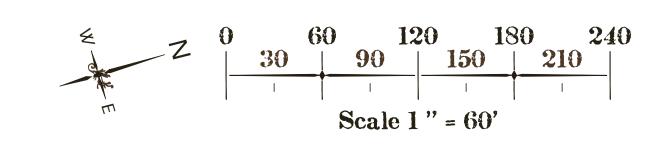
Section IX. Item #2. No Hag No Hager Access PM

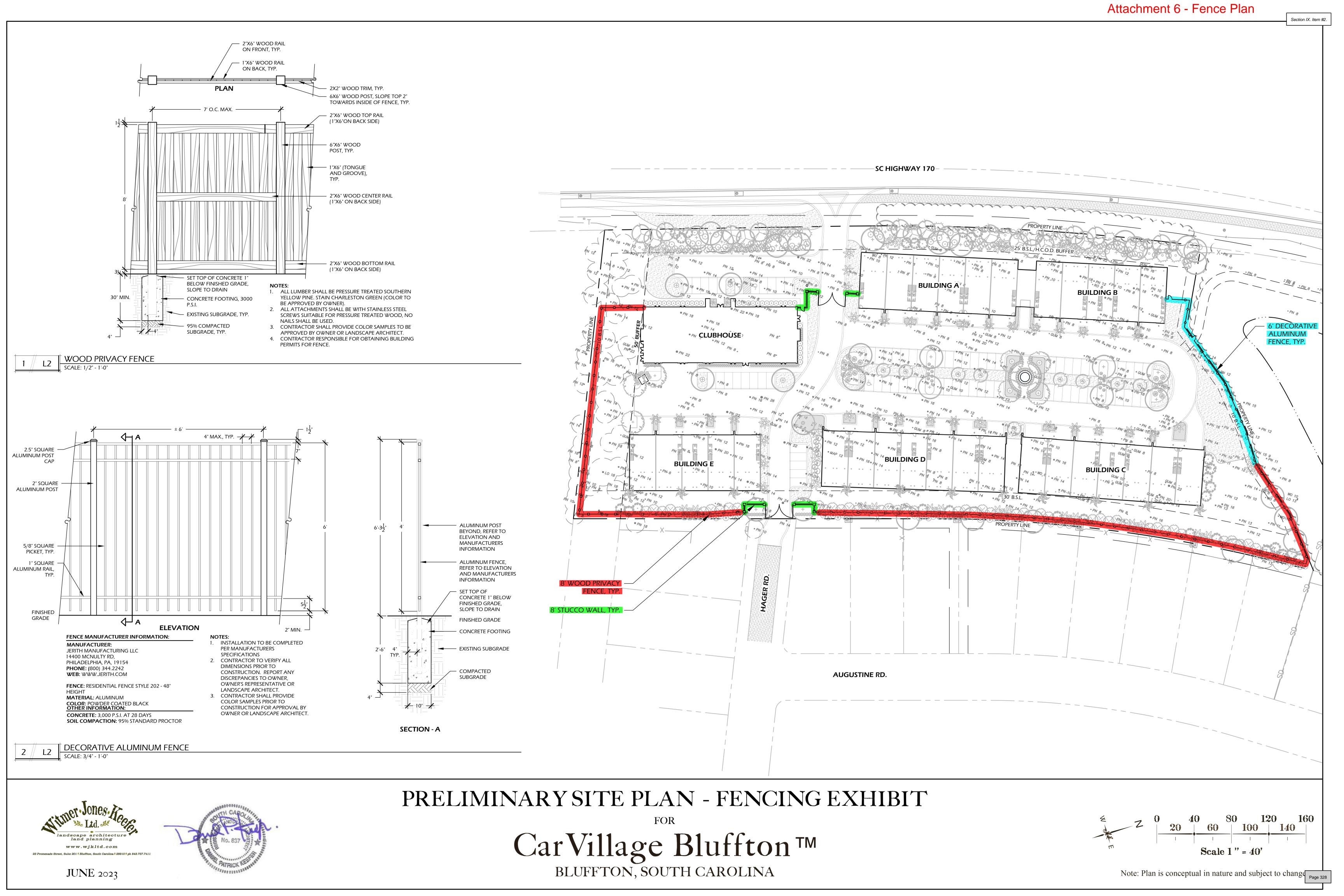
	۶	→	•	•	←	•	1	†	<i>></i>	/	ţ	-✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન	7		र्स	7	7	^	7	7	^	7
Traffic Volume (veh/h)	23	0	70	80	5	105	54	1410	58	203	1615	23
Future Volume (veh/h)	23	0	70	80	5	105	54	1410	58	203	1615	23
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1885	1870	1841	1870	1870	1885	1870
Adj Flow Rate, veh/h	24	0	0	84	5	0	57	1484	0	214	1700	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	1	2	4	2	2	1	2
Cap, veh/h	224	0		196	8		262	2916		318	2987	
Arrive On Green	0.08	0.00	0.00	0.08	0.09	0.00	0.83	0.83	0.00	0.83	0.83	0.00
Sat Flow, veh/h	1690	0	1585	1412	84	1598	288	3497	1585	355	3582	1585
Grp Volume(v), veh/h	24	0	0	89	0	0	57	1484	0	214	1700	0
Grp Sat Flow(s), veh/h/ln	1690	0	1585	1496	0	1598	288	1749	1585	355	1791	1585
Q Serve(g_s), s	0.0	0.0	0.0	5.0	0.0	0.0	8.6	13.5	0.0	48.2	16.6	0.0
Cycle Q Clear(g_c), s	1.4	0.0	0.0	6.4	0.0	0.0	25.2	13.5	0.0	61.7	16.6	0.0
Prop In Lane	1.00	0.0	1.00	0.94	0.0	1.00	1.00	10.0	1.00	1.00	10.0	1.00
Lane Grp Cap(c), veh/h	193	0	1.00	176	0	1.00	262	2916	1.00	318	2987	1.00
