

PLANNING & ZONING COMMISSION

July 08, 2025, at 7:00 PM 250 River Circle - Alpine, WY 83128

1. CALL TO ORDER:

2. ROLL CALL & ESTABLISH QUORUM:

3. TONIGHT'S APPOINTMENTS/ NEW BUSINESS:

- a. BENNETT, BRETT, AND META Lot #27 Greys River Village, 368 Wooden Spur Dr. (REM-0625-0001)- Remodel and addition to existing home and addition of an accessory building
- <u>b.</u> MULLER, MICHAEL, AND NIKIA Lot #66 of Three River Meadows, 437 Meadows Dr. (MC-0725-0001)- Addition of gabled porch and replacement of wooden foundation

4. TABLED ITEMS:

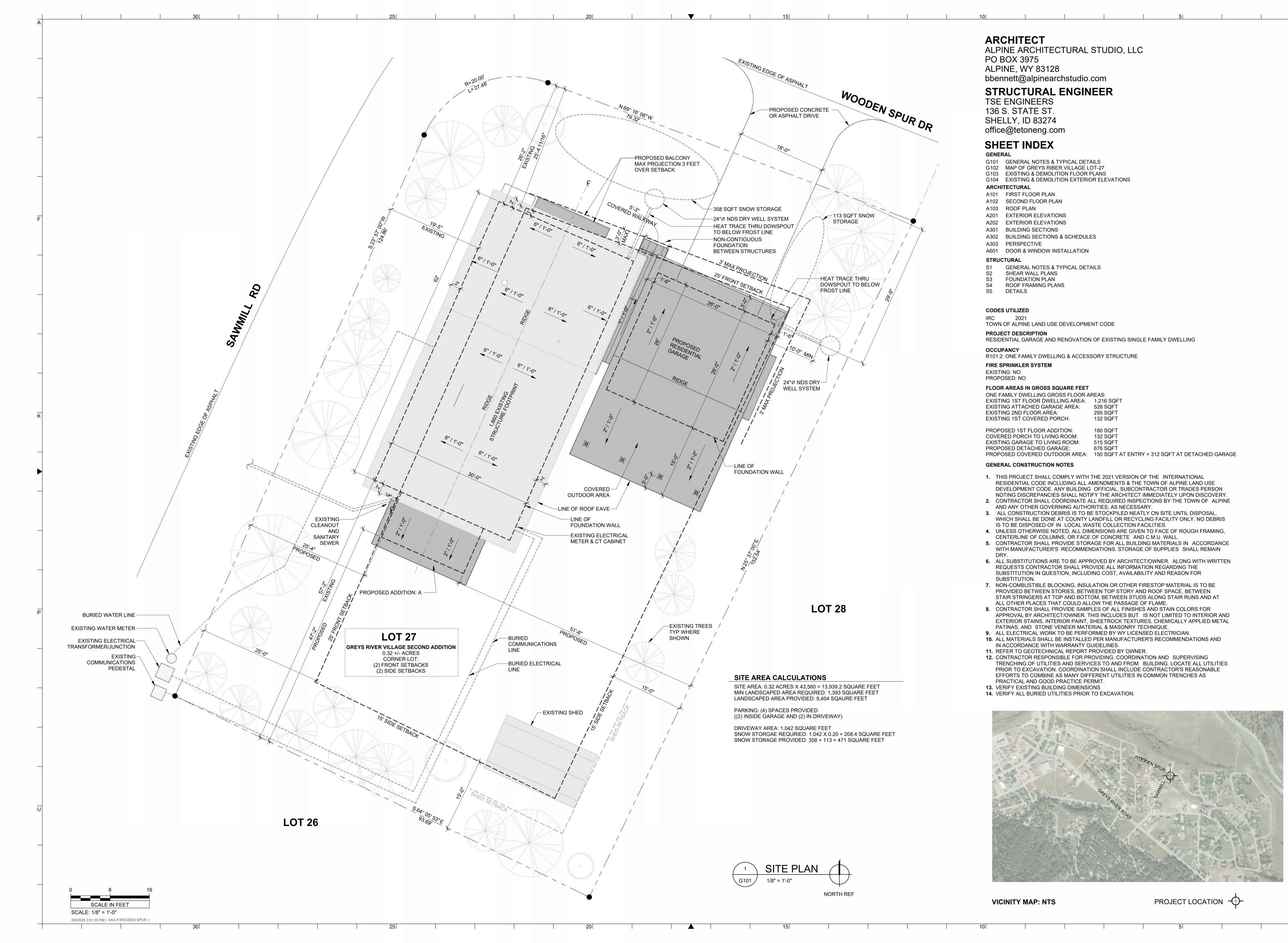
- a. EPLIN, CHERI: Lot #220, Lakeview Estates A, 672 Sunset Dr (R1-0425-0001) New single-family residence
- KURT LINFORD DDS: Lot #302 Riverview Meadows Encroachment Application for parking lot

5. UNFINISHED/ONGOING BUSINESS:

- a. 1.) Review the 2nd reading of Section 2 of the Land Use Development Code.
 - 2.) Discuss any updates, revisions, or additions to the current Land Use Development Code.
- b. Discuss the Site Plan Review Sheet and implementation of its use.

6. PLANNING/ZONING CORRESPONDENCE:

7. PLANNING AND ZONING DISCUSSION ITEMS:


Steve Smith with Aramark wants to discuss the option of making some employee housing in the upstairs of the current Adventure Rentals Building.

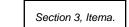
8. APPROVAL OF MINUTES:

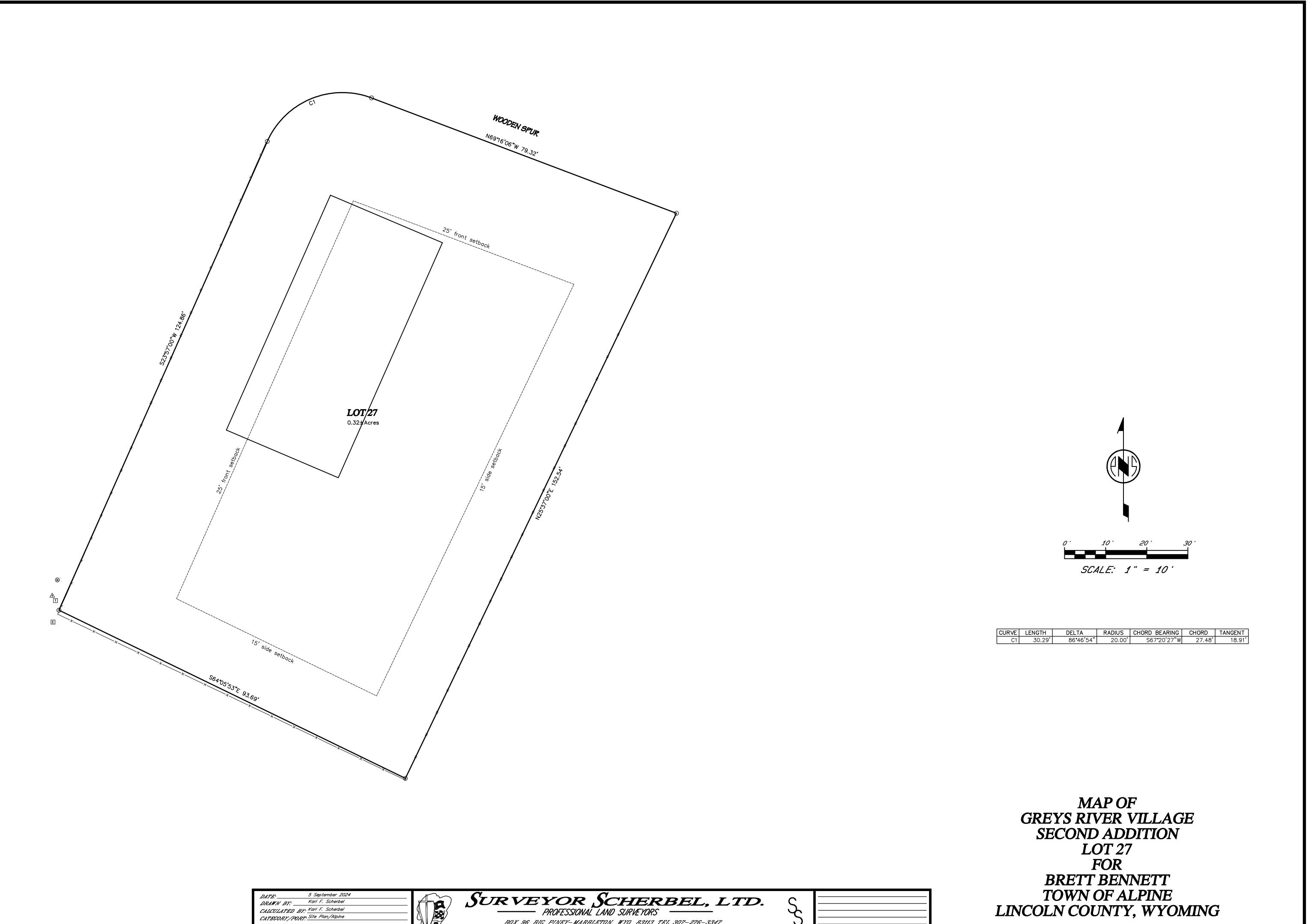
a. Approval of June 10, 2025, meeting minutes.

9. TOWN COUNCIL ASSIGNMENT:

10. ADJOURN MEETING:

architectural studio

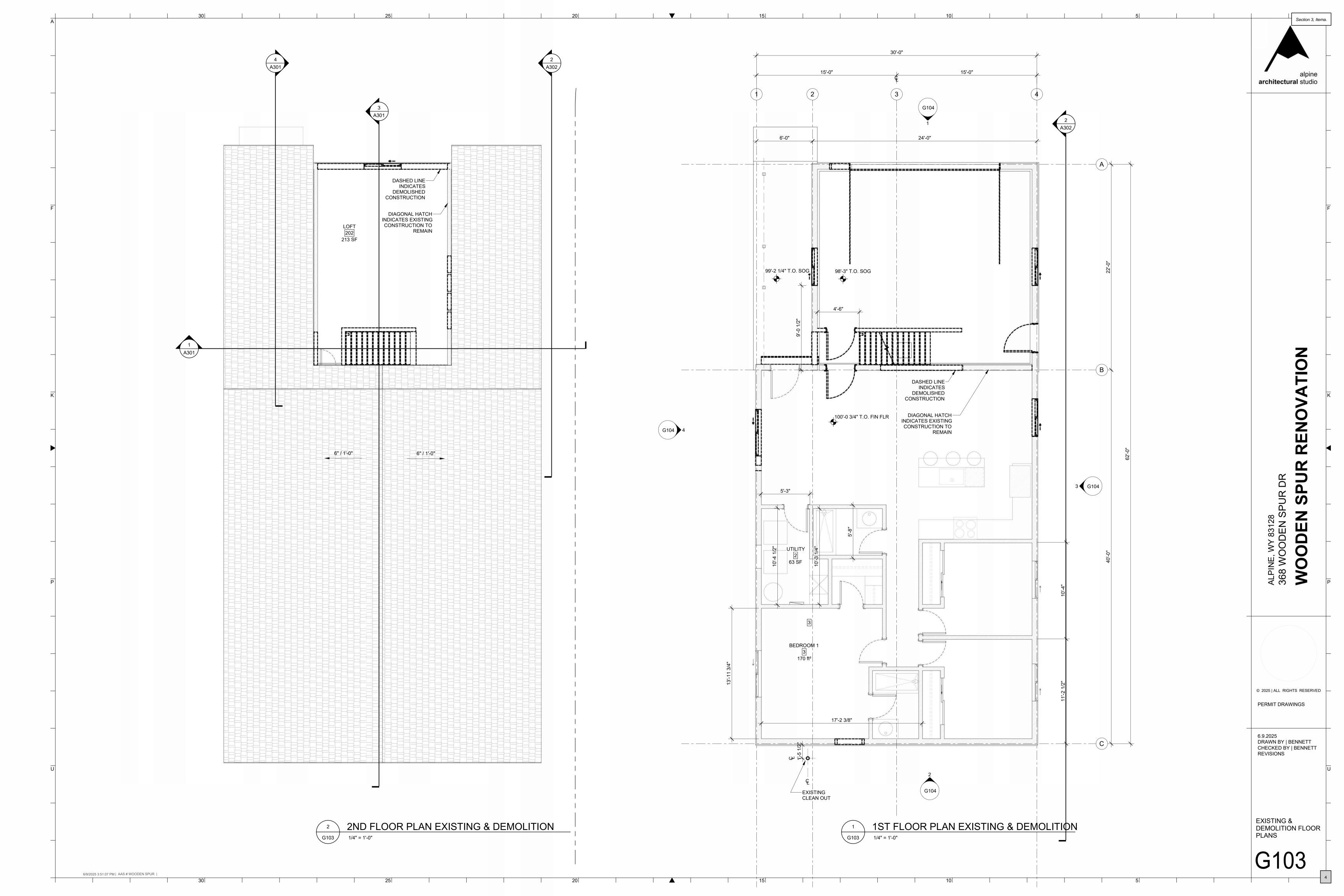

© 2025 | ALL RIGHTS RESERVED


PERMIT DRAWINGS

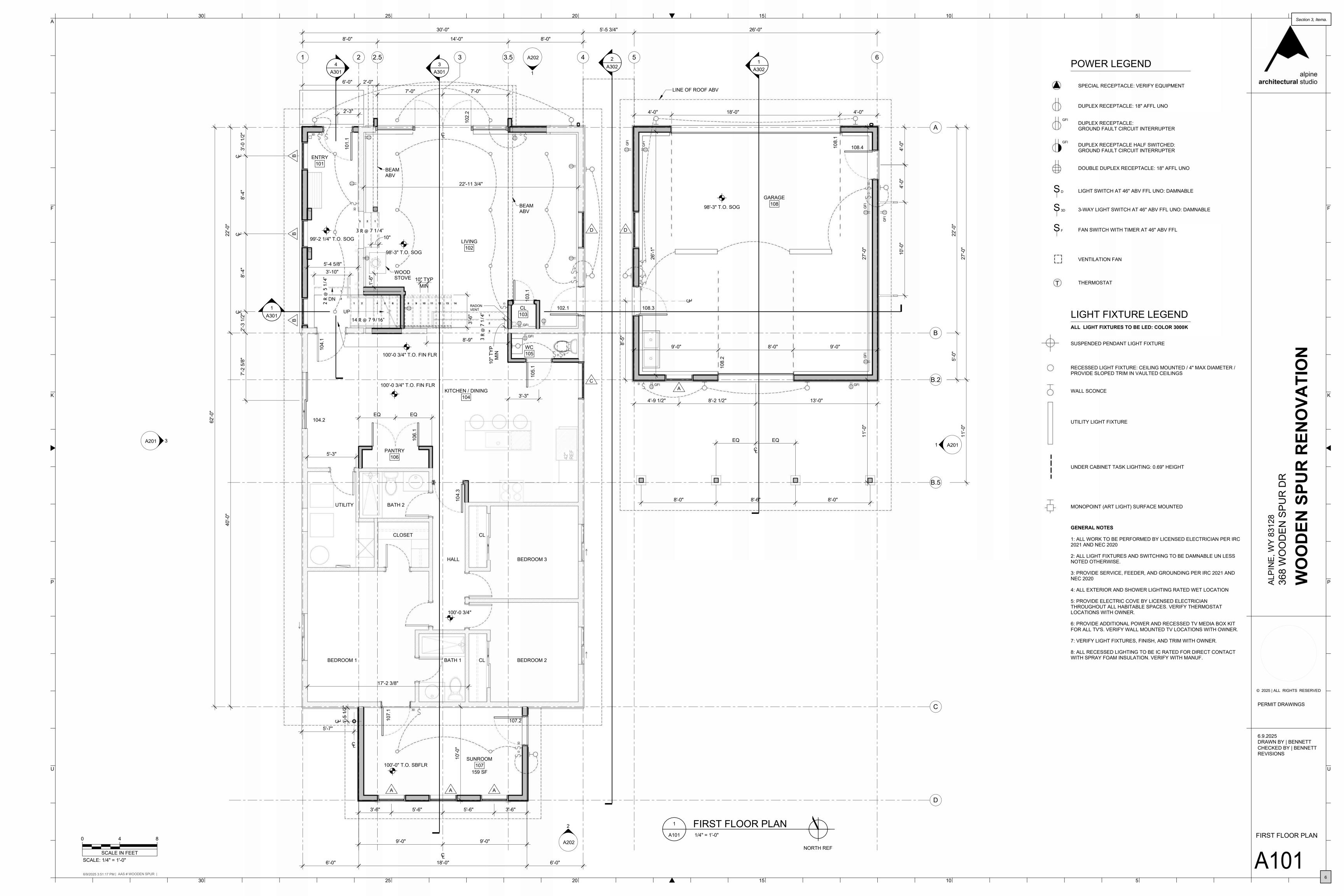
6.9.2025 DRAWN BY | BENNETT CHECKED BY | BENNETT

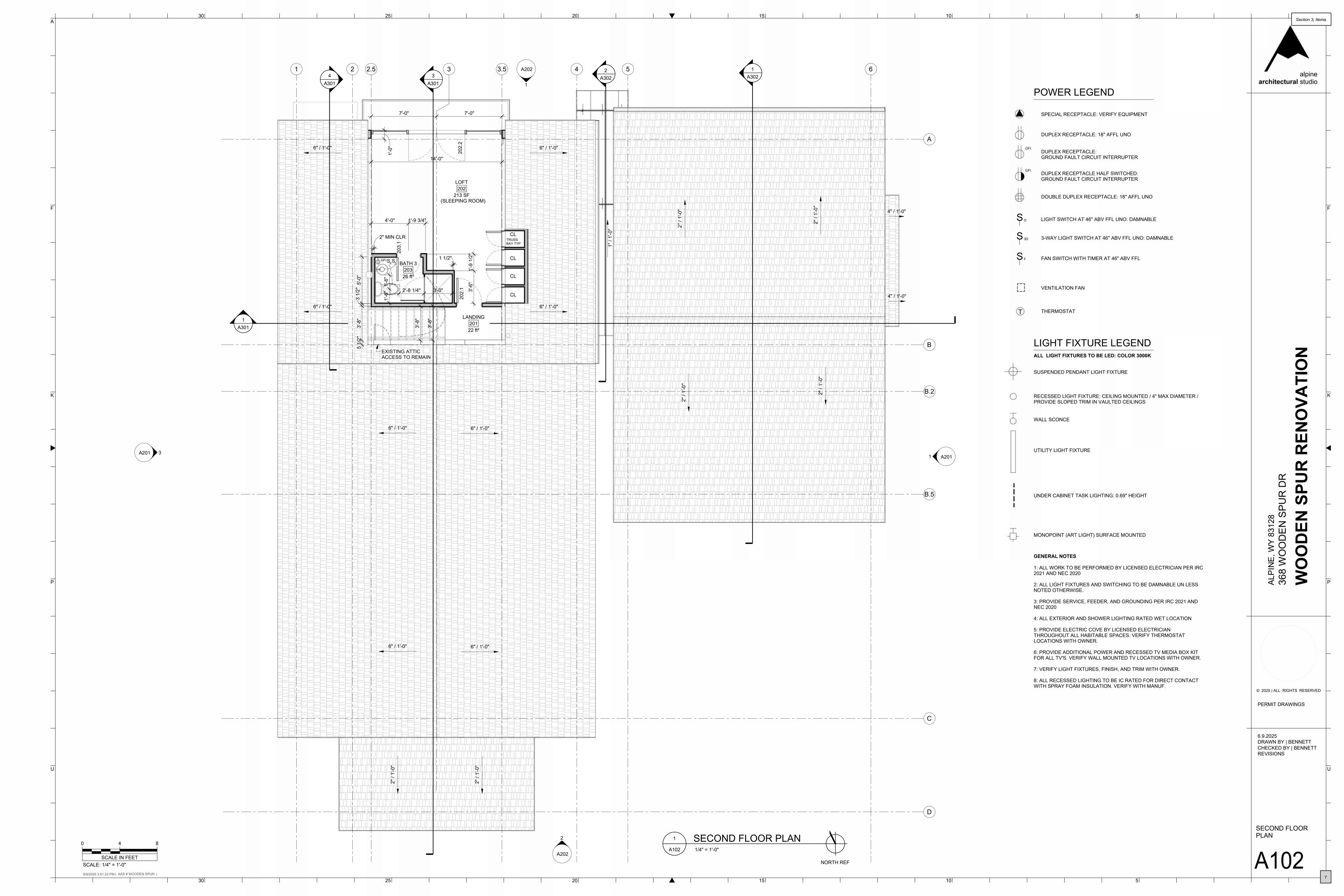
REVISIONS

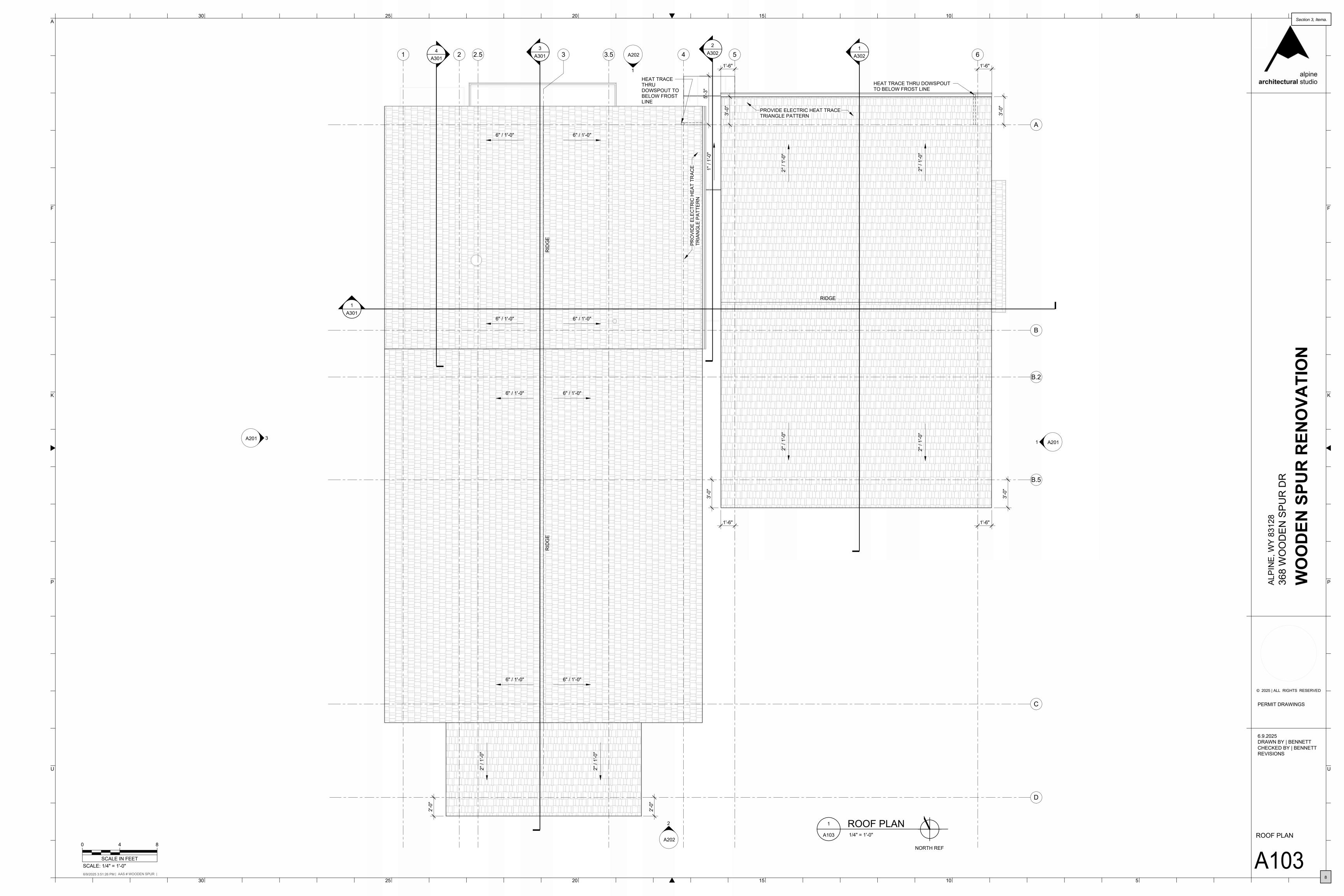
COVER SHEET & SITE PLAN

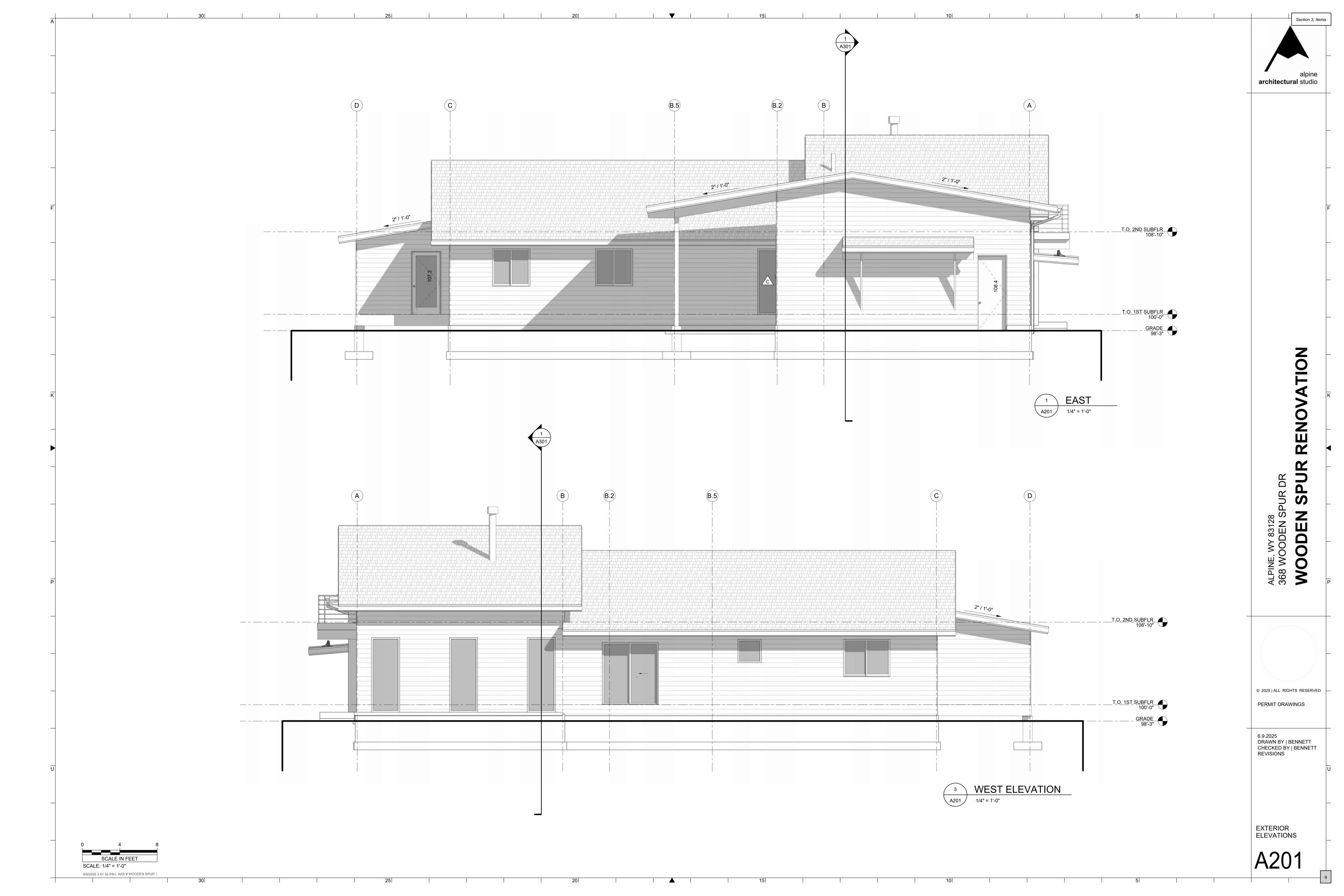


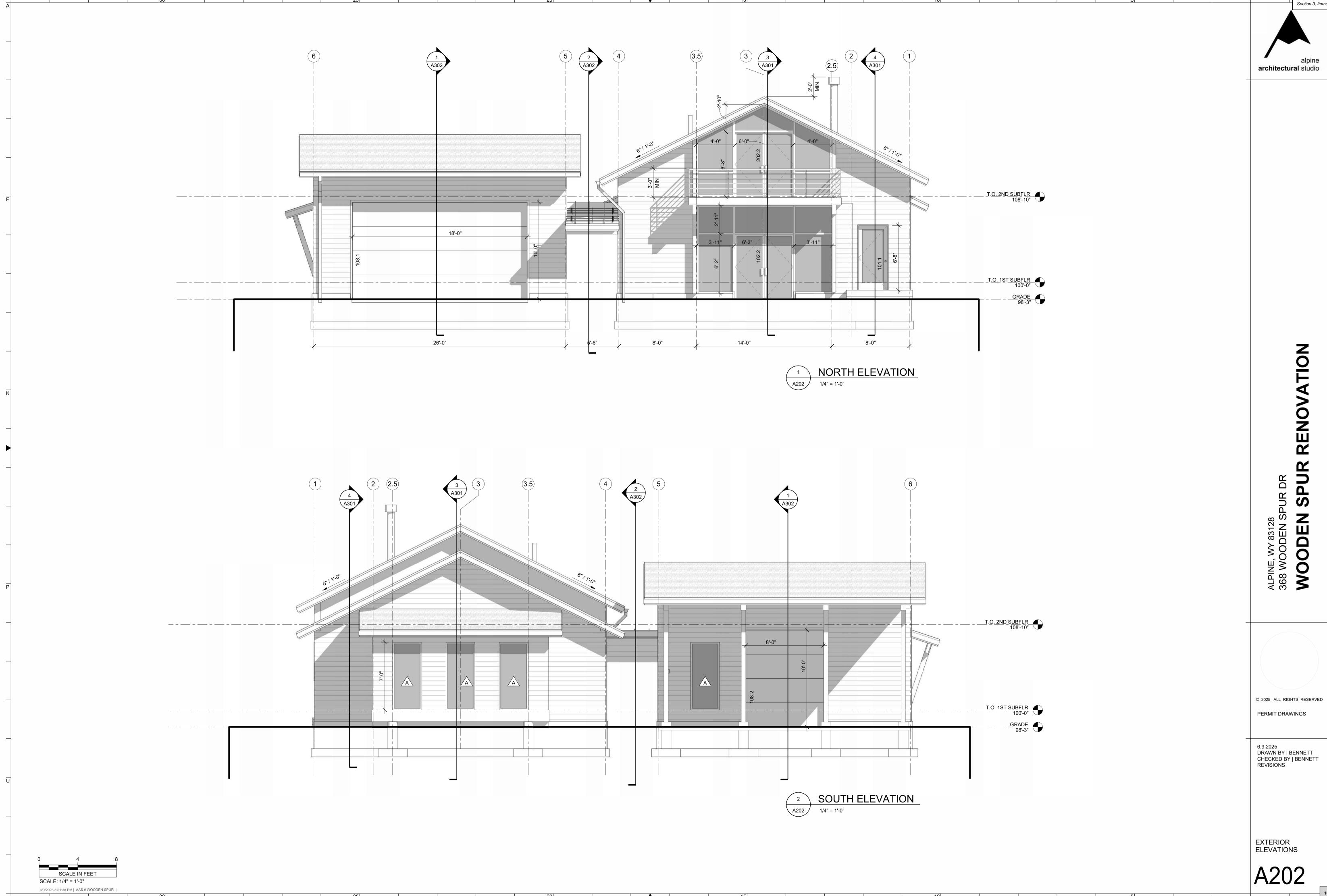

G102

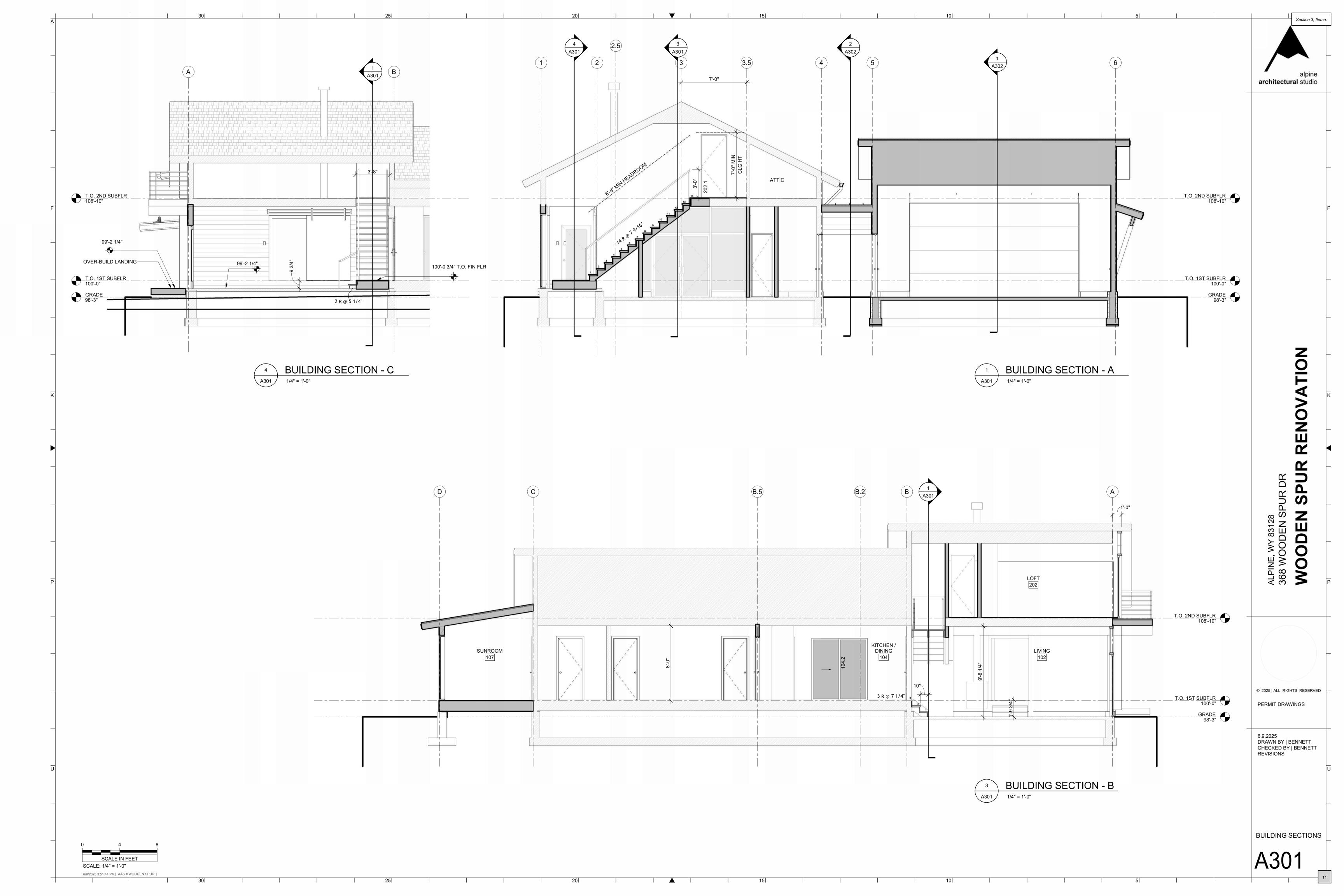

Copyright © 2024 by Surveyor Scherbel, Ltd. All rights reserved.

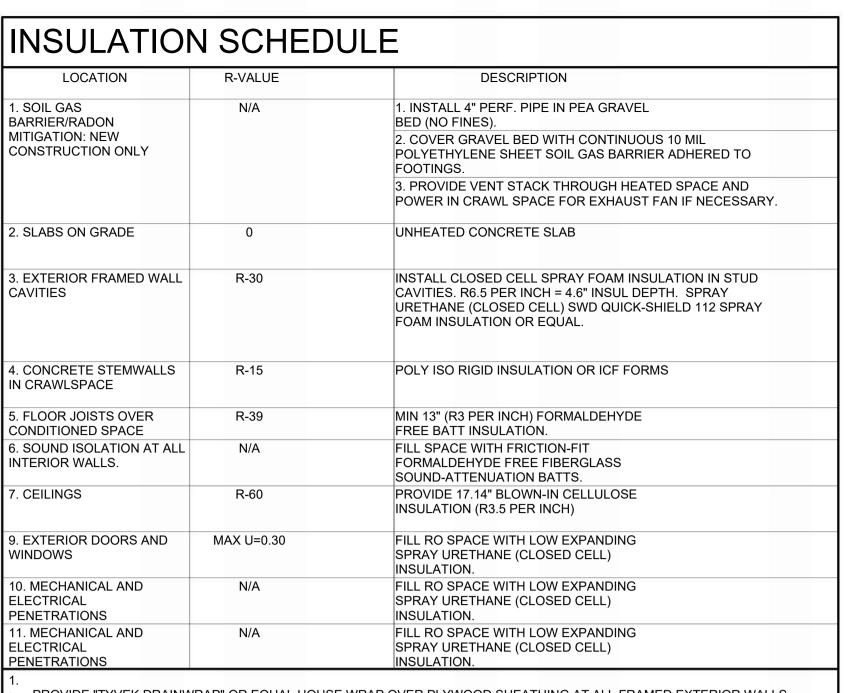

LINCOLN COUNTY, WYOMING


FIELD BOOK: _









alpine architectural studio

- PROVIDE "TYVEK DRAINWRAP" OR EQUAL HOUSE WRAP OVER PLYWOOD SHEATHING AT ALL FRAMED EXTERIOR WALLS -TAPE ALL SEAMS WITH "TYVEK TAPE".
- AT WINDOW AND DOOR ROUGH OPENINGS, CUT HOUSEWRAP IN A MODIFIED I PATTERN PRIOR TO INSTALLING UNIT. USE "TYVEK FLEXWRAP" OR EQUAL FOR FLASHING AT PANS & "TYVEK STRAIGHT FLASH" @ HEADS & LEGS. PROVIDE APPROPRIATE "QUICKFLASH" OR EQUAL PRODUCT TO SEAL HOUSEWRAP AT ALL OTHER PENETRATIONS
- ALL FIBERGLASS BATTS TO FILL SPACE WITH NO GAPS. SEE BUILDERS GUIDE TO COLD CLIMATES.
- TRIM BATTS TO FIT AROUND AND BEHIND OBJECTS IN WALL AND ROOF CAVITIES SUCH AS ELECTRICAL JUNCTION BOXES. . SPRAY URETHANE (CLOSED CELL) SWD QUICK-SHIELD 112 SPRAY INSULATION TO BE USED AT ALL FLOOR RIM AND ROOF
- I. CAULK ALL PLATES. CAULK ALL CRACKS (TRIMMERS, PANEL JOINTS, ETC...) TO ENSURE AIR TIGHTNESS
- 5. CONTRACTOR TO ARRANGE INSPECTION AT COMPLETION OF INSULATION INSTALLMENT AND PRIOR TO THE INSTALLATION OF ANY GYPSUM BOARD OR INTERIOR FINISH TRIM.
- 6. PROVIDE INSULATION WRAP (R-5) ON ALL HOT WATER PIPING
- 7. EXPOSED SPRAY FOAM INSULATION IN CRAWLSPACE TO BE APPROVED IGNITION BARRIER OR PROTECTED WITH
- APPROVED THERMAL IGNITION BARRIER. 3. INSTALL 6 MIL. POLYETHYLENE VAPOR RETARDER AT THE INTERIOR OF ALL EXTERIOR WALLS AND ROOFS. TRIM AND SEAL
- VAPOR RETARDER TO ALL PENETRATIONS.
-). CONTRACTOR TO ENSURE AIR-TIGHTNESS OF THERMAL ENVELOPE AND AIR BARRIER. CONTRACTOR SHALL BE RESPONSIBLE FOR PASSING BLOWER DOOR TEST AS REQUIRED IN 2021 IECC CHAPTER 4 AND 2021 IRC CHAPTER 11

MECHANICAL AND ELECTRICAL NOTES

MECHANICAL PLANS INCLUDING HEAT-LOSS ANALYSIS PROVIDED BY DESIGN-BUILD MECHANICAL HVAC CONTRACTOR AS REQUIRED. PROVIDE FORCED AIR HEATING AND COOLING. DWELLING HEAT PROVIDED BY EXISTING ELECTRIC FURNACE. 2. ELECTRICAL POWER & LIGHTING INCLUDING SERVICE TO SITE TO BE COORDINATED AND INSTALLED BY LICENSED ELECTRICIA 5. GROUNDING ELECTRODE CONDUCTOR REQUIRED PER IRC 2021 CHAPTER 36. 6. ALL LED LIGHTING: COLOR TEMPERATURE: 3000K MAX

IRC STAIR AND GUARD REQUIREMENTS

STAIRWAYS SHALL BE NOT LESS THAN 36 INCHES (914 MM) IN CLEAR WIDTH AT ALL POINTS ABOVE THE PERMITTED HANDRAIL HEIGHT AND BELOW THE REQUIRED HEADROOM HEIGHT.

THE HEADROOM IN STAIRWAYS SHALL BE NOT LESS THAN 6 FEET 8 INCHES (2032 MM) MEASURED VERTICALLY FROM THE SLOPED LINE ADJOINING THE TREAD NOSING OR FROM THE FLOOR SURFACE OF THE LANDING OR PLATFORM ON THAT PORTION OF THE STAIRWAY.

THE RISER HEIGHT SHALL BE NOT MORE THAN 7-3/4 INCHES (196 MM). THE RISER HEIGHT SHALL BE MEASURED VERTICALLY BETWEEN LEADING EDGES OF THE ADJACENT TREADS. THE GREATEST RISER HEIGHT WITHIN ANY FLIGHT OF STAIRS SHALL NOT EXCEED THE SMALLEST BY MORE THAN 3/8 INCH (9.5 MM).

THE TREAD DEPTH SHALL BE NOT LESS THAN 10 INCHES (254 MM). THE TREAD DEPTH SHALL BE MEASURED HORIZONTALLY BETWEEN THE VERTICAL PLANES OF THE FOREMOST PROJECTION OF ADJACENT TREADS AND AT A RIGHT ANGLE TO THE TREAD'S LEADING EDGE. THE GREATEST TREAD DEPTH WITHIN ANY FLIGHT OF STAIRS SHALL NOT EXCEED THE SMALLEST BY MORE THAN 3/8 INCH (9.5 MM).

NOSINGS AT TREADS, LANDINGS AND FLOORS OF STAIRWAYS SHALL HAVE A RADIUS OF CURVATURE AT THE NOSING NOT GREATER THAN 9/16 INCH (14 MM) OR A BEVEL NOT GREATER THAN 1/2 INCH (12.7 MM). A NOSING PROJECTION NOT LESS THAN 3/4 INCH (19 MM) AND NOT MORE THAN 11/4 INCHES (32 MM) SHALL BE PROVIDED ON STAIRWAYS. THE GREATEST NOSING PROJECTION SHALL NOT EXCEED THE SMALLEST NOSING PROJECTION BY MORE THAN 3/8 INCH (9.5 MM) WITHIN A STAIRWAY.

THERE SHALL BE A FLOOR OR LANDING AT THE TOP AND BOTTOM OF EACH STAIRWAY. THE WIDTH PERPENDICULAR TO THE DIRECTION OF TRAVEL SHALL BE NOT LESS THAN THE WIDTH OF THE FLIGHT SERVED.

HANDRAILS SHALL BE PROVIDED ON NOT LESS THAN ONE SIDE OF EACH FLIGHT OF STAIRS WITH FOUR OR MORE RISERS.

HANDRAIL HEIGHT, MEASURED VERTICALLY FROM THE SLOPED PLANE ADJOINING THE TREAD NOSING, OR FINISH SURFACE OF RAMP SLOPE, SHALL BE NOT LESS THAN 34 INCHES (864 MM) AND NOT MORE THAN 38 INCHES (965 MM).

HANDRAILS SHALL NOT PROJECT MORE THAN 41/2 INCHES (114 MM) ON EITHER SIDE OF THE STAIRWAY.

HANDRAILS ADJACENT TO A WALL SHALL HAVE A SPACE OF NOT LESS THAN 11/2 INCHES (38 MM) BETWEEN THE WALL AND THE HANDRAILS.

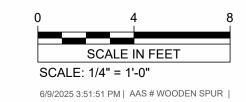
HANDRAILS SHALL BE CONTINUOUS FOR THE FULL LENGTH OF THE FLIGHT, FROM A POINT DIRECTLY ABOVE THE TOP RISER OF THE FLIGHT TO A POINT DIRECTLY ABOVE THE LOWEST RISER OF THE FLIGHT. HANDRAIL ENDS SHALL BE RETURNED TOWARD A WALL, GUARD WALKING SURFACE CONTINUOUS TO ITSELF, OR TERMINATE TO A POST.

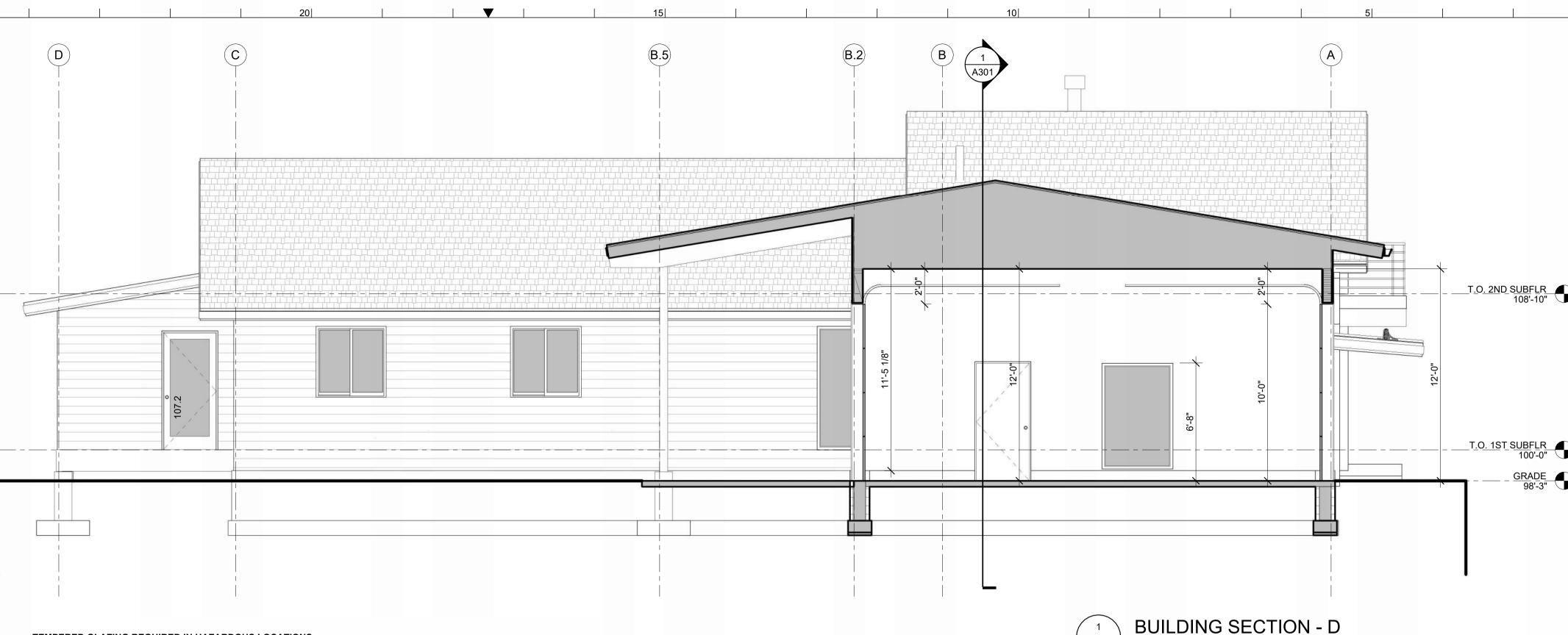
TYPE I. HANDRAILS WITH A CIRCULAR CROSS SECTION SHALL HAVE AN OUTSIDE DIAMETER OF NOT LESS THAN 1-1/4 INCHES (32 MM) AND NOT GREATER THAN 2 INCHES (51 MM).

STAIRWAYS SHALL BE PROVIDED WITH ILLUMINATION IN ACCORDANCE WITH SECTIONS R303.7 AND R303.8.

GUARDS SHALL BE PROVIDED FOR THOSE PORTIONS OF OPEN-SIDED WALKING SURFACES, INCLUDING FLOORS, STAIRS, RAMPS AND LANDINGS THAT ARE LOCATED MORE THAN 30 INCHES (762 MM) MEASURED VERTICALLY TO THE FLOOR OR GRADE BELOW AT ANY POINT WITHIN 36 INCHES (914 MM) HORIZONTALLY TO THE EDGE OF THE OPEN SIDE. INSECT SCREENING SHALL NOT BE CONSIDERED AS A GUARD

REQUIRED GUARDS AT OPEN-SIDED WALKING SURFACES, INCLUDING STAIRS, PORCHES, BALCONIES OR LANDINGS, SHALL BE NOT LESS THAN 36 INCHES (914 MM) IN HEIGHT AS MEASURED VERTICALLY ABOVE THE ADJACENT WALKING SURFACE OR THE LINE CONNECTING THE


EXCEPTIONS


GUARDS ON THE OPEN SIDES OF STAIRS SHALL HAVE A HEIGHT OF NOT LESS THAN 34 INCHES (864 MM) MEASURED VERTICALLY FROM A WHERE THE TOP OF THE GUARD SERVES AS A HANDRAIL ON THE OPEN SIDES OF STAIRS, THE TOP OF THE GUARD SHALL BE NOT LESS THAN 34 INCHES (864 MM) AND NOT MORE THAN 38 INCHES (965 MM) AS MEASURED VERTICALLY FROM A LINE CONNECTING THE NOSINGS.

REQUIRED GUARDS SHALL NOT HAVE OPENINGS FROM THE WALKING SURFACE TO THE REQUIRED GUARD HEIGHT THAT ALLOW PASSAGE OF A SPHERE 4 INCHES (102 MM) IN DIAMETER.

DIAMETER.

THE TRIANGULAR OPENINGS AT THE OPEN SIDE OF STAIR, FORMED BY THE RISER, TREAD AND BOTTOM RAIL OF A GUARD, SHALL NOT ALLOW PASSAGE OF A SPHERE 6 INCHES (153 MM) IN DIAMETER. GUARDS ON THE OPEN SIDE OF STAIRS SHALL NOT HAVE OPENINGS THAT ALLOW PASSAGE OF A SPHERE 4-3/8 INCHES (111 MM) IN

TEMPERED GLAZING REQUIRED IN HAZARDOUS LOCATIONS:

GLAZING IN FIXED AND OPERABLE PANELS OF SWINGING, SLIDING AND BIFOLD DOORS SHALL BE CONSIDERED TO BE A HAZARDOUS LOCATION.

GLAZING IN AN INDIVIDUAL FIXED OR OPERABLE PANEL ADJACENT TO A DOOR SHALL BE CONSIDERED TO BE A HAZARDOUS LOCATION WHERE THE BOTTOM EXPOSED EDGE OF THE GLAZING IS LESS THAN 60 INCHES (1524 MM) ABOVE THE FLOOR OR WALKING SURFACE AND IT MEETS EITHER OF THE FOLLOWING CONDITIONS: WHERE THE GLAZING IS WITHIN 24 INCHES (610 MM) OF EITHER SIDE OF THE DOOR IN THE PLANE OF THE DOOR IN A CLOSED

WHERE THE GLAZING IS ON A WALL LESS THAN 180 DEGREES (3.14 RAD) FROM THE PLANE OF THE DOOR IN A CLOSED POSITION AND WITHIN 24 INCHES (610 MM) OF THE HINGE SIDE OF AN IN-SWINGING DOOR.

R310.1 EMERGENCY ESCAPE AND RESCUE OPENING REQUIRED:

BASEMENTS, HABITABLE ATTICS AND EVERY SLEEPING ROOM SHALL HAVE NOT LESS THAN ONE OPERABLE EMERGENCY ESCAPE AND RESCUE OPENING. WHERE BASEMENTS CONTAIN ONE OR MORE SLEEPING ROOMS. AN EMERGENCY ESCAPE AND RESCUE OPENING SHALL BE REQUIRED IN EACH SLEEPING ROOM. EMERGENCY ESCAPE AND RESCUE OPENINGS SHALL OPEN DIRECTLY INTO A PUBLIC WAY. OR TO A YARD OR COURT HAVING A MINIMUM WIDTH OF 36 INCHES (914 MM) THAT OPENS TO A PUBLIC WAY.

R310.1.1 OPERATIONAL CONSTRAINTS AND OPENING CONTROL DEVICES:

EMERGENCY ESCAPE AND RESCUE OPENINGS SHALL BE OPERATIONAL FROM THE INSIDE OF THE ROOM WITHOUT THE USE OF KEYS, TOOLS OR SPECIAL KNOWLEDGE. WINDOW OPENING CONTROL DEVICES AND FALL PREVENTION DEVICES COMPLYING WITH ASTM F2090 SHALL BE PERMITTED FOR USE ON WINDOWS SERVING AS A REQUIRED EMERGENCY ESCAPE AND RESCUE OPENING AND SHALL BE NOT MORE THAN 70 INCHES (178 CM) ABOVE THE FINISHED FLOOR.

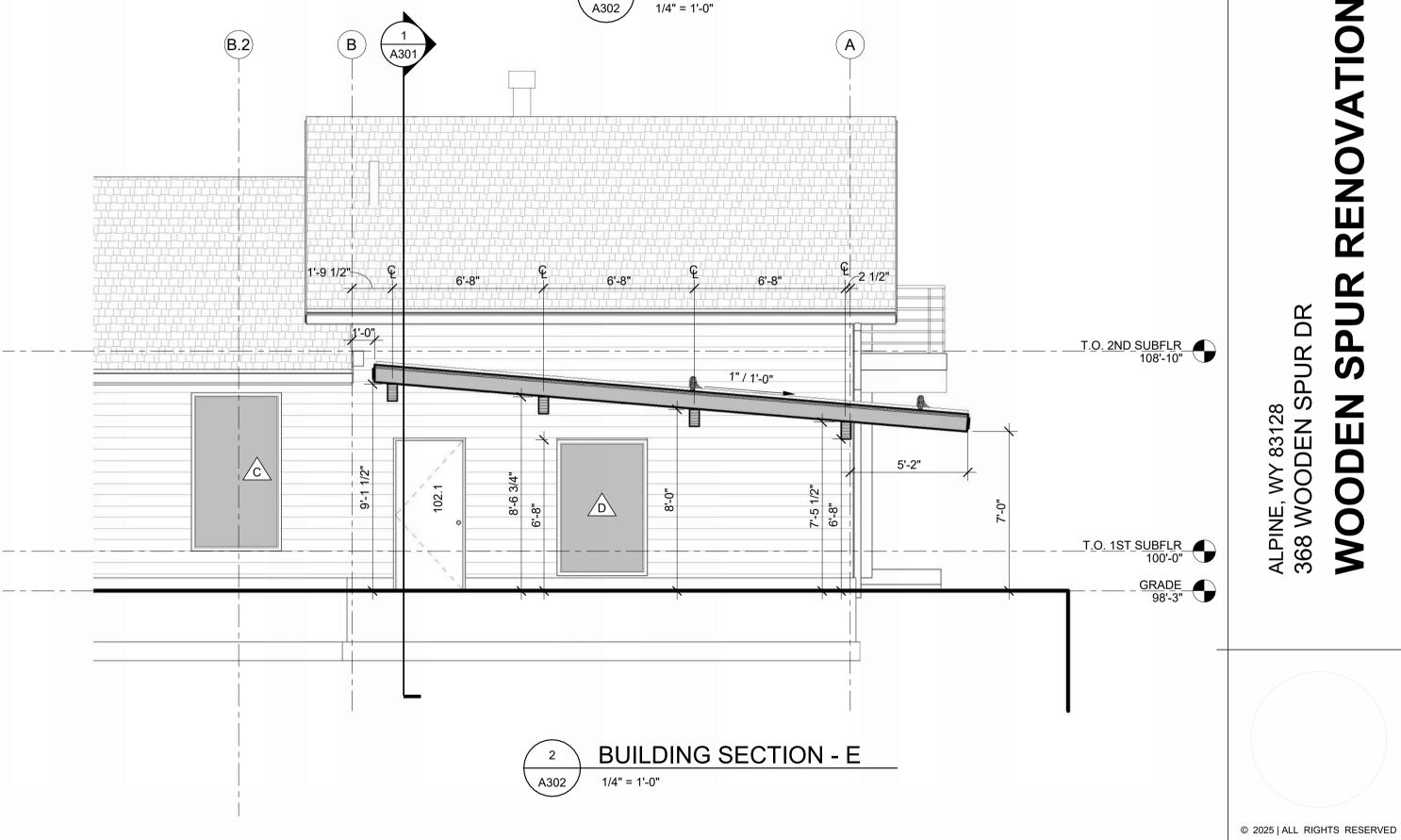
R310.2 EMERGENCY ESCAPE AND RESCUE OPENINGS: EMERGENCY ESCAPE AND RESCUE OPENINGS SHALL HAVE MINIMUM DIMENSIONS IN ACCORDANCE WITH SECTIONS R310.2.1

THROUGH R310.2.4.

EMERGENCY ESCAPE AND RESCUE OPENINGS SHALL HAVE A NET CLEAR OPENING OF NOT LESS THAN 5.7 SQUARE FEET

EXCEPTION: THE MINIMUM NET CLEAR OPENING FOR GRADE-FLOOR EMERGENCY ESCAPE AND RESCUE OPENINGS SHALL BE 5 SQUARE FEET (0.465 M2).

R310.2.2 MINIMUM DIMENSIONS:


THE MINIMUM NET CLEAR OPENING HEIGHT DIMENSION SHALL BE 24 INCHES (610 MM). THE MINIMUM NET CLEAR OPENING WIDTH DIMENSION SHALL BE 20 INCHES (508 MM). THE NET CLEAR OPENING DIMENSIONS SHALL BE THE RESULT OF NORMAL OPERATION OF THE OPENING.

R310.2.3 MAXIMUM HEIGHT FROM FLOOR:

EMERGENCY ESCAPE AND RESCUE OPENINGS SHALL HAVE THE BOTTOM OF THE CLEAR OPENING NOT GREATER THAN 44 INCHES (1118 MM) ABOVE THE FLOOR.

	WINDOW SCHEDULE									
TYPE MK	UNIT SIZE		FINIOLI	GLAZING		COMMENTS				
ITPEINK	W	Н	MAT'L	FINISH	THICKNESS	TYPE	COMMENTS			
Α	3'-0"	7'-0"	WOOD CLAD		3/4"	DOUBLE PANE LOW- E				
В	3'-0"	8'-0"	WOOD CLAD		3/4"	DOUBLE PANE LOW- E				
С	4'-0"	7'-0"	WOOD CLAD		3/4"	DOUBLE PANE LOW- E				
D	4'-0"	6'-0"	WOOD CLAD		3/4"	DOUBLE PANE LOW- E				

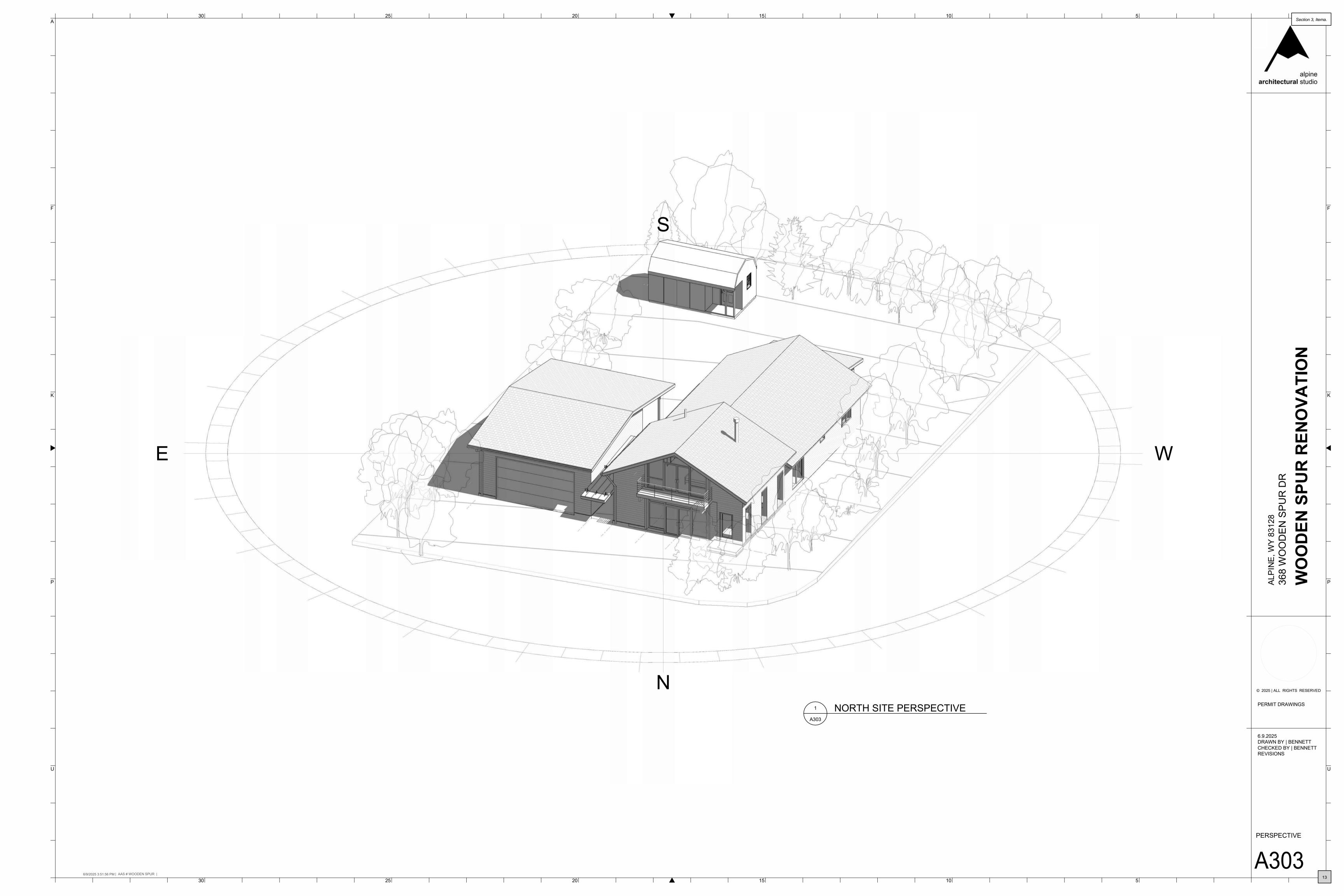
PROVIDE WINDOW SHOP DRAWINGS FOR OWNER/ARCH REVIEW WINDOW GLAZING & FRAMED COLOR TO MATCH DOOR UNITS

DOOR, FRAME AND HARDWARE SCHEDULE DOOR **FRAME** HARDWARE ROOM NAME NUMBER NUMBER STOP HOLD WTHR GLAZE 6'-8" 1 3/4" YES / TEMPERED | DOUBLE PANE LOW-E WOOD YES FNTRY WOOD CLAD KEYED ENTRANCE LEVERSET & KEYED DEADBOLT YES 102.1 6'-8" 1 3/4" WOOD SOLID CORE WOOD KEYED ENTRANCE LEVERSET & KEYED DEADBOLT YES YES / TEMPERED | DOUBLE PANE LOW-E KEYED ENTRANCE LEVERSET & KEYED DEADBOLT 1 3/4" WOOD NO YES LIVING WOOD CLAD 1 3/4" WOOD DUMMY LEVERSET W/ROLLER CATCH WOOD SOLID CORE WOOD YES 104.1 FNTRY 1 3/4" PASSAGE LEVERSET WOOD SOLID CORE (ITCHEN / DINING YES / TEMPERED | DOUBLE PANE LOW-E COMPOSITE YES 1 3/4" COMPOSITE 104.3 KITCHEN / DINING 1 3/4" WOOD SOLID CORE WOOD YES PASSAGE LEVERSET 1 3/4" WOOD SOLID CORE WOOD PRIVACY LEVERSET W/EMERGENCY RELEASE 106.1 **PANTRY** 1 3/4" WOOD SOLID CORE WOOD DUMMY LEVERSET W/ROLLER CATCH SUNROOM 1 3/4" WOOD SOLID CORE WOOD KEYED ENTRANCE LEVERSET & KEYED DEADBOLT YES YES WOOD SOLID CORE YES / TEMPERED DOUBLE PANE LOW-E SUNROOM 1 3/4" WOOD-ALUM CLAD YES KEYED ENTRANCE LEVERSET & KEYED DEADBOLT YES YES **GARAGE** 1 1/2" ALUMINUM METAL PROVIDE ELEC OVERHEAD OPEN W/REMOTE 108.2 **GARAGE** 1 1/2" **ALUMINUM** METAL BY MANUF YES PROVIDE ELEC OVERHEAD OPEN W/REMOTE 1 3/4" 108.3 WOOD YES **GARAGI** WOOD SOLID CORE KEYED ENTRANCE LEVERSET & KEYED DEADBOLT WOOD SOLID CORE WOOD KEYED ENTRANCE LEVERSET & KEYED DEADBOLT WOOD SOLID CORE 1 3/4" WOOD PRIVACY LEVERSET W/EMERGENCY RELEASE YES KEYED ENTRANCE LEVERSET & KEYED DEADBOLT YES / TEMPERED | DOUBLE PANE LOW-E WOOD WOOD CLAD BATH 3 2'-6" 6'-8" 1 3/4" WOOD SOLID CORE WOOD PRIVACY LEVERSET W/EMERGENCY RELEASE 203 YES

PROVIDE DOOR SHOP DRAWINGS FOR OWNER/ARCH REVIEW DOOR GLAZING & FRAME COLOR TO MATCH WINDOW UNITS

& SCHEDULES

PERMIT DRAWINGS


DRAWN BY | BENNETT

REVISIONS

CHECKED BY | BENNETT

BUILDING SECTIONS

architectural studio

The flush fin window is a retro-fit product designed for installation into an existing window frame with a 3/8" or wider return that protrude past or is flush with the exterior siding. There cannot be any fins or lips that extend past this vertical plane. The flush fin window will be sealed to this surface.

The attached are JELD-WEN's

Vinyl Flush Fin Windows

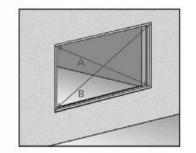
ecommended installation nstructions for vinvl windows hich incorporate an integral nail fin. These installation structions do not supersede any national, provincial, or local building codes. While the use of these installation tructions is recommended. Canada, installation in strict pliance with CSA A440-4 is ternate method of window stallation and will not affect the application of the JELD-WEN imited warranty.

Newer construction methods have led to an increase in air and water tightness in buildings. This frequently leads to negative air pressure inside the home, which can draw water through very small openings. Our installation method integrates the window with the weather barrier (typically building wrap).

*These installation instructions do not supercede any national, provincial or local building codes. They are meant as a guideline and reflect good installation practices.

RELIABILITY for real life®

REMOVE PACKAGING & ISPECT YOUR WINDOW


REMOVE PACKAGING

Remove shipping materials such as corner covers, shipping blocks or pads. If there is a protective film on the glass, do not remove it until installation and construction are complete.

INSPECT YOUR WINDOW Cosmetic damage

- Product squareness (diagonal measurements no more than 1/4" difference)
- · Correct product (size, color, grid pattern, handing, glazing, energy-efficiency requirements, etc.) Cracked frame
- Splits, cracks or missing sections in nailing fin longer than 6" Cracks, holes or other damage to nailing fin within 1/2" of window frame

SPECT EXISTING FRAME

For Vinyl Flush Fin Windows Verify width/height of new window are each 3/4" smaller than minimum opening width/

Drywall

return

height of the existing frame. Verify the existing opening is square. The "A" and "B" measurements above should be the same. Maximum allowable deviation from square is 1/8" for windows 20 sq. ft. and smaller,

 Verify the existing frame is level and plumb. The maximum allowable deviation is 1/16" for every 2' (not to exceed 1/8"). The exterior face of the rough

opening must be in a single plane with less than 1/8" twist from corner to corner.

 Signs of water leakage near the existing frame must be investigated and corrected prior to installing the new flush fin window.

The lack of an adequate return significantly adds to the complexity of

a long-term, water-tight installation. If the existing window frame does

not have a sufficient return, consult an installation professional to design

an installation that completely seals the new window in a weatherproof

INSTALLATION PREREQUISITES

Exterior

sidina

extending

fins or lip

Return

3/8" minimum

For Vinyl Windows with Nailing Fin · Verify the width and height of the window are each 1/2" smaller than the rough opening width/ height. · Verify the rough opening is square. The "A" and "B" measurements above should be the same. Maximum allowable deviation from square is 1/8" for windows 20 sq. ft. and smaller, and 1/4" for windows

larger than 20 sq. ft.

and 1/4" for windows larger than • Verify the rough opening is allowable deviation is 1/16" for every 2' of rough opening (not to exceed 1/8"). The rough opening sill must not

be crowned or sagged. • The exterior face of the rough opening must be in a single plane with less than 1/8" twist from corner to corner.

 The header must be supported by trimmer studs. Signs of water leakage near the existing frame must be investigated and corrected prior to installing the new window.

IMPORTANT INFORMATION

This installation assumes that the existing frame has a water-tight installation into the structure.

Vinyl Windows with nailing Fin and Flush Fin This instruction is based on CSA A440.4, for any specific details (ex: different siding type) that maybe different please contact your supplier for recommendations.

If installing in an area of high winds, see the structural engineering report of the product for specific fastening requirements.

Any local building code requirements supersede the recommended installation instructions. Failure to install square, level and plumb could result in denial of warranty claims for operational or performance problems.

Please Note! Installation such that the window sill is higher than 35 feet above ground level or any window installation into a wall condition not specifically addressed in this poster must be designed by an architect or structural engineer.

Vinyl Flush Fin Windows

Vinyl Windows with Nailing Fin

PREPARE THE FRAME

APPLY THE SLOPED SILL

Estimated Install	First Time: 40 min.
Time for New	Experienced: 25 min.
Construction	Professional: 15 min.

PREPARE EXISTING WINDOW FRAME

Remove the sashes and/or

glass in the existing window.

. Remove the meeting

stile (if a slider) with a

3. Seal all four corners of

the window frame.

I. Remove all existing

5. Sloped sill must be

continuous with a

inside to 0" outside.

5. Test fit new window into

place and then remove.

minimum of 3/8" in height

window frame cladding.

screwdriver or hacksaw.

GLOSSARY

Flush Fin Window: A vinyl window used for retro-fit installation into an existing window frame. The integral exterior trim is decorative and covers the gap between the new window and the existing siding.

Meeting Stile: A vertical frame member of a window that sits in the center of the exterior sill track and either holds one side of the fixed glass or keeps the stationary sash from moving.

Minimum Opening Width/Height: Measurements taken to determine

the size of window that will fit into a retro-fit opening. For example, the minimum opening height is the distance between the highest frame point on the sill to the lowest frame point on the

Return: The exterior face of an existing window frame that helps tie the window to the siding.

Mulled Unit: Two or more window units structurally joined together.

FOR RETROFIT INSTALLATIONS

building wrap, remove old window.

· Continue with the instructions.

PREPARE BUILDING WRAP

1. Trim building wrap flush at

and sill. Check with your

their product warranty.

10" at 45 degrees.

Tape up as shown.

rough opening head, sides

building wrap manufacturer

2. At the head, cut building wrap

3. Sloped sill must be continuous

inside to 0" outside.

with a minimum of 3/8" in height

to verify that this does not void

Shiplap: The layering method in which each layer overlaps the layer below it so that water runs down the outside.

Weep Hole (weep channel): The visible exit or entry part of a water drainage system used to drain water out of a window

PREPARE ROUGH OPENING

• After removing sufficient siding to expose at least 9" of intact

• If damaged, apply new building wrap in shiplap manner.

• Verify trimmer studs/header are structurally sound.

SAFETY & HANDLING

Please Note!

For a detailed list of safety and handling recommendations, refer to the full set of installation instructions at our website: www.jeld-wen.com/resources.

SAFETY Do not work alone.

- Use caution when handling glass. Broken or cracked glass
- can cause serious injury. · Wear protective gear as necessary.
- Read and fully understand ALL manufacturers' instructions before beginning.

WINDOW HANDLING

- Do not put stress on joints, corners or frames.
- Vinyl Flush Fin Windows and Vinyl Windows with Nailing Fin
- Make sure the window is locked prior to installation. · Read material manufacturers' handling and application
- Properly dispose of unused products and waste material per federal,
- provincial, and local environmental protection rules. Handle in vertical position; do not drag on floor.
- Store window in dry, well-ventilated area in vertical, leaning position
- to allow air circulation; do not stack horizontally.
- Protect from exposure to direct sunlight.
- Install only when conditions and sheathing are completely dry.

If using self-adhesive flashir

spray adhesive/primer per

in extreme conditions, apply

manufacturer's instructions

to nailing fin, sheathing and

building wrap at the sides

5. Cut a piece of self-sealing

adhesive flashing to the sill

length and jambs and apply

6. Apply sill shims in the

following manner: Apply

one shim at 1" from each

window corner. Apply one

shim under any mullion or

meeting rail or at centre

for any window exceeding

7. Fold the drain mat down onto the sheathing.

and head of the window

as shown.

it as shown.

IF INJURY OCCURS, IMMEDIATELY SEEK MEDICAL ATTENTION!

NEEDED MATERIALS & TOOLS

• 3 1/2" corrosion-resistant, pan head screws; screws must penetrate at least 1" into framing

• Solid wood (sloped sill); dimensions should be 1/4" shorter than the length of the sill and 3/8" taller than the depth of the track by a

minimum of 3 1/4" wide. • Sealant (polyurethane if painted, Thermoplastic sealant if left exposed)

and backer rod Low expansion foam or/and fiberglass insulation

Please see your local retailer for appropriate foam expansion properties.

• 1 3/4" galvanized roofing nails; nails must penetrate at least 1" into framing

JELD-WEN 6" wide self-adhesive flashing (part #08987)

or equivalent, or flexible flashing (Width requirement may vary according to local code)

• 3/8" stainless steel square wire staples

Follow all material manufacturers' instructions for proper use and compatibility.

TOOLS

Screwdriver

Level

· Cloth

Hammer

Tape measure

- J-roller
- Caulking gun
- Hacksaw

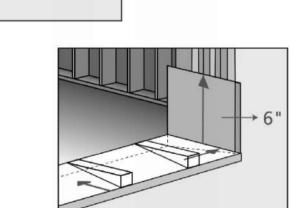
Drill with 1/8" tapered drill bit and 3/8" countersink Construction stapler

Putty knife

The wall framing is covered by sheathing and the window will be mounted with the nailing fin flush against the sheathing.

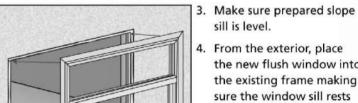

FULLY SHEATHED WALL CONSTRUCTION

ROUGH OPENINGS


architectural studio

OPEN-STUD INSTALLATION The wall framing needs to be covered by backing support before the window can be installed. The window will be mounted with the nailing fin flush against the applied backing support. This backing

support should be a non water-degradable, thin (max. 1/8" thick) sheet material such as vinyl sheeting. Completely surround the rough opening with the backing support as shown. Backing support must be applied before building wrap. Note! For curved windows, ensure framing is sufficient around window perimeter to allow nailing fin to be nailed every 8" to the framing.


INSTALL WINDOW

1. Cut a piece of self-sealing adhesive flashing to the sill length and jambs and apply it as shown.

2. Apply sill shims in the following manner: Apply one shim at 1" from each window corner. Apply one shim under any mullion or meeting rail or at centre for any window exceeding 24" in width.

INSTALL WINDOW

sill is level. From the exterior, place the new flush window into the existing frame making

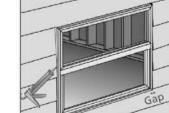

sure the window sill rests

completely on the shims.

Open-Stud with Backing

Note! Hold window in place

until fully fastened.


5. Fasten window temporarily through the predrilled holes in jamb 3"-6" from one upper corner as follows: (if there is no oredrilled holes do step a.)

a. Use a 1/8" tapered drill bit with 3/8" countersink to drill a screw hole through the side jamb and into the buck (on the interior, or exterior if insufficient space). Countersink should not penetrate the back wall of the frame.

b. Apply sealant to the threads of a 3 1/2" screw and drive into

the side jamb.

COMPLETE INSTALLATION

. Seal the top corners of the window with a 1/4" bead of sealan Tool into a fillet shape.

2. Release the building wrap from above the header (previously

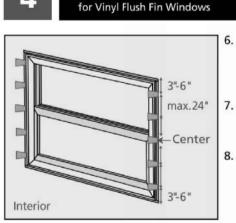
3. Ensure weep holes/ channels are clear of debris for proper water drainage; do not seal weep holes/channels if present.

IS USING FLEXIBLE FLASHING Mechanically fasten flashing.

1. Install exterior wall surface within seven days of window installation.

2. Maintain gap of 1/4"-3/8" between window frame and final exterior wall surface (siding, stucco, etc.). 3. Seal the gap with backer rod and sealant. Do not apply sealant on top

4. On the interior, seal the void between the rough opening and the window frame with backer rod and sealant, or with low expansion foam. Do not use high-expansion foam as this may cause frame deflection.

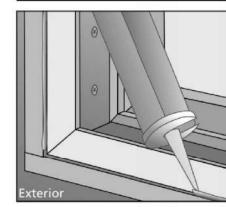

6. Protect recently installed units from damage from plaster, paint, etc. by covering the unit with plastic.

7. For casement window, remove the shipping block (cork) underneath the sash.

Note! For integral J-channel vinyl product installed into a structure

DOOR & WINDOW

INSTALL WINDOW (CONTINUED)



Shim the side jambs aligned with the predrilled holes or 3"-6" from the corners and at 24" maximum intervals. Inspect window for square, level, plumb. Adjust as needed with shims.

B. Fasten window through side jambs and shims.

9. If the window is higher than 3', fasten the side jambs at 24" maximum intervals. If the window is wider than 3', fasten the head jamb at 24" maximum intervals with a free flowing screw. Do not shim the head. 10. Install vinyl plugs supplied or available through suppliers if desired.

SEAL BETWEEN REPLACEMENT WINDOW AND EXISTING FRAME

Apply back rod and a continuous bead of thermoplastic sealant between the new window frame and the existing frame around the window. Leave 2" x 1/2" gaps in your back rod and sealant at sill to allow for proper water drainage.

INSTALL WINDOW for Vinyl Windows with Nailing Fin

Caution! To avoid injury, use two people to install.

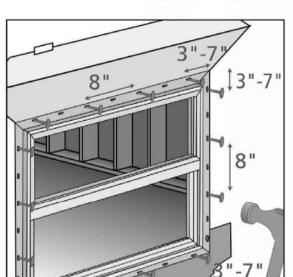
. Place window into the rough opening Temporarely fasten window with a galvanized roofing nail through a

one top corner.

. Shim the side jambs aligned with the predrilled holes or 3"-6" from the corners and at 24" maximum intervals. rspect window for square, level, plumb. Adjust as needed with shims.

nailing fin hole between 3"-7" from

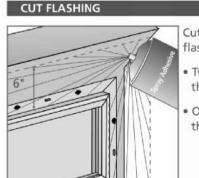
Fasten window through side jambs predrilled holes and shims. If the window is taller than 3', fasten the side jambs at 24" maximum intervals. If the window is wider than ', fasten the head jamb at 24" maximum intervals with a free


flowing screw. Do not shim the head.

Install vinyl plugs supplied or available through suppliers if desired. Note! a. Use a 1/8" tapered drill bit with 3/8" countersink to drill a screw hole through the side jamb and into the buck (on the interior, or exterior if insufficient space). Countersink

into the side jamb.

should not penetrate the back wall of the frame. . Apply sealant to the threads of a 3 1/2" screw and drive


Note! Fastener heads must be flush. Do not dent nailing fin.

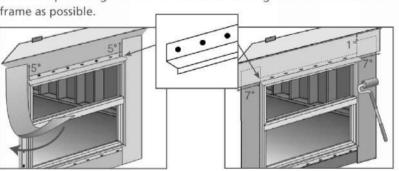
Fastening Recommendations for Vinyl Mull Systems #10 x 1" PAN HEAD WOOD SCREW NAILING WINDOW WINDOW - MULLED JOINT

• For any product B4 or above, fastener spacing is 4". • For mulled units, fastener spacing is 4" around the mulled joint as shown.

FLASH WINDOW

Cut three pieces of 6" self-adhesive lashing as follows: Two side pieces 12" longer than the side One header piece 14" longer than the header

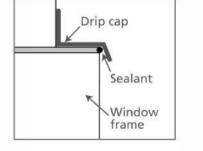
If using self-adhesive flashing in extreme conditions, apply spray adhesive/primer per manufacturer's instructions to nailing fin, sheathing and building wrap at the sides and head of the window as shown.

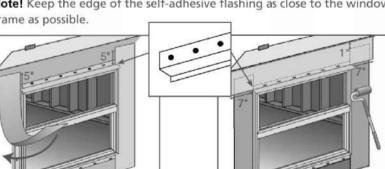

 Protect window from overspray. Concrete, on damp surfaces and/or where frost is present. • The flashing manufacturer's recommended primer is Protecto Wrap

Safseal Systems 5500. Note! Extreme conditions exist where the outside temperature is at or below 32° F (0° C), on excessively dirty surfaces, on Dens-Glass Gold, on

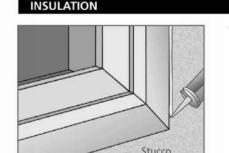
concrete, on damp surfaces and/or where frost is present. • The flashing manufacturer's recommended primer is Protecto Wrap Safseal Systems 5500 primer.

APPLY SELF-ADHESIVE FLASHING IN THIS ORDER


Note! Keep the edge of the self-adhesive flashing as close to the window frame as possible.



1. Apply the side pieces starting 5" above the header


2. Install drip cap (should extend 1/2" on each side) 3. Center and apply the header piece above the drip cap

the window head

4. Press the flashing down with a j-roller 5. Apply a bead of sealant all along between the drip cap and

Insulate with fiberglass batting or low expansion foam. Fill gap with low expansion foam around window perimeter at the sash position. Fill remaining cavity with fiberglass batting. Use as per

AFTER INSTALLATION

4. Protect recently installed units from damage from plaster, paint, etc. by covering the units with plastic.

Please visit our website at www.jeld-wen.ca/eng/resources to download

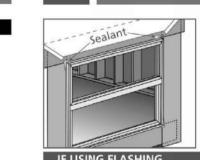
a copy of the complete guide to care and maintenance for your window.

 ${f RELIABILITY} \ for {f real} \ {f life}$

COMPLETE INSTALLATION

manufacturers instructions.

Apply interior trim as desired.


3. Adjust window for best operation (if applicable).

exterior

the sash.

5. For casement window, remove the shipping block (cork) underneath

Thank you for choosing

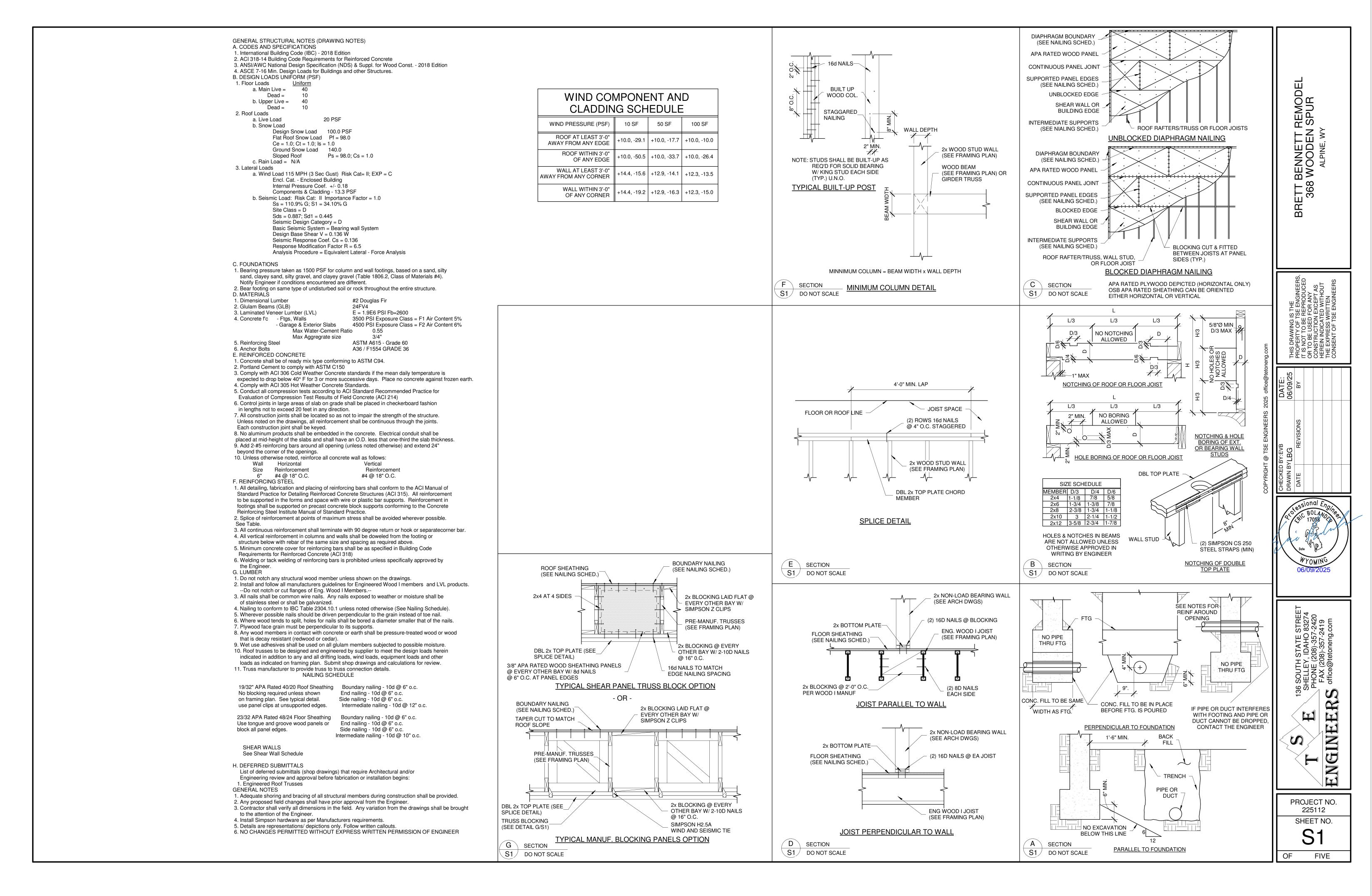
taped up) and overlap the header flashing. Seal the ends with self-sealing flashing or building wrap tape.

 Apply sealant down sides where the window meets the flashing. "Tool" or smooth out the sealant. AFTER INSTALLATION

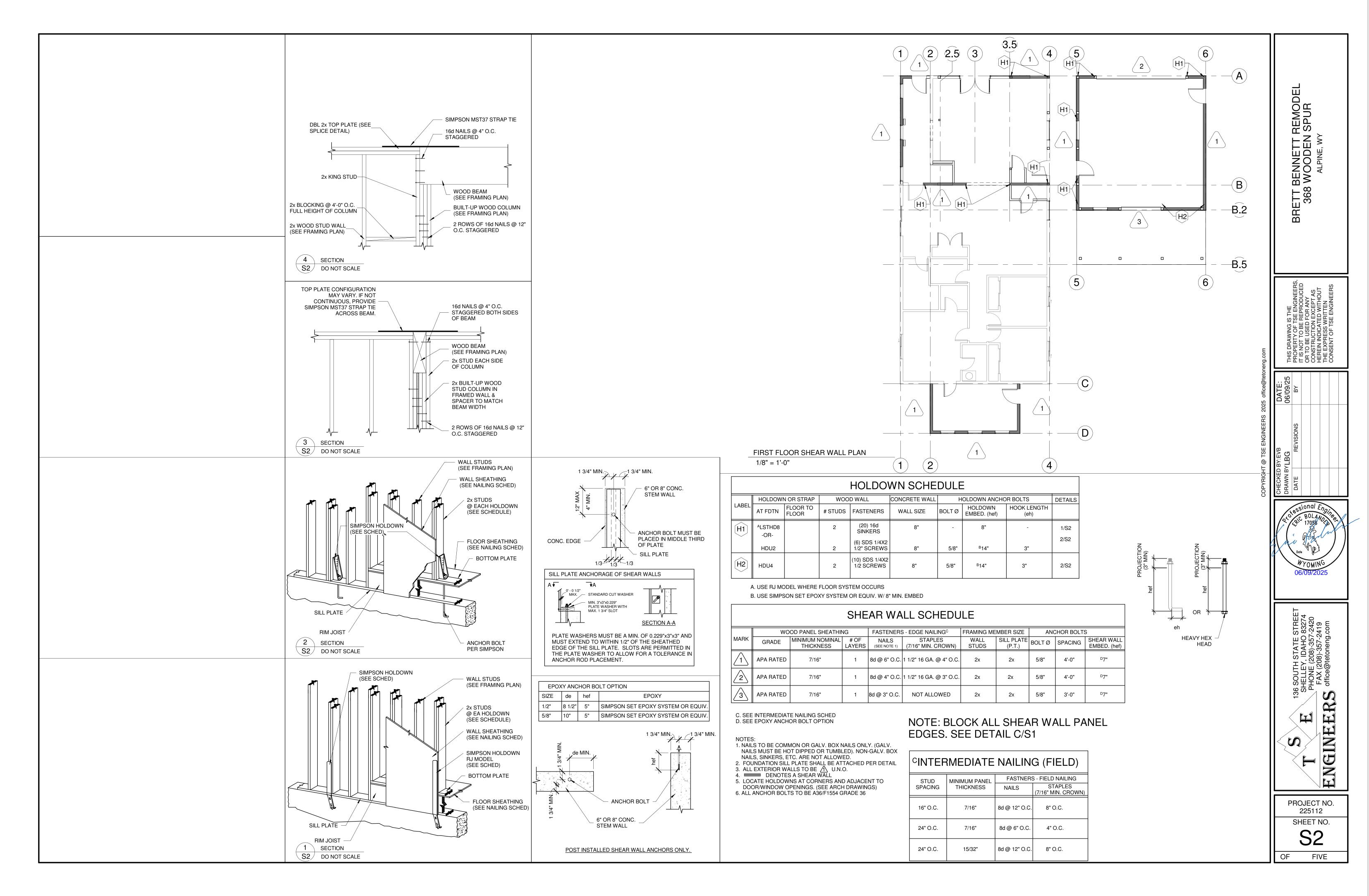
of window frame or drip cap if present.

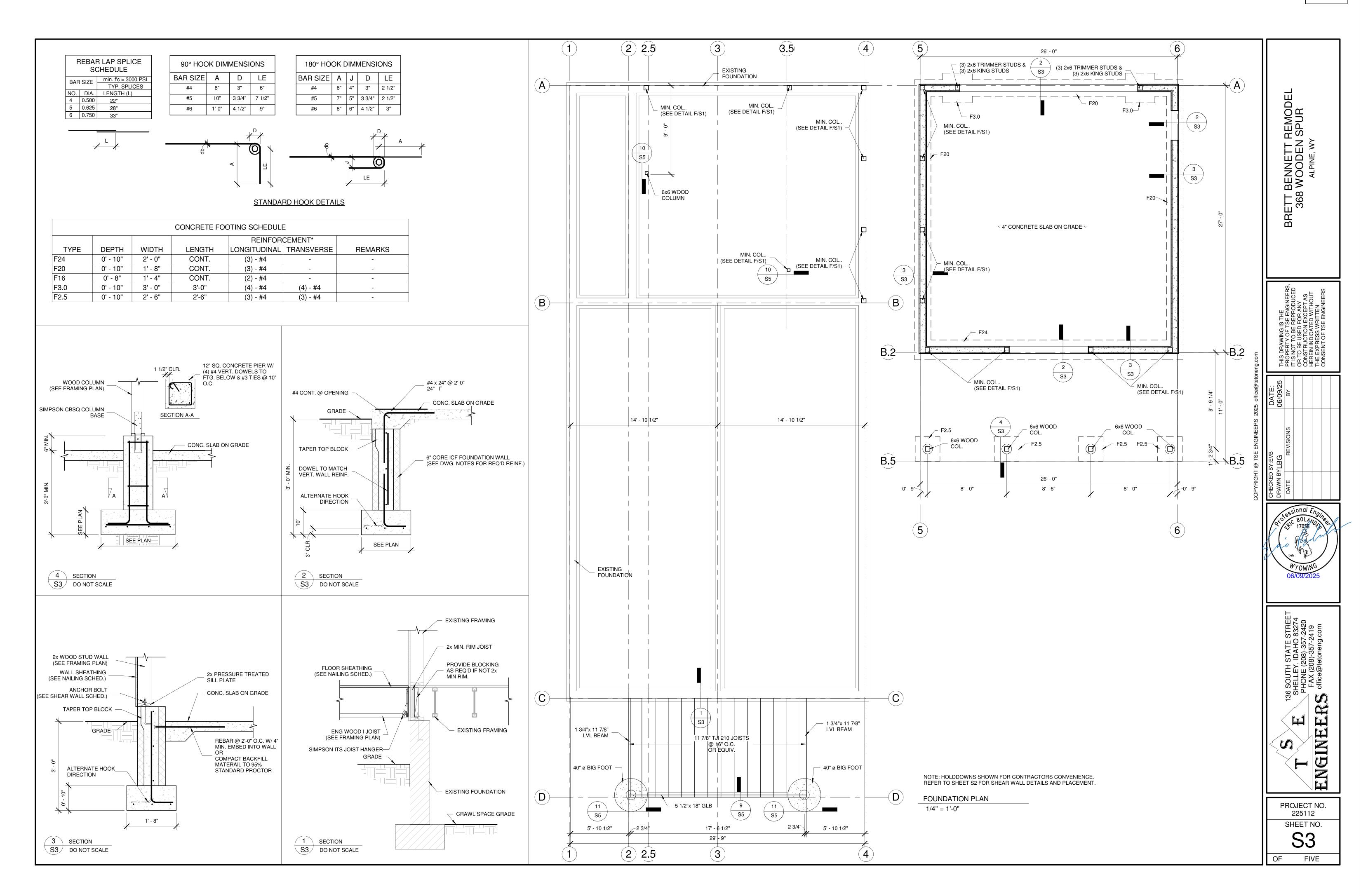
5. Adjust window for best operation.

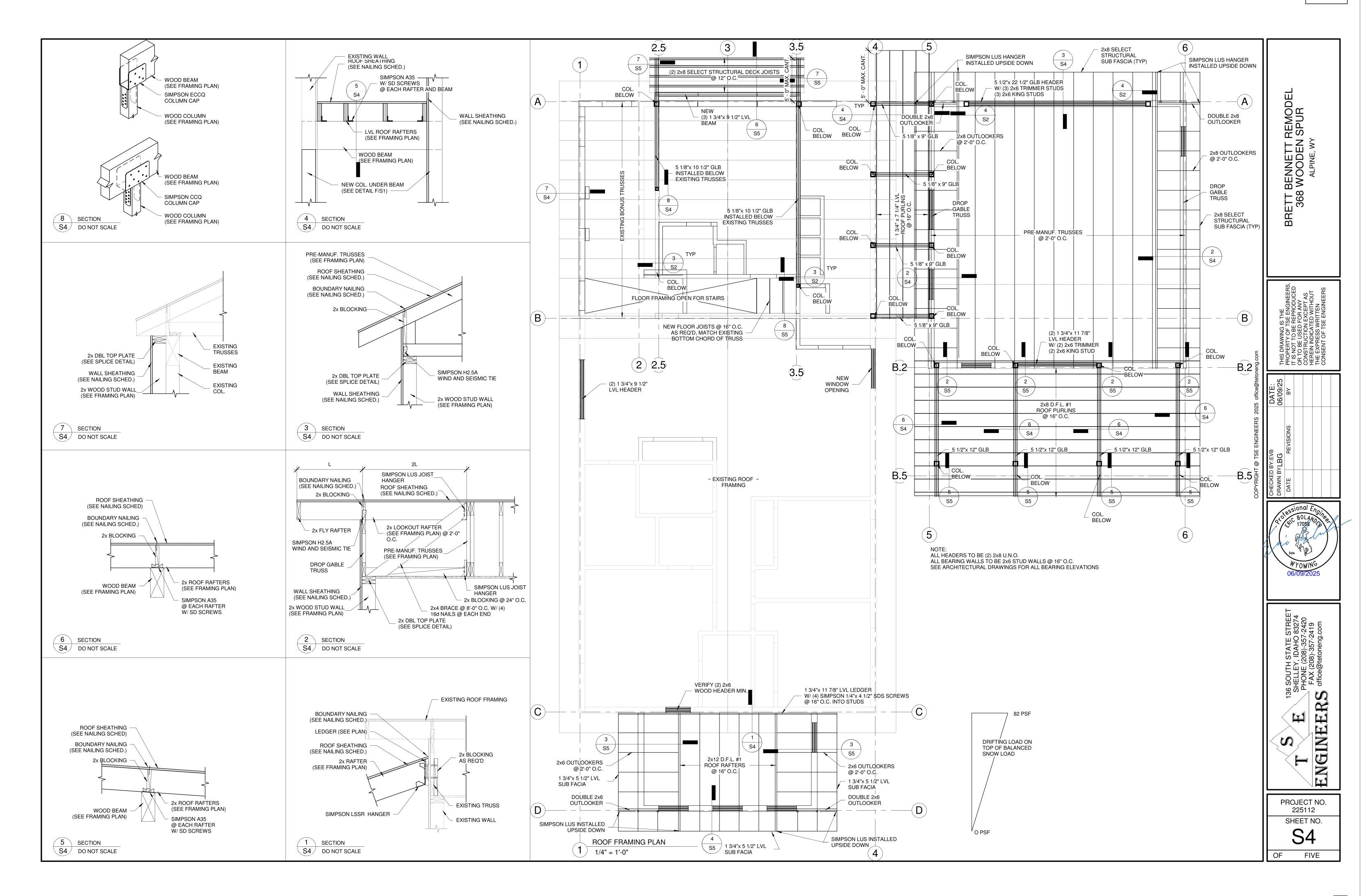
with shiplap siding, no expansion/contraction joint is needed.

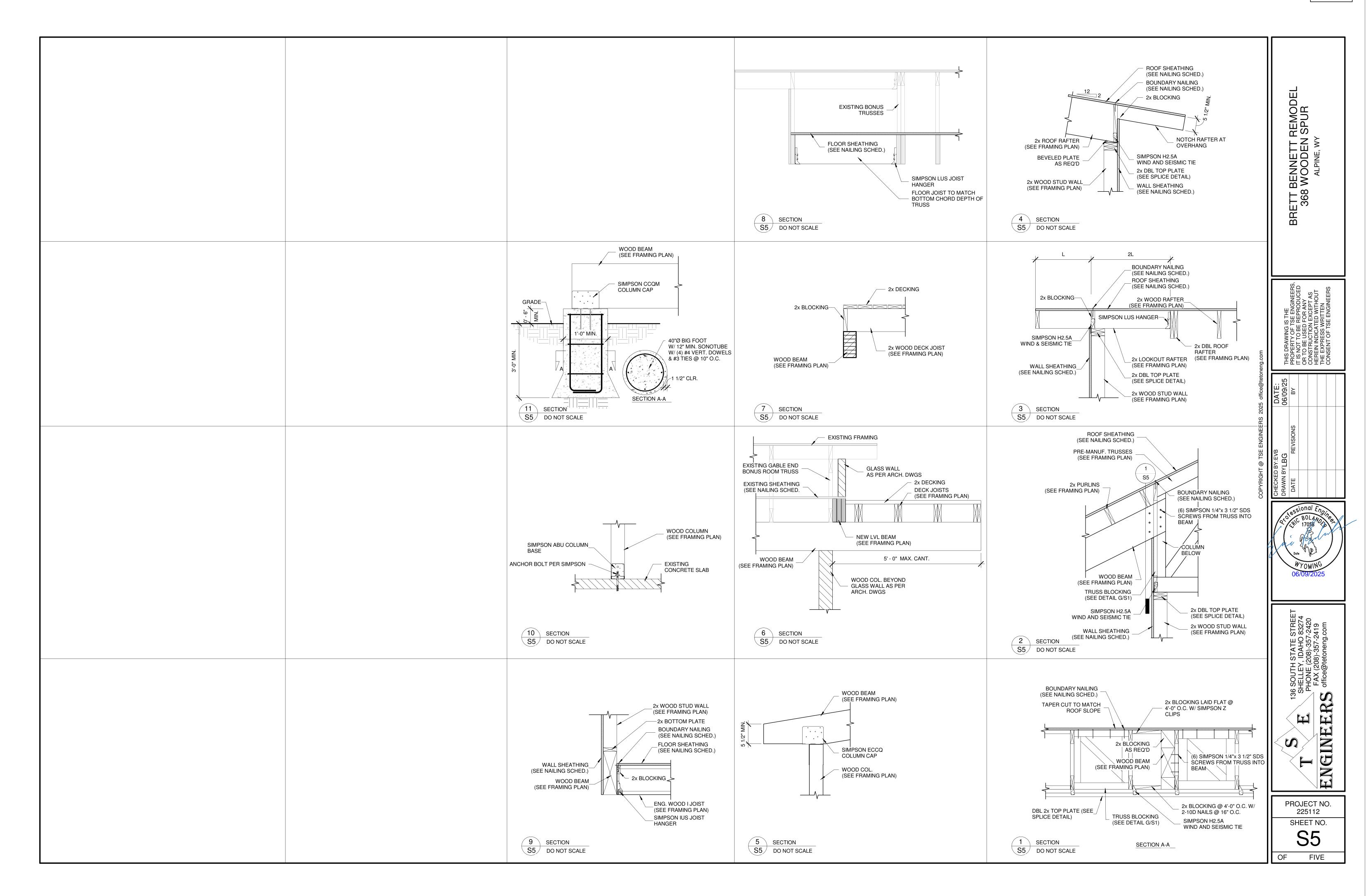

INSTALLATION

© 2025 | ALL RIGHTS RESERVED


PERMIT DRAWINGS


6.9.2025


REVISIONS



15

19

Town of Alpine

REMODEL/ADDITION PERMIT APPLICATION

ALL permit information is DUE NO LATER than 4:00 PM on the 1st and 3rd Mondays of the month. Meeting appointments will not be scheduled if applicant has failed to submit all the requested information identified on the checklist and/or has not paid all required permitting fees.

Please plan accordingly. NO EXCEPTIONS WILL BE GIVEN

Applications are valid for 90 days from the submitted date to the Town Office.

P&Z Commission meets on the 2nd & 4th Tuesdays of the month (during the months of May – October) at 7:00 pm. P&Z Commission meets on the 2nd Tuesday of the month (during the months of November - April) at 7:00 pm.

There are no refunds on building application fees.

The Property Owner and/or a Representative must be present at

the scheduled meeting for your permit to be approved.

Section 3, Itema.

REMODEL/ADDITION

Permit Application

INFORMATION TO BE PROVIDED BY APPLICANT ~ PLEASE FILL IN ALL BLANKS

PROJECT NA	ME:		
Physical Address:			
358 WOODEN			
Legal Description (Lot # and Subdivision):		
GREYS RIVER	R VILLAGE NO. 2 LOT-27		
Description of Worl			
RESIDENTIAL	GARAGE AND RENOVATION OF EXISTING	DWELLING	
Proposed Building	Use:		
RESIDENTIAL	R-1		
Estimated Valuation	n of Work:	Victoria de la constanta de la	
\$200,000.00			
Floor Area:	FLOOR AREAS IN GROSS SQUARE FEET ONE FAMILY DWELLING GROSS FLOOR AREAS:	_	
First Flr:	EXISTING 1ST FLOOR DWELLING AREA: 1,216 SQFT EXISTING ATTACHED GARAGE AREA: 528 SQFT		
(+)	EXISTING 2ND FLOOR AREA: 295 SQFT		
al Square Foota	001	03	
	EXISTING GARAGE TO LIVING ROOM: 515 SQFT PROPOSED DETACHED GARAGE: 676 SQFT		
ADDI TOANT	PROPOSED COVERED OUTDOOR AREA: 150 SQFT AT ENT		
Owner:	CONTRACTORS AND/OR CONSULTAN	Phone:	
BRETT BENNE	ETT	(307) 880-4280	
Mailing Address:		(657)	-
	ALPINE, WY 83128		
Contractor:		Phone:	
	CONSTRUCTION	(307) 690-3728	
Mailing Address:			
	ALPINE, WY 83128		
Excavating Contract		Phone:	
TO BE DETER		Filone.	
Mailing Address:			
ridiling radicos.			
Firstrical Contracto	r.	Phone:	
BE DETER		Thores.	

Mailing Address:			Section 3, Itema.
Plumbing Contractor: BE DETERMINED	Phone:		
Mailing Address:			
Mechanical Contractor: TO BE DETERMINED	Phone:		
Mailing Address:	1		
Authorized Representative if different from Owner:			
Signature of Owner or Authorized Representative:		Date:	

FOR USE BY TOWN:

Date Received:	Permit #:	Property Zoning:
Permit Fees:	Paid Fees: (Check#/Cash)	Scheduled Meeting Date:
Fire Sprinklers Required: (Yes/No)	Business Licenses:	
Application Completed:	Employee Review:	Application Return Date:
Town Inspector Submittal Date:		
Town Inspector Submitted Succ.		

Town of Alpine

Remodel/Addition Permit

CHECKLIST

There will be NO guarantees of being on the P & Z Agenda if...

- Your application is turned in <u>after</u> the deadline date/day; or,
- If your remodel/addition building packet (application, checklist, fee payments, all required information, etc.,) is not completed and/or submitted; or,
- Your review is found to be incomplete and/or not approved by the Town Building Official.

Owner: BRETT BENNETT	Phone #'s: (307) 880-4280
Lot#/Subdiv. LOT-27 GREYS RIVER VILLAGE NO.2	Physical Address: 368 WOODEN SPUR DR
You may submit your Building Application Packet by mail to	
	o: PO Box 3070, Alpine, WY 83128

#1 - REVIEW AND COMPLETE ALL APPROPRIATE AREAS; PLACE A CHECK MARK ONCE COMPLETED OR PLACE "N/A" IF NOT APPLICABLE TO YOUR PERMIT APPLICATION { DO NOT LEAVE ANY OF THE LINES BLANK}:

- ALL information is filled out and submitted as requested by the Town of Alpine;
- ALL Contractors/Subcontractors obtained a <u>Town of Alpine Business License</u>;
- Requested Water Main Locate prior to ANY digging (Owner's Responsibility);
- Requested all other utility(electrical, phone, etc) lines located prior to ANY digging (Owner's Responsibility)
- Must have written approval from Homeowner's Association on Building Plans (if Applicable)

#2 - GETTING A BUILDING PERMIT:

- X Remodel/Addition Building Permit Application Completed and Signed;
- X Remodel/Addition Building Checklist Completed and Signed;
- X Owner must read and signs Remodel/Addition Building Permit Instructions;
- X Payment of Permit Fees, which <u>MUST</u> be paid when submitting the Building Permit Application; ***See Fee Schedule ** ALL FEES ARE NON REFUNDABLE

SUBMITTAL REQUIRMENTS:

SITE PLAN TO BE PUT ON 11" X 17" PAPER SIZE AND MUST CONTAIN:

- X Setback distances;
- X All Property Line & measurements according to surveyor's dimensions;
- X Location & Dimensions of ALL buildings (home, garage, yard hydrants, propane tanks etc.) Dimensions must include exact perimeter of the new proposed building/addition – include any recessed areas when documenting;
- X Location of utility connections;
- X Location of all recorded easements;
- X Proposed Landscaping and Snow Storage Areas/Requirements as stated in Land Use and Development Code;
- X Proposed Vehicular Parking Requirement as stated in Land Use and Development Code;

THREE (3) FULL SETS OF STRUCTURAL PLANS $\{2' \times 3' \text{ in Size}\}\$ (MUST BE STAMPED BY A WYOMING LICENSED ENGINEER) - (MINIMUM SCALE $\frac{1}{4''} - \frac{1}{1}$:

X	Detailed Building Elevations;
<u>X</u>	Detailed Floor Plan;
X	Detailed Wall Sections;
X	Detailed Utilities (Plumbing, HVAC Systems, etc.,) and Electrical Plan;
X	Detailed Footing/Foundation Plan and Building Material to be Used;
X	Detailed Roof Plan and Building Material to be Used;
Χ	Detailed Insulation Schedule (a Rescheck or Comcheck can be utilized);
X	Detailed Window and Door Schedules/Identifications;
Χ	Detailed Radon Mitigation System Identified;

ADDITIONAL SUBMITTALS NEEDED:

X	Any Additional information and/or attachments as stipulated by the Wyoming Licensed Engineer associated with
	the project;
X	Read Propane Tank Regulations (if applicable) Refer to Chapter 38 of IFC;
N/A	Application for State of Wyoming Department of Fire Prevention & Electrical Safety (if applicable);

Please note that the Town of Alpine has adopted the **2021 International Building Codes**; refer to the adopted codes for additional information; in addition, please review the Town Adopted Building Code Ordinances located on our website for any exceptions granted by the Town of Alpine to the Adopted Building Codes.

#3 - TOWN RESPONSIBILITIES:

17 - 1 Y	VIII 1949 VIIVABBERIAN
<u>)</u>	Town Building Official approves plans, by conducting a plan review; Planning & Zoning Board approves Remodel/Addition Building Permit.
<u>#4 – P</u>	ROPERTY OWNER PREPARATIONS:
	Clearly string & stake the EXACT dimensions of the new structure. *All Dimensions on the ground MUST MATCH your Site Plan;
	Property stakes: All property monuments/surveyor pins must be exposed and visible; <u>Wooden stakes without Surveyors Monuments will not be accepted.</u>

CERTIFICATE OF PLACEMENT: A Certificate of Placement must be obtained by a Wyoming Licensed Surveyor **BEFORE** your foundation is poured. This certificate must be submitted to the Town Office before you will be allowed to move forward with your project.

BUILDING/PROJECT INSPECTIONS: Refer to the inspection schedule for the complete list of scheduled inspections for your project. IT IS THE RESPONSIBILITY OF THE PERMIT HOLDER TO CALL FOR INSPECTIONS; a minimum of 48 hours notice is suggested. FAILURE TO NOTIFY THE TOWN OFFICE OF SCHEDULED INSPECTIONS MAY RESULT IN ADDITIONAL INSPECTION CHARGES, FINES, PENALITIES AND/OR REMOVAL OF THE WORK THAT WAS INSTALLED BUT NOT BEEN INSPECTED.

CERTIFICATE OF COMPLETION/COMPLIANCE: Upon final completion of all of the remodel/addition building requirements; a final inspection will be completed; it is the applicant's responsibility to contact the Town Office to schedule the final inspection to receive your Certificate of Completion/Compliance. A Certificate of Completion/Compliance represents the building can be **permanently** occupied.

Property Owner nitials:

Page 2

*For more thorough information and instructions: Refer to the current version of the dopted Town Ordinance of the International Building Code {IBC} and/or International Residential Code {IRC} in addition refer to the Alpine Land Use and Development Code Ordinance; plus the Adopted Building Code Ordinances for any exceptions.

These can be found on our website at: www.alpinewy.org/planningandzoning.

Yes, I received, completed and understand the Remodel/Addition Permit Checklist.

B113 11	JUNE 9TH, 2025
Property Owner Signature	Date
Contractor Signature (if applicable)	6/9/2025 Date

Office Use Only:	
Received By:	Date:
All Items have been Completed & Application Accepted:	
Incomplete Application Returned:	
Scheduled for P&Z Meeting:	

Section 3, Itema.

Planning @]

136 S. State Street Shelley, Idaho 83274 208-357-2420

JOB TITLE Wooden Spur Renovati

368 Wppdem Spur Dr. /

Section 3, Itema.

JOB NO. 225112

CALCULATED BY EVB

SHEET NO. DATE

DATE

6/4/25


CHECKED BY

STRUCTURAL CALCULATIONS

FOR

Wooden Spur Renovation

368 Wppdem Spur Dr. Alpine Wy.

JOB TITLE Wooden Spur Renovation

Section 3, Itema.

TSE Engineers 136 S. State Street Shelley, Idaho 83274 208-357-2420

368 Wppdem Spur Dr. Alpine Wy.

JOB NO. 225112

SHEET NO. 10%

39 DATE 6/4/25 DATE

CALCULATED BY EVB CHECKED BY

CODE SUMMARY

Code:

International Building Code 2021

Live Loads:

Roof

0 to 200 sf: 20 psf

200 to 600 sf: 24 - 0.02Area, but not less than 12 psf

over 600 sf: 12 psf

40 psf Typical Floor Partitions N/A 40 psf All other residential areas except bal 30 psf Habitable attics & sleeping areas Attics without storage 10 psf Decks (1.5 times live load) 60 psf

Dead Loads:

10.0 psf Floor Roof 15.0 psf

Roof Snow Loads:

Design Uniform Roof Snow load 100.0 psf Flat Roof Snow Load Pf =98.0 psf Balanced Snow Load Ps = 98.0 psf Pg =Ground Snow Load 140.0 psf Ĭ = Importance Factor 1.00 Ce = Snow Exposure Factor 1.00 Thermal Factor Ct = 1.00 Sloped-roof Factor Cs = 1.00 Drift Surcharge load Pd =Width of Snow Drift W =

Earthquake Design Data:

Risk Category 11 | = 1.00 Importance Factor Mapped spectral response accelerat Ss = 110.90 S1 = 34.10 Site Class = code default Spectral Response Coef. Sds = 0.887 Sd1 =0.445

Seismic Design Category = D Basic Structural System = Bearing Wall Systems

Seismic Resisting System = Light frame (wood) walls with structural wood shear panels

Seismic Response Coef. Cs = 0.136 R =Response Modification Factor 6.5

Analysis Procedure = Equivalent Lateral-Force Analysis

Rain Design Data:

7.23 in/hr Rain intensity i =Rain Load R =24.4 psf

Wind Design Data:

Ultimate Design Wind Speed 120 mph 92.95 mph Nominal Design Wind Speed Risk Category 11 Mean Roof Ht (h) 17.0 ft **Exposure Category** C **Enclosed Building** Enclosure Classif. Internal pressure Coef. +/-0.18 Directionality (Kd) 0.85

136 S. State Street Shelley, Idaho 83274 208-357-2420 JOB TITLE Wooden Spur Renovation

368 Wppdem Spur Dr. Alpine Wy.

JOB NO. 225112

SHEET NO. 2 of 39 DATE 6/4/25

CALCULATED BY EVB

DATE

Component and Cladding Nominal Wind Pressures

Roof	Surface Pressure (psf)							
Area	2 sf	10 sf	20 sf	50 sf	75 sf	100 sf	200 sf	250 sf
Negative Zone 1 & 2e	-29.1	-29.1	-29.1	-17.7	-12.7	-10.0	-10.0	-10.0
Negative Zone 2n, 2r &3e	-42.4	-42.4	-36.7	-29.1	-25.7	-23.3	-17.6	-15.8
Negative Zone 3r	-50.5	-50.5	-43.2	-33.7	-29.4	-26.4	-26.4	-26.4
Positive All Zones	11.7	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Overhang Zone 1 & 2e	-33.4	-33.4	-33.4	-25.8	-22.4	-20.0	-20.0	-20.0
Overhang Zone 2n & 2r	-46.7	-46.7	-42.4	-36.7	-34.2	-32.4	-28.1	-26.7
Overhang Zone 3e	-54.7	-54.7	-47.3	-37.4	-33.0	-29.9	-22.4	-20.0
Overhang Zone 3r	-62.7	-62.7	-53.1	-40.3	-34.7	-30.7	-30.7	-30.7
				6.2.205-0.	1 10 7			

Overhang soffit pressure equals adj wall pressure (which includes internal pressure of 2.4 psf)

	Parapet		Solid Pa	rapet Press	ure (psf)		
	Area	10 sf	20 sf	50 sf	100 sf	250 sf	500 sf
CASE A:	Zone 2e:	0.0	0.0	0.0	0.0	0.0	0.0
Zone 2	n, 2r & 3e :	0.0	0.0	0.0	0.0	0.0	0.0
	Zone 3r :	0.0	0.0	0.0	0.0	0.0	0.0
CASE B: Inte	erior zone :	0.0	0.0	0.0	0.0	0.0	0.0
Co	rner zone :	0.0	0.0	0.0	0.0	0.0	0.0

Wall	Surfac	e Pressure	(psf)	
Area	10 sf	100 sf	200 sf	500 sf
Negative Zone 4	-15.6	-13.5	-12.9	-12.0
Negative Zone 5	-19.2	-15.0	-13.7	-12.0
Positive Zone 4 & 5	14.4	12.3	11.7	10.8

136 S. State Street Shelley, Idaho 83274 208-357-2420

JOB TITLE Wooden Spur Renovat

368 Wppdem Spur Dr.

Section 3, Itema. SHEET NO. DOT

JOB NO. 225112 CALCULATED BY EVB

DATE 6/4/25

CHECKED BY

DATE

Code Search

Code:

International Building Code 2021

Occupancy:

Occupancy Group =

R Residential

Risk Category & Importance Factors:

Risk Category =

П

Wind factor =

1.00

use 0.60 NOTE: Output will be nominal wind pressures

Snow factor = 1.00 Seismic factor = 1.00

Type of Construction:

Fire Rating:

Roof =

0.0 hr

Floor = 0.0 hr

Building Geometry:

Roof angle (θ)

2.00 / 12

Building length Least width

26.0 ft 38.0 ft

Mean Roof Ht (h) Parapet ht above grd Minimum parapet ht

17.0 ft 0.0 ft 0.0 ft

Live Loads:

Roof

0 to 200 sf: 20 psf

200 to 600 sf: 24 - 0.02Area, but not less than 12 psf

9.5 deg

over 600 sf: 12 psf

Floor:

Typical Floor

40 psf

Partitions

N/A

All other residential areas except balc

Habitable attics & sleeping areas

40 psf

Attics without storage

30 psf 10 psf

Decks (1.5 times live load)

60 psf

136 S. State Street Shelley, Idaho 83274 208-357-2420 JOB TITLE Wooden Spur Renovat

368 Wppdem Spur Dr.

JOB NO. 225112

CHECKED BY

SHEET

10%51

CALCULATED BY EVB

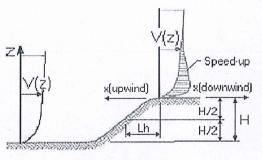
DATE 6/4/25

Section 3, Itema.

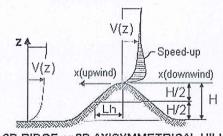
Wind Loads:

ASCE 7-16

Ultimate Wind Speed	120 mph
Nominal Wind Speed	93 mph
Risk Category	ll —
Exposure Category	C
Enclosure Classif.	Enclosed Building
Internal pressure	+/-0.18
Directionality (Kd)	0.85
Kh case 1	0.872
Kh case 2	0.872
Type of roof	Gable


Topographic Factor (Kzt)

Topograpino	actor (112t)		
Topography		Flat	
Hill Height	(H)	80.0 ft	
Half Hill Length	n (Lh)	100.0 ft	
Actual H/Lh	=	0.80	
Use H/Lh	- = -	0.50	
Modified Lh	=	160.0 ft	
From top of cre	est: x =	50.0 ft	
Bldg up/down	wind?	downwind	


H/Lh= 0.50	$K_1 = 0.000$
x/Lh = 0.31	$K_2 = 0.792$
z/Lh = 0.11	$K_3 = 1.000$

At Mean Roof Ht:

 $Kzt = (1+K_1K_2K_3)^2 = 1.00$

ESCARPMENT

2D RIDGE or 3D AXISYMMETRICAL HILL

Gust Effect Factor h = 17.0 ft

h = 17.0 ft B = 38.0 ft z = 15.0 ft

Flexible structure if natural frequency < 1 Hz (T > 1 second). If building h/B>4 then may be flexible and should be investigated. $h/B = 0.45 \qquad \qquad \text{Rigid structure (low rise bldg)}$

G = 0.85 Using rigid structure formula

Flexible or Dynamically Sensitive Structure Rigid Structure Natural Frequency (η_1) = ē = 0.20 0.0 Hz £ = 500 ft Damping ratio (β) = $z_{min} =$ 0.65 15 ft 0.15 0.20 /α = c= $g_Q, g_v =$ Vz = 101.3 3.4 $L_z =$ $N_1 =$ 427.1 ft 0.00 $\kappa_n =$ Q =0.92 0.000 $|_{z} =$ 0.23 28.282 $\eta =$ 17.0 ft 0.000 h = $R_B =$ 0.88 use G = 0.85G= 28.282 η= 0.000 $R_L =$ 0.000 28.282 $\eta =$ $g_R =$ 0.000 R =0.000 Gf = 0.000

136 S. State Street Shelley, Idaho 83274 208-357-2420

JOB TITLE Wooden Spur Renovat

368 Wppdem Spur Dr.

Section 3, Itema.

JOB NO. 225112 CALCULATED BY EVB

CHECKED BY

6/4/25 DATE

DATE

Enclosure Classification

Test for Enclosed Building:

Ao < 0.01Ag or 4 sf, whichever is smaller

Test for Open Building:

All walls are at least 80% open.

Ao ≥ 0.8Ag

Test for Partially Enclosed Building: Predominately open on one side only

	Input	
Ao	180.0	
Ag	286.0	sf
Aoi	308.0	sf
Agi	858.0	sf

Test Ao ≥ 1.1Aoi NO Ao > 4' or 0.01Ag YES $Aoi/Agi \le 0.20$ NO

Building is NOT Partially Enclosed

Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following:

Ao ≥ 1.1Aoi

Ao > smaller of 4' or 0.01 Ag

Aoi / Agi ≤ 0.20

Ao = the total area of openings in a wall that receives positive external pressure.

Ag = the gross area of that wall in which Ao is identified.

Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.

Agi = the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.

Test for Partially Open Building:

A building that does not qualify as open, enclosed or partially enclosed. (This type building will have same wind pressures as an enclosed building.

Reduction Factor for large volume partially enclosed buildings (Ri):

If the partially enclosed building contains a single room that is unpartitioned, the internal pressure coefficient may be multiplied by the reduction factor Ri.

Total area of all wall & roof openings (Aog):

0 sf 0 cf

Unpartitioned internal volume (Vi):

Ri = 1.00

Ground Elevation Factor (Ke)

Constant =

Grd level above sea level =

5664.0 ft

0.00256

Adj Constant = 0.00209

Ke = 0.8146

136 S. State Street Shelley, Idaho 83274 208-357-2420

JOB TITLE Wooden Spur Renovation

368 Wppdem Spur Dr. Alpine Wy.

300 Wppdem 3

SHEET NO.

Section 3, Itema.

JOB NO. 225112 CALCULATED BY EVB

CHECKED BY

DATE

6/4/25

Wind Loads - MWFRS h≤60' (Low-rise Buildings) except for open buildings

Kz = Kh (case 1) = Base pressure (qh) =

GCpi =

0.87 **13.3 psf** +/-0.18 Edge Strip (a) = End Zone (2a) = Zone 2 length = 3.0 ft 6.0 ft 13.0 ft

Wind Pressure Coefficients

	C	ASE A			CASE B	
	- 1	$\theta = 9.5 \deg$				
Surface	GCpf	w/-GCpi	w/+GCpi	GCpf	w/-GCpi	w/+GCpi
1	0.44	0.62	0.26	-0.45	-0.27	-0.63
2	-0.69	-0.51	-0.87	-0.69	-0.51	0.87
3	-0.40	-0.22	-0.58	-0.37	-0.19	-0.55
4	-0.33	-0.15	-0.51	-0.45	-0.27	-0.63
5				0.40	0.58	0.22
6				-0.29	-0.11	-0.47
1E	0.67	0.85	0.49	-0.48	-0.30	-0.66
2E	-1.07	-0.89	-1.25	-1.07	-0.89	-1.25
3E	-0.58	-0.40	-0.76	-0.53	-0.35	-0.71
4E	-0.49	-0.31	-0.67	-0.48	-0.30	-0.66
5E			100	0.61	0.79	0.43
6E			e la constitue e	-0.43	-0.25	-0.61

Nominal Wind Surface Pressures (psf)

1	8.3 3.5	-3.6	-8.4
2	-6.8 -11.6	-6.8	-11.6
3	-3.0 -7.8	-2.5 -3.6	-7.3
4	-2.0 -6.8	-3.6	-8.4
5	크리 다 보다면 노릇을 모든 경상하게 되어 가는 이웃 경이를 다녔다.	7.7	-8.4 2.9 -6.3
6		-1.5	-6.3
1E	11.3 6.5	-4.0	-8.8
2E	-11.9 -16.7	-11.9	-16.7
3E	-5.3 -10.1	-4.7	-9.5
4E	-4.2 -9.0	-4.0	-8.8
1E 2E 3E 4E 5E 6E		10.5	5.7
6E		-3.3	-8.1

Parapet

Windward parapet =
Leeward parapet =

0.0 psf (GCpn = +1.5) 0.0 psf (GCpn = -1.0) Windward roof

overhangs =

9.3 psf (upward) add to

Horizontal MWFRS Simple Diaphragm Pressures (psf)

Transverse direction (normal to L)

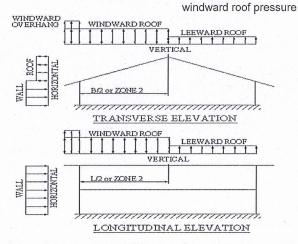
Interior Zone: Wall Roof End Zone: Wall 10.3 psf -3.8 psf **

Roof

15.5 psf -6.6 psf **

Longitudinal direction (parallel to L)

Interior Zone: Wall


9.2 psf

End Zone: Wall

13.9 psf

** NOTE: Total horiz force shall not be less than that determined by neglecting roof forces (except for MWFRS moment frames).

The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof.

JOB NO. 225112

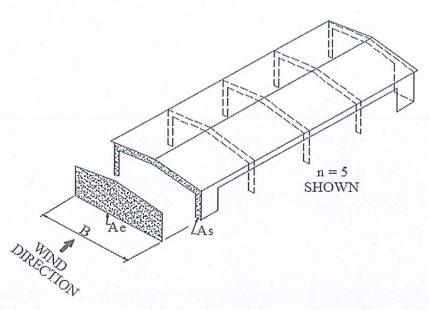
CALCULATED BY EVB CHECKED BY

SHEET NO. DATE

DATE

6/4/25

Wind Loads - h≤60' Longitudinal Direction MWFRS On Open or Partially


Enclosed Buildings with Transverse Frames and Pitched Roofs

Base pressure (qh) = GCpi =

13.3 psf

+/-0.18 Enclosed bldg, procdure doesn't apply

Roof Angle (θ) = 9.5 deg ASCE 7-16 procedure

38.0 ft B= # of frames (n) = 5 1,500.0 sf Solid are of end wall including fascia (As) = Roof ridge height = 20.2 ft Roof eave height = 17.0 ft Total end wall area if soild (Ae) = 706.2 sf

Longidinal Directional Force (F) = pAe p= qh [(GCpf)windward -(GCpf)leeward] K_B K_S Solidarity ratio (Φ) = 2.124 5 KB = 1.42 KS = 5.597 Zones 5 & 6 area = 653 sf

5E & 6E area = 53 sf

(GCpf) windward - (GCpf) leeward] = 0.716

76.0 psf

Total force to be resisted by MWFRS (F) =

53.7 kips applied at the centroid of the end wall area Ae

Note: The longidudinal force acts in combination with roof loads calculated elsewhere for an open or partially enclosed building.

368 Wppdem Spur Dr. Alpine Wy.

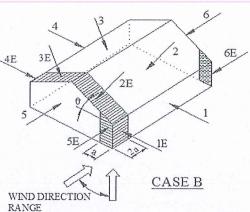
ne Wy. Section 3, Itema.

JOB NO. 225112

12

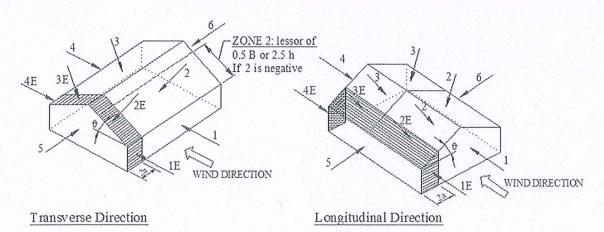
SHEET NO. {
DATE
DATE

6/4/25


CALCULATED BY EVB

ZONE 2: lessor of 0.5 B or 2.5 h
If 2 is negative

4E


1E

CASE A WIND DIRECTION RANGE

NOTE: Torsional loads are 25% of zones 1 - 6. See code for loading diagram. Exception: One story buildings h<30' and 1 to 2 storybuildings framed with light-frame construction or with flexible diaphragms need not be designed for the torsional load case.

ASCE 7-98 & ASCE 7-10 (& later) - MWFRS wind pressure zones

NOTE: Torsional loads are 25% of zones 1 - 4. See code for loading diagram. Exception: One story buildings h<30' and 1 to 2 storybuildings framed with light-frame construction or with flexible diaphragms need not be designed for the torsional load case.

ASCE 7-02 and ASCE 7-05 - MWFRS wind pressure zones

136 S. State Street Shelley, Idaho 83274 208-357-2420

JOB TITLE Wooden Spur Renovation

368 Wppdem Spur Dr. Alpine Wy.

JOB NO. 225112 CALCULATED BY EVB

CHECKED BY

SHEET NO. DATE

Section 3, Itema.

6/4/25

DATE

Nominal Wind Pressures

17.0 ft Base pressure (qh) = 13.3 psf 3.0 ft GCpi = +/-0.18 Minimum parapet ht = 0.0 ft 9.5 deg Roof Angle (θ) = qi = qh =13.3 psf

Type of roof = Gable

Roof					Surface Pi	essure (psf)		
Area	2 sf	10 sf	20 sf	50 sf	75 sf	100 sf	200 sf	250 sf
Negative Zone 1 & 2e	-29.1	-29.1	-29.1	-17.7	-12.7	-10.0	-10.0	-10.0
Negative Zone 2n, 2r &3e	-42.4	-42.4	-36.7	-29.1	-25.7	-23.3	-17.6	-15.8
Negative Zone 3r	-50.5	-50.5	-43.2	-33.7	-29.4	-26.4	-26.4	-26.4
Positive All Zones	11.7	10	10	10	10.0	10.0	10.0	10.0
Overhang Zone 1 & 2e	-33.4	-33.4	-33.4	-25.8	-22.4	-20.0	-20.0	-20.0
Overhang Zone 2n & 2r	-46.7	-46.7	-42.4	-36.7	-34.2	-32.4	-28.1	-26.7
Overhang Zone 3e	-54.7	-54.7	-47.3	-37.4	-33.0	-29.9	-22.4	-20.0
Overhang Zone 3r	-62.7	-62.7	-53.1	-40.3	-34.7	-30.7	-30.7	-30.7

Overhang pressures in the table above assume an internal pressure coefficient (Gcpi) of 0.0 Overhang soffit pressure equals adj wall pressure (which includes internal pressure of 2.4 psf)

User	input
25 sf	50 sf
-26.3	-17.7
-34.8	-29.1
-40.9	-33.7
10.0	10.0
-31.5	-25.8
-41.0	-36.7
-44.8	-37.4
-50.0	-40.3

Parapet

qp = 0.0 psf

f		Surfa	ce Pressure	(psf)		
Solid Parapet Pressure	10 sf	20 sf	50 sf	100 sf	250 sf	500 sf
CASE A: Zone 2e:	0.0	0.0	0.0	0.0	0.0	0.0
Zone 2n, 2r & 3e:	0.0	0.0	0.0	0.0	0.0	0.0
Zone 3r:	0.0	0.0	0.0	0.0	0.0	0.0
CASE B: Interior zone:	0.0	0.0	0.0	0.0	0.0	0.0
Corner zone :	0.0	0.0	0.0	0.0	0.0	0.0

Use	er input
5	50 sf
nud V	0.0
	0.0
	0.0
S.W.	0.0
	0.0

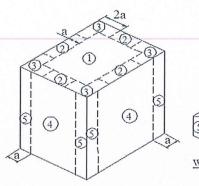
Walls	GCp +/- GCpi				Surface Pressure at h			
Area	10 sf	100 sf	200 sf	500 sf	10 sf	100 sf	200 sf	500 sf
Negative Zone 4	-1.17	-1.01	-0.96	-0.90	-15.6	-13.5	-12.9	-12.0
Negative Zone 5	-1.44	-1.12	-1.03	-0.90	-19.2	-15.0	-13.7	-12.0
Positive Zone 4 & 5	1.08	0.92	0.87	0.81	14.4	12.3	11.7	10.8

Note: GCp reduced by 10% due to roof angle <= 10 deg.