V/C Ratio(X)	0.12	0.00		0.50	0.00		0.22	0.51		0.67	0.57	
Avail Cap(c_a), veh/h	317	0.00		302	0.00		262	2916		318	2987	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	46.9	0.0	0.0	49.0	0.0	0.0	6.9	2.6	0.0	11.6	2.9	0.00
Incr Delay (d2), s/veh	0.3	0.0	0.0	2.2	0.0	0.0	1.9	0.6	0.0	10.8	0.8	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.6	0.0	0.0	2.6	0.0	0.0	0.6	3.1	0.0	4.2	3.9	0.0
Unsig. Movement Delay, s/vel		0.0	0.0	2.0	0.0	0.0	0.0	J. I	0.0	4.2	J. 7	0.0
LnGrp Delay(d),s/veh	47.2	0.0	0.0	51.2	0.0	0.0	8.8	3.3	0.0	22.4	3.7	0.0
LnGrp LOS	47.2 D	Α	0.0	D D	Α	0.0	0.0 A	3.3 A	0.0	22.4 C	3.7 A	0.0
Approach Vol, veh/h		24	А	ט	89	А		1541	А		1914	A
		47.2	А		51.2	А		3.5	А		5.8	A
Approach LOS												
Approach LOS		D			D			А			А	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		96.0		14.3		96.0		14.3				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		90.0		18.0		90.0		18.0				
Max Q Clear Time (g_c+I1), s		27.2		3.4		63.7		8.4				
Green Ext Time (p_c), s		22.3		0.0		19.8		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			6.2									
HCM 6th LOS			Α									
Notes												

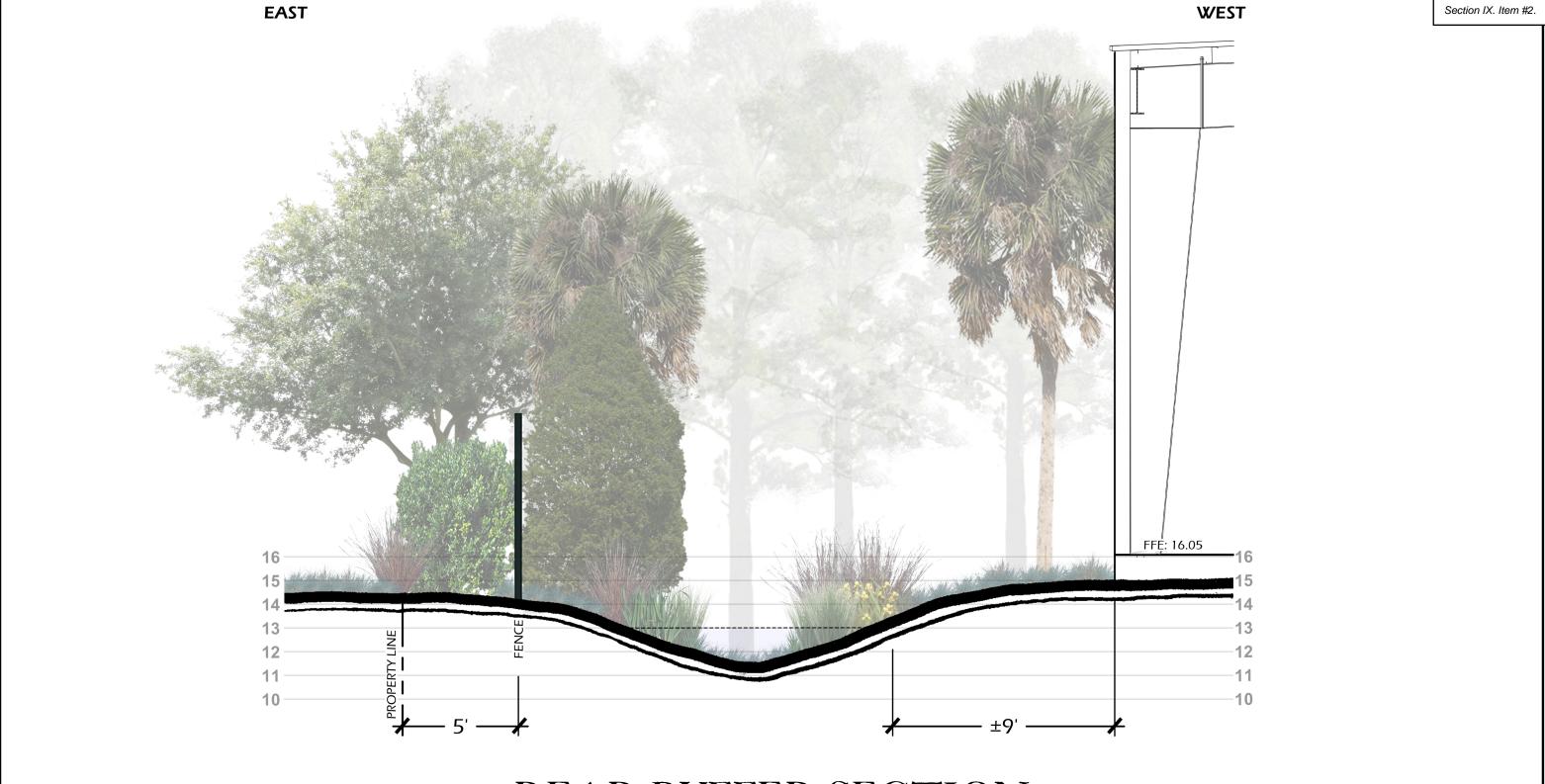
Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.