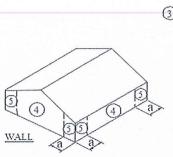
User input				
21 sf	50 sf			
-14.9	-14.1			
-17.8	-16.3			
13.7	12.9			

368 Wppdem Spur Dr. Alpine Wy.

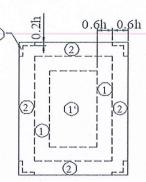
JOB NO. 225112

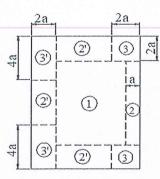

CALCULATED BY EVB
CHECKED BY

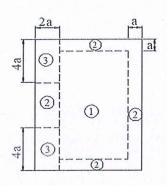
DATE DATE

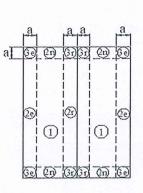

Section 3, Itema.

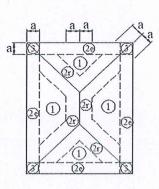
6/4/25

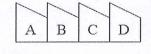

Location of C&C Wind Pressure Zones - ASCE 7-16

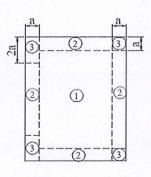

Roofs w/ $\theta \le 10^{\circ}$ and all walls h > 60'


Walls h ≤ 60' & alt design h<90'

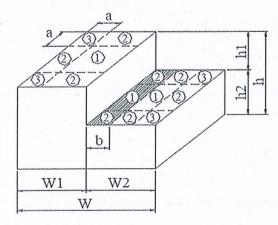

Gable, Sawtooth and Multispan Gable $\theta \le 7$ degrees & Monoslope ≤ 3 degrees $h \le 60'$ & alt design h<90'


Monoslope roofs $3^{\circ} < \theta \le 10^{\circ}$ $h \le 60'$ & alt design h<90'

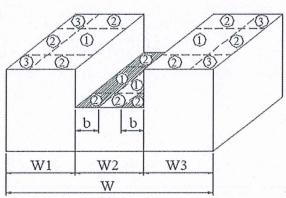

Monoslope roofs $10^{\circ} < \theta \leq 30^{\circ}$ h \leq 60' & alt design h<90'



Multispan Gable & Gable 7° < θ ≤ 45°

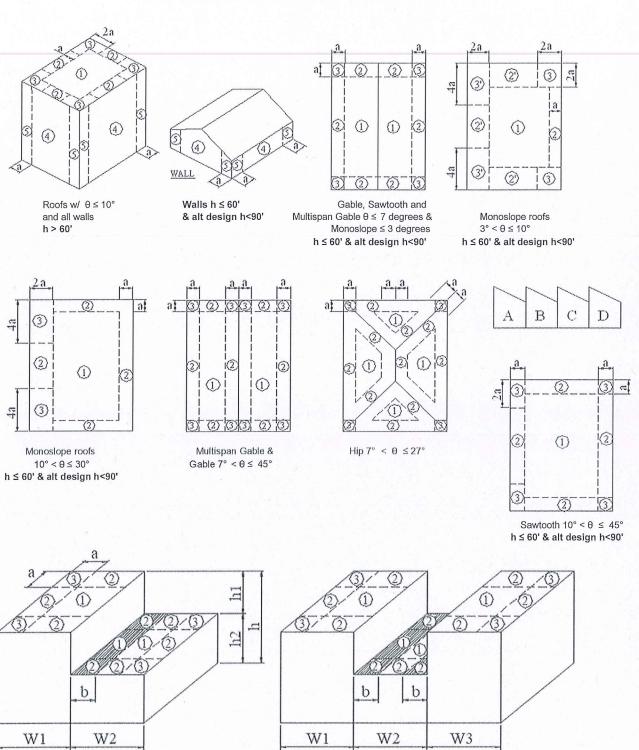


Hip $7^{\circ} < \theta \le 27^{\circ}$



Sawtooth $10^{\circ} < \theta \le 45^{\circ}$ h $\le 60'$ & alt design h<90'

Stepped roofs $\theta \le 3^{\circ}$ h $\le 60'$ & alt design h<90'


368 Wppdem Spur Dr. Alpine Wy.

JOB NO. 225112 SHEET NO.

CALCULATED BY EVB DATE CHECKED BY DATE Section 3, Itema.

6/4/25

Location of C&C Wind Pressure Zones - ASCE 7-10 & earlier

W

Stepped roofs 0 ≤ 3° h ≤ 60' & alt design h<90'

W

TSE Engineers

136 S. State Street Shelley, Idaho 83274 208-357-2420

JOB TITLE Wooden Spur Renovation

368 Wppdem Spur Dr. JOB NO. 225112

Section 3, Itema.

CALCULATED BY EVB CHECKED BY

6/4/25 DATE DATE

Snow Loads:

ASCE 7-16

Roof length parallel to ridge (L) =

Roof slope 9.5 deg Horiz. eave to ridge dist (W) = 19.0 ft

26.0 ft

Nominal Snow Forces

Type of Roof Hip and gable w/ trussed systems Ground Snow Load Pg =140.0 psf Risk Category 11 1.0 Importance Factor | = Thermal Factor Ct = 1.00 **Exposure Factor** Ce = 1.0 Pf = 0.7*Ce*Ct*I*Pg98.0 psf

Unobstructed Slippery Surface no

Sloped-roof Factor Cs = 1.00 Balanced Snow Load 98.0 psf

Rain on Snow Surcharge Angle 0.38 deg Code Maximum Rain Surcharge 5.0 psf 0.0 psf Rain on Snow Surcharge = Ps plus rain surcharge = 98.0 psf Minimum Snow Load Pm =20.0 psf

Uniform Roof Design Snow Load = 98.0 psf use 100.0 NOTE: Alternate spans of continuous beams shall be loaded with half the design roof snow load so as to produce the greatest possible effect - see code for loading diagrams and exceptions for gable roofs..

Near ground level surface balanced snow load = 140.0 psf

Unbalanced Snow Loads - for Hip & Gable roofs only

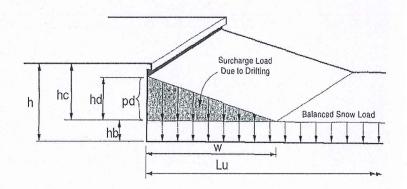
Required if slope is between 7 on 12 = 30.26 deg

and 2.38 deg = 2.38 deg Unbalanced snow loads must be applied

Windward snow load = 29.4 psf = 0.3 PsLeeward snow load from ridge to 16.88' = 129.7 psf = $hdy / \sqrt{S} + Ps$

Leeward snow load from 16.88' to the eave = 98.0 psf = Ps

Windward Snow Drifts 1 - Against walls, parapets, etc.


U	p or downwind fetch	lu	=	40.0 ft
P	rojection height	h	=	6.0 ft
Pr	ojection width/length	lp	=	18.0 ft
S	now density	g	=	30.0 pcf
B	alanced snow height	hb	=	3.27 ft
		hd	=	2.73 ft
		hc	=	2.73 ft
ŀ	nc/hb > 0.2 = 0.8	Therefor	e, de	esign for drift
D	rift height (hc)		=	2.73 ft
D	rift width	W	=	10.95 ft
Si	urcharge load:	$pd = \gamma^*hd$	=	82.0 psf

98.0 psf 180 0 nsf

Windwa

Balanced Snow load:

		100.0 psi
ard Snow Drifts 2 - Aga	ainst walls, pa	arapets, etc
Up or downwind fetch	lu =	12.0 ft
Projection height	h =	6.0 ft
Projection width/length	lp =	18.0 ft
Snow density	g =	30.0 pcf
Balanced snow height	hb =	3.27 ft
	hd =	1.94 ft
	hc =	2.73 ft
hc/hb > 0.2 = 0.8	Therefore,	design for drift
Drift height (hd)	= 1	1.94 ft
Drift width	w =	7.75 ft
Surcharge load:	$pd = \gamma^*hd =$	58.2 psf
Balanced Snow load:	=	98.0 psf
		156.2 psf

Note: If bottom of projection is at least 2 feet above hb then snow drift is not required.

368 Wppdem Spur Dr. Alpine Wy.

SHEET N

Section 3, Itema.

JOB NO. 225112 CALCULATED BY EVB CHECKED BY

DATE DATE 6/4/25

Seismic Loads:

IBC 2021

Strength Level Forces

Risk Category:

11

Importance Factor (le): 1.00

Site Class: D - code default

Ss (0.2 sec) = 110.90 %g

34.10 %g S1 (1.0 sec) =

A site specific ground motion analysis is required for seismically isolated structures or with damping systems, see ASCE7 11.4.8

Fa = 1.200

1.331

S_{DS} =

0.887 0.445 Design Category =

D D

Fv= 1.959 Sm1 =

Sms =

0.668

 $S_{D1} =$

Design Category =

Seismic Design Category = 1.30

Redundancy Coefficient ρ =

Number of Stories:

Structure Type: All other building systems

D

Horizontal Struct Irregularities: No plan Irregularity

Vertical Structural Irregularities: No vertical Irregularity

Flexible Diaphragms: Yes

Building System: Bearing Wall Systems

Seismic resisting system: Light frame (wood) walls with structural wood shear panels

System Structural Height Limit: 65 ft

Actual Structural Height (hn) = 17.0 ft

See ASCE7 Section 12.2.5 for exceptions and other system limitations

DESIGN COEFFICIENTS AND FACTORS

Response Modification Coefficient (R) = 6.5

Over-Strength Factor (Ω o) = Deflection Amplification Factor (Cd) =

S_{DS} = 0.887

 $S_{D1} =$ 0.445

Seismic Load Effect (E) = $Eh + /-Ev = \rho Q_E + /-0.2S_{DS} D$

= 1.3Qe +/ 0.177D

Q_E = horizontal seismic force

Special Seismic Load Effect (Em) = Emh +/- Ev = Ω o Q_E +/- $0.2S_{DS}$ D

= 2.5Qe +/ 0.177D

D = dead load

PERMITTED ANALYTICAL PROCEDURES

Simplified Analysis - Use Equivalent Lateral Force Analysis

Equivalent Lateral-Force Analysis - Permitted

Building period coef. $(C_T) =$ 0.020

Cu = 1.40

 $C_Th_n^=$ Approx fundamental period (Ta) = 0.167 sec x = 0.75

0.500 s

Tmax = CuTa = 0.234 sec T = 0.234 sec

User calculated fundamental period = Long Period Transition Period (TL) = ASCE7 map = 8 sec

Seismic response coef. (Cs) =

0.136 Sdsl/R =

ASCE7 11.4.8 exception 2 equations used

but not less than Cs = 0.044 Sdsl =0.039 USE Cs =

0.136 Design Base Shear V = 0.136W

Model & Seismic Response Analysis

- Permitted (see code for procedure)

ALLOWABLE STORY DRIFT

Structure Type:

All other structures

Allowable story drift $\Delta a = 0.020 \text{hsx}$

where hsx is the story height below level x

						0 -
Total Stories =	1	Floor Dead Load =	40.0 psf	Roof Dead Load =	20.0 p	
Building length L =	26.0 ft	Floor LL to include =	0.0 psf	Roof Snow Load =	20.0 ps	Section 3, Itema.
Building width W =	38.0 ft	Floor Equip wt =	0.0 kips	Roof Equip wt =	0.0 kip	,
hn =	17.0 ft	Partition weight =	10.0 psf	Parapet weight =	0.0 psf	
k =	1.000	Ext Wall Weight =	0.0 psf	Parapet height =	0.0 ft	
\/ =	0.136\//					

Bottom Floor is a slab on grade

Seismic Forces Normal to Building Length

Diaphragm shall be designed for level force Fx, but not less than Fpx = $(\Sigma \text{ Fi / }\Sigma \text{ wi}) \text{ wpx, but}$: Fpx min = 0.2S_{DS} le wpx = 0.177 wpxFpx max = 0.4S_{DS} le wpx = 0.355 wpx

S	EL above eismic Base	Level Weight	Wx hx*	Cvx = Wx hx ^k	.033	5.4k Shear Distri	bution		Diaph	ragm Force	Fpx
Level (x)	hx (ft)	Wx (kips)	(ft-kips)	Σ Wi hi ^κ	Fx=CvxV	Σ Fx (k)	Story M		Σ Wi (k)	Fpx	Design Fpx
Roof	15.00	40	593	1.000	5.39	5.4	0		40	5.4	7.0
1	2.00	0	0	0.000	0.00	0.0	0		0	0.0	0.0
Base		40		1.000		5.4	81		/		
							81	= Base M			

					Base S	Shear Distri	bution		Diaph	ragm Force	Fpx
Level (x)	hx (ft)	Wx (kips)	Wx hx ^k	Cvx =	Fx=CvxV	Σ Fx (k)	Story M		Σ Wi (k)	Fpx	Design Fpx
Roof	15.00	40	593	1.000	5.39	5.4	0		40	5.4	7.0
1	2.00	0	0	0.000	0.00	0.0	0		0	0.0	0.0
Base	0.00	40	and the same of	1.000		5.4	81				
							81	= Base M			

Section 3, Itema.

42

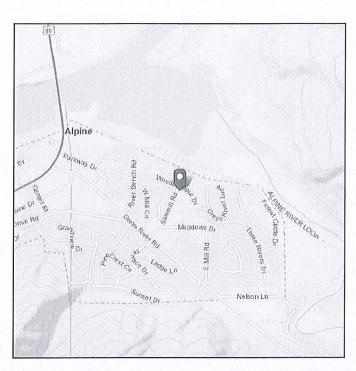
Address:

368 Wooden Spur Dr Alpine, Wyoming 83128

ASCE Hazards Report

Standard: ASCE/SEI 7-16

Risk Category: II


Soil Class: D - Default (see

Section 11.4.3)

Latitude: 43.16238 **Longitude:** -111.008836

Elevation: 5666.142041756172 ft

(NAVD 88)

Section 3, Itema.

Seismic

Site Soil Class:

D - Default (see Section 11.4.3)

Results:

 S_s : 1.109 S_{D1} : N/A S_1 : 0.341 T_L : 6 PGA: F_a : 1.2 0.477 F_{v} : N/A PGA_M: 0.572 S_{MS} : 1.331 F_{PGA} : 1.2 S_{M1} : N/A l_e : 1 S_{DS} : 0.888 C_v :

Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8.

Data Accessed:

Wed Jun 04 2025

Date Source:

USGS Seismic Design Maps

1.322

TSE Engineers

136 S. State Street Shelley, Idaho 83274 208-357-2420 JOB TITLE Wooden Spur Renovation

368 Wppdem Spur Dr. Alpine Wy.

JOB NO. 225112

CALCULATED BY EVB

Section 3, Itema.

DATE 6/4/25

Roof Design Loads

Items	Description	Multiple	psf (max)	psf (min)
Roofing	Asphalt Shingles w/roll roofing		3.0	2.0
Decking	5/8" plywood/OSB		2.2	1.8
Framing	Wood Trusses @ 24"		3.0	2.5
Insulation	R-40 Fiberglass insul.	x 1.4	1.8	1.7
Ceiling	5/8" gypsum		2.8	2.5
1			0.0	0.0
			0.0	0.0
			0.0	0.0
	Actual D	Dead Load	7 12.8	0 10.5
	Use this I	DL instead	15.0	9.0
		Live Load	20.0	0.0
		Snow Load	100.0	0.0
	Ultimate Wind (zo	ne 2 - 100sf)	16.0	-38.9
ASD Loading		D+S	115.0	2/10/19
	D + 0.75((0.6*W + S)	97.2	-
	0.6	6*D + 0.6*W	-	-17.9
LRFD Loading	1.2D + 1.	6 S + 0.5W	186.0	
	1.2D + 1	.0W + 0.5S	84.0	-
	C).9D + 1.0W	-	-30.8

Roof Live Load Reduction

Roof angle 2.00 / 12

9.5 deg

0 to 200 sf: 20.0 psf

200 to 600 sf: 24 - 0.02Area, but not less than 12 psf

over 600 sf: 12.0 psf

300 sf 18.0 psf 400 sf 16.0 psf 500 sf 14.0 psf User Input: 450 sf 15.0 psf

TSE Engineers

136 S. State Street Shelley, Idaho 83274 208-357-2420

JOB TITLE Wooden Spur Renovation

368 Wppdem Spur Dr. Alpine Wy.

SHELL NO. 10 0/1 2

ATE 6/4/25

DATE DATE

Floor Design Loads

JOB NO. 225112

CALCULATED BY EVB

CHECKED BY

Items	Description	Multiple	psf (max)	psf (min)
Flooring	Carpet & pad		1.0	1.0
	None		0.0	0.0
Decking	3/4" plywood/OSB		2.7	2.3
Framing	TJI @ 24"	x 1.4	2.8	1.4
	None		0.0	0.0
Ceiling	5/8" gypsum		2.8	2.5
	None		0.0	0.0
	None		0.0	0.0
	None		0.0	0.0
		Actual Dead Load	9.3	7.2
		Use this DL instead	10.0	0 8.0
		Partitions	15.0	0.0
A Property of the		Live Load	40.0	0.0
		Total Live Load	55.0	0.0
		Total Load	65.0	7.2

FLOOR LIVE LOAD REDUCTION (not including partitions)

NOTE: Not allowed for assembly occupancy or LL>100psf or passenger car garages, except may reduce members supporting 2 or more floors & non-assembly 20%.

		IBC alternate procedure Smallest of:	
	$L=Lo(0.25+15/\sqrt{K_{LL}A_T})$	R= .08%(SF - 150)	
Unreduced design live load: Lo	= 40 psf	R= 23.1(1+D/L) =	28.9%
		R= 40% member supports 1 fl	loor
Floor member & 1 floor cols K_{LL}	= 2	R= 60% member supports ≥2	floors
Tributary Area A _T	= 300 sf	R =	12.0%
Reduced live load: L	= 34.5 psf	Reduced live load: L = 3	35.2 psf
Columns (2 or more floors) K_{LL}	= 4		
Tributary Area A _T	= 500 sf	R =	28.0%
Reduced live load: L	= 23.4 psf	Reduced live load: L = 2	28.8 psf

TSE Engineers 136 S State Street Shelley, ID 83274 208-357-2420

 JOB TITLE
 Wooden Spur Renovation

 368 Wooden Spur Dr. Alpine, Wyoming

 JOB NO.
 225112

 CALCULATED BY
 EVB

 CHECKED BY
 0
 1906 39 SHEET NO. DATE DATE

			Wood H	eader Design C		od Beam (No OS 2018	t Laterall	y Supported)			
Mark:	HDR1	Load	Factors		NL	73 2018			Loading			
Span(ft)=	18	Dead	1.00		-	DL (psf)	LL(ps	if)	trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)
LL Deflection <l <="" td=""><td>360</td><td>Floor Live</td><td>1.00</td><td></td><td>roof</td><td>15</td><td></td><td>100</td><td>16</td><td>240</td><td>1600</td><td>1840</td></l>	360	Floor Live	1.00		roof	15		100	16	240	1600	1840
otal Deflection <l <="" td=""><td>240</td><td>Roof Live/Snow</td><td></td><td></td><td>floor</td><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td></l>	240	Roof Live/Snow			floor					0	0	0
CD=	1	Misc.	1.00		wall					0	0	0
				ı	misc.					0	0	0
									Total	240.0	1600.0	1840
					Loa	d Factors Ap	plied		Reactions			
	Load	DL(lbs)	LL(lbs)	x(ft)(left)		DL	1,1	LL		21 2 5	Left (lbs)	Right (lbs)
int Load 1	roof		Service Control			0		0	Uniform	RDL=	2160	2160
int Load 2	roof				eseu.	0		0		RLL=	14400	14400
									Point Loads	P1DL=	0	0
	DIM	TIMBER	LVL	GLB						P1LL=	0	0
										P2DL=	0	0
									7	P2LL=	0	0
Wood Species=	Douglas Fir #2	Douglas Fir #1	LVL	24F-V4					10. 71 Table 1	RTL=	16560	16560
Option 1	No Single Ply	4x None	No Single Ply	3.125 x No	ne					Max Shear=	16.6	k
Option 2	No Double Ply	6x None	No Double Ply	5.125x22.	5							
Option 3	No Triple Ply	8x None	No Triple Ply	6.75x19.5	5				Moment			in he is
Option 4	No Four Ply	10x None	(4) 1.75×18	8.75x18						Center	Point Load 1	Point Load 2
Option 5		12x None	:	10.75×16.	5				RDL=	9720	0	0
Option 6		14x None							RLL=	64800	0	0
Option 7	·	16x18							P1DL=	0 -	0	0
and the second				Annower warmen warmen on the					P1LL=	0	0	0
									P2DL=		0	0
									P2LL=	0	0	0
									MTL=	74520	0	0
										Max M=	74.5	k-ft

Mark:	HDR2	Load F	actors	A. Called			78-11 D		Loading		K. A. S. S.	
Span(ft)=	3	Dead	1.00		DL (psf)	LL(psf)		trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)
LL Deflection <l <="" td=""><td></td><td>Floor Live</td><td>1.00</td><td>-11</td><td>oof</td><td>15</td><td>romes and</td><td>100</td><td>4</td><td>60</td><td>400</td><td>460</td></l>		Floor Live	1.00	-11	oof	15	romes and	100	4	60	400	460
otal Deflection <l <="" td=""><td></td><td>Roof Live/Snow</td><td>1,00</td><td>4</td><td>oor</td><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td></l>		Roof Live/Snow	1,00	4	oor					0	0	0
CD=	1	Misc.	1.00		vall					0	0	0
				m	isc.					0	0	0
									Total	65.2		434.8 5
					Load F	actors Ap	plied		Reactions			
	Load	DL(lbs)	LL(lbs)	x(ft)(left)		DL	ale de	LL		11 7-4	Left (lbs)	Right (lbs)
int Load 1	roof					0		0	Uniform	RDL=	98	98
int Load 2	roof			nivers being		0		0		RLL:	652	652
						17. 17.	100		Point Loads	P1DL=	0	0
	DIM	TIMBER	LVL	GLB						P1LL:	. 0	0
										P2DL=	0	0
										P2LL=	. 0	0
Wood Species=	Douglas Fir #2	Douglas Fir #1	LVL	24F-V4						RTL=	750	750
Option 1	(1) 2x6	4x4	(1) 1.75x5.5	3.125x9						Max Shear	0.8	k
Option 2	(2) 2x4	6x6	(2) 1.75×5.5	5.125x6								
Option 3	(3) 2x4	8x8	(3) 1.75x5.5	6.75x9					Moment			
Option 4	(4) 2×4	10x10	(4) 1.75×5.5	8.75x9						Center	Point Load 1	Point Load 2
Option 5		12x12	i (ilia sa	10.75x12					RDL=	73	0	0
Option 6		14x14	- India						RLL=	489	0	0
Option 7	-	16x16		-200					P1DL=		0	0
									P1LL=		0	0
									P2DL=		0	0
									P2LL=	0	0	0
									MTL=	563	0	0

Section 3, Itema.

TSE Engineers 136 S State Street Shelley, ID 83274 208-357-2420

JOB NO. 2251
CALCULATED BY EVB 225112 CHECKED BY

SHEET NO. DATE DATE

70 05 39

Wood Header Design Or Wood Beam (Not Laterally Supported) NDS 2018

Mark:	HDR3	Load Factors	
Span(ft)=	8	Dead	1.00
LL Deflection <l <="" td=""><td>360</td><td>Floor Live</td><td>1.00</td></l>	360	Floor Live	1.00
Total Deflection <l <="" td=""><td>240</td><td>Roof Live/Snow</td><td>1.00</td></l>	240	Roof Live/Snow	1.00
CD=	1	Misc.	1.00

			Loading			
D	L (psf)	LL(psf)	trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)
roof	15	100	14	210	1400	1610
floor				0	0	0
wall				0	0	0
misc.				0	0	0
ALV.			Total	210	0.0 140	0.0 1610

					Load Factors Appl	ied	Reactions			<u> </u>
	Load	DL(lbs)	LL(lbs)	x(ft)(left)	DL	LL	14 X	113	Left (lbs)	Right (lbs)
int Load 1	roof				0	0	Uniform	RDL=		840
int Load 2	roof	State			0	0		RLL=		5600
							Point Loads	P1DL=	0	. 0
	DIM	TIMBER	LVL	GLB				P1LL=	0	0
								P2DL=	0	0
								P2LL=	0	0
Wood Species=	Douglas Fir #2	Douglas Fir #1	LVL	24F-V4			× , 5 × 10 / 10 / 10	RTL=	6440	6440
Option 1	No Single Ply	4x None	No Single Ply	3.125x12				Max Shear=	6.4	k
Option 2	No Double Ply	6x12	(2) 1.75x11.875	5.125x9						
Option 3	No Triple Ply	8x12	(3) 1.75x9.5	6.75x9			Moment	1 1 1		
Option 4	No Four Ply	10x10	(4) 1.75×9.5	8.75x9				Center	Point Load 1	Point Load
Option 5		12x12		10.75x12			RDL=	1680	0	0
Option 6		14x14		- 150			RLL=	11200	0	0
Option 7		16x16					P1DL=	0	0	0
	Incompression and the second second	u-Bucumeuroccoscomium anti-maccomicomium anti-maccomicomicomium anti-maccomicomium anti-maccomicomicomium anti-maccomicomium anti-maccomicomium anti-maccomicomium anti-maccomicomicomium anti-maccomicomicomicomicomicomicomicomicomicom	duant.		······································		P1LL=	0	0	0
							P2DL=	0	0	0
							P2LL=	0	0	0
							MTL=	12880	0	0
								Max M=	12.9	k-ft

Mark:	HDR4	Load	Factors					Agricus	Loading		Si Windows	p Table of the plant of the
Span(ft)=	3	Dead	d d	1.00	DL	(psf)	LL(psf)		trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)
LL Deflection <l <="" td=""><td>360</td><td>Floor Live</td><td>е</td><td>1.00</td><td>roof</td><td>15</td><td></td><td>100</td><td>14</td><td>210</td><td>1400</td><td>1610</td></l>	360	Floor Live	е	1.00	roof	15		100	14	210	1400	1610
Total Deflection <l <="" td=""><td>240</td><td>Roof Live/Snov</td><td>v</td><td>1.00</td><td>floor</td><td></td><td></td><td></td><td></td><td>0</td><td>. 0</td><td>0</td></l>	240	Roof Live/Snov	v	1.00	floor					0	. 0	0
CD=	1	Misc		1.00	wall					0	0	0
					misc.					0	0	0
					we do	1300			Total	210.0		1400.0 1610
					Load	Factors Ap	plied		Reactions			
	Load	DL(lbs)	LL(lbs)	x(ft)(left)	Aug H	DL		LL		HINK I	Left (lbs)	Right (lbs)
Point Load 1	roof					0		0	Uniform	RDL=	315	315

Point	Load	1
Point	Load	2

DIM

Wood Species=	Douglas Fir #2	Douglas Fir #1	LVL	24F-V4
Option 1	No Single Ply	4x8	(1) 1.75x9.5	3.125x9
Option 2	(2) 2x8	6x6	(2) 1.75×5.5	5.125x6
Option 3	(3) 2x6	8x8	(3) 1.75x5.5	6.75x9
Option 4	(4) 2x6	10x10	(4) 1.75×5.5	8.75x9
Option 5		12x12	1000 to 1 000 to 1	10.75×12
Option 6	- 4	14x14	tian da helia	
Option 7		16x16		

TIMBER

LVL

GLB

	P1LL=	0	0
	P2DL=	0	0
	P2LL=	0	0
10/11/11	RTL=	2415	2415
	Max Shear=	2.4	k
Moment			
	Center	Point Load 1	Point Load 2
RDL=	236	. 0	0
RLL=	1575	0	.0
P1DL=	0	0	0
P1LL=	0	0	0
P2DL=	0	0	0
P2LL=	0	0	0
MTL=	1811	0	0
	Max M=	1.8	k-ft

2100

2100

RLL=

P1DL=

Point Loads

JOB TITLEWooden Spur Renovation368 Wooden Spur Dr. Alpine, WyomingJOB NO.225112

JOB NO. 2251
CALCULATED BY EVB
CHECKED BY SHEET NO. DATE DATE

21 0/39 6/4/2025

Section 3, Itema.

Wood Header Design Or Wood Beam (Not Laterally Supported) NDS 2018

Mark:	HDR5	Load Factors	
Span(ft)=	4	Dead	1.00
LL Deflection <l <="" td=""><td>360</td><td>Floor Live</td><td>1.00</td></l>	360	Floor Live	1.00
Total Deflection <l <="" td=""><td>240</td><td>Roof Live/Snow</td><td>1.00</td></l>	240	Roof Live/Snow	1.00
CD=	1	Misc.	1.00

	1	To Associate the Control of the Cont	Loading			
	DL (psf)	LL(psf)	trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)
roof	15	100	4	60	400	460
floor				0	0	0
wall				0	0	0
misc.	misc.			0	0	0
	7.77	and the Manager of the	Total	65	. 2 Δ	34.8 500

					Load Factors Applie	d	Reactions	Land 1 -		
	Load	DL(lbs)	LL(lbs)	x(ft)(left)	DL	LL			Left (lbs)	Right (lbs)
oint Load 1	roof				0	0	Uniform	RDL=		130
oint Load 2	roof				0	0		RLL=		870
							Point Loads	P1DL=	• 0	0
	DIM	TIMBER	LVL	GLB				P1LL=	0	0
								P2DL=	. 0	0
							1471	P2LL=	: 0	0
Wood Species=	Douglas Fir #2	Douglas Fir #1	LVL	24F-V4			THE STATE OF	RTL=	1000	1000
Option 1	(1) 2x8	4x4	(1) 1.75×5.5	3.125х9				Max Shear=	1.0	k
Option 2	(2) 2x6	6x6	(2) 1.75x5.5	5.125x6						
Option 3	(3) 2x4	8x8	(3) 1.75x5.5	6.75x9			Moment	N		
Option 4	(4) 2x4	10x10	(4) 1.75×5.5	8.75x9				Center	Point Load 1	Point Load 2
Option 5	-	12x12		10.75x12			RDL=	130	0	0
Option 6		14x14					RLL=	870	0	0
Option 7		16x16					P1DL=	0	0	0
	Manufacture and Control of the Contr	ndionne many many many many many many many many	with the second control of the second contro		onnound		P1LL=	0	0	0
							P2DL=	0	0	0
							P2LL=	0	0	0
							MTL=	1000	0	0
								Max M=	1.0	k-ft

Mark: HDR6	Load Factor	s				Loading			
Span(ft)= 3	Dead	1.00	DI	_ (psf)	LL(psf)	trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)
LL Deflection <l 360<="" td=""><td>Floor Live</td><td>1.00</td><td>roof</td><td>15</td><td>100</td><td>4</td><td>60</td><td>400</td><td>460</td></l>	Floor Live	1.00	roof	15	100	4	60	400	460
Total Deflection <l 240<="" td=""><td>Roof Live/Snow</td><td>1.00</td><td>floor</td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td></l>	Roof Live/Snow	1.00	floor				0	0	0
CD= 1	Misc.	1.00	wall				0	0	0
			misc.				0	0	0
						Total	65	.2 4	34.8 50

int Load 1 ro	oad									
int Load 1 ro	bad				Load Factors Applie	d	Reactions			
		DL(lbs)	LL(lbs)	x(ft)(left)	DL	LL			Left (lbs)	Right (lbs)
	oof				0	0	Uniform	RDL=	98	98
int Load 2 ro	oof				0	0		RLL=	652	652
							Point Loads	P1DL=	: 0	0
	DIM	TIMBER	LVL	GLB				P1LL=	. 0	0
								P2DL=	. 0	0
								P2LL=	. 0	0
Wood Species=	Douglas Fir #2	Douglas Fir #1	LVL	24F-V4			A DESTRUMENT	RTL=	750	750
Option 1	(1) 2x6	4x4	(1) 1.75x5.5	3.125x9				Max Shear=	0.8	k
Option 2	(2) 2x4	6х6	(2) 1.75x5.5	5.125x6						
Option 3	(3) 2x4	8x8	(3) 1.75x5.5	6.75x9			Moment	initial States		
Option 4	(4) 2x4	10x10	(4) 1.75x5.5	8.75x9				Center	Point Load 1	Point Load
Option 5		12x12		10.75x12			RDL=	73	0	0
Option 6		14x14	-				RLL=	489	0	0
Option 7		16x16					P1DL=	0	0	0
							P1LL=	0	0	0
							P2DL=	0	0	0
							P2LL=	0	0	0

JOB TITLE

Wooden Spur Renovation

368 Wooden Spur Dr. Alpine, Wyoming
JOB NO. 225112

JOB NO. 2251
CALCULATED BY
CHECKED BY

SHEET NO.
DATE
DATE

0

0 k-ft

22 05 39 6/4/2025

Section 3, Itema.

Wood Header Design Or Wood Beam (Not Laterally Supported) NDS 2018

Mark:	HDR7	Load Factors				
Span(ft)=	3	Dead	1.00			
LL Deflection <l <="" td=""><td>360</td><td>Floor Live</td><td>1.00</td></l>	360	Floor Live	1.00			
Total Deflection <l <="" td=""><td>240</td><td>Roof Live/Snow</td><td>1.00</td></l>	240	Roof Live/Snow	1.00			
CD=	1	Misc.	1.00			

			Loading			
	DL (psf)	LL(psf)	trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)
roof	15	100	7	105	700	805
floor				0	0	0
wall				0	0	0
misc.				0	0	0
=			Total	105	.0 70	0.0 805

MTL=

Max M=

					Load Factors Ap	pplied	Reactions		1.20-1.11	
	Load	DL(lbs)	LL(Ibs)	x(ft)(left)	DL	LL			Left (lbs)	Right (Ibs)
oint Load 1	roof				0	0	Uniform	RDL=	158	158
oint Load 2	roof				0	0		RLL=	1050	1050
	12.1						Point Loads	P1DL=	. 0	0
	DIM	TIMBER	LVL	GLB				P1LL=	0	0
								P2DL=	0	0
								P2LL=	0	0
Wood Species=	Douglas Fir #2	Douglas Fir #1	LVL	24F-V4				RTL=	1208	1208
Option 1	(1) 2x8	4x4	(1) 1.75×5.5	3.125х9				Max Shear=	1.2	k
Option 2	(2) 2x6	6x6	(2) 1.75x5.5	5.125x6	Na Line					
Option 3	(3) 2x4	8x8	(3) 1.75×5.5	6.75x9			Moment	- M 3 -	January March	<u> </u>
Option 4	(4) 2x4	10x10	(4) 1.75×5.5	8.75x9	16)		And the Control of the	Center	Point Load 1	Point Load
Option 5		12x12		10.75x12			RDL=	118	0	0
Option 6		14x14			關		RLL=	788	0	0
Option 7		16x16		-			P1DL=	0	0	0
	Landsonia	Augustus and a second s		was bronners and out of the second	occessed.		P1LL=	0	0	0
							P2DL=	0	0	0
							DOLL	0	0	0

Mark: HDR8	Load Factors					Loading			
Span(ft)= 3	Dead	1.00	DL	(psf)	LL(psf)	trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)
LL Deflection <l 360<="" td=""><td>Floor Live</td><td>1.00</td><td>roof</td><td>15</td><td>100</td><td>9</td><td>135</td><td>900</td><td>1035</td></l>	Floor Live	1.00	roof	15	100	9	135	900	1035
otal Deflection <l 240<="" td=""><td>Roof Live/Snow</td><td>1.00</td><td>floor</td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td></l>	Roof Live/Snow	1.00	floor				0	0	0
CD= 1	Misc.	1.00	wall				0	0	0
-			misc.				0	0	0
					III TO THE TOTAL TOTAL TO THE THE TOTAL TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTA	Total	135.	0 90	00.0

				ı	nisc.			0	0	U
					1405-1-15		Total	135.0		900.0 103
					Load Factors Applie	d	Reactions			
	Load	DL(lbs)	LL(lbs)	x(ft)(left)	DL	LL			Left (lbs)	Right (lbs)
Point Load 1	roof				0	0	Uniform	RDL=	203	203
Point Load 2	roof		in the second		0	0		RLL=	1350	1350
	19.9			The Market			Point Loads	P1DL=	0	0
	DIM	TIMBER	LVL	GLB				P1LL=	0	0
								P2DL=	0	0
								P2LL=	0	0
Wood Species=	Douglas Fir #2	Douglas Fir #1	LVL	24F-V4			20 (A A 6 2)	RTL=	1553	1553
Option 1	(1) 2x10	4x6	(1) 1.75x5.5	3.125x9				Max Shear=	1.6	k
Option 2	(2) 2x6	6x6	(2) 1.75×5.5	5.125x6						
Option 3	(3) 2x6	8x8	(3) 1.75×5.5	6.75x9			Moment	TANK A MARKET	1 P. 30 P. 1	file to the
Option 4	(4) 2x4	10x10	(4) 1.75×5.5	8.75x9	Out of the second		a wall was with the	Center	Point Load 1	Point Load 2
Option 5		12x12		10.75x12			RDL=	152	0	0
Option 6		14x14					RLL=	1013	0	0
Option 7	- 100	16x16					P1DL=	0	0	0

Option 3	(2) 2x6 (3) 2x6	6x6 8x8	(2) 1.75x5.5 (3) 1.75x5.5	6.75x9	Moment			
Option 4	(4) 2x4	10x10	(4) 1.75×5.5	8.75x9	The second secon	Center	Point Load 1	Point Load
Option 5	-	12x12		10.75×12	RDL=	152	0	0
ption 6	*	14x14	-	Illustration	RLL=	1013	0	0
Option 7		16x16			P1DL=	0	0	0
	AND THE PROPERTY OF THE PROPER	Decrees the contract of the co	-diamental contration of the contration of	WAS THE PROPERTY OF THE PROPER	The second secon			
					P1LL=	0	0	0
					P1LL= P2DL=	0	0	0 0
					P2DL=	0	0	0

TSE Engineers 136 S State Street Shelley, ID 83274 208-716-2426

Wood Beam Design (Lateral Supported Fully)

M	nς	20	118	

Mark:	BM1	Load Factors					Loading			
Span(ft)=	12	Dead	1.00		DL (psf)	LL(psf)	trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)
LL Deflection <l <="" td=""><td>360</td><td>Floor Live</td><td>1.00</td><td>roof</td><td>15</td><td>100</td><td>8.5</td><td>127.5</td><td>850</td><td>977.5</td></l>	360	Floor Live	1.00	roof	15	100	8.5	127.5	850	977.5
Total Deflection <l <="" td=""><td>240</td><td>Roof Live/Snow</td><td>1.00</td><td>floor</td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td></l>	240	Roof Live/Snow	1.00	floor				0	0	0
CD=	1	Misc.	1.00	wall				0	0	0
			139	misc.				0	0	0
							Total	127.5	850	977.5

			Loa	d Factors Applie	ed	Reactions			
Load	DL(lbs)	LL(lbs)	x(ft)(left)	DL	LL			Left (lbs)	Right (lbs)
Point Load 1 roof				0	0	Uniform	RDL=	765	765
Point Load 2 floor				0	0		RLL=	5100	5100
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					24 MA (2	Point Loads	P1DL=	0	0

	DIM	TIMBER	LVL	GLB
Wood Species=	Douglas Fir #2	Douglas Fir #2	LVL	24F-V4
Option 1	No Single Ply	4x None	(1) 1.75x18	3.125x13.5
Option 2	No Double Ply	6x None	(2) 1.75x14	5.125x12
Option 3	No Triple Ply	8x16	(3) 1.75x11.875	6.75x10.5
Option 4	No Four Ply	10x14	(4) 1.75x11.875	8.75x10.5
Option 5		12x14		10.75x12
Option 6	BIS 573-15330	14x14	1888 188 2 1888 1888	- ,
Option 7		16x16		

	Max Shear=	5.9	k
Moment			
	Center	Point Load	Point Load 2
RDL=	2295	0	0
RLL=	15300	0	0
P1DL=	0	0	0
P1LL=	0	0	0
P2DL=	0	0	0
P2LL=	0	0	0
MTL=	17595	0	0
	Max M=	17.6	k-ft

RTL= 5865

P1LL=

P2DL=

P2LL=

0

0

0

0

5865

Mark: BM 2	Load Factor	s				Loading			
Span(ft)= 12	Dead	1.00	D	L (psf)	LL(psf)	trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)
LL Deflection <l 360<="" td=""><td>Floor Live</td><td>1.00</td><td>roof</td><td>15</td><td>100</td><td>5.75</td><td>86.25</td><td>575</td><td>661.25</td></l>	Floor Live	1.00	roof	15	100	5.75	86.25	575	661.25
Total Deflection <l 240<="" td=""><td>Roof Live/Snow</td><td>1.00</td><td>floor</td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td></l>	Roof Live/Snow	1.00	floor				0	0	0
CD= 1	Misc.	1.00	wall				0	0	0
			misc.				0	0	0
			- 1 T	, 5 - ST P X	THE WEST STREET	Total	86.25	575	661.25

			Loa	d Factors Appli	ed	Reactions	1		Marie San
Load	DL(lbs)	LL(lbs)	x(ft)(left)	DL	LL	T CANCE	1 V 1 T	Left (lbs)	Right (lbs)
oint Load 1 roof				0	0	Uniform	RDL=	518	518
oint Load 2 floor				0	0		RLL=	3450	3450
A 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1 31 1/1 1/2	Point Loads	P1DL=	0	0
DIM	1 TIMBE	R IVI	GIR				D111-	0	0

	DIM	TIMBER	LVL	GLB
Wood Species=	Douglas Fir #2	Douglas Fir #2	LVL	24F-V4
	No Single Ply	4x None	(1) 1.75x14	3.125x12
	CONTRACTOR DE LA CONTRA			A TOURNAL CONTRACTOR MODERNING CONTRACTOR
Option 2	No Double Ply	6х16	(2) 1.75x11.875	5.125x10.5
Option 3	No Triple Ply	8x14	(3) 1.75x9.5	6.75x9
Option 4	No Four Ply	10x12	(4) 1.75x9.5	8.75x9
Option 5	-	12x12		10.75x12
Option 6		14x14		
Option 7	7.10.5	16x16		

	Center	Point Load	Point Load 2
RDL=	1553	0	0
RLL=	10350	0	0
P1DL=	0	0	0
P1LL=	0	0	0
P2DL=	0	0	0
P2LL=	0	0	0
MTL=	11903	0	0
	Max M=	11.9	k-ft

0

0

3968

P2DL= P2LL=

RTL=

Max Shear= 4.0

0

0

3968

k

Wooden Spur Renovation

SHEET NO.

TJI

Section 3, Itema.

 368 Wooden Spur Dr. Alpine, Wyoming

 JOB NO.
 225112

 CALCULATED BY
 EVB

CHECKED BY DATE 0

14x

DIM

14×14 16x16 24 06 39 6/4/2025

BCI

Wood Joist/Rafters (simple span)

NDS 2018

Mark: RFT1 Span(ft)= 8.5 Spacing (in)= 16 LL Deflection<L/ 360 Total Deflection<L/ 240

DL (psf)

roof

floor misc. LL(psf)

100

 $C_{D} = 1$ $C_{r} = 1.15$

Ų.	trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)
	1.33	20.0	133.3	153.3
	1.33	0.0	0.0	0.0
	1.33	0.0	0.0	0.0
	Total	20	0.0 13	3.3 153.3

		Reactions		Mom	ent	3 2
	RTL=	Left (lbs)	Right (lbs)			
	RDL=	85	85	RDL=	181	
	RLL=	567	567	RLL=	1204	
-	RTL=	652	652	MTL=	1385	
	Max Shear (k)=	0.7		Max M (k-ft)=	1.4	

1			
Wood Species=	Douglas Fir #1	7	-
Single Ply	(1) 2x8	9 1/2" 110	9 1/2" 5000
Double Ply	(2) 2x6	9 1/2" 210	9 1/2" 6000
4x	4x6	9 1/2" 230	9 1/2" 6500
6x	6x6	11 7/8" 360	117/8"60
8x	8x8	117/8" 560	11 7/8" 90
10x	10×10	***************************************	
12x	12x12		

Mark: RFT 2

Span(ft)= 10 Spacing (in)= 16

LL Deflection<L/ 360 Total Deflection<L/ 240

		The state of the s	Louding				_
DL	(psf)	LL(psf)	trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)	2 1
roof	15	100	1.33	20.0	133.3	153.3	
floor			1.33	0.0	0.0	0.0	
misc.		60	1.33	0.0	80.0	80.0	
	The state of	100000	Total	20	0.0 213	.3 23	3.3

	Reactions		Mom	ent	
	Left (lbs)	Right (lbs)			
RDL=	100	100	RDL=	250	
RLL=	1067	1067	RLL=	2667	
RTL=	1167	1167	MTL=	2917	
Max Shear (k)=	1.2		Max M (k-ft)=	2.9	

	DIM	· ILT	BCI
Wood Species=	Douglas Fir #1		2
Single Ply	(1) 2x12	11 7/8" 110	11 7/8" 5000
Double Ply	(2) 2x8	9 1/2" 210	9 1/2" 6000
4x	4x8	9 1/2" 230	9 1/2" 6500
6x	6x8	11 7/8" 360	117/8" 60
8x	8x8	117/8" 560	11 7/8" 90
10x	10×10		
12x	12x12		
14x	14x14		
16x	16x16		

Mark: FLR 1

Span(ft)= 10 Spacing (in)= 16 LL Deflection<L/ 480 Total Deflection<L/ 240 C_D= 1 C_r= 1.15

7 - 7	Y 18 1 Y	DL (psf)	LL(psf)	trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)
	roof			1.33	0.0	, 0.0	0.0
	floor	10	40	1.33	13.3	53.3	66.7
	misc.			1.33	0.0	0.0	0.0
		76 " F- F- 6		Total	1	3.3 53.	.3 66.7

0.11.0	Reactions		Mom	ent
10 10 10 10	Left (lbs)	Right (lbs)	2 - 1 10 179	W-17-11
RDL=	67	67	RDL=	167
RLL=	267	267	RLL=	667
RTL=	333	333	MTL=	833
Max Shear (k)=	0.3		Max M (k-ft)=	0.8

3	DIM	TJI	BCI
Wood Species=	Douglas Fir #2	-	
Single Ply	(1) 2x8	9 1/2" 110	9 1/2" 5000
Double Ply	(2) 2x6	9 1/2" 210	9 1/2" 6000
4x	4x6	9 1/2" 230	9 1/2" 6500
6x	6x6	117/8" 360	11 7/8" 60
8x	8x8	11 7/8" 560	11 7/8" 90
10x	10x10		
12x	12x12		
14x	14x14		
16x	16x16		

TSE Engineers 136 S State Street Shelley, ID 83274 208-716-2426

JOB TITLE Wooden Spur Renovation 368 Wooden Spur Dr. Alpine, Wyoming SHEET NO. 75 0539 DATE 6/4/2025 225112 JOB NO. CALCULATED BY EVB CHECKED BY DATE

Reactions

Wood Beam Design (Lateral Supported Fully) NDS 2018

Mark: BM21	Load Factor	s				Loading			
Span(ft)= 18	Dead	1.00		DL (psf)	LL(psf)	trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)
LL Deflection <l 360<="" td=""><td>Floor Live</td><td>0.00</td><td>roof</td><td>15</td><td>100</td><td>7</td><td>105</td><td>700</td><td>805</td></l>	Floor Live	0.00	roof	15	100	7	105	700	805
Total Deflection <l 240<="" td=""><td>Roof Live/Snow</td><td>1.00</td><td>floor</td><td>10</td><td>40</td><td>5</td><td>50</td><td>0</td><td>50</td></l>	Roof Live/Snow	1.00	floor	10	40	5	50	0	50
CD= 1	Misc.	1.00	wall	1 MARK			0	0	0
			misc.		60	5	0	300	300
			, T		74-38	Total	15	1000	1155

	Load	DL(lbs)	LL(lbs)	x(ft)(left)	DL	LL			Left (lbs)	Right (lbs)
Point Load 1	roof				0	0	Uniform	RDL=	1395	1395
Point Load 2	floor				0	0		RLL=	9000	9000
			and a large			1 1 1 1 1 2 2 2	Point Loads	P1DL=	0	0
	DIM	TIMBER	LVL	GLB				P1LL=	0	0
	MANAGE TO SELECT							P2DL=	0	0
							hall be to a	P2LL=	0	0
ood Species=	Douglas Fir #2	Douglas Fir #2	LVL	24F-V4			Wife Jack	RTL=	10395	10395
Option 1	No Single Ply	4x None	No Single Ply	3.125 x None			Ma	ax Shear=	10.4	k
Option 2	No Double Ply	6x None	No Double Ply	5.125x18						

Load Factors Applied

5 7 2 7 25				
Wood Species=	Douglas Fir #2	Douglas Fir #2	LVL	24F-V4
Option 1	No Single Ply	4x None	No Single Ply	3.125 x None
Option 2	No Double Ply	6x None	No Double Ply	5.125x18
Option 3	No Triple Ply	8x None	(3) 1.75x18	6.75x16.5
Option 4	No Four Ply	10x None	(4) 1.75x16	8.75x15
Option 5		12x None	-	10.75×13.5
Option 6	desina-dia	14x18		-
Option 7	00000	16x18	Alexan-Bilan	Sele-Selection

	Center	Point Load	Point Load 2
RDL=	6278	0	0
RLL=	40500	0	0
P1DL=	0	0	0
P1LL=	0	0	0
P2DL=	0	0	0
P2LL=	0	0	0
MTL=	46778	0	0
	Max M=	46.8	k-ft

Mark:	BM 21	Load Factor	s				Loading			
Span(ft)=	18	Dead	1.00		DL (psf)	LL(psf)	trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)
LL Deflection <l <="" td=""><td>360</td><td>Floor Live</td><td>0.75</td><td>roof</td><td>15</td><td>100</td><td>7</td><td>105</td><td>525</td><td>630</td></l>	360	Floor Live	0.75	roof	15	100	7	105	525	630
Total Deflection <l <="" td=""><td>240</td><td>Roof Live/Snow</td><td>0.75</td><td>floor</td><td>10</td><td>40</td><td>5</td><td>50</td><td>150</td><td>200</td></l>	240	Roof Live/Snow	0.75	floor	10	40	5	50	150	200
CD= 1	1	Misc.	0.75	wall				0	0	0
				misc.		60	5	0	225	225
						AND THE PERSON OF	Total	15	5 900	105

						TIE	Total	155	900	1055
				Loa	d Factors Appl	ied	Reactions			×
	Load	DL(lbs)	LL(lbs)	x(ft)(left)	DL	LL		j 1753	Left (lbs)	Right (lbs)
oint Load 1	roof				0	0	Uniform	RDL=	1395	1395
oint Load 2	floor				0	0		RLL=	8100	8100
						11.4	Point Loads	P1DL=	0	v 0
	DIM	TIMBER	LVL	GLB				P1LL=	0	0
3.15								P2DL=	0	0
								P2LL=	0	0

	DIM	TIMBER	LVL	GLB
Wood Species=	Douglas Fir #2	Douglas Fir #2	LVL	24F-V4
Option 1	No Single Ply	4x None	No Single Ply	3.125x21
Option 2	No Double Ply	6x None	No Double Ply	5.125x18
Option 3	No Triple Ply	8x None	(3) 1.75×18	6.75x16.5
Option 4	No Four Ply	10x None	(4) 1.75x16	8.75x15
Option 5		12x None	Pariation - Pariation	10.75x13.5
Option 6	1000 - 1000 <u>- 1000</u>	14x18		-41
Option 7		16x18	-	

	Center	Point Load	Point Load 2
RDL=	6278	0	0
RLL=	36450	0	0
P1DL=	0	.0	0
P1LL=	0	0	0
P2DL=	0	0	0
P2LL=	0	0	0
MTL=	42728	0	0
	Max M=	42.7	k-ft

RTL= 9495 Max Shear= 9.5 9495

TSE Engineers 136 S State Street Shelley, ID 83274 208-716-2426

 JOB TITLE
 Wooden Spur Renovation

 368 Wooden Spur Dr. Alpine, Wyoming

 JOB NO.
 225112
 SHEET NO. Zle of 3 f

 CALCULATED BY EVB
 DATE 6/4/2025

 CHECKED BY
 DATE

Reactions

Wood Beam Design (Lateral Supported Fully) NDS 2018

Mark: BM22	Load Factors					Loading			
Span(ft)= 10	Dead	1.00		DL (psf)	LL(psf)	trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)
LL Deflection <l 360<="" td=""><td>Floor Live</td><td>0.00</td><td>roof</td><td>15</td><td>100</td><td>4</td><td>60</td><td>400</td><td>460</td></l>	Floor Live	0.00	roof	15	100	4	60	400	460
Total Deflection <l 240<="" td=""><td>Roof Live/Snow</td><td>1.00</td><td>floor</td><td>10</td><td>40</td><td>1</td><td>10</td><td>0</td><td>10</td></l>	Roof Live/Snow	1.00	floor	10	40	1	10	0	10
CD= 1	Misc.	1.00	wall				0	0	0
			misc.		60	4	0	240	240
			-	7 7 5		Total	7	0 64	0 710

	Load	DL(lbs)	LL(lbs)	x(ft)(left)	DL	LL			Left (lbs)	Right (lbs)
Point Load 1	roof				0	0	Uniform	RDL=	350	350
Point Load 2	floor				0	0		RLL=	3200	3200
							Point Loads	P1DL=	0	0
	DIM	TIMBER	LVL	GLB				P1LL=	0	0
	VEGET, PETERS							P2DL=	0	0
								P2LL=	0	0
Wood Species=	Douglas Fir #2	Douglas Fir #2	LVL	24F-V4			4.00	RTL=	3550	3550
Option 1	No Single Ply	4x None	(1) 1.75×11.875	3.125×10.5			Ma	ax Shear=	3.6	k
100		***************************************								

Load Factors Applied

Wood Species=	Douglas Fir #2	Douglas Fir #2	LVL	24F-V4
Option 1	No Single Ply	4x None	(1) 1.75x11.875	3.125x10.5
Option 2	No Double Ply	6x14	(2) 1.75x9.5	5.125x9
Option 3	No Triple Ply	8x12	(3) 1.75x9.5	6.75x9
Option 4	(4) 2x12	10x10	(4) 1.75x9.5	8.75x9
Option 5		12x12		10.75x12
Option 6	-	14x14		-
Option 7		16x16		

	Center	Point Load	Point Load 2
RDL=	875	0	0
RLL=	8000	0	0
P1DL=	0	0	0
P1LL=	0	0	0
P2DL=	0	0	0
P2LL=	0	0	0
MTL=	8875	0	0
	Max M=	8.9	k-ft

Mark: BM 22	Load Factors	s				Loading			
Span(ft)= 10	Dead	1.00	A = 11 Y = 11	DL (psf)	LL(psf)	trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)
LL Deflection <l 360<="" td=""><td>Floor Live</td><td>0.75</td><td>roof</td><td>15</td><td>100</td><td>4</td><td>60</td><td>300</td><td>360</td></l>	Floor Live	0.75	roof	15	100	4	60	300	360
Total Deflection <l 240<="" td=""><td>Roof Live/Snow</td><td>0.75</td><td>floor</td><td>10</td><td>40</td><td>1</td><td>10</td><td>3,0</td><td>40</td></l>	Roof Live/Snow	0.75	floor	10	40	1	10	3,0	40
CD= 1	Misc.	0.75	wall				0	0	0
			misc.		60	4	0	180	180
				Jan h		Total	7	0 51	0 580

				Load	Factors Applied		Reactions	1000		
	Load	DL(lbs)	LL(lbs)	x(ft)(left)	DL	LL			Left (lbs)	Right (lbs)
oint Load 1	roof				0	0	Uniform	RDL=	350	350
oint Load 2	floor				0	0		RLL=	2550	2550
							Point Loads	P1DL=	0	0
	DIM	TIMBER	LVL	GLB				P1LL=	0	0
	eta a de la composición dela composición de la composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición dela composición de la composición dela composición de			er kerke salikal				P2DL=	0	0

	DIM	TIMBER	LVL	GLB
Wood Species=	Douglas Fir #2	Douglas Fir #2	LVL	24F-V4
Option 1	No Single Ply	4x None	(1) 1.75x11.875	3.125x10.5
Option 2	No Double Ply	6x12	(2) 1.75x9.5	5.125x9
Option 3	No Triple Ply	8x10	(3) 1.75x9.5	6.75x9
Option 4	(4) 2x12	10x10	(4) 1.75×7.25	8.75x9
Option 5	landus-saldis	12x12		10.75x12
Option 6		14x14		
Option 7	-	16x16		

	Center	Point Load	Point Load 2
RDL=	875	0	0
RLL=	6375	0	0
P1DL=	0	0	0
P1LL=	0	0	0
P2DL=	0	0	0
P2LL=	0	0	0
MTL=	7250	0	0
	Max M=	7.3	k-ft

P2LL=

RTL=

Max Shear= 2.9

2900

0

2900

k

Project Wooden Spur Renovation

JUN 0 4 2025 Date

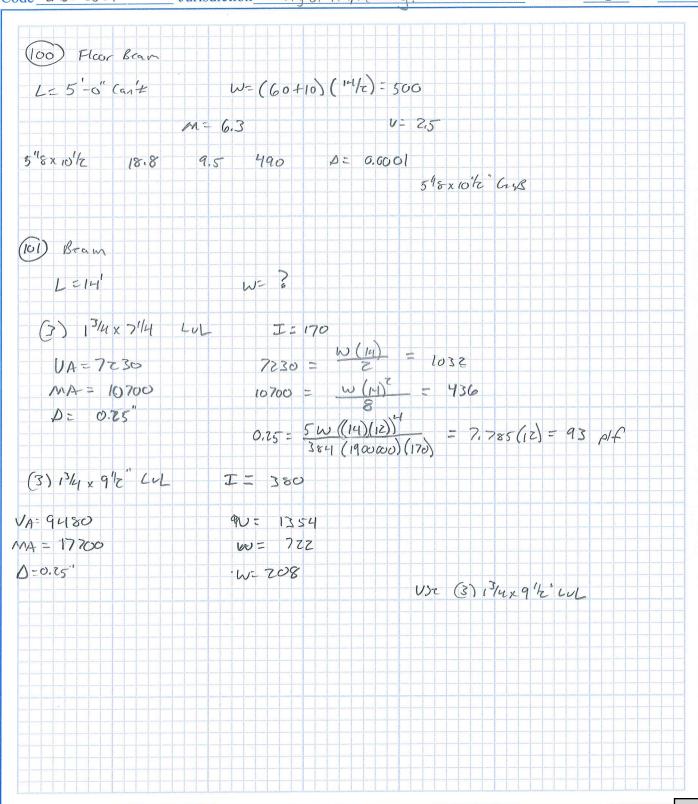
Project # 725 117 By Euß Ck'd ____

Title Roof Frams

Code IBCZOZI Jurisdiction City of Alpin wy

Sheet 27 of 39

SL=100 DL= 15 Prifty / slisty = 100psf Rafters $L = 5' \text{ can't} \qquad W = (100 + 100 + 15) (16/12) = 787 \qquad M = 3.6 \qquad V = 1.4$ $W = (100 + 100 + 15) (1) = 7.11 \qquad V = 7.11 \qquad 4.8 \qquad 110 \qquad \Delta = 0.19 \qquad 323 \qquad Ob$ 13/4 x 7/4 LUL @ 16'0. C. max span 4=? W= (100+100+15) (16/12)= 287 VA = 4800 MA = 7110 D = 1/3G0 V= 4800 = (287)(L) L=33. $D = \frac{L(12)}{360} = \frac{5(28\%(L)(12)^{4}}{384(110000)(10)} L = 10^{4}$ max $5pan = 10^{4}0^{4}$ 13/4 x7/14 LUL e (6 0,1. W= 8.7 V= 5.8 m= 8.7 5 1/8 x 9 13.8 8.1 310 P= 0.10" 5/18×9648



Project Wooden San Renovation Date JUN 0 4 2025

Project # 775117

Title Franja By Ck'd ___

Code IBC 2021 Jurisdiction City of Alpin wy. Sheet 28 of 39

JOB TITLE

Wooden Spur Renovation

368 Wooden Spur Dr. Alpine, Wyoming

JOB NO. 2251
CALCULATED BY EVB
CHECKED BY

SHEET NO.
DATE
DATE 225112 0

DIM

14x14

16x16

16x

7905 39 6/4/2025

BCI

Section 3, Itema.

Wood Joist/Rafters (simple span) NDS 2018

Mark:	FLR 2
Span(ft)=	
Spacing (in)=	12
LL Deflection <l <="" td=""><td>360</td></l>	360
Total Deflection <l <="" td=""><td>240</td></l>	240

roof floor misc.

DL (psf)

LL(psf) 60

C_D= 1 C_r= 1.15

Total

	Loading				
t	rib (ft)	DLw(plf)	LLw(plf)	TLw(plf)	
	1.00	10.0	60.0	70.0	
	1.00	0.0	0.0	0.0	
(BB)	1.00	0.0	0.0	0.0	

10.0

60.0

Reactions			Mom	ent
L	eft (lbs)	Right (lbs)		
RDL=	70	70	RDL=	245
RLL=	420	420	RLL=	1470
RTL=	490	490	MTL=	1715
/ax Shear (k)=	0.5		May M (k-ft)=	17

Wood Species=	Douglas Fir S.S.		
Single Ply	(1) 2×10	9 1/2" 110	9 1/2" 5000
Double Ply	(2) 2x8	9 1/2" 210	9 1/2" 6000
4x	4x8	9 1/2" 230	9 1/2" 6500
6x	6x6	11 7/8" 360	117/8"60
8x	8x8	11 7/8" 560	117/8"90
10x	10x10		
12x	12x12		

TJI

Mark:

Span(ft)= Spacing (in)= 16 LL Deflection<L/ 360 Total Deflection<L/ 240 $C_{D} = \boxed{1}$ $C_{r} = \boxed{1.15}$

	complete and a second			Loading		and the second second		
70.0	DL	(psf)	LL(psf)	trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)	
	roof	15	100	1.33	20.0	133.3	153.3	
	floor			1.33	0.0	0.0	0.0	
	misc.		60	1.33	0.0	0.08	80.0	
				Total	20	.0 213.9	3 233	3

A supplied to At-	Reactions		Mom	ent	
WX101866	Left (lbs)	Right (lbs)		Pietikera.	
RDL=	0	0	RDL=	0	
RLL=	0	0	RLL=	0	
RTL=	0	0	MTL=	0	4174
Max Shear (k)=	0.0		Max M (k-ft)=	0.0	

	DIM	TJI	BCI
Wood Species=	Douglas Fir #1		2
Single Ply	(1) 2×4	9 1/2" 110	9 1/2" 5000
Double Ply	(2) 2x4	9 1/2" 210	9 1/2" 6000
4x	4x4	9 1/2" 230	9 1/2" 6500
6x	6x6	11 7/8" 360	11 7/8" 60
8x	8x8	11 7/8" 560	11 7/8" 90
10x	10×10		
12x	12x12		
14x	14x14		
16x	16x16		

Mark:

Span(ft)= Spacing (in)= 16 LL Deflection<L/ 480 Total Deflection<L/ 240 $C_{D} = 1$ $C_{r} = 1.15$

	DL (psf)	LL(psf)	trib (ft)	DLw(plf)	LLw(plf)	TLw(plf)
roo			1.33	0.0	0.0	0.0
floor	10	40	1.33	13.3	53.3	66.7
" misc			1.33	0.0	0.0	0.0
	CONTRACTOR OF THE PARTY OF THE	3.5 30 7 702 3	Total	1	3.3 53	3.3 66
			Total	1	3.3 53	3.3

Reactions				Moment		
15 11 11		Left (lbs)	Right (lbs)		F. J.	
	RDL=	0	0	RDL=	0	
/	RLL=	0	0	RLL=	0	
	RTL=	0	0	MTL=	0	
Max Shea	ar (k)=	0.0		Max M (k-ft)=	0.0	

	DIM	TJI	BCI
Wood Species=	Douglas Fir #2	-	+
Single Ply	(1) 2x4	9 1/2" 110	9 1/2" 5000
Double Ply	(2) 2×4	9 1/2" 210	9 1/2" 6000
4x	4x4	9 1/2" 230	9 1/2" 6500
6x	6x6	11 7/8" 360	117/8"60
8x	8x8	11 7/8" 560	117/8"90
10x	10x10		
12x	12x12		
14x	14x14		
16x	16x16		

JUN 0 4 2025

Date Project Wooden Spur Penovation Project # 225 112 Title Fondarun By EUR Ck'd

Sheet 30 of 39

Jurisdiction City of Alphe Wy. Code IBCTOZI 9 A=1500 Footigs Exteror W=1610 Try 10 x24 P=5,9 K 9 = (20/2)(1) + 5900 = 1296 < 1500 de AS = 0,0018(10) (24) = 0.43 in 2 (3) #41 = 0.6 in 2 1. 10x24 w/(3)#4 Cayit. W=1840 Try 10 x20 P=16.6 9 = (26/12)(1) + 16,600 = 2300 > 1500 Feils USC 580+ Feotis & Point Lord 9 = (840(1) = 1104 < 1500 de A5= 0.0018 (10) (20) = 0.36in 2 1. 10 x 20 w/ (3) Hel langie (3) #4=0.6in2 Spot Footings 9 A=1500 Site PA 6.0 2-04 2-6" 9.4 3'0" 13.5 3-6 18.4 40 0,45

Section 3, Itema.

Project Wooden Sper Penovation

Title Lateral Lows

Date JUN 0 4 2025

Project # 275117

By EVS Ck'd

Code toczoz Jurisdiction City of Alpre wy. Sheet 31 of 39

Seismic 51 = 34,1 55=110.9 Sds = 0.887 Sd, = 0.4145 SDC = D R=6.5 CS = 0,136 V=0.136 w (altinate) w= (29) (29) (15) + (29) (29) (100) (0.2)= 29 435 Grane 11-0.136 (29435) /14/2=1.4 w= (15) (29) (15) + (15) (29) (100) (0,2) = 15225 Courd Paris V=0.136 (15225) 11.4= 1.5 /2= 0.8 Son Room W= (21) (12) (15) + (21) (12) (10) (0,2) = 8820 V=0.136 (8820) /1.4 /2 = 0.4 Existy House W= (40) (30) (15) + (40) (30) (100) (0.2) = 42000 15-0,136 (42000) 11.4/2= 210 Existy Gaze 00425 = (5.0) (001)(55) (02) + (05) (55) (02) = W V=0.136 (26400) 11.4/2=1.3

Project Wooden Spy Renovation

Project # _ ZZ511Z

By EUB Ck'd_

Title Latral Lords

Code IBC 2021 Jurisdiction City of Alpire wy.