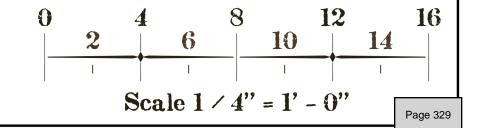








Car Village Bluffton TM BLUFFTON, SOUTH CAROLINA



REAR BUFFER SECTION

Car Village Bluffton TM BLUFFTON, SOUTH CAROLINA

PLAN REVIEW COMMENTS FOR DP-08-22-017076

Section IX. Item #2.

Town of Bluffton

Department of Growth Management
20 Bridge Street P.O. Box 386 Bluffton, South Carolina 29910
Telephone 843-706-4522

Plan Type: Development Plan Apply Date: 08/15/2022

Plan Status: Active Plan Address:

Case Manager: Dan Frazier Plan PIN #: R610 021 000 0808 0000

Plan Description: A request by Dan Keefer of Witmer Jones Keefer, Ltd, on behalf of the property owner, Charlie and Brown, LL

for approval of a preliminary development plan. The project consists of the construction of a \pm 20,000 sq. ft. two-story Clubhouse and 5 buildings divided into \pm 31 high-end garage condominium units. The property is zoned Village at Verdier PUD and consists of approximately 5.00 acres, identified by tax map number

R610-021-000-0808-0000 and located on Highway 170 approximately 1,200 feet south of Seagrass Station Road.

STATUS 9-14-22: Staff courtesy review comments were reviewed at the September 21 meeting of the DRC.

STATUS: Staff comments will be reviewed at the June 21, 2023 meeting of the DRC.

Technical Review

Submission #: 2 Received: 06/16/2023 Completed: 06/16/2023

 Reviewing Dept.
 Complete Date
 Reviewer
 Status

 Planning Commission Review
 06/16/2023
 Dan Frazier
 Revisions Required

Comments:

- 1. The drive connection from SC 170 to Hagar Road shall meet SCDOT roadway standards, including the extension of the Hagar Road sidewalk to SC 170.
- 2. The subject property is within the Highway Corridor Overlay District and will require a Certificate of Appropriateness reviewing landscaping, lighting and architecture prior to Final Development Plan approval.
- 3. Revise the site plan to address all items listed in #7, #8 and #10 under General Information on the Development Plan Application Checklist.
- 4. At time of final development plan approval, provide an easement for the required off-site improvements to construct the extension of Hagar Road.
- 5. Provide a 25-foot highway corridor overlay district (HCOD) buffer along the SC170 frontage.
- 6. No grading can occur within the HCOD Buffer, including installation of a bioswale.

Planning Review - SR 06/16/2023 Jordan Holloway Revisions Required

Comments:

- 1. Provide information on hatched area on the southern end of the plan parallel to Rt. 170.
- 2. Remove HCOD buffer that is shown beyond your property line as this does not count towards the buffer requirement.
- 3. The HCOD buffer may need to be enhanced if it does not meet buffer requirements of the following: For every one hundred (100) linear feet (or portion thereof) of frontage or the highway, a minimum of six (6) broad-leaved over story trees, seven (7) under story trees, and thirty (30) shrubs are required in the buffer. The plant materials shall be generally distributed along and throughout the buffer in order that there not be significant gaps without plantings (except when required at sight triangles at road intersections). This will be required at time of Final Development Plan.
- 4. Provide 8' wooden fence detail in plan set.
- 5. Change line weight to clearly show property line, setback lines, and proposed fencing.

Beaufort Jasper Water and Sewer 06/16/2023 James Clardy Approved with Conditions

Review

Comments:

1. Pending resubmittal of water and sewer design based on comments provided by Design Review Team on 2023-05-19.

Fire Department Review 06/16/2023 Dan Wiltse Approved with Conditions

Comments:

1. For final development, a full utility plan will need to be provided showing proposed hydrants. Details of the bu construction type, total square footage and fire protection features will need to be provided.

Section IX. Item #2.

2. Both gated access points will need to be equipped with emergency override controls approved and tested by the Fire District.

Watershed Management Review DRC

06/16/2023

Samantha Crotty

Approved with Conditions

Comments:

- 1. At the time of Stormwater submittal, provide BMP details on the site plans for the bioretention and permeable pavement.
- 2. Provide a geotechnical report at the time of Stormwater submittal.

PLAN REVIEW COMMENTS FOR DP-08-22-017076

Section IX. Item #2.