Sheet 32 of 39

wind 115 mph Exp=C RC=II Zq=6'
Pw=15:5; 10.5 PG=13.9; 9.2 PR=-CC:-3.8

(W) V= (13.9(6) + 10(2%-6)(11/2+2+5.5/2)=1.6

(WE) V= (15.5 (6) + 10.3 (26/2-6)) (11/2+2) + 10 (26/2) (5.5) = 2.0

(3) V= (15.5 (6) + 10.3 (60/2-6)) (11/2+4) +10 (20/2) (5.5) = 2.3

(Ju) 1= (10)(2)(15)=0.3

(W5) V = (15.5 (6) + 10.3 (18/2 -6)) (8/2) + 60(18/2) (7) = 0.7

(W) V= (13.9(6) +10.3(10/2-6)) (8/2+3/2)=0.4

(W7) V= (155 (6) +10,3 (49/2-6)) (8/2) + 10 (40/2) (8.5) = 2.6

(N8) V= (15.5 (6) + 10.3 (22/2-6)) (9/2+3)+ 10(22/2) (8.5) = 2.0

(13.9(c) + 10.3 (30/2-6)) (10/2+3+8.5/2) = 2.2

SHEET NO. DATE DATE

Wood Shear Walls w/ Wood Studs (Top Story)

Shear Line: SW1	180 180	NDS 202 Total Length of walls	21 (ASD Loading) s (ft) = 8.00					
S _{DS} 0.887	-	Segment 1	Segment 2	Segment 3	Segment 4	Segment 5	Segment 6	Segment 7
Wind Load (lb): 1600	length (ft)	4	4		Harris Allendar	I STANLEY AREAS	Process and the second	LECTRO STORY
(, ,	height (ft)	11	11					
Roof DL (psf) 15	roof trib. (ft)	16	16					
Floor DL (psf) 10	floor trib. (ft)	0	0					
Wall Self (psf) 8	Distance from HD to end of wall (in)	3	3 1					
wan sen (psi)	Aspect Ratio:	2.75	2.75					A CALL COLLEGE
	Aspect Ratio Factor (WSP):	0.91	0.91					
Seismic	shear flow (plf)	175.0	175.0					
Seisitiic	F (lbs)	700	700					
	Seismic Factor	0.73	0.73					
	Adjusted Shear Flow (plf)	240.63	240.63					
	MOT (ft-lb)	7700	7700					
	DL Factor A=	1.12	1.12					
	A x wDL (plf)	369	369					
" - " - T	End Post Compression (Ib)	2175	2175				12 31 17 24 3	
	DL Factor B=	0.48	0.48					
	B x wDL (plf)	156	156					
	End Post Uplift for HDs (lb)	1035	1035					
Wind	shear flow (plf)	200	200					
	F (lb)	800	800					
	MOT (ft-lb)	8800	8800					
	wDL (plf)	328	328					
	End Post Compression (lb)	3003	3003					
	DL Factor	0.6	0.6					
4	wDL (plf)	196.8	197					
	End Post Uplift for HDs (lb)	2121	2121					
`L	Max Compression	3003	3003					
	Max Uplift	2121	2121					
	Max Shear Flow	241	241					
N	Max Shear Floow Due to Wind or Seismic (W/S)	S	S		No. of the last of	Telephone Inc.		
	Sheathing Nails 7/16 w		7/16 w/ 8d @ 4" O.C.			Segleta in the		
	# of Layers	1	1				A STATE OF THE STA	
	Shear Flow Allowabel (plf)	317	317					
1	Check	Adequate	Adequate					4. Z. Ver (25)
	Sheathing Staples 7/16 w		7/16 w/ 1 1/2" 16 ga. @ 3" O.C.			建筑建筑建设		
	Shar Flow Allowable (plf)	310	310					
- Landing and American	Check	Adequate	Adequate					
F	Recommended Holdown @ Foundation 8" wall	HDU2	HDU2				hipporter 177 [18]	
	Strap Style (Midwall)	LSTHD8	LSTHD8					
	Strap Style (End Wall)	LSTHD8	LSTHD8					
	Recommended Holdown @ Wood Wall	MSTC40	MSTC40				rifing the Eve	
	Strap Nailing Reg'd	(32) 16d	(32) 16d					
-	# OF Minimum End Post	2	2					

TSE Engineers 136 S State Street Shelley, ID 83274 208-357-2420

 JOB TITLE
 Wooden Spur Renovation

 368 Wooden Spur Dr. Alpine, Wyoming
 225112

 JOB NO.
 225112

 CALCULATED BY
 EVB

 CHECKED BY
 0

340539 SHEET NO. DATE DATE

Section 3, Itema.

Wood Shear Walls w/ Wood Studs (Top Story)

Shear Line: SW2 nic Load (lb): 2900		NDS 2021 (A Total Length of walls (ft	ASD Loading)) = 9.00					
S _{DS} 0.887	-	Segment 1	Segment 2	Segment 3	Segment 4	Segment 5	Segment 6	Segment 7
Load (lb): 1900	length (ft)	9			PER CONTRACTOR			
	height (ft)	11						
of DL (psf) 15	roof trib. (ft)	13	A PROPERTY OF THE PERSON NAMED IN COLUMN	STATE BANKS STATE	of the last test and the same		cyclic bulleting	
or DL (psf) 10	floor trib. (ft)	0						
II Self (psf) 8	Distance from HD to end of wall (in)	3						
	Aspect Ratio:	1.22						
Seismic	shear flow (plf)	322.2						
	F (lbs)	2900						
	Seismic Factor	1.00						
	Adjusted Shear Flow (plf)	322.22						Mark and
e and the second	MOT (ft-lb)	31900						
	DL Factor A=	1.12						
-0.1 P. S. S. S. W.	A x wDL (plf)	318						
	End Post Compression (Ib)	3984						
	DL Factor B=	0.48			Mary Transport			100
	B x wDL (plf)	135						
	End Post Uplift for HDs (lb)	1875		marin and the			1000	للكائمة
Wind	shear flow (plf)	211						
	F (lb)	1900						
	MOT (ft-lb)	20900		William Day 1				
11 - 11	wDL (plf)	283						
	End Post Compression (lb)	3662						
	DL Factor	0.6						
102 5 7 7 2 2 9 9	wDL (plf)	169.8						
	End Post Uplift for HDs (lb)	1695						
	Max Compression	3984						
	Max Uplift	1875						
	Max Shear Flow	322						
May Shos	ar Floow Due to Wind or Seismic (W/S)	\$						
IVIAX SILES	Sheathing Nails 7/16		FR COUNTY OF THE PERSON	Edition with the color	and any succession	The state of the state of	destruits groups and	
	# of Layers	w/ 8d @ 3" O.C.						
	Shear Flow Allowabel (plf)	450			Market Strategy and Market			godin and con-
	Check	Adequate						
	Sheathing Staples 7/16			DESCRIPTION AND		AND DESCRIPTIONS	TO A SAC DE SENSOR	average supply
		w/ 11/2-16 ga.@ 2-0.C.	(a) de decre de revinces estados	THE SAMPLE AND ADDRESS OF THE PERSON OF THE	131223Edelle ve ve entre her	Extends continued by	AND SHOULD SEED SEED	Participation of the Control of the
	Shar Flow Allowable (plf) Check							
D	ended Holdown @ Foundation 8" wall	Adequate HDU2	14					
Recomm								
	Strap Style (Midwall)	LSTHD8						
The second second	Strap Style (End Wall)	LSTHD8						
R	Recommended Holdown @ Wood Wall	MSTA49						
All the second second	Strap Nailing Req'd	(26) 10d						
	# OF Minimum End Post	2						

TSE Engineers 136 S State Street Shelley, ID 83274 208-357-2420

 JOB TITLE
 Wooden Spur Renovation

 368 Wooden Spur Dr. Alpine, Wyoming
 JOB NO.

 Z25112
 ZCALCULATED BY

 CHECKED BY
 0

35 06 39 6/4/2025 SHEET NO. DATE DATE

Section 3, Itema.

Wood Shear Walls w/ Wood Studs (Top Story)

Shear Line:	SW3		NDS 2021 (A Total Length of walls (ft	ASD Loading)) = 20.00					
simic Load (lb):	0.887		Comment 1	Commont 2	Comment 2	Comment A	Commont C	Comment C	Constant 7
S _{DS}			Segment 1	Segment 2	Segment 3	Segment 4	Segment 5	Segment 6	Segment 7
Wind Load (lb):	2000	length (ft)	20 11						
0 (0) (0	and the second	height (ft)					AND ADDRESS OF THE PARTY.		
Roof DL (psf)	15	roof trib. (ft)	4						
Floor DL (psf)	10	floor trib. (ft)	0						
Wall Self (psf)	8	Distance from HD to end of wall (in)	3						
		Aspect Ratio:	0.55						
S	eismic	shear flow (plf)	110.0			7	Texa III I I I		
_ ,		F (lbs)	2200						
31 - 1		Seismic Factor	1.00						
		Adjusted Shear Flow (plf)	110.00	VIII A AND A SHARE		1 1			10.7
		MOT (ft-lb)	24200						
		DL Factor A=	1.12						
		A x wDL (plf)	166						
		End Post Compression (lb)	2522						
	C 1/1 =	DL Factor B=	0.48						also liv
		B x wDL (plf)	70						
		End Post Uplift for HDs (lb)	143						
_	1-2/1/2								9/2
V	Vind	shear flow (plf) F (lb)	100 2000						
	-	MOT (ft-lb)	22000						
45 0.76		wDL (plf) End Post Compression (lb)	148						
			2594						
		DL Factor	0.6						
		wDL (plf)	88.8						
		End Post Uplift for HDs (lb)	240						
		Max Compression	2594						
		Max Uplift	240						
		Max Shear Flow	110						
	Max	Shear Floow Due to Wind or Seismic (W/S)	S	LVK.ENL. Barretten				At 100 LVX 61 L	
		Sheathing Nails 7/16 w.							
		# of Layers	1						
		Shear Flow Allowabel (plf)	240						
		Check	Adequate			WILL TO THE THE THE	O'Control of the		
		Sheathing Staples 7/16 w.					1992 4 5 2		
		Shar Flow Allowable (plf)	155						
		Check	Adequate					Maria de la companya	
15 mg 15 - 18	Reco	ommended Holdown @ Foundation 8" wall	not reqd.						March 1911
4)		Strap Style (Midwall)	not reqd.		5, 611 St. 31, 18 38 T. 10	State of	11 13 13 1 1 di 11 1 1	15.016 50 55	18 7 7.87
		Strap Style (End Wall)	not regd.						
_		Recommended Holdown @ Wood Wall	not reqd.					Low	
		Strap Nailing Reg'd	not reqd.						
-		# OF Minimum End Post	not reqd						

Section 3, Itema.

 JOB TITLE
 Wooden Spur Renovation

 368 Wooden Spur Dr. Alpine, Wyoming
 225112

 JOB NO.
 225112

 CALCULATED BY
 EVB

 CHECKED BY
 0

SHEET NO. DATE DATE

36 05 39

Wood Shear Walls w/ Wood Studs (Top Story)

Shear Line:	SW4		NDS 202 Total Length of walls	1 (ASD Loading) (ft) = 15.00					
simic Load (lb):	0.887		Segment 1	Segment 2	Segment 3	Segment 4	Segment 5	Segment 6	Segment
Vind Load (lb):	2000	length (ft)	9	6			Helica de la comp		Sales VARIO
2000 (10)1	2000	height (ft)	11	11					
Roof DL (psf)	15	roof trib. (ft)	4	4		Taking the property of			Residence.
Floor DL (psf)	10	floor trib. (ft)	0	0				S ALK IN SE	
Wall Self (psf)	8	Distance from HD to end of wall (in)	3	3					
rran sen (psi)	<u>u</u>	Aspect Ratio:	1.22	1.83		Delta para della construcción	Parities Research		Individual discount
S	eismic	shear flow (plf)	146.7	146.7					
		F (lbs)	1320	880					
		Seismic Factor	1.00	1.00					
		Adjusted Shear Flow (plf)	146.67	146.67					
	_	MOT (ft-lb)	14520	9680				1	
		DL Factor A=	1.12	1.12					
		A x wDL (plf)	166	166					
		End Post Compression (Ib)	1910	1678					
	_	DL Factor B=	0.48	0.48					N STATE
		B x wDL (plf)	70	70					
L		End Post Uplift for HDs (lb)	812	918				- 1	
W	/ind	shear flow (plf)	133	133					
		F (lb)	1200	800				_ hr 12 july 10 jul	
	_	MOT (ft-lb)	13200	8800					
		wDL (plf)	148	148					
21-121		End Post Compression (lb)	2175	1974	13.7		- 1411 V	- " 100 1 1	
10.1	_	DL Factor	0.6	0.6		E PYRELLING		F III WIN	
		wDL (plf)	88.8	89					
JA		End Post Uplift for HDs (lb)	1153	1334					
		Max Compression	2175	1974					
		Max Uplift	1153	1334					
		Max Shear Flow	147	147					
	Max	Shear Floow Due to Wind or Seismic (W/S)	S	S					
75 11 0		Sheathing Nails 7/16 w.	/ 8d @ 6" O.C.	7/16 w/ 8d @ 6" O.C.					THE THE LEE
		# of Layers	1	1			Marie Constitution of the		NAME OF STREET
		Shear Flow Allowabel (plf)	240	240	The Maria Program	Total Total	V 10 11 1		
		Check	Adequate	Adequate					
-	75.00 T = 4	Sheathing Staples 7/16 w.	1 1/2" 16 ga. @ 6" O.C.	7/16 w/ 1 1/2" 16 ga. @ 6" O.C.			THE WAY OF STREET		HE RELEASE
		Shar Flow Allowable (plf)	155	155			THE STATE OF THE S	re Teaning (III	J. Tripes
	100 miles	Check	Adequate	Adequate		the second second			S, SANTER SE
	Reco	ommended Holdown @ Foundation 8" wall	HDU2	HDU2			Marchael W.		LIVE TO SE
, A	Style See	Strap Style (Midwall)	LSTHD8	LSTHD8				1 -1 -1 -1 -1 -1 -1	n in Walker
		Strap Style (End Wall)	LSTHD8	LSTHD8					
_		Recommended Holdown @ Wood Wall	MSTC28	MSTC28			Value de la companya		
		Strap Nailing Reg'd	(16) 16d	(16) 16d					
	77 7 7 7 7 7 7 7 7 7	# OF Minimum End Post	2	2					

Section 3, Itema.

| Wooden Spur Renovation | 368 Wooden Spur Dr. Alpine, Wyoming | JOB NO. | 225112 | CALCULATED BY | EVB | CHECKED BY | 0

SHEET NO. DATE DATE

37 08 39

Wood Shear Walls w/ Wood Studs (Top Story)

Shear Line:	SW5 400		NDS 202 Total Length of wall:	21 (ASD Loading) s (ft) = 5.00						
S _{DS}	0.887		Segment 1	Segment 2	Segment 3	Segment 4	Segment 5	Segment 6	Segment 7	
Wind Load (lb):	400	length (ft)	2.5	2.5					Hat deliner	
		height (ft)	7	7						
Roof DL (psf)	15	roof trib. (ft)	7.55	7	e de la desta de la			THE STREET NAME OF STREET		
Floor DL (psf) 10 Wall Self (psf) 8		floor trib. (ft)		0	0					
		Distance from HD to end of wall (in)	3	3						
		Aspect Ratio:	2.80	2.80				Line was a manufacture of	MARKE PRINCIPLE OF STREET	
		Aspect Ratio Factor (WSP):	0.90	0.90						
S	eismic	shear flow (plf)	80.0	80.0						
		F (lbs)	200	200						
		Seismic Factor	0.71	0.71						
		Adjusted Shear Flow (plf)	112.00	112.00						
		MOT (ft-lb)	1400	1400						
5.4		DL Factor A=	1.12	1.12						
		A x wDL (plf)	181	181						
1 - 1		End Post Compression (lb)	662	662						
		DL Factor B=	0.48	0.48						
		B x wDL (plf)	77	77						
		End Post Uplift for HDs (lb)	296	296						
W	Vind	shear flow (plf)	80	80						
- 4		F (lb)	200	200						
		MOT (ft-lb)	1400	1400						
eren Y		wDL (plf)	161	161						
l , a 5		End Post Compression (lb)	823	823				let like of the		
15 2 0		DL Factor	0.6	0.6						
5 0 0		wDL (plf)	96.6	97						
		End Post Uplift for HDs (lb)	579	579						
		Max Compression	823	823						
		Max Uplift	579	579						
		Max Shear Flow	112	112						
	Max	Shear Floow Due to Wind or Seismic (W/S)	S	S S			1-1-77 11 11			
		Sheathing Nails 7/16 w/		7/16 w/ 8d @ 6" O.C.			Market Transfel			
		# of Layers	1	1						
		Shear Flow Allowabel (plf)	216	216						
		Check	Adequate	Adequate		on open to 1985		. No. 15 (15 (15 (15 (15 (15 (15 (15 (15 (15		
		Sheathing Staples 7/16 w/		7/16 w/ 1 1/2" 16 ga. @ 6" O.C.	网络沙洲 医克拉克氏	A CONTRACTOR OF THE PARTY OF TH	10年6月11日本主任			
		Shar Flow Allowable (plf)	155	155						
_		Check	Adequate	Adequate				1155		
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Rec	ommended Holdown @ Foundation 8" wall	not reqd.	not reqd.					Part TV/N/	
		Strap Style (Midwall)	not reqd.	not reqd.						
_		Strap Style (End Wall)	not reqd.	not reqd.				Kenney (dellar)		
		Recommended Holdown @ Wood Wall	not reqd.	not reqd.						
_		Strap Nailing Req'd	not reqd.	not reqd.	CATABLE IN STREET					
		# OF Minimum End Post	not reqd	not reqd						

TSE Engineers 136 S State Street Shelley, ID 83274 208-357-2420

 JOB TITLE
 Wooden Spur Renovation

 368 Wooden Spur Dr. Alpine, Wyoming
 225112

 JOB NO.
 225112

 CALCULATED BY
 EVB

 CHECKED BY
 0

SHEET NO. DATE DATE

380639

Section 3, Itema.

Wood Shear Walls w/ Wood Studs (Top Story)

Shear Line:	SW6 1300		Wood Shear Walls W/ V NDS 2021 (A Total Length of walls (ft)	SD Loading)					
S _{DS}	0.887		Segment 1	Segment 2	Segment 3	Segment 4	Segment 5	Segment 6	Segment 7
Wind Load (lb):	2000	length (ft)	8						
		height (ft)	9					新国际公司	Name of the last
Roof DL (psf)	15	roof trib. (ft)	4						
Floor DL (psf)	10	floor trib. (ft)	1						
Wall Self (psf)	8	Distance from HD to end of wall (in)	3						
		Aspect Ratio:	1.13						
Sei	smic	shear flow (plf)	162.5						7
		F (lbs)	1300						
		Seismic Factor	1.00						
		Adjusted Shear Flow (plf)	162.50			lan - Pring		v	ă., j
		MOT (ft-lb)	11700						
		DL Factor A=	1.12						
		A x wDL (plf)	160						
	_	End Post Compression (lb)	1695						E-0
		DL Factor B=	0.48						
		B x wDL (plf)	68						
		End Post Uplift for HDs (lb)	753						
Wir	nd	shear flow (plf)	250			15 2			
		F (lb)	2000	DE LE RA DICHE A					
		MOT (ft-lb)	18000						
		wDL (plf)	142						
		End Post Compression (Ib)	2891						Y 1
1 2 1		DL Factor	0.6						
		wDL (plf)	85.2						
		End Post Uplift for HDs (lb)	2059		Same and the same and the	and the will be stable	Service and a service of	Land to the State of the State	Y Later Co.
		Max Compression	2891						
		Max Uplift	2059						
		Max Shear Flow	250						
	Max S	hear Floow Due to Wind or Seismic (W/S)	W						
		Sheathing Nails					DATE BEFORE	SECULO DE LA COMPANSION	
		# of Layers	1		计算数据数据图				
		Shear Flow Allowabel (plf)	335						
-		Check	Adequate		18 - 5 10 11	<u> </u>	<u> </u>		
			/16 w/ 1 1/2" 16 ga. @ 4" O.C.						
		Shar Flow Allowable (plf)	322						
		Check	Adequate	B .					
	Recon	nmended Holdown @ Foundation 8" wall	HDU2						
		Strap Style (Midwall)	LSTHD8					VIII CHE PER IN	
		Strap Style (End Wall)	LSTHD8						
		Recommended Holdown @ Wood Wall	MSTC40					W 7 18 1 1 1 1	1-62 4-2
1		Strap Nailing Req'd	(32) 16d			11 2742 Klib 191			
		# OF Minimum End Post	2						

TSE Engineers 136 S State Street Shelley, ID 83274 208-357-2420

 JOB TITLE
 Wooden Spur Renovation

 368 Wooden Spur Dr. Alpine, Wyoming
 Very Spur Present Spur Pr

SHEET NO. DATE DATE

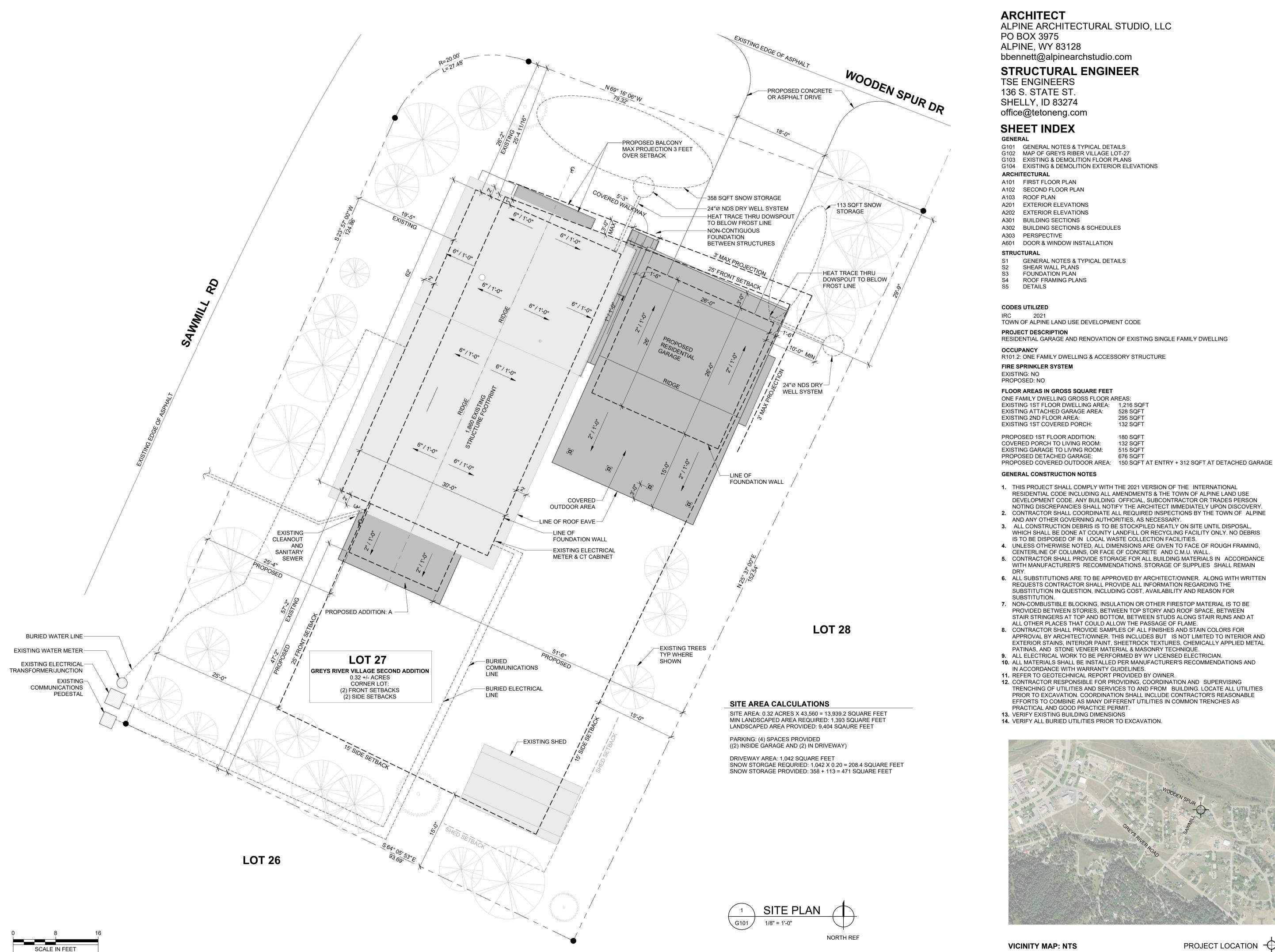
39 07 39

Section 3, Itema.

Wood Shear Walls w/ Wood Studs (Top Story)

Shear Line: SW7	100 C		y Wood Studs (Top Story) 1 (ASD Loading) (ft) = 16.50					
S _{DS} 0.887		Segment 1	Segment 2	Segment 3	Segment 4	Segment 5	Segment 6	Segment 7
/ind Load (lb): 4600		8	8.5			Inches Control		
	height (ft)	8	8					SERVICE A
Roof DL (psf) 15	roof trib. (ft)	4	4					
Floor DL (psf) 10	floor trib. (ft)	2	2					
Wall Self (psf) 8	Distance from HD to end of wall (in)	3	3					
	Aspect Ratio:	1.00	0.94					
Seismic	shear flow (plf)	200.0	200.0					
	F (lbs)	1600	1700					
	Seismic Factor	1.00	1.00					
	Adjusted Shear Flow (plf)	200.00	200.00					
	MOT (ft-lb)	12800	13600					
and the second	DL Factor A=	1.12	1.12					
	A x wDL (plf)	162	162					
	End Post Compression (lb)	1804	1842					
37 - 71 - 2	DL Factor B=	0.48	0.48					
	B x wDL (plf)	69	69					
	End Post Uplift for HDs (lb)	846	829	<u> </u>			- 1 11/6/2	
Wind	shear flow (plf)	279	279					
	F (lb)	2230	2370					
	MOT (ft-lb)	17842	18958				7/	
	wDL (plf)	144	144					
	End Post Compression (lb)	2878	2910					
Te , Te -	DL Factor	0.6	0.6					A 1777 118
	wDL (plf)	86.4	86					
	End Post Uplift for HDs (lb)	2033	2002					
	Max Compression	2878	2910				1 2 2 1 1 1 1	NY STATE
	Max Uplift	2033	2002					
	Max Shear Flow	279	279					
	Max Shear Floow Due to Wind or Seismic (W/S)	W	W					
-	Sheathing Nails 7/16	w/ 8d @ 6" O.C.	7/16 w/ 8d @ 6" O.C.		Made at the state of the	Talle hit sales		TA SIGNAL SEA
	# of Layers	1	1					
	Shear Flow Allowabel (plf)	335	335					
	Check	Adequate	Adequate					
***************************************	Sheathing Staples 7/16		7/16 w/ 1 1/2" 16 ga. @ 4" O.C.	AGENTIN SEAS				
	Shar Flow Allowable (plf)	322	322		Water Wall	A STATE OF THE PARTY OF THE PAR		March 1871 -
	Check	Adequate	Adequate					
-	Recommended Holdown @ Foundation 8" wall	HDU2	HDU2					
	Strap Style (Midwall)	LSTHD8	LSTHD8					
	Strap Style (End Wall)	LSTHD8	LSTHD8					
	Recommended Holdown @ Wood Wall	MSTC40	MSTA49					
	Strap Nailing Req'd	(32) 16d	(26) 10d					
	# OF Minimum End Post	2	2				-	-

Αŗ	plication Submittal					
Da	ate:					
Ту	pe of Review &					
Αι	ıthorization Needed:			Building Plan Review		
(C	ircle One)					
	Property Owner - Pro	oject Information: Brett Bennett				
Job Address:		368 Wooden Spur				
Description of Project: Garage Addition a		Garage Addition and Remodel				


Authorization to Proceed:

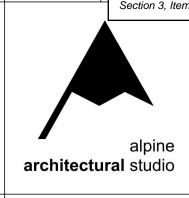
Authorization Completed By:	Dee J. Rammell					
Status of Authorization	on:	Approved	As Noted			

- A101 NEC 2023 is the applicable electrical code per the Wyoming State Fire Marshall
- \$1 Structural drawings need updated to the 2021 IRC (2018 IRC is referenced, calcs are based off 2021)
- S1 Ground snow load needs updated to 143 psf per Alpine Land Use and Regulations
- Additional plan review is not required; notes to be updated in the issued permit set

Permit Issuance:

Town Clerk:	Date:
Signature	

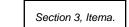
SCALE: 1/8" = 1'-0"

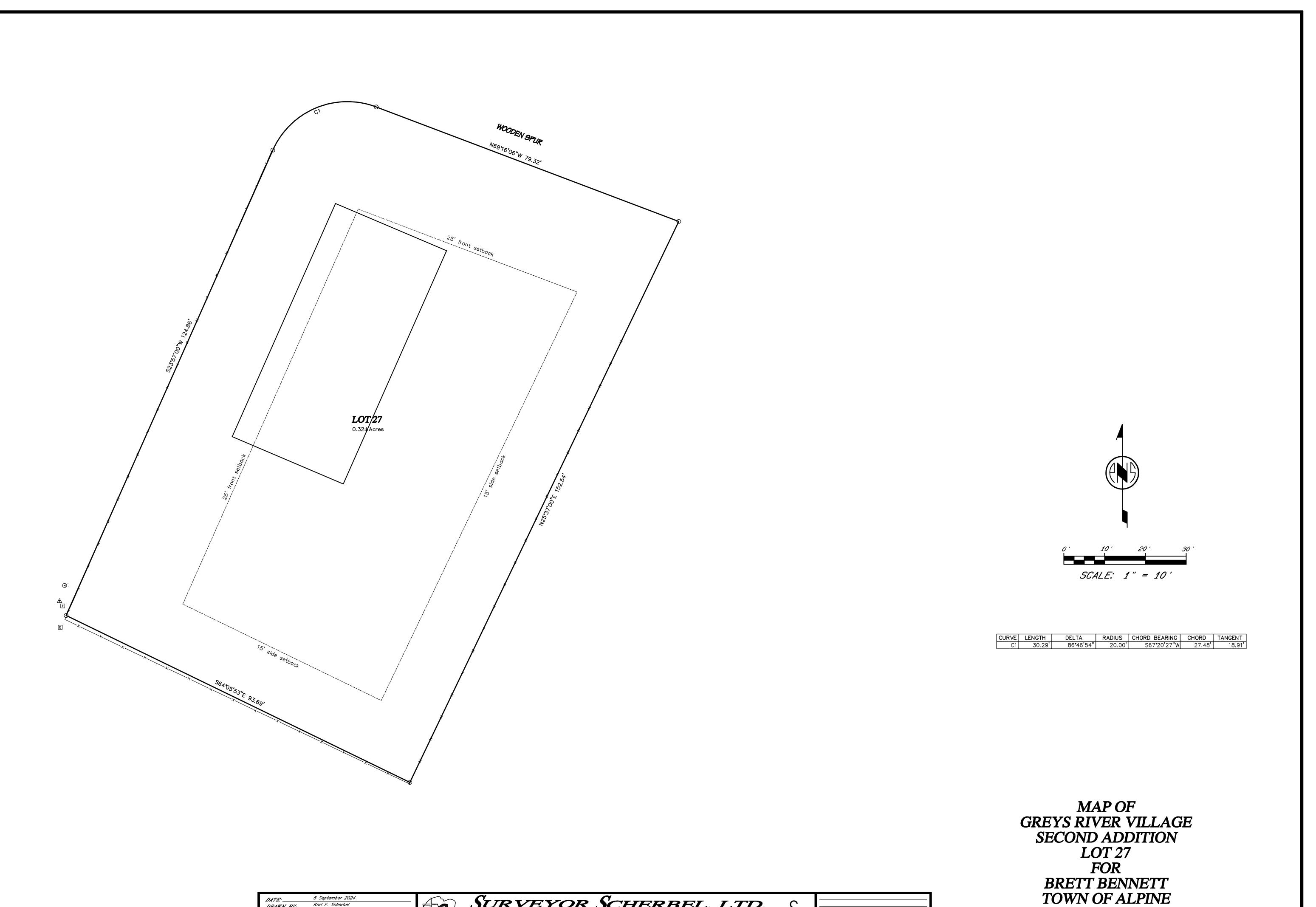

6/9/2025 3:51:03 PM | AAS # WOODEN SPUR |

RESIDENTIAL GARAGE AND RENOVATION OF EXISTING SINGLE FAMILY DWELLING

- 1. THIS PROJECT SHALL COMPLY WITH THE 2021 VERSION OF THE INTERNATIONAL RESIDENTIAL CODE INCLUDING ALL AMENDMENTS & THE TOWN OF ALPINE LAND USE DEVELOPMENT CODE. ANY BUILDING OFFICIAL, SUBCONTRACTOR OR TRADES PERSON NOTING DISCREPANCIES SHALL NOTIFY THE ARCHITECT IMMEDIATELY UPON DISCOVERY.
- 3. ALL CONSTRUCTION DEBRIS IS TO BE STOCKPILED NEATLY ON SITE UNTIL DISPOSAL,
- WHICH SHALL BE DONE AT COUNTY LANDFILL OR RECYCLING FACILITY ONLY. NO DEBRIS
- CENTERLINE OF COLUMNS, OR FACE OF CONCRETE AND C.M.U. WALL. 5. CONTRACTOR SHALL PROVIDE STORAGE FOR ALL BUILDING MATERIALS IN ACCORDANCE
- WITH MANUFACTURER'S RECOMMENDATIONS. STORAGE OF SUPPLIES SHALL REMAIN
- REQUESTS CONTRACTOR SHALL PROVIDE ALL INFORMATION REGARDING THE SUBSTITUTION IN QUESTION, INCLUDING COST, AVAILABILITY AND REASON FOR
- 7. NON-COMBUSTIBLE BLOCKING, INSULATION OR OTHER FIRESTOP MATERIAL IS TO BE PROVIDED BETWEEN STORIES, BETWEEN TOP STORY AND ROOF SPACE, BETWEEN STAIR STRINGERS AT TOP AND BOTTOM, BETWEEN STUDS ALONG STAIR RUNS AND AT
- 8. CONTRACTOR SHALL PROVIDE SAMPLES OF ALL FINISHES AND STAIN COLORS FOR APPROVAL BY ARCHITECT/OWNER. THIS INCLUDES BUT IS NOT LIMITED TO INTERIOR AND EXTERIOR STAINS, INTERIOR PAINT, SHEETROCK TEXTURES, CHEMICALLY APPLIED METAL
- ALL ELECTRICAL WORK TO BE PERFORMED BY WY LICENSED ELECTRICIAN. 10. ALL MATERIALS SHALL BE INSTALLED PER MANUFACTURER'S RECOMMENDATIONS AND
- 12. CONTRACTOR RESPONSIBLE FOR PROVIDING, COORDINATION AND SUPERVISING TRENCHING OF UTILITIES AND SERVICES TO AND FROM BUILDING. LOCATE ALL UTILITIES PRIOR TO EXCAVATION. COORDINATION SHALL INCLUDE CONTRACTOR'S REASONABLE

PROJECT LOCATION -

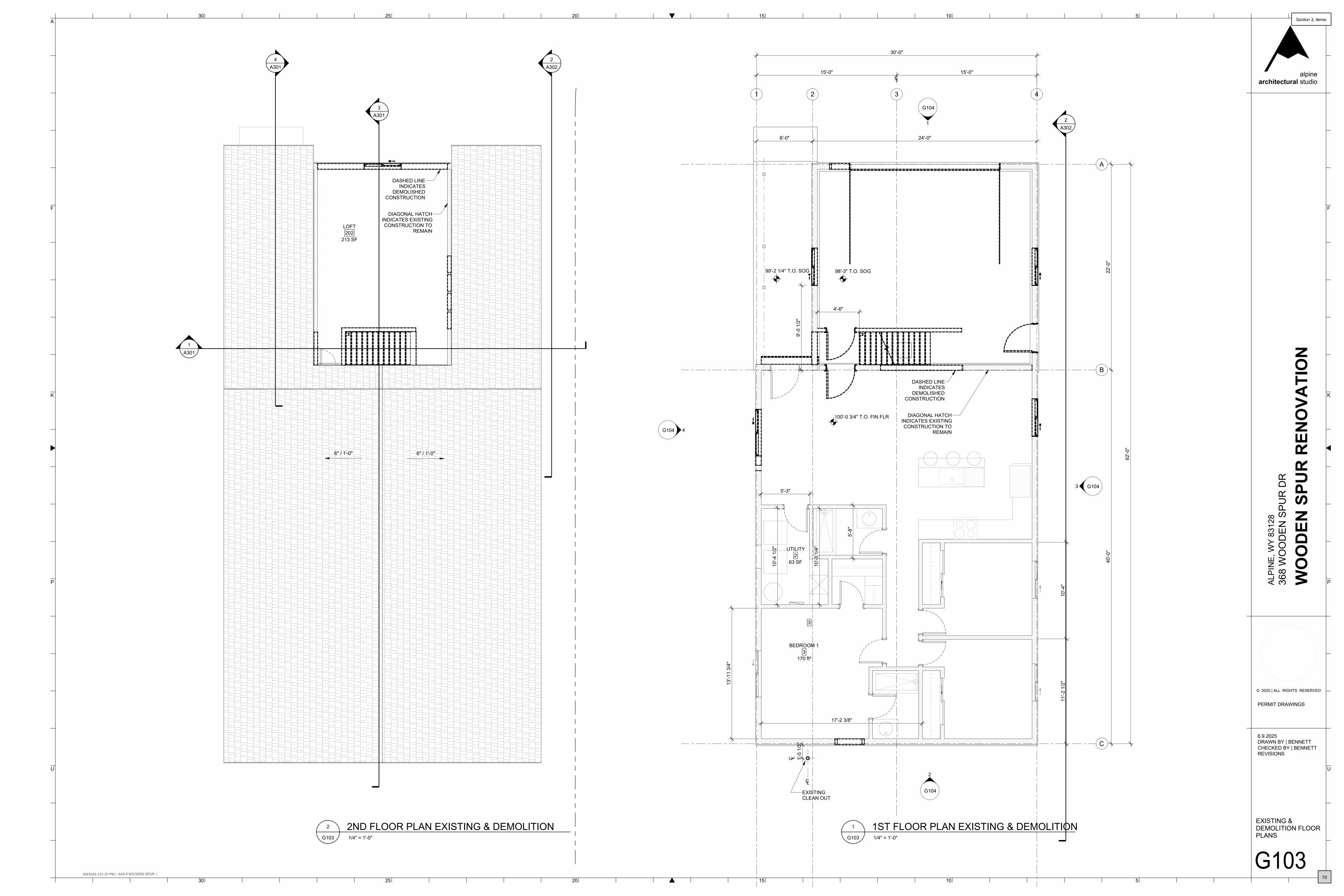


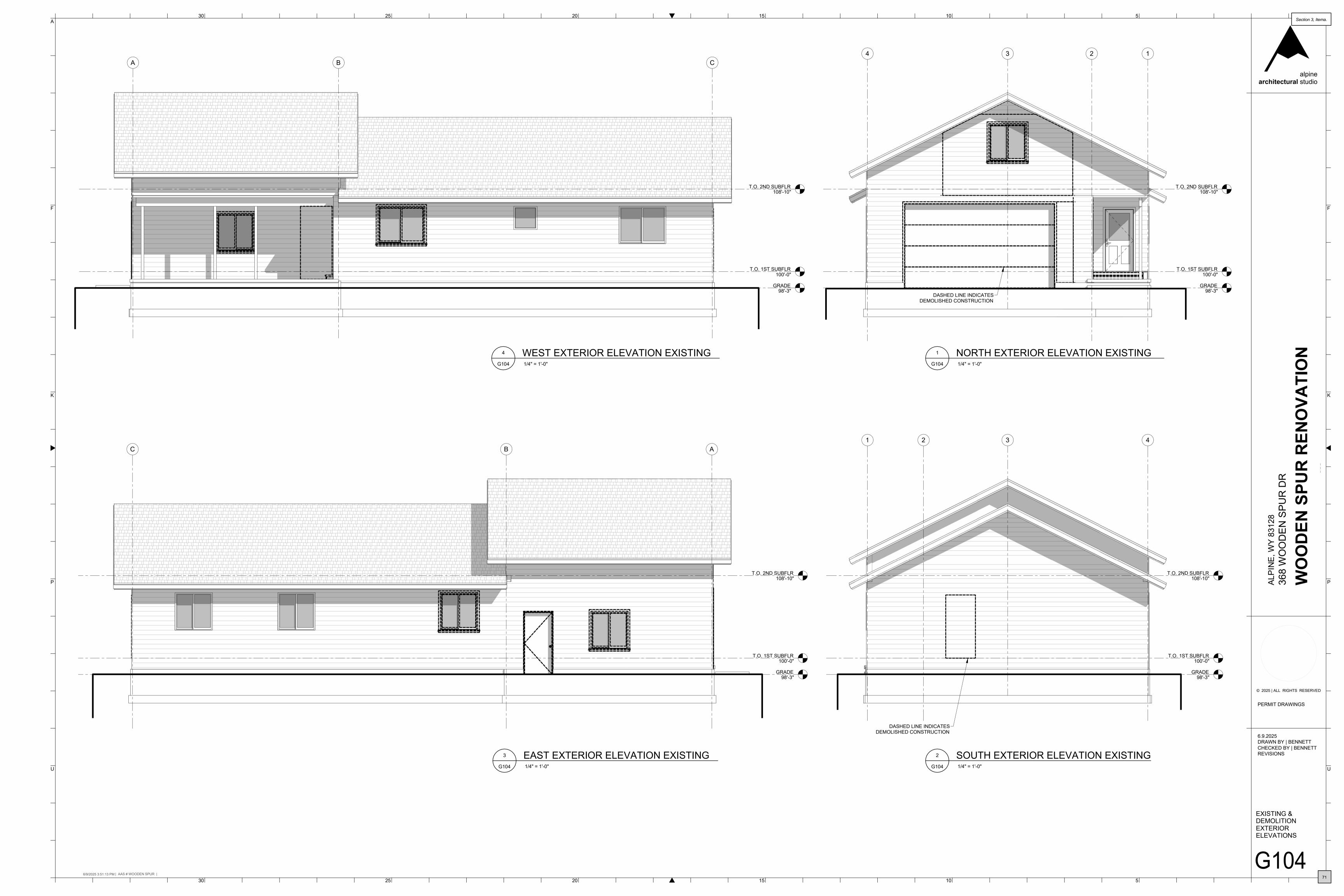

© 2025 | ALL RIGHTS RESERVED PERMIT DRAWINGS

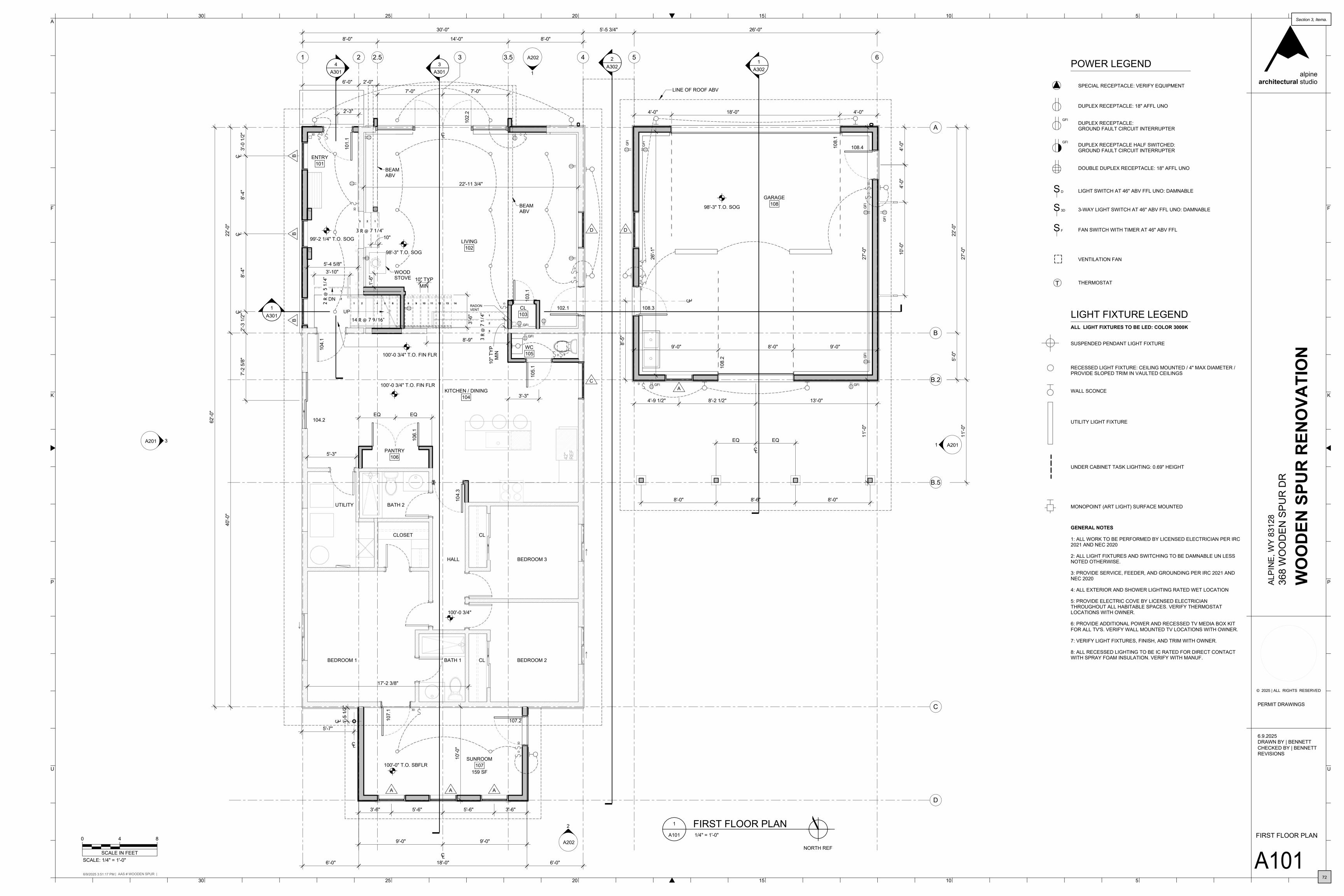
6.9.2025 DRAWN BY | BENNETT

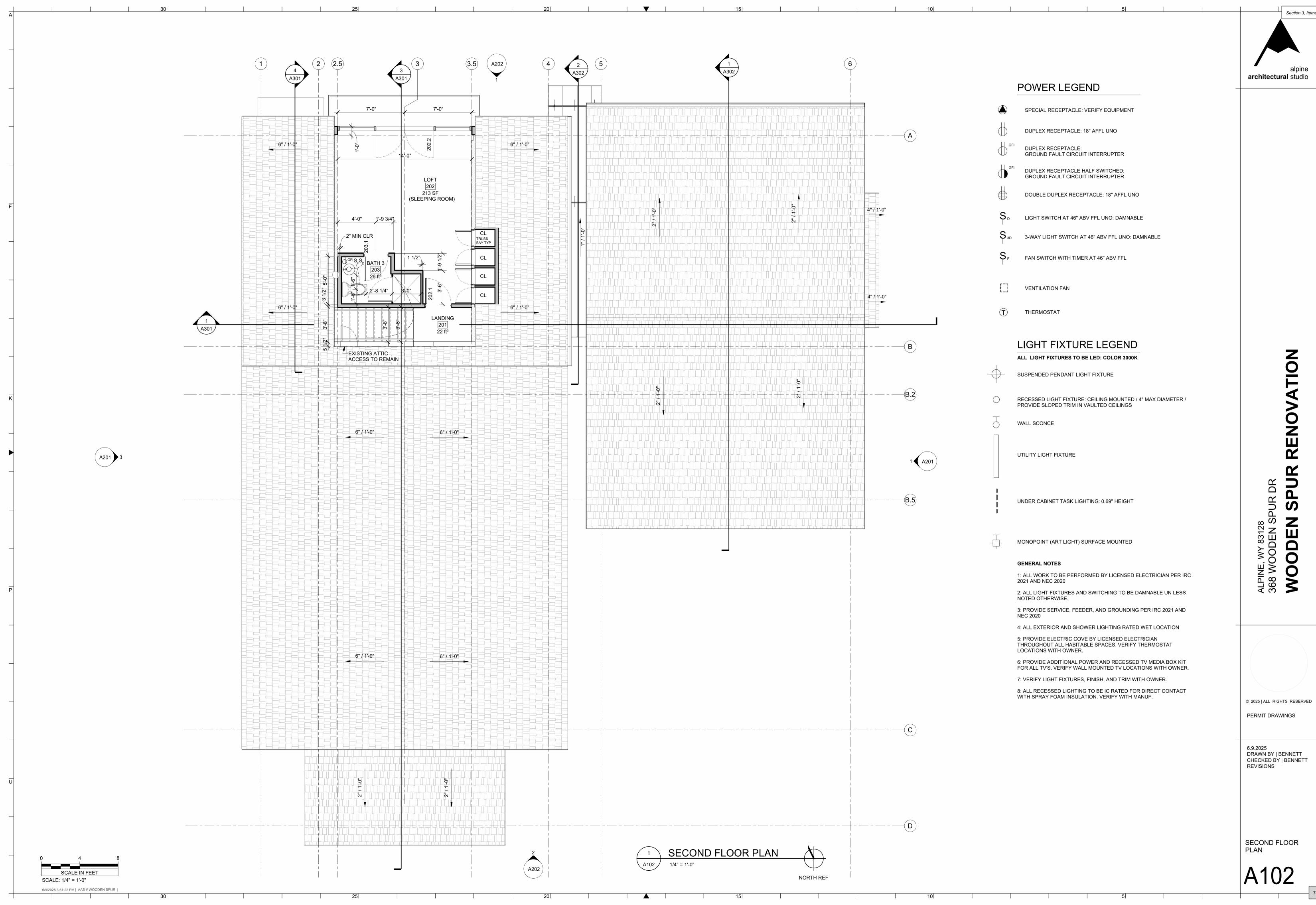
CHECKED BY | BENNETT REVISIONS

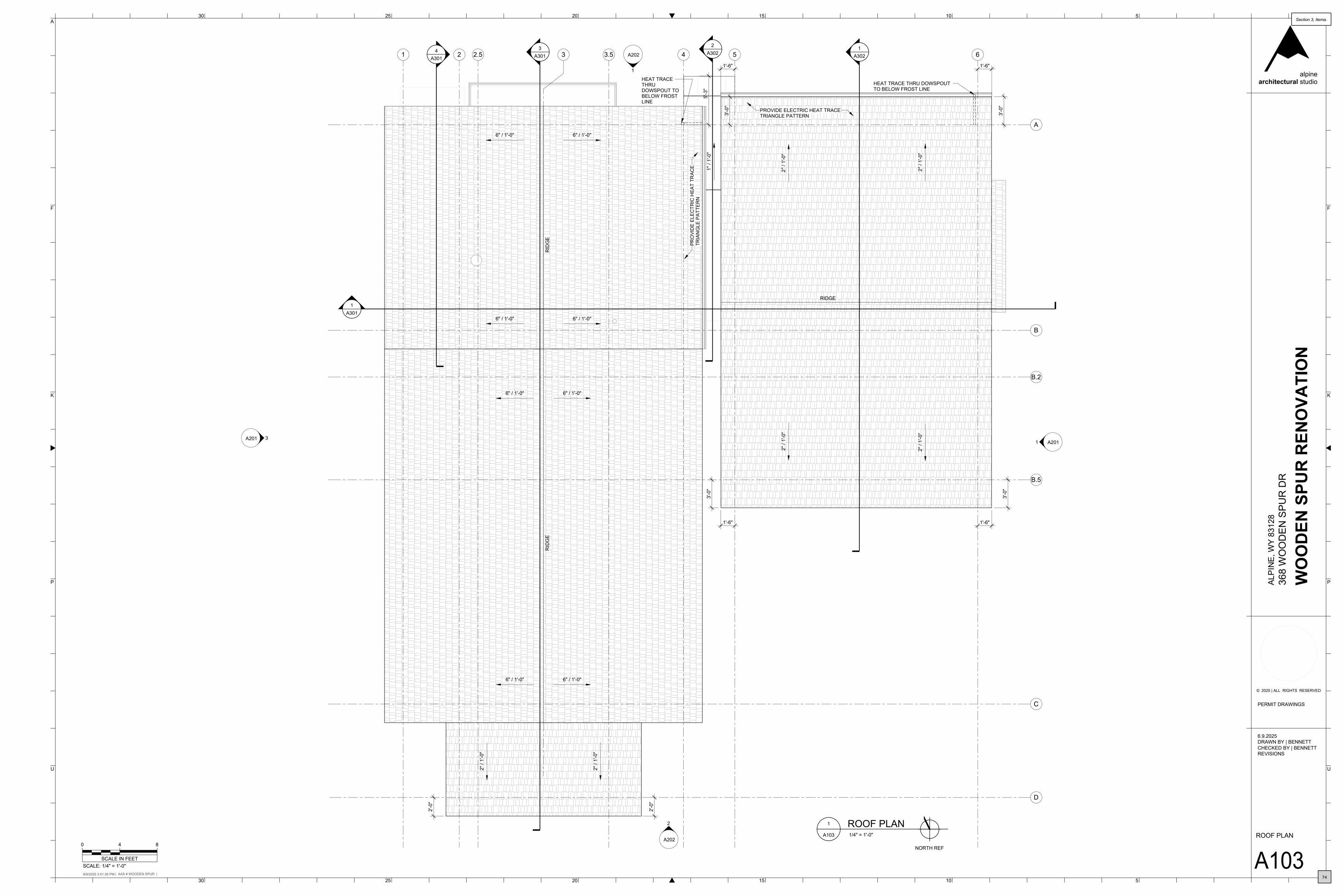
COVER SHEET & SITE PLAN

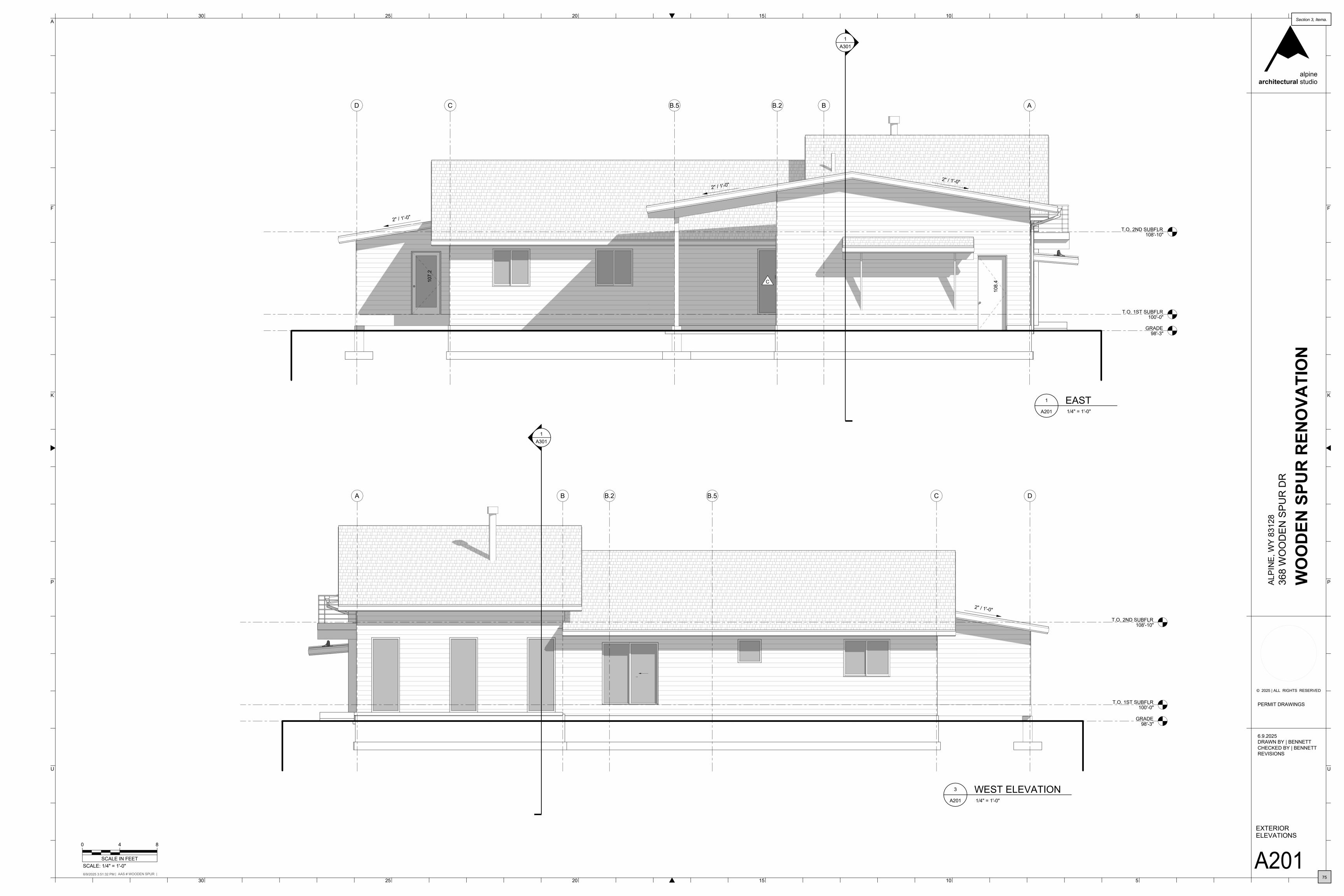


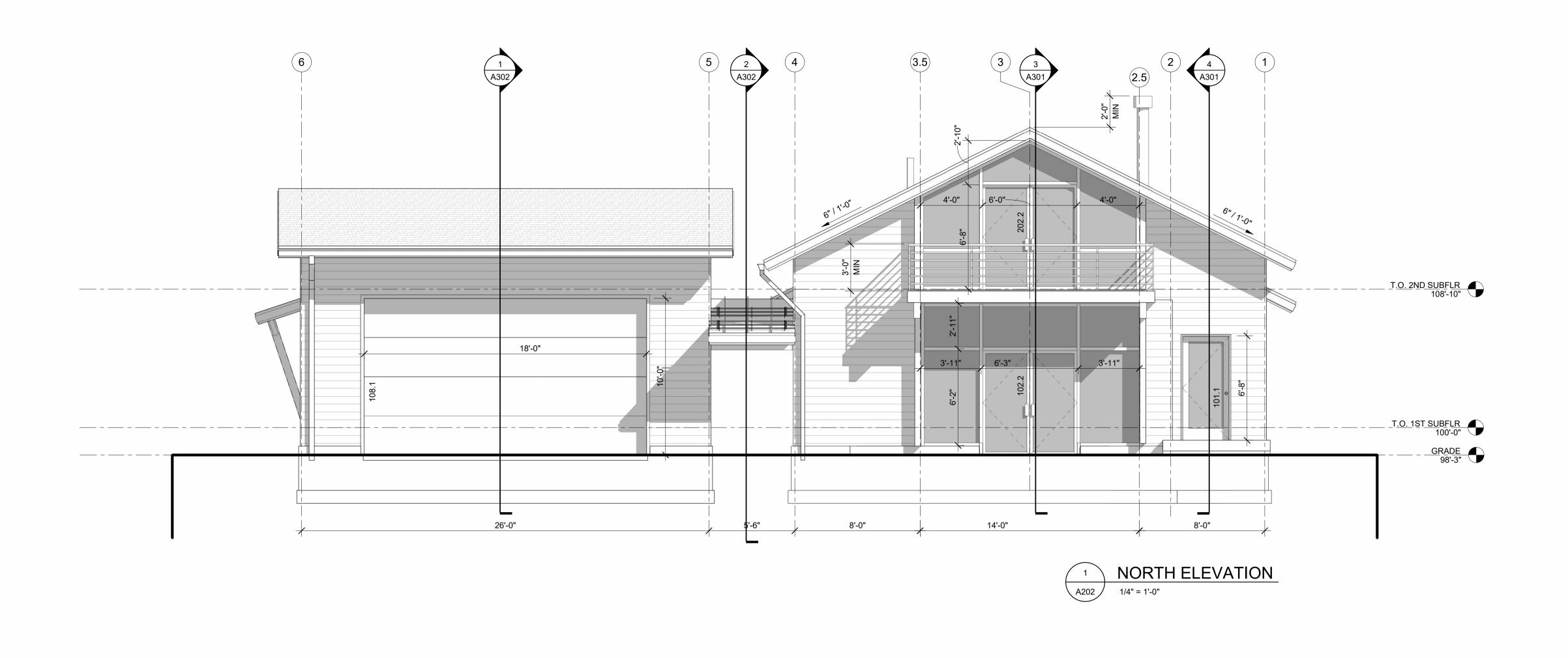


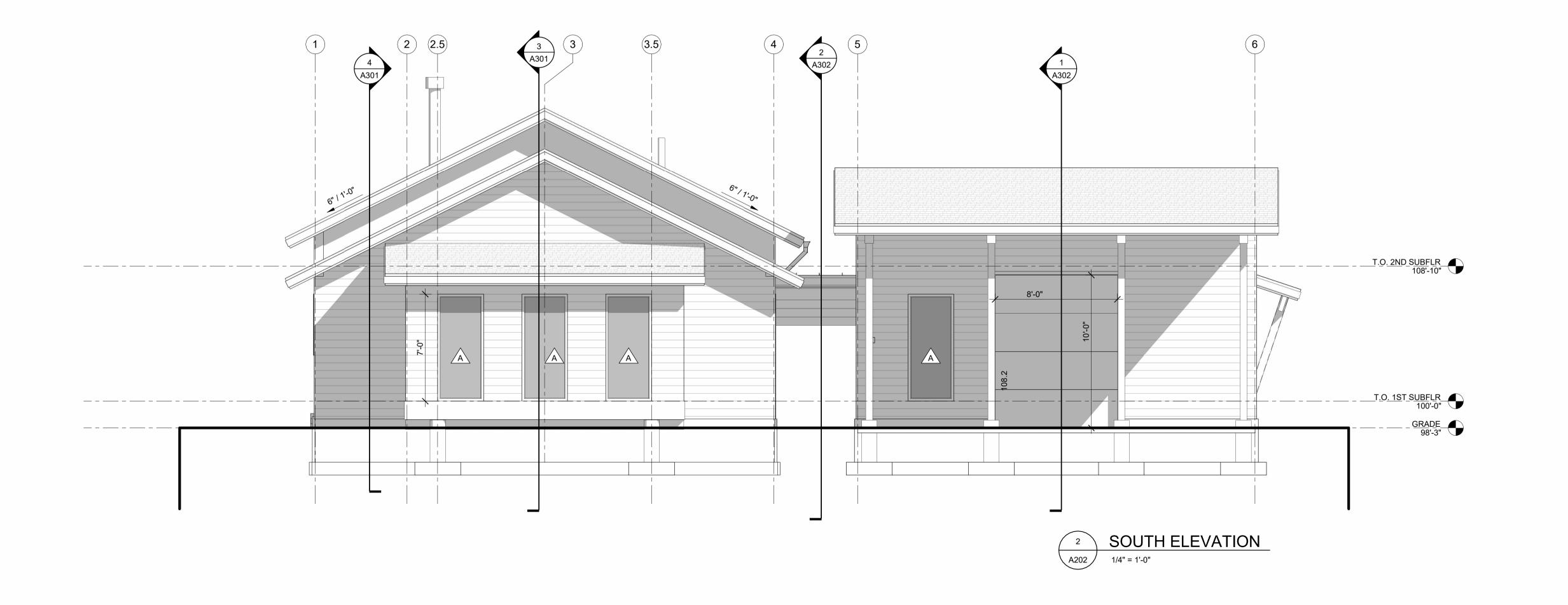

G102

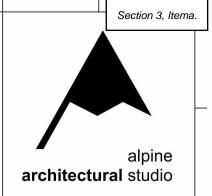

Copyright © 2024 by Surveyor Scherbel, Ltd. All rights reserved.


LINCOLN COUNTY, WYOMING

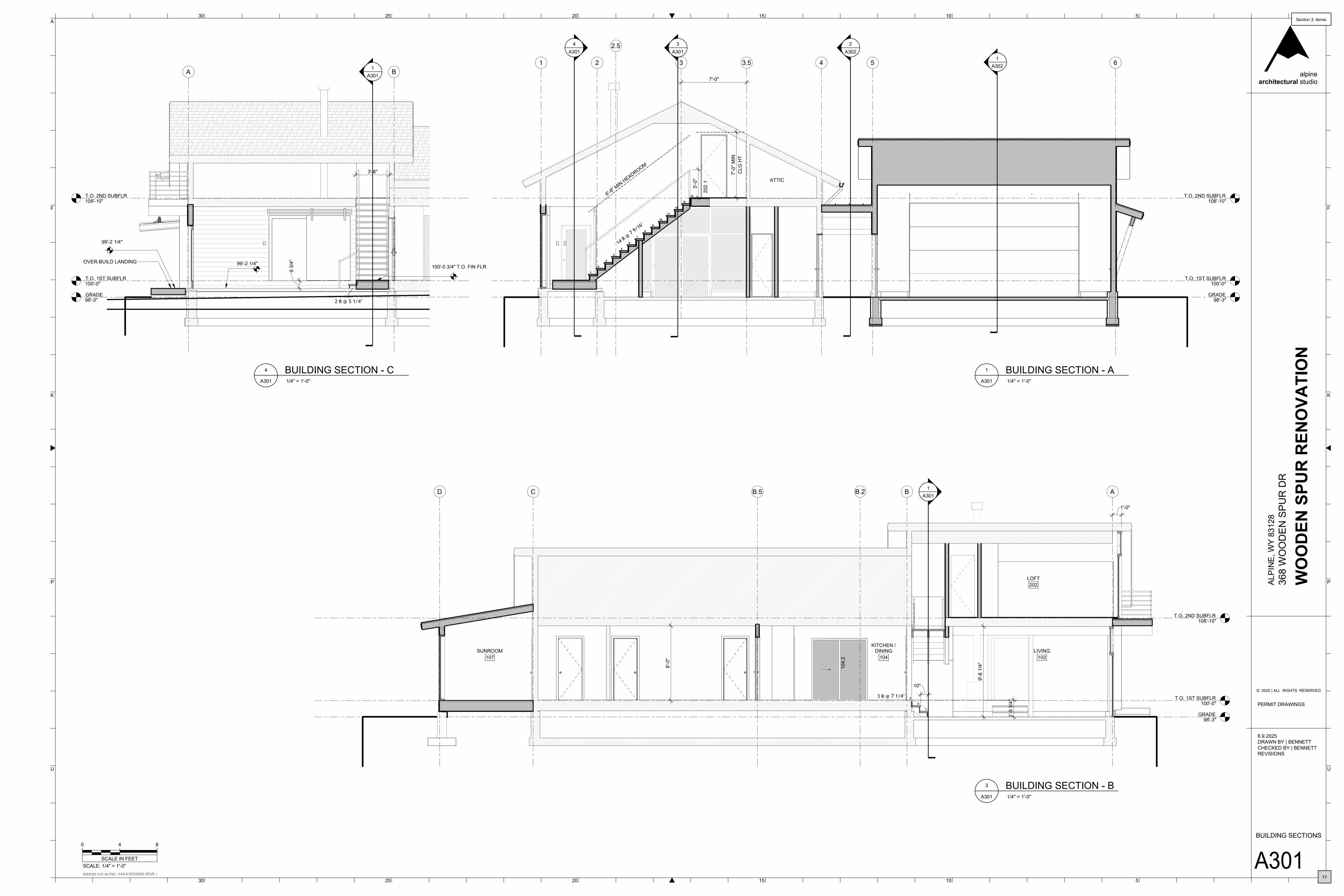


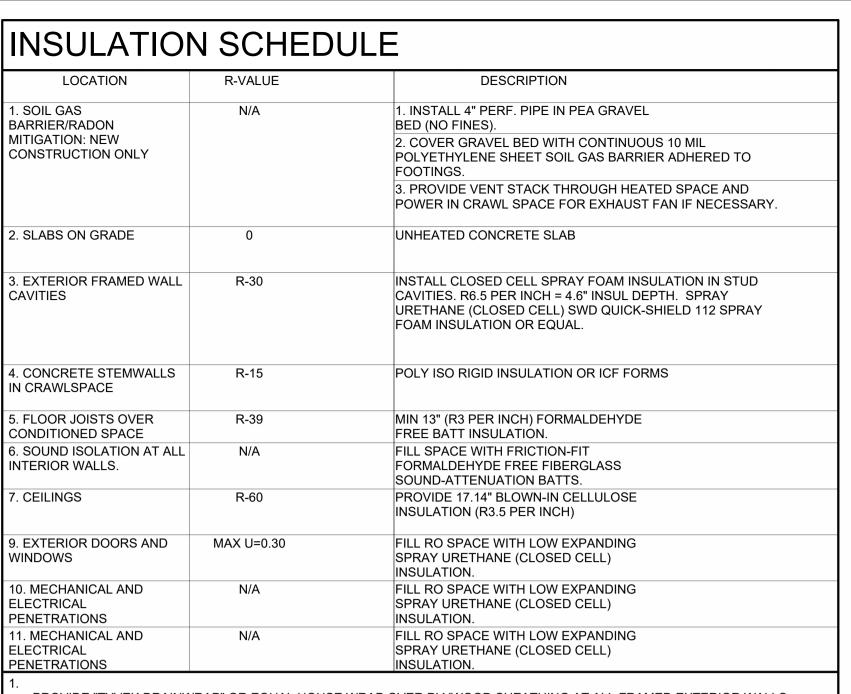






ALPINE, WY 83128
368 WOODEN SPU


© 2025 | ALL RIGHTS RESERVED


PERMIT DRAWINGS

6.9.2025 DRAWN BY | BENNETT CHECKED BY | BENNETT REVISIONS

EXTERIOR ELEVATIONS

SCALE IN FEET SCALE: 1/4" = 1'-0" 6/9/2025 3:51:38 PM | AAS # WOODEN SPUR |

- PROVIDE "TYVEK DRAINWRAP" OR EQUAL HOUSE WRAP OVER PLYWOOD SHEATHING AT ALL FRAMED EXTERIOR WALLS -TAPE ALL SEAMS WITH "TYVEK TAPE".
- AT WINDOW AND DOOR ROUGH OPENINGS, CUT HOUSEWRAP IN A MODIFIED I PATTERN PRIOR TO INSTALLING UNIT. USE "TYVEK FLEXWRAP" OR EQUAL FOR FLASHING AT PANS & "TYVEK STRAIGHT FLASH" @ HEADS & LEGS. PROVIDE APPROPRIATE "QUICKFLASH" OR EQUAL PRODUCT TO SEAL HOUSEWRAP AT ALL OTHER PENETRATIONS.
- ALL FIBERGLASS BATTS TO FILL SPACE WITH NO GAPS. SEE BUILDERS GUIDE TO COLD CLIMATES.
- TRIM BATTS TO FIT AROUND AND BEHIND OBJECTS IN WALL AND ROOF CAVITIES SUCH AS ELECTRICAL JUNCTION BOXES. . SPRAY URETHANE (CLOSED CELL) SWD QUICK-SHIELD 112 SPRAY INSULATION TO BE USED AT ALL FLOOR RIM AND ROOF
- I. CAULK ALL PLATES. CAULK ALL CRACKS (TRIMMERS, PANEL JOINTS, ETC...) TO ENSURE AIR TIGHTNESS
- 5. CONTRACTOR TO ARRANGE INSPECTION AT COMPLETION OF INSULATION INSTALLMENT AND PRIOR TO THE INSTALLATION OF ANY GYPSUM BOARD OR INTERIOR FINISH TRIM.
- 6. PROVIDE INSULATION WRAP (R-5) ON ALL HOT WATER PIPING
- 7. EXPOSED SPRAY FOAM INSULATION IN CRAWLSPACE TO BE APPROVED IGNITION BARRIER OR PROTECTED WITH APPROVED THERMAL IGNITION BARRIER.
- 3. INSTALL 6 MIL. POLYETHYLENE VAPOR RETARDER AT THE INTERIOR OF ALL EXTERIOR WALLS AND ROOFS. TRIM AND SEAL VAPOR RETARDER TO ALL PENETRATIONS.
-). CONTRACTOR TO ENSURE AIR-TIGHTNESS OF THERMAL ENVELOPE AND AIR BARRIER. CONTRACTOR SHALL BE RESPONSIBLE FOR PASSING BLOWER DOOR TEST AS REQUIRED IN 2021 IECC CHAPTER 4 AND 2021 IRC CHAPTER 11

MECHANICAL AND ELECTRICAL NOTES

MECHANICAL PLANS INCLUDING HEAT-LOSS ANALYSIS PROVIDED BY DESIGN-BUILD MECHANICAL HVAC CONTRACTOR AS REQUIRED. PROVIDE FORCED AIR HEATING AND COOLING. DWELLING HEAT PROVIDED BY EXISTING ELECTRIC FURNACE. 2. ELECTRICAL POWER & LIGHTING INCLUDING SERVICE TO SITE TO BE COORDINATED AND INSTALLED BY LICENSED ELECTRICIA 5. GROUNDING ELECTRODE CONDUCTOR REQUIRED PER IRC 2021 CHAPTER 36. 6. ALL LED LIGHTING: COLOR TEMPERATURE: 3000K MAX

IRC STAIR AND GUARD REQUIREMENTS

STAIRWAYS SHALL BE NOT LESS THAN 36 INCHES (914 MM) IN CLEAR WIDTH AT ALL POINTS ABOVE THE PERMITTED HANDRAIL HEIGHT AND BELOW THE REQUIRED HEADROOM HEIGHT.

THE HEADROOM IN STAIRWAYS SHALL BE NOT LESS THAN 6 FEET 8 INCHES (2032 MM) MEASURED VERTICALLY FROM THE SLOPED LINE ADJOINING THE TREAD NOSING OR FROM THE FLOOR SURFACE OF THE LANDING OR PLATFORM ON THAT PORTION OF THE STAIRWAY.

THE RISER HEIGHT SHALL BE NOT MORE THAN 7-3/4 INCHES (196 MM). THE RISER HEIGHT SHALL BE MEASURED VERTICALLY BETWEEN LEADING EDGES OF THE ADJACENT TREADS. THE GREATEST RISER HEIGHT WITHIN ANY FLIGHT OF STAIRS SHALL NOT EXCEED THE SMALLEST BY MORE THAN 3/8 INCH (9.5 MM).

THE TREAD DEPTH SHALL BE NOT LESS THAN 10 INCHES (254 MM). THE TREAD DEPTH SHALL BE MEASURED HORIZONTALLY BETWEEN THE VERTICAL PLANES OF THE FOREMOST PROJECTION OF ADJACENT TREADS AND AT A RIGHT ANGLE TO THE TREAD'S LEADING EDGE. THE GREATEST TREAD DEPTH WITHIN ANY FLIGHT OF STAIRS SHALL NOT EXCEED THE SMALLEST BY MORE THAN 3/8 INCH (9.5 MM).

NOSINGS AT TREADS, LANDINGS AND FLOORS OF STAIRWAYS SHALL HAVE A RADIUS OF CURVATURE AT THE NOSING NOT GREATER THAN 9/16 INCH (14 MM) OR A BEVEL NOT GREATER THAN 1/2 INCH (12.7 MM). A NOSING PROJECTION NOT LESS THAN 3/4 INCH (19 MM) AND NOT MORE THAN 11/4 INCHES (32 MM) SHALL BE PROVIDED ON STAIRWAYS. THE GREATEST NOSING PROJECTION SHALL NOT EXCEED THE SMALLEST NOSING PROJECTION BY MORE THAN 3/8 INCH (9.5 MM) WITHIN A STAIRWAY.

THERE SHALL BE A FLOOR OR LANDING AT THE TOP AND BOTTOM OF EACH STAIRWAY. THE WIDTH PERPENDICULAR TO THE DIRECTION OF TRAVEL SHALL BE NOT LESS THAN THE WIDTH OF THE FLIGHT SERVED.

HANDRAILS SHALL BE PROVIDED ON NOT LESS THAN ONE SIDE OF EACH FLIGHT OF STAIRS WITH FOUR OR MORE RISERS.

HANDRAIL HEIGHT, MEASURED VERTICALLY FROM THE SLOPED PLANE ADJOINING THE TREAD NOSING, OR FINISH SURFACE OF RAMP SLOPE, SHALL BE NOT LESS THAN 34 INCHES (864 MM) AND NOT MORE THAN 38 INCHES (965 MM).

HANDRAILS SHALL NOT PROJECT MORE THAN 41/2 INCHES (114 MM) ON EITHER SIDE OF THE STAIRWAY.

HANDRAILS ADJACENT TO A WALL SHALL HAVE A SPACE OF NOT LESS THAN 11/2 INCHES (38 MM) BETWEEN THE WALL AND THE HANDRAILS.

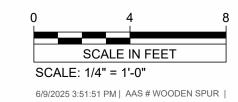
HANDRAILS SHALL BE CONTINUOUS FOR THE FULL LENGTH OF THE FLIGHT, FROM A POINT DIRECTLY ABOVE THE TOP RISER OF THE FLIGHT TO A POINT DIRECTLY ABOVE THE LOWEST RISER OF THE FLIGHT. HANDRAIL ENDS SHALL BE RETURNED TOWARD A WALL, GUARD WALKING SURFACE CONTINUOUS TO ITSELF, OR TERMINATE TO A POST.

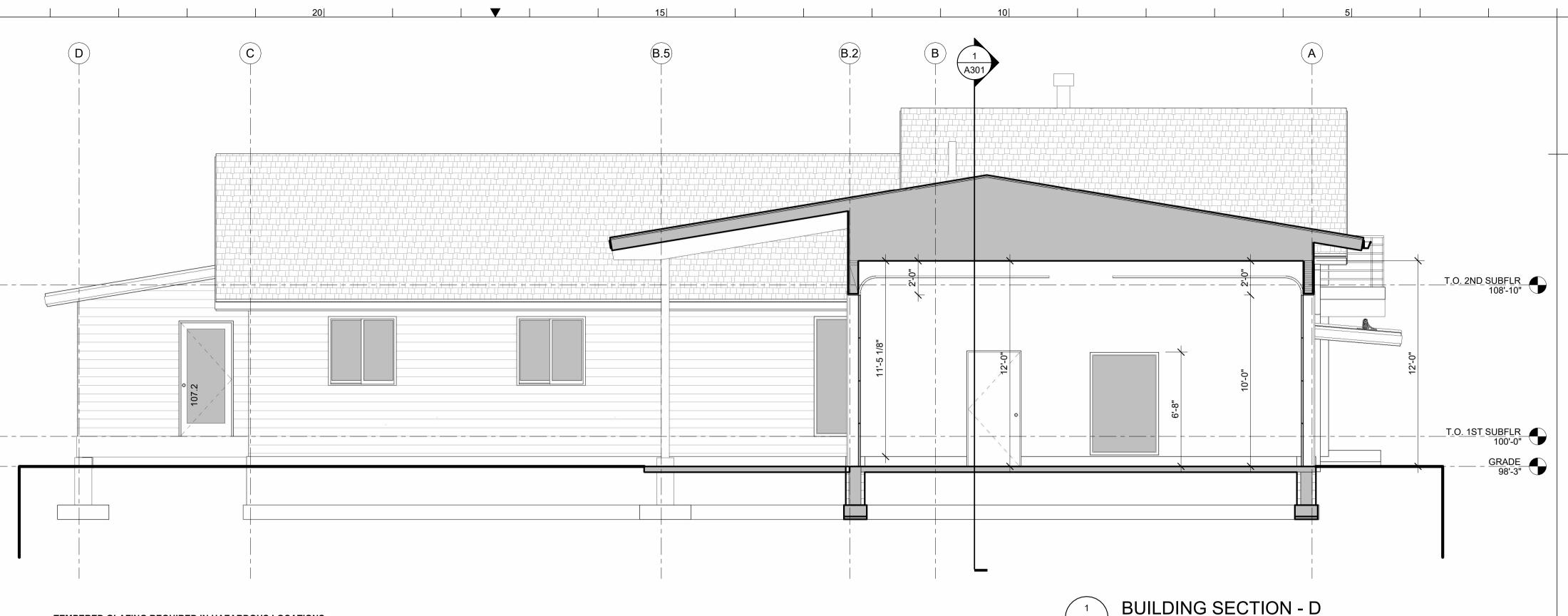
TYPE I. HANDRAILS WITH A CIRCULAR CROSS SECTION SHALL HAVE AN OUTSIDE DIAMETER OF NOT LESS THAN 1-1/4 INCHES (32 MM) AND NOT GREATER THAN 2 INCHES (51 MM).

STAIRWAYS SHALL BE PROVIDED WITH ILLUMINATION IN ACCORDANCE WITH SECTIONS R303.7 AND R303.8.

GUARDS SHALL BE PROVIDED FOR THOSE PORTIONS OF OPEN-SIDED WALKING SURFACES, INCLUDING FLOORS, STAIRS, RAMPS AND LANDINGS THAT ARE LOCATED MORE THAN 30 INCHES (762 MM) MEASURED VERTICALLY TO THE FLOOR OR GRADE BELOW AT ANY POINT WITHIN 36 INCHES (914 MM) HORIZONTALLY TO THE EDGE OF THE OPEN SIDE. INSECT SCREENING SHALL NOT BE CONSIDERED AS A GUARD.

REQUIRED GUARDS AT OPEN-SIDED WALKING SURFACES, INCLUDING STAIRS, PORCHES, BALCONIES OR LANDINGS, SHALL BE NOT LESS THAN 36 INCHES (914 MM) IN HEIGHT AS MEASURED VERTICALLY ABOVE THE ADJACENT WALKING SURFACE OR THE LINE CONNECTING THE NOSINGS.


EXCEPTIONS:


GUARDS ON THE OPEN SIDES OF STAIRS SHALL HAVE A HEIGHT OF NOT LESS THAN 34 INCHES (864 MM) MEASURED VERTICALLY FROM A WHERE THE TOP OF THE GUARD SERVES AS A HANDRAIL ON THE OPEN SIDES OF STAIRS, THE TOP OF THE GUARD SHALL BE NOT LESS THAN 34 INCHES (864 MM) AND NOT MORE THAN 38 INCHES (965 MM) AS MEASURED VERTICALLY FROM A LINE CONNECTING THE NOSINGS.

REQUIRED GUARDS SHALL NOT HAVE OPENINGS FROM THE WALKING SURFACE TO THE REQUIRED GUARD HEIGHT THAT ALLOW PASSAGE OF A SPHERE 4 INCHES (102 MM) IN DIAMETER.

DIAMETER.

THE TRIANGULAR OPENINGS AT THE OPEN SIDE OF STAIR, FORMED BY THE RISER, TREAD AND BOTTOM RAIL OF A GUARD, SHALL NOT ALLOW PASSAGE OF A SPHERE 6 INCHES (153 MM) IN DIAMETER. GUARDS ON THE OPEN SIDE OF STAIRS SHALL NOT HAVE OPENINGS THAT ALLOW PASSAGE OF A SPHERE 4-3/8 INCHES (111 MM) IN

TEMPERED GLAZING REQUIRED IN HAZARDOUS LOCATIONS:

GLAZING IN FIXED AND OPERABLE PANELS OF SWINGING, SLIDING AND BIFOLD DOORS SHALL BE CONSIDERED TO BE A HAZARDOUS LOCATION.

GLAZING IN AN INDIVIDUAL FIXED OR OPERABLE PANEL ADJACENT TO A DOOR SHALL BE CONSIDERED TO BE A HAZARDOUS LOCATION WHERE THE BOTTOM EXPOSED EDGE OF THE GLAZING IS LESS THAN 60 INCHES (1524 MM) ABOVE THE FLOOR OR WALKING SURFACE AND IT MEETS EITHER OF THE FOLLOWING CONDITIONS: WHERE THE GLAZING IS WITHIN 24 INCHES (610 MM) OF EITHER SIDE OF THE DOOR IN THE PLANE OF THE DOOR IN A CLOSED

WHERE THE GLAZING IS ON A WALL LESS THAN 180 DEGREES (3.14 RAD) FROM THE PLANE OF THE DOOR IN A CLOSED POSITION AND WITHIN 24 INCHES (610 MM) OF THE HINGE SIDE OF AN IN-SWINGING DOOR.

R310.1 EMERGENCY ESCAPE AND RESCUE OPENING REQUIRED:

BASEMENTS, HABITABLE ATTICS AND EVERY SLEEPING ROOM SHALL HAVE NOT LESS THAN ONE OPERABLE EMERGENCY ESCAPE AND RESCUE OPENING. WHERE BASEMENTS CONTAIN ONE OR MORE SLEEPING ROOMS, AN EMERGENCY ESCAPE AND RESCUE OPENING SHALL BE REQUIRED IN EACH SLEEPING ROOM. EMERGENCY ESCAPE AND RESCUE OPENINGS SHALL OPEN DIRECTLY INTO A PUBLIC WAY, OR TO A YARD OR COURT HAVING A MINIMUM WIDTH OF 36 INCHES (914 MM) THAT OPENS TO A PUBLIC WAY.

R310.1.1 OPERATIONAL CONSTRAINTS AND OPENING CONTROL DEVICES:

EMERGENCY ESCAPE AND RESCUE OPENINGS SHALL BE OPERATIONAL FROM THE INSIDE OF THE ROOM WITHOUT THE USE OF KEYS, TOOLS OR SPECIAL KNOWLEDGE, WINDOW OPENING CONTROL DEVICES AND FALL PREVENTION DEVICES COMPLYING WITH ASTM F2090 SHALL BE PERMITTED FOR USE ON WINDOWS SERVING AS A REQUIRED EMERGENCY ESCAPE AND RESCUE OPENING AND SHALL BE NOT MORE THAN 70 INCHES (178 CM) ABOVE THE FINISHED FLOOR.

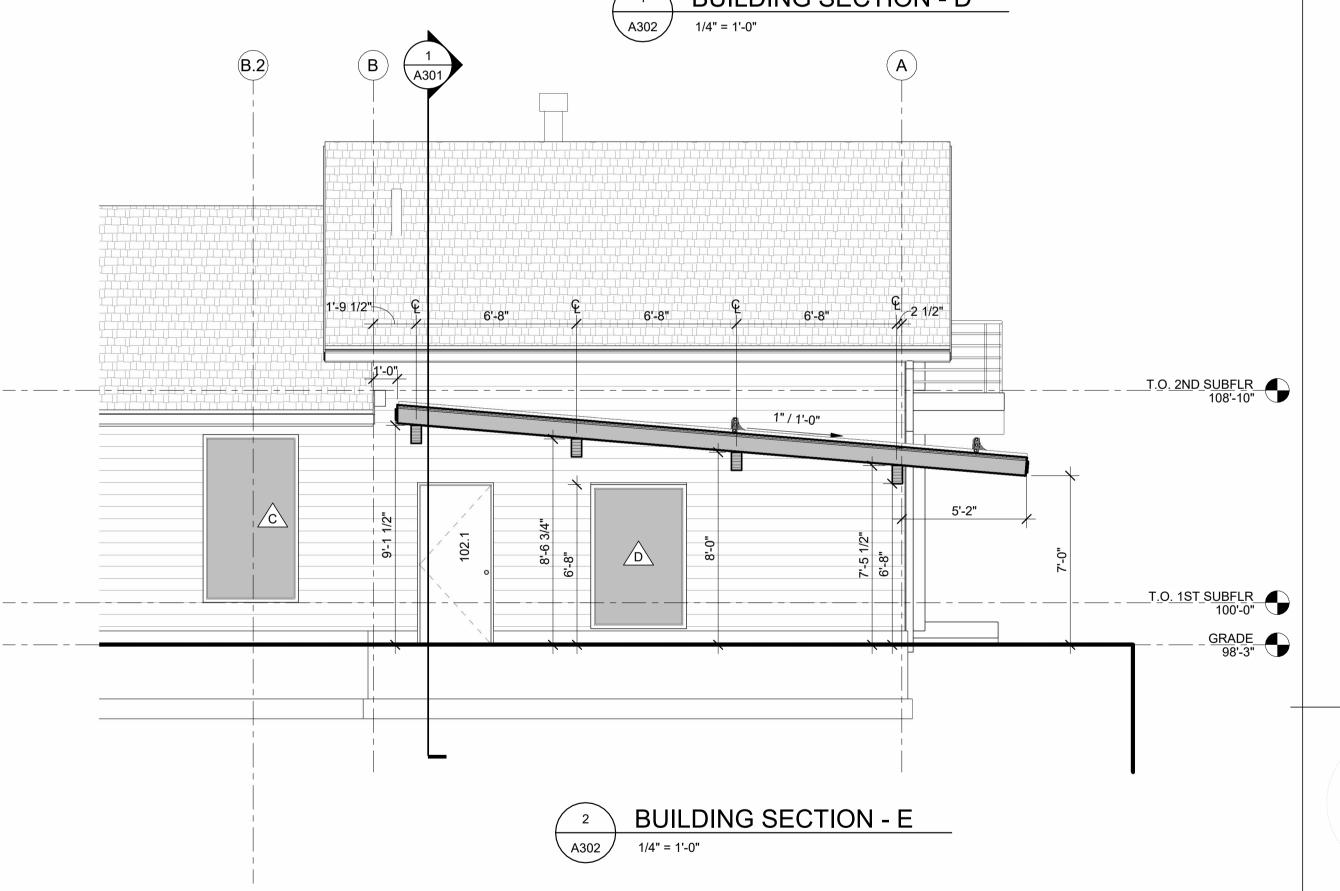
R310.2 EMERGENCY ESCAPE AND RESCUE OPENINGS:

EMERGENCY ESCAPE AND RESCUE OPENINGS SHALL HAVE MINIMUM DIMENSIONS IN ACCORDANCE WITH SECTIONS R310.2.1 THROUGH R310.2.4.

EMERGENCY ESCAPE AND RESCUE OPENINGS SHALL HAVE A NET CLEAR OPENING OF NOT LESS THAN 5.7 SQUARE FEET

EXCEPTION: THE MINIMUM NET CLEAR OPENING FOR GRADE-FLOOR EMERGENCY ESCAPE AND RESCUE OPENINGS SHALL BE 5 SQUARE FEET (0.465 M2).

R310.2.2 MINIMUM DIMENSIONS:


THE MINIMUM NET CLEAR OPENING HEIGHT DIMENSION SHALL BE 24 INCHES (610 MM). THE MINIMUM NET CLEAR OPENING WIDTH DIMENSION SHALL BE 20 INCHES (508 MM). THE NET CLEAR OPENING DIMENSIONS SHALL BE THE RESULT OF NORMAL OPERATION OF THE OPENING.

R310.2.3 MAXIMUM HEIGHT FROM FLOOR:

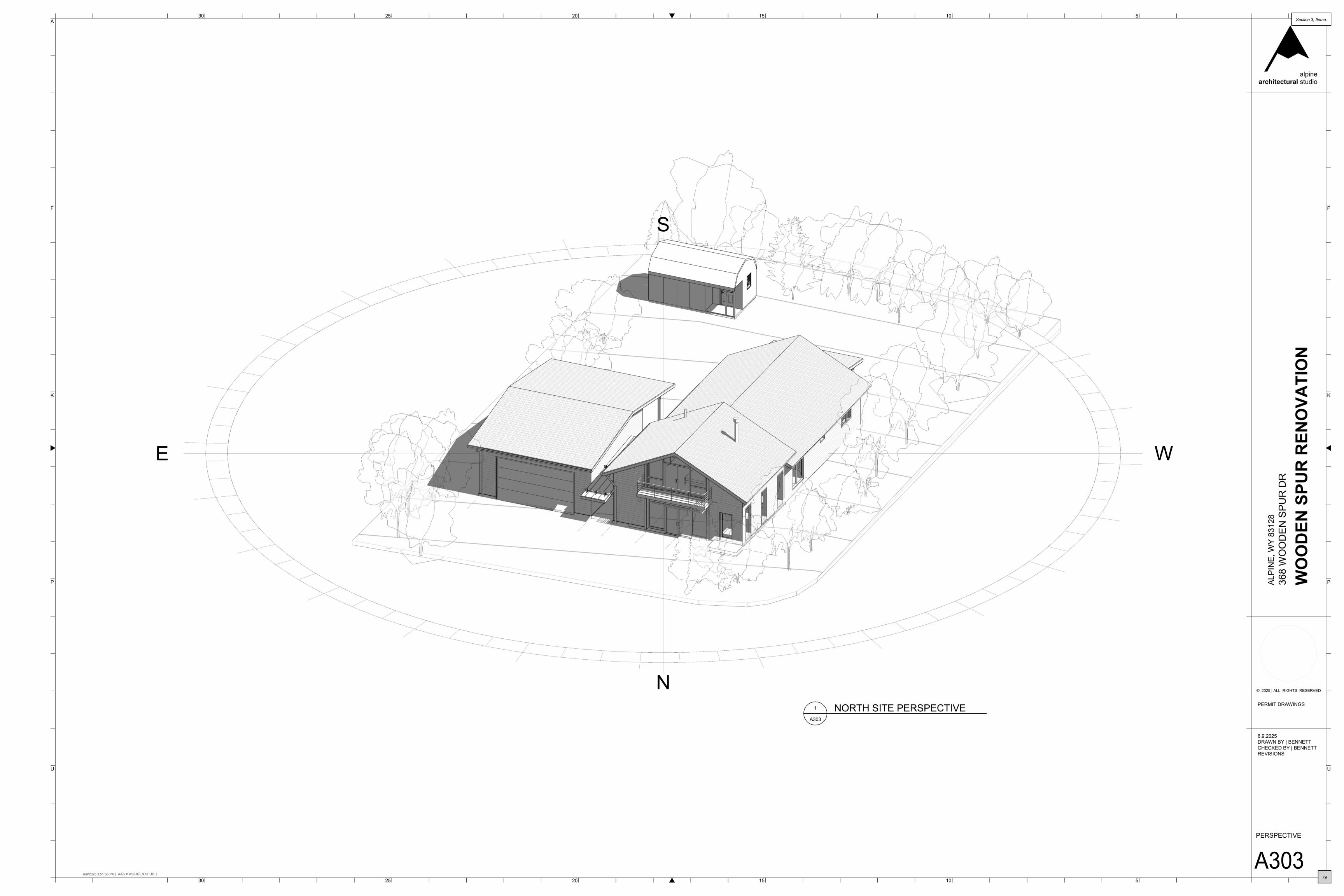
EMERGENCY ESCAPE AND RESCUE OPENINGS SHALL HAVE THE BOTTOM OF THE CLEAR OPENING NOT GREATER THAN 44 INCHES (1118 MM) ABOVE THE FLOOR.

	WINDOW SCHEDULE									
TYPE MK	TYPE MIC UNIT SIZE		MAT'L	FINISH		GLAZING	COMMENTS			
ITPEINK	W	Н	IVIATL	LINIOL	THICKNESS	TYPE	COMMENTS			
Α	3'-0"	7'-0"	WOOD CLAD		3/4"	DOUBLE PANE LOW- E				
В	3'-0"	8'-0"	WOOD CLAD		3/4"	DOUBLE PANE LOW- E				
С	4'-0"	7'-0"	WOOD CLAD	_	3/4"	DOUBLE PANE LOW- E				
D	4'-0"	6'-0"	WOOD CLAD		3/4"	DOUBLE PANE LOW- E				

PROVIDE WINDOW SHOP DRAWINGS FOR OWNER/ARCH REVIEW WINDOW GLAZING & FRAMED COLOR TO MATCH DOOR UNITS

	DOOR, FRAME AND HARDWARE SCHEDULE												
	DOON, I NAME AND HANDWAIL OUTLOOLL												
DOOR	ROOM					DOOR			FRAME		HA	RDWARE	
NUMBER	NUMBER	ROOM NAME		SIZE		MTL	GLAZE	NOTES	MTL	THRES	LOCK	STOP HOLD	WTHR NOTES
TTOMBER	NOMBER		W	Н	T	IVIIL	OLAZL	NOTES	IVIIL	TTINLO	EOOK		
101.1	101	ENTRY	3'-0"	6'-8"	1 3/4"	WOOD CLAD	YES / TEMPERED	DOUBLE PANE LOW-E	WOOD	YES	KEYED ENTRANCE LEVERSET & KEYED DEADBOLT	YES	YES
102.1	102	LIVING	3'-0"	6'-8"	1 3/4"	WOOD SOLID CORE	NO		WOOD	YES	KEYED ENTRANCE LEVERSET & KEYED DEADBOLT	YES	YES
102.2	102	LIVING	6'-0"	6'-8"	1 3/4"	WOOD CLAD	YES / TEMPERED	DOUBLE PANE LOW-E	WOOD	YES	KEYED ENTRANCE LEVERSET & KEYED DEADBOLT	NO	YES
103.1	103	CL	2'-2"	6'-8"	1 3/4"	WOOD SOLID CORE	NO		WOOD	NO	DUMMY LEVERSET W/ROLLER CATCH	NO	NO
104.1	101	ENTRY	3'-0"	6'-8"	1 3/4"	WOOD SOLID CORE	NO		WOOD	NO	PASSAGE LEVERSET	YES	NO
104.2	104	KITCHEN / DINING	6'-0"	6'-8"	1 3/4"	COMPOSITE	YES / TEMPERED	DOUBLE PANE LOW-E	COMPOSITE	YES	BY MANUF	NO	YES
104.3	104	KITCHEN / DINING	3'-0"	6'-8"	1 3/4"	WOOD SOLID CORE	NO		WOOD	NO	PASSAGE LEVERSET	YES	NO
105.1	105	WC	2'-8"	6'-8"	1 3/4"	WOOD SOLID CORE	NO		WOOD	NO	PRIVACY LEVERSET W/EMERGENCY RELEASE	NO	NO
106.1	106	PANTRY	5'-0"	6'-8"	1 3/4"	WOOD SOLID CORE	NO		WOOD	NO	DUMMY LEVERSET W/ROLLER CATCH	NO	NO
107.1	107	SUNROOM	3'-0"	6'-8"	1 3/4"	WOOD SOLID CORE	NO		WOOD	YES	KEYED ENTRANCE LEVERSET & KEYED DEADBOLT	YES	YES
107.2	107	SUNROOM	3'-0"	6'-8"	1 3/4"	WOOD SOLID CORE	YES / TEMPERED	DOUBLE PANE LOW-E	WOOD-ALUM CLAD	YES	KEYED ENTRANCE LEVERSET & KEYED DEADBOLT	YES	YES
108.1	108	GARAGE	18'-0"	10'-0"	1 1/2"	ALUMINUM	NO		METAL	NO	BY MANUF	NO	YES PROVIDE ELEC OVERHEAD OPEN W/REM
108.2	108	GARAGE	8'-0"	10'-0"	1 1/2"	ALUMINUM	NO		METAL	NO	BY MANUF	NO	YES PROVIDE ELEC OVERHEAD OPEN W/REM
108.3	108	GARAGE	3'-0"	6'-8"	1 3/4"	WOOD SOLID CORE	NO		WOOD	YES	KEYED ENTRANCE LEVERSET & KEYED DEADBOLT	NO	YES
108.4	108	GARAGE	3'-0"	8'-0"	1 3/4"	WOOD SOLID CORE	NO		WOOD	YES	KEYED ENTRANCE LEVERSET & KEYED DEADBOLT	NO	YES
202.1	202	LOFT	2'-8"	6'-8"	1 3/4"	WOOD SOLID CORE	NO		WOOD	NO	PRIVACY LEVERSET W/EMERGENCY RELEASE	YES	NO
202.2	202	LOFT	6'-0"	6'-8"	1 3/4"	WOOD CLAD	YES / TEMPERED	DOUBLE PANE LOW-E	WOOD	YES	KEYED ENTRANCE LEVERSET & KEYED DEADBOLT	NO	YES
203.1	203	BATH 3	2'-6"	6'-8"	1 3/4"	WOOD SOLID CORE	NO		WOOD	NO	PRIVACY LEVERSET W/EMERGENCY RELEASE	YES	NO

PROVIDE DOOR SHOP DRAWINGS FOR OWNER/ARCH REVIEW DOOR GLAZING & FRAME COLOR TO MATCH WINDOW UNITS


DRAWN BY | BENNETT CHECKED BY | BENNETT REVISIONS

© 2025 | ALL RIGHTS RESERVED

PERMIT DRAWINGS

architectural studio

BUILDING SECTIONS & SCHEDULES

The flush fin window is a retro-fit product designed for installation into an existing window frame with a 3/8" or wider return that protrude past or is flush with the exterior siding. There cannot be any fins or lips that extend past this vertical plane. The flush fin window will be sealed to this surface.

Vinyl Flush Fin Windows

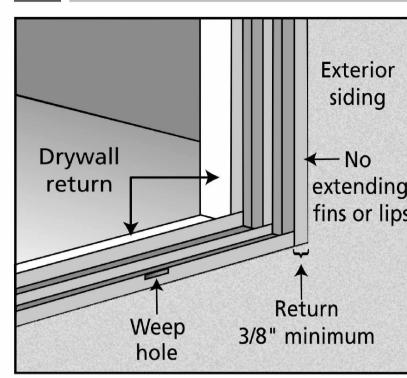
The attached are JELD-WEN's ecommended installation nstructions for vinvl windows hich incorporate an integral nail fin. These installation structions do not supersede any national, provincial, or local building codes. While the use of these installation tructions is recommended. Canada, installation in strict pliance with CSA A440-4 is ternate method of window stallation and will not affect the application of the JELD-WEN limited warranty.

Newer construction methods have led to an increase in air and water tightness in buildings. This frequently leads to negative air pressure inside the home, which can draw water through very small openings. Our installation method integrates the window with the weather barrier (typically building wrap).

*These installation instructions do not supercede any national, provincial or local building codes. They are meant as a guideline and reflect good installation practices.

RELIABILITY for real life®

NSPECT YOUR WINDOW


REMOVE PACKAGING

Remove shipping materials such as corner covers, shipping blocks or pads. If there is a protective film on the glass, do not remove it until installation and construction are complete.

INSPECT YOUR WINDOW Cosmetic damage

- 1/4" difference)
- · Correct product (size, color, grid pattern, handing, glazing, energy-efficiency requirements, etc.)
- Splits, cracks or missing sections in nailing fin longer than 6" Cracks, holes or other damage to nailing fin within 1/2" of window frame

INSTALLATION PREREQUISITES

The lack of an adequate return significantly adds to the complexity of a long-term, water-tight installation. If the existing window frame does not have a sufficient return, consult an installation professional to design an installation that completely seals the new window in a weatherproof

IMPORTANT INFORMATION

This installation assumes that the existing frame has a water-tight installation into the structure.

Vinyl Windows with nailing Fin and Flush Fin This instruction is based on CSA A440.4, for any specific details (ex: different siding type) that maybe different please contact your supplier for recommendations.

If installing in an area of high winds, see the structural engineering report of the product for specific fastening requirements.

Any local building code requirements supersede the recommended installation instructions. Failure to install square, level and plumb could result in denial of warranty claims for operational or performance problems.

Please Note! Installation such that the window sill is higher than 35 feet above ground level or any window installation into a wall condition not specifically addressed in this poster must be designed by an architect or structural engineer.

Vinvl Flush Fin Windows

Estimated Install Time for New Construction	First Time: 4 hrs
	Experienced: 3 hrs
	Professional: 2 hrs

Vinyl Windows with Nailing Fin

Estimated Install	First Time: 40 min.
Time for New	Experienced: 25 min.
Construction	Professional: 15 min.

GLOSSARY

Flush Fin Window: A vinyl window used for retro-fit installation into an existing window frame. The integral exterior trim is decorative and covers the gap between the new window and the existing siding.

Meeting Stile: A vertical frame member of a window that sits in the center of the exterior sill track and either holds one side of the fixed glass or keeps the stationary sash from moving.

Minimum Opening Width/Height: Measurements taken to determine

the size of window that will fit into a retro-fit opening. For example, the minimum opening height is the distance between the highest frame point on the sill to the lowest frame point on the

Return: The exterior face of an existing window frame that helps tie the window to the siding.

Mulled Unit: Two or more window units structurally joined together.

Shiplap: The layering method in which each layer overlaps the layer below it so that water runs down the outside.

Weep Hole (weep channel): The visible exit or entry part of a water drainage system used to drain water out of a window.

SAFETY & HANDLING

Please Note!

For a detailed list of safety and handling recommendations, refer to the full set of installation instructions at our website: www.jeld-wen.com/resources.

SAFETY Do not work alone.

- Use caution when handling glass. Broken or cracked glass
- can cause serious injury. Wear protective gear as necessary.
- Read and fully understand ALL manufacturers' instructions before beginning.

WINDOW HANDLING

- Do not put stress on joints, corners or frames.
- Vinyl Flush Fin Windows and Vinyl Windows with Nailing Fin
- Make sure the window is locked prior to installation. · Read material manufacturers' handling and application
- Properly dispose of unused products and waste material per federal,
- provincial, and local environmental protection rules.
- Handle in vertical position; do not drag on floor. • Store window in dry, well-ventilated area in vertical, leaning position
- to allow air circulation; do not stack horizontally.
- Protect from exposure to direct sunlight.
- Install only when conditions and sheathing are completely dry.

IF INJURY OCCURS, IMMEDIATELY SEEK MEDICAL ATTENTION!

NEEDED MATERIALS & TOOLS

• 3 1/2" corrosion-resistant, pan head screws; screws must penetrate at least 1" into framing

- Solid wood (sloped sill); dimensions should be 1/4" shorter than the length of the sill and 3/8" taller than the depth of the track by a
- minimum of 3 1/4" wide. • Sealant (polyurethane if painted, Thermoplastic sealant if left exposed)
- and backer rod Low expansion foam or/and fiberglass insulation
- Please see your local retailer for appropriate foam expansion properties.
- 1 3/4" galvanized roofing nails; nails must penetrate at least 1" into framing
- JELD-WEN 6" wide self-adhesive flashing (part #08987) or equivalent, or flexible flashing (Width requirement
- may vary according to local code) • 3/8" stainless steel square wire staples

Follow all material manufacturers' instructions for proper use and compatibility.

TOOLS

Level

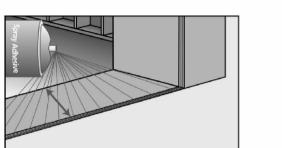
Tape measure

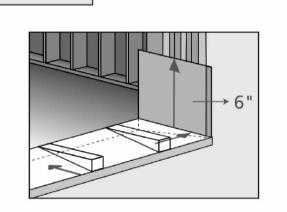
- J-roller
- Caulking gun
- Putty knife Screwdriver Hacksaw
- Cloth Construction stapler Hammer

Drill with 1/8" tapered drill bit and 3/8" countersink

FULLY SHEATHED WALL CONSTRUCTION The wall framing is covered by sheathing and the window will be

ROUGH OPENINGS


architectural studio


OPEN-STUD INSTALLATION

The wall framing needs to be covered by backing support before the window can be installed. The window will be mounted with the nailing fin flush against the applied backing support. This backing support should be a non water-degradable, thin (max. 1/8" thick) sheet material such as vinyl sheeting. Completely surround the rough opening with the backing support as shown. Backing support must be applied before building wrap. Note! For curved windows, ensure framing is sufficient around window perimeter to allow nailing fin to

mounted with the nailing fin flush against the sheathing.

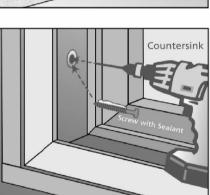
INSTALL WINDOW

1. Cut a piece of self-sealing adhesive flashing to the sill length and jambs and apply it as shown.

INSTALL WINDOW

be nailed every 8" to the framing.

sill is level. From the exterior, place the new flush window into the existing frame making


Make sure prepared slope

sure the window sill rests

completely on the shims.

Open-Stud with Backing

Note! Hold window in place until fully fastened.

5. Fasten window temporarily through the predrilled holes in jamb 3"-6" from one upper corner as follows: (if there is no oredrilled holes do step a.)

a. Use a 1/8" tapered drill bit with 3/8" countersink to drill a screw hole through the side jamb and into the buck (on the interior, or exterior if insufficient space). Countersink should not penetrate the back wall of the frame.

b. Apply sealant to the threads of a 3 1/2" screw and drive into

the side jamb.

COMPLETE INSTALLATION

Tool into a fillet shape. 2. Release the building wrap from above the header (previously taped up) and overlap the header flashing. Seal the ends with

self-sealing flashing or building wrap tape. 3. Ensure weep holes/ channels are clear of debris for proper water

drainage; do not seal weep holes/channels if present. IS USING FLEXIBLE FLASHING

 Mechanically fasten flashing. • Apply sealant down sides where the window meets the flashing. "Tool" or smooth out the sealant.

AFTER INSTALLATION 1. Install exterior wall surface within seven days of window installation.

2. Maintain gap of 1/4"-3/8" between window frame and final exterior wall surface (siding, stucco, etc.). 3. Seal the gap with backer rod and sealant. Do not apply sealant on top

of window frame or drip cap if present. 4. On the interior, seal the void between the rough opening and the window frame with backer rod and sealant, or with low expansion foam.

5. Adjust window for best operation. 6. Protect recently installed units from damage from plaster, paint, etc.

7. For casement window, remove the shipping block (cork) underneath

the sash. **Note!** For integral J-channel vinyl product installed into a structure

with shiplap siding, no expansion/contraction joint is needed.

DOOR & WINDOW INSTALLATION

REMOVE PACKAGING &

• Product squareness (diagonal measurements no more than

Cracked frame

INSTALL WINDOW (CONTINUED)

9. If the window is higher than 3', fasten the side jambs at 24" maximum

intervals. If the window is wider than 3', fasten the head jamb at 24"

maximum intervals with a free flowing screw. Do not shim the head.

10. Install vinyl plugs supplied or available through suppliers if desired.

SEAL BETWEEN REPLACEMENT WINDOW AND EXISTING FRAME

Shim the side jambs aligned

with the predrilled holes or

3"-6" from the corners and

at 24" maximum intervals.

Inspect window for square,

level, plumb. Adjust as

needed with shims.

8. Fasten window through

side jambs and shims.

Apply back rod and a

continuous bead of

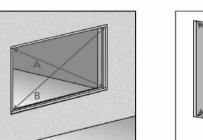
thermoplastic sealant

rod and sealant at sill

to allow for proper

water drainage.

between the new window


frame and the existing frame

around the window. Leave

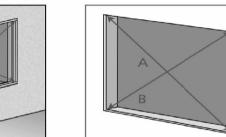
2" x 1/2" gaps in your back

for Vinyl Flush Fin Windows

ISPECT EXISTING FRAME

For Vinyl Flush Fin Windows Verify width/height of new window are each 3/4" smaller than minimum opening width/ height of the existing frame. Verify the existing opening is square. The "A" and "B" measurements above should be

the same. Maximum allowable deviation from square is 1/8" for windows 20 sq. ft. and smaller, Verify the existing frame is


level and plumb. The maximum allowable deviation is 1/16" for every 2' (not to exceed 1/8"). The exterior face of the rough opening must be in a single plane with less than 1/8" twist

from corner to corner. Signs of water leakage near the existing frame must be investigated and corrected prior to installing the new flush fin window.

INSTALL WINDOW

Caution! To avoid injury, use two people to install.

for Vinyl Windows with Nailing Fin

larger than 20 sq. ft. and 1/4" for windows larger than • Verify the rough opening is

> The rough opening sill must not be crowned or sagged. • The exterior face of the rough opening must be in a single plane with less than 1/8" twist from

corner to corner.

For Vinyl Windows with Nailing Fin Verify the width and height of the window are each 1/2" smaller than the rough opening width/ height. The "A" and "B" measurements above should be the same.

allowable deviation is 1/16" for

· Verify the rough opening is square. Maximum allowable deviation from square is 1/8" for windows 20 sq. ft. and smaller, and 1/4" for windows

every 2' of rough opening (not to exceed 1/8").

 The header must be supported by trimmer studs. • Signs of water leakage near the existing frame must be investigated and corrected prior

to installing the new window.

. Place window into the rough opening

Temporarely fasten window with a

nailing fin hole between 3"-7" from

. Shim the side jambs aligned with the

corners and at 24" maximum intervals.

rspect window for square, level,

plumb. Adjust as needed with shims.

Fasten window through side jambs

If the window is taller than 3', fasten

intervals. If the window is wider than

flowing screw. Do not shim the head.

available through suppliers if desired.

with 3/8" countersink to drill

a screw hole through the side

jamb and into the buck (on the

insufficient space). Countersink

should not penetrate the back

. Apply sealant to the threads

of a 3 1/2" screw and drive

the side jambs at 24" maximum

', fasten the head jamb at 24"

maximum intervals with a free

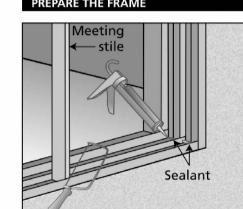
Install vinyl plugs supplied or

Note! a. Use a 1/8" tapered drill bit

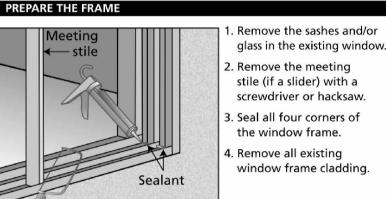
interior, or exterior if

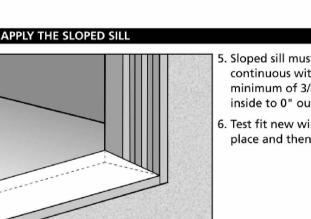
wall of the frame.

into the side jamb.


predrilled holes and shims.

predrilled holes or 3"-6" from the


galvanized roofing nail through a


one top corner.

PREPARE EXISTING WINDOW FRAME

APPLY THE SLOPED SILL 5. Sloped sill must be continuous with a inside to 0" outside. 5. Test fit new window into place and then remove.

Note! Fastener heads must be flush. Do not dent nailing fin.

Fastening Recommendations for Vinyl Mull Systems

• For mulled units, fastener spacing is 4" around the mulled joint as shown.

WINDOW

• For any product B4 or above, fastener spacing is 4".

minimum of 3/8" in height

FOR RETROFIT INSTALLATIONS

• After removing sufficient siding to expose at least 9" of intact

PREPARE ROUGH OPENING

- building wrap, remove old window. • If damaged, apply new building wrap in shiplap manner.
- Verify trimmer studs/header are structurally sound.
- · Continue with the instructions. PREPARE BUILDING WRAP 1. Trim building wrap flush at

building wrap manufacturer to verify that this does not void their product warranty. 2. At the head, cut building wrap

3. Sloped sill must be continuous

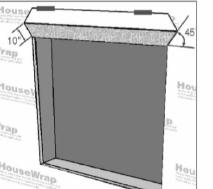
inside to 0" outside.

where frost is present.

Safseal Systems 5500.

Wrap Safseal Systems 5500 primer.

with a minimum of 3/8" in height


FLASH WINDOW

rough opening head, sides

and sill. Check with your

10" at 45 degrees.

Tape up as shown.

Cut three pieces of 6" self-adhesive

Two side pieces 12" longer than

• One header piece 14" longer than

lashing as follows:

the side

the header

If using self-adhesive flashing in extreme conditions, apply spray

and building wrap at the sides and head of the window as shown.

Protect window from overspray. Concrete, on damp surfaces and/or

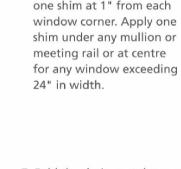
• The flashing manufacturer's recommended primer is Protecto Wrap

Note! Extreme conditions exist where the outside temperature is at or

below 32° F (0° C), on excessively dirty surfaces, on Dens-Glass Gold, on

concrete, on damp surfaces and/or where frost is present.

• The flashing manufacturer's recommended primer is Protecto


adhesive/primer per manufacturer's instructions to nailing fin, sheathing

following manner: Apply one shim at 1" from each

frame as possible.

as shown.

it as shown.

6. Apply sill shims in the

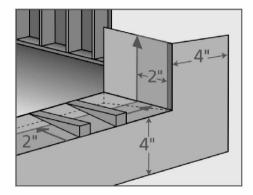
4. If using self-adhesive flashir

spray adhesive/primer per

in extreme conditions, apply

manufacturer's instructions

to nailing fin, sheathing and


building wrap at the sides

5. Cut a piece of self-sealing

adhesive flashing to the sill

length and jambs and apply

and head of the window

7. Fold the drain mat down onto the sheathing.

APPLY SELF-ADHESIVE FLASHING IN THIS ORDER

1. Apply the side pieces starting 5" above the header

3. Center and apply the header piece above the drip cap

5. Apply a bead of sealant all along between the drip cap and

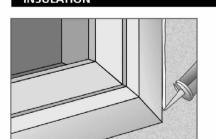
Drip cap

Window

frame

2. Install drip cap (should extend 1/2" on each side)

4. Press the flashing down with a j-roller


the window head

Note! Keep the edge of the self-adhesive flashing as close to the window

2. Apply sill shims in the following manner: Apply one shim at 1" from each window corner. Apply one shim under any mullion or meeting

rail or at centre for any window exceeding 24" in width.

COMPLETE INSTALLATION

. Insulate with fiberglass batting or low expansion foam. Fill gap with low expansion foam around window perimeter at the sash position. Fill remaining cavity with fiberglass batting. Use as per manufacturers instructions.

3. Adjust window for best operation (if applicable). 4. Protect recently installed units from damage from plaster, paint, etc.

the sash.

Thank you for choosing

 ${f RELIABILITY}\ for$ real life

exterior

AFTER INSTALLATION

Apply interior trim as desired.

by covering the units with plastic. 5. For casement window, remove the shipping block (cork) underneath

Please visit our website at www.jeld-wen.ca/eng/resources to download a copy of the complete guide to care and maintenance for your window.

. Seal the top corners of the window with a 1/4" bead of sealan

Do not use high-expansion foam as this may cause frame deflection.

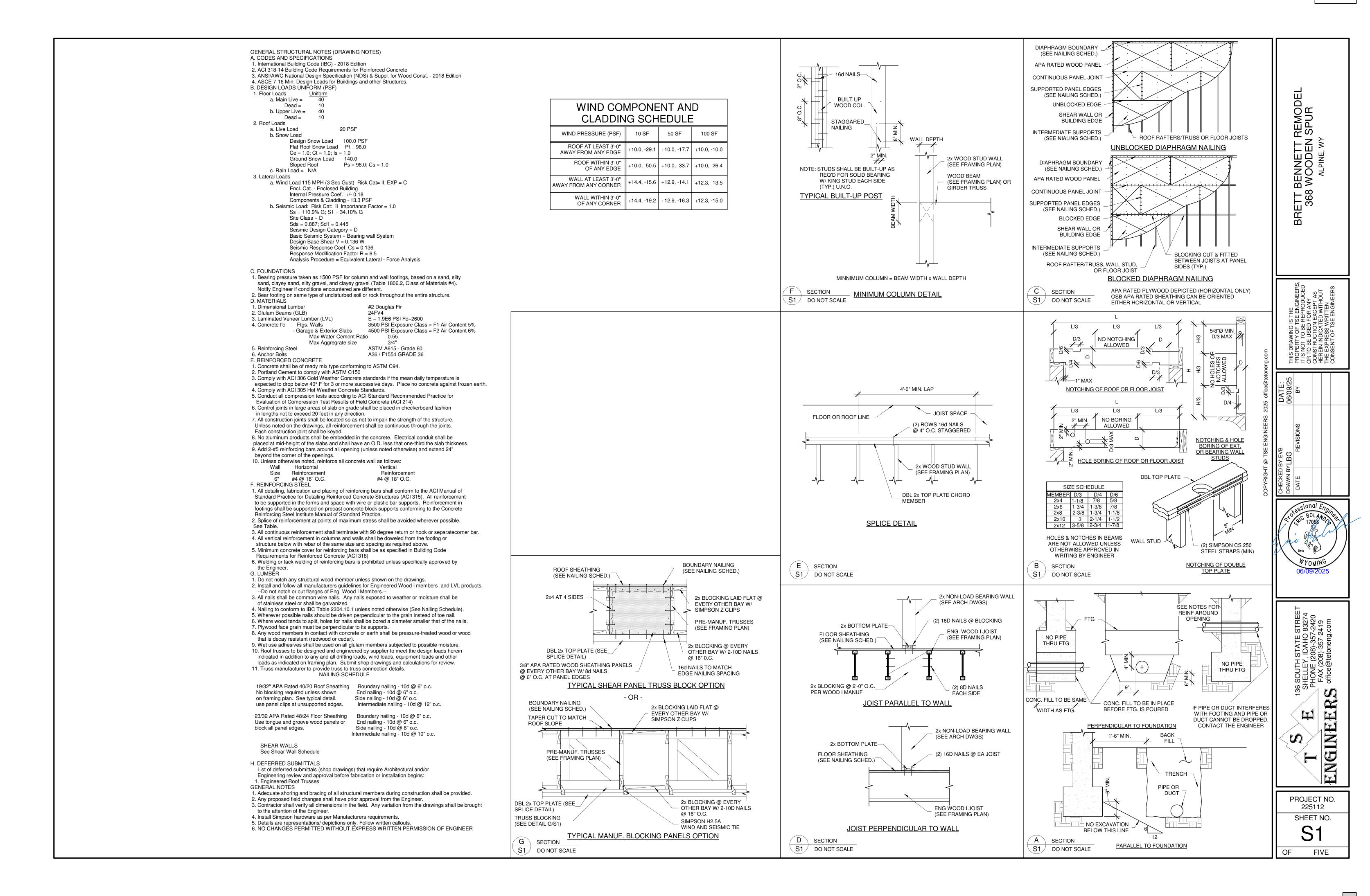
by covering the unit with plastic.