Town of Bluffton

Department of Growth Management
20 Bridge Street P.O. Box 386 Bluffton, South Carolina 29910
Telephone 843-706-4522

Plan Type: Development Plan Apply Date: 08/15/2022

Plan Status: Active Plan Address:

Case Manager: Dan Frazier Plan PIN #: R610 021 000 0808 0000

Plan Description: A request by Dan Keefer of Witmer Jones Keefer, Ltd, on behalf of the property owner, Charlie and Brown, LL for approval of a preliminary development plan. The project consists of the construction of a +/-20,000 sq. ft.

two-story Clubhouse and 5 buildings divided into +/- 31 high-end garage condominium units. The property is zoned Village at Verdier PUD and consists of approximately 5.00 acres, identified by tax map number R610-021-000-0808-0000 and located on Highway 170 approximately 1,200 feet south of Seagrass Station

Road.

STATUS 9-14-22: Staff courtesy review comments were reviewed at the September 21 meeting of the DRC.

STATUS: Staff comments will be reviewed at the June 21, 2023 meeting of the DRC.

Technical Review

Submission #: 2 Received: 06/16/2023 Completed: 06/16/2023

Reviewing Dept.Complete DateReviewerStatusPlanning Commission Review06/16/2023Dan FrazierRevisions Required

Comments:

- 1. The drive connection from SC 170 to Hagar Road shall meet SCDOT roadway standards, including the extension of the Hagar Road sidewalk to SC 170. NO SIDEWALK PROPOSED FOR CONNECTION ROAD
- 2. The subject property is within the Highway Corridor Overlay District and will require a Certificate of Appropriateness reviewing landscaping, lighting and architecture prior to Final Development Plan approval.
- 3. Revise the site plan to address all items listed in #7, #8 and #10 under General Information on the Development Plan Application Checklist. SITE INFO TO BE ADDED TO PLAN
- 4. At time of final development plan approval, provide an easement for the required off-site improvements to construct the extension of Hagar Road. OK
- 5. Provide a 25-foot highway corridor overlay district (HCOD) buffer along the SC170 frontage. ADDED TO PLAN
- 6. No grading can occur within the HCOD Buffer, including installation of a bioswale.

Planning Review - SR 06/16

06/16/2023 GRADING TO OCCUR WITHIN THE BUFFER TO ACCOMMODATE TURN LANE AND RE-GRADING OF THE EXISTING BERM. HCOD TO BE REPLANTED PER BUFFER

Comments:

- 1. Provide information on hatched area on the southern end of the plan parallel to Rt. 170. HCOD PLANTED AREA
- 2. Remove HCOD buffer that is shown beyond your property line as this does not count towards the buffer requirement. OK
- 3. The HCOD buffer may need to be enhanced if it does not meet buffer requirements of the following: For every one hundred (100) linear feet (or portion thereof) of frontage or the highway, a minimum of six (6) broad-leaved over story trees, seven (7) under story trees, and thirty (30) shrubs are required in the buffer. The plant materials shall be generally distributed along and throughout the buffer in order that there not be significant gaps without plantings (except when required at sight triangles at road intersections). This will be required at time of Final Development Plan.
- 4. Provide 8' wooden fence detail in plan set. DETAIL ADDED TO RESUBMITTAL
- Change line weight to clearly show property line, setback lines, and proposed fencing. UPDATED

Beaufort Jasper Water and Sewer 06/16/2023 James Clardy Approved with Conditions Review

Comments:

1. Pending resubmittal of water and sewer design based on comments provided by Design Review Team on 2023-05-19. OK

Fire Department Review 06/16/2023 Dan Wiltse Approved with Conditions

Page 332

Comments:

1. For final development, a full utility plan will need to be provided showing proposed hydrants. Details of the bu construction type, total square footage and fire protection features will need to be provided.

Section IX. Item #2.

2. Both gated access points will need to be equipped with emergency override controls approved and tested by the Fire District.

Watershed Management Review DRC

06/16/2023

Samantha Crotty

Approved with Conditions

Comments:

- 1. At the time of Stormwater submittal, provide BMP details on the site plans for the bioretention and permeable pavement.
- 2. Provide a geotechnical report at the time of Stormwater submittal.