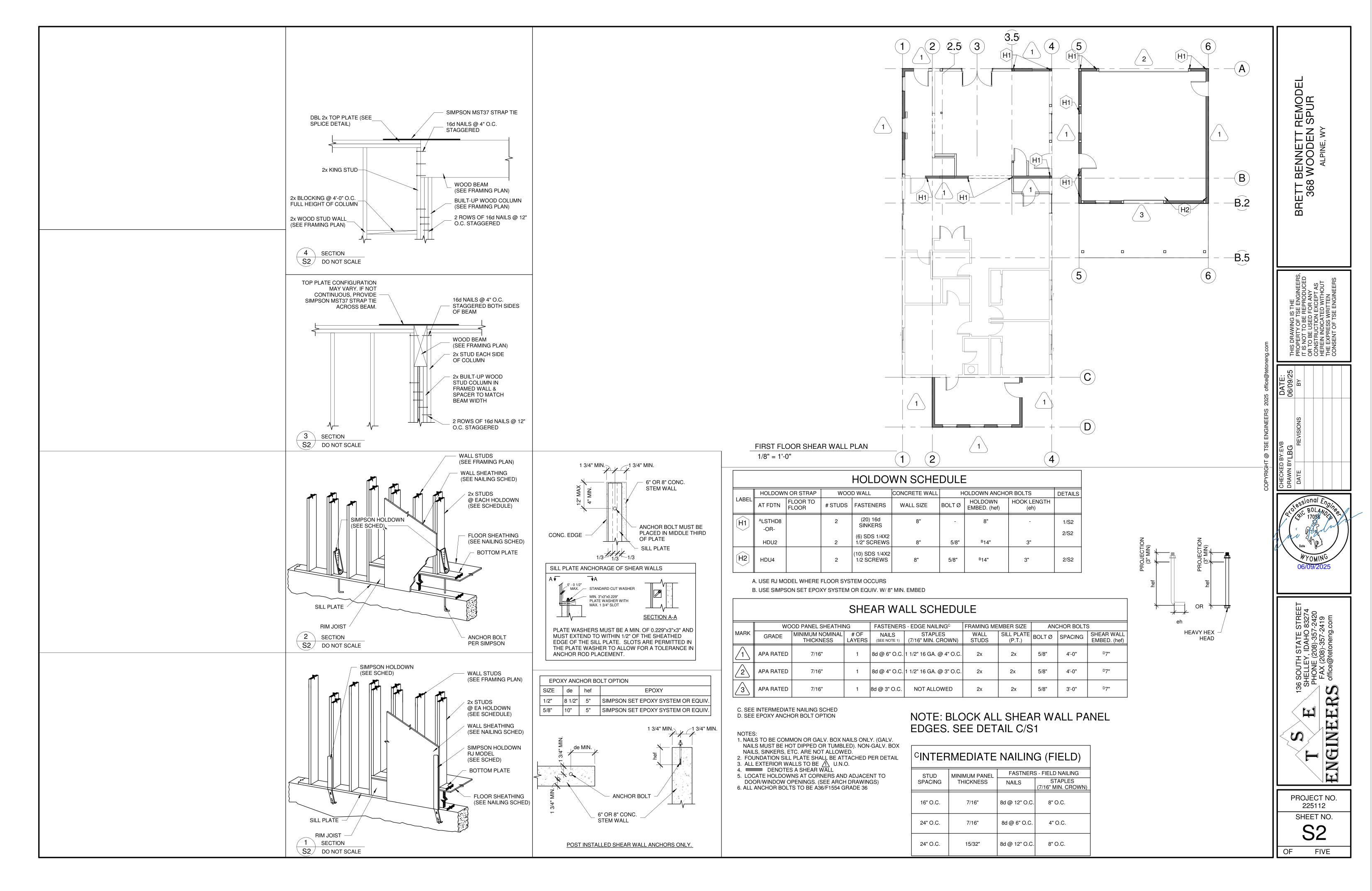
#10 x 1" PAN HEAD

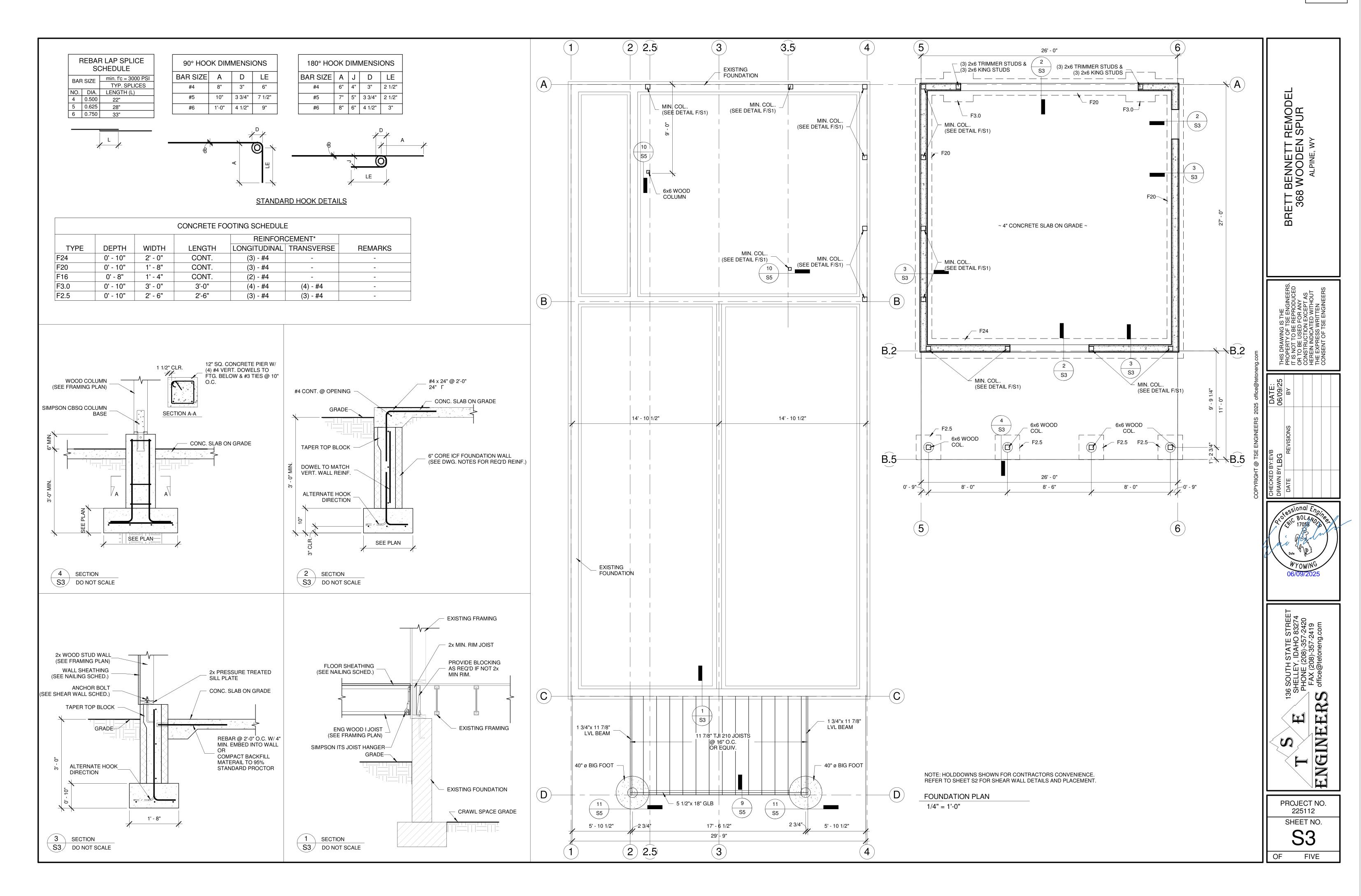
O O O NAILING

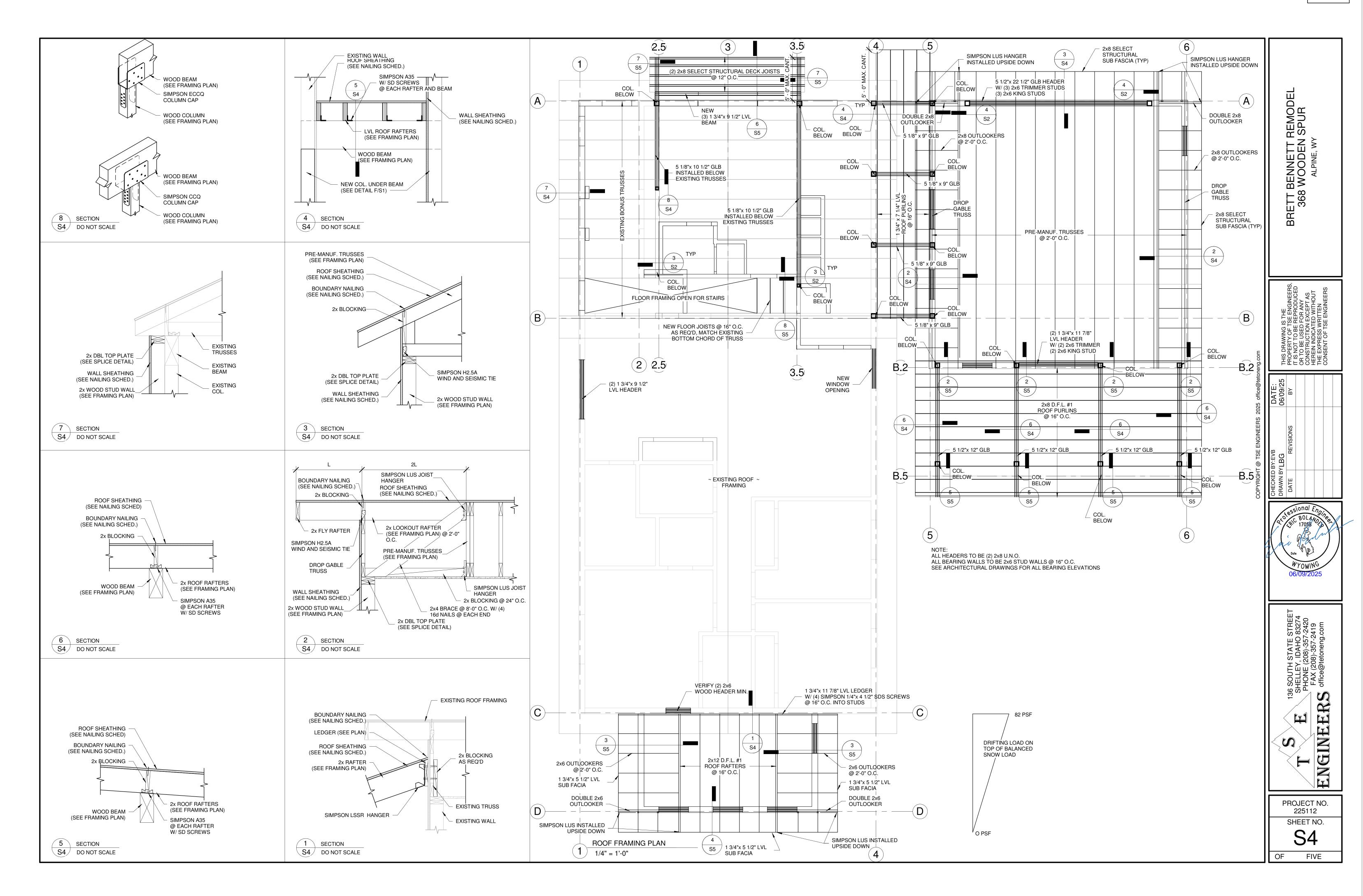
WOOD SCREW

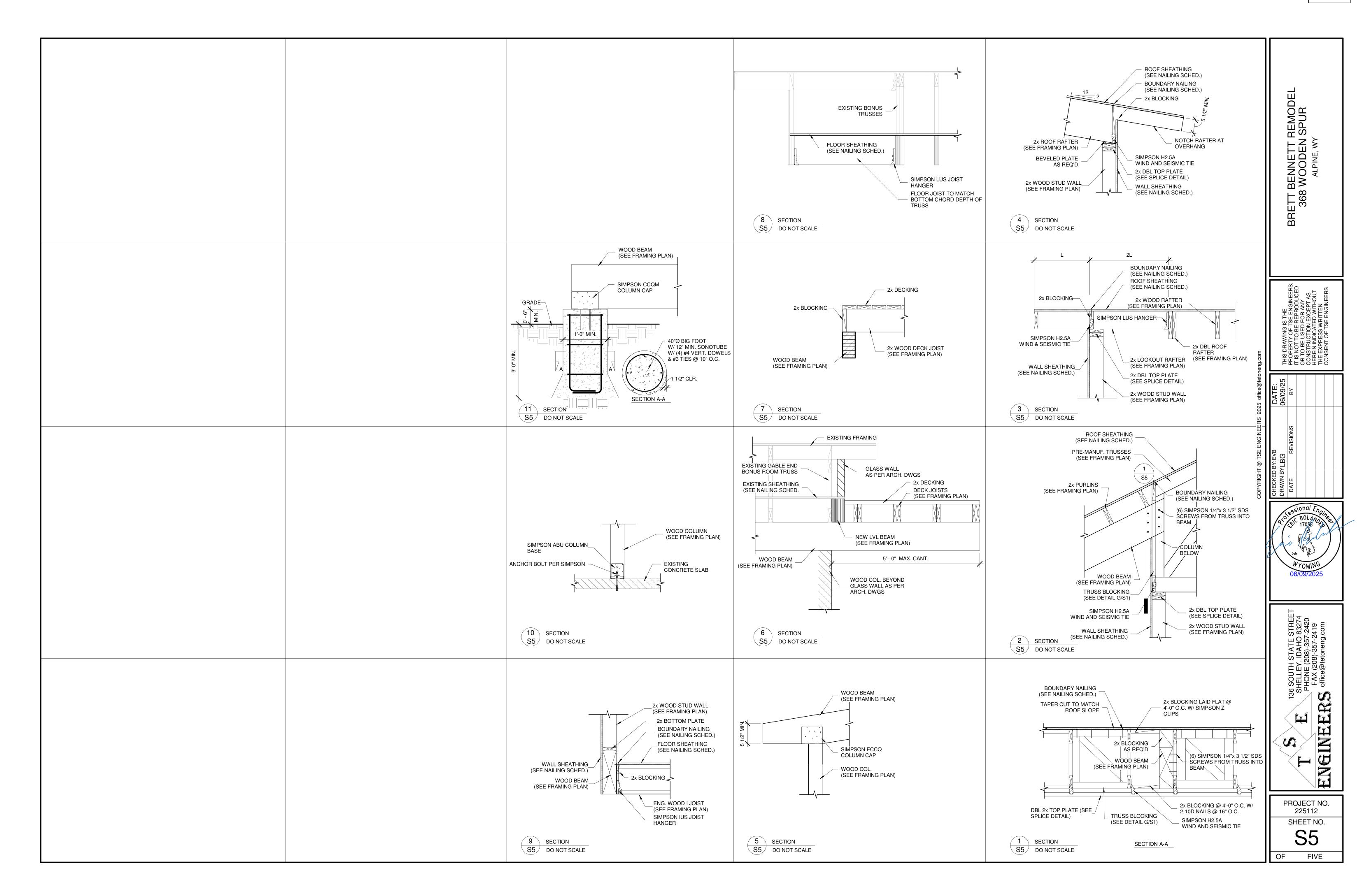
WINDOW

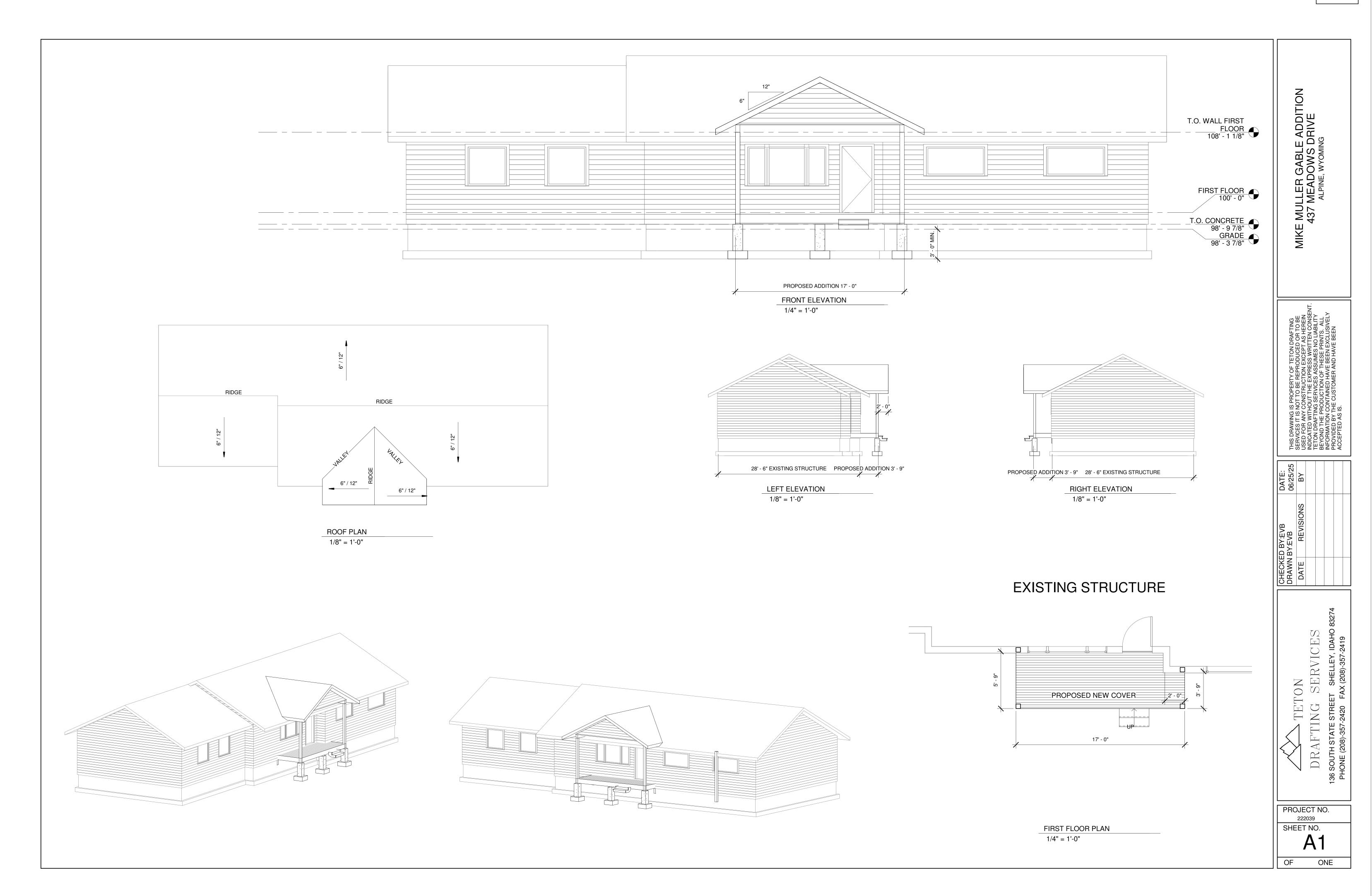

- MULLED JOINT

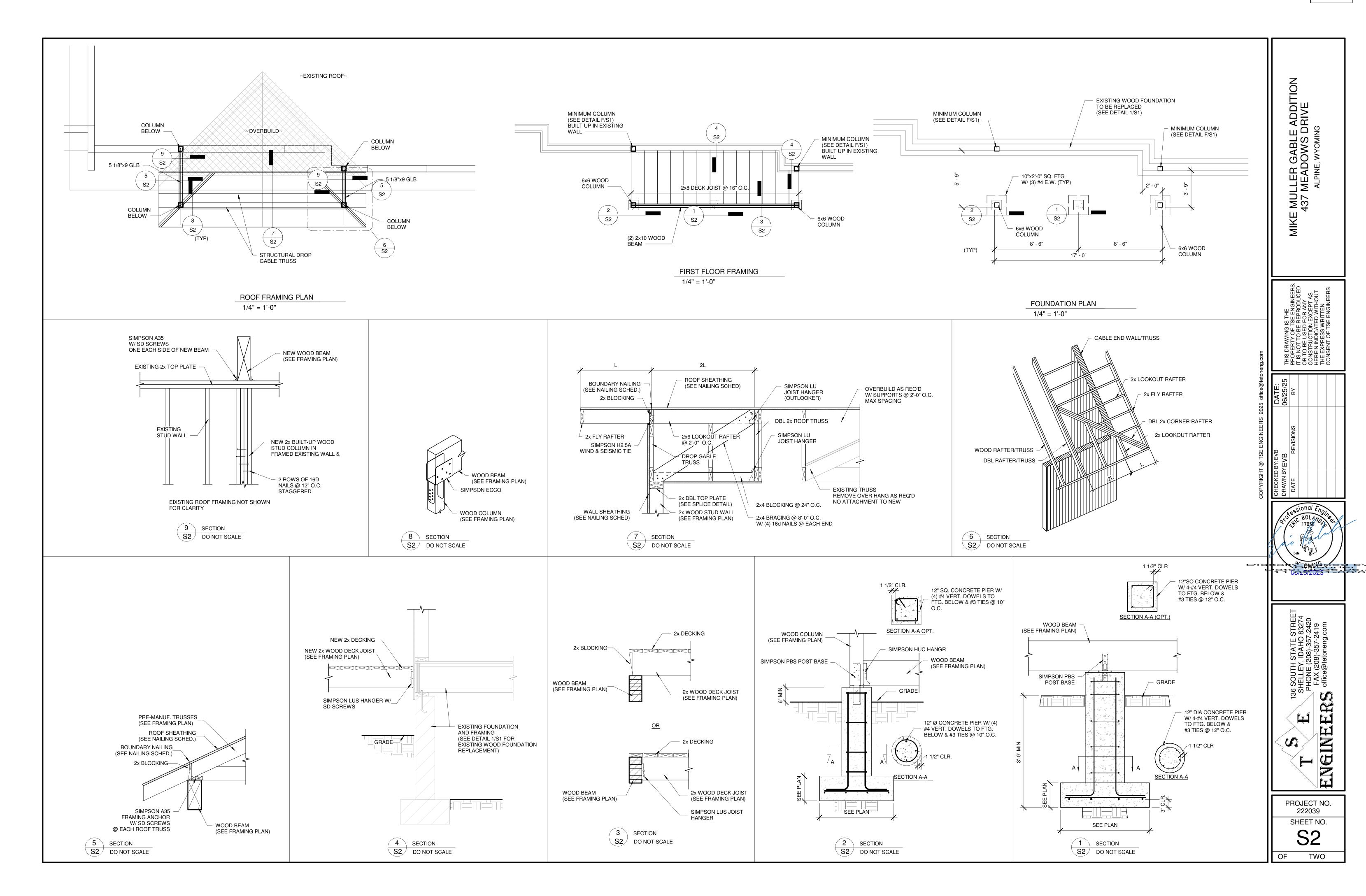

© 2025 | ALL RIGHTS RESERVED

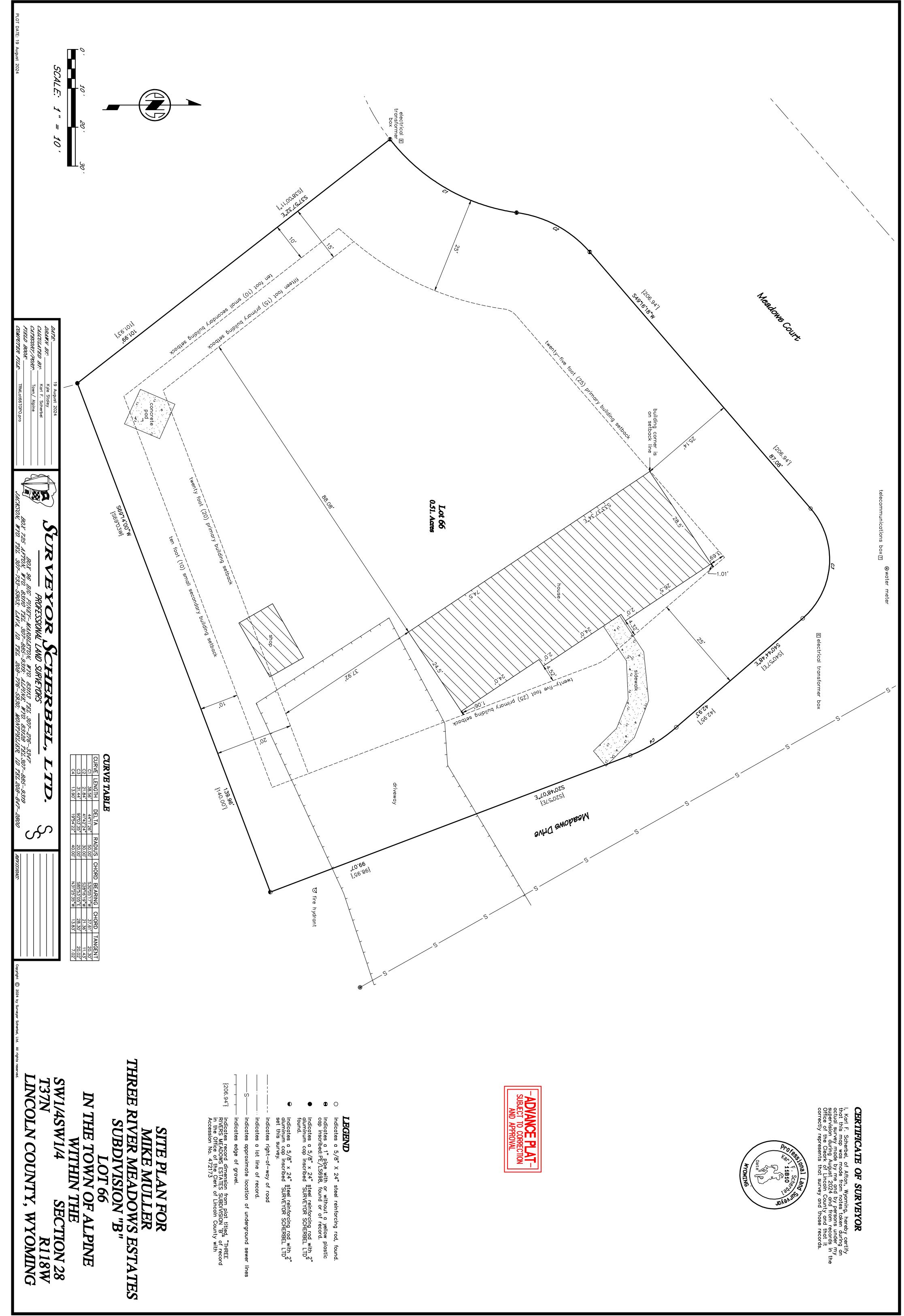

PERMIT DRAWINGS


6.9.2025


REVISIONS







86

87

Date Park

I, Karl F. Scherbel, of Afton, Wyoming, hereby certify that this map was made from notes taken during an actual survey made by me and by persons under my supervision during August 2024 and from records in the Office of the Cleark of Lincoln County and that it correctly represents that survey and those records. CERTIFICATE OF SURVEYOR

STRUCTURAL CALCULATIONS

FOR

672 Sunset Dr. (N) Residence Alpine, WY

Job #P25006 March 12, 2025

2021 International Building Code© Covenant Engineering 2025

CALCULATIONS	PAGE
ASCE 7 Site Criteria	1
Gravity Demand	4
Seismic Demand	5
Wind Demand	6
Framing Checks	9
Foundation Checks	13
Lateral Summary	15
Shearwall Reactions	16
Standard Shearwall Design	17
FTAO Shearwall Design	21

SUMMARY

This set of structural calculations is being provided in support of the proposed new residence to be constructed at the referenced project address. Based on the enclosed calculations, it appears that the structural plans and details provided are adequate to address the required site conditions.

Address:

672 Sunset Dr Alpine, Wyoming 83128

ASCE Hazards Report

Standard: ASCE/SEI 7-16 Latitude: 43.159887
Risk Category: II Longitude: -111.013363

Soil Class: D - Default (see Elevation: 5696.35845 ft (NAVD 88)

Section 11.4.3)

Wind

Results:

Wind Speed 105 Vmph
10-year MRI 75 Vmph
25-year MRI 81 Vmph
50-year MRI 86 Vmph
100-year MRI 91 Vmph

Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed: Mon Mar 10 2025

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Seismic

Site Soil Class: D - Default (see Section 11.4.3)

Results:

 $S_{\mbox{\scriptsize S}}$: S_{D1} : 1.109 N/A T_L : S_1 : 0.341 6 F_a : PGA: 0.477 1.2 F_v : N/A PGA_M: 0.572 S_{MS} : F_{PGA} : 1.331 1.2 S_{M1} : N/A 1 0.887 C_{v} : 1.322

Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8.

Data Accessed: Mon Mar 10 2025

Date Source: USGS Seismic Design Maps

Snow

Results:

Mapped Elevation: 5696.4 ft

Data Source: ASCE/SEI 7-16, Table 7.2-8

Date Accessed: Mon Mar 10 2025

In "Case Study" areas, site-specific case studies are required to establish ground snow loads. Extreme local variations in ground snow loads in these areas preclude mapping at this scale.

Ground snow load determination for such sites shall be based on an extreme value statistical analysis of data available in the vicinity of the site using a value with a 2 percent annual probability of being exceeded (50-year mean recurrence interval).

Values provided are ground snow loads. In areas designated "case study required," extreme local variations in ground snow loads preclude mapping at this scale. Site-specific case studies are required to establish ground snow loads at elevations not covered.

Snow load values are mapped to a 0.5 mile resolution. This resolution can create a mismatch between the mapped elevation and the site-specific elevation in topographically complex areas. Engineers should consult the local authority having jurisdiction in locations where the reported 'elevation' and 'mapped elevation' differ significantly from each other.

Roof Uniform Snow Load = 100 psf per Jurisdiction

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

Section 4, Itema.

Date: 3/10/2025
Engineer: TMM

Project #: **P25006**

Project Name: Eplin 672 Sunset Dr. Alpine Residence

Dead Loads for: (N) Residence

Typ Roof Dead Load	psf	Ext Wall Dead Load	psf
Roofing	4.0	Siding	4.0
Shtg	1.9	Wall Sht'g	1.5
Mfr Trusses @ 24"	2.5	Studs	1.6
Clng	2.8	Gyp Board	2.2
Misc	0.8	Misc	2.7
	12.0		12.0
Porch Roof Dead Load	psf	Interior Wall Dead Load	psf
Roofing	4.0	Framing	1.6
Shtg	1.9	Gyp Board x 2	5.6
Rafters @ 24"	1.4	Misc	2.8
Misc	0.7	-	10.0
	8.0		

Other

Roof Live, 10.00:12 14.0 **Roof Uniform Snow** 100.0

Seismic Mass

Roof Mass	Porch Roof Mass
$Slope_{Roof} = 10.00:12$	$Slope_{Roof} = 0.25:12$
$Dl_{add'l (part)} = 5.0 psf$	$Dl_{add'l (part)} = 0.0 psf$
$Snow_{(20\%)} = 20.0 \text{ psf}$	$Snow_{(20\%)} = 20.0 \text{ psf}$
Roof Area = 858 sf	Roof Area = 306 sf
Perimeter = 106 ft	Perimeter = 0.0 ft
h-trib _{wall} = 5.0 ft	h-trib _{wall} = 0.0 ft
$W_{EQ} = 49.6 \text{ k}$	$W_{EQ} = 8.6 \text{ k}$

Project Name: Eplin 672 Sunset Dr. Alpine Residence

Seismic Demand for: (N) Residence

LFRS: All other bldgs	$S_S = 1.109$	$T_{\text{modal}} = 0.00 \text{ sec}$	Extreme Torsion Irregularity? >35%V Complies w/Table 12.3-3?
Occupancy: I	$S_1 = 0.341$	$T_{L} = 6.00 \text{ sec}$	Regular in plan at all levels?
Site Class: D-Default	$F_a = 1.200$	$T_a = 0.10 \text{ sec}$	2 bays ES Ea Direction?
$I_{EQ} = 1.00$	$F_{v} = 1.000$	$T_{\text{Max}} = 0.13 \text{ sec}$	$C_{s,Design} (12.8-2) = 0.136$
R-Factor = 6.50	$S_{DS} = 0.887$	$T_S = 0.256$	$C_{s,Max}$ (12.8-3 & 4) = 0.368
$\Omega_0 = 3.00$	$S_{D1} = 0.227$	$T_0 = 0.051$	$C_{s,Min}$ (12.8-5) = 0.010
$C_d = 4.00$	$S_{DS,Des} = 0.887$	✓ No Irregularities?	$C_{s,Min,.6g}$ (12.8-6) = 0.000

Base Shear & Story Distribution

SEISMIC DESIGN CATEGORY 'D' (Dynamic Procedure Not Required)								1.0	Exp 'k' = 1.00
Level _x	$h_{x (ft)}$	$W_{x(k)}$	$W_x h_x^{k}$	$W_x h_x^k / \Sigma W_i h_i^k$	$\mathbf{F}_{\mathbf{x}(\mathbf{k})}$	$F_{x \text{ (ASD)}}$	A_{flr} (sf)	$w_{EQ}(psf)$	W _{EQ (ASD)}
Roof	8.0	58.2	465	100.0%	7.94	5.67	682	11.6	8.3
	$\Sigma =$	58.2	465	100%	7.94	5.67			

Diaphragm Loading

Level _x	$F_{px(k)}$	F_{px-min}	F _{px-max}	$F_{px (k)}$	F _{px (ASD)}	$w_{EQ}(psf)$	W _{EQ (ASD)}	Diaph/Base
						·		
Roof	7.94	10.32	20.64	10.32	7.37	15.1	10.8	1.30

Vertical Seismic Demand

$$E_v = 0.2 \text{ x S}_{DS} \text{ x D} = 0.18 \text{ x D}$$

Out-Of-Plane Demand

Conc./Masonry Walls
Flexible Diaphragm

	Walls	Anchorage	Anchorage to Concrete
LRFD	0.35Wp	0.35Wp	0.89Wp (444 plf min)
ASD	0.25Wp	0.25Wp	0.63Wp (317 plf min)

Project Name: Eplin 672 Sunset Dr. Alpine Residence

LRFD Wind Design - MWFRS For: (N) Residence

Structure Criteria

Structure Type: All other structural systems

Roof Type: Gable, Open Roof Pitch: 10.0:12

Structure Ht AGL: 22.3 ft

Mean Rf Ht AGL: 16.5 ft Roof Ht: 22.3 ft Add'l Floors AGL: 0 Floors Eave Ht: 10.8 ft

Least Plan Dim: 22.0 ft
Greatest Plan Dim: 31.0 ft
f₀, (Manual): 0.00 Hz
f₀, (Approx): 6.11 Hz
Flexibility Class: Rigid
Building Class: Class 1
Enclosure Class: Enclosed

Site Criteria

Basic Wind Speed: 110 mph

Exposure Category: C
Directionality Factor, K_d: 0.85
Topographic Factor, K_{zt}: 1.00
Gust Effect Factor, G: 1.00
Internal Press. Coeff, GC_{pi}: 0.18

Procedure Checks:

Torsionally Regular: Yes
Simple Diaphragm: Yes
Aprox. Symetrical: Yes
Ch. 27 Part 1 Allowed
Ch. 27 Part 2 Allowed
Ch. 28 Part 1 Allowed
Flat, Gable Or Hip Roof: Yes
Ch. 28 Part 2 Allowed

Definitions (Reference ASCE 7-10, 26.2)

Flexible: Slender buildings that have a fundamental natural frequency less than 1 Hz.

Low Rise: Enclosed or partially enclosed buildings that comply with the following conditions:

1. Mean roof height h less than or equal to 60 ft.

2. Mean roof height h does not exceed least horizontal dimension.

Simple Diaphragm: A building in which both windward and leeward wind loads are transmitted by roof and vertically

spanning wall assemblies, through continuous floor and roof diaphragms, to the MWFRS.

Torsionally Regular: A bullding with the MWFRS about each principal axis proportioned so that the maximum

displacement at each story under Case 2, the torsional wind load case, does not exceed the maximum displacement at the same location under Case 1, the basic wind load case.

Open: A building having each wall at least 80 percent open.

Enclosed: A building that does not comply with the requirements for open or partially enclosed buildings.

Partially Enclosed: A building that complies with both of the following conditions:

1. The total area of openings in a wall that receives positive external pressure exceeds the sum of the areas of openings in the balance of the building envelope (walls and roof) by more than 10 percent.

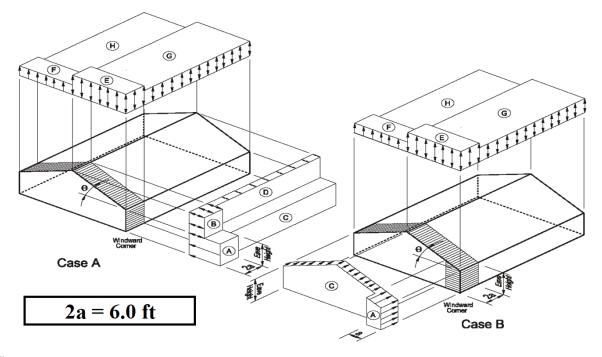
2. The total area of openings in a wall that receives positive external pressure exceeds 4 ft² or 1 percent of the area of that wall, whichever is smaller, and the percentage of openings in the balance

of the building envelope does not exceed 20 percent.

Roof Type

1.29 1.32 1.35

Date: 3/10/2025 Engineer: TMM Project #: P25006


Project Name: Eplin 672 Sunset Dr. Alpine Residence

ASCE 7-27 Part 2 Enclosed Simple Diaphragm Buildings For: (N) Residence

Wind Zone Pressure		Н	
Basic Wind Speed: 110 mph	Mean Roof Ht: 22.3 ft		20.0
Exposure Category: C Topographic Factor, K _{zt} : 1.00	Roof Slope: 39.8° Adjustment Factor, λ : 1.32	E	22.3

Load Case: 1

Max	imum	Horizontal Pressures				Vertical Roof Pressures				Eave Overhangs	
Env	elope	End 2	Zones	Interio	Interior Zones		End Zones		r Zones	End	Interior
Pre	sures	Wall	Pitched Rf	Wall	Pitched Rf	Windward	Leeward	Windward	Leeward	Zone	Zone
Wind	Zones:	A	В	С	D	Е	F	G	Н	E _{OH}	G_{OH}
(Below)	45.1°	21.6	14.8	17.2	11.8	1.7	-13.1	0.6	-11.3	-7.6	-8.7
P _{S30} (psf)	39.8°	21.6	14.8	17.2	11.8	1.7	-13.1	0.6	-11.3	-7.6	-8.7
(Abv)	45.1°	21.6	14.8	17.2	11.8	1.7	-13.1	0.6	-11.3	-7.6	-8.7
P_{S} (psf) =		28.4	19.5	22.7	15.5	2.2	-17.3	0.8	-14.9	-10.0	-11.5

Notes:

- 1. Pressures shown are applied to the horizontal and vertical projections, for exposure B, at h=30 ft (9.1m). Adjust to other exposures and heights with adjustment factor λ .
- 2. The load patterns shown shall be applied to each corner of the building in turn as the reference corner. (See Figure 28.4-1)
- 3. For Case B use $\theta = 0^{\circ}$.
- 4. Load cases 1 and 2 must be checked for $25^{\circ} < \theta \le 45^{\circ}$. Load case 2 at 25° is provided only for interpolation between 25° and 30° .
- 5. Plus and minus signs signify pressures acting toward and away from the projected surfaces, respectively.
- 6. For roof slopes other than those shown, linear interpolation is permitted.
- 7. The total horizontal load shall not be less than that determined by assuming $p_s = 0$ in zones B & D.
- 8. Where zone E or G falls on a roof overhang on the windward side of the building, use E_{OH} and G_{OH} for the pressure on the horizontal projection of the overhang. Overhangs on the leeward and side edges shall have the basic zone pressure applied.
- 9. Notation:
 - a: 10 percent of least horizontal dimension or 0.4h, whichever is smaller, but not less than either 4% of least horizontal dimension or 3 ft (0.9 m).
 - h: Mean roof height, in feet (meters), except that eave height shall be used for roof angles $<10^{\circ}$.
 - θ . Angle of plane of roof from horizontal, in degrees.

Project Name: Eplin 672 Sunset Dr. Alpine Residence

ASCE 7-27 Part 2 Enclosed Simple Diaphragm Buildings For: (N) Residence

This sheet provides a summary of all wind forces at the levels indicated, based on Part 2 of the envelope procedure as indicated in the previous pages. Gable or parapet loads, where applicable, are included in the main roof level loads.

Gable End Int Gable End EZ Add'l	LRFD 130 plf 200 lbs	ASD 78 plf (71 plf) 120 lbs (109 lbs)	Uplift End Zone 2.2 psf 1.3 psf (ASD)	Uplift Typ Int 0.8 psf 0.5 psf (ASD)
Roof Typ Int	300 plf	180 plf (164 plf)	→	Roof
Roof EZ Add'l	460 lbs	276 lbs (251 lbs)		Ground

OK To Reduce To Match Actual Wind Speed By $[105/110]^2 = 0.91$

Project Name: Eplin 672 Sunset Dr. Alpine Residence

Typical Solid Wood Framing Checks

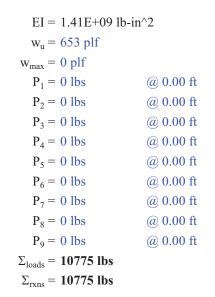
(See NDS For Solid Beam Design Equations)

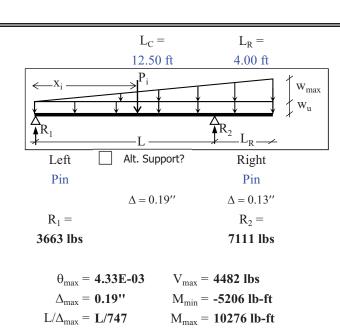
	Typical Solid Wood Framing Checks (See NDS For Solid Beam Design Equations)										
M	Mark/Descr	Rafter	Gable 4-8	Gable 4-8	Eave 3-0	Eave 3-0					
E	Material	DF-L No. 2	DF-L No. 2	DF-L No. 2	DF-L No. 2	DF-L No. 2					
M	Section	2x6	4x8	2x8	4x8	2x8					
В	Lams	1	1	2	1	2					
E	Span	4.00 ft	4.83 ft	4.83 ft	3.25 ft	3.25 ft					
R	Fix	None	None	None	None	None					
	Duration	Snow	Snow	Snow	Snow	Snow					
D	Repetetive	Yes	No	No	No	No					
Α	Incised	No	No	No	No	No					
Т	Weak Axis	No	No	No	No	No					
A	Self-Wt	No	Yes	Yes	Yes	Yes					
П	r DL	8.00 psf	12.00 psf	12.00 psf	12.00 psf	12.00 psf					
	0 11	120.00 psf	100.00 psf	100.00 psf	100.00 psf	100.00 psf					
L	o LL F Trib	2.00 ft	3.00 ft	3.00 ft	13.00 ft	13.00 ft					
О	DI	0.00 psf	0.00 psf	0.00 psf	0.00 psf	0.00 psf					
A	L LL	0.00 psf	0.00 psf	0.00 psf	0.00 psf	0.00 psf					
D	R Trib	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft					
S	o DL	0.00 psf	12.00 psf	12.00 psf	12.00 psf	12.00 psf					
	т н Trib	0.00 ft	5.00 ft	5.00 ft	2.00 ft	2.00 ft					
Н	W _u	256.0 plf	402.4 plf	401.5 plf	1486.4 plf	1485.5 plf					
	Gov Load	D+Lr/S	D+Lr/S	D+Lr/S	D+Lr/S	D+Lr/S					
D	V	512.0 lbs	971.8 lbs	969.6 lbs	2415.4 lbs	2413.9 lbs					
E	f_{v}	93.1 psi	57.4 psi	66.9 psi	142.8 psi	166.5 psi					
S	F_{v}	207.0 psi	207.0 psi	207.0 psi	207.0 psi	207.0 psi					
Ι	$f_v < F_v$?	OK	OK	OK	OK	OK					
G	M	512.0 ft-lb	1173.4 ft-lb	1170.8 ft-lb	1962.5 ft-lb	1961.3 ft-lb					
N	f_b	812.4 psi	459.2 psi	534.6 psi	768.1 psi	895.5 psi					
	F_b	1547.3 psi	1345.5 psi	1242.0 psi	1345.5 psi	1242.0 psi					
C	$f_b < F_b$?	OK	OK	OK	OK	OK					
Н	$\Delta_{ m L}$	0.04 in	0.02 in	0.02 in	0.02 in	0.02 in					
E		L/1155	L/2806	L/2405	L/2125	L/1822					
C	$\Delta_{ m L,allow}$	L/240 0.05 in	L/240 0.03 in	L/240 0.04 in	L/360 0.02 in	L/360 0.03 in					
K	$\Delta_{ m Tot}$	L/1050	L/1856	L/1595	L/1749	L/1501					
S	$\Delta_{ m Tot,allow}$	L/180	L/180	L/180	L/240	L/240					
	$\Delta < \Delta_{\text{Allow}}$?	OK	OK	OK	OK	OK					
П	b	1.50 in	3.50 in	3.00 in	3.50 in	3.00 in					
C	d	5.50 in	7.25 in	14.50 in	7.25 in	14.50 in					
S U	A_s	8.25 in ²	25.38 in ²	21.75 in ²	25.38 in ²	21.75 in ²					
	S	7.56 in ³	30.66 in ³	26.28 in ³	30.66 in ³	26.28 in ³					
P	I	20.80 in ⁴	111.15 in ⁴	95.27 in⁴	111.15 in ⁴	95.27 in ⁴					
P	W _{self}	2.1 plf	6.4 plf	5.5 plf	6.4 plf	5.5 plf					
0	F _v	180 psi	180 psi	180 psi	180 psi	180 psi					
R	F _b	900 psi	900 psi	900 psi	900 psi	900 psi					
T	E E	1.60E+06 psi 1.60E+06 psi	1.60E+06 psi 1.60E+06 psi	1.60E+06 psi 1.60E+06 psi	1.60E+06 psi 1.60E+06 psi	1.60E+06 psi					
	$C_{\rm D}$	1.60E+06 psi 1.15	1.60E+06 psi 1.15	1.60E+06 psi 1.15	1.60E+06 psi 1.15	1.60E+06 psi 1.15					
D	$C_{\rm p}$	1.15	1.13	1.13	1.00	1.00					
A	C_{fu}	1.13	1.00	1.00	1.00	1.00					
T	$C_{F/V}$	1.30	1.30	1.20	1.30	1.20					
A	C _i	1.00	1.00	1.00	1.00	1.00					
	$C_{i,E}$	1.00	1.00	1.00	1.00	1.0					
						100					

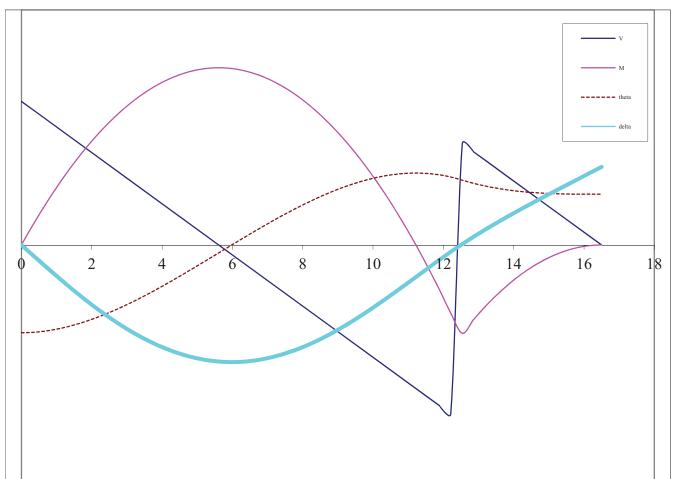
Project Name: Eplin 672 Sunset Dr. Alpine Residence

Typical Solid Wood Framing Checks

(See NDS For Solid Beam Design Equations)

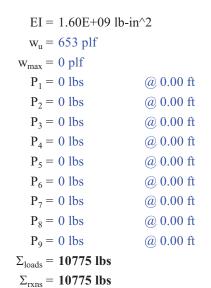

-JP	Supical Solid Wood Framing Checks (See NDS For Solid Beam Design Equations)										
M	Ma	rk/Descr	Eave 6-0	Eave 6-0	Gable 12-0	Gable 12-0	Porch 12-6	Porch 12-6			
E	N	/laterial	24F-V4 DF/DF	2.0E LVL	24F-V4 DF/DF	2.0E LVL	24F-V4 DF/DF	VLAM 2.0 3100			
M	S	Section	GLB 3.125x10.5	LVL 1.75x9.25	GLB 3.125x15	LVL 1.75x14	GLB 3.125x15	VLAM 3.5x14			
В		Lams	1	2	1	2	1	1			
E		Span	6.25 ft	6.25 ft	12.00 ft	12.00 ft	12.50 ft	12.50 ft			
R		Fix	None	None	None	None	None	None			
	D	uration	Snow	Snow	Snow	Snow	Snow	Snow			
D	Re	epetetive	No	No	No	No	No	No			
A	I	ncised	No	No	No	No	No	No			
Т	We	eak Axis	No	No	No	No	No	No			
A		Self-Wt	Yes	Yes	Yes	Yes	Yes	Yes			
	R	DL	12.00 psf	12.00 psf	12.00 psf	12.00 psf	8.00 psf	8.00 psf			
	0	LL	100.00 psf	100.00 psf	100.00 psf	100.00 psf	120.00 psf	120.00 psf			
L	O F	Trib	13.00 ft	13.00 ft	6.00 ft	6.00 ft	5.00 ft	5.00 ft			
О		DL	0.00 psf								
A	F L	LL	0.00 psf								
D	R	Trib	0.00 ft								
S	0	DL	12.00 psf	12.00 psf	12.00 psf	12.00 psf	0.00 psf	0.00 psf			
	T H	Trib	2.00 ft	2.00 ft	2.50 ft	2.50 ft	0.00 psi	0.00 psi 0.00 ft			
Н	- 11	W _u	1488.3 plf	1488.2 plf	713.8 plf	714.3 plf	651.8 plf	652.6 plf			
	Go	ov Load	D+Lr/S	D+Lr/S	D+Lr/S	D+Lr/S	D+Lr/S	D+Lr/S			
D		V	4650.8 lbs	4650.5 lbs	4282.9 lbs	4286.1 lbs	4073.8 lbs	4078.8 lbs			
E		f_{v}	212.6 psi	215.5 psi	137.1 psi	131.2 psi	130.4 psi	124.9 psi			
S		F _v	264.5 psi	327.8 psi	264.5 psi	327.8 psi	264.5 psi	327.8 psi			
Ι	ſ	$f_v < F_v$?	OK	OK	OK	OK	OK	OK			
G		M	7266.9 ft-lb	7266.4 ft-lb	12848.6 ft-lb	12858.3 ft-lb	12730.7 ft-lb	12746.1 ft-lb			
N		f_b	1518.6 psi	1747.0 psi	1315.7 psi	1349.6 psi	1303.6 psi	1337.8 psi			
		F_b	2127.5 psi	3097.7 psi	2075.4 psi	2928.0 psi	2075.4 psi	3049.1 psi			
C	f	$f_b < F_b$?	OK	OK	OK	OK	OK	OK			
Н		$\Delta_{ m L}$	0.09 in	0.10 in	0.20 in	0.17 in	0.23 in	0.21 in			
E	_		L/811	L/776	L/723	L/823	L/640	L/728			
C		$\Delta_{ m L,allow}$	L/360	L/360	L/240	L/240	L/360	L/360			
K		$\Delta_{ ext{Tot}}$	0.11 in	0.12 in	0.26 in L/563	0.22 in L/640	0.26 in L/567	0.23 in			
S			L/666 L/240	L/637 L/240	L/180	L/040 L/180	L/240	L/644 L/240			
	Λ.	$\Delta_{ m Tot,allow} < \Delta_{ m Allow}$?	OK	OK	OK	OK	OK	OK			
		b	3.13 in	3.50 in	3.13 in	3.50 in	3.13 in	3.50 in			
		d	10.50 in	18.50 in	15.00 in	28.00 in	15.00 in	14.00 in			
S		A_{s}	32.81 in ²	32.38 in ²	46.88 in ²	49.00 in ²	46.88 in ²	49.00 in ²			
U		S	57.42 in ³	49.91 in ³	117.19 in ³	114.33 in ³	117.19 in ³	114.33 in ³			
P		I	301.46 in ⁴	230.84 in ⁴	878.91 in ⁴	800.33 in ⁴	878.91 in ⁴	800.33 in ⁴			
P		W _{self}	8.3 plf	8.2 plf	11.8 plf	12.3 plf	11.8 plf	12.6 plf			
О		F_{v}	230 psi	285 psi	230 psi	285 psi	230 psi	285 psi			
R		F _b	1850 psi	2600 psi	1850 psi	2600 psi	1850 psi	3100 psi			
T		E _'	1.60E+06 psi	2.00E+06 psi	1.60E+06 psi	2.00E+06 psi	1.60E+06 psi	2.00E+06 psi			
		E C	1.60E+06 psi	2.00E+06 psi	1.60E+06 psi	2.00E+06 psi	1.60E+06 psi	2.00E+06 psi			
D	-	$C_{\rm D}$	1.15	1.15	1.15	1.15	1.15	1.15			
A		C _r	1.00	1.00	1.00 1.00	1.00	1.00	1.00			
T	_	C_{fu} $C_{\text{F/V}}$	1.00	1.00	0.98	0.98	1.00 0.98	1.00 0.86			
A	-	$C_{F/V}$	1.00	1.04	1.00	1.00	1.00	1.00			
		$C_{i,E}$	1.00	1.00	1.00	1.00	1.00	1.00			
		1,1	2.00	2.00	2.00	1,00	1,00	101			

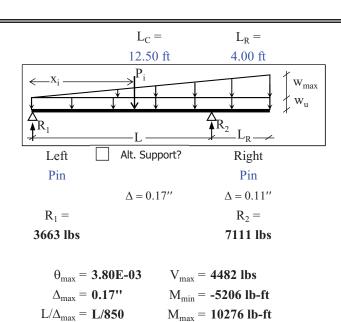


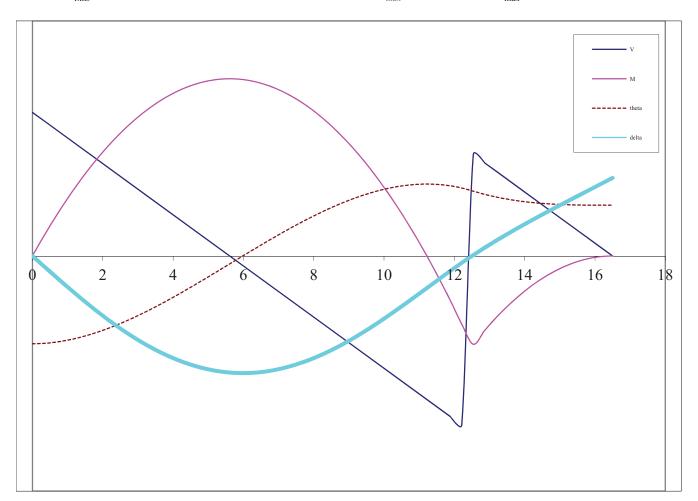


Project Name: Eplin 672 Sunset Dr. Alpine Residence

Beam Calculation For: Porch 12-6 GLB




Date: 3/10/2025
Engineer: TMM


Project #: **P25006**

Project Name: Eplin 672 Sunset Dr. Alpine Residence

Beam Calculation For: Porch 12-6 VLAM

Date: 3/10/2025
Engineer: TMM

Project #: **P25006**

Project Name: Eplin 672 Sunset Dr. Alpine Residence

Continuous Foundations (ASD)

Allowable Brng Pressures D+L: 1500 psf Seismic S_{DS} : 0.887

 $D+E_v$: 2000 psf Ftg Width Increment: 1 in

Liı	ne/Descr	Typ Eave	Max Eave	Typ Gable	Max Gable		
R	D	12.00 psf	12.00 psf	12.00 psf	12.00 psf		
0	L _r /S/R	100.00 psf	100.00 psf	100.00 psf	100.00 psf		
F	Trib	13.00 ft	13.00 ft	3.00 ft	9.25 ft		
F	D	0.00 psf	0.00 psf	0.00 psf	0.00 psf		
L R	L	0.00 psf	0.00 psf	0.00 psf	0.00 psf		
K	Trib	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
О	D	0.00 psf	8.00 psf	0.00 psf	8.00 psf		
T H	Lr/S/R	0.00 psf	120.00 psf	0.00 psf	120.00 psf		
п	Trib	0.00 ft	3.00 ft	0.00 ft	3.00 ft		
O T	DL	12.00 psf	12.00 psf	12.00 psf	12.00 psf		
Н	Trib	10.00 ft	10.00 ft	10.00 ft	10.00 ft		
U	W _{Max}	1576.0 plf	1960.0 plf	456.0 plf	1540.0 plf		
N I	Gov Load	D+Lr	D+Lr	D+Lr	D+Lr		
F	b_{min}	1.05 ft	1.31 ft	0.30 ft	1.03 ft		
E	W _{D+Ev}	310.3 plf	337.3 plf	175.4 plf	286.7 plf		
Q	b_{min}	0.16 ft	0.17 ft	0.09 ft	0.14 ft		
Min	Ftg Width	1.08 ft	1.33 ft	0.33 ft	1.08 ft		
Liı	ne/Descr						
R	D						
О	L _r /S/R						
O F	Trib						
	D						
F L	L						
R	Trib						
	D						
O T	L						
Н	Trib						
0	DL						
T H	Trib						
U	Wu						
N I	Gov Load						
F	b_{\min}						
E	w_{D+Ev}						
Q	b_{\min}						
	min					 	

Project Name: Eplin 672 Sunset Dr. Alpine Residence

Pad Foundations (ASD) based on entering point loads (i.e. post/beam reactions)

Allowable Brng Pressures D+L: 1500 psf Seismic S_{DS} : 0.887

 $D+E_v$: 2000 psf Ftg Width Increment: 1 in

Lo	oc/Descr	Post Pad	Mid Pad	Corner Pad		
R	P_{D}	444 lbs	387 lbs	255 lbs		
F	$P_{Lr\!/\!S/\!R}$	6666 lbs	5805 lbs	3825 lbs		
F L	P_{D}	0 lbs	0 lbs	0 lbs		
R	$P_{\rm L}$	0 lbs	0 lbs	0 lbs		
o	P_{D1}	0 lbs	0 lbs	0 lbs		
T H	P_{D2}	0 lbs	0 lbs	0 lbs		
п	$P_{ m L}$	0 lbs	0 lbs	0 lbs		
E/W	$P_{E/W}$	0 lbs	0 lbs	0 lbs		
U	P _{Max}	7110 lbs	6192 lbs	4080 lbs		
N I	Gov Load	D+Lr	D+Lr	D+Lr		
F	A_{min}	4.7 sf	4.1 sf	2.7 sf		
E	$P_{D+E/W}$	499 lbs	387 lbs	255 lbs		
w	A_{min}	0.2 sf	0.2 sf	0.1 sf		
Sq	Ftg Dim	2.25 ft	2.08 ft	1.67 ft		

Lo	oc/Descr				
R	P_{D}				
F	$P_{Lr/S/R}$				
F L	P_{D}				
R	P_{L}				
0	P_{D1}				
T H	P_{D2}				
	$P_{ m L}$				
EQ	P_{EQ}				
U	P _{Max}				
N I	Gov Load				
F	A_{min}				
E	P_{D+Ev}				
Q	A_{min}				
Sc	ր Ftg Dim				

Date: 3/10/2025

Engineer: TMM
Project #: P25006

Project Name: Eplin 672 Sunset Dr. Alpine Residence

Lateral Shearwall Design Summary

Level	Line	Method	v _{SW} (plf)	SW	v _{Dia} (plf)	F_{HD} (lbs)	HD	F _{strap} (lbs)	Strap	Orient
Roof	1	FTAO	375	В	230	1783	LSTHD8-6	1414	CS16	Horiz
"	3	FTAO	501	С	106	2048	LSTHD8-6	948	CS16	Horiz
"	A	SEGMENT	167	A	108	1673	LSTHD8-6	n/a	n/a	n/a
"	В	SEGMENT	343	В	115	0	LSTHD8-6	2879	n/a	n/a

SHEARWALLS

A (260 plf) 7/16 Thk w/8d @ 6/12" B (380 plf) 7/16 Thk w/8d @ 4/12

C (640 plf) 7/16 Thk w/8d @ 2/12 o/3" Nom, Blk All Panel Edges

ROD HOLD-DOWNS

LSTHD8-6 (2250 lbs) LSTHD8 w/(16) 0.148 x 3 1/4 To Dbl 2x in 6" Min Stemwall

HTT4-2x (3000 lbs) HTT4 w/(18) 0.148 x 1 1/2 To 2x & 5/8 Rod

STRAPS

CS20 (1030 lbs) CS20 w/(12) 0.148 x 2 1/2 (6") or (14) 0.131 x 2 1/2 (9")

CS16 (1705 lbs) CS16 w/(20) 0.148 x 2 1/2 (11") or (22) 0.131 x 2 1/2 (13")

CS14 (2490 lbs) CS14 w/(26) 0.148 x 2 1/2 (15") or (30) 0.131 x 2 1/2 (16")

CMSTC16 (4690 lbs) CMSTC16 w/(50) 0.148 x 3 1/4 (20")

CMST14 w/(56) 0.162 x 2 1/2 (26")or (66) 0.148 x 2 1/2 (30")

Project Name: Eplin 672 Sunset Dr. Alpine Residence

ASD Lateral Load Line Reactions - Based On Assumed Relative Stiffness

*Story shears are worst-case demands, considering both directions independently to determine the critical load values. Distribution of total shear has been performed approximately equally based on total shearwall lengths for each principal direction. The individual shearwall reactions have been linked to this overall summary page, and are based on the average shearwall demand times the total shearwall length for each shearwall line. Observed differences in shearwall types & nailing is due in large part to the variations in shearwall design methods, in order to reduce the number of hold-downs required.

Level: Roof

= 5.67 k	$V_{N-S,W} =$	$V_{N-S,W} = 1.78 \text{ k}$		5.67 k		
$ m V_{EQ}$	Line Σ_{SW} V_W V_{EQ}					
s 3878 lbs	A	24.75 ft	921 lbs	2934 lbs		
s 1792 lbs	В	23.08 ft	859 lbs	2736 lbs		
		$\Sigma_{ m SW, N\text{-}S} =$	47.83 ft			
f	$v_{N-S,W} = 37.2 \text{ plf}$					
f	$v_{N-S,EQ} = 118.5 \text{ plf}$					
	Wind - Critical Case, Plan N-S					
	Width = 22 ft					
	$w_{unif} = 71 plf$					
	$P_{EZ} = 109 lbs$					
	$V_{N-S,W} = 1.78 \text{ k}$					
	s 3878 lbs s 1792 lbs	V_{EQ} Line as 3878 lbs A B	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

<u>ove</u>nant <u>ngineering</u>

Date: 3/10/2025 Engineer: TMM Project #: **P25006**

Project Name: Eplin 672 Sunset Dr. Alpine Residence

ASD Diaphragm/ASD Shearwall Design for Grid Line 1 @ Roof See FTAO

ovenant ingineering

Date: 3/10/2025 Engineer: TMM Project #: **P25006**

Project Name: Eplin 672 Sunset Dr. Alpine Residence

		1	1	1481	<u> </u>		Sne	earwal	ιD	esign	<i>joi</i>	0714		<i>c 5 w</i>	No	0,, 50		1710													Ŧ
Shearwall:	$l_{\rm sw}=5.58~{\rm ft}$	$v_{\rm sw} = 321 \text{ plf}$	$\Delta_{\rm sw} = \#N/A$		ų.	Floor Strap	1						-												l						
Diaphragm:	$l_{dia}=21.91~\mathrm{ft}$	$V_{dia} = 106 \text{ plf}$	$F_{coll-max} = 1070$ #		Minimum Holdown Type	Foundation Strap	-		-				-												!						
	Diaph 🔲 LRFD?					Anchor-Bolt	!				-		!												ļ				-		
Segmented	rated	1.00	1.1			*F _{HD(#)}	-			3424 3554		3892 3938													1						
Segn	O Perforated	$C_0 = 1.00$	# bays = 1.1		EO	P _{up-Add'I(#)}			-								-								1						
	0.0 ft	0.0 psf	0.0 ft			OTM _(k-ft)		ı		10.43		7.48			-	-				-	-					-		-		ı	
Above	$H_{\rm wall}=0.0\;ft$	$DL_{story} = 0.0 \text{ psf}$	$Trib_{story} = 0.0 \text{ ft}$	<u>~</u>		*F _{HD(#)}	-			3368 3498		3831 3878	-																		
Level(s) Above	#	#	.0 ft	26" (180pl	Wind	P _{up-Add'I(#)}	1	1 1	-								-						-		1						
	$V_{wind} = 0$ #	$V_{\rm EQ} = 0 \#$	$H_{plate-eff} = 0.0 \text{ ft}$	g, BN@6", EN@6" (180plf)		OTM _(k-ft)	\vdash	1	-	10.28		7.37	-	-		-		-		1		1						-			
	12.0 psf	12.0 psf	4.0 ft	Framing, E	Unfet'd	RM _(k-ft)	1	1	-	0.89		0.46	-			1	-			-	-				1	-				1	Ī
e FTAO	$DL_{\rm wall} = 12.0 \ psf$	$DL_{story} = 12.0 \text{ psf}$	$Trib_{story} = 4.0 \text{ ft}$	l o/2x Nom.]	H	PDL-Add'I(#)	-													1 1		1 1			1						
Roof, See FTAO	#5911	1792#	10.0 ft	15/32 w/8d	H E	(#)	0	89-	-1070	-292	-558	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	$V_{wind} = 1765 \#$	$V_{EQ}=1792\#$	$H_{plate} = 10.0 \text{ ft}$	l, C-C, C-D	SW	3.5:1	1	1		OK		NG:	-			-	-			-	-	1				1					
EQ Modifiers	$\rho=1.00$	$^{\mathrm{aph}}/_{\mathrm{base}} = 1.30$	$M_{Factor} = 0.6D$	phragm: Unblocked, C-C, C-D 15/32 w/8d o/2x Nom. Framin ar Wall: #########	Lenoth		0.00	0.83	12.25	3.25	3.25	2.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	=	Se II	or =	gm .lle/) Mail.	SW?		: n		5				! 🖂		! 🗆				\Box						! 🗆		\Box			1

ovenant ingineering

Date: 3/10/2025 Engineer: TMM Project #: **P25006**

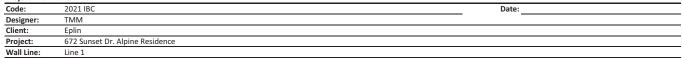
Project Name: Eplin 672 Sunset Dr. Alpine Residence

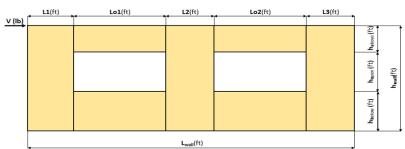
Shearwall:	t = 24.75 ft	Vsw	$\Delta_{\rm sw} = 0.26 {\rm nn}$		Tvne	p Floor Strap											-		-		-		I		-		1			
Diaphragm:	$l_{dia} = 35.17 \text{ ft}$	$v_{dia} = 108 \text{ plf}$	$F_{coll-max} = 504$ #		Minimum Holdown Tyne	Foundation Strap	-																1		-		1			
SW 🗍 LRFD?	Diaph 🔲 LRFD?					Anchor-Bolt	!						-				-						1		-		1			
Segmented	orated	$C_0 = 0.71$	5.0			*FHD(#)		1673	1	1673					-		-		1		-		-		1		1		1	1
Segi	Perforated	C ₀ =	# bays = 5.0		FO	P _{un-Add*I(#)}	-		-						-		-		-		1		1		1		1		-	
	0.0 ft	0.0 psf	0.0 ft			OTM _(k-ft)		41.40		41.40		-				1	-	-	1	1	1	1	-		1	-	-	-	-	
Above	$H_{\text{wall}} = 0.0 \text{ ft}$	$DL_{story} = 0.0 \text{ psf}$	Trib _{story} = 0.0 ft	<u>د</u>		*F _{HD(#)}	-	525		525							1		1		1		1		1				-	1 1
Level(s)	#	# 5	.0 ft	z6" (180pl	Wind	Pun-Addit#)	-																-		1		-		-	
	$V_{wind} = 0$ #	$ m V_{EQ} = 0 \#$	H _{plate-eff} = 0.0 ft	g, BN@6", EN@6" (180plf)		OTM _(k-ft)	_	13.00		13.00				1		-		-	-			!	-	!	1	1	-	1	-	-
	12.0 psf	12.0 psf	13.0 ft	Framing, E	Unfet'd	RM _(k-ft)	-	-	-			-			-	1		-		-	-	-	1		1	1	1	-	-	-
Jou	$DL_{wall} = 12.0 psf$	$DL_{story} = 12.0 \text{ psf}$	Trib _{story} = 13.0 ft	phragm: Unblocked, C-C, C-D 15/32 w/8d o/2x Nom. Framin or Well: Other Crades 7/15 w/8d FN @6".o. /26046	oc, (zeopni) H	P DI -Add!(#)	-		-						-				-		-				1		1		-	
rs Roof	921#	2934#	10.0 ft	15/32 w/8d	Fern	(#)	0	504	-232	491	491	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	$V_{wind} = 921$ #	$V_{EQ} = 2934 \#$	H _{plate} = 10.0 ft	l, C-C, C-D	SWn.c.	2.0:1	1	OK		OK					-	!				1		!	-	!	1	1	1	!	-	1
EQ Modifiers	$\rho = 1.00$	1.30	0.6D	Unblocked Other Cre	Lenoth		0.00	10.17	6.25	14.58	0.00	4.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00	00.00	00.00
3Q Mc	_ σ	$^{aph}/_{base} = 1.30$	$M_{Factor} = 0.6D$	hragm.	T wall.	SW?		r -	n	r	n	_				! 🗆														

<u>ove</u>nant <u>ngineering</u>

Date: 3/10/2025 Engineer: TMM Project #: **P25006**

Project Name: Eplin 672 Sunset Dr. Alpine Residence


Device Colored Disph LRP2	
Pove	
Pove O Segme H _{vall} 0.0 ft O Segme H _{vall} 0.0 psf E O Segme H _{vall} 0.0 psf E O Segme H _{vall} 0.0 psf H _{vall} E D Segme H _{vall} O Segme H _{vall} E D Se	
#Filipting of the first stay = 0.0 ft Pup. Add	
#FHD#) **FHD#)	
f V _{wind} = 0# f V _{wind} = 0# H _{plate-eff} = 0.0 ft V _{EQ} = 0# H _{plate-eff} = 0.0 ft V _{EQ} = 0# Wind OTM _(k-fl) P _{up-AddI(fl)} 10.12 -	
12.0 ps 13.0 ft framin that fr	1 1
DL _{vall} = 12.0 psf	
Rog	0
Vwind = 859# V _{EQ} = 2736# H _{plate} = 10.0 ff I, C-C, C-D 15/32 - 10.0 fc I, C-C, C-D	
Powdifiers Pow	0.00
EQ Modifiers \[\rho = 1.00 \] \[\rho = 1.00 \] \[\rho = 1.30 \] \[\rho \text{Finator} = 0.6D \] \[\rho \text{Pinator} = 1.30 \] \[\rho \text{Pinator} = 0.6D \] \[\rho \text{Pinator} = 0.6D \] \[\rho \text{Pinator} = 0.6D \] \[\rho \text{Pinator} = 0.00 \]	



Force Transfer Around Openings Calculator

The force transfer around openings (FTAO) method of shear wall analysis is an approach that aims to reinforce the wall such that it performs as if there was no opening. This approach lends ce

Project Information

Shear Wall Calculation Variables

V	3878 lbf
L1	2.17 ft
L2	7.08 ft
L3	2.83 ft
h_{wall}	10.08 ft
L_{wall}	21.92 ft

	Opening 1
$h_a 1$	2.08 ft
$h_o 1$	5.33 ft
h_b1	2.67 ft
Lo1	4.92 ft

icai wan calculation								
	Opening 2							
h _a 2	2.08 ft							
$h_o 2$	5.33 ft							
h _b 2	2.67 ft							
Lo2	4.92 ft							

1783 lbf

433 lbf

Adj. Fac	1.25-0.125h/bs	
Wall Pier Asp	ect Ratio	Adj. Factor
P1=h _o /L1=	2.46	0.943
$P2=h_o/L2=$	0.75	N/A
P3=h _o /L3=	1.88	N/A

1. Hold-down forces: H = Vh_{wall}/L_{wall}

2. Unit shear above + below opening								
First opening: $va1 = vb1 = H/(h_a1+h_b1) =$	375 plf							
Second opening: $va2 = vb2 = H/(h_a2+h_b2) =$	375 plf							

3. Total boundary force above + below openings

First opening:	01	= va1 x (Lo1) =	1847 lbf
Second opening:	02	= va2 x (Lo2) =	1847 lbf

F1 = O1(L1)/(L1+L2) =

4. Corner forces

F2 = O1(L2)/(L1+L2) =	1414 lb
F3 = O2(L2)/(L2+L3) =	1320 lb
F4 = O2(L3)/(L2+L3) =	527 lb

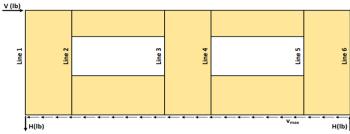
5. Tributary length of openings

T1 = (L1*Lo1)/(L1+L2) =	1.15 ft
T2 = (L2*Lo1)/(L1+L2) =	3.77 ft
T3 = (L2*Lo2)/(L2+L3) =	3.51 ft
T4 = (L3*Lo2)/(L2+L3) =	1.41 ft

6. Unit shear beside opening

v1 = (V/L)(L1+T1)/L1 =	271 plf
v2 = (V/L)(T2+L2+T3)/L2 =	359 plf
v3 = (V/L)(T4+L3)/L3 =	265 plf
Check v1*L1+v2*L2+v3*L3=V?	3878 lbf OK

7. Resistance to corner forces


R1 = v1*L1 =	588 lbf
R2 = v2*L2 =	2541 lbf

8. Difference corner force + resistance

Jistarice	
R1-F1 =	155 lbf
R2-F2-F3 =	-193 lbf
D2 F4 =	222 lbf

9. Unit shear in corner zones

zones	
vc1 = (R1-F1)/L1 =	71 plf
vc2 = (R2-F2-F3)/L2 =	-27 plf
vc3 = (R3-F4)/L3 =	78 plf

Check Summary of Shear Values for Two Openings

Check Summary of Shear values for Two Openings				
Line 1: $vc1(h_a1+h_b1)+v1(h_o1)=H$?		339	1445	1783 lbf
Line 2: $va1(h_a1+h_b1)-vc1(h_a1+h_b1)-v1(h_o1)=0$?	1783	339	1445	0
Line 3: $vc2(h_a1+h_b1)+v2(h_o1)-va1(h_a1+h_b1)=0$?	-129	1913	1783	0
Line 4: va2(h _a 2+h _b 2)-v2(h _o 2)-vc2(h _a 2+h _b 2)=0?	1783	1913	-129	0
Line 5: $va2(h_a2+h_b2)-vc3(h_a2+h_b2)-v3(h_o2)=0$?	1783	372	1411	0
Line 6: $vc3(h_22+h_b2)+v3(h_c2) = H$?		372	1411	1783 lbf

Design Summary*

Req. Sheathing Capacity	375 plf	4-Term Deflection	3-Term Deflection	
Req. Strap Force	1414 lbf	4-Term Story Drift %	3-Term Story Drift %	
Req. HD Force	1783 lbf		·	
Req. Shear Wall Anchorage Force	177 plf			

Force Transfer Around Openings Calculator

The force transfer around openings (FTAO) method of shear wall analysis is an approach that aims to reinforce the wall such that it performs as if there was no opening. This approach lends certain advantages over segmented their walls, more versality because it allows for approach wall segments while till meeting the height-howidth ratios and of the fewer required hold-downs

Project Information

Shear Wall Calculation Variables

			0
٧	1792 lbf		Opening 1
L1	3.25 ft	h _a	2.17 ft
L2	2.33 ft	h _o	6.00 ft
wall	10.09 ft	h _b	1.92 ft
wall	8.83 ft	Lo1	3.25 ft

Adj. Facto	1.25-0.125h/bs	
Wall Pier Asp	Adj. Factor	
P1=h _o /L1=	1.85	N/A
P2=h _o /L2=	2.58	0.928

6. Unit shear beside opening

1. Hold-down forces: H = Vh_{wall}/L_{wall}
 2048 lbf

2. Unit shear above + below opening
 First opening: va1 = vb1 = H/(h_a+h_b) = 501 plf

3. Total boundary force above + below openings
 First opening: O1 = va1 x (Lo1) = 1627 lbf

4. Corner forces

F1 = O1(L1)/(L1+L2) = 948 lbf
F2 = O1(L2)/(L1+L2) = 679 lbf

5. Tributary length of openings

T1 = (L1*Lo1)/(L1+L2) =

T2 = (L2*Lo1)/(L1+L2) =

v2 = (V/L)(T2+L2)/L2 = Check v1*L1+v2*L2=V?

7. Resistance to corner forces

R1 = v1*L1 = R2 = v2*L2 =

8. Difference corner force + resistance

R1-F1 = R2-F2 =

9. Unit shear in corner zones

vc1 = (R1-F1)/L1 =

v1 = (V/L)(L1+T1)/L1 =

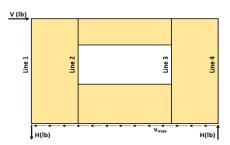
vc2 = (R2-F2)/L2 =

321 plf

321 plf

1044 lbf

748 lbf


96 lbf

69 lbf

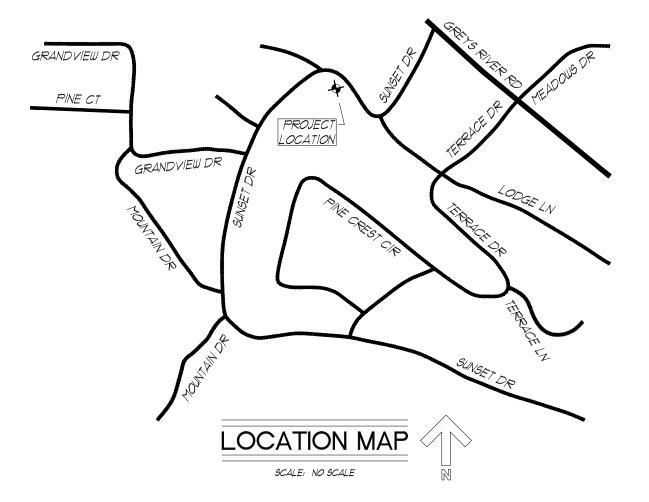
30 plf

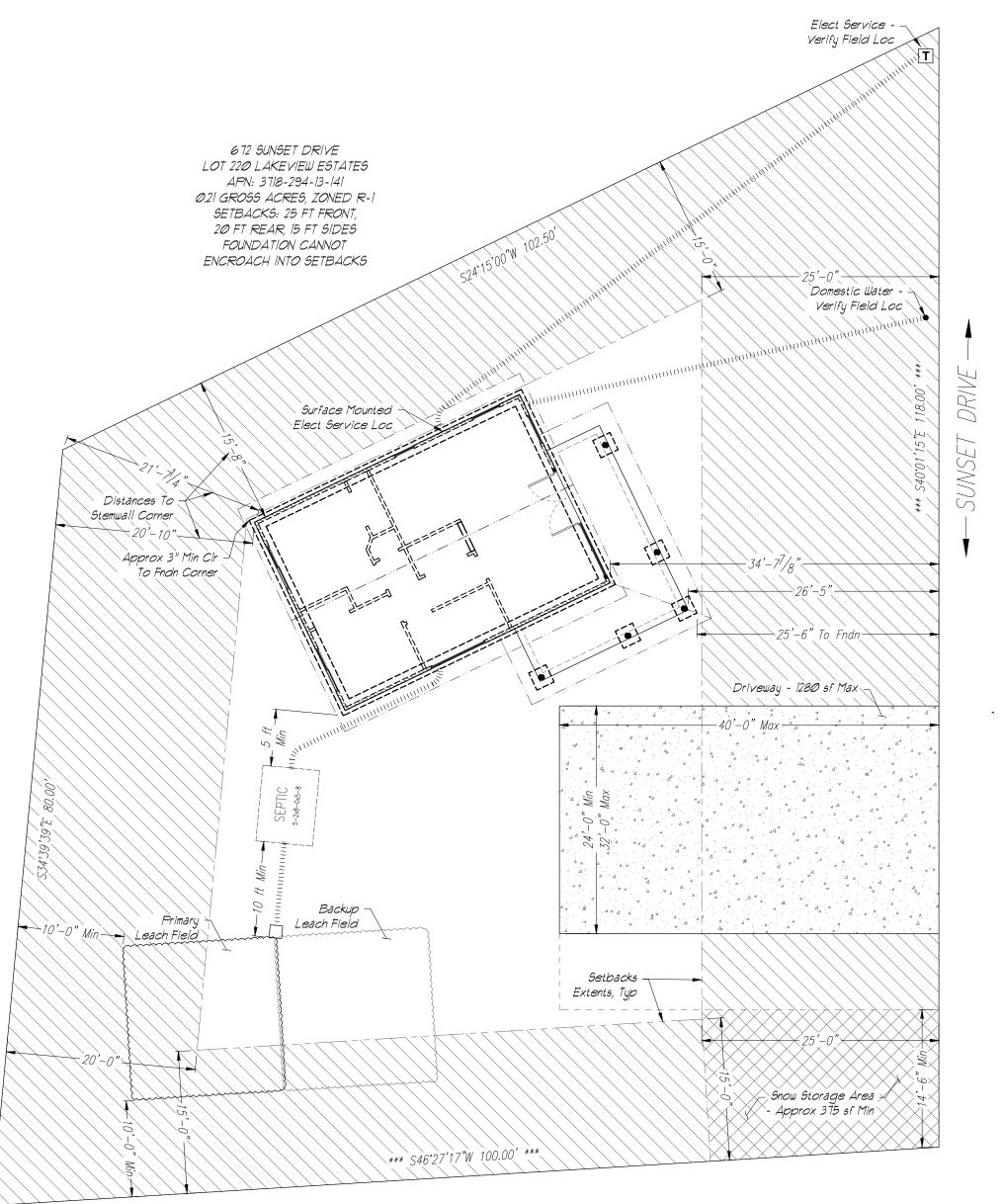
30 plf

1792 lbf **OK**

1.89 ft

1.36 ft


Check Summary of Shear Values for One Opening


Line 1: $vc1(h_a+h_b)+v1(h_o)=H$?		121	1927	2048 lbf
Line 2: $va1(h_a+h_b)-vc1(h_a+h_b)-v1(h_o)=0$?	2048	121	1927	0
Line 3: $va1(h_a+h_b)-vc2(h_a+h_b)-v1(h_o)=0$?	2048	121	1927	0
Line 4: $vc2(h_a+h_b)+v2(h_o)=H$?		121	1927	2048 lbf

• • •					
Req. Sheathing Capacity	501 plf	4-Term Deflection	3-Term Deflection		
Req. Strap Force	948 lbf	4-Term Story Drift %	3-Term Story Drift %		
Req. HD Force (H)	2048 lbf				
Req. Shear Wall Anchorage Force (v _{max})	203 plf				

^{*}The Design Summary assumes that the shear wall is designed as blocked.

RESIDENTIAL PLUMBING NOTES

1. Domestic water shall be piped in either:

- I.I. Type L copper w/sweat fittings with non-lead solder, or
- 1.2. Pex-type water lines and fittings as allowed by the local building official
- 6. For hot water (see plans for type & location), maintain minimum manufacturer-recommended clearances for either:
- 12.2. Tank-less water heater with manufacturer's specifications and gas pipe diagram with demand calculations for review and approval, or
- 12.3. Tank water heater with recovery rating in accordance with IPC. First hour recovery shall not be less than 40 gallons.
- Tank water heater shall be raised at least 18" AFF and shall be strapped at upper and lower third points, w/pressure-temperature relief valve with continuous downward slope and downward oriented drain terminating at least 6" above finish grade.
- 13. Provide new angle stop valves at all new fixtures, faucets, etc.
- 14. Provide new brass hose bibs at exterior locations as required.
- 15. Provide dielectric unions at connections between dissimilar materials.
- 16. Provide recessed cold water outlet with water hammer arrester in wall at refrigerator, and cold & hot water outlets w/hammer arrester & drain inlet at clothes washer.
- 17. Showers shall be finished with a nonabsorbent finish to a height not less than 72" AFF, w/glass mat gypsum board or similar water resistant backer where applicable, and shall be at least 32" x 32" or 1024 in² with width not less than 30".
- 13. Provide 30" wide x 24" front clearance for all water closets.
- 14. All new sanitary sewer piping or venting shall be sized and installed in conformance with the current adopted IPC.

FINISH NOTES

All exterior and interior finish shall be installed per manufacturer recommendations, industry standards and any applicable code requirements. All materials used for installation shall comply with the CGBSC, referenced elsewhere in these notes. All colors, styles, models, textures, moldings, trim, etc. shall be coordinated with owner.

l. Exterior

- I.I. Roofing (as indicated in plans and/or elevations)
- Asphalt Composition Shingles Or Standing Seam Metal Roofing
- Roofing o/(2) layers 15# roofing paper
- Provide flashing at all roofing edges
- Walls (as indicated in plans and/or elevations)
- Cement Or Lap Board Siding
- Install over properly prepared sheathed and waterproofed substrate as required (15# building paper o/Tyvek house wrap o/wood substrate, min).
- Stonework, brick & other similar exterior wall finish
 - Install over properly prepared sheathed and waterproofed substrate as required (15# building paper # lath o/wood substrate, min, or directly to finished concrete).

2. Interior

- 2.1. Walls & Ceiling
- All interior wall and ceiling finish shall be $\frac{1}{2}$ " Min gypsum board, with taped and finished joints. See plans and FIRE SAFETY NOTES' for locations with more stringent requirements, where occurs.

2.2. Flooring

- All interior flooring finish and extents, including carpeting, hard-wood flooring, flat stonework, tiling and manufactured flooring products shall be coordinated with owner. All flooring products shall be installed with appropriate underlay/substrate preparation as per code requirements, industry standards and manufacturer recommendations.
- Radiant floor heating, if installed (at owners' direction) shall comply with all applicable safety codes and manufacturer recommendations for installation and control systems.

ELECTRICAL NOTES - GENERAL

l. Main Electrical Panel

- Service panels shall be multi-breaker type, flush or surface mounted with steel door equipped with latch, w/all circuits plainly marked at completion.
- Wire lighting and convenience receptacles separately. Provide (2) spare circuits.
- *Provide grounding connection to either Ufer grounding (concrete-encased electrode), or Copper grounding rod

2. All conductors shall be copper.

- 3. Provide or verify bonding of water piping and above-ground metal gas piping to the service ground.
- 4. Provide combo-type AFCI protection to all branch circuits that supply 125-volt, single-phase, 15- and 20-Amp outlets (lighting, smoke detector, receptacles) installed in dwelling unit bedrooms, family rooms, dining rooms, living rooms, dens, closets, hallways or
- 5. All multi-wire circuits shall have a means of simultaneously disconnecting all ungrounded conductors at the breaker panel. All conductors for multi-wire circuits shall be grouped with wire ties within the breaker panel.
- 6. All new hard-wired smoke and carbon monoxide alarm circuits shall be AFCI protected.
- 7. Provide a tamper-resistant wall receptacle:
- in habitable rooms, spaced no greater than 12' oc, and no greater than 6' from any openings & at walls longer than 2'
- In new hallways longer than 10'
- 7.3. Within 6' of new laundry sinks/wet bars
- 7.4. In garage, basement, crawl space or other damp areas
- 8. Provide a GFCI protected, tamper-resistant receptacle with weather-proof enclosure at:
- 8.1. Front & back yards
- 8.2. Decks, balconies or porches greater than 20 sf
- Provide an accessible 15 amp (Min) rated receptacle outlet, installed on the same level and within 25' of heating and air conditioning equipment. This service receptacle shall not be connected to the load side of the equipment.

ELECTRICAL NOTES - BATHROOM

Provide a 20 amp dedicated circuit for each bathroom. Other bathroom equipment (i.e. lighting, exhaust fans) within the same bathroom may be supplied by the same branch circuit where the branch circuit supplies a single bathroom.

2. Provide a GFCI protected, tamper-resistant receptacle within 3' of each bathroom lavatory, or on the side of vanity cabinets within 12" of the top.

ELECTRICAL NOTES - LAUNDRY

- 1. Provide a 30 amp dedicated circuit with GFCI-protected, tamper-resistant receptacle for the laundry.
- 2. Electric clothes dryer(s) shall be supplied with 4-wire grounded electrical outlet(s)

LIGHTING NOTES - GENERAL

Recessed lighting in insulated ceilings shall be air-tight, rated for zero insulation contact clearance and shall be sealed between the housing and ceiling with a gasket or caulking.

- 2. Permanent fixtures, lamp holders and receptacles shall be securely supported. Any fixtures in excess of 6 lbs or in excess of 16" in length in any dimension shall not be supported solely by the fixture mounting screws unless so permitted by the manufacturer. Outlet boxes shall not be used as the sole support for ceiling fans.
- 3. Lighting fixtures located in wet or damp locations shall be installed such that water cannot enter or accumulate in the wiring compartments, lamp holders or other electrical parts. All fixtures installed in such locations shall be marked "SUITABLE FOR WET LOCATIONS" (or similar).

MECHANICAL NOTES

- I. All mechanical shall be design-build by mechanical contractor.
- 2. The point of all exhaust discharges shall be at least 3'-0" from any opening into the building. Exhaust vents shall be equipped with a backdraft damper.
- 3. Provide smooth metal duct with back draft damper for dryer exhaust extending exterior to the occupied living space. This duct shall not exceed a total combined horizontal and vertical length of 14', including (2) 60° elbows. 2' shall be deducted for each 60° elbow in excess of (2).
- 4. Provide new gas lines & sediment traps in accordance with manufacturer's instructions, standard industry practice and applicable code requirements. Provide new gas valves and flexible line connections to all new gas appliances.

GLAZING NOTES

- l. Provide glazing on all exterior non-decorative glasswork at:
- Swinging, sliding 4 bi-fold doors not less than 3" in the shortest pane dimension
- Windows with the lower pane edge less than 60" AFF and less than 60" horizontal from tubs, showers, pools or other similar wet-use facilities
- 1.3. Windows within 48" of entry/exit doors, or adjacent to stairs and landings with the bottom edge less than 36" vertical from the walking surface and lacking proper railing protection

PROJECT DESCRIPTION

This project is intended to construct a new single-story single-family wood-framed residence.

CONSTRUCTION TYPE

Construction Type:: V-B

OCCUPANCY

Building Occupancy/Groups: R-3/U STRUCTURE AREAS

<u> Area (sf)</u> Conditioned 202

DESIGN REFERENCES

- ***** All work to be performed under these project plans shall conform to the following applicable structural codes and any applicable supplements and amendments:
- 2021 International Building Code

Porch

- 2021 International Mechanical Code 3. 2021 International Plumbing Code
- 4. 2021 International Building Code 5. 2021 International Electrical Code
- 6. 2021[‡] International Residential Code [‡]Not Applicable To Structural Per R3Øl.l.3

RESIDENTIAL ACCESS & EGRESS NOTES

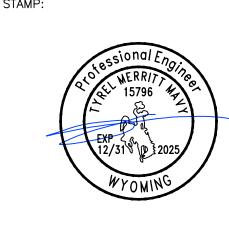
- Residential dwelling units (i.e. bedrooms) where no direct exit to the exterior exists shall have at least one (1) window compliant with all of the following:
- I.I. Net clear opening width at least 20", net clear opening height at least 24", 5.7 sf minimum clear opening area, w/B.O. window opening height no more than 44" AFF
- 2. Stairways shall comply with the following:
- 2.1. Width not less than 36", headroom clearance no less than 80", riser height not more than $7\frac{3}{4}$ ", tread depth not less than 10", w/nosing not less than $\frac{3}{4}$ " nor more than $\frac{1}{4}$ " where solid risers are provided and tread depth is less than II"

FIRE SAFETY NOTES

- Provide (1) layer 5/2" Min standard Type 'X' gypsum board sheathing, with all joints taped and finished in accordance with industry standards to achieve at least (1) hr fire rating, to:
- Interior Walls, Ceilings, Soffits, Enclosed Usable Spaces on all occupied interior surfaces
- Residential Unit Separation Walls on each side of separation walls between residential units and garages/common access corridors or stairs/other residential units. Install over any shearwall sheathing where
- 2. Provide 20-minute rated solid wood core or steel doors between residential units and corridor/stair/garage accesses.
- 3. Smoke Alarms
- 3.1. Smoke alarms shall sound an audible alarm in all bedrooms of the house (i.e. interconnect all smoke alarms).
- 3.2. *Smoke alarms shall receive their power from the primary wiring and shall have a battery backup.
- 4. Carbon-Monoxide Alarms
- 4.1. Carbon-monoxide alarms shall be installed outside each separate sleeping area in the immediate vicinity of the bedrooms in dwelling units and on every level (including basements) within which fuel-fired appliances are installed, and in dwelling units that have attached garages.
- 4.2. *Carbon-monoxide alarms shall receive their power from the primary wiring and shall have a battery backup
- *Exception: In existing residences where electrical wiring is not being replaced, it shall be permitted to install

VENTILATION NOTES

battery-operated smoke and carbon monoxide alarms.


- Kitchen range ventilation hoods shall be 100 cfm or sized per range manufacturer's specifications. Kitchen range ventilation shall be vented to the exterior.
- 2. Bathroom ventilation shall be supplied with a backdraft damper, and shall be switched separately from lighting. Provide intermatic step timer switch for each bathroom exhaust fan. Bathroom ventilation shall be sized to exhaust the air in each bathroom served 6 times per hour, but no less than 50 cfm.

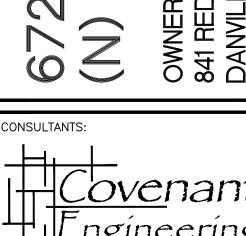
SHEET INDEX

CO.O SITE PLAN, GENERAL NOTES & REFERENCES, INCL TYPICAL MEP, FINISH & SAFETY NOTES

<u>ARCHITECTURAL & ELECTRICAL:</u> SEE <u>DESIGN BASICS HOUSE PLANS</u> (5) 18 x 24 SHEETS

SO.O STRUCTURAL NOTES & REFERENCES SI.O FOUNDATION & FRAMING PLANS SI.I LATERAL & DIMENSION PLANS S2.0 STRUCTURAL DETAILS

Section 4, Itema.


Ш

60

4

2

PROJECT:

HCovenant _ngineering PO Box 4260 Bedford, WY 83112 ph: 916-838-1973 web: covenantengineers.com

ISSUES: REVISIONS: NO. DATE BY DESCRIPTION (1) 03/12/25 TMM BUILDING PERMIT /1 \ 05/22/25 | TMM | COVER SITE PLAN & ETC SHEET DESCRIPTION: DIMENSION PLAN JOB NUMBER: **P25006** AS NOTED SCALE: 28 FEB 2025 DRAWN BY: TMM

1 OF 1 COVER SHEETS

CADD FILE NUMBER: P25006.dwg

8 25 CHECKED BY: SHEET NUMBER: S 2

FASTENER SCHEDULE The following are minimum fastener requirements for the conditions specified. Other nailing and/or fastening conditions may govern (i.e. top plate splices for shearwalls). See plans and other notes for conditions locations and/or requirements which may exceed the minimums provided by this table. For fastening of manufactured products, refer to mfr recommendations. 3. Ix6 or less subfir to Ea jst, FN......(2) 8d 4. Wider than Ix6 subfir to Ea jst, FN......(3) 8d 5. 2x subfir to jst, bm or girder, blind & FN.......(2) 16d Sill IP to jst or blkq at braced wall panels................. (3) 16d @ 16", (4) Ø.131" x 3" nails @ 16", (4) 14 Ga x 3" staples @ 16"

10. Dbl top 12'', I4 Ga x 3'' staples @ 12'' II. Blkq btwn jsts or rafters to top P, TN.......(3) 8d, (3) 0.131" x 3" nails, (3) 14 Ga x 3" staples 13. Top £'s, laps & intersections, FN.......(2) 16d, (3) Ø.131" x 3" nails, (3) 14 Ga x 3" staples 16. Cont har to stud, TN.....(4) 8d

18. Clnq jst to parallel rafters, FN........(3) 16d, (4) 0.131" x 3" nails, (4) 14 Ga x 3" staples 20. Ix diag brace to Ea stud & P., FN.........(2) 8d, (3) 0.131" x 3" nails, (3) 14 Ga x 3" staples 21. lx8 shtg to Ea brng, FN......(3) 8d Wider than Ix8 shtg to Ea brng, FN......(3) 8d

23. Built-up girders & bms, FN T&B, stgd, OS................. 20d @ 32", 0.131" x 3" nails @ 24", 14 Ga x 3" staples @ 24" Built-up girders & bms, FN @ ends & Ea splice....... (2) 20d, (3) 0.131" x 3" nails, (3) 14 Ga x 3" staples 24. 2x planks @ Ea brng......16d

......(3) 16d, (4) Ø.131" x 3" nails, (4) 14 Ga x 3" staples 29. Ledger strip, FN..... 30. Wd struct panels & particleboard^e, subflr, rf & wall shtg to framing

½ thk # less..... 1/8 to 1/4 thk..... .. 10d or 8d Wd struct panels & particleboard, single flr

³/₄ thk # less...... 6d def % to 1" thk..... .. 8d def 1/8 to 1/4 thk..... 31. Panel siding to framing

½ thk or less..... 6d corrosion-resistant siding or casing nail 5⁄8 thk..... 32. Fiberboard shtg to framing ... Il Ga x 1 $\frac{1}{2}$ " roofing nail h , 6d common, 16 Ga x 1 $\frac{1}{8}$ " staple i ½ thk¹.....

........ II Ga x $1\sqrt[3]{4}$ " roofing nai h , 8d common, 16 Ga x $1\sqrt[4]{2}$ " staple 1 ²⁵/₃₂ thk^j... 33. Interior paneling to framing 4d casing or finish nails @ 6" EN/12" FN . 6d Panel supports @ 24", casing or finish nails @ 6" EN/12" FN % thk....

Where EN 4 FN are noted, such may be designated as 6"/2" (EN @ 6", FN @ 12" Unless otherwise noted, common or box nails permitted for all conditions. All staples shall have 1/6 min crown width Unless otherwise noted, common or box nails permitted for all conditions. All staples shall have ½ min crown width. Nails spaced 6" EN/12" FN except 6" FN where FN supports span 48" or more.

Common or deformed shank 8d nails reg'd min for wood struct panel rf shtg. Pasteners spaced @ 4" EN, 8" FN, for rf shtg.
Fasteners spaced @ 4" EN, 8" FN, for subfir 4 wall shtg, @ 3" EN/6" FN for rf shtg.

Corrosion-resistant roofing nails w/1/16 \$ head Corrosion-resistant staples w/% crown. FN supports @ 16". Fasteners spaced @ 3" EN/6" FN, when used as structural shtg. Spacing shall be @ 6" EN/2" FN for non-struct application.

TYPICAL SYMBOLS

Sheet Where Detail Is Located -

Detail Number Callout -

Sheet Where Detail Is Located

Direction Of View For

Section/Detail

- Referenced

From Sheet Detail J

/HD# _ Hold-Down Per

* Approximate Location

_G# Strap Per

Of Hold-Down

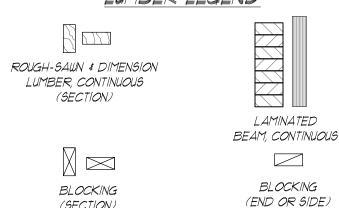
Schedule

Schedule Approximate Location

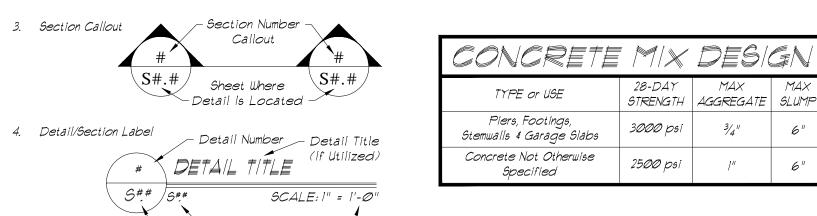
Sheet Number Scale

Detail Number Callout - S##

Detail


Specific Location Of

l. Detail Callout


5. Hold-Down Callout

6. Strap Callout

LUMBER LEGEND

(SECTION)

DEFERRED APPROVAL ITEMS

Deferred approval items shall be reviewed and approved by the Architect/Engineer of Record and by the building official prior to installation. the following items shall be permitted to be submitted for deferred approval:

Manufactured Roof Trusses

TYPICAL CONSTRUCTION NOTES

l. All manufactured hardware and framing materials identified in these plans may be substituted for similar materials manufactured by others, provided all such substitutions are with materials of at least equal capacity as those specified in these plans. All such substitutions shall be submitted to the EOR prior to their use and/or installation*.

*Hardware manufactured by USP Structural Connectors may be used without prior approval of the Engineer-Of-Record, provided the strength requirements as previously described are met.

2. As a minimum, the following shall be used, unless otherwise noted within these plans:

2.1. Sill Plates

All sill plates in contact with concrete shall be PT DF #2 (Min), with a bolt between 6" and 9" from the end of each piece of sill plate, with two (2) bolts (Min) per sill plate. Sill plates of other wood products are prohibited.

Sill plates shall be anchored to concrete $\psi/5/8$ " ϕ (min) anchor bolts embedded at least 10" and spaced at no more than 48" oc.

2.2. Double top plates shall be spliced with a minimum of (8) 10d nails at each side of each top- and bottom-piece joint splice. Concurrent splice joints shall be no closer than 48".

2.3. Shearwalls: All exterior walls shall be sheathed and nailed to match the minimum shearwall type per the shearwall schedule or plan notes, as applicable..

2.4. Post Alternate - Unless otherwise noted, it is acceptable to use built-up 2x studs in place of solid-sawn posts not exposed to weather, provided the following criteria are met:

The built-up section members are of the same material & grade as the post required, including pressure-treated where specified (see 'TIMBER SPECIFICATIONS,' this sheet).

The built-up section is at least as large as the identified post section.

The built-up section members are sistered together with 16d nails spaced at no more than 12" oc, staggered, and driven at varying angles to 'tie' each 2x ply to adjacent plys.

The ends of the built-up member are cut flush for full and uniform bearing.

Where a mechanical base or cap is required, the built-up section shall be either routed or shaved for proper fit-up. Another suitable base or cap may be used, provided capacities meet or exceed those of the base or cap specified.

Construction adhesive is applied between plys in addition to the sistering nails.

TIMBER SPECIFICATIONS

1. All timber grades as specified in theses notes are minimum grades. It is acceptable to use grades of better quality (i.e. higher strength) without first obtaining approval from the EOR for any such

Timbers of nominal width equal to or larger than 4" shall not contain boxed heart (i.e. 'free-of-heartcenter,' or FOHC), unless noted 'No FOHC OK' in these plans.

3. All Douglas-Fir (DF) Products shall be graded by the Western Wood Products Association Grading Rules and any applicable ASTM standards (i.e. ASTM

4. All load-bearing and shearwall framing shall be no less than Douglas-Fir #2. All studs 10'-0" to 14'-0" shall be Douglas-Fir #1. All studs 14'-0" and longer shall be manufactured 2.0E grade or equivalent.

Douglas-Fir #2 or Douglas-Fir #1 for spans 10'-0" or longer, unless noted otherwise.

5. All sawn beams & headers less than 10'-0" shall be

6. All glue-laminated beams shall be 24F-V4 DF/DF. All multi-span & cantilever GLB's shall be 24F-V8 DF/DF.

7. All posts shall be Douglas-Fir #1 or Better, or manufactured 2.0E equivalent where manufactured studs are required.

8. No notching of timber products is allowed, unless otherwise noted in these plans or subsequentlyissued via approved addendums or sketches. Any such addendums or sketches shall be accompanied by the wet stamp and signature of the EOR.

9. Fasteners in preservative-treated and fireretardant-treated wood shall be of hot dipped zinc-coated galvanized steel, stainless steel, silicon bronze or copper.

10. Steel washers shall be provided under heads and nuts of all lag screws and bolts which bear on wood. The following minimum requirements shall be followed for sizing of washers to be used in sill plate applications*:

Steel PL

Malleable Iron

<u>Diameter</u>	Washer Size	Washer Size
1/2"	2" Sq x 1/4"	21/2" Dia x 1/4
5/8"	21/2" Sq x 1/4"	2 ³ / ₄ " Día x ⁵ /
3/ ₄ "	3" Sq x 3/6"	3" Dia x 1/16'
7/8"	3 1/2" Sq x 3/8"	3 ½" Dia x 7
1"	$3\frac{3}{4}$ " $6\dot{q} \times \frac{3}{8}$ "	4" Dia x ½"
	,	

For structures classified as 'Seismic Design Category' D, E or F (See 'General Notes' this page), or for shearwalls where the design load exceeds 490 pounds per linear foot (plf), washers shall not be smaller than 3" Sq $\times \frac{3}{16}$ " PL

*Standard cut washers may be used for all other applications, unless noted otherwise in these plans.

MFR WOOD ROOF TRUSSES

I. Contractor/Fabricator shall field verify all structural elements as required by these plans.

2. Trusses shall be designed in accordance with the latest IBC and all other applicable reference

3. Design Load

Bolt/Laa

<i>3.l.</i>	Top Chords:	Dead Live Snow (Uniform)	12 psf 14 psf 100 psf
3.2.	Bottom Chords:	Dead Mech Storage	10 psf 10 psf 20 psf

3.2.1. Dead Loads may be assumed to include the weight of the trusses.

3.2.2. Live & Mechanical Loads may be considered to act independently (i.e. not concurrently).

4. All top 4 bottom chords shall meet a minimum specific gravity 'G' = 0.50 (Douglas-Fir Larch)

5. Truss calculations shall include calculations for bearing stress to ensure that the allowable bearing stresses are not exceeded. Truss plans \$ calculations shall be prepared under the direction of and stamped by a professional or structural engineer registered in the State.

6. The trusses shall be designed as a complete system, including all bracing and connections not shown or noted on these plans. Truss framing shall be similar to the framing as indicated in these plans. Alternate framing layouts may be submitted for approval (which may result in delays).

CONCRETE NOTES

I. Concrete mixing, placing and pouring shall be in accordance with ACI 318 and the project specifications. Mix design shall be in accordance with the applicable sections of the CBC and these plans. Mix designs must be submitted for approval prior to placement of concrete.

2. All pipes and conduits passing through walls and footings shall utilize sleeves affixed prior to placing of concrete.

3. Concrete shall not be permitted to drop from a full height of more than six (6) vertical feet. Hoppers and/or vertical chutes shall be used to avoid segregation in and around reinforcing steel (i.e. in formed cast-in-place concrete walls).

4. Footings (spread & continuous) are centered under posts, columns and walls, U.N.O.

5. The finished surface of all horizontal construction joints shall be removed so as to expose clean, solidly embedded aggregate. All reinforcing steel dowels used at horizontal construction joints shall be free of flaking oxidation (rust) and any cured concrete (i.e. hard concrete adhered to the surface of the reinforcing dowels) prior to placement of new concrete at the construction joint.

6. Footings shall bear on firm undisturbed native soil or compacted engineered fill.

7. Unless otherwise noted in these plans, concrete mixes shall meet the criteria as listed in the table titled 'CONCRETE MIX REQUIREMENTS' elsewhere within these plans.

REINFORCING STEEL NOTES

Reinforcing placement and splicing shall be in accordance with the 'Manual of Standard Practice' by the Concrete Reinforcing

2. Non-coated reinforcing steel shall be kept clean and free of corrosion or rust prior to placement of concrete.

3. Splices of continuous steel reinforcement bars shall use Class 'B' lap splices (1'-6' min) with adjacent splices spaced at no less than 5'-0".

4. Welded wire fabric lap splices shall be lapped a minimum of 12".

5. Provide any and all accessories necessary to support the reinforcing steel and hardware in place as shown in these plans.

6. Wet-stabbing of reinforcing steel dowels or embedded anchor bolts shall not be permitted.

7. Protection (clearance from edge or face of concrete) for reinforcing steel shall conform to the following:

Concrete poured against earth Concrete formed but exposed to earth or weather 2" #5 ∉ smaller #6 å larger Columns & beams Interior walls & slabs Slab-on-Grade - from bottom Structural - from top Non-structural - from top

8. Each bar shall be wire-tied or attached by other approved method to ties, stirrups or cross-bars at a maximum of 24".

9. Welding of steel reinforcing bars shall comply with requirements of The American Welding Society (AWS) DI. 12008 and the

Rebar to ASTM A36 ETØXX electrodes Rebar to 450 or stronger E90XX electrodes Rebar to Rebar E90XX electrodes

10. Reinforcing steel shall meet the following requirements:

Dim,(s) Dimension(s)

Welded Wire Fabric ASTM A615, Grade 60 Ties or stirrups 10.3. Other bars (not welded) ASTM A615, Grade 60 10.4. Welded bars ASTM A706

GENERAL STRUCTURAL NOTES

1. The Contractor shall verify all field dimensions prior to fabrication & erection.

2. If there are any omissions, errors or discrepancies discovered within these plans (i.e. dimension conflicts), contact the Architect or Engineer of Record for clarification and/or correction prior to continuing with construction.

3. All plan dimensions as indicated on these plans or on architectural plans are assumed to be from face of studs or face of concrete UNO.

12 psf

4. Design Loading Criteria

		Live (10:12) Snow (10:12) [‡] Per Jurisdiction	14 psf 100 psf
	Walls:	Exterior & Thermal: Interior	12 psf 10 psf
4.2.	Risk Cat:	//	
4.3.	Wind:	Ult Speed: Exposure Roof Pitch Kzt = 1.00	105 mph 'C' 10:12 1 _w = 1.00
4.4.	Seismic:	Lat: 43.159887° N Site Class = D S _S = 1.109 S ₁ = 0.341 le = 1.00	Long: 111.013363° W Des. Cat. = D S _{DS} = 0.887 S _{DI} = 0.227 I _P = 1.00

FOUNDATION NOTES

 $R_{(\text{Wd SW})} = 6.5$ $C_{\text{S(Wd SW)}} = 0.136$

I. Minimum allowable soil pressures, per IBC/CBC:

l.l. Dead + Live 1.2. Dead + Live + Wind/Earthquake

All recommendations shall be implemented as indicated within the Geotechnical report in it's entirety. Covenant Engineering shall not be responsible for any negative effects, damage or other detrimental results related to inadequate or uncompacted soil and/or backfill conditions or failure to properly implement Geotechnical recommendations...

SAFETY NOTES

I. It is the Contractors' responsibility to comply with all federal and state regulations regarding maintaining a safe work environment and performing work in a safe manner. It is the Contractors' responsibility to be aware and comply with all OSHA requirements that may apply to this construction project.

STRUCTURAL REFERENCE CODES

***** All work to be performed under these project plans shall conform to the following applicable codes and any applicable supplements and amendments:

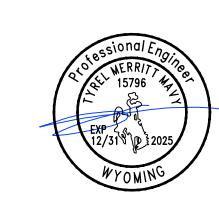
2021 International Building Code ASCE 7-16 Minimum Design Loads for Buildings and Other 3. ACI 318-19 Building Code And Commentary (Concrete)

4. ANSI/AF¢PA ND5-2018 National Design Specification for Wood Construction 5. ANSI/AF4PA SDPWS 2015 Special Design Provisions For Wind 4

STRUCTURAL SHEET INDEX

SO.O STRUCTURAL NOTES & REFERENCES SI.Ø FRAMING & FOUNDATION PLANS SI.I LATERAL & DIMENSION PLANS 52.0 STRUCTURAL DETAILS

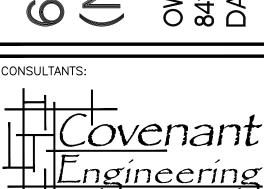
TYPICAL STRUCTURAL ABBREVIATIONS


4 <i>B</i>	Anchor Bolt	Dwl	Dowel	LLV	Long Leg Vertical	SDST	Self Drilling Self
4bv	Above	(E)	Existina	LP	Lousiana Pacific Corp.		Tapping Screw
4 <i>d</i> h	Adhesive	Ea	Each ~	$\angle t$	Light '	Sht	Sheet ~
4 <i>dj</i>	Adjacent, Adjust	Elev	Elevation	LWC	Lt Weight Concrete	Shtg	Sheathing
4 <i>dd'l</i>	Additional	EΝ	Edge or End Nailing	MB	Machine Bolt	Sim	Similar
4FF	Above Finish Flr	Engr	Engineer(ed)	Max	Maximum	SLV	Short Leg Vertical
4rch	Architect(ural)	ΕÕ	Edge Of	Mfr	Manufacturer,	SMS	Sheet Metal Screw
3 <i>Cl</i>	Boise Cascade Inc.	EOR	Engineer Of Record		Manufactured	SOG	Slab-On-Grade
31dg	Building	Eq	Equal	Min	Minimum	Spec	Specification(s)
3/k	Block	EŚ	Each Side	Mt1	Metal	ŚS	Śtainless Steel
3lkg	Blocking	EW	Each Way	(N)	New	Std	Standard
3/w~	Below	Ехр	Expansion	No.,#	Number	Stgr	Stagger(ed)
3 <i>FF</i>	Below Finish Flr	Ext	Exterior	NS	Near Side	Stiff	Stiffener
3 <i>m</i>	Beam	FF	Finish Floor	NTS	Not To Scale	St1	St <i>eel</i>
3N	Boundary Nailing	FG	Finish Grade	NWC	Normal Weight Concrete	Struct	Structural
3 <i>0</i>	Bottom Of	Flr	Floor	oc	On Center	Sq	Square
3ott	Bottom	FN	Field or Face Nailing	OD	Outside Diameter	T\$B	Top & Bottom
3rg	Bearing	Fndn	Foundation	Opn	Open(ing)	T#G	Tongue & Groove
3twn	Between	FO	Face Of	Ópp	Opposite	TF	Top Flange
3ynd	Beyond	FOHC	Free Of Heart Center	ÓŚ	Opposite Side(s)	Thk	Thick(en,ened,ness)
2	Camber	Frm	Frame, Framing	Par	Parallel Parallel	TJI	Trus-Joist Inc.
CJ	Construction Joint	FS	Far Side	Perp	Perpendicular	TO	Top Of
t, CL	Center Line	Ftg	Footing	PDF	Powder Driven Fastener	Trans	Transition,
Sing	Ceiling	Gâ	Gage	Æ, PL	Plate	Transv	Transverse
Clr	Clear	GLB	Glu-Laminated Beam	Plywd	Plywood	Тур	Typical
CMU	Concrete Masonry Unit	(H)	Hilti Corp	Press	Pressure	(U)	Ünistrut Corp.
<i>Col</i>	Column	HD	Hold-Down	psf	Pounds per Square	UNO	Unless Noted Otherwise
Conc	Concrete	Hdr	Header		Foot	URM	Unreinforced Masonry
Conn	Connect, Connection	Hgr	Hanger	psi	Pounds per Square Inch	OW	Open Web Joist
Cont	Continuous	HŘ	Hook	PT	Pressure Treated, Post	Vert	<i>Vertical</i>
Stank	Countersink	Horiz	Horizontal		<i>Tension</i>	<i>ω/</i>	With
, Dia	Diameter	Ht	Height	Pur	Purlin	W/O	Without
Diag	Diagonal	ID	Inside Diameter	Rad	Radius	WF	Wide Flange
<i>761</i>	Double	Incl	Included	Reinf	Reinforcing,	WP	Work Point
Demo	Demolition	Int	Interior		Reinforcement	WS	Wood Screw
Det	Detail	ΙΤW	ITW Red Head Corp.	Reqd	Required	$\mathcal{U}t$	Weight
OF	Douglas Fir	JH	Joist Hanger	(8)	Simpson Strong Tie	WWF	Welded Wire Fabric
Diag	Diagonal	Jnt	Joint	SC	Saw Cut, Slip-Critical	Wd	Wood
7: (-)	Dimi/-)	1-1	1 - t - 1	C - l l	C = l= = = l l =	111	111

Sched Schedule

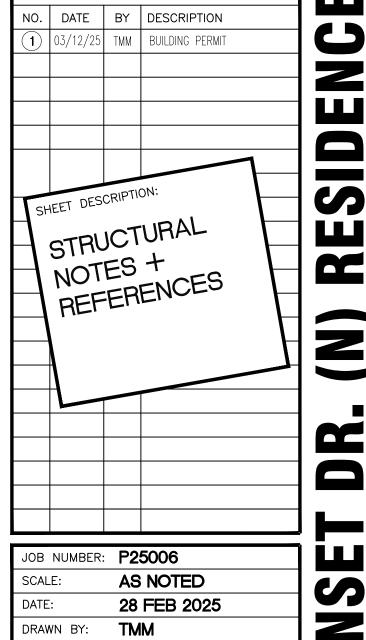
Шу

PROJECT:


Section 4, Itema.

ERMIT

2



PO Box 4260 Bedford, WY 83112 ph: 916-838-1973 web: covenantengineers.com

ISSUES:

REVISIONS:

2 CHECKED BY: SHEET NUMBER: S

2

1 OF 4 STRUCTURAL SHEETS CADD FILE NUMBER: P25006.dwg

	ROC		RAG		3C	
MARK	MATERIAL	TYPE	1 FASTENERS	EN	FN	NOTES
RD	WOOD	5/8" Min Wd Struct Panel Sthg	8d w/l ³ /s" Min Penetr	6" oc Max	12" oc	Blkg/Plywd Clip @ All Unsupported Panel Edges

		G SCHEDULE	
MARK	MEMBER SIZE	SUPPORT TYPE	NOTES
BI	4x8 Or Dbl 2x8	Double Cripple 4 Single King Studs	n/a
B2	3 ½ x 10 ½ 24F-V4 GLB Or Db1 1 ¾ x 9 ½ 2.0E LVL	Triple Cripple \$ Single King Studs	n/a
<i>B3</i>	3 ½ x 15 24F-V4 GLB Or 3 ½ x 14 2.0E VLAM 3100	Post & Cap Per Plan	n/a
LG	2x Or LVL, Match Jst/Rafter Depth, Min	(2) (5) 6D5 ½ x 4 ½ Ea Stud Contact	TLOK/Equiv OK
(RFT)	2x8 @ 24" oc Max	Brng On Bm, Hngr To Ledger	n/a
TR	Mfr Trusses @ 24" oc Max	Top IP Brng, See Details	n/a

NV.1E5:

1. All sizes and grades are req'd minimums. See sheet \$00 for material specifications.

2. Solid Saun beams may be replaced w/sistered built-up multi-ply sections as follows:

2.1. DF-L 4x may be replaced w/equivalent solid saun Dbl 2x DF-L No. I/Btr

22. DFL 6x may be replaced w/equivalent solid saun Trpl 2x DF-L

23. Mir 6x nominal GLB/VLAM may be replaced w/equivalent Trpl 1 1/4x 20E LVL

	POS	ST SCHEDUL	
MARK	POST	CAP	NOTES
(P44)	Wood 4 x 4	(2)(S)LCE Or Sim @ Int Posts, (S)CCQ/ECCQ @ Ext Loc	PT @ Ext Loc

1. All sizes and grades are req'd minimums. See sheet SOO for wood specifications.

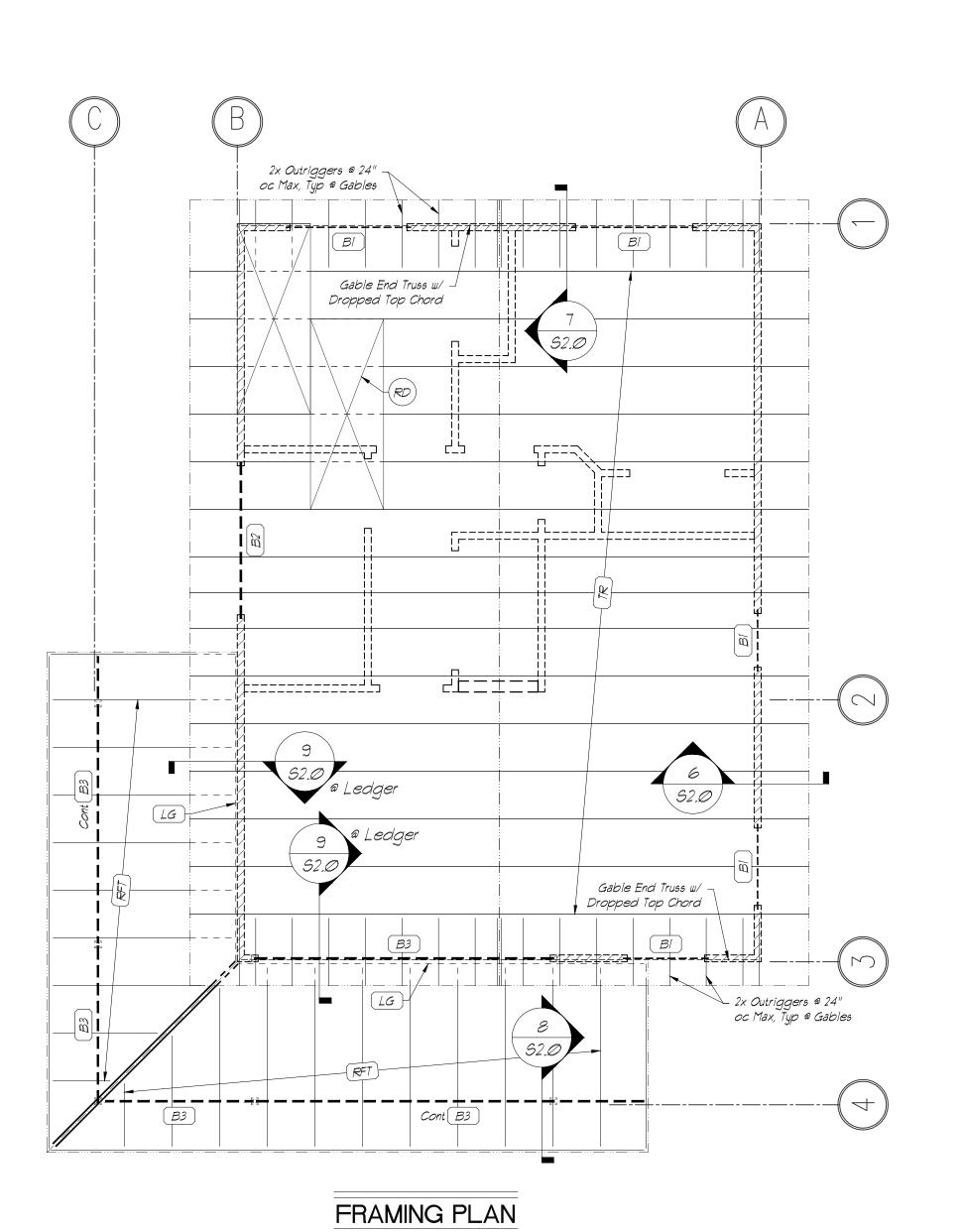
2. Solid posts may be replaced with built-up stud posts. See sheet SOO for requirements.

BASE SCHEDULE				
MARK	Type	BASE	Anchorage	NOTES
(Standoff	(S) ABA	Wedge AB	n/a
(ST)	Base	Or Sim	Per Mfr Kit	
(Wood	Wood	n/a	Set Post w/ln Stud
#2)	Sill Æ	Sill Æ		Wall Framing o/Sill Æ

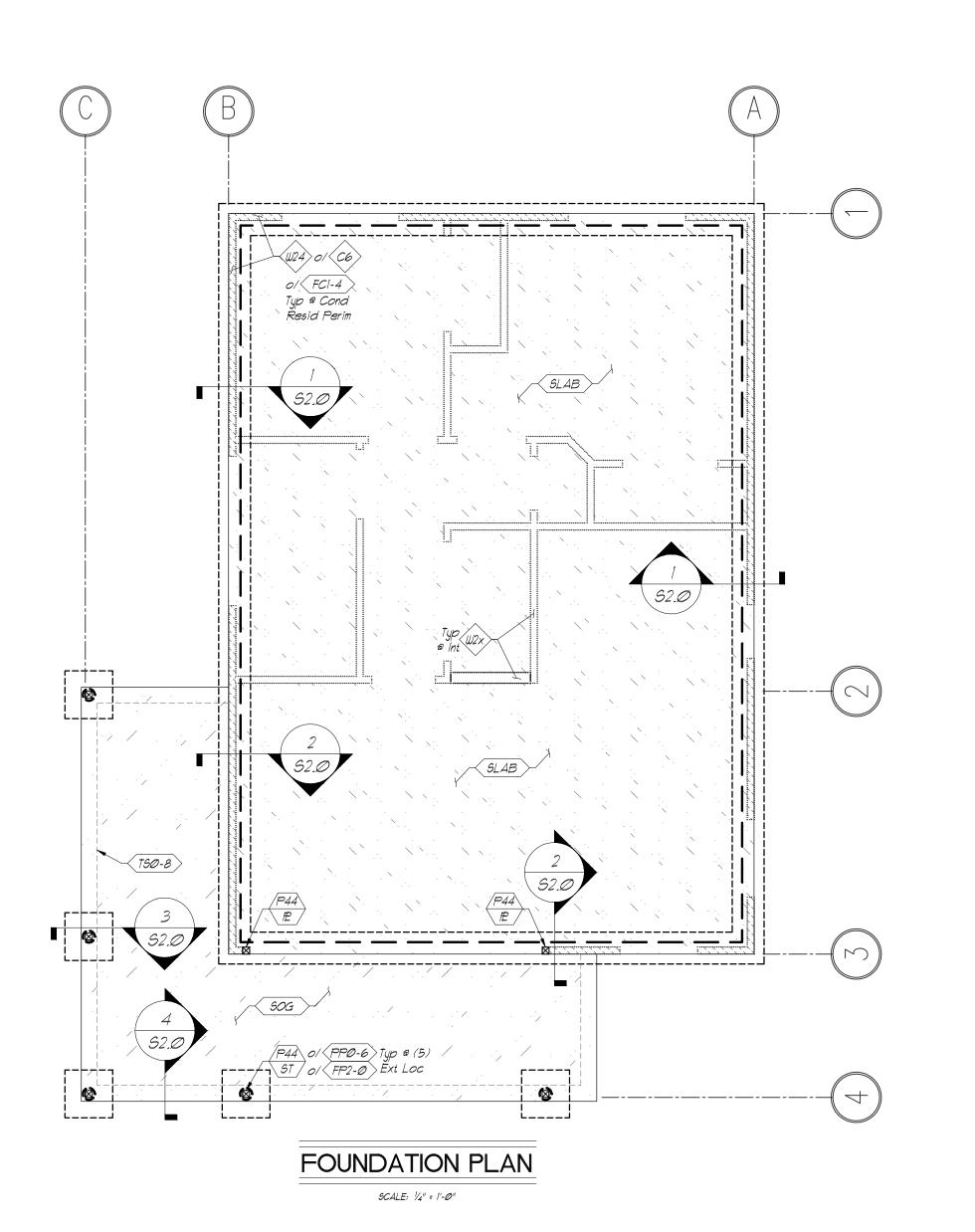
NOTES: 1. All specified sizes and grades are reg'd minimums. See sheet SOO for material specifications.

CC	NCE	ETE WALL	SCHEDULE
MARK	MATERIAL	DESCRIPTION	NOTES
(C6)	CONC	6" Thk w/#4 @ 18" EW \$ (2) #3 @ T.O. Wall	6" Min Conc Stemwall

NOTES: l. See sheet 300 for concrete, reinforcing 4 wood specifications. See lateral plans for shearwall requirements.


2. It is permissible to use larger sizes, better grades or reduced stud spacing without prior approval.

	FOUNDATION SCHEDULE				
MARK	TYPE	SIZE	REINFORCING	NOTES	
(FCI-4)	CONT	1'-4" W x 0'-10" Thk	(2) #4 Cont w/ #3 Transv @ 32" oc Max	n/a	
(FP2-Ø)	PAD	2'-Ø SQ x IØ" Thk	(3) #4 EW Centered Vert	n/a	
(PP0-6)	PIER	0'-6 ¢	(2) #4 Or (3) #3	n/a	
(SLAB)	STRUCT SLAB	5" Min Thk	6x6x10 Ga WWF Or #3 @ 18" oc, Centered Vert	Underlay: 2" Crushed Gravel o/6 Mil Vapor Barrier o/Compacted Pad	
(SOG)	EXT SLAB	4" Min Thk	6x6x10 Ga WWF Or #3 @ 24" oc, Centered Vert	Underlay: 2" o/Compacted Pad	
(150-8)	THK'D SLAB	0'-8" x 8" Thk Cont	(2) #3 Cont Centered Vert	n/a	


NOTES:

1. All sizes 4 quantities are req'd minimums. UNO, it is acceptable to substitute larger sizes and/or more reinforcing without prior approval.

2. See sheet SOO for concrete and reinforcing specifications.

SCALE: 1/4" = 1'-0"

CONSULTANTS: Covenant Engineering PO Box 4260 12 Bedford, WY 83112 ph: 916-838-1973 web: covenantengineers.com A REVISIONS:) ISSUES: RESIDENCE NO. DATE BY DESCRIPTION 1) 03/12/25 TMM BUILDING PERMIT SHEET DESCRIPTION: FOUNDATION + FRAMING PLANS SUNSE JOB NUMBER: **P25006** AS NOTED 28 FEB 2025 DRAWN BY: TMM CHECKED BY: SHEET NUMBER: 116

2 OF 4 STRUCTURAL SHEETS

CADD FILE NUMBER: P25006.dwg

Section 4, Itema.

PERMIT

PROJECT	Γ
---------	---

PERMIT

12

117

CONSULTANTS: Covenant
Engineering

PO Box 4260 Bedford, WY 83112 ph: 916-838-1973 web: covenantengineers.com

	ISSUES:		REVISIO	NS:	Щ
NO.	DATE 03/12/25		RIPTION IG PERMIT		
					S
	HEET DESC			1	
	DIME	ERAL TENSION			DR. (N) RE
JOB	NUMBER:	P25006			ĺ
SCAI		AS NOT			SNNS
DATE		28 FEB	2025		
	WN BY:	TMM			
	CKED BY:				
SHÉI	ET NUMBE	ĿK:			
		4 4			

B NUMBER:	P25006
CALE:	AS NOTED
ATE:	28 FEB 2025
RAWN BY:	TMM
HECKED BY:	

3 OF 4 STRUCTURAL SHEETS CADD FILE NUMBER: P25006.dwg

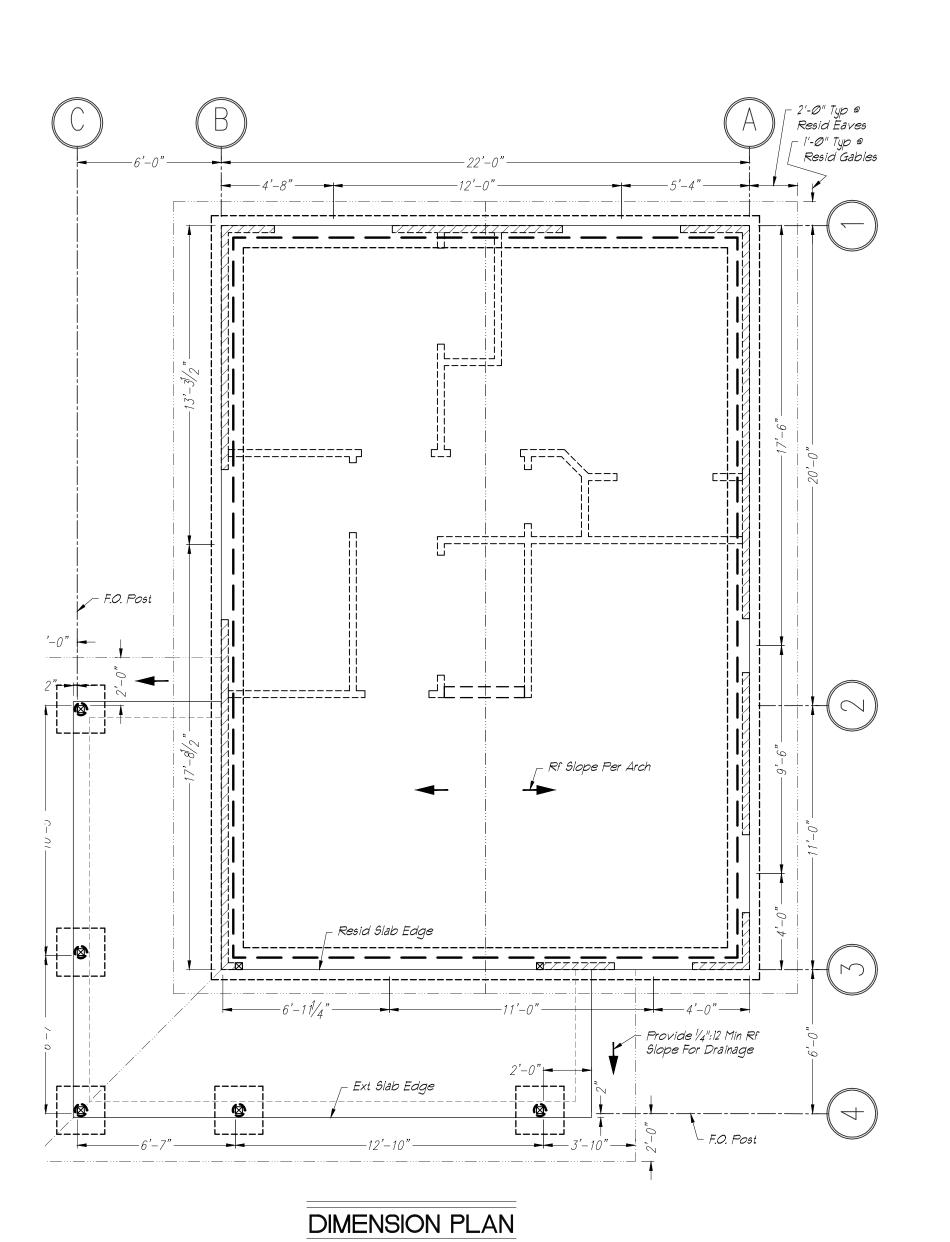
	9#L	ID WALL SCHE	
IRK	MATERIAL	DESCRIPTION	NOTES
24	WOOD STUD	2x4 Studs @ 16" oc Max w/Dbl Top Æ	Typ Perim Struct Wd Stud Walls
2x	WOOD STUD	2x Studs @ 16" oc Max Single Top Æ OK	Non-Struct Stud Walls 2x6 Req'd @ Plumbing
TES:			

Notes.

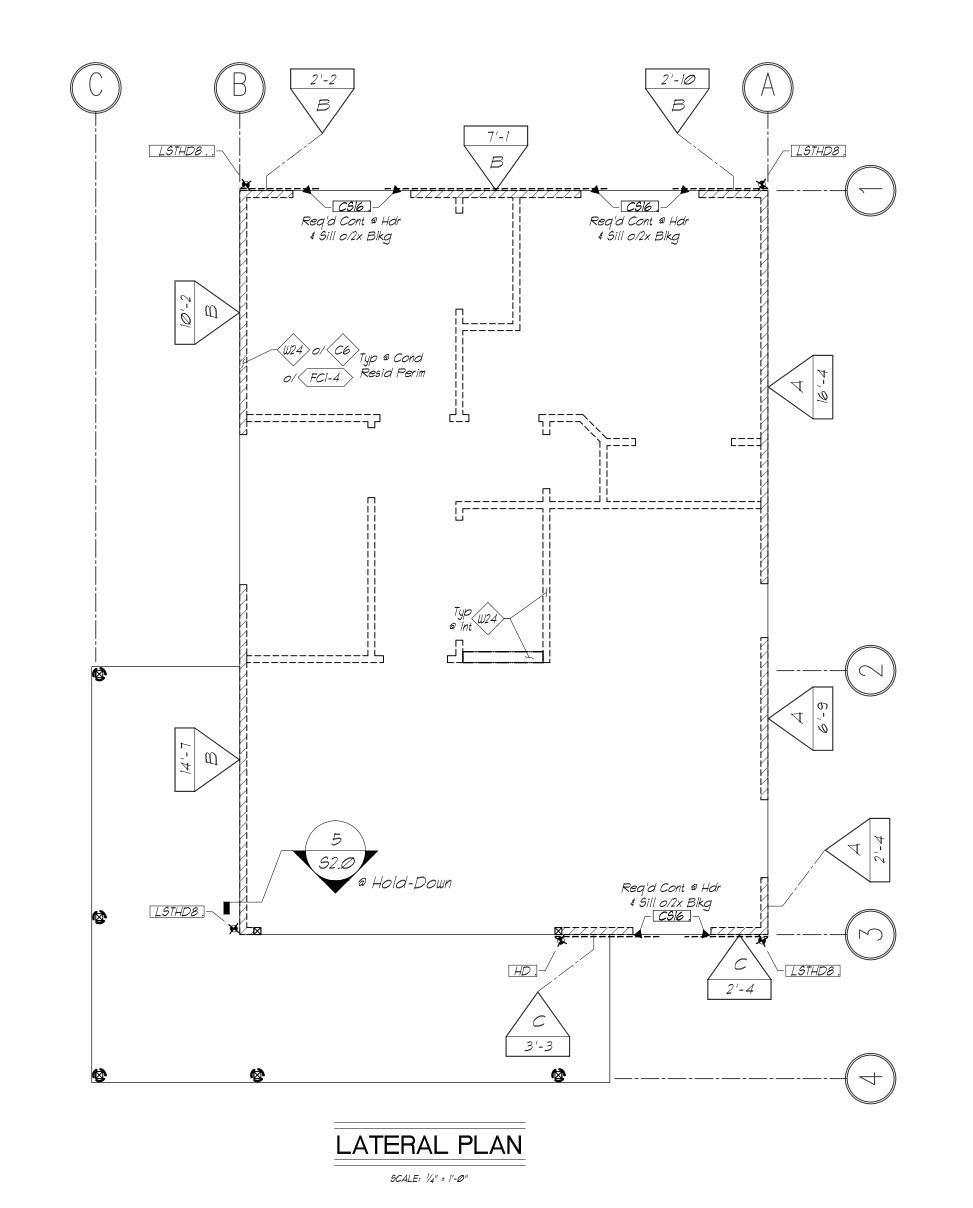
1. See sheet \$0.0 for concrete, reinforcing 4 wood specifications. See lateral plans for shearwall requirements.

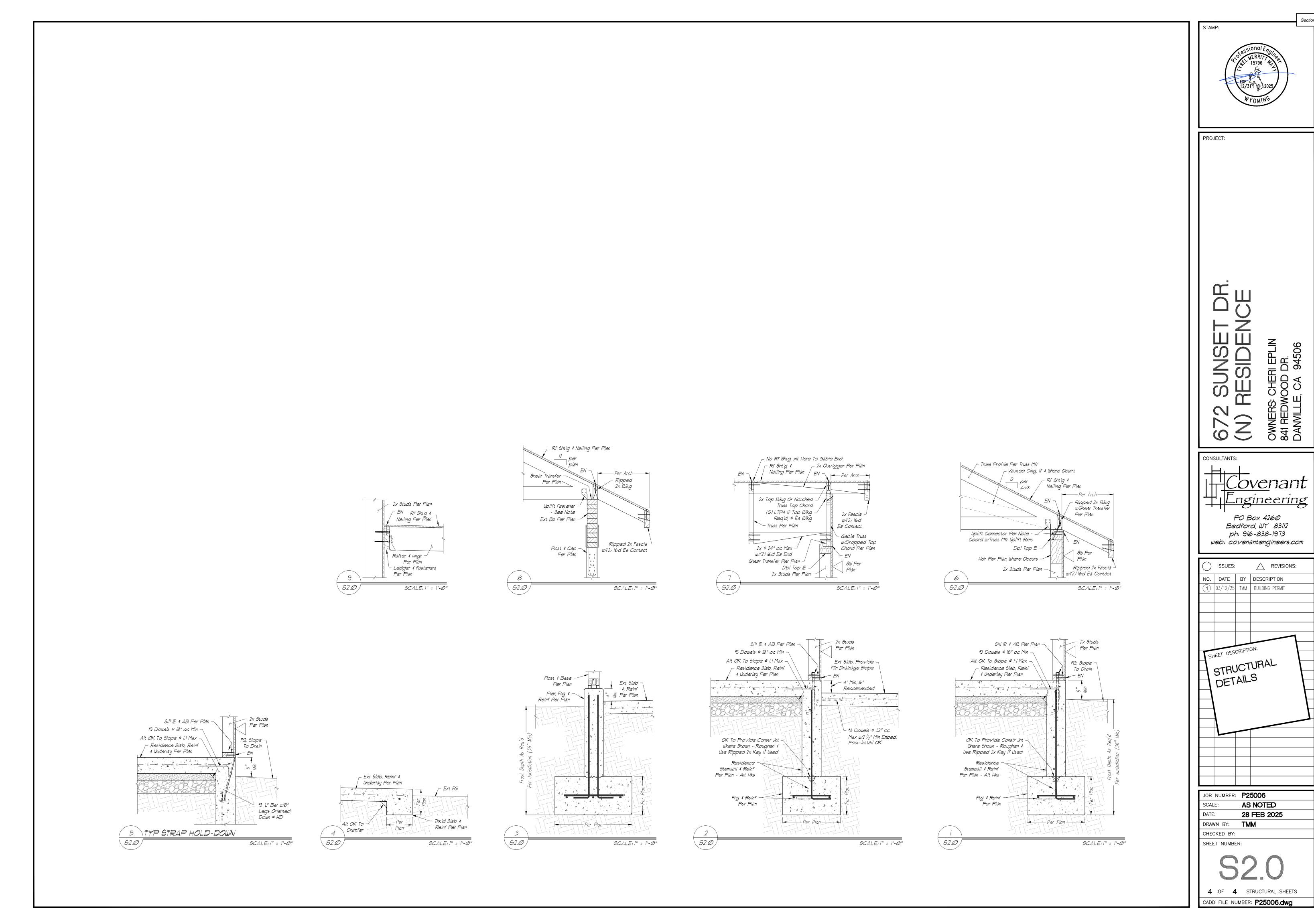
2. It is permissible to use larger sizes, better grades or reduced stud spacing without prior approval.

6		P SC	HEDULE
STRAP	CAPACITY	FASTENERS	NOTES
CS16	1705#	(20) 0.148 Or (22) 0.131 x 2 ½	EL = 13" Ea End - OK To Stgr Nails Btwn @ 6" oc Max
JOTEC			


NOTES: L. All straps are req'd minimums. Larger straps and/or more fasteners OK w/o prior approval.

SHEARWALL SCHEDULE									
MARK	SHEATHING	EDGE NAILING	FIELD NAILING	² FNDN #2	⁵ SILL NAILING	3,5 SILL BOLTING	⁵ SHEAR TRANSFER	CAPACITY	NOTES
À	⅓ Wd Struct Panel	8d @ 6" o.c.	8d @ 12" o.c.	2x DF#2	n/a	5/8"\$ @ 48"	TN For Full Rf Diaph Length OK	260 plf	n/a
B	⅓ Wd Struct Panel	8d @ 4" o.c.	8d @ 12" o.c.	2x DF#2	n/a	5/8"¢ @ 32"	TN For Full Rf Diaph Length OK	380 plf	n/a
<u> </u>	⅓ Wd Struct Panel	8d @ 2" o.c.	8d @ 12" o.c.	2x DF#2	n/a	5/8"\$ @ 16"	TN For Full Rf Diaph Length OK	640 plf	Stgd EN 0/3" Nom Framing @ Panel Edges


NOTES:
1. All exterior walls shall be sheathed 4 nailed to match minimum shearwall requirements UNO.
2. Foundation IP (Sill IP in contact with concrete or masonry) shall be pressure-treated.
3. Anchor bolts shall have 3" 5q x ½" washers, Typ UNO.
4. Fastener and spacing is based on shearwall demand, and is only required to be installed for the shearwall design lengths and locations as indicated per plan.
5. Fastener and spacing is based on diaphragm demand and continuous plates, and shall be installed for full length of continuous wall line with average spacing no more than that indicated.


HOLD-DOWN SCHEDULE						
	HOLD- DOWN	FASTENERS	¹ ROD/ANCHOR/ STRAP EL	WOOD VERT	CAPACITY	NOTES
	LSTHD8	(16)	n/a	Dbl 2x (Min)	225Ø#	n/a

NOTEU: 1. Unless noted otherwise, orient all concrete anchor embed ends approx, centered within concrete walls, stemwalls 4 footings. 2. Prior approval by Engineer-of-Record is required for any substitutions for or alterations to this table.

SCALE: 1/4" = 1'-0"

PERMIT

BUILDING

2025

MAR

2

RESIDENCE

SUNSE

2

Design Basics LL (C)

GENERAL NOTES & DESIGN CRITERIA

Flor: 40 psf. live Roof: 30 psf. live Ceiling: 10 psf. live 15 psf. dead 10 psf. dead 10 psf. dead Soil bearing Capacity - 1500 PSF
Live loads, dead loads, wind loads, snow loads, lateral loads, seismic zoning and any specialty loading conditions will need to be confirmed before construction and adjustments to plans made accordingly. See your local building officials for verification of your specific load data, zoning restrictions and site conditions.

CONCRETE AND FOUNDATIONS:

* All foundation walls and slabs on grade shall be 3000 PSI (28-day compressive strength concrete), unless noted otherwise.

* All interior slabs on grade shall bear on 4" compacted granular fill with 6 mil. polyethylene vapor by trier underneath.

* Provide proper expansion and control joints as per local requirements.

* All 36" x 36" x 18" concrete pads to have (3) #5 rods each way.

* All 48" x 48" x 18" concrete pads to have (4) #5 rods each way.

* Foundation walls are not to be backfilled until properly braced.

* Verify depth of frost footings with your local codes.

* Provide termite protection as required by HUD minimum property standards.

Foundation bolts must be anchored to sill late with 5/8" bolts embedded 12" in concrete walls.

REBAR & BOLT SCHEDULE: reinforcing must

be located 2" from inside face of wall

BAR SIZE AND SPACING 8" Wall thickness 10" Wall thickness (w-brick)

#5 @ 15" o.c. #5 @ 16" o.c.

FRAMING MEMBERS (continued): Any wall 12'-0" high or higher shall be 2x6 and balloon fram

Unless noted otherwise, above all openings that are:

(1) Load bearing and less than or equal to 3 ft.

(2) Load bearing and more that 3 ft.

All exterior corners shall be braced in each direction with let-in diagonal

bracing or plywood.

Place (1) row of 1" x 3" cross-bridging on all spans over 8'-0" and (2) rows of 1" x 3" cross-bridging on all spans over 16'-0".

Collar ties are to be spaced 4'-0' o.c.

All purlins and kickers are to be 2x6's, unless noted otherwise.

Any hip or valley rafters over a 28'-0" span are to be Laminated Veneer Lumber (L.V.L.).

ISC. NOTES:
Prefabricated fireplaces and flues are to be U.L. approved and installed as per manufacturer's specifications.
All materials, surplies and equipment to be installed as per manufacturer's specifications and as per local codes and requirements. Note: Provide proper insulation for all plumbing.
1/2" water-resistant drywall around showers, tubs and whirlpools.
1/2" drywall on interior walls and ceilings.
5/8" type "X" fire code drywall on garage walls and ceilings.
Windows are called out by glass size only.

Wind ws are called out by glass size only.
Wirrows, if not noted, are assumed to be casements.

SEE COVER/SITE PLAN & STRUCTURAL DOCUMENTATION FOR ALL GENERAL & STRUCTURAL CRITERIA & SIMILAR INFO

Provide steel shimns in all beam pockets. Steel columns are to be 3" I.D. (inside diameter) unless noted

Unless noted otherwise, all framing lumber shall have the following

Fv = 75 psi

Contractor to confirm the size, spacing and stress characteristics of all framing and structural members to meet your local code requirements. Hole sizes and locations in GluLam or Laufinated Veneered Lumber members are to be confirmed by a professional engineer.

Any structural or framing members no indicated on the plan are to be

sized by contractor.

Double floor joists under all partition walls, unless noted otherwise.

All subflooring is assumed to be 5/4" thick.-Glued&Nailed

All exterior walls are dimensioned to outside of 1/2" sheathing.

All exterior walls are 4" (3 1/2 stud plus 1/2" sheathing), All interior walls are 3 1/2" unless otherwise shown.

Calculated dimensions take precedence over scaled dimensions.

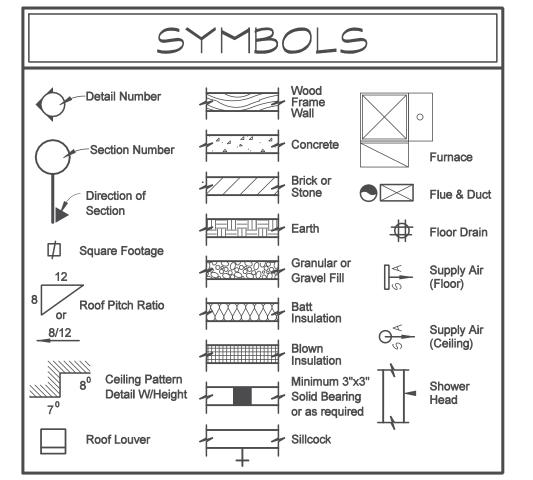
All Main level walls are 3"-1 1/8" high unless otherwise noted or implied.

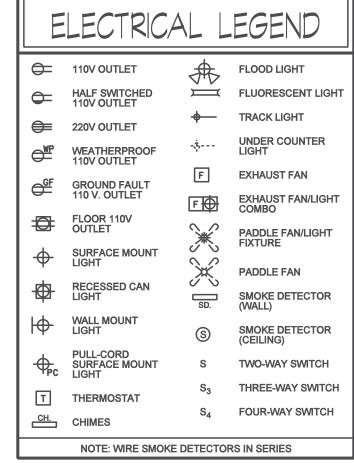
All angled walls on floor plans are at 45 degree angle, unless otherwise noted.

IF THIS IS NOT RED - DO NOT COPY -

cal overhang sizes unless noted otherwise on drawing are as

On pitches of 4/12 - 5/12 - 6/12 = 24" overhang 7/12 = 20" overhang 8/12 = 16" overhang 9/12 = 16" overhand


10/12 - 11/12 - 12/12 = 12" overhand Note: Adjust overhangs to provide clearance for windows to open.
Adjust overhangs to maintain a consistent level when the plans call for


(2) different pitches at a hip.
Minor alterations to the plan can be made by builder. Please contact our drafting department or information and price quotes if major

changes are required.

Design Basics, LLC. determines finished square footage by measuring to the outside of all walls. We notude: interior fireplaces and every location in which the floor joists project from the foundation. We do not include: window boxes where the floor joists do not project from the foundation; 2-story entries; exterior freplaces; garage; decks; patios; porches; unfinished storage areas; basements or any other unfinished

DESIGN BASICS, LLC. IS A PROFESSIONAL RESIDENTIAL DESIGN FIRM LOCATED IN OMAHA, NE. DECAUSE SITE CONDITIONS MAY VARY DESIGN BASICS, LDC. CANNOT WARRANT THE SUITABILITY OF THESE PLANS FOR USE ON YOUR SPECIFIC SITE. CONSTRUCTION FROM HESE PLANS SHOULD NOT BE UNDERTAKEN WITHOUT TO ASSISTANCE OF A CONSTRUCTION PROFESSIONAL

ABBREVIATIONS

Militta Abode

Dishwasher Air Conditioner Adjustable DN Down AWN DRY Dryer EA ENT EXP BLDG Building **BSMT** Basement Entertainment BTM Exposure BTW Between EXT CANT Cantilever FIN Finished C.J. CLG CEIL CMU C.O. CONC DBL DH **Ceiling Joist** Floor Joist **FLUOR** Fluorescent Ceiling Footing Concrete Masonry Unit GALV Galvanized **GARB** Cased Opening **Garbage Disposal** Concrete G & N

Double

ARTIST CONCEPTION ONLY

Double Hung

G.L. HDR

INT JST Joist LVL MAX Maximum MBR MICRO Microwave MIN Minimum MISC O.C. On Center O.H.D. OPNG Opening PC PICT Glued & Nailed Pull Chord Gluelam Header Picture Header POLY

INSUL Insulation Interior Laminated Veneer Lumber **Master Bedroom** Miscellaneous Overhead Door Polyethylene

DESIGN BASICS HOUSE PLANS

REFRIG Refrigerator RM Second SHWR Shower Side Lite SPP STA Sump Pump Pit Stationar STD Standard STL STRUCT Structural Trash Compactor Tongue & Groove TRANS

Rafters

RAD

RAFT'S

W.W.M. Welded Wire Mesh 2W Two Wide Three Wide 4W Four Wide Center Line With Diameter

ARTWORK NOT TO SCALE

UNEX

WASH

WD

WH

Trapezoid

Washer

Wood

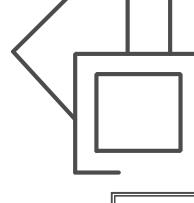
Underlayment

Unexcavated

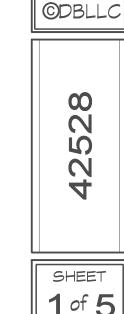
Water Heater

REVERSE AVAILABL

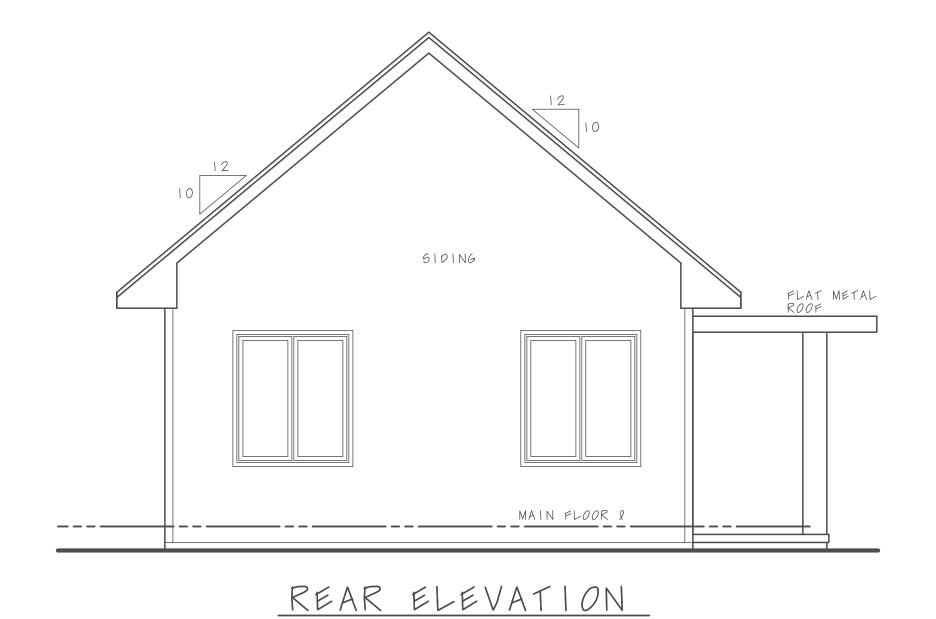
ВОХ. В NE (8000) 102, у.


σ. Q f. g.

O.


Section 4. Itema

PLANS

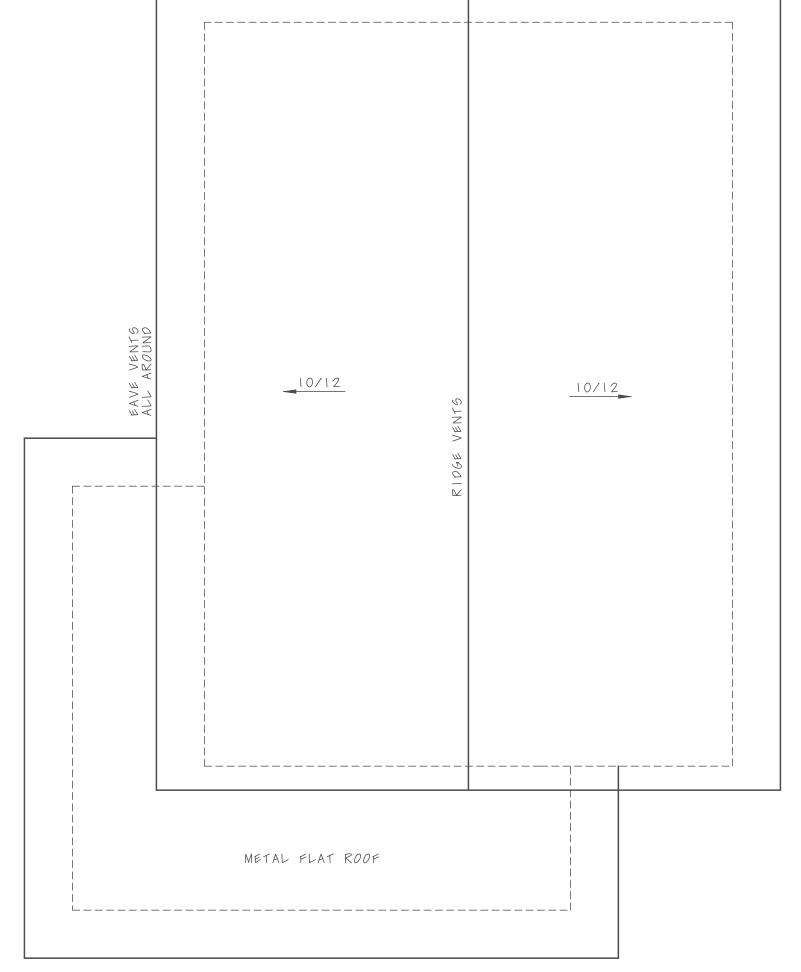

<u>customizable</u>

AREA SQ. FT. IRST FLOOR SECOND FLOOR OTAL LIVING -LOOR BARAGE

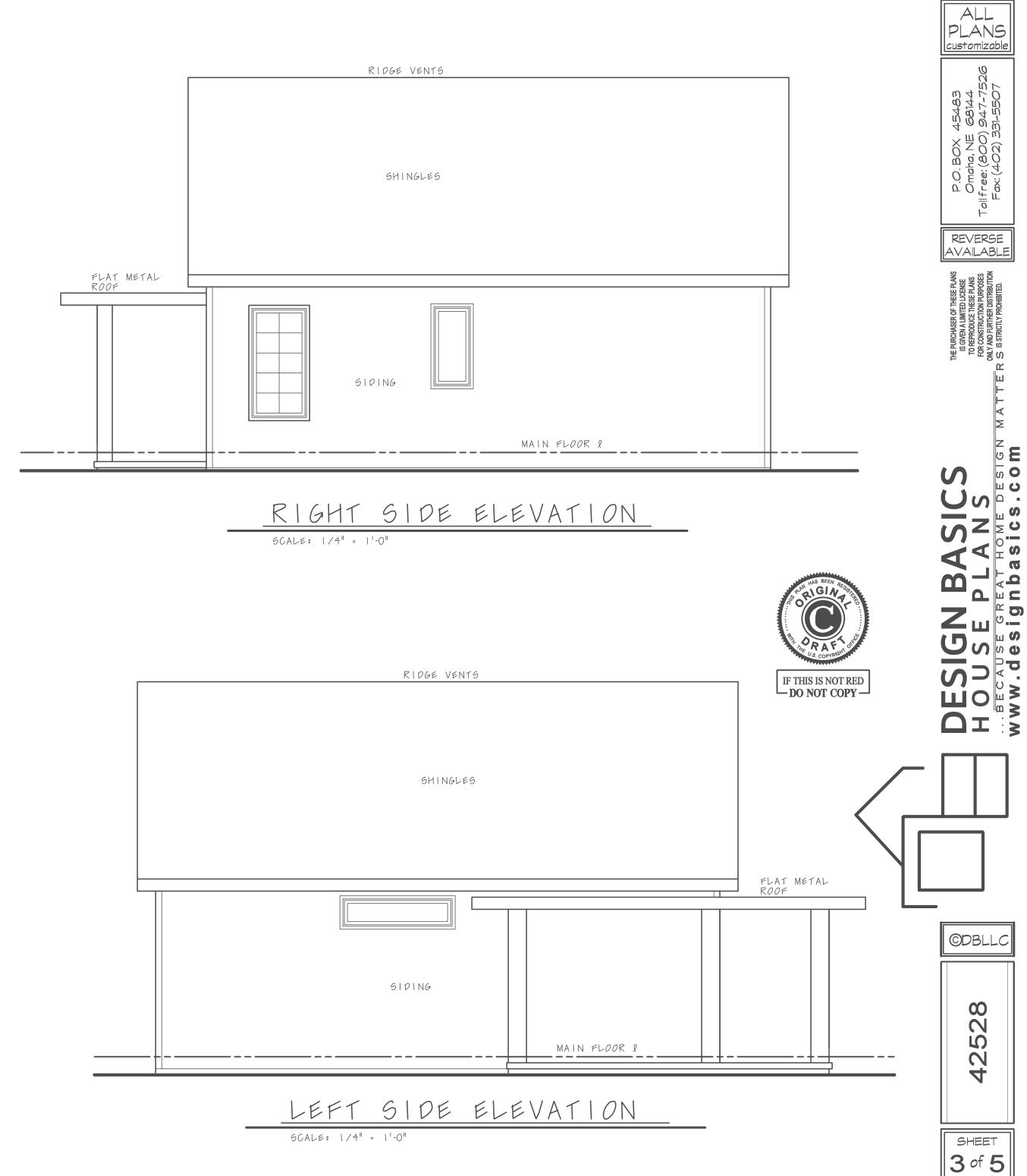
1 of 5

SCALE: 1/4" = 1'-0"

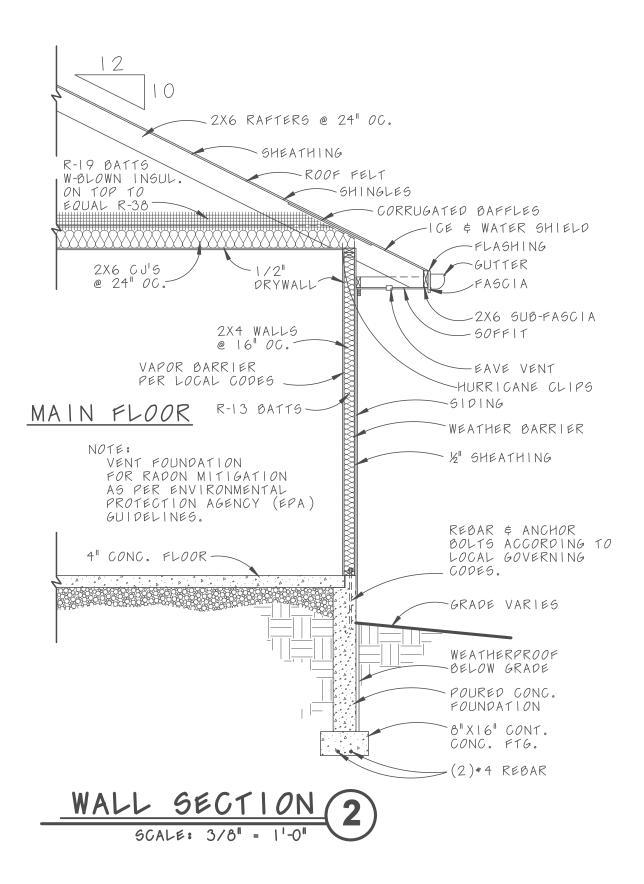

FRONT ELEVATION SCALE: 1/4" = 1'-0"

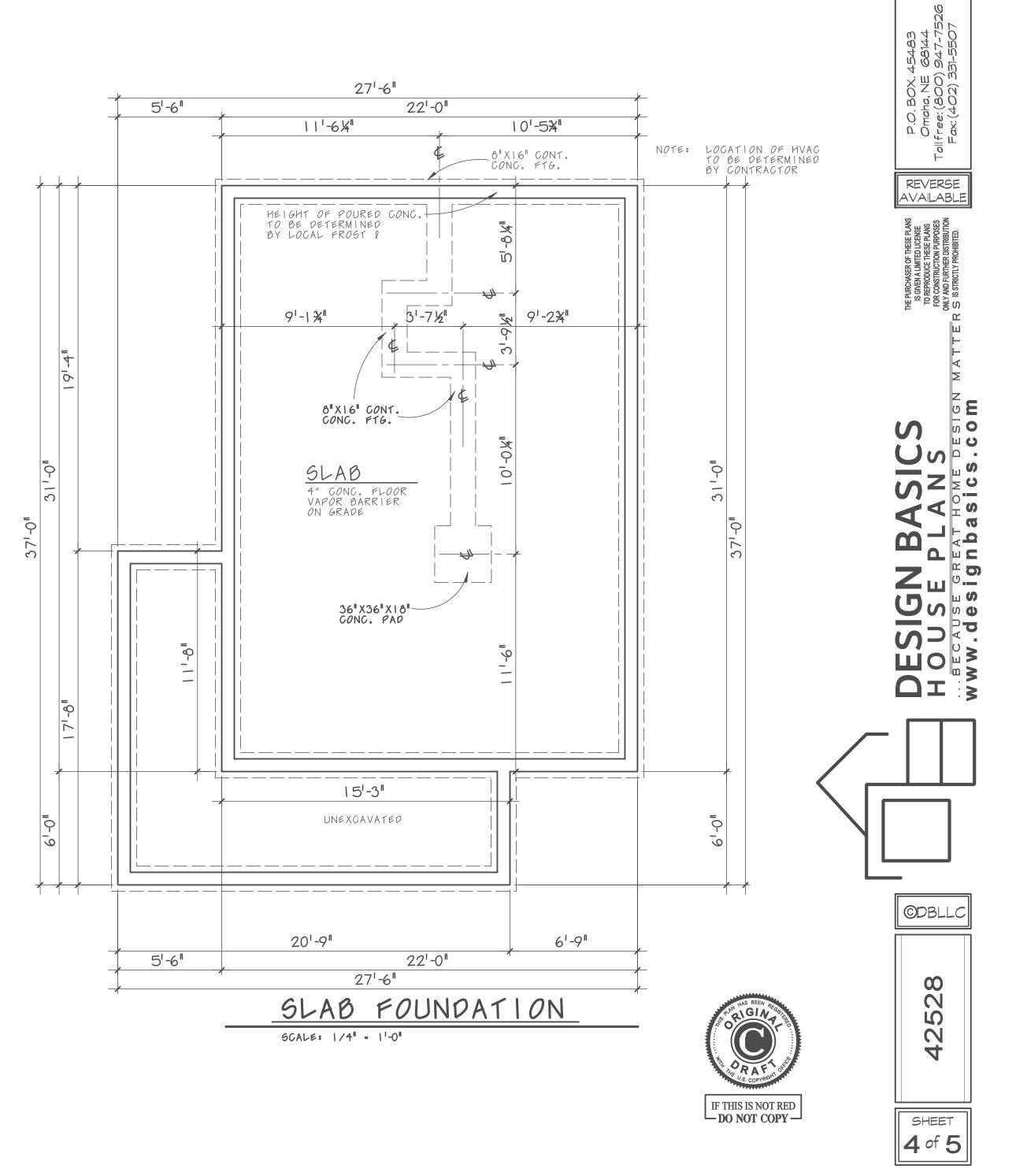

IF THIS IS NOT RED

DO NOT COPY


Section 4, Itema.

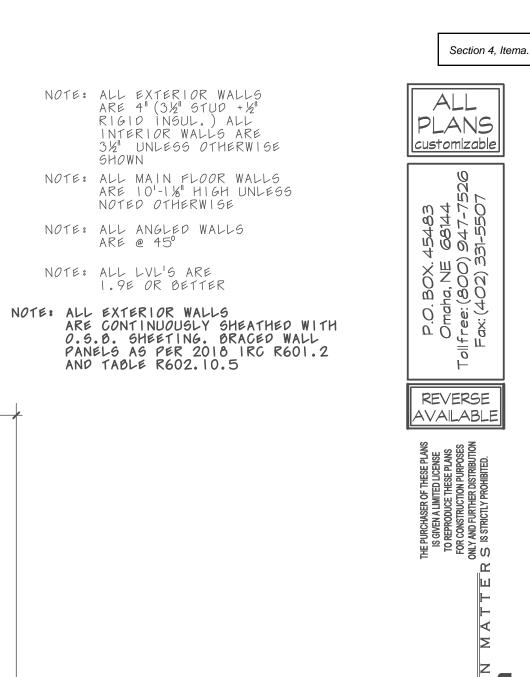
REVERSE AVAILABLE

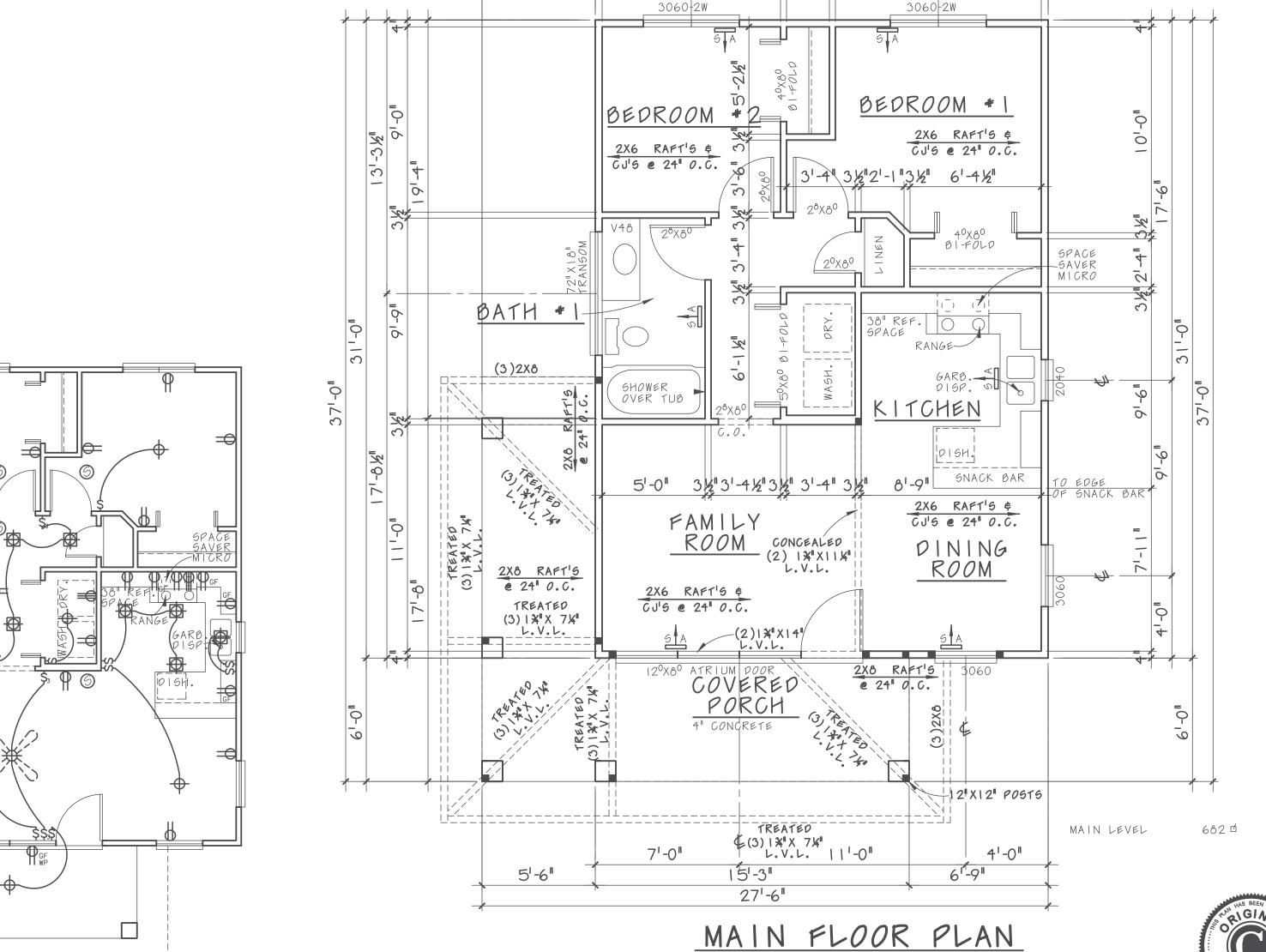



ROOF PLAN

SCALE: 1/4" = 1'-0"

Section 4, Itema.





PLANS

MAIN FLOOR ELECTRICAL

SCALE: 3/16" = 1'-0"

5'-6"

41-81

81-81

27'-6"

SCALE: 1/4"=1'-0"

22'-0"

5'-4"

10-0"

12'-0"

3/2 2 - 1 3/2

SQ. FT.

ECOND FLOOR OTAL LIVING FLOOR SARAGE FRONT PORCH OPT. BONUS ROOM

IF THIS IS NOT RED

DO NOT COPY

AREA IRST FLOOR

2 5 2

©DBLL(

5 of 5

Kurt Linford <kllinford@gmail.com>

Ticket 20252301308 for LV2 - Status Change

Ivenergyprs@korweb.com < lvenergyprs@korweb.com >

Wed, Jun 4, 2025 at 11:43 AM

To: KLLINFORD@gmail.com

Our records indicate you called in dig request 20252301308 at DEER LN, ALPINE, WY.

This email is a status update relating to ticket number 20252301308 for code LV2.

20252301308 Ticket:

Member

LV2

Code:

Company: KLLINFORD@GMAIL.COM

Work to

Done For: OTHER BUSINESS

begin on:

6/5/2025 12:48:41 PM

County:

City:

ALPINE

Address:

DEERLN

Contact:

KURT LINFORD

Phone:

208-351-2154

Completed

6/4/2025 11:41:37 AM

Response: MARKED

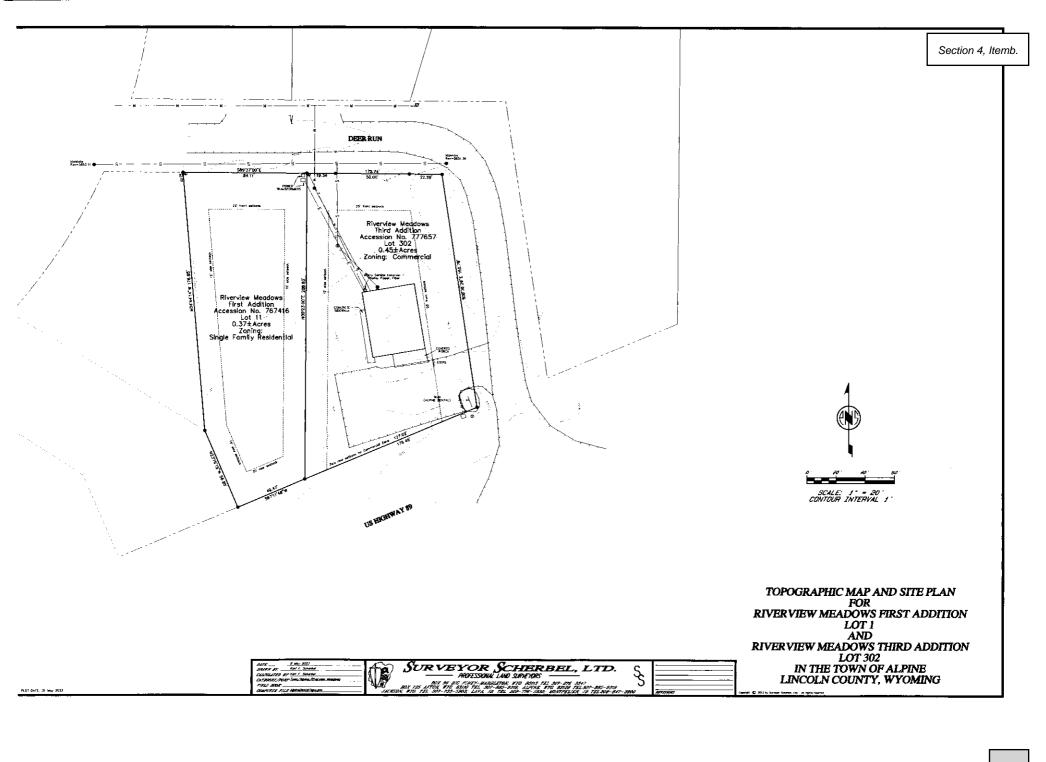
Facility

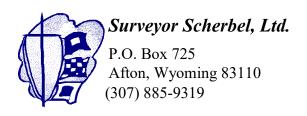
Work Performed

Action Code

ELECTRIC

Marked


PAINT & FLAG


GAS

Cleared

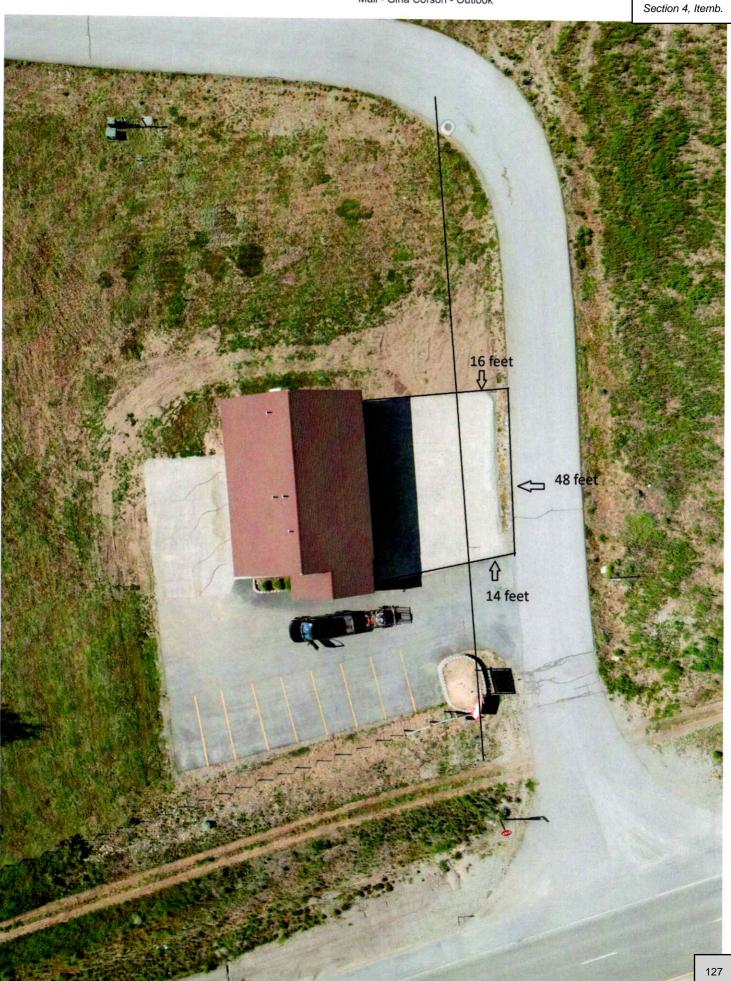
Remarks:

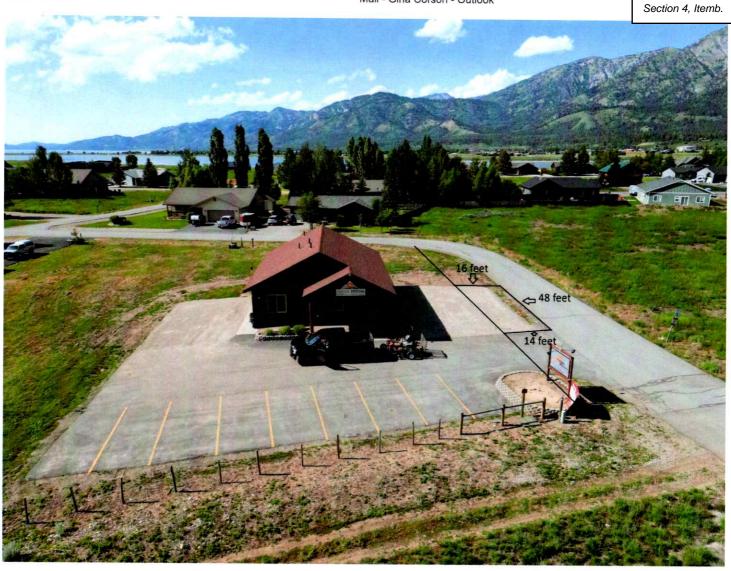
Notes:

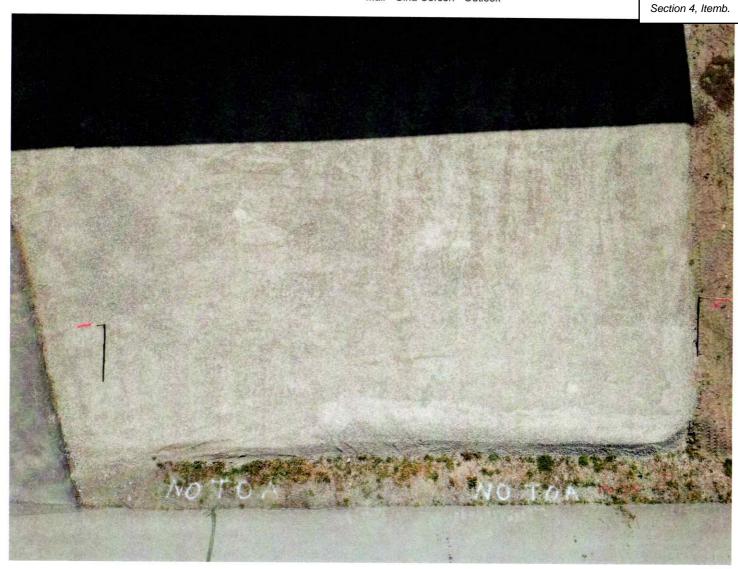
DATE	INVOICE NO.
6/9/2025	6126-A

Invoice

BILL TO:	
Kurt Linford P. O. Box 3469 Alpine, Wyoming 83128	


DUE DATE	PROJECT
7/9/2025	ALRVM3-302SP


DESCRIPTION	AMOUNT
PROJECT: Kurt Linford DDS,LLC – Site Plan – Lot 302 River View Meadows Third Addition to the Town ofAlpine, Lincoln County, Wyoming	
Professional Services	277.50
A namelto of 1.50/ name week is absorbed an all	
A penalty of 1.5% per month is charged on all outstanding invoices.	


Scan the QR code to pay your invoice online.

Total	\$277.50
Payments/Credits	\$0.00
Balance Due	\$277.50

Town of Alpine

250 River Circle, PO Box 3070 307-654-7757

Date: June 12, 2025

To: Dr. Kurt Linford, DDS

Subject: Reminder – Encroachment Application for Lot #302, Riverview Meadows

Dear Dr. Linford,

This letter serves as a formal reminder regarding the Planning and Zoning Commission's review of your Encroachment Application for the parking lot on Lot #302 in Riverview Meadows.

At the recent Planning and Zoning Commission meeting, the Commission recommended the following steps be completed before further consideration of your application:

- 1. Hire a licensed surveyor to accurately identify and stake your property lines.
- 2. Contact One-Call to locate all underground utilities in the area.
- 3. Submit a completed application for either a Special Use Permit or an Encroachment Permit, depending on what is appropriate for your intended use.

Once these steps are completed, you will need to return to a Planning and Zoning Commission meeting for a formal review. The Commission will then make a recommendation to the Town Council, which will render the final decision.

While the Commission agreed during the meeting that the parking area could remain as-is for the time being, we cannot allow the situation to remain in its current state indefinitely. Therefore, we respectfully request that you have all required items completed and submitted in time for the next Planning and Zoning Commission meeting on July 8, 2025.

Thank you for your understanding and cooperation in resolving this matter. Please contact our office if you need assistance or have any questions. Sincerely,

Gina Corson Acting Planning and Zoning Administrator Town of Alpine, Wyoming planning@alpinewy.gov 307-654-7757

			LUDC Ordinances Concerr	ns	
Section	Section Name	Sub-section	Column1 PG #	Notes	Status
6.2	Rules of Interpretation and Definitions	Definitions	140	Floor Area- Does it include the floor area of all levels or just one?	
6.2	Rules of Interpretation and Definitions	Definitions	138	"Construction Site" is not defined (Construction Activities/Fences/Materials are defined) -TB	
				No minimum lot size is defined for RV Parks (ie could have RV park on 1/4 acre -Schou 5.13.25	
4-401	Developement Standards	RV Parks	96	P&Z meeting) -TB	
				(a) A nonconforming structure may be enlarged or expanded an accumulative amount of twenty	
				(20) percent of the existing structure. However, no enlargement or expansion may encroach any further	
				· · · · · · · ·	
				into setbacks than the existing structure encroaches. The cumulative total is the sum of all expansions or enlargements from the date the structure became nonconforming.	
				expansions of enlargements from the date the structure became noncombining.	
				Accessory Building/Structure. A detached building/structure located on a parcel of land that is	
				used to support the	
				primary use of a principal building, located on the same lot as the primary structure/building.	
				primary and an a primarpar banding, recalled on the earne for all the primary ended to banding.	
				Attached/Attachment. To make fast, permanently fixed; must have contiguous foundation wall;	
				can include a covered	
				walkway. Roof of addition and/or walkway, must be attached to the principal building.	
3-302	Zoning Ordinance	Nonconforming structures	86	logued Commercial permits are good for one (4) year with a one (4) time one (4) year with	
				Issued Commercial permits are good for one (1) year with a one (1) time, one (1) year extension	
				upon. If the project is not completed within two (2) years, applicants will have to start the process over with all new fees, filings, meetings, etc. *ICC says they can have 2 extensions. Should we	
2-501	Puilding Application Processing Schodule		E1	mirror that? Verify it is on all types of permits.	Adressed
2-501	Building Application Processing Schedule	е	51	· · · · · · · · · · · · · · · · · · ·	Adressed
	Building Application Processing Schedule		51	Minor Construction is not listed with others on pg 51, why? Three (3) sets of scaled construction drawings (see application checklist) that illustrate the	
				proposed foundation, floor plan, typical wall section, roof system, building elevations, exterior	
				material specifications, as well as electrical, plumbing, radon and HVAC systems. All construction	
				drawings for structures submitted with a permit application will be designed, stamped and certified	
				by a civil or structural engineer greater than TOWN OF ALPINE LAND USE AND DEVELOPMENT	
				CODE ADOPTED – 3/18/2025 – ORDINANCE 2024-009 Page 37 three hundred (300) square feet	
				in size.) Along with one (1) digital copy of the construction drawings. {See permit checklist for	
				complete details). Need to change to 2 paper 1 digital, like in ICC. This is in multiple section	
2-301	Building Permit Requirments	c-9	37	that will need to be changed.	Addressed
				Maximum Curb Cut/Approach?	
2-501	Building Application Processing Schedule	d	51	R105.3.2 Permit application time limits- Our language should mirror ICC?	
	•			The Zoning Administrator will notify, in writing, all landowners of properties that are located within	
2-204	Minor Subdivision Review and Approval Process	h	34	five hundred (500) feet of the proposed minor subdivision.	Adressed
				There is a Tempory Use Permit Application and Fee but the LUDC does not mention temporary	
				use in it anywhere. It talks about temporary structures. So things like tents or other items used	
				during summer months fall under what? Minor Construction? Further, Ordinance 233 No. 2015-06	
				is requires a permit for to "sell, barter, or gift" any pyrotechnic device. But there was not an	
N/A	N/A	N/A	N/A	application for this permit and it does not fall under LUDC.	
				Site plan- is it 3d or 2D, If 3D how high and low does it extend. Update definition.	
				d) Upon completion of the forming of any foundation walls of the structure, a Certificate of	
				Placement will be issued and submitted to the Zoning Administrator of the Town of Alpine. The	
				Certificate of Placement verifies the location of the structure and the compliance, or lack of compliance, with the plot/site plan submitted with the approved building permit application. The	
				Certificate of Placement will be completed by a land surveyor, licensed in the State of Wyoming	
				that is retained by the building owner; the certificate is to be submitted to the Town office prior to	
				moving forward with the project. If any work is completed prior to the certificate submittal, all work	
	Required Building and Site Inspection	2-304	45	will be removed, at the owner's expense.	ok?
	required ballaring and one mappeditin	2-304	+5	22	OK:
				Port-a-potties- are they in there? Should we add them? Case/permit specific or across the board?	
				paration and and an analy in and a contract of a c	
				Trash Containers- Mention Osha- Add a new Section to LUDC for Construction Site Requirments?	
				DEQ vrs Lincoln County Septic- Do we need an agreement ith Lincoln County for approval	
				Impervious service?	
				Limit on number of accessory buildings?	
				Size of accessory buildings (1200 sq ft)? It is different in R1, R2, MRC. COM and LI don't have a	
				size limit other than setback. PFC and RC states 600 sq ft.	
				the demolition of an existing building and/or storage sheds under over three hundred (300 square	
		2-303	6 44	feet, on an existing property;	

				Size limitations for R1 says "size Limitations: No single-family dwelling unit shall exceed eight
				thousand (8,000) square feet of gross floor area. No single-family dwelling unit shall be any
				smaller than allowed by the most recent version of the International Building Code and/or
buildinding design standards and guidelines	4-501	b	98	International Residential Code that has been adopted by the Town of Alpine. "
	4-502	b 6	100	States in Modular homes that they need a min. of 800 sq ft
				Look at PUD language re annexations vrs when used for property in town already. Do they need
				to be different?
				Put radon testing back in and get equipment for them to check out
				Add who can place a stop work order, and update the language in LUDC from cease and desist or
Building Official	1-107	b 6	6	add stop work.
Design Review Committie	1-108	c 7	7	update the language in DRC that they are in charge of approval not just recommendations
				Perimeter fence definition? Because it states they can not be on the lot line. How far back do they
				need to be? Are they a perimeter fence at that point? What happens if they do a dog run or non
Affidavit Process	2-303	a 1	44	non-perimeter fence? Also 2-303 a 1 specifes perimeter fences.
				Add retaining walls to the structure defin. And make sure structures are listed as not allowed in
				setbacks.
		g-1	122	Commerical building in PFC? No cap is listed.
				Wood foundationsshould we not allow them.

TOWN OF ALPINE ORDINANCE NO. 2025-011 LAND USE & DEVELOPMENT CODE

AN ORDINANCE REPEALING AND REPLACING CERTAIN SECTIONS OF PART 2 - PROCEDURES AND PART 4 - DEVELOPMENT STANDARDS OF THE TOWN OF ALPINE LAND USE AND DEVELOPMENT CODE AND AMENDING THE TABLE OF CONTENTS ACCORDINGLY

WHEREAS, the Town of Alpine has adopted a Land Use and Development Code to regulate land use and development activities within the town limits;

WHEREAS, the Town Council of the Town of Alpine has determined that specific updates to Part 2 – Procedures and Part 4 – Development Standards are necessary for improved clarity, accuracy, and alignment with current planning and building practices;

NOW, THEREFORE, BE IT ORDAINED BY THE GOVERNING BODY OF THE TOWN OF ALPINE, WYOMING:

SECTION 1. REPEAL AND REPLACEMENT OF PART 2 – PROCEDURES

The following sections of the Alpine Land Use and Development Code, **Part 2 – Procedures**, are hereby repealed in their entirety and replaced with the following:

Section 2-204. Planned Unit Development Process

- (f) The Zoning Administrator will, as soon as practical, place the proposed planned unit development application on the agenda of the Alpine Planning and Zoning Commission.
- (g) Before any decision is reached by the Alpine Planning and Zoning Commission:
 - (1) The landowner(s)/applicant(s) will post a copy of the proposed planned unit development application upon the property where the planned unit development is requested. Notice shall be no less than 18" x 24" and posted on material that is visible from the property line. The costs of production of the notice and posting the notice shall be borne by the petitioner. This public notice will be made, at least, thirty (30) days before the planned unit development application is considered publicly by the Alpine Planning and Zoning Commission.
 - (2) The landowner(s)/applicant(s) will provide written notice, via certified mail, to all utilities effected and all owners of property within five hundred (500) feet of the property or properties under consideration for a planned unit development. The written notice will also include the date, time and place when the proposed planned unit development will be considered by the Alpine Planning and Zoning Commission. This public notice will be made, at least, thirty (30) days before the planned unit development application is considered publicly by the Alpine Planning and Zoning Commission. The landowner(s)/applicant(s) shall bear the

- responsibility of paying all costs and postage fees of the certified mailing and provide proof of said mailings to the Planning and Zoning Administrator.
- (3) The Alpine Planning and Zoning Commission will hold one (1) public hearing at a public facility within the Town of Alpine. Town residents and the general public will receive at least thirty (30) days' notice of the public hearing. Public notice will be advertised in one (1) newspaper of general circulation throughout Lincoln County. The Planning and Zoning Administrator will prepare the notice and provide it to the newspaper. The landowner(s)/applicant(s) shall bear the responsibility of paying all costs of this advertising. Public comments received during the meeting will be documented for subsequent reference during the zone change process.

Section 2-207.2. Minor Subdivision Review and Approval Process (Figure 2-6)

- (c) Applicant will complete and file one (2) hard copies, and one (1) digital copy of a master plan report for the proposed subdivision with the Zoning Administrator. The master plan will address what municipal services the subdivision intends to use, as well as the potential impact of the proposed subdivision upon the Town of Alpine and the community. The master plan, which will contain a combination of technical narrative, statistical tables, and illustrations, will address, at least, the following issues:
 - (1) The purpose of the subdivision and proposed land uses.
 - (2) A development schedule for proposed land uses.
 - (3) The number of lots being created and, if applicable, the zoning designations requested for each lot.
 - (4) Planned water system, as well as anticipated average day and maximum day water demand.
 - (5) Planned wastewater system, as well as anticipated average daily flows.
 - (6) Planned points of access to municipal roads, Lincoln County roads, and U.S. Highway 89, as well as anticipated average and peak day traffic volumes
 - (7) Planned storm water management plan and anticipated storm water flows for ten (10) year storm event.
 - (8) Planned snow storage areas.
 - (9) Planned easements and facilities to accommodate access to, or the extension of, the Town of Alpine's planned community trail system.
 - (10) Landscape Plan
- (d) Applicant will prepare and file one (1) hard copy, and one (1) digital copy of a preliminary plat with the Zoning Administrator that contains, at least, the following information:
 - (1) Proposed name of subdivision, the size of property to be subdivided (in acres), and the size of the lots or parcels being created;

- (2) Name and address of the subdivision applicant, professional engineer or professional land surveyor registered in the State of Wyoming who prepared the plat, and owners of subject property;
- (3) Location and boundaries of the subdivision that are tied to two (2) legal survey monuments;
- (4) Date of drawing preparation and all subsequent revisions, as well as a scale (not less than one {1} inch = two hundred {200} feet) and north arrow;
- (5) Boundary lines of subdivision, the location and dimensions of all existing streets, alleys, trails, paths, easements, watercourses and irrigation ditches, and structures on and within two hundred (200) feet of the subdivision;
- (6) Location of existing water distribution and wastewater collection lines on and within two hundred (200) feet of the subdivision;
- (7) Two (2) foot contours where ground slopes are less than ten (10) percent and five (5) foot contours where ground slopes exceed ten (10) percent.

Section 2-207.3. Major Subdivision Review and Approval Process (Figure 2-7)

- (d) Applicant will complete and file two (2) hard copies, and **one (1) digital copy of a master plan report** for the proposed subdivision with the Zoning Administrator. The master plan will address what municipal services the subdivision intends to use, as well as the potential impact of the proposed subdivision upon the Town of Alpine and the community. The master plan, which will contain a combination of technical narrative, statistical tables, and illustrations, will address, at least, the following issues:
 - (1) The purpose of the subdivision and proposed land uses.
 - (2) A development schedule for proposed land uses.
 - (3) The number of lots being created and, if applicable, the zoning designations requested for each lot, and densities associated with residential and commercial land uses.
 - (4) Suitability of soils to support future land use expansion.
 - (5) Compatibility of proposed land uses with adjacent land uses.
 - (6) When applicable, the potential need for new housing in the context of anticipated housing demands for Alpine.
 - (7) Planned water system, as well as anticipated average day and maximum day water demand.
 - (8) Planned wastewater system, as well as anticipated average daily flows.
 - (9) Planned points of access to municipal roads, Lincoln County roads, and U.S. Highway 89, anticipated average and peak day traffic volumes.
 - (10) Vehicular circulation plan.
 - (11) Planned storm water management plan and anticipated storm water flows for ten (10) year storm event.
 - (12) Snow storage areas.

Town of Alpine Ordinance No. 2025-011 – Land Use and Development Code

Page 3 of 7

- (13) Landscaping plan.
- (14) Planned easements and facilities to accommodate access to, or the extension of, the Town of Alpine's planned community trail system.
- (15) When applicable, planned covenants, contracts or deed restrictions that may be associated with a common interest development.
- (e) Applicant will prepare and file two (2) hard copies to scale and one (1) digital copy of a preliminary plat with the Zoning Administrator that contains, at least, the following information:
 - (1) Proposed name of subdivision, the size of property to be subdivided (in acres), and the size of the lots or parcels being created;
 - (2) Name and address of the subdivision applicant, professional engineer or professional land surveyor registered in the State of Wyoming who prepared the plat, and owners of subject property;
 - (3) Location and boundaries of the subdivision that are tied to two (2) legal survey monuments;
 - (4) Date of drawing preparation and all subsequent revisions, as well as a scale (not less than one {1} inch = two hundred {200} feet) and north arrow;
 - (5) Boundary lines of subdivision, the location and dimensions of all existing streets, alleys, trails, paths, easements, watercourses and irrigation ditches, and structures on and within two hundred (200) feet of the subdivision;
 - (6) Location of existing water distribution and wastewater collection lines on and within two hundred (200) feet of the subdivision;
 - (7) Two (2) foot contours where ground slopes are less than ten (10) percent and five (5) foot contours where ground slopes exceed ten (10) percent.
- (o) The applicant will prepare and file two (2) hard copies to scale and one (1) digital copy of a final subdivision plat application, and related filing fees, with the Zoning Administrator. The final subdivision plat application will include the final subdivision plat, a signed copy of a subdivision improvement agreement, a payment of all design costs for public improvements, and performance surety.

Section 2-301(9–11). Building Permit Requirements

- (9) Two (2) hard copies to scale, a minimum of 2-foot by 3-foot, set of scaled construction drawings (see application checklist) that illustrate the proposed foundation, floor plan, typical wall section, roof system, building elevations, exterior material specifications, as well as electrical, plumbing, radon and HVAC systems. All construction drawings for structures submitted with a permit application will be designed, stamped and certified by a civil or structural engineer greater than three hundred (300) square feet in size.) Along with one (1) digital copy of the construction drawings. {See permit checklist for complete details}.
- (10) All new buildings including additions or remodels to and existing structures, require submittal of two (2) hard copies, a minimum of 18-inches by 24-inches,

set of a scaled site/plot plan, that depicts the location of, proposed vehicular access, the finish grade of the project site, septic system or sewer connection location, water connection location, denoting all above ground and below ground utilities (power, propane) and/or easements to be located on the property, vehicle parking (garage square footage and driveway dimensions {square footage}), setbacks, onsite drainage facilities and snow storage areas (snow storage dimensions {square footage}) needs to be clearly identified. Along with one (1) digital copy of the scaled site/plot plan. {See permit checklist for complete details}.

- a. Submittal of the civil engineered site plan is required for all Multi-Unit Residential (R-2) {including additions or remodels to existing structures}, Mixed Residential and Commercial (MRC) {including additions or remodels to existing structures} and Commercial (C) {including additions or remodels to existing structures}, Light Industrial (LI) {including additions or remodels to existing structures}, Public and Community Facilities (PCF) {including additions or remodels to existing structures} and Recreation and Conservation (RC) {including additions or remodels to existing structures} permit applications.
- (11) Two (2) hard copies, scaled if applicable, set of other construction documents and/or other data that the applicant may consider relevant to the building permit application will be submitted with the building permit application. All construction documents and/or other requested documents will be stamped and certified by a civil or structural engineer licensed in the State of Wyoming; (Stamped engineering is required on all structures greater than three hundred (300) square feet in size.

Section 2-304. Required Building and Site Inspections

- (h) Electrical permits and inspections for projects within the Town of Alpine are issued and conducted by the Wyoming Department of Fire Prevention and Electrical Safety. The homeowner or contractor is responsible for obtaining the appropriate permit and ensuring that all required inspections are completed.
 - (1) A copy of the approved wiring permit and any associated inspection reports must be submitted to the Town before the issuance of a Certificate of Occupancy or Certificate of Completion.

The previously included standalone sentence "NOTE: STATE TO COMPLETE ALL ELECTRICAL INSPECTIONS" is hereby struck and shall not appear in the revised section.

SECTION 2. REPEAL AND REPLACEMENT OF PART 4 – DEVELOPMENT STANDARDS

The following sections of **Part 4 – Development Standards** of the Alpine Land Use and Development Code are hereby **repealed and replaced**, except **Section 4-204**, which is **hereby added as a new section**:

Section 4-201. Applicable Building Codes

Town of Alpine Ordinance No. 2025-011 – Land Use and Development Code

Page **5** of **7**

- (a) All buildings and temporary structures built or located within the Town of Alpine on or after **November 1, 2006**, shall comply with the **most currently published version** of the *International Building Code (IBC)* or *International Residential Code (IRC)*, as published by the **International Code Council (ICC)**.
- (b) The construction of all new, or the repair of any existing, plumbing, mechanical, and fuel gas systems installed in the Town of Alpine following the adoption of the **Alpine Land Use and Development Code** shall conform to the most currently published version of the following codes as published by the **International Code Council (ICC)** at the time of installation:
 - International Plumbing Code (IPC)
 - International Mechanical Code (IMC)
 - International Fire Code (IFC)
 - International Fuel Gas Code (IFGC)
- (c) The construction of all new, or the repair of any existing, electrical systems installed in the Town of Alpine after the adoption of the **Alpine Land Use and Development Code** shall comply with the **most current version of the National Electrical Code (NEC)** as adopted by the **State of Wyoming** at the time of installation.

Section 4-203. Exceptions to Adopted Building Codes

(a) When necessary, the Alpine Town Council may adopt exemptions to specific standards within any of the adopted building codes. Refer to the most recently adopted ICC Code Exception Ordinance(s) for applicable details.

Section 4-204. Grace Period (NEW SECTION)

(a) A six-month grace period shall be granted from the date of publication of a new ICC version, during which time both the newly published and previously adopted versions will be accepted.

SECTION 3. AMENDMENT TO THE TABLE OF CONTENTS

The Table of Contents of the Alpine Land Use and Development Code is hereby amended accordingly to reflect the repeal and replacement of the sections listed in this ordinance.

SECTION 4. EFFECTIVE DATE

This Ordinance shall take effect and be in force from and after its passage, approval, and publication as required by law.

SECTION 5. REPEAL OF ORDINANCE NO. 1997-59 AND CONFLICTING ORDINANCES

Ordinance No. 1997-59 is hereby repealed in its entirety. All other ordinances or portions of ordinances previously enacted by the Town of Alpine that are in conflict with this Land Use and Development Code are also hereby repealed.

The language and provisions formerly adopted in Ordinance No. 1997-59 have been updated, reorganized, and incorporated into Part 3 – Zoning Ordinance of the Town of Alpine Land Use and Development Code

Town of Alpine Ordinance No. 2025-011 - Land Use and Development Code

Page **6** of **7**

Passed First Reading on the 17th day of June 2025.							
VOTE: <u>4 YES, 0 NO, 0 ABSTAIN, 0 ABSENT</u>							
Passed First Reading on the 1 st day of July 2025.							
VOTE:YES, NO, ABS	STAIN,	_ ABSENT					
Passed on Third and Final Reading 15th day of July 2025.							
VOTE:YES, NO, ABS	STAIN,	_ ABSENT					
			TOWN OF ALPINE				
			Eric Green, Mayor of Alpine				
ATTEST:							
Marin I Characte Chata/Taracasa	-						
Monica L. Chenault, Clerk / Treasurer							
ATVERGE	PATION O	E THE TOW	ALCUEDIZ				
AITEST	IAIION O	F THE TOW	'N CLERK				
STATE OF WYOMING)						
COUNTY OF LINCOLN TOWN OF ALPINE)						
I hereby certify that the forgoing C the Town Office.	Ordinance N	No. 2025-011	shall be duly posted for ten (10) days in				
I further certify that the foregoing upon its passing and approved by			d on the Town website in final form, on as is practicable.				
I further certify that the forgoing C TOWN OF ALPINE, LINCOLN C			corded in the BOOK OF ORDINANCES,				
		ATTES	ST:				
		Monic	a I. Chenault Clerk / Treasurer				

Town of Alpine Ordinance No. 2025-011 – Land Use and Development Code

Page 7 of 7

Design Review Plan Checklist

Permit #:								
Project Description:								
	Project Name:							
		ocation of property:						
Plan	Plan Reviewer:							
PASS	S/ FAIL							
		PROJECT COMPLIES WITH ZONING						
		SITE PLAN IS NAMED AND ADDRESSED						
		NAME, ADDRESS, TELEPHONE, AND EMAIL OF PERSON OR COMPANY RESPONSIBLE FOR THE PREPARATION OF THE SITE PLAN IS INDICATED						
		NORTH ARROW						
		SCALE INDICATED						
	□ UCTUR	LOCATION OF ALL EXISTING STRUCTURES AND PROPOSED						
		WITH DIMENSIONS ARE INDICATED						
		PROPERTY BOUNDARIES ARE DEFINED AND HAVE DIMENSIONS						
		LOCATION OF EXISTING AND/OR PROPOSED STRUCTURES, UTILITY LINES (WATER, SEWER, AND POWER), DRIVEWAYS, YARD HYDRANTS, PROPANE TANKS, ETC.						
		IDENTIFICATION OF SETBACKS AND MINIMUM SETBACK REQUIREMENTS HAVE BEEN MET						

	□ DEFIN	LOCATION/DIMENSIONS OF PARKING AREA, DRIVEWAYS ARE NED
		SNOW STORAGE AREAS IDENTIFIED
	□ LABE	LOCATION OF THE ACCESS ROAD HAS BEEN IDENTIFIED AND LED
		Road Name:
		IDENTIFICATION OF ANY PROPERTY EASEMENTS, SUCH AS ANY ELECTRICAL LINES (OVERHEAD AND/OR UNDERGROUND), TELEPHONE, ETC. AND HAVE BEEN LABELED
		LOCATION OF IRRIGATION DITCHES (EXISTING IRRIGATION DITCHES PRESERVED), if applicable
		DRAINAGE PLAN IS INDICATED INCLUDING THE LOCATION OF EXISTING AND/OR PROPOSED CULVERTS, DITCHES, OR FLOW OF WATER ACROSS THE SITE
		MAXIMUM BUILDING AREAS IDENTIFIED
NOTE	S:	

PLANNING & ZONING MEETING MINUTES

June 10, 2025 at 7:00 PM

Meeting Type – Regular Meeting

1. CALL TO ORDER: The meeting was called to order by Chairman Melisa Wilson at 7:03 PM

2. ROLL CALL & ESTABLISH QUORUM:

PRESENT

Planning & Zoning Commission Member Dan Schou

Planning & Zoning Vice Chairman Rachael Stewart

Planning & Zoning Chairman Melisa Wilson

3. TONIGHT'S APPOINTMENTS/ NEW BUSINESS:

a. KOVAC, DUSTIN, AND MAEVE: Lot #312 Lakeview Estates, 166 Stoor Dr. (MC-0425-0002)- Retaining Wall

Plans were submitted to Jorgensen Engineering for review. Jorgensen stated they did not need to review and approve them since they have been stamped by a licensed engineer. Site plan looks good.

Motion made by Planning & Zoning Vice Chairman Stewart to approve the Minor Construction Permit for Lot #312 Lakeview Estates, 166 Stoor Dr. (MC-0425-0002) with the contingency that they provide a clearer set of plans, seconded by Planning & Zoning Commission Member Schou.

Voting Yea: Planning & Zoning Commission Member Schou, Planning & Zoning Vice Chairman Stewart, Planning & Zoning Chairman Wilson

 AFFITTAMI, LLC AKA AUTO SERVICES ELEVATED (KRESAN, KATIE); Lot#3 Elk Meadows, 119 Sagebrush Ln. (C-0525-0003)- Commercial Building, Office, and Employee Apartments

Applicants have attended the Design Review Committee Meeting and were granted contingent approval. Ste plan looked good.

Motion made by Planning & Zoning Commission Member Schou to approve the site plan for Lot#3 Elk Meadows, 119 Sagebrush Ln. (C-0525-0003)- Commercial Building, Office, and Employee Apartments, seconded by Planning & Zoning Vice Chairman Stewart.

Voting Yea: Planning & Zoning Commission Member Schou, Planning & Zoning Vice Chairman Stewart, Planning & Zoning Chairman Wilson

c. VIGNAROLI, AMY, AND ROBERT: Lot #15 Palis Park, 180 Canyon View Dr. (R1-0625-0001)- Single-family Residential (Modular)

Mr. Shou asked if they would be using propane. They will not. Site plan looks good.

Motion made by Planning & Zoning Commission Member Schou to approve site plan for VIGNAROLI, ANY, AND ROBERT: Lot #15 Palis Park, 180 Canyon View Dr. (R1-0625-0001)- Single-family Residential (Modular), seconded by Planning & Zoning Vice Chairman Stewart.

Voting Yea: Planning & Zoning Commission Member Schou, Planning & Zoning Vice Chairman Stewart, Planning & Zoning Chairman Wilson

4. TABLED ITEMS:

a. EPLIN, CHERI: Lot #220, Lakeview Estates A, 672 Sunset Dr (R1-0425-0001) – New single-family residence

The contractor is still waiting for the engineered drawings for the septic system. The item will remain tabled.

 KURT LINFORD DDS: Lot #302 Riverview Meadows – Encroachment Application for parking lot

Mr. Linford has had the property surveyed and staked. As of Friday, June 6, he informed the Municipal Officer that he is still waiting on One-Call before proceeding further.

Gina Corson is planning to send a reminder letter to Mr. Linford outlining the next steps and the timeframe by which the issue must be resolved.

5. UNFINISHED/ONGOING BUSINESS:

6. PLANNING/ZONING CORRESPONDENCE:

7. APPROVAL OF MINUTES:

Motion made by Planning & Zoning Vice Chairman Stewart, seconded by Planning & Zoning Commission Member Schou.

Voting Yea: Planning & Zoning Commission Member Schou, Planning & Zoning Vice Chairman Stewart, Planning & Zoning Chairman Wilson

a. Meeting Minutes May 13, 2025

8. TOWN COUNCIL ASSIGNMENT:

Chairman Wilson will attend the Town Council Meeting scheduled for June 17, 2025.

9. ADJOURN MEETING:

Motion made by Planning & Zoning Commission Member Schou to adjourn at 7:43 PM, seconded by Planning & Zoning Vice Chairman Stewart.

Voting Yea: Planning & Zoning Commission Member Schou, Planning & Zoning Vice Chairman Stewart, Planning & Zoning Chairman Wilson

** Minutes are a summary of the meeting